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Chapter 1

Introduction

1.1 The existence problems of compact Clifford–
Klein forms and compact manifolds locally
modelled on homogeneous spaces

Let G be a Lie group and H its closed subgroup. A manifold is said to
be locally modelled on the homogeneous space G/H if it has an atlas with
values inG/H whose transition functions are given by the left translations by
elements of G. One standard way to construct a manifold locally modelled
on G/H is to take a quotient Γ\G/H of the homogeneous space G/H by the
action of a discontinuous group Γ. Here, a discrete subgroup Γ of G is called
a discontinuous group for G/H if the the projection G/H → Γ\G/H forms
a principal (flat) Γ-bundle, or equivalently, the Γ-action on G/H is proper
(= properly discontinuous) and free. We then call Γ\G/H a Clifford–Klein
form. Various geometric structures are described in terms of local models
and Clifford–Klein forms.

Example 1.1.1. A pseudo-Riemannian manifold of signature (p, q) (with
p ⩾ 2 for simplicity) with constant positive sectional curvature is nothing but
a manifold locally modelled on a homogeneous space O(p+1, q)/O(p, q). The
geodesically complete ones exactly correspond to the compact Clifford–Klein
forms of O(p+ 1, q)/O(p, q).

Suppose that the G-action on G/H is effective and preserves some Rie-
mannian metric, or slightly more generally, that H is compact. Then, every
discrete subgroup Γ of G acts properly on G/H, and therefore the quotient
Γ\G/H always carries a natural orbifold (or Satake’s V -manifold) structure.
If, in addition, G is linear and Γ is finitely generated, there always exists a
finite-index subgroup of Γ that acts freely on G/H by Selberg’s lemma [52,
Lem. 8]. Thus, the study of Clifford–Klein forms of G/H is almost equiva-
lent to that of discrete subgroups of G. In contrast, if H is noncompact, a
discrete subgroup of G does not necessarily act properly on G/H, and the
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study of Clifford–Klein forms is much more difficult. Systematic study in
this general setting was initiated by T. Kobayashi in the late 1980s ([20],
[22], [23]). In particular, the following problem has attracted considerable
attention:

Problem 1.1.2. Given a homogeneous space G/H, determine if there is a
compact Clifford–Klein form of G/H. More generally, determine if there is
a compact manifold locally modelled on G/H.

Remark 1.1.3. When G/H is a homogeneous space of reductive type, it
is conjectured that every compact manifold locally modelled on G/H is in
fact a Clifford–Klein form.

Problem 1.1.2 has been studied by various methods derived from diverse
fields in mathematics (see excellent surveys [26], [27] by Kobayashi himself
on this problem and also surveys [28], [29], [31], [34], [38]). Geometrically,
one of the most interesting cases is when G/H is a semisimple symmetric
space. In that case, there are two available approaches:

(I) A criterion for properness in terms of Cartan projection of G ([20],
[23], [2]).

(II) Comparison of relative Lie algebra cohomology and de Rham coho-
mology ([30], [20], [3]).

Note that a dynamical approach ([61], [13], [35], [36]) and an approach from
unitary representation theory ([37], [53]) are not applicable to the case of
semisimple symmetric spaces, whereas they give some results in the nonsym-
metric case (cf. [27, §4.8]). Although these various approaches have been
developed in last three decades, Problem 1.1.2 is still unsolved for many
homogeneous spaces, including many semisimple symmetric spaces. For in-
stance, it is not known whether there exists a compact Clifford–Klein form of
O(4, 3)/O(4, 2) (or a compact manifold locally modelled on O(4, 3)/O(4, 2)).

In this thesis, we study Problem 1.1.2 from the approach (II). This
method is based on the following elementary observation: if M is a mani-
fold locally modelled on a homogeneous space G/H (with H connected for
simplicity), we can define a differential graded algebra homomorphism

η : (Λ(g/h)∗)h ≃ Ω(G/H)G → Ω(M)

by patching G-invariant differential forms on open sets of G/H by left trans-
lations, and therefore we have a homomorphism

η : H•(g, h;R) → H•(M ;R)

from relative Lie algebra cohomology to de Rham cohomology. The relative
Lie algebra cohomologyH•(g, h;R) is determined by the model homogeneous
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space G/H and does not depend on the topology of M . By contrast, the de
Rham cohomology H•(M ;R) is determined by the topology of M and does
not depend on its locally homogeneous geometric structure. We can extract
some topological information of M from the homomorphism η that relate
these two cohomologies. T. Kobayashi and K. Ono [30], [20] were the first to
apply this homomorphism η to the study of Problem 1.1.2. They compared
the Euler characteristic in relative Lie algebra cohomology with the one in
de Rham cohomology, and deduced necessary conditions for the existence of
compact Clifford–Klein forms. F. Labourie pointed out that their result [30,
Cor. 5] is also valid for a manifold locally modelled on homogeneous spaces
([26, Notes 3.13]). Y. Benoist and F. Labourie [3] obtained another necessary
condition by investigating the invariant symplectic forms on homogeneous
spaces.

1.2 Main results of this thesis

In the first half of Chapter 2, we prove the following theorem:

Theorem 1.2.1 (Theorem 2.1.2). Let G be a Lie group and H its closed
subgroup with finitely many connected components. Put N = dimG−dimH.

(1) If (ΛN (g/h)∗)h ̸= 0 and HN (g, h;R) = 0, then there is no compact
manifold locally modelled on G/H.

(2) Take a maximal compact subgroup KH of H. Let

i : HN (g, h;R) → HN (g, kH ;R)

be the homomorphism induced by the inclusion (Λ(g/h)∗)h ↪→ (Λ(g/kH)∗)kH .
If i is not injective, there is no compact manifold locally modelled on G/H.

We recover the necessary conditions of Kobayashi–Ono and Benoist–
Labourie from Theorem 1.2.1 (see Proposition 2.6.1 and Remark 3.1.4).

From the second half of Chapter 2 to Chapter 4, we give various examples
of homogeneous spaces to which Theorem 1.2.1 is applicable. First, in the
second half of Chapter 2, we consider the case of homogeneous spaces of
nonreductive type. We obtain, for instance, the following:

Example 1.2.2 (see Example 2.7.6 and Remark 2.7.5). Let G be a real
linear solvable algebraic group and F ∈ g∗. Then, there does not exist a
compact manifold locally modelled on the coadjoint orbit G/ Stab(F ) unless
G/ Stab(F ) is zero-dimensional.

In Chapters 3–4, we study the case of homogeneous spaces of reductive
type. In Chapter 3, we give a necessary and sufficient condition for the
applicability of Theorem 1.2.1 (2):
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Theorem 1.2.3 (Theorem 3.1.3). Let G/H be a homogeneous space of
reductive type. We write Pg∗ and Ph∗ for the space of primitive ele-
ments in (Λg∗)g and (Λh∗)h, respectively. Then, the homomorphism i :
H•(g, h;R) → H•(g, kH ;R) is not injective if and only if the linear map
rest : (Pg∗)

−θ → (Ph∗)
−θ induced from the restriction map (Λg∗)g → (Λh∗)h

is not surjective, where ( · )−θ denotes the (−1)-eigenspace for θ.

Remark 1.2.4. Theorem 1.2.1 (1) is not applicable to any homogeneous
space of reductive type.

The proof of Theorem 1.2.3 uses an isomorphism constructed by H. Car-
tan, C. Chevalley, J.-L. Koszul and A. Weil [11] between relative Lie algebra
cohomology H•(g, h;R) and the cohomology H•(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h) of a
pure Sullivan algebra defined from a transgression in the Weil algebra.

As a direct application of Theorems 1.2.1 and 1.2.3, we prove the follow-
ing conjecture proposed by T. Kobayashi in 1989:

Conjecture 1.2.5 ([21, Conj. 6.4]). A homogeneous space G/H of reductive
type does not admit a compact Clifford–Klein form if rankG − rankK <
rankH − rankKH .

Remark 1.2.6. We show this conjecture not only for Clifford–Klein forms
but, more generally, for manifolds locally modelled on homogeneous spaces.
However, we do not know whether this is an essential generalization (see
Remark 1.1.3).

In Chapter 4, we classify the semisimple symmetric spaces to which
Theorem 1.2.1 (2) is applicable:

Theorem 1.2.7 (Theorem 4.1.2). Let (g, h) be a semisimple symmetric pair.
Then the following two conditions are equivalent:

(A) The homomorphism i : H•(g, h;R) → H•(g, kH ;R) induced from the
inclusion map (Λ(g/h)∗)h ↪→ (Λ(g/kH)∗)kH is injective.

(B) The pair (g, h) is isomorphic (up to possibly outer automorphisms) to
a direct sum of the following irreducible symmetric pairs (B-1)–(B-5).

(B-1) (l, l) (l: simple Lie algebra).

(B-2) (l⊕ l,∆l) (l: simple Lie algebra).

(B-3) (lC, l) (lC: complex simple Lie algebra, l: real form of lC).

(B-4) A pair (g′, h′) such that rank h′ = rank kH′ , where kH′ is a maxi-
mal compact subalgebra of h′.

(B-5) • (sl(2n+ 1,C), so(2n+ 1,C)) (n ⩾ 1),

• (sl(2n,C), sp(n,C)) (n ⩾ 2),

• (so(2n,C), so(2n− 1,C)) (n ⩾ 4),
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• (e6,C, f4,C).

The proof of Theorem 1.2.7 uses Theorem 1.2.3 and Berger’s classifica-
tion of the irreducible symmetric pairs [4].

From this classification, we obtain some new examples of semisimple
symmetric spaces that do not admit compact Clifford–Klein forms:

Example 1.2.8. There does not exist a compact manifold locally modelled
on SL(p+ q,R)/ SO0(p, q) (p, q ⩾ 1, p, q: odd).

See Table 4.1 for other examples and Remark 1.2.13 for comparison
with previous results. We give some nonsymmetric and nonlinear examples
in Chapter 4 too.

Finally, in Chapter 5, we prove the following refinement of Theo-
rem 1.2.1 (2):

Theorem 1.2.9 (Theorem 5.1.1). Let G be a connected linear Lie group
and H its connected closed subgroup. Assume that HN (g, h;R) ̸= 0 (N =
dimG − dimH). Let KH be a maximal compact subgroup of H and TH a
maximal torus of KH . Let I• =

⊕
n∈N I

n be the graded ideal of H•(g, tH ;R)
generated by ⊕

C, p

im(i : Hp(g, c;R) → Hp(g, tH ;R)),

where the direct sum runs all connected compact subgroups C of G containing
TH and all p > N + dimKH − dimC. If

im(i : HN (g, h;R) → HN (g, tH ;R)) ⊂ IN

holds, G/H does not admit a compact Clifford–Klein form.

Remark 1.2.10. We do not know whether Theorem 5.1.1 applies to the
case of manifolds locally modelled on G/H.

The key to the proof of Theorem 1.2.9 is to combine the homomorphism
η from relative Lie algebra cohomology to de Rham cohomology with the
upper-bound estimate for cohomological dimensions of discontinuous groups.

We give a systematic way to find semisimple symmetric spaces G/H
that apply Theorem 1.2.9 using the theorem of Cartan–Chevalley–Koszul–
Weil [11] and ε-families of semisimple symmetric pairs, introduced by T.
Oshima and J. Sekiguchi [50] (see Propositions 5.4.1 and 5.5.3).

Example 1.2.11. If p, q ⩾ 1 and q is odd, then O(p + 1, q)/O(p, q) does
not admit a compact Clifford–Klein form. In other words, every complete
pseudo-Riemannian manifold of signature (p, q) with positive constant sec-
tional curvature is noncompact if p, q ⩾ 1 and q is odd.
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Example 1.2.12. If p, q ⩾ 1, then SL(p + q,R)/SO0(p, q), SL(p +
q,C)/SU(p, q) and SL(p + q,H)/ Sp(p, q) do not admit compact Clifford–
Klein forms.

See Subsection 5.1.3 for other examples.

Remark 1.2.13. We mention some results on the existence problem of
compact Clifford–Klein forms related to the above examples:

• Example 1.2.11 generalizes results of [33] (for p, q ⩾ 1, p, q: odd)
and [2] (for (p, q) = (2n, 2n + 1)). It is also known that compact
Clifford–Klein forms do not exist for p ⩾ q ⩾ 1 (Calabi–Markus phe-
nomenon [10], [59], [60], [20]). On the other hand, compact Clifford–
Klein forms exist for (p, q) = (1, 2n), (3, 4n) and (7, 8) ([33], [26]).

• Example 1.2.12 generalizes Example 1.2.8 (for p, q: odd, over R). It
also generalizes results of [23] (for p = q, over R or C) and [2] (for
p = q or q + 1, over R, C or H).

Some results in this thesis, including the proof of Conjecture 1.2.5, Ex-
amples 1.2.11 and 1.2.12 are also obtained by N. Tholozan [56] at about the
same time (see Remarks 3.1.5 and 5.1.7).

The results of Chapter 2 are contained in [43]. We mention that The-
orem 1.2.1 (2) was first proved in [41] for the case of Clifford–Klein forms
under the assumption that G/H is of reductive type. The results of Chap-
ter 4 were announced in [42]. Many of the examples in Chapter 4 were first
found in [41]. The results of Chapter 5 are contained in [44].
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Chapter 2

Homogeneous spaces of
nonreductive type locally
modelling no compact
manifold

2.1 Introduction

Let G/H be a homogeneous space. A manifold is called locally modelled on
G/H if it is covered by open sets that are diffeomorphic to open sets of G/H
and their coordinate changes are given by left translations by elements of
G. A typical example is a double coset space Γ\G/H, where Γ is a discrete
subgroup of G acting properly and freely on G/H. In this case Γ is called a
discontinuous group for G/H and Γ\G/H is called a Clifford–Klein form. A
manifold locally modelled on a homogeneous space is a fundamental object
of the study of “geometry” in the sense of Klein’s Erlangen program. Thus,
one of the central questions in geometry is to understand topological features
of manifolds locally modelled on a given homogeneous space.

We study the following problem proposed by T. Kobayashi:

Problem 2.1.1 ([20]). When does a homogeneous space model some com-
pact manifold? When does a homogeneous space admit a compact Clifford–
Klein form?

Various methods have been applied to study this problem (See surveys
[26], [31], [34] and references therein). One is a cohomological method,
that is, to investigate “locally invariant” differential forms on a manifold
locally modelled on a homogeneous space and their cohomology classes.
This method was initiated by Kobayashi–Ono [30] and then extended by
Kobayashi [20] and Benoist–Labourie [3].
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In this chapter, we give a new cohomological obstruction to the existence
of compact manifolds locally modelled on homogeneous spaces and find it
useful even when G is not reductive. Note that, for a nonreductive Lie group
G, less is known about Problem 2.1.1 in particular because we cannot use
the properness criterion of Benoist [2] and Kobayashi [25] anymore.

We use lowercase German letters for the Lie algebras of Lie groups de-
noted by uppercase Roman letters. For example, the Lie algebras of G, KH

and Stab(X) are g, kH and stab(X), respectively. Then, our main result is
stated as follows:

Theorem 2.1.2. Let G be a Lie group and H its closed subgroup with finitely
many connected components. Put N = dimG− dimH.

(1) If (ΛN (g/h)∗)h ̸= 0 and HN (g, h;R) = 0, then there is no compact
manifold locally modelled on G/H.

(2) Take a maximal compact subgroup KH of H. Let

i : HN (g, h;R) → HN (g, kH ;R)

be the homomorphism induced by the inclusion (Λ(g/h)∗)h ↪→ (Λ(g/kH)∗)kH .
If i is not injective, there is no compact manifold locally modelled on G/H.

Some applications of this theorem to homogeneous spaces of nonreduc-
tive type are given in Sections 2.7–2.8. The case of homogeneous spaces of
reductive type is studied in Chapters 3–4.

The idea of Theorem 2.1.2 (1) is already implicit in [3]. We shall give its
proof for the sake of completeness. Theorem 2.1.2 (2) is first proved in [41]
under the assumption that G/H is a homogeneous space of reductive type.
The key to the proof is to combine the homomorphism η : Hp(g,H;R) →
Hp(M ;R) (see Section 2.2) with an observation that a fibre bundle with
contractible fibre induces an isomorphism between the cohomologies of the
total space and the base space. We here generalize it to the nonreductive
case by separating the Poincaré duaity argument from the other parts of the
proof (cf. Corollary 2.5.1).

Theorem 2.1.2 generalizes some earlier results in [30], [20] and [3] (see
Section 2.6 and Remark 3.1.4).

2.2 Preliminaries

In this section, we review the definition of the homomorphism η :
Hp(g,H;R) → Hp(M ;R), which plays a foundational role in the cohomo-
logical study of Problem 2.1.1.

Let X be a real analytic manifold with an action of a Lie group G. Recall
that a (G,X)-structure on a manifold M is a collection of (Ui)i∈I , (ϕi)i∈I ,
(gij)i,j∈I , where (Ui)i∈I is an open covering of M , ϕi is a diffeomorphism
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from Ui to some open set of X, and gij : Ui ∩ Uj → G is a locally constant
map satisfying

gij(p)ϕj(p) = ϕi(p) (p ∈ Ui ∩ Uj).

We assume the cocycle condition for the transition functions (gij)i,j∈I :

gii(p) = 1 (p ∈ Ui), gij(p)gjk(p)gki(p) = 1 (p ∈ Ui ∩ Uj ∩ Uk).

It is automatically satisfied ifX is connected andG acts onX effectively. We
mainly consider the case when G acts transitively on X, namely, X = G/H
for some closed subgroup H of G. A manifold equipped with a (G,G/H)-
structure is also called a manifold locally modelled on G/H.

Let M be a manifold equipped with a (G,X)-structure (Ui)i∈I , (ϕi)i∈I ,
(gij)i,j∈I . Let π : E → X be a G-equivariant fibre bundle on X with typical
fibre F . Patching (ϕ∗iE)i∈I by (gij)i,j∈I , we get a fibre bundle πM : EM →M
with the same typical fibre F . We call it the locally G-equivariant bundle
over M corresponding to E. By definition EM naturally equips a (G,E)-
structure. We can define

η : Γ(X;E)G → Γ(M ;EM )

also by patching construction. In particular, if X = G/H and E = ΛpT ∗X,
this is written as

η : (Λp(g/h)∗)H → Ωp(M).

Here, we naturally identified Ωp(G/H)G with (Λp(g/h)∗)H . Taking coho-
mology, we get a homomorphism

η : Hp(g,H;R) → Hp(M ;R)

(see e.g. [15, §1.3], [40, §2.2] for the definition of relative Lie algebra co-
homology Hp(g,H;R)). Such a homomorphism η appears explicitly or im-
plicitly in many branches of geometry and representation theory, e.g. the
Matsushima–Murakami formula [39], characteristic classes of foliations [8],
a generalization of Hirzebruch’s proportionality principle [30] and the ex-
istence problem of a compact manifold locally modelled on homogeneous
spaces [30], [20], [3].

2.3 Proof of Theorem 2.1.2

Lemma 2.3.1. Let G be a Lie group and H its closed subgroup with finitely
many connected components. We write H0 for the identity component of
H. If there is no compact manifold locally modelled on G/H0, neither is on
G/H.
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Proof of Lemma 2.3.1. This is well-known at least for Clifford–Klein forms.
Suppose there is a compact manifoldM locally modelled on G/H. Consider
the locally G-equivariant fibre bundle πM : M0 → M corresponding to
π : G/H0 → G/H. Then the total space M0 is locally modelled on G/H0

and compact.

Thus we may assume H to be connected without loss of generality. Now,
it is enough to see:

Proposition 2.3.2. Let G be a Lie group and H its closed subgroup. Put
N = dimG− dimH.

(1) If (ΛN (g/h)∗)H ̸= 0 and HN (g,H;R) = 0, then there is no compact
manifold locally modelled on G/H.

(2) Suppose that H has finitely many connected components. Take a
maximal compact subgroup KH of H. If the homomorphism

i : HN (g,H;R) → HN (g,KH ;R)

is not injective, then there is no compact manifold locally modelled on G/H.

Remark 2.3.3. Proposition 2.3.2 (1) holds true even if H has infinitely
many connected components.

Proof of Proposition 2.3.2. (1). Suppose, on the contrary, that there is a
compact manifoldM locally modelled on G/H. Take a nonzero element Φ of
(ΛN (g/h)∗)H ; it is identified with a G-invariant volume form onG/H. Hence
η(Φ) ∈ ΩN (M) is a volume form onM by construction of η, and [η(Φ)] ̸= 0 in
HN (M ;R) by compactness ofM . On the other hand, [Φ] = 0 inHN (g,H;R)
by assumption, and [η(Φ)] = 0 in HN (M ;R). This is contradiction.

(2). Let M be a compact manifold locally modelled on G/H. Let πM :
EM →M be the locally G-equivariant fibre bundle on M corresponding to
π : G/KH → G/H. Consider the following commutative diagram:

HN (g, H;R) i−−−−→ HN (g,KH ;R)

η

y η

y
HN (M ;R)

π∗
M−−−−→ HN (EM ;R).

We saw in the proof of (1) that the homomorphism η : HN (g,H;R) →
HN (M ;R) is injective. The typical fibre H/KH of the fibre bundle πM :
EM → M is contractible by the Cartan–Malcev–Iwasawa–Mostow theo-
rem (cf. [18, Ch. XV, Th. 3.1]), thus π∗M : HN (M ;R) → HN (EM ;R)
is an isomorphism. These yield the injectivity of i : HN (g,H;R) →
HN (g,KH ;R).
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2.4 Equivalent form of Theorem 2.1.2 (1)

It is sometimes useful to rewrite Theorem 2.1.2 (1) as follows:

Proposition 2.4.1. Let G be a Lie group and H its closed subgroup with
finitely many connected components. Let ng(h) denote the normalizer of
h in g. If the h-action on g/h is trace-free (i.e. tr(adg/h(X)) = 0 for all
X ∈ h) and the ng(h)-action on g/h is not trace-free, then there is no compact
manifold locally modelled on G/H.

Proof. This is a direct consequence of Theorem 2.1.2 (1) and the lemma
below.

Lemma 2.4.2. Let g be a Lie algebra and h its subalgebra. Put N = dim g−
dim h.

(1) The h-action on g/h is trace-free if and only if (ΛN (g/h)∗)h ̸= 0.
(2) The ng(h)-action on g/h is trace-free if and only if HN (g, h;R) ̸= 0.

Proof. (1). This follows immediately from the definition of the h-action on
ΛN (g/h)∗.

(2). Let ι denote the interior product and L the g-action on Λg∗. Assume
that (ΛN (g/h)∗)h ̸= 0 and fix a nonzero element Φ of (ΛN (g/h)∗)h. We wish
to determine when

d : (ΛN−1(g/h)∗)h → (ΛN (g/h)∗)h

is a zero map. Every element of ΛN−1(g/h)∗ is written in the form ι(Y )Φ
(Y ∈ g), and the choice of such Y is unique up to h. For X ∈ h,

L(X)ι(Y )Φ = ι(Y )L(X)Φ− ι([X,Y ])Φ = ι([X,Y ])Φ.

It is equal to zero if and only if [X,Y ] ∈ h. Thus ι(Y )Φ is h-invariant if and
only if Y ∈ ng(h). Now,

dι(Y )Φ = L(Y )Φ− ι(Y )dΦ = L(Y )Φ = − tr(adg/h(Y ))Φ.

Hence d = 0 on (ΛN−1(g/h)∗)h if and only if the ng(h)-action on g/h is
trace-free.

2.5 The lower-degree parts

Under a suitable assumption, Theorem 2.1.2 (2) is extended to the lower-
degree parts of cohomology:

Corollary 2.5.1. Let G be a unimodular Lie group and H a closed subgroup
of G that is reductive in G. Take a maximal compact subgroup KH of H. If
the homomorphism i : Hp(g, h;R) → Hp(g, kH ;R) is not injective for some
p ∈ N, then there is no compact manifold locally modelled on G/H.
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Remark 2.5.2. In this chapter, we say that a Lie group G is unimodular if
the adjoint action of g on itself is trace-free. If G is connected, it is equivalent
to the existence of bi-invaraint Haar measure on G.

Proof of Corollary 2.5.1. Put N = dimG−dimH. By Theorem 2.1.2 (2), it
suffices to see that, if i : Hp(g, h;R) → Hp(g, kH ;R) is injective for p = N , it
is also injective for 0 ⩽ p ⩽ N − 1. This follows from the standard Poincaré
duality argument. Take any nonzero cohomology class α ∈ Hp(g, h;R). By
the Poincaré duality [32, Th. 12.1], we can pick β ∈ HN−p(g, h;R) such that
α ∧ β ̸= 0 in HN (g, h;R). Then η(α ∧ β) ̸= 0 by assumption, which yields
η(α) ̸= 0.

Remark 2.5.3. If G is a unimodular Lie group and H is a closed subgroup
of G that is reductive in G, Theorem 2.1.2 (1) is not applicable to G/H
because HN (g, h;R) ̸= 0 (N = dimG− dimH).

2.6 Relation with earlier results

We recover a result of Benoist–Labourie [3] from Theorem 2.1.2, though our
proof relies on the crucial parts of [3].

Proposition 2.6.1 ([3, Th. 1]). Let G be a connected semisimple Lie group
and H its unimodular subgroup with finitely many connected components. If
the centre z(h) of h contains a nonzero hyperbolic element, then there is no
compact manifold locally modelled on G/H.

Proof. We may assume H to be connected by Lemma 2.3.1. We identify g
with g∗ via the Killing form. In [3], it is shown that our assumptions yield
the existence of X ∈ g such that:

• X is a nonzero hyperbolic element.

• H ⊂ Stab(X).

• Let ω = dX. Let N = dim(G/H) and 2m = dim(G/ Stab(X)). If we
take µ ∈ (ΛN−2m(g/h)∗)h so that µ ∧ ωm ̸= 0, then d(µ ∧ ωm−1) = 0.

Here, Stab(X) ⊂ G is the stabilizer of X in G. Remark that ω = dX is
an element of (Λ2(g/stab(X))∗)Stab(X) (⊂ (Λ2(g/h)∗)h) and satisfies ωm ̸= 0
(2m = dim(G/ Stab(X))).

If [µ ∧ ωm]g,h = 0 in HN (g, h;R), then the proposition follows from
Theorem 2.1.2 (1). Thus we assume [µ∧ ωm]g,h ̸= 0. Since every element of
kH commutes with X and is elliptic, X ∈ ((g/kH)∗)kH . Hence [µ∧ωm]g,kH =
[d(X ∧ µ ∧ ωm−1)]g,kH = 0 in HN (g, kH ;R). Apply Theorem 2.1.2 (2).

We shall see later that results by Kobayashi and Ono ([30, Cor. 5], [20,
Prop. 4.10]) are recovered from Theorem 2.1.2 (2), too (see Remark 3.1.4).
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2.7 Examples (1): nonreductive Lie groups

In the rest of this chapter, we shall give some applications of Theorem 2.1.2.
In this section, we study the case when G is nonreductive.

Example 2.7.1. Let G be a simply connected nonunimodular Lie group and

G = S ⋉R (S: semisimple, R: solvable)

be its Levi decomposition. Take any closed unimodular subgroup H of S with
finitely many connected components. Then there is no compact manifold
locally modelled on G/H.

In fact, we can show a slightly more general result:

Example 2.7.2. Let G be a nonunimodular Lie group. Let G′ be a closed
subgroup of G such that g′ is reductive in g and the adjoint action of z(g′)
on g is trace-free. Here z(g′) denotes the centre of g′. Let H be any closed
unimodular subgroup of G′ with finitely many connected components. Then
there is no compact manifold locally modelled on G/H.

Proof of Example 2.7.2. By Proposition 2.4.1, it suffices to check that:

(i) The h-action on g/h is trace-free.

(ii) The ng(h)-action on g/h is not trace-free.

We will show the stronger results:

(i′) The g′-action on g is trace-free.

(ii′) The zg(g
′)-action on g is not trace-free.

Here zg(g
′) denotes the centralizer of g′ in g.

Let us prove (i′). Since g′ is reductive, we have a direct sum decompo-
sition g′ = z(g′) ⊕ [g′, g′]. By our assumption, z(g′) acts trace-freely on g.
Also, [g′, g′] acts trace-freely on g since it is a semisimple Lie algebra.

Now let us prove (ii′). Let

g1 = {X ∈ g : tr(adg(X)) = 0}.

Since g′ is reductive in g, we can pick a g′-invariant subspace g2 comple-
mentary to g1 in g. Note that g2 ̸= {0} and tr(adg(X)) ̸= 0 for any nonzero
element X of g2. We have [g′, g2] ⊂ [g, g] ⊂ g1, while [g′, g2] ⊂ g2 by
g′-invariance of g2. This means g2 ⊂ zg(g

′). From these (ii′) follows.

Next we consider coadjoint orbits. Let G be a Lie group and F ∈ g∗.
The coadjoint orbit G.F ⊂ g∗ of F is G-diffeomorphic to G/ Stab(F ), where
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Stab(F ) = {g ∈ G : g.F = F} is the stabilizer of F in G. Let ω = dF , in
other words,

ω(X,Y ) = −⟨F, [X,Y ]⟩ (X,Y ∈ g).

Then ω is an element of (Λ2(g/stab(F ))∗)Stab(F ) satisfying dω = 0 and
ωm ̸= 0, where 2m = dim(G/ Stab(F )). Under the identification
(Λ2(g/stab(F ))∗)Stab(F ) ≃ Ω2(G/ Stab(F ))G, ω corresponds to the Kirillov–
Kostant–Souriau symplectic form. Applying Theorem 2.1.2 to this setting,
we obtain:

Example 2.7.3. Let G be a Lie group and F ∈ g∗. Assume that
dim(G/ Stab(F )) > 0 and Stab(F ) has finitely many connected components.
If F |kStab(F )∩[g,g] = 0, then there is no compact manifold locally modelled on

G/ Stab(F ).

Remark 2.7.4. The condition dim(G/ Stab(F )) > 0 holds if and only if
F |[g,g] ̸= 0.

Remark 2.7.5. If G is a real linear algebraic group, the number of the
connected components of Stab(F ) (in the Euclidean topology) is always
finite by Whitney’s theorem [58, Th. 3]. For a nonalgebraic Lie group G, it
may be infinite. An easy example is:

G = (universal covering of SL(2,R)), F =

(
0 0
1 0

)
∈ g ≃ g∗.

Here we identified g with g∗ via the Killing form.

Proof of Example 2.7.3. Put 2m = dim(G/ Stab(F )). Recall that ωm is a
nonzero element of (Λ2m(g/stab(F ))∗)stab(F ). By Theorem 2.1.2 (1), we only
need to consider the case when [ωm]g,stab(F ) ̸= 0. Thus, by Theorem 2.1.2
(2), it suffices to prove that [ωm]g,kStab(F )

= 0. Since

ker(d : g∗ → Λ2g∗) = (g∗)g = (g/[g, g])∗,

our assumption F |kStab(F )∩[g,g] = 0 may be rewritten as:

F + F ′ ∈ ((g/kStab(F ))
∗)kStab(F ) for some F ′ ∈ ker(d : g∗ → Λ2g∗).

We obtain

[ωm]g,kStab(F )
= [d((F + F ′) ∧ ωm−1)]g,kStab(F )

= 0 in H2m(g, kStab(F );R)

as required.

When G is a linear solvable Lie group, Example 2.7.3 gives the following
result:
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Example 2.7.6. Let G be a linear solvable Lie group and F ∈ g∗. Assume
that dim(G/ Stab(F )) > 0 and Stab(F ) has finitely many connected compo-
nents. Then there is no compact manifold locally modelled on G/ Stab(F ).

Remark 2.7.7. In Example 2.7.6, if G is simply connected, then
G/ Stab(F ) admits an infinite discontinuous group ([24, Th. 2.2]).

Remark 2.7.8. In Example 2.7.6, the linearity of G is crucial. Consider
the nonlinear nilpotent Lie group

G :=


1 a c

1 b
1

 : a, b, c ∈ R

 /


1 0 n

1 0
1

 : n ∈ Z

 .

Its 2-dimensional coadjoint orbits have connected stabilizers, but admit com-
pact Clifford–Klein forms.

Proof of Example 2.7.6. Let G0 be the identity component of G and [G0, G0]
be its commutator subgroup. Then [G0, G0] is closed in G and it does not
contain a compact subgroup other than {1} [18, Ch. XVIII, Th. 3.2]. In
particular KStab(F ) ∩ [G0, G0] = {1} and hence kStab(F ) ∩ [g, g] = 0. Thus,
we can apply Example 2.7.3.

2.8 Examples (2): reductive Lie groups

In this section, we study the case when G is reductive and H is not reductive
in G.

Example 2.8.1. Let G be a reductive Lie group and P =MAN be a proper
parabolic subgroup of G. Then there is no compact manifold locally modelled
on G/N .

Proof. Since g and n are unimodular, the n-action on g/n is trace-free.
On the other hand, a normalizes n and contains an element X such that
trn(X) ̸= 0. Since g is unimodular, such X also satisfies trg/n(X) ̸= 0.
Thus, we can apply Proposition 2.4.1.

Example 2.8.2. Let G be a real linear semisimple algebraic group and X ∈
g. Let Stab(X) ⊂ G be the stabilizer of X in G. Let X = Xe +Xh +Xn be
the decomposition of X into elliptic, hyperbolic and nilpotent parts. If X is
not a semisimple element (i.e. Xn ̸= 0), then there is no compact manifold
locally modelled on G/ Stab(X).

Remark 2.8.3. The study of Problem 2.1.1 for G/ Stab(X), where G and
X are as in Example 2.8.2, was started by [23] and then extended by [3].
We list their results here:
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• Assume that X is a semisimple element (i.e. Xn = 0). If Stab(X) ̸=
Stab(Xe), namely, if G/ Stab(X) does not carry a G-invariant complex
structure, then G/ Stab(X) does not admit a compact Clifford–Klein
form ([23, Th. 1.3]).

• If X is a nilpotent element (i.e. X = Xn), then there is no compact
manifold locally modelled on G/ Stab(X) ([3, Cor. 4]).

• If Xh ̸= 0, then there is no compact manifold locally modelled on
G/ Stab(X) ([3, Cor. 5]).

Combining [3, Cor. 5] and Example 2.8.2, we conclude that, if X is not an
elliptic element (i.e. if X ̸= Xe), then there is no compact manifold locally
modelled on G/ Stab(X).

Proof of Example 2.8.2. We identify g with g∗ via the Killing form. Let
ω = dX. Then ω is an element of (Λ2(g/stab(X))∗)Stab(X) satisfying dω = 0
and ωm ̸= 0 (2m = dim(G/ Stab(X))). By Theorem 2.1.2 (1), we may
assume [ωm]g,stab(X) = 0. Then, by Theorem 2.1.2 (2), it is enough to prove
that [ωm]g,kStab(X)

= 0.
Put Xss = Xe +Xh. Let ωss = dXss and ωn = dXn. They are elements

of (Λ2(g/stab(X))∗)stab(X) because Y ∈ g commutes with X if and only if
it commutes with Xss and Xn. Since every element of kStab(X) commutes
with Xn and is elliptic, Xn is perpendicular to kStab(X). Therefore, Xn ∈
((g/kStab(X))

∗)kStab(X) . We have

[ωm]g,kStab(X)
= [

m∑
k=0

m!

k!(m− k)!
ωm−k
ss ∧ ωk

n]g,kStab(X)

= [ωm
ss + d(Xn ∧

m∑
k=1

m!

k!(m− k)!
ωm−k
ss ∧ ωk−1

n )]g,kStab(X)

= [ωm
ss]g,kStab(X)

in H2m(g, kStab(X);R).

Let us prove that ωm
ss = 0. To see this, it suffices to show that stab(X) ⊊

stab(Xss). Let us assume the contrary: stab(X) = stab(Xss). Take a Cartan
subalgebra j of g⊗ C containing Xss. Then we have

j ⊂ stab(Xss)⊗ C = stab(X)⊗ C ⊂ stab(Xn)⊗ C.

Since j is a maximal abelian subalgebra of g ⊗ C, we have Xn ∈ j. This is
impossible because j consists of semisimple elements.
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Chapter 3

Proof of Kobayashi’s rank
conjecture on Clifford–Klein
forms

3.1 Introduction

In 1989, T. Kobayashi conjectured the following:

Conjecture 3.1.1 ([21, Conj. 6.4]). A homogeneous space G/H of reductive
type does not admit a compact Clifford–Klein form if rankG − rankK <
rankH − rankKH .

In this chapter, we prove this conjecture. Recall that a homogeneous
space G/H is called of reductive type if G is a linear reductive Lie group
with Cartan involution θ and H is a closed subgroup of G with finitely many
connected components such that θ(H) = H. We write K and KH for the
corresponding maximal compact subgroups of G and H, namely, K = Gθ

and KH = Hθ, respectively. A Clifford–Klein form of a homogeneous space
G/H is a quotient space Γ\G/H, where Γ is a discrete subgroup of G acting
properly and freely on G/H. It is a typical example of a manifold locally
modelled on G/H, i.e. a manifold obtained by patching open sets of G/H by
left translations by elements of G. Since the late 1980s, the existence prob-
lem of compact Clifford–Klein forms has been studied by various methods
(e.g. [20], [23], [61], [2], [37]).

We deduce Conjecture 3.1.1 from the following cohomological obstruc-
tion to the existence of compact Clifford–Klein forms proved in Chapter 2:

Fact 3.1.2 (cf. Corollary 2.5.1). Let G/H be a homogeneous space of re-
ductive type. Let g, h and kH denote the Lie algebras of G, H and KH ,
respectively. If the homomorphism i : H•(g, h;R) → H•(g, kH ;R) induced
from the inclusion (Λ(g/h)∗)h ↪→ (Λ(g/kH)∗)kH is not injective, then there
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does not exist a compact manifold locally modelled on the homogeneous space
G/H (and, in particular, a compact Clifford–Klein form of G/H).

The main result of this chapter is the following necessary and sufficient
condition for injectivity of i : H•(g, h;R) → H•(g, kH ;R):

Theorem 3.1.3 (see Theorem 3.4.1). Let G/H be a homogeneous space of
reductive type. We write Pg∗ and Ph∗ for the space of primitive elements in
(Λg∗)g and (Λh∗)h, respectively. Then, the homomorphism i : H•(g, h;R) →
H•(g, kH ;R) is not injective if and only if the linear map rest : (Pg∗)

−θ →
(Ph∗)

−θ induced from the restriction map (Λg∗)g → (Λh∗)h is not surjective,
where ( · )−θ denotes the (−1)-eigenspace for θ.

Conjecture 3.1.1 follows immediately from Fact 3.1.2 and Theorem 3.1.3.
Indeed, it is classically known that dim (Pg∗)

−θ = rankG − rankK and
dim (Ph∗)

−θ = rankH − rankKH (see [16, Ch. X, §7]).
The proof of Theorem 3.1.3 is based on the theory of H. Cartan, C.

Chevalley, J.-L. Koszul and A. Weil that gives an isomorphism between the
relative Lie algebra cohomology H•(g, h;R) and the cohomology of a pure
Sullivan algebra defined from a transgression for g ([11]). By this theory,
the proof is reduced to computation of invariant polynomials and a spectral
sequence for pure Sullivan algebras.

Remark 3.1.4. Kobayashi and Ono proved Conjecture 3.1.1 in the case
of rankG = rankH, investigating the Euler class of tangent bundle of a
compact Clifford–Klein form ([30, Cor. 5], [20, Prop. 4.10]). Fact 3.1.2 can be
regarded as an extension of their result to all the Chern–Weil characteristic
classes (cf. Theorem 3.4.1 (i) ⇔ (ii) and [41, Prop. 6.1]).

Remark 3.1.5. Tholozan [56, ver. 2] independently announced the proof
of Conjecture 3.1.1. His argument can be seen as a refinement of Fact 3.1.2.
On the other hand, it seems that his proof cannot be applied to the case of
manifolds locally modelled on G/H.

The organization of this chapter is as follows. In Section 3.2, we recall
the definition of pure Sullivan algebras and construct a spectral sequence
arising from a homomorphism of pure Sullivan algebras. In Section 3.3,
we recall the theory of transgressions for a reductive Lie algebra and the
Sullivan model for a reductive pair, mostly without proof, and apply the
spectral sequence constructed in Section 3.2 to this setting. In Section 3.4,
we give the proof of Theorem 3.1.3 using results in Section 3.3.

3.2 Preliminaries on pure Sullivan algebras

Since Theorem 3.1.3 is a purely algebraic statement, we work over an ar-
bitrary field K of characteristic 0, rather than over R, in the rest of this
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chapter. Given a graded vector space V , we define a new graded vector
space Ṽ by Ṽ = V [−1], i.e. by putting Ṽ n = V n−1 for each n ∈ N. We write
ṽ for the element of Ṽ corresponding to v ∈ V . Similarly, we write Q̃ for
the element of SpṼ corresponding to Q ∈ SpV . For v ∈ V , we denote by
ε(v) and µ(v) the left multiplications by v on ΛV and SV , respectively. For
α ∈ V ∗, we denote by ι(α) and ∂(α) the derivations of ΛV and SV uniquely
determined by ι(α)v = α(v) and ∂(α)v = α(v) (v ∈ V ), respectively. We
always use the Koszul sign convention, namely, we multiply by (−1)pq when
we interchange two objects of homogeneous degrees p and q, respectively.

3.2.1 Pure Sullivan algebras

Let U =
⊕

n⩾1 U
2n−1 and V =

⊕
n⩾1 V

2n−1 be finite-dimensional, oddly

and positively graded vector spaces. Let f : SŨ → SṼ be a graded algebra
homomorphism. Define a differential δf on a graded algebra ΛU ⊗ SṼ by
the formula

δf =
∑
i

ι(ei)⊗ µ(f(ẽi)),

where (ei)i is a basis of U and (ei)i the basis of U∗ dual to (ei)i. It is
called the Koszul differential associated with f . In other words, the Koszul
differential δf is a unique derivation satisfying

δf (u⊗ 1) = 1⊗ f(ũ), δf (1⊗ ṽ) = 0 (u ∈ U, v ∈ V ).

Thus, δf does not depend on the choice of a basis (ei)i. A differential graded

algebra of the form (ΛU ⊗ SṼ , −δf ) is called a pure Sullivan algebra.

Remark 3.2.1. The minus sign in our definition of a pure Sullivan algebra
is inserted just for convenience and is not essential. Indeed, 1⊗ sgn : (ΛU ⊗
SṼ ,−δf )

∼−→ (ΛU⊗SṼ , δf ) is an isomorphism of differential graded algebras,

where sgn denotes the automorphism of SṼ defined by sgn |
SpṼ

= (−1)p.

The Koszul differential on ΛV ⊗ SṼ associated with the identity map
1
SṼ

on SṼ is denoted by δV instead of δ1
SṼ

.

3.2.2 A spectral sequence for pure Sullivan algebras

Let U , V and W be finite-dimensional, oddly and positively graded vector
spaces. Let f : SŨ → SṼ and g : SṼ → SW̃ be graded algebra homomor-
phisms. Then,

1⊗ g : (ΛU ⊗ SṼ ,−δf ) → (ΛU ⊗ SW̃ ,−δgf )

is a differential graded algebra homomorphism.
The Koszul differentials δf on ΛU⊗SṼ , δg on ΛV ⊗SW̃ , δgf on ΛU⊗SW̃

and δV on ΛV ⊗ SṼ are naturally extended to the diferentials on ΛU ⊗
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SṼ ⊗ ΛV ⊗ SW̃ , which we shall denote by the same symbols. We define a
differential graded algebra homomorphism

m : (ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δf − δg + δV ) → (ΛU ⊗ SW̃ ,−δgf )

by

m(ϕ⊗ Q̃⊗ ψ ⊗ R̃) = 0 (ϕ ∈ ΛU, Q ∈ SV, ψ ∈ Λ+V, R ∈ SW ),

m(ϕ⊗ Q̃⊗ 1⊗ R̃) = ϕ⊗ g(Q̃)R̃ (ϕ ∈ ΛU, Q ∈ SV, R ∈ SW ).

Proposition 3.2.2. The homomorphism m is a relative Sullivan model for
the homomorphism 1⊗ g : (ΛU ⊗ SṼ ,−δf ) → (ΛU ⊗ SW̃ ,−δgf ), i.e.

(i) The diagram

(ΛU ⊗ SṼ ,−δf )
1⊗g //

i

++VVVV
VVVVV

VVVVV
VVVVV

(ΛU ⊗ SW̃ ,−δgf )

(ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δf − δg + δV )

m

OO

commutes, where i is the natural inclusion.

(ii) It induces an isomorphism in cohomology:

m : H•(ΛU ⊗SṼ ⊗ΛV ⊗SW̃ ,−δf −δg+δV )
∼−→ H•(ΛU ⊗SW̃ ,−δgf ).

Proposition 3.2.2 should be known to experts, but we give its proof in
Subsection 3.2.3 for the sake of completeness.

Let us define a filtration (F p)p∈N of the differential graded algebra (ΛU⊗
SṼ ⊗ ΛV ⊗ SW̃ ,−δf − δg + δV ) by

F p =
⊕
k⩾p

(ΛU ⊗ SṼ )p ⊗ ΛV ⊗ SW̃ .

The next proposition is easily obtained from routine computations and the
identification m : H•(ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δf − δg + δV )

∼−→ H•(ΛU ⊗
SW̃ ,−δgf ).

Proposition 3.2.3. The spectral sequence (Ep,q
r , dr) associated with the fil-

tration (F p)p∈N satisfies the following:

(1) Ep,q
2 = Hp(ΛU ⊗ SṼ ,−δf )⊗Hq(ΛV ⊗ SW̃ ,−δg).

(2) The spectral sequence (Ep,q
r , dr) converges to Hp+q(ΛU ⊗ SW̃ ,−δgf ).

(3) The homomorphism 1⊗g : Hp(ΛU⊗SṼ ,−δf ) → Hp(ΛU⊗SW̃ ,−δgf )
is factorized as

Hp(ΛU ⊗ SṼ ,−δf )
∼−→ Ep,0

2 ↠ Ep,0
∞ ↪→ Hp(ΛU ⊗ SW̃ ,−δgf ).
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3.2.3 Proof of Proposition 3.2.2

The condition (i) is trivial. Let us verify the condition (ii).

For (p, q) ∈ N2, let πp,q denote the projection of ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃
given by

πp,q(x) =

{
0 on ΛU ⊗ Sp′ Ṽ ⊗ Λq′V ⊗ SW̃ , (p′, q′) ̸= (p, q),

1 on ΛU ⊗ SpṼ ⊗ ΛqV ⊗ SW̃ .

We write π instead of π0,0 when we regard π0,0 as a map from ΛU⊗SṼ⊗ΛV⊗
SW̃ to ΛU ⊗SW̃ . Define a linear endomorphism κ of ΛU ⊗SṼ ⊗ΛV ⊗SW̃
by

κ =


1

p+ q

∑
j

1⊗ ∂(f̃ j)⊗ ε(fj)⊗ 1 on
ΛU ⊗ SpṼ ⊗ ΛqV ⊗ SW̃ ,

(p, q) ̸= (0, 0),

0 on ΛU ⊗K⊗K⊗ SW̃ ,

where (fj)j is a basis of V and (f j)j the basis of V ∗ dual to (fj)j . One can
easily show that δV κ+ κδV = 1− π0,0 (see [17, §3.1]). Since

(δgκ)(ΛU ⊗ SpṼ ⊗ ΛqV ⊗ SW̃ ) ⊂ ΛU ⊗ Sp−1Ṽ ⊗ ΛqV ⊗ SW̃ ,

the infinite sum
∑∞

p=0(δgκ)
p is well-defined as a linear automorphism of

ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ , whose inverse is 1 − δgκ. Define an endomorphism

ϕ of the graded algebra ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ by

ϕ(u⊗ 1⊗ 1⊗ 1) = u⊗ 1⊗ 1⊗ 1

+ κ

∞∑
p=0

(δgκ)
p(1⊗ f(ũ)⊗ 1⊗ 1) (u ∈ U),

ϕ(1⊗ ṽ ⊗ 1⊗ 1) = 1⊗ ṽ ⊗ 1⊗ 1− 1⊗ 1⊗ 1⊗ g(ṽ) (v ∈ V ),

ϕ(1⊗ 1⊗ v ⊗ 1) = 1⊗ 1⊗ v ⊗ 1 (v ∈ V ),

ϕ(1⊗ 1⊗ 1⊗ w̃) = 1⊗ 1⊗ 1⊗ w̃ (w ∈W ).

Lemma 3.2.4. (1) ϕ(−δgf + δV ) = (−δf − δg + δV )ϕ.

(2) For any x ∈ ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ , there exists n ∈ N such that
(1− ϕ)nx = 0.

(3) mϕ = π.

Proof of Lemma 3.2.4. We identify U , Ṽ , V and W̃ as graded subspaces of
ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ in the natural way.
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(1). Since both sides are derivations of ΛU ⊗SṼ ⊗ΛV ⊗SW̃ , it suffices

to verify this equality on U , Ṽ , V and W̃ . The only nontrivial equality is

ϕ(−δgf + δV )(u⊗ 1⊗ 1⊗ 1) = (−δf − δg + δV )ϕ(u⊗ 1⊗ 1⊗ 1) (u ∈ U).

The left-hand side is equal to −1⊗ 1⊗ 1⊗ gf(ũ), while the right-hand side
is computed as

(−δf − δg + δV )ϕ(u⊗ 1⊗ 1⊗ 1)

=− 1⊗ f(ũ)⊗ 1⊗ 1 + (−δg + δV )κ

∞∑
p=0

(δgκ)
p(1⊗ f(ũ)⊗ 1⊗ 1)

=(−1 + δV κ)

∞∑
p=0

(δgκ)
p(1⊗ f(ũ)⊗ 1⊗ 1)

=− (π0,0 + κδV )

∞∑
p=0

(δgκ)
p(1⊗ f(ũ)⊗ 1⊗ 1)

=− π0,0

∞∑
p=0

(δgκ)
p(1⊗ f(ũ)⊗ 1⊗ 1)

=−
∞∑
p=0

(δgκ)
pπp,0(1⊗ f(ũ)⊗ 1⊗ 1).

Thus, it is enough to see that

(δgκ)
p(1⊗ Q̃⊗ 1⊗ R̃) = 1⊗ 1⊗ 1⊗ g(Q̃)R̃ (Q̃ ∈ SpṼ , R̃ ∈ SW̃ ) (∗p)

holds for every p ∈ N. Obviously (∗0) is true. Let us assume that (∗p−1) is
true for some p ⩾ 1. Then

(δgκ)
p(1⊗ Q̃⊗ 1⊗ R̃) =

1

p
(δgκ)

p−1
∑
j

1⊗ ∂(f̃j)Q̃⊗ 1⊗ g(f̃ j)R̃

= 1⊗ 1⊗ 1⊗ g

1

p

∑
j

µ(f̃ j)∂(f̃j)Q̃

 R̃

by the induction hypothesis. Since
∑

j µ(f̃
j)∂(f̃j) = p on SpṼ , we have

1⊗ 1⊗ 1⊗ g

1

p

∑
j

µ(f̃ j)∂(f̃j)Q̃

 R̃ = 1⊗ 1⊗ 1⊗ g(Q̃)R̃.

Hence (∗p) is also true. This completes the proof of Lemma 3.2.4 (1).

(2). Put A = {x ∈ ΛU⊗SṼ⊗ΛV⊗SW̃ : (1− ϕ)nx = 0 for some n ∈ N}.
Notice that A is a subalgebra of ΛU ⊗SṼ ⊗ΛV ⊗SW̃ . Indeed, the equality
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(1− ϕ)(xx′) = (1− ϕ)(x)x′ + ϕ(x)(1− ϕ)(x′) implies that, if (1− ϕ)nx = 0
and (1 − ϕ)n

′
x′ = 0, then (1 − ϕ)n+n′−1(xx′) = 0. Therefore, it suffices to

show that U, Ṽ , V, W̃ ⊂ A. The inclusions Ṽ , V, W̃ ⊂ A are obvious. This
implies K⊗ SṼ ⊗ ΛV ⊗ SW̃ ⊂ A. Now, U ⊂ A follows from (1− ϕ)(U) ⊂
K⊗ SṼ ⊗ ΛV ⊗ SW̃ .

(3). Since both sides are graded algebra homomorphisms, it suffices to

verify this equality on U , Ṽ , V and W̃ . The only nontrivial equality is

mϕ(u⊗ 1⊗ 1⊗ 1) = π(u⊗ 1⊗ 1⊗ 1) (u ∈ U),

which follows from πκ = 0.

By Lemma 3.2.4,

ϕ : (ΛU⊗SṼ ⊗ΛV ⊗SW̃ ,−δgf+δV )
∼−→ (ΛU⊗SṼ ⊗ΛV ⊗SW̃ ,−δf−δg+δV )

is a differential graded algebra isomorphism, whose inverse is
∑∞

k=0(1−ϕ)k,
that makes the diagram

(ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δgf + δV )

≀ϕ
�� π ++WWWW

WWWWW
WWWWW

WWWWW

(ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δf − δg + δV )
m // (ΛU ⊗ SW̃ ,−δgf )

commute. Now, it suffices to show that the projection

π : (ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δgf + δV ) → (ΛU ⊗ SW̃ ,−δgf )

induces an isomorphism in cohomology. Let

i : (ΛU ⊗ SW̃ ,−δgf ) → (ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δgf + δV )

denote the natural inclusion. We have πi = 1 and

iπ = π0,0 = 1− δV κ− κδV = 1− (−δgf + δV )κ− κ(−δgf + δV ).

Therefore, π : H•(ΛU ⊗SṼ ⊗ΛV ⊗SW̃ ,−δgf +δV ) → H•(ΛU ⊗SW̃ ,−δgf )
is an isomorphism with inverse i : H•(ΛU ⊗ SW̃ ,−δgf ) → H•(ΛU ⊗ SṼ ⊗
ΛV ⊗ SW̃ ,−δgf + δV ). This completes the proof of Proposition 3.2.2.

3.3 Preliminaries on the relative Lie algebra coho-
mology of reductive pairs

In this section, we recall the Cartan–Chevalley–Koszul–Weil theory (an-
nounced in [11]) on transgressions for a reductive Lie algebra and the Sul-
livan model for a reductive pair. We mostly omit the proofs. See [16] for
details on this subject.
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We retain the notation of Section 3.2. We always regard the dual g∗ of
a Lie algebra g as a graded vector space concentrated in degree 1. Thus
g̃∗ is concentrated in degree 2. We write L for the g-action on the exterior
algebra Λg∗. Given an automorphism θ of a Lie algebra g, we denote by the
same symbol θ the induced automorphisms of (Λg∗)g, (Sg̃∗)g, etc.

3.3.1 Relative Lie algebra cohomology

Let g be a Lie algebra and h its subalgebra. Let d be a differential on the
exterior algebra Λg∗ given by

(dα)(X1, . . . , Xp+1) =
∑

1⩽i<j⩽p+1

α([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1)

(α ∈ Λpg∗, X1, . . . , Xp+1 ∈ g).

The graded subalgebra

(Λ(g/h)∗)h = {α ∈ Λg∗ : ι(X)α = 0, L(X)α = 0 for all X ∈ h}

of Λg∗ is closed under the differential d. The cohomology of the differen-
tial graded algebra ((Λ(g/h)∗)h, d) is denoted by H•(g, h;K) and called the
relative Lie algebra cohomology of a pair (g, h).

3.3.2 The Cartan model of equivariant cohomology and the
Chern–Weil homomorphism ([16, Ch. VIII, §4], [17,
§§2–5])

Let g be a Lie algebra and h its subalgebra. Define a differential dg,h on a

graded algebra (Λg∗ ⊗ Sh̃∗)h by the formula

dg,h = d⊗ 1−
∑
j

ι(Fj)⊗ µ(F̃ j),

where (Fj)j is a basis of h and (F j)j the basis of h∗ dual to (Fj)j . The

cohomology of a differential graded algebra ((Λg∗⊗Sh̃∗)h, dg,h) is called the
Cartan model of h-equivariant cohomology of Λg∗. The natural inclusion

w : ((Sh̃∗)h, 0) → ((Λg∗ ⊗ Sh̃∗)h, dg,h), Q̃ 7→ 1⊗ Q̃

induces a homomorphism w : (Sh̃∗)h → H•((Λg∗ ⊗ Sh̃∗)h, dg,h), called the
Chern–Weil homomorphism.

One has a natural inclusion of differential graded algebras

ϵ : ((Λ(g/h)∗)h, d) → ((Λg∗ ⊗ Sh̃∗)h, dg,h), α 7→ α⊗ 1.
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Fact 3.3.1. When h has an h-invariant complementary linear subspace V
in g (e.g. when h = g or h is reductive in g), the inclusion ϵ induces an
isomorphism ϵ : H•(g, h;K)

∼−→ H•((Λg∗ ⊗ Sh̃∗)h, dg,h).

The inverse isomorphism is constructed as follows. Let πV denote the
projection Λg∗ = Λh∗⊗ΛV ∗ ↠ ΛV ∗. Let χ : Sh̃∗ → ΛV be a graded algebra
homomorphism induced from a graded linear map

h̃∗ → Λ2V ∗, g̃ 7→ −g([·, ·]),

where g ∈ h∗ is regarded as an element of g∗ by putting g|V = 0. Then, a
graded algebra homomorphism

ψV : Λg∗ ⊗ Sh̃∗ → ΛV ∗ (≃ Λ(g/h)∗), α⊗ Q̃ 7→ πV (α) ∧ χ(Q̃).

restricts to the differential graded algebra homomorphism

ψV : ((Λg∗ ⊗ Sh̃∗)h, dg,h) → ((Λ(g/h)∗)h, d).

This ψV induces the inverse of ϵ in cohomology. We simply write w for the
composition

(ϵ−1 ◦ w =)ψV ◦ w : (Sh̃∗)h → H•((Λg∗ ⊗ Sh̃∗)h, dg,h)
∼−→ H•(g, h;K)

and call it the Chern–Weil homomorphism.

3.3.3 The Cartan map ([16, Ch. VI, §2])

Let g be a Lie algebra. By Fact 3.3.1, one has

H•((Λg∗ ⊗ Sg̃∗)g, dg,g) ≃ Hp(g, g;K) =

{
K (p = 0)

0 (p ⩾ 1).

Thus, for P̃ ∈ ((Sg̃∗)g)2k (= (Skg̃∗)g) (k ⩾ 1), there uniquely exists an
element ρg(P̃ ) of (Λ2k−1g∗)g such that dg,g(ρg(P̃ ) ⊗ 1 + Ω) = −1 ⊗ P̃ for
some Ω ∈ (Λg∗ ⊗ S+g̃∗)g (the uniqueness follows from d|(Λg∗)g = 0). This

defines a linear map ρg : (S
+g̃∗)g → (Λ+g∗)g of degree −1, called the Cartan

map for g.

3.3.4 Transgressions ([16, Ch. VI, §§3–4])

Let g be a reductive Lie algebra. Then (Λg∗)g is dual to the graded algebra
(Λg)g and therefore admits a graded coalgebra structure in a natural way.
In fact, it forms a Hopf algebra. Let Pg∗ =

⊕
k⩾1 P

2k−1
g∗ denote the space of

primitive elements in (Λg∗)g.

Fact 3.3.2. The Cartan map ρg for a reductive Lie algebra g satisfies
ker ρg = (S+g̃∗)g · (S+g̃∗)g and im ρg = Pg∗.
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A linear map τg : Pg∗ → (S+g̃∗)g of degree 1 satisfying ρg◦τg = 1 is called
a transgression in the Weil algebra of g. We simply call it a transgression
for g.

Fact 3.3.3. A transgression τg for a reductive Lie algebra g induces a graded

algebra isomorphism τ̃g : SP̃g∗
∼−→ (Sg̃∗)∗.

The condition ρg ◦ τg = 1 is equivalent to the existence of a graded linear
map Ω : Pg∗ → (Λg∗ ⊗ S+g̃∗)g such that dg,g(α ⊗ 1 + Ω(α)) = −1 ⊗ τg(α).
There uniquely exists a transgression τg for g such that this graded linear
map Ω can be taken so that (ι(Z) ⊗ 1)(Ω(α)) = 0 for any Z ∈ (Λ+g)g and
α ∈ Pg∗ . It is called the distinguished transgression for g.

3.3.5 Compatibility with automorphisms

It is obvious from the definition of the Cartan map ρg for a Lie algebra g
that the following diagram commutes for any automorphism θ of g:

(S+g̃∗)g ρg
//

θ
��

Λ+g∗

θ
��

(S+g̃∗)g ρg
// Λ+g∗.

We say that a transgression τg for a reductive Lie algebra g is compatible
with an automorphism θ of g if the following diagram commutes:

Pg∗ τg
//

θ

��

(S+g̃∗)g

θ
��

Pg∗ τg
// (S+g̃∗)g.

It readily follows from its uniqueness that the distinguished transgression is
compatible with any automorphism.

3.3.6 The Sullivan model for a reductive pair ([16, Ch. X,
§2])

Now, let (g, h) be a reductive pair, i.e. g a reductive Lie algebra and h its
subalgebra that is reductive in g. Let τg : Pg∗ → (S+g̃∗)g be a transgression

for g and τ̃g : SP̃g∗
∼−→ (Sg̃∗)g the induced isomorphism (see Fact 3.3.3).

Define a graded algebra homomorphism τ̃g,h : SP̃g∗ → (Sh̃∗)h by τ̃g,h(Ω̃) =

τ̃g(Ω̃)|h. Let us consider the pure Sullivan algebra (ΛPg∗ ⊗ (Sh∗)h,−δτ̃g,h)
associated with τ̃g,h:

δτ̃g,h(α⊗ 1) = 1⊗ τg(α)|h (α ∈ Pg∗), δτ̃g,h(1⊗ Q̃) = 0 (Q ∈ (Sh∗)h).
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Take a graded linear map Ω : Pg∗ → (Λg∗ ⊗ S+g̃∗)g such that dg,g(α ⊗
1 + Ω(α)) = −1 ⊗ τg(α), which exists by definition of τg. The Chevalley
homomorphism

ϑΩ : (ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h) → ((Λg∗ ⊗ Sh̃∗)h, dg,h)

is a differential graded algebra homomorphism defined by

ϑΩ(α⊗ 1) = α⊗ 1 + (1⊗ rest)(Ω(α)), (α ∈ Pg∗),

ϑΩ(1⊗ Q̃) = 1⊗ Q̃ (Q ∈ (Sh∗)h),

where rest : Sg̃∗ → Sh̃∗ denotes the restriction map.

Fact 3.3.4. The Chevalley homomorphism ϑΩ induces an isomorphism in
cohomology:

ϑΩ : H•(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h)
∼−→ H•((Λg∗ ⊗ Sh̃∗)h, dg,h) (≃ H•(g, h;K)).

Remark 3.3.5. Fact 3.3.4 means that the Chevalley homomorphism ϑΩ
(resp. ψV ◦ ϑΩ, where ψV is as in Subsection 3.3.2) is a Sullivan model for a
differential graded algebra ((Λg∗ ⊗ Sh̃∗)h, dg,h) (resp. ((Λ(g/h)

∗)h, d)).

3.3.7 The Chern–Weil homomorphism in the Sullivan model
([16, Ch. X, §2])

We retain the setting of Subsection 3.3.6. Let w′ : (Sh̃∗)h → H•(ΛPg∗ ⊗
(Sh̃∗)h,−δτ̃g,h) be the homomorphism induced from the inclusion

w′ : ((Sh̃∗)h, 0) → (ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h), Q̃ 7→ 1⊗ Q̃.

Proposition 3.3.6. The homomorphism w′ is identified with the Chern–
Weil homomorphism w : (Sh̃∗)h → H•((Λg∗ ⊗ Sh̃∗)h, dg,h) (≃ H•(g, h;K))
via ϑΩ (or ϵ−1 ◦ ϑΩ).

Indeed, w = ϑΩ ◦ w′ : ((Sh̃∗)h, 0) → ((Λg∗ ⊗ Sh̃∗)h, dg,h).

Proposition 3.3.7. (kerw =) kerw′ = (S+g̃∗)g|h · (Sh̃∗)h.

This immediately follows from Fact 3.3.3.

3.3.8 The case of reductive symmetric pairs ([16, Ch. X, §7])

Fact 3.3.8. Suppose (g, h) is a reductive symmetric pair, i.e. g is a reductive
Lie algebra and h = gθ for some involution θ of g. Then,

(1) dim(Pg∗)
−θ = rank g− rank h.

(2) If τg is a transgression for g that is compatible with θ, the following is
a graded algebra isomorphism:

Λ(Pg∗)
−θ⊗imw′ ∼−→ H•(ΛPg∗⊗(Sh̃∗)h,−δτ̃g,h), α⊗[1⊗Q̃] 7→ [α⊗Q̃].
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3.3.9 Induced homomorphisms

Let g be a Lie algebra, h a subalgebra of g and l a subalgebra of h. Then
the inclusion

i : ((Λ(g/l)∗)l, d) → ((Λ(g/h)∗)h, d)

and the restriction

1⊗ rest : ((Λg∗ ⊗ Sh̃∗)h, dg,h) → ((Λg∗ ⊗ S l̃∗)l, dg,l)

are differential graded algebra homomorphisms. The following diagram com-
mutes:

((Λ(g/h)∗)h, d)
ϵ //

i
��

((Λg∗ ⊗ Sh̃∗)h, dg,h)

1⊗rest
��

((Λ(g/l)∗)l, d)
ϵ // ((Λg∗ ⊗ S l̃∗)l, dg,l)

Suppose, in addition, that (g, h) and (g, l) are reductive pairs. Take a trans-
gression τg for g and a graded linear map Ω : Pg∗ → (Λg∗ ⊗ S+g̃∗)g such
that dg,g(α⊗ 1 + Ω(α)) = −1⊗ τg(α). Then,

1⊗ rest : (ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h) → (ΛPg∗ ⊗ (S l̃∗)l,−δτ̃g,l)

is a differential graded algebra homomorphism, and the diagram

(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h)
ϑΩ //

1⊗rest
��

((Λg∗ ⊗ Sh̃∗)h, dg,h)

1⊗rest
��

(ΛPg∗ ⊗ (S l̃∗)l,−δτ̃g,l)
ϑΩ // ((Λg∗ ⊗ S l̃∗)l, dg,l)

commutes. In summary,

Proposition 3.3.9. The homomorphism

1⊗ rest : H•(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h) → H•(ΛPg∗ ⊗ (S l̃∗)l,−δτ̃g,l)

is identified with the homomorphism i : H•(g, h;K) → H•(g, l;K) via ϵ−1 ◦
ϑΩ.

3.3.10 A spectral sequence for the Sullivan models of reduc-
tive pairs

As in Subsection 3.3.9, let (g, h) be a reductive pair and l a subalgebra of
h such that (g, l) is a reductive pair. Let τg and τh be transgressions for g

and h, respectively. We identify (Sh̃∗)h with SP̃h∗ via τ̃h. We thus denote

by δPh∗ the Koszul differential on ΛPh∗ ⊗ (Sh̃∗)h defined by

δPh∗ (β ⊗ 1) = τh(β), δPh∗ (1⊗ Q̃) = 0 (β ∈ Ph∗ , Q ∈ (Sh∗)h).
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Let us apply the spectral sequence constructed in Section 3.2 to the differ-
ential graded algebra homomorphism

1⊗ rest : (ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h) → (ΛPg∗ ⊗ (S l̃∗)l,−δτ̃g,l).

By Proposition 3.2.2, the differential graded algebra homomorphism

m : (ΛPg∗⊗(Sh̃∗)h⊗ΛPh∗⊗(S l̃∗)l,−δτ̃g,h−δτ̃h,l+δPh∗ ) → (ΛPg∗⊗(S l̃∗)l,−δτ̃g,l)

defined by

m(α⊗ Q̃⊗ β ⊗ R̃) = 0 (α ∈ ΛPg∗ , Q ∈ (Sh∗)h, β ∈ Λ+Ph∗ , R ∈ (Sl∗)l),

m(α⊗ Q̃⊗ 1⊗ R̃) = α⊗ Q̃|l · R̃ (α ∈ ΛPg∗ , Q ∈ (Sh∗)h, R ∈ (Sl∗)l)

is a relative Sullivan model for the differential graded algebra homomorphism
1 ⊗ rest : (ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h) → (ΛPg∗ ⊗ (S l̃∗)l,−δτ̃g,l). Let (F p)p∈N

be a filtration of the differential graded algebra (ΛPg∗ ⊗ (Sh̃∗)h ⊗ ΛPh∗ ⊗
(S l̃∗)l,−δτ̃g,h − δτ̃h,l + δPh∗ ) defined by F p =

⊕
k⩾p(ΛPg∗ ⊗ (Sh̃∗)h)p⊗ΛPh∗ ⊗

(S l̃∗)l. Applying Proposition 3.2.3 to this setting, we have the following:

Corollary 3.3.10. Let (Ep,q
r , dr) be the spectral sequence associated with the

filtration (F p)p∈N. Then,

(1) Ep,q
2 = Hp(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h)⊗Hq(ΛPh∗ ⊗ (S l̃∗)l,−δτ̃h,l).

(2) The spectral sequence (Ep,q
r , dr) converges to Hp+q(ΛPg∗ ⊗

(S l̃∗)l,−δτ̃g,l).

(3) The homomorphism

1⊗ rest : Hp(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h) → Hp(ΛPg∗ ⊗ (S l̃∗)l,−δτ̃g,l)

is factorized as

Hp(ΛPg∗⊗(Sh̃∗)h,−δτ̃g,h)
∼−→ Ep,0

2 ↠ Ep,0
∞ ↪→ Hp(ΛPg∗⊗(S l̃∗)l,−δτ̃g,l).

3.4 Main theorem

We retain the notation of Section 3.3. Now, let us prove the following
theorem that is a more detailed version of Theorem 3.1.3:

Theorem 3.4.1. Let (g, h) be a reductive pair and θ an involution of g such
that θ(h) = h. Put kh = hθ. Let τg : Pg∗ → (Sg̃∗)g be a transgression for

g. Let τh : Ph∗ → (Sh̃∗)h be a transgression for h that is compatible with θ.
Then, the following conditions are all equivalent:

(i) The homomorphism i : H•(g, h;K) → H•(g, kh;K) is injective.
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(ii) The homomorphism i|imw : imw → H•(g, kh;K) is injective, where

w : (Sh̃∗)h → H•(g, h;K) is the Chern–Weil homomorphism.

(iii) The homomorphism

1⊗ rest : H•(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h) → H•(ΛPg∗ ⊗ (Sk̃∗h)
kh ,−δτ̃g,kh )

is injective.

(iv) The homomorphism

(1⊗ rest)|imw′ : imw′ → H•(ΛPg∗ ⊗ (Sk̃∗h)
kh ,−δτ̃g,kh )

is injective, where w′ : (Sh̃∗)h → H•(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h) is defined

by w′(Q̃) = [1⊗ Q̃].

(v) ((S+h∗)h)−θ ⊂ (S+g∗)g|h · (Sh∗)h.

(vi) The linear map

rest : ((S+g∗)g/((S+g∗)g · (S+g∗)g))−θ

→ ((S+h∗)h/((S+h∗)h · (S+h∗)h))−θ

induced from the restriction map (Sg∗)g → (Sh∗)h is surjective.

(vii) The linear map rest : (Pg∗)
−θ → (Ph∗)

−θ induced from the restriction
map (Λg∗)g → (Λh∗)h is surjective.

(viii) The spectral sequence

Ep,q
2 = Hp(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h)⊗Hq(ΛPh∗ ⊗ (Sk̃∗h)

kh ,−δτ̃h,kh )

⇒ Hp+q(ΛPg∗ ⊗ (Sk̃∗h)
kh ,−δτ̃g,kh )

defined as in Corollary 3.3.10 collapses at the E2-term.

Proof. (i) ⇒ (ii). Trivial.
(iii) ⇒ (iv). Trivial.
(i) ⇔ (iii). This follows from Proposition 3.3.9.
(ii) ⇔ (iv). This follows from Propositions 3.3.6 and 3.3.9.
(iv) ⇒ (v). Take any Q ∈ ((Sh∗)h)−θ. Then we have Q|kh = 0. By (iv),

[1⊗ Q̃] = 0 in H•(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h). This means Q ∈ (S+g∗)g|h · (Sh∗)h
by Proposition 3.3.7.

(v) ⇒ (vi). Take any Q ∈ ((S+h∗)h/((S+h∗)h · (S+h∗)h))−θ. Let Q ∈
(S+h∗)h be a representative of Q. By (v), we can write

Q− θ(Q)

2
= P |h +

r∑
i=1

Pi|h ·Qi (P, Pi ∈ (S+g∗)g, Qi ∈ (S+h∗)h).
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Put P ′ = (P − θ(P ))/2. Then P ′ ∈ ((S+g∗)g/((S+g∗)g · (S+g∗)g))−θ and
P ′|h = Q.

(vi) ⇒ (v). We shall prove

((Snh∗)h)−θ ⊂ (S+g∗)g|h · (Sh∗)h (†n)

by induction on n. Assume that (†m) is true for m ⩽ n− 1. Let us take any
Q ∈ ((Snh∗)h)−θ. By (vi), we can write

Q = P |h +
r∑

i=1

Qi ·Q′
i (P ∈ (Sng∗)g, Qi ∈ (Smih∗)h,

Q′
i ∈ (Sn−mih∗)h, 1 ⩽ mi ⩽ n− 1)

Then,

Q =
1

2
(Q− θ(Q)) =

1

2
(P − θ(P ))|h +

1

4

r∑
i=1

((Qi − θ(Qi))(Q
′
i + θ(Q′

i))

− (Qi + θ(Qi))(Q
′
i − θ(Q′

i))).

We have
Qi − θ(Qi), Q

′
i − θ(Q′

i) ∈ (S+g∗)g|h · (Sh∗)h

by the induction hypothesis, and therefore Q ∈ (S+g∗)g|h · (Sh∗)h. Thus
(†n) is also true.

(vi) ⇔ (vii). This follows from the commutativity of the diagram(
(S+g̃∗)g/((S+g̃∗)g · (S+g̃∗)g)

)−θ ∼
ρg

//

rest
��

(Pg∗)
−θ

rest

��(
(S+h̃∗)h/((S+h̃∗)h · (S+h̃∗)h)

)−θ ∼
ρh

// (Ph∗)
−θ,

where ρg and ρh are the linear isomorphisms induced from the Cartan maps.
(v) ⇒ (viii). We shall prove dr = 0 (r ⩾ 2) by induction on r. Let us

assume that ds = 0 for 2 ⩽ s ⩽ r − 1. Then

Ep,q
r = Ep,q

2 = Hp(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h)⊗Hq(ΛPh∗ ⊗ (Sk̃∗h)
kh ,−δτ̃h,kh ).

By Leibniz’s rule, to prove dr = 0, it suffices to see that dr|E0,q
r

= 0 for all
q ⩾ 0. Moreover, by Fact 3.3.8 (2) and again by Leibniz’s rule, we only need
to prove that

• dr([1⊗ 1]⊗ [1⊗ R̃]) = 0 for any R ∈ (Sk∗h)
kh .

• dr([1⊗ 1]⊗ [β ⊗ 1]) = 0 for any β ∈ (Ph∗)
−θ.
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By construction of the spectral sequence, we have dr([1⊗ 1]⊗ [1⊗ R̃]) = 0
and

dr([1⊗ 1]⊗ [β ⊗ 1]) =

{
[1⊗ τh(β)]⊗ [1⊗ 1] if β ∈ (P r−1

h∗ )−θ,

0 if β ∈ (P q
h∗)

−θ, q ̸= r − 1.

Since τh is taken to be compatible with θ, it follows that τh(β) ∈ ((Sh̃∗)h)−θ.

By (v), we have τh(β) ∈ (S+g̃∗)g|h · (Sh̃∗)h. This implies that [1⊗ τh(β)] = 0

in H•(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h) by Proposition 3.3.7. We have thus proved
dr = 0.

(viii) ⇒ (iii). This follows immediately from Corollary 3.3.10 (3).
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Chapter 4

Semisimple symmetric spaces
that do not model any
compact manifold

4.1 Introduction

We continue the study of the existence problem of compact manifold locally
modelled on homogeneous spaces. Recall that a manifold is said to be locally
modelled on a homogeneous space G/H if it is covered by open sets that are
diffeomorphic to open sets of G/H and the transition functions are given by
elements of G. We always assume that the transition functions satisfy the
cocycle condition (see Section 2.2). A basic example of a manifold locally
modelled on G/H is a Clifford–Klein form, that is, a quotient space Γ\G/H,
where Γ is a discrete subgroup of G acting properly and freely on G/H.

We have proved the following fact in Chapter 2:

Fact 4.1.1 (cf. Corollary 2.5.1). Let G/H be a homogeneous space of re-
ductive type and KH a maximal compact subgroup of H. Let g, h and
kH denote the Lie algebras of G, H and KH , respectively. If the homo-
morphism i : H•(g, h;R) → H•(g, kH ;R) induced from the inclusion map
(Λ(g/h)∗)h ↪→ (Λ(g/kH)∗)kH is not injective, then there does not exist a
compact manifold locally modelled on the homogeneous space G/H (and, in
particular, a compact Clifford–Klein form of G/H).

The main purpose of this chapter is to classify the semisimple symmetric
spaces G/H (or rather, the semisimple symmetric pairs (g, h)) such that the
homomorphism i : H•(g, h;R) → H•(g, kH ;R) is injective.
Theorem 4.1.2. Let (g, h) be a semisimple symmetric pair. Then the fol-
lowing two conditions are equivalent:

(A) The homomorphism i : H•(g, h;R) → H•(g, kH ;R) induced from the
inclusion map (Λ(g/h)∗)h ↪→ (Λ(g/kH)∗)kH is injective.
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(B) The pair (g, h) is isomorphic (up to possibly outer automorphisms) to
a direct sum of the following irreducible symmetric pairs (B-1)–(B-5).

(B-1) (l, l) (l: simple Lie algebra).

(B-2) (l⊕ l,∆l) (l: simple Lie algebra).

(B-3) (lC, l) (lC: complex simple Lie algebra, l: real form of lC).

(B-4) A pair (g′, h′) such that rank h′ = rank kH′ , where kH′ is a maxi-
mal compact subalgebra of h′.

(B-5) • (sl(2n+ 1,C), so(2n+ 1,C)) (n ⩾ 1),

• (sl(2n,C), sp(n,C)) (n ⩾ 2),

• (so(2n,C), so(2n− 1,C)) (n ⩾ 4),

• (e6,C, f4,C).

By Fact 4.1.1, there exists a compact manifold locally modelled on a
semisimple symmetric space G/H only when the corresponding semisimple
symmetric pair (g, h) satisfies (B).

Remark 4.1.3. Every irreducible symmetric space G/H listed in (B-1)–
(B-2) admits a compact Clifford–Klein form. On the other hand, many
irreducible symmetric spaces listed in (B-3)–(B-5) do not admit compact
Clifford–Klein forms, whereas some of them admit (see [2], [20], [23], [26],
[31], [47], [56] and Chapter 5). For instance, SO(2n+1,C)/SO(n+1, n) (n ⩾
1), SO(p+1, q)/SO(p, q) (p ⩾ q ⩾ 1, pq: even) and SO(4n+2,C)/SO(4n+
1,C) (n ⩾ 1) do not admit compact Clifford–Klein forms, whereas
SO(8,C)/SO(1, 7), SO(2, 2n)/SO(1, 2n) (n ⩾ 2) and SO(8,C)/SO(7,C)
admit. To the best of the author’s knowledge, no known method is appli-
cable to (B-3)–(B-5) for a more general case of compact manifolds locally
modelled on G/H.

In Table 4.1, we list all the irreducible symmetric pairs (g, h) that do
not satisfy the condition (B) among Berger’s classification of the irreducible
symmetric pairs [4]. By Fact 4.1.1, there does not exist a compact manifold
locally modelled on an irreducible symmetric spaceG/H if the corresponding
pair (g, h) is listed in Table 4.1.

g h Conditions

⋆ sl(2n,C) so(2n,C) n ⩾ 1

sl(p+ q,C) sl(p,C)⊕ sl(q,C)⊕ C p, q ⩾ 1

⋆⋆ sl(p+ q,R) so(p, q) p, q ⩾ 1, p, q: odd

⋆ su(p, q) so(p, q) p, q ⩾ 1, p, q: odd

su(n, n) sl(n,C)⊕ R n ⩾ 1

⋆⋆ sl(2n,R) sl(n,C)⊕
√
−1R n ⩾ 2
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⋆ sl(n,H) sl(n,C)⊕
√
−1R n ⩾ 2

sl(p+ q,R) sl(p,R)⊕ sl(q,R)⊕ R p, q ⩾ 1

sl(p+ q,H) sl(p,H)⊕ sl(q,H)⊕ R p, q ⩾ 1

⋆ so(p+ q,C) so(p,C)⊕ so(q,C) p, q ⩾ 2, (p, q) ̸= (2, 2)

⋆ so(2n+ 1,C) so(2n,C) n ⩾ 1

so(2n,C) sl(n,C)⊕ C n ⩾ 3

⋆⋆ so(n, n) so(n,C) n ⩾ 3

⋆ so∗(2n) so(n,C) n ⩾ 3

p, q ⩾ 1, p, q: odd,
⋆⋆ so(p+ r, q + s) so(p, q)⊕ so(r, s) r, s ⩾ 0, (r, s) ̸= (0, 0),

(p, q, r, s) ̸= (1, 1, 1, 1)

so(n, n) sl(n,R)⊕ R n ⩾ 3

so∗(4n) sl(n,H)⊕ R n ⩾ 2

sp(n,C) sl(n,C)⊕ C n ⩾ 1

⋆ sp(p+ q,C) sp(p,C)⊕ sp(q,C) p, q ⩾ 1

⋆ sp(2n,R) sp(n,C) n ⩾ 1

⋆ sp(n, n) sp(n,C) n ⩾ 1

sp(n,R) sl(n,R)⊕ R n ⩾ 1

sp(n, n) sl(n,H)⊕ R n ⩾ 1

⋆ e6,C sp(4,C) —

⋆ e6,C sl(6,C)⊕ sl(2,C) —

e6,C so(10,C)⊕ C —

⋆ e6(6) sl(6,R)⊕ sl(2,R) —

⋆⋆ e6(6) sl(3,H)⊕ su(2) —

⋆ e6(−26) sl(3,H)⊕ su(2) —

e6(6) so(5, 5)⊕ R —

e6(−26) so(9, 1)⊕ R —

⋆ e7,C sl(8,C) —

⋆ e7,C so(12,C)⊕ sl(2,C) —

e7,C e6,C ⊕ C —

e7(7) sl(8,R) —

e7(7) sl(4,H) —

e7(−25) sl(4,H) —

e7(7) e6(6) ⊕ R —

e7(−25) e6(−26) ⊕ R —

⋆ e8,C so(16,C) —

⋆ e8,C e7,C ⊕ sl(2,C) —

⋆ f4,C sp(3,C)⊕ sl(2,C) —

⋆ f4,C so(9,C) —

⋆ g2,C sl(2,C)⊕ sl(2,C) —

Table 4.1: (g, h) not satisfying (B)
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In Table 4.1, the signs ⋆⋆, ⋆ and ◦ signify

⋆⋆: The nonexistence of compact Clifford–Klein forms of G/H seems to
be new.

⋆: The nonexistence of compact Clifford–Klein forms of G/H had been
known before [41], but not for the locally modelled case.

◦: The nonexistence of compact manifolds locally modelled on G/H had
been known before [41].

Note that we saw in [41, Cor. 1.4] the nonexistence of compact Clifford–Klein
forms of ⋆⋆ except for the case (e6(6), sl(3,H)⊕ su(2)).

The proof of Theorem 4.1.2 uses Berger’s classification of the irreducible
symmetric pairs and a necessary and sufficient condition for injectivity of
the homomorphism i : H•(g, h;R) → H•(g, kH ;R) obtained in Chapter 3
(Theorem 3.1.3).

The results of this chapter were announced in [42].

Remark 4.1.4. We correct some minor errors in the announcement [42]:

• The pairs (sp(2n,R), sp(n,C)) (n ⩾ 1) and (sp(n, n), sp(n,C)) (n ⩾ 1)
should be labelled as ⋆.

• The pairs (g, h) with g = so(4,C), so(2, 2) or so∗(4) should not be
listed because they are not irreducible.

4.2 Preliminaries

We say that (g, h) is a (real) reductive pair if g is a reductive Lie algebra
with Cartan involution θ and h is a subalgebra of g such that θ(h) = h. We
put k = gθ and kH = hθ. Similarly, we say that a homogeneous space G/H is
of reductive type if G is a linear reductive Lie group with Cartan involution
θ and H is a closed subgroup of G with finitely many connected components
such that θ(H) = H. We put K = Gθ and KH = Hθ. Note that K and KH

are maximal compact subgroups of G and H, respectively.
If g is a semisimple Lie algebra and h = gσ for some involution σ of g, we

call (g, h) a semisimple symmetric pair. Similarly, if G is a connected linear
semisimple Lie group and H is an open subgroup of Gσ for some involution σ
of G, we call G/H a semisimple symmetric space. In these situations, we can
take the Cartan involution θ so that θσ = σθ. Therefore, every semisimple
symmetric pair is a reductive pair, and every semisimple symmetric space is
a homogeneous space of reductive type. We say that a semisimple symmetric
pair (g, h) is an irreducible symmetric pair if g is simple or (g, h) is isomorphic
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(up to possibly outer automorphisms) to (l ⊕ l,∆l) for some simple Lie
algebra l. A semisimple symmetric space is called an irreducible symmetric
space if the corresponding semisimple symmetric pair is irreducible. Every
semisimple symmetric pair is uniquely decomposed into irreducible ones.
The complete classification of the irreducible symmetric pairs (up to possibly
outer automorphisms) is obtained by Berger [4].

Now, let us recall from [16] and Section 3.3 the definition and basic
properties of Pg∗ . Let g be a (real or complex) reductive Lie algebra. It
is classicaly known that (Λg∗)g has a natural Hopf algebra structure. We
denote by Pg∗ =

⊕
k⩾1 P

2k−1
g∗ the space of primitive elements in (Λg∗)g. An

involution θ of the reductive Lie algebra g acts on the space Pg∗ of primitive
elements in the natural way. Thus we have the eigenspace decomposition:
Pg∗ = (Pg∗)

θ ⊕ (Pg∗)
−θ.

The Cartan map ρg : (Skg∗)g → (Λ2k−1g)g (k ⩾ 1) induces a linear
isomorphism

ρg : (S
+g∗)g/((S+g∗)g · (S+g∗)g)

∼−→ Pg∗ .

The isomorphism ρg commutes with any involution θ of g:

(S+g∗)g/((S+g∗)g · (S+g∗)g)
∼
ρg

//

θ
��

Pg∗

θ

��
(S+g∗)g/((S+g∗)g · (S+g∗)g)

∼
ρg

// Pg∗ .

If (g, h) is a reductive pair, the restriction map rest : (Λg∗)g → (Λh∗)h

induces a linear map
rest : Pg∗ → Ph∗ .

Similarly, rest : (Sg∗)g → (Sh∗)h induces a linear map

rest : (S+g∗)g/((S+g∗)g · (S+g∗)g) → (S+h∗)h/((S+h∗)h · (S+h∗)h).

The following diagram commutes:

(S+g∗)g/((S+g∗)g · (S+g∗)g)
∼
ρg

//

rest
��

Pg∗

rest

��
(S+h∗)h/((S+h∗)h · (S+h∗)h)

∼
ρh

// Ph∗ .

For a reductive Lie algebra g, the algebra (Sg∗)g is a polynomial algebra
of r homogeneous elements (r = rank g). the symmetric algebra of some r-
dimensional graded subspace of (Sg∗)g. For a complex simple Lie algebra g,
the degrees of algebraically independent generators of (Sg∗)g are as follows
(see e.g. [57, p. 144]):
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g Degrees

sl(n,C) 2, 3, . . . , n

so(2n+ 1,C) 2, 4, . . . , 2n

sp(n,C) 2, 4, . . . , 2n

so(2n,C) 2, 4, . . . , 2n− 2, n

e6,C 2, 5, 6, 8, 9, 12

e7,C 2, 6, 8, 10, 12, 14, 18

e8,C 2, 8, 12, 14, 18, 20, 24, 30

f4,C 2, 6, 8, 12

g2,C 2, 6

Table 4.2: Degrees of generators of (Sg∗)g

Through the Cartan map ρg, we immediately obtain the degrees of a basis
of Pg∗ :

g Degrees

sl(n,C) 3, 5, 7, . . . , 2n− 1

so(2n+ 1,C) 3, 7, 11, . . . , 4n− 1

sp(n,C) 3, 7, 11, . . . , 4n− 1

so(2n,C) 3, 7, 11, . . . , 4n− 5, 2n− 1

e6,C 3, 9, 11, 15, 17, 23

e7,C 3, 11, 15, 19, 23, 27, 35

e8,C 3, 15, 23, 27, 35, 39, 47, 59

f4,C 3, 11, 15, 23

g2,C 3, 11

Table 4.3: Degrees of a basis of Pg∗

If g is abelian, then the graded algebra (Sg∗)g = Sg∗ is generated by the
elements of degree 1, and hence the graded vector space Pg∗ is concentrated
in degree 1.

For the classical cases, the structure of graded algebra (Sg∗)g is explicitly
described as follows:

Fact 4.2.1 (see e.g. [9, Ch. VIII, §13]). Let fk ∈ (Sk(gl(n,C)∗))gl(n,C) (k =
1, 2, . . . , n) denote invariant polynomials defined by

det(λIn−X) = λn+f1(X)λn−1+f2(X)λn−2+ · · ·+fn(X) (X ∈ gl(n,C)).
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We use the same notation fk for the restriction of fk to sl(n,C), so(n,C)
or sp(m,C) (if n = 2m). Then,

• The graded algebra (S(sl(n,C)∗))sl(n,C) is the polynomial algebra of
(n− 1) variables f2, f3, . . . , fn. We have f1 = 0.

• If n = 2m+1, the graded algebra (S(so(n,C)∗))so(n,C) is the polynomial
algebra of m variables f2, f4, . . . , f2m. We have f1 = f3 = · · · =
f2m+1 = 0.

• If n = 2m, the graded algebra (S(sp(n,C)∗))sp(n,C) is the polynomial
algebra of m variables f2, f4, . . . , f2m. We have f1 = f3 = · · · =
f2m−1 = 0.

• If n = 2m, the graded algebra (S(so(n,C)∗))so(n,C) is the poly-
nomial algebra of m variables f2, f4, . . . , f2m−2, f̃ , where f̃ ∈
(Sm(so(n,C)∗))so(n,C) is the Pfaffian of n×n skew-symmeric matrices.
We have f1 = f3 = · · · = f2m−1 = 0 and f2m = f̃2.

The following fact, proved in Chapter 3, plays a foundational role in our
classification:

Fact 4.2.2 (Theorem 3.1.3). Let (g, h) be a reductive pair with Cartan in-
volution θ. Then, the homomorphism i : H•(g, h;R) → H•(g, kH ;R) is
injective if and only if the linear map rest : (Pg∗)

−θ → (Ph∗)
−θ is surjective.

See Theorem 3.4.1 for some other conditions equivalent to injectivity of
i : H•(g, h;R) → H•(g, kH ;R).

Fact 4.2.3 (cf. [16, Ch. X, §7]). Let g be a real reductive Lie algebra with
Cartan involution θ. Let ρg : (Skg∗)g → (Λ2k−1g)g (k ⩾ 1) be the Cartan
map for g. Then,

(1) (Pg∗)
−θ = {ρg(P ) : P ∈ (S+g∗)g, P |k = 0}.

(2) dim(Pg∗)
−θ = rank g− rank k.

Proposition 4.2.4. For a simple Lie algebra g with Cartan involution θ,
the degrees of a basis of (Pg∗)

−θ are as follows:

g Degrees

sl(n,R) 5, 9, 13, . . . , 4[n+1
2 ]− 3

sl(n,H) 5, 9, 13, . . . , 4n− 3

so(p, q) (p, q: odd) p+ q − 1

e6(6) 9, 17

e6(−26) 9, 17
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sl(n,C) 3, 5, 7, . . . , 2n− 1

so(2n+ 1,C) 3, 7, 11, . . . , 4n− 1

sp(n,C) 3, 7, 11, . . . , 4n− 1

so(2n,C) 3, 7, 11, . . . , 4n− 5, 2n− 1

e6,C 3, 9, 11, 15, 17, 23

e7,C 3, 11, 15, 19, 23, 27, 35

e8,C 3, 15, 23, 27, 35, 39, 47, 59

f4,C 3, 11, 15, 23

g2,C 3, 11

Otherwise —

Table 4.4: Degrees of a basis of (Pg∗)
−θ

Proof. Although this proposition seems to be already known in the early
1960s (cf. [55]), we give its proof for the reader’s convenience.

If rank g = rank k, we have (Pg∗)
−θ = {0} by Fact 4.2.3 (2). Thus we

assume rank g ̸= rank k. It suffices to compute the degrees of a basis of the
complexification (Pg∗)

−θ ⊗ C = (Pg∗C
)−θ.

Suppose that g is a complex simple Lie algebra. We use the notation gR
when we regard g as a real simple Lie algebra. We have a natural isomor-
phism (gR)C ≃ g ⊕ g. The Cartan involution θ acts on P(gR)

∗
C
≃ Pg∗ ⊕ Pg∗

by (α1, α2) 7→ (α2, α1) (α1, α2 ∈ Pg∗). Therefore dim(P k
(gR)

∗
C
)−θ = dim(P k

g∗)

for every k ∈ N, and Proposition 4.2.4 follows from Table 4.3.
Suppose that g = sl(n,R). Then (gC, kC) = (sl(n,C), so(n,C)). Let

fk ∈ (Skg∗C)
gC (2 ⩽ k ⩽ n) be as in Fact 4.2.1. The restriction of fk to

kC vanishes if and only if k = 3, 5, . . . , 2[n+1
2 ] − 1. Since the images of

fk (2 ⩽ k ⩽ n) under the Cartan map form a basis of Pg∗C
, we obtain from

Fact 4.2.3 (1) that the degrees of a basis of (Pg∗C
)−θ are 5, 9, 13, . . . , 4[n+1

2 ]−3.
Suppose that g = sl(n,H). Then (gC, kC) = (sl(2n,C), sp(n,C)). The

restriction of fk ∈ (Skg∗C)
gC (2 ⩽ k ⩽ 2n) to kC vanishes if and only if k =

3, 5, . . . , 2n−1. Thus, the degrees of a basis of (Pg∗C
)−θ are 5, 9, 13, . . . , 4n−3.

Suppose that g = so(p, q) (p, q: odd). Then (gC, kC) = (so(p +
q,C), so(p,C) ⊕ so(q,C)). The restriction of f2k ∈ (S2kg∗C)

gC (1 ⩽ k ⩽
p+q
2 − 1) to kC is nonzero for every k, and that of f̃ ∈ (S(p+q)/2g∗C)

gC is
zero. Thus, (Pg∗C

)−θ is a 1-dimensional vector space concentrated in degree
p+ q − 1.

Suppose that g = e6(6). Then (gC, kC) = (e6,C, sp(4,C)). Let us fix
algebraically independent generators g2, g5, g6, g8, g9, g12 (deg gk = k) of the
algebra (Sg∗C)

gC (cf. Table 4.2). Notice from Table 4.2 that (S2k+1k∗C)
kC = 0.

Therefore g5|kC = g9|kC = 0. By Fact 4.2.3 (1), the images of g5 and g9 under
the Cartan map are nonzero elements of (Pg∗C

)−θ. Their degrees are 9 and
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17, respectively. Since dim(Pg∗C
)−θ = rank gC − rank kC = 2 (Fact 4.2.3 (2)),

they form a basis of (Pg∗C
)−θ.

Finally, suppose that g = e6(−26). Then (gC, kC) = (e6,C, f4,C). Again,

(S2k+1k∗C)
kC = 0 and rank gC−rank kC = 2. The degrees of (Pg∗C

)−θ are hence
9 and 17 by the same argument as the case of g = e6(6).

4.3 Some results on surjectivity of the restriction
map (Pg∗)

−θ → (Ph∗)
−θ

In view of Fact 4.2.2, our task is to study the restriction map rest : (Pg∗)
−θ →

(Ph∗)
−θ.

As we saw in Chapter 3, we obtain the following necessary condi-
tion for surjectivity of the restriction map rest : (Pg∗)

−θ → (Ph∗)
−θ from

Fact 4.2.3 (2):

Proposition 4.3.1. Let (g, h) be a reductive pair with Cartan involution θ.
If rank g − rank k < rank h − rank kH , the restriction map rest : (Pg∗)

−θ →
(Ph∗)

−θ is not surjective.

Proof. By Fact 4.2.3 (2),

dim(Pg∗)
−θ = rank g− rank k < rank h− rank kH = dim(Ph∗)

−θ.

Corollary 4.3.2 (Kobayashi’s rank conjecture; see Chapter 3 and [56, ver.
2, Th. 6]). If a homogeneous space G/H of reductive type satisfies rankG−
rankK < rankH− rankKH , there does not exist a compact manifold locally
modelled on G/H.

Proof. Combine Fact 4.1.1, Fact 4.2.2 and Proposition 4.3.1.

Similarly, Proposition 4.2.4 gives some necessary conditions for surjec-
tivity of the restriction map rest : (Pg∗)

−θ → (Ph∗)
−θ. Let g be a reductive

Lie algebra and write g as

g ≃ Rn+ ⊕
√
−1Rn− ⊕

⊕
l: simple

Lie algebra

ml · l.
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We then put

d1(g) = n+,

d2(g) =
∑

l: complex simple
Lie algebra

ml,

d3(g) =
∑
k⩾3

msl(k,R) +
∑
k⩾3

msl(k,C) +
∑
k⩾2

msl(k,H),

d4(g) = mso(7,1) +mso(5,3) + 2mso(8,C)

+
∑
k⩾4

msl(k,C) +
∑

k⩾7, k ̸=8

mso(k,C) +
∑
k⩾2

msp(k,C).

Remark 4.3.3. When we compute dk(g), we have to be careful in the
following accidental isomorphisms:

• d1(g): so(2,C) ≃ C = R⊕
√
−1R, so(1, 1) ≃ R.

• d2(g): so(4,C) ≃ sl(2,C)⊕ sl(2,C), so(3, 1) ≃ sl(2,C),

• d3(g): so(6,C) ≃ sl(4,C), so(3, 3) ≃ sl(4,R), so(5, 1) ≃ sl(2,H).

• d4(g): so(5,C) ≃ sp(2,C), so(6,C) ≃ sl(4,C).

Proposition 4.3.4. Let (g, h) be a reductive pair with Cartan involution θ.
If dk(g) < dk(h) for some 1 ⩽ k ⩽ 4, the restriction map rest : (Pg∗)

−θ →
(Ph∗)

−θ is not surjective.

Proof. It follows from Proposition 4.2.4 that dk(g) = dim(P 2k−1
g∗ )−θ and

dk(h) = dim(P 2k−1
h∗ )−θ (1 ⩽ k ⩽ 4).

Corollary 4.3.5. If a homogeneous space G/H of reductive type satisfies
dk(g) < dk(h) for some 1 ⩽ k ⩽ 4, there does not exist a compact manifold
locally modelled on G/H.

Proof. Combine Fact 4.1.1, Fact 4.2.2 and Proposition 4.3.4.

Let (g, h) be a semisimple symmetric pair defined by an involution σ.
Extend σ to the complex linear involution of gC, the complexification of
g, and set gc = gσ ⊕

√
−1g−σ ⊂ gC. Then (gc, h) becomes a semisimple

symmetric pair with involution σ. It is called the c-dual of the semisimple
symmetric pair (g, h). Note that gcc = g. The c-dual of an irreducible
symmetric pair is again irreducible.

Proposition 4.3.6. Let (g, h) be a semisimple symmetric pair and (gc, h)
its c-dual. Then, the restriction map rest : (Pg∗)

−θ → (Ph∗)
−θ is surjective

if and only if rest : (P(gc)∗)
−θ → (Ph∗)

−θ is surjective.
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Proof. Recall that gc and g have the same complexification gC. Therefore,
the linear maps

rest : (Pg∗ ⊗ C)−θ → (Ph∗ ⊗ C)−θ

and
rest : (P(gc)∗ ⊗ C)−θ → (Ph∗ ⊗ C)−θ

are the same. Since surjectivity is stable under complexification, we have
the desired equivalence.

A reductive pair (g, h) is called complex if g is a complex Lie algebra
and h is a complex subalgebra of g. We remark that the Cartan involution
θ of g is antilinear in this case. We use the notation gR (resp. hR) when we
regard g (resp. h) as a real Lie algebra.

Proposition 4.3.7. Let (g, h) be a complex reductive pair with Cartan in-
volution θ. Then, the following three conditions are equiavlent:

(1) The (real) linear map rest : (PgR∗)−θ → (PhR
∗)−θ is surjective.

(2) The (complex) linear map rest : Pg∗ → Ph∗ is surjective.

(3) The graded algebra homomorphism rest : (Sg∗)g → (Sh∗)h is surjec-
tive.

Proof. (1) ⇔ (2). As we saw in the proof of Proposition 4.2.4, the Cartan
involution θ acts on PgR∗ ⊗ C ≃ Pg∗ ⊕ Pg∗ by (α1, α2) 7→ (α2, α1) (α1, α2 ∈
Pg∗). Thus (PgR∗)−θ ⊗ C ≃ {(α,−α) : α ∈ Pg∗}, and similarly (PhR

∗)−θ ⊗
C ≃ {(β,−β) : β ∈ Pg∗}. By these isomorphisms, the restriction map
rest : (PgR∗)−θ → (PhR

∗)−θ is rewritten as (α,−α) 7→ (α|h,−α|h) (α ∈ Pg∗).
This is surjective if and only if so is rest : Pg∗ → Ph∗ .

(2) ⇔ (3). Recall that the restriction map rest : (PgR∗)−θ → (PhR
∗)−θ is

canonically identified with

rest : (S+g∗)g/((S+g∗)g · (S+g∗)g) → (S+h∗)h/((S+h∗)h · (S+h∗)h)

via the Cartan maps. Since (Sg∗)g and (Sh∗)h are symmetric algebras over
graded vector spaces, the above linear map is surjective if and only if rest :
(Sg∗)g → (Sh∗)h is surjective.

Proposition 4.3.8. Let (g0, h0) be a reductive pair with Cartan involution
θ0. Let g and h be the complexifications of g0 and h0, respectively. We
denote by θ the Cartan involution of g such that θ|g = θ0. If the restriction
map rest : (Pg∗0

)−θ0 → (Ph∗0
)−θ0 is not surjective, neither is rest : (Pg∗R

)−θ →
(Ph∗R

)−θ.
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Proof. We write θC for the complex linear extension of θ0 to g. We note
that θC is a complex linear involution on g, whereas θ is antilinear. If the
linear map rest : (Pg∗R

)−θ → (Ph∗R
)−θ is surjective, so is rest : Pg∗ → Ph∗

by Proposition 4.3.7 (1) ⇒ (2). In particular, it is surjective on the (−1)-
eigenspaces for θC, namely,

rest : (Pg∗0
)−θ0 ⊗ C = (Pg∗)

−θC → (Ph∗)
−θC = (Ph∗0

)−θ0 ⊗ C

is surjective. This is equivalent to saying that rest : (Pg∗0
)−θ0 → (Ph∗0

)−θ0 is
surjective.

4.4 Proof of Theorem 4.1.2

Notice that a direct sum of two semisimple symmetric spaces (g1, h1) and
(g2, h2) satisfies the condition (A) (resp. (B)) if and only if both (g1, h1) and
(g2, h2) satisfy (A) (resp. (B)). Recall from Fact 4.2.2 that injectivity of the
homomorphism i : H•(g, h;R) → H•(g, kH ;R) is equivalent to surjectivity of
the linear map rest : (Pg∗)

−θ → (Ph∗)
−θ. Therefore, it is sufficient to prove

the following two claims:

• If an irreducible symmetric pair (g, h) is listed in (B-1)–(B-5), the
restriction map rest : (Pg∗)

−θ → (Ph∗)
−θ is surjective.

• If an irreducible symmetric pair (g, h) is listed in Table 4.1, the restric-
tion map rest : (Pg∗)

−θ → (Ph∗)
−θ is not surjective.

If (g, h) satisfies (B-1) or (B-2), surjectivity of rest : (Pg∗)
−θ → (Ph∗)

−θ

is obvious.
If (g, h) satisfies (B-3), its c-dual (gc, h) satisfies (B-2), and therefore the

restriction rest : (Pg∗)
−θ → (Ph∗)

−θ is surjective by Proposition 4.3.6.
If (g, h) satisfies (B-4), we have dim(Ph)

−θ = rank h − rank kH = 0 by
Fact 4.2.3 (2). Hence rest : (Pg∗)

−θ → (Ph∗)
−θ is trivially surjective.

Suppose that (g, h) satisfies (B-5). By Proposition 4.3.7 (3) ⇒ (1),
it suffices to see that rest : (Sg∗)g → (Sh∗)h is surjective. If (g, h) =
(sl(2n+1,C), so(2n+1,C)), (sl(2n,C), sp(n,C)) or (so(2n,C), so(2n−1,C)),
the surjectivity easily follows from Fact 4.2.1. If (g, h) = (e6,C, f4,C), the sur-
jectivity is shown in [55, p. 322].

Let (g, h) be one of the irreducible symmetric pairs listed in Table 4.1.
If (g, h) satisfies dk(g) < dk(h) for some 1 ⩽ k ⩽ 4, the restriction map rest :
(Pg∗)

−θ → (Ph∗)
−θ is not surjective by Proposition 4.3.4. The remaining

cases are:

g h Conditions

sl(2n,C) so(2n,C) n ⩾ 1
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sl(p+ q,R) so(p, q) p, q ⩾ 1, p, q: odd

su(p, q) so(p, q) p, q ⩾ 1, p, q: odd

so(2n+ 1,C) so(2n,C) n ⩾ 3

p, q ⩾ 1, p, q: odd,
so(p+ r, q + s) so(p, q)⊕ so(r, s) r, s ⩾ 0, (r, s) ̸= (0, 0),

(p, q, r, s) ̸= (1, 1, 1, 1)

Table 4.5: (g, h) not satisfying (B) to which Proposition 4.3.4
is not applicable

The pair (sl(p+ q,R), so(p, q)) (p, q: odd) is the c-dual of (su(p, q), so(p, q)).
The pairs (sl(2n,C), so(2n,C)) and (so(2n + 1,C), so(2n,C)) are the com-
plexifications of (su(2n − 1, 1), so(2n − 1, 1)) and (so(2n, 1), so(2n − 1, 1)),
respectively. Hence, by Propositions 4.3.6 and 4.3.8, it is sufficient to
verify that the restriction map rest : (Pg∗)

−θ → (Ph∗)
−θ is not surjec-

tive when (g, h) is (su(p, q), so(p, q)) (p, q: odd) or (g, h) = (so(p + r, q +
s), so(p, q)⊕ so(r, s)) (p, q: odd, (r, s) ̸= (0, 0)). If (g, h) = (su(p, q), so(p, q))
(p, q: odd), the nonsurjectivity follows from Proposition 4.3.1. If (g, h) =
(so(p + r, q + s), so(p, q) ⊕ so(r, s)) (p, q: odd, (r, s) ̸= (0, 0)), we have
dim(P p+q−1

g∗ )−θ < dim(P p+q−1
h∗ )−θ, and rest : (Pg∗)

−θ → (Ph∗)
−θ cannot

be surjective.
We have completed the proof of Theorem 4.1.2.

4.5 Examples of nonsymmetric homogeneous
spaces that apply our method

So far, we have studied the case of semisimple symmetric spaces. In this
section, we give some applications of Corollaries 4.3.1 and 4.3.4 to more
general setting, namely, the case of homogeneous spaces of reductive type.

Example 4.5.1 (cf. [41, Cor. 1.6]). There do not exist compact manifolds
locally modelled on the following homogeneous spaces:

(1) SL(n1 + · · ·+ nk,R)/(SL(n1,R)× · · · × SL(nk,R)) (n1, n2 ⩾ 3),

(2) SL(n1 + · · ·+ nk,C)/(SL(n1,C)× · · · × SL(nk,C)) (n1, n2 ⩾ 2),

(3) SL(n1 + · · ·+ nk,H)/(SL(n1,H)× · · · × SL(nk,H)) (n1, n2 ⩾ 2),

(4) O(p1+ · · ·+ pk, q1+ · · ·+ qk)/(O(p1, q1)× · · ·×O(pk, qk)) (p1, q1: odd,
p2 ⩾ 1),
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(5) O(n1 + · · ·+ nk,C)/(O(n1,C)× · · · ×O(nk,C)) (n1, n2 ⩾ 2 or n1 ⩾ 2
is even, n2 = 1),

(6) Sp(n1 + · · ·+ nk + n,C)/(Sp(n1,C)× · · · × Sp(nk,C)) (n1, n2 ⩾ 1).

Remark 4.5.2. In Example 4.5.1, (5) and (6) are already known not to
admit compact Clifford–Klein forms; we can apply Kobayashi’s method [23]
to these cases.

Remark 4.5.3. • The existence problem of compact Clifford–Klein
forms of SL(n,K)/SL(m,K) (n > m ⩾ 2, K = R,C,H) has been
attracted considerable attention. The first result was obtained in [22]
in the setting n = 3,m = 2,K = C. Some further results are in [2],
[26], [35], [36], [53], [56], [61] and Chapter 5. For example, expand-
ing the method of [61] and [35], Labourie–Zimmer [36] proved that
SL(n,R)/SL(m,R) does not admit a compact Clifford–Klein form if
n − m ⩾ 3. Unfortunately, our method gives no information about
this case.

• Benoist [2] proved that SL(p + q,R)/(SL(p,R) × SL(q,R)) (p, q ⩾ 1)
does not admit a compact Clifford–Klein form if pq is even.

• By applying the method of [23], Kobayashi [26] gave many results that
are similar to Example 4.5.1. See [26, Ex’s 4.13.5–4.13.7].

Proof of Example 4.5.1. We have d3(g) = 1 < 2 ⩽ d3(h) in (1) and (3), and
d2(g) = 1 < 2 ⩽ d2(h) in (2) and (6). So, we can apply Corollary 4.3.5 to
these cases.

(4). We can prove this case by showing dim(P p1+p2−1
g∗ )−θ = 0 < 1 ⩽

dim(P p1+p2−1
h∗ )−θ. We here give another proof based on the following lemma:

Lemma 4.5.4 (cf. [41, Prop. 5.1]). Let (g, h) be a reductive pair with Cartan
involution θ. Let l be a subalgebra of h such that θ(l) = l.

(1) If the restriction map rest : (Ph∗)
−θ → (Pl∗)

−θ is not surjective, neither
is rest : (Pg∗)

−θ → (Pl∗)
−θ.

(2) Assume that rest : (Ph∗)
−θ → (Pl∗)

−θ is surjective. If rest : (Pg∗)
−θ →

(Pl∗)
−θ is not surjective, neither is rest : (Pg∗)

−θ → (Ph∗)
−θ.

Proof of Lemma 4.5.4. This lemma follows immediately from an observa-
tion that the linear map rest : (Pg∗)

−θ → (Pl∗)
−θ is factorized as

(Pg∗)
−θ rest−−→ (Ph∗)

−θ rest−−→ (Pl∗)
−θ.

By Facts 4.1.1 and 4.2.2, it is enough to see that the restriction map
rest : (Pg∗)

−θ → (Ph∗)
−θ is not surjective for (g, h) = (so(p1 + · · · +

pk, q1 + · · · + qk), so(p1, q1) ⊕ · · · ⊕ so(pk, qk)) (p1, q1, p2 ⩾ 1, p1, q1: odd).
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By Lemma 4.5.4 (2), it suffices to see that the restriction map is not sur-
jective for (so(p1 + · · · + pk, q1 + · · · + qk), so(p1, q1)) (p1, q1, p2 ⩾ 1, p1, q1:
odd). Then, by Lemma 4.5.4 (1), we only need to see the nonsurjectivity
for (so(p1 + 1, q1), so(p1, q1)) (p1, q1 ⩾ 1, p1, q1: odd). Now, we can apply
Proposition 4.3.1.

(5). We see that

• If n1 = 2 or n2 = 2, then d1(g) = 0 < 1 ⩽ d1(h).

• If n1, n2 ⩾ 3, then d2(g) = 1 < 2 ⩽ d2(h).

We can apply Proposition 4.3.4 to these cases. Hence, it suffices to see
that the restriction map rest : (Pg∗)

−θ → (Ph∗)
−θ is not surjective if (g, h) =

(so(2n+m,C), so(2n,C)) (n,m ⩾ 1). Ifm = 1, the pair (g, h) is a semisimple
symmetric pair and the nonsurjectivity is already proved in Section 4.4.
Then the general case follows from Lemma 4.5.4 (1). Alternatively, we can
see the nonsurjectivity from dim(P 2n−1

g∗ )−θ = 0 < 1 ⩽ dim(P 2n−1
h∗ )−θ.

Example 4.5.5 (cf. [41, Rem. 5.2]). More generally, if n1, n2 ⩾ 3, there do
not exist compact manifolds locally modelled on

• SL(n1 + n2 + n3,R)/(SL(n1,R)× SL(n2,R)×H ′) and

• SL(n1 + n2 + n3,R)/(S(GL(n1,R)×GL(n2,R))×H ′)

for any closed subgroup H ′ of SL(n3,R) that is reductive in SL(n3,R). The
proof is the same as that of Example 4.5.1 (1). Similar results also hold for
(2)–(6).

4.6 Nonlinear case

Let G/H be a homogeneous space of reductive type, i.e. G is a linear re-
ductive Lie group with Cartan involution θ and H is a closed subgroup of
G with finitely many connected components such that θ(H) = H. As be-
fore, let K = Gθ and KH = Hθ denote the corresponding maximal compact
subgroups of G and H, respectively. Let π : G̃ → G a covering map. Put
H̃ = π−1(H) and K̃H = π−1(KH). If π is an infinite covering, K̃H is non-
compact. Assume that K̃H has finitely many connected components (this
is always satisfied when H = K, for instance). We can then take a maxi-
mal compact subgroup CH of H̃ so that cH ⊊ kH by the Cartan–Malcev–
Iwasawa–Mostow theorem (see e.g. [6, Ch. VII, Th. 1.2] or [18, Ch. XV,
Th. 3.1]), where cH is the Lie algebra of CH . In this case, we have the
following fact, which is stronger than Fact 4.1.1 in the linear setting:

Fact 4.6.1 (see Corollary 2.5.1). If the homomorphism i : H•(g, h;R) →
H•(g, cH ;R) induced from the inclusion map (Λ(g/h)∗)h ↪→ (Λ(g/cH)∗)cH is
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not injective, then there does not exist a compact manifold locally modelled
on the homogeneous space G/H (and, in particular, a compact Clifford–
Klein form of G/H).

By A. Borel’s theorem [5], for any linear reductive Lie group G, the
Riemannian symmetric space G/K of noncompact type admits a compact
Clifford–Klein form. Let π : G̃→ G be a covering map and put K̃ = π−1(K).
If G̃ is not linear, the proof of [5] does not work for G̃/K̃ because of the
following two reasons:

• We cannot use Selberg’s lemma [52, Lem. 8] to control the freeness of
the action.

• If π is an infinite covering map, K̃ is noncompact. Hence a discrete
subgroup of G̃ may not act properly on G̃/K̃.

The following example shows that the compactness of K is crucial.

Example 4.6.2. Let G/K be a Hermitian symmetric space of noncompact
type and π : G̃ → G be a universal covering map. Put K̃ = π−1(K).
Then there does not exist a compact manifold locally modelled on G̃/K̃. In
particular, G̃/K̃ does not admit a compact Clifford–Klein form.

Remark 4.6.3. In the definition of a manifold locally modelled on a homo-
geneous space, we assumed that the transition functions satisfy the cocycle
condition (see Section 2.2). Without this assumption, Example 4.6.2 is false.
Note that a compact Clifford–Klein form always satisfies the cocycle condi-
tion for the transition functions.

Proof of Example 4.6.2. The Lie algebra of the maximal compact subgroup
of K̃ is kss = [k, k]. Thus, by Fact 4.6.1, it suffices to see that the homomor-
phism

i : H•(g, k;R) → H•(g, kss;R)

is not injective. Take a nonzero element X of the centre of k so that
Stabg(X) = k. We regard X as an element of g∗ via the Killing form
B of g. Then, ω = dX is an element of (Λ2(g/k)∗)k. Note that ω cor-
responds to the G-invariant Kähler form on G/K under the isomorphism
(Λ2(g/k)∗)k ≃ Ω2(G/K)G. Since ω is nondegenerate on g/k, [ω]g,k ̸= 0
in H2(g, k;R). On the other hand, since X ∈ ((g/kss)

∗)kss , we have
[ω]g,kss = [dX]g,kss = 0 in H2(g, kss;R). Therefore the above homomorphism
i is not injective.

Remark 4.6.4. Atiyah–Schmid [1] applied Borel’s theorem to construct the
discrete series representations of a semisimple Lie group with finite centre.
In its erratum the nonlinear case is discussed. Unfortunately, our method
gives no information for the case of a nonlinear semisimple Lie group with
finite centre.
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Chapter 5

A cohomological obstruction
to the existence of compact
Clifford–Klein forms

5.1 Introduction

5.1.1 The existence problem of compact Clifford–Klein
forms

A Clifford–Klein form is a double coset space Γ\G/H, where G is a Lie
group, H a closed subgroup of G, and Γ a discrete subgroup of G acting
properly and freely on G/H. It admits a natural structure of a manifold
locally modelled on G/H. If Γ\G/H is a Clifford–Klein form, a discrete
subgroup Γ of G is called a discontinuous group for G/H.

It is one of the central open problems in the study of Clifford–Klein
forms to determine all homogeneous spaces admitting compact Clifford–
Klein forms. In the last three decades, this problem attracted consider-
able attention, and a number of obstructions to the existence of compact
Clifford–Klein forms were found. Some of these obstructions are based on a
homomorphism

η : H•(g, h;R) → H•(Γ\G/H;R) (g = Lie(G), h = Lie(H)),

which imposes a restriction on cohomology of compact Clifford–Klein forms
([30], [20], [3] and Theorem 2.1.2). In this chapter, we give a new obstruction
arising from this homomorphism.

5.1.2 Main result

The main result of this chapter is as follows:
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Theorem 5.1.1. Let G be a connected linear Lie group and H its connected
closed subgroup. Assume that HN (g, h;R) ̸= 0 (N = dimG − dimH). Let
KH be a maximal compact subgroup of H and TH a maximal torus of KH .
Let I• =

⊕
n∈N I

n be the graded ideal of H•(g, tH ;R) generated by⊕
C, p

im(i : Hp(g, c;R) → Hp(g, tH ;R)),

where the direct sum runs all connected compact subgroups C of G containing
TH and all p > N + dimKH − dimC. If

im(i : HN (g, h;R) → HN (g, tH ;R)) ⊂ IN

holds, G/H does not admit a compact Clifford–Klein form.

Remark 5.1.2. We do not know if Theorem 5.1.1 applies to a more general
case of manifolds locally modelled on G/H.

The key to the proof of Theorem 5.1.1 is an upper-bound estimate for
cohomological dimensions of discontinuous groups (Lemma 5.2.2), which
was established by Kobayashi [20] in the reductive case. It imposes another
restriction on cohomology of Clifford–Klein forms. We prove Theorem 5.1.1
by linking these two restrictions.

Remark 5.1.3. In [23], Kobayashi gave an obstruction to the existence of
compact Clifford–Klein forms by combining the estimate for cohomologi-
cal dimensions with the criterion for proper actions. As far as the author
understands, his and our obstructions do not include each other.

5.1.3 New examples of a homogeneous space without com-
pact Clifford–Klein forms

Theorem 5.1.1 provides some new examples of homogeneous spaces that
do not admit compact Clifford–Klein forms. For example, an irreducible
symmetric space G/H does not have a compact Clifford–Klein form if the
corresponding symmetric pair (g, h) is as in Table 5.1 (see Corollaries 5.6.1,
5.6.2 and 5.6.5):

g h Conditions

sl(p+ q,C) su(p, q) p, q ⩾ 1

sl(p+ q,R) so(p, q) p, q ⩾ 1

sl(p+ q,H) sp(p, q) p, q ⩾ 1

so(p+ q,C) so(p, q) p, q ⩾ 2, (p, q) ̸= (2, 2)

so(2n+ 1,C) so(2n, 1) n ⩾ 1
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so(2n,C) so∗(2n) n ⩾ 3

so(p+ r, q) so(p, q)⊕ so(r) p, q, r ⩾ 1, q : odd

sp(p+ q,C) sp(p, q) p, q ⩾ 1

e6,C e6(−14) —

e6(6) sp(2, 2) —

e7,C e7(−5) —

e7,C e7(−25) —

e8,C e8(−24) —

f4,C f4(−20) —

Table 5.1: Irreducible symmetric spaces without compact
Clifford–Klein forms

In particular, the nonexistence of a compact Clifford–Klein form of

SO0(p+ 1, q)/ SO0(p, q) (p, q ⩾ 1, q : odd)

is rephrased as:

Corollary 5.1.4. If p, q ⩾ 1 and q is odd, then there does not exist a com-
pact complete pseudo-Riemannian manifold of signature (p, q) with constant
positive sectional curvature.

We also obtain some nonsymmetric examples: for example,

SL(n,R)/ SL(m,R) (n > m ⩾ 2, m : even)

does not admit a compact Clifford–Klein form (see Corollary 5.6.7).

Remark 5.1.5. We mention some related nonexistence results which can
be obtained by previously known methods:

• Calabi–Markus [10], Wolf [59], [60], Kobayashi [20]: The fol-
lowing homogeneous spaces do not admit infinite discontinuous groups.
In particular, they do not admit compact Clifford–Klein forms:

– SO(p+ q,C)/SO0(p, q) (p, q ⩾ 1, |p− q| ⩽ 1),

– SO0(p+ r, q + s)/(SO0(p, q)× SO0(r, s))

(p ⩾ q ⩾ 1, r ⩾ s ⩾ 0, (r, s) ̸= (0, 0)).

• Kulkarni [33]: A homogeneous space

– SO0(p+ 1, q)/SO0(p, q) (p, q ⩾ 1, p, q : odd)
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does not admit a compact Clifford–Klein form.

• Kobayashi [22], [23], [26]: The following homogeneous spaces do
not admit compact Clifford–Klein forms:

– SL(2p,C)/SU(p, p) (p ⩾ 1),

– SL(2p,R)/SO0(p, p) (p ⩾ 1),

– SO0(p+ r, q + s)/(SO0(p, q)× SO0(r, s)) (p, q, r, s ⩾ 1),

– SO0(p+ r, q)/(SO0(p, q)× SO(r)) (p+ r > q ⩾ 1),

– SL(n,R)/SL(m,R) (n > 3[(m+ 1)/2], m ⩾ 2).

• Zimmer [61], Labourie–Mozes–Zimmer [35], Labourie–
Zimmer [36]: A homogeneous space

– SL(n,R)/SL(m,R) (n− 3 ⩾ m ⩾ 2)

does not admit a compact Clifford–Klein form. If, in addition, n ⩾
2m, there does not exist a compact manifold locally modelled on this
homogeneous space.

• Shalom [53]: A homogeneous space

– SL(n,R)/SL(2,R) (n ⩾ 4)

does not admit a compact Clifford–Klein form.

• Margulis [37], Oh [46]: Let αn : SL(2,R) → SL(n,R) denote the
real n-dimensional irreducible representation of SL(2,R). Then, a ho-
mogeneous space

– SL(n,R)/αn(SL(2,R)) (n ⩾ 4)

does not admit a compact Clifford–Klein form.

• Benoist [2], Okuda [47]: The following homogeneous spaces do not
admit non-virtually abelian discontinuous groups. In particular, they
do not admit compact Clifford–Klein forms:

– SL(p+ q,C)/SU(p, q) (p, q ⩾ 1, |p− q| ⩽ 1),

– SL(p+ q,R)/SO0(p, q) (p, q ⩾ 1, |p− q| ⩽ 1),

– SL(p+ q,H)/Sp(p, q) (p, q ⩾ 1, |p− q| ⩽ 1),

– SO(4p+ 2,C)/SO0(2p+ 2, 2p) (p ⩾ 1),

– SO0(p+ q + 1, p+ q + 1)/(SO0(p+ 1, p)× SO0(q, q + 1))

(p ⩾ 1, q ⩾ 0, p+ q : even),

– SL(m+ 1,R)/SL(m,R) (m ⩾ 2, m : even).
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• Kobayashi–Ono [30], Kobayashi [20], Benoist–Labourie [3],
Morita (Chapters 2–4): There do not exist compact manifolds lo-
cally modelled on the following homogeneous spaces. In particular,
they do not admit compact Clifford–Klein forms:

– SL(p+ q,R)/SO0(p, q) (p, q ⩾ 1, p, q : odd),

– SO0(p+ r, q + s)/(SO0(p, q)× SO0(r, s))

(p, q, r ⩾ 1, s ⩾ 0, p, q : odd).

Remark 5.1.6. Now we mention some homogeneous spaces admitting com-
pact Clifford–Klein forms:

• Borel–Harish-Chandra [7], Mostow–Tamagawa [45], Borel [5]:
Every Riemannian symmetric space G/K admits a compact Clifford–
Klein form.

• Kulkarni [33], Kobayashi [22], [26], Kobayashi–Yoshino [31]:
The following homogeneous spaces admit compact Clifford–Klein
forms.

– SO(8,C)/ SO0(7, 1),

– SO0(p+ r, q)/(SO0(p, q)× SO(r))

((p, q, r) = (1, 2n, 1), (3, 4n, 1), (1, 4, 2), (1, 4, 3), (7, 8, 1), n ⩾ 1).

Remark 5.1.7. While the author was preparing the manuscript [44],
Tholozan [56, ver. 1] proved the nonexistence of compact Clifford–Klein
forms of some homogeneous spaces, such as

(1) SO0(p+ r, q)/ SO0(p, q) (p, q, r ⩾ 1, q : odd),

(2) SL(n,R)/SL(m,R) (n > m ⩾ 2, m : even),

(3) SL(p+ q,R)/SO0(p, q) (p, q ⩾ 1, p+ q : odd),

(4) SO(n,C)/SO(m,C) (n > m ⩾ 2, m : even),

(5) SO(p+ q,C)/SO0(p, q) (p, q ⩾ 1, p+ q : odd).

Our results are sharper for (3), (5) and the same for (1)–(2), (4). Actually,
(4) had been proved by earlier methods [23], [41] too. In [56, ver. 2], he gave
a proof of the nonexistence of compact Clifford–Klein forms of the classical
symmetric spaces listed in Table 5.1.
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5.1.4 Outline of this chapter

In Section 5.2, we recall some basic facts on cohomology of Clifford–Klein
forms, including the upper-bound estimate for cohomological dimensions
of discontinuous groups and the definition of the homomorphism η from
relative Lie algebra cohomology to de Rham cohomology. The proof of
Theorem 5.1.1 is given in Section 5.3. The rest of this chapter is devoted
to constructing examples of a homogeneous space to which Theorem 5.1.1
is applicable. In Section 5.4, we apply H. Cartan’s theorem [11] on rela-
tive Lie algebra cohomology of reductive pairs to Theorem 5.1.1. We shall
see that, if G/H is a homogeneous space of reductive type satisfying some
invariant-theoretic condition, then Theorem 5.1.1 is applicable to G/H. In
Section 5.5, we give a way to find semisimple symmetric spaces satisfying
the condition obtained in Section 5.4 by using the notion of ε-families, intro-
duced by Oshima–Sekiguchi [50]. Finally, in Section 5.6, we give examples
of a homogeneous space without compact Clifford–Klein forms by applying
the results in Sections 5.4 and 5.5.

5.2 Preliminaries for the proof of Theorem 5.1.1

We recall some basic facts on cohomology of Clifford–Klein forms. They are
used in Section 5.3.

5.2.1 Orientability of Clifford–Klein forms

Let G be a Lie group, H a closed subgroup of G, and Γ a discrete subgroup
of G acting properly and freely on G/H. The local system of orientation
of Γ\G/H is isomorphic to Γ\G×H R, where H acts on R via H → {±1},
h 7→ sgn detAdg/h(h). Thus, Γ\G/H is orientable if H is connected.

5.2.2 Maximal compact subgroups of Lie groups

The following fact is fundamental for the computation of cohomology of
homogeneous spaces and Clifford–Klein forms:

Fact 5.2.1 (Cartan–Malcev–Iwasawa–Mostow, [6, Ch. VII, Th. 1.2], [18,
Ch. XV, Th. 3.1]). Let G be a Lie group with finitely many connected com-
ponents. Then,

(1) Every compact subgroup of G is contained in some maximal compact
subgroup.

(2) Any two maximal compact subgroups of G are conjugate.
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(3) Let K be a maximal compact subgroup of G. Then, there exist linear
subspaces V1, . . . , Vs of g such that

V1 × · · · × Vs ×K → G, (v1, . . . , vs, k) 7→ exp(v1) . . . exp(vs)k

is a diffeomorphism.

5.2.3 Cohomological dimensions of discontinuous groups

Recall that the real cohomological dimension cdR(Γ) of a discrete group Γ
is defined as

cdR(Γ) = sup{p ∈ N : Hp(Γ;V ) ̸= 0 for some RΓ-module V }.

Let G be a connected Lie group, H a connected closed subgroup of G, and Γ
a torsion-free discrete subgroup of G acting properly (and therefore freely)
on G/H. We put

cdR(Γ;G/H) = sup{p ∈ N : Hp(Γ\G/H;V) ̸= 0 for some RΓ-module V },

where V denotes the local system V ×Γ G/H on Γ\G/H. Remind that
cdR(Γ;G/K) is nothing but cdR(Γ), where K is a maximal compact sub-
group of G, because G/K is a classifying space of Γ by Fact 5.2.1.

Lemma 5.2.2. Let G, H and Γ be as above. Put N = dimG− dimH. Let
K and KH be maximal compact subgroups of G and H, respectively. Then,

(1) cdR(Γ;G/H) ⩽ N ; equality is attained if and only if the Clifford–Klein
form Γ\G/H is compact.

(2) cdR(Γ;G/H) = cdR(Γ) + dimK − dimKH .

Proof. These are proved in [20, §5] when G/H is of reductive type. Our
proof is along the same line.

(1) Since the Clifford–Klein form Γ\G/H is orientable, the Poincaré
duality for Γ\G/H is stated as:

Hp(Γ\G/H;V) ≃ HBM
N−p(Γ\G/H;V),

where the right-hand side is the Borel–Moore homology. This immediately
implies cdR(Γ;G/H) ⩽ N , with equality if and only if Γ\G/H is compact.

(2) Take any RΓ-module V . The Cartan–Leray spectral sequence [12,
Ch. XVI, §9] for the Γ-action on G/H is:

Ep,q
2 = Hp(Γ;Hq(G/H;V )) ⇒ Hp+q(Γ\G/H;V).

Since G is connected, its subgroup Γ acts trivially on Hq(G/H;R). The
E2-term of the spectral sequence is thus rewritten as:

Ep,q
2 = Hp(Γ;V )⊗Hq(G/H;R).
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Therefore, we have

cdR(Γ;G/H) = cdR(Γ) + sup{q ∈ N : Hq(G/H;R) ̸= 0}.

Note that cdR(Γ) = cdR(Γ;G/K) <∞ by (1). On the other hand,

Lemma 5.2.3. The composition of an inclusion and a projection

π ◦ i : K/KH → G/KH → G/H

is a homotopy equivalence.

Proof. It directly follows from Fact 5.2.1 that the inclusion i is a homo-
topy equivalence. The projection π is a fibre bundle whose typical fibre
H/KH is contractible again by Fact 5.2.1, hence a homotopy equivalence
([14, Cor. 3.2]).

Since K/KH is an orientable compact manifold, we obtain from
Lemma 5.2.3 that

sup{q ∈ N : Hq(G/H;R) ̸= 0} = sup{q ∈ N : Hq(K/KH ;R) ̸= 0}
= dimK − dimKH .

5.2.4 A homomorphism η from relative Lie algebra cohomol-
ogy to de Rham cohomology

Let G be a Lie group, H a connected closed subgroup of G, and Γ a
discrete subgroup of G acting properly and freely on G/H. We define
η : H•(g, h;R) → H•(Γ\G/H;R) to be the homomorphism induced from
the inclusion map

(Λ(g/h)∗)h ≃ Ω(G/H)G ↪→ Ω(G/H)Γ ≃ Ω(Γ\G/H).

If a Clifford–Klein form Γ\G/H is compact,

η : HN (g, h;R) → HN (Γ\G/H;R) (N = dimG− dimH)

is injective (Section 2.3). Indeed, if Φ ∈ (ΛN (g/h)∗)h is nonzero, then
η([Φ]) ∈ HN (Γ\G/H;R) is a cohomology class of a volume form, hence
nonzero.

5.3 Proof of Theorem 5.1.1

Let us assume that im(i : HN (g, h;R) → HN (g, tH ;R)) ⊂ IN and prove that
G/H does not have a compact Clifford–Klein form. Here, as defined in The-
orem 5.1.1, I• is the graded ideal of H•(g, tH ;R) generated by

⊕
C, p im(i :

59



Hp(g, c;R) → Hp(g, tH ;R)), where the direct sum runs all connected com-
pact subgroups C of G containing TH and all p > N + dimKH − dimC.

Suppose there were a discrete subgroup Γ of G such that Γ\G/H is
a compact Clifford–Klein form. Such Γ is always finitely generated ([20,
Lem. 2.1]). By Selberg’s lemma [52, Lem. 8], we can assume Γ is torsion-
free without loss of generality. We shall see that

η ◦ i : HN (g, h;R) → HN (g, tH ;R) → HN (Γ\G/TH ;R)

is a zero map and injective, which is impossible.
Let C be any compact connected subgroup of G containing TH . Since Γ

is torsion-free, Γ\G/C is a Clifford–Klein form. By Lemma 5.2.2, we have

cdR(Γ;G/C) = cdR(Γ) + dimK − dimC

= cdR(Γ;G/H) + dimKH − dimC

= N + dimKH − dimC.

From the commutativity of the diagram

Hp(g, c;R) i //

η

��

Hp(g, tH ;R)

η

��
Hp(Γ\G/C;R) π∗

// Hp(Γ\G/TH ;R),

it follows that

η ◦ i : Hp(g, c;R) → Hp(g, tH ;R) → Hp(Γ\G/TH ;R)

is a zero map for p > N + dimKH − dimC. Therefore

I• ⊂ ker(η : H•(g, tH ;R) → H•(Γ\G/TH ;R)).

In particular,

η ◦ i : HN (g, h;R) → HN (g, tH ;R) → HN (Γ\G/TH ;R)

is a zero map because im(i : HN (g, h;R) → HN (g, tH ;R)) ⊂ IN .
Consider another commutative diagram

HN (g, h;R) i //

η

��

HN (g, tH ;R)

η

��
HN (Γ\G/H;R) π∗

// HN (Γ\G/KH ;R) π∗
// HN (Γ\G/TH ;R).

As we recalled in Subsection 5.2.4,

η : HN (g, h;R) → HN (Γ\G/H;R)

60



is injective. On the other hand, the projections π : Γ\G/KH → Γ\G/H and
π : Γ\G/TH → Γ\G/KH are fibre bundles with typical fibres H/KH and
KH/TH , respectively. The induced homomorphism on cohomology

π∗ : HN (Γ\G/H;R) → HN (Γ\G/KH ;R)

is isomorphic since H/KH is contractible (Fact 5.2.1), and

π∗ : HN (Γ\G/KH ;R) → HN (Γ\G/TH ;R)

is injective by the splitting principle ([17, Th. 6.8.3]). Thus, the composition
map

η ◦ i : HN (g, h;R) → HN (g, tH ;R) → HN (Γ\G/TH ;R)

is injective. This completes the proof of Theorem 5.1.1.

5.4 A sufficient condition for Theorem 5.1.1 in the
reductive case

5.4.1 Cartan’s theorem

We say that (g, h) is a real (resp. complex) reductive pair if g is a real (resp.
complex) reductive Lie algebra and h is a real (resp. complex) subalgebra of
g that is reductive in g. In this chapter, we say that a homogeneous space
G/H is of reductive type if G is a connected linear Lie group and H is a
connected closed subgroup of G such that (g, h) is a real reductive pair.

Relative Lie algebra cohomology of real or complex reductive pairs can
be easily computed by H. Cartan’s theorem [11]. Let us briefly recall the
statement of the theorem (see [16], [48] for details). Let (g, h) be a real or
complex reductive pair. Let Pg∗ =

⊕
n⩾1 P

2n−1g∗ be the primitive sub-
space of (Λg∗)g ([16, Ch. V, §5]). The inclusion Pg∗ ⊂ (Λg∗)g induces an
isomorphism Λ(Pg∗) ≃ (Λg∗)g. Fix a transgression τ : P 2n−1g∗ → (Sng∗)g

in the Weil algebra of g ([16, Ch. VI, §4]). We introduce a grading on an
algebra (Sh∗)h ⊗ (Λg∗)g by

deg(Q⊗ α) = 2 degQ+ degα (Q ∈ (Sh∗)h, α ∈ (Λg∗)g)

and define a differential δ on (Sh∗)h ⊗ (Λg∗)g by

δ(Q⊗ 1) = 0, δ(1⊗ α) = −τ(α)|h ⊗ 1 (Q ∈ (Sh∗)h, α ∈ Pg∗).

Cartan constructed a quasi-isomorphism of differential graded algebras (i.e.
a homomorphism that induces isomorphism on cohomology)

ϕ : ((Sh∗)h ⊗ (Λg∗)g, δ) → ((Λ(g/h)∗)h, d)
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([16, Ch. X, §2]). This ϕ is functorial in h, namely, a diagram

((Sh∗)h ⊗ (Λg∗)g, δ)
ϕ //

rest⊗1
��

((Λ(g/h)∗)h, d)

i
��

((Sl∗)l ⊗ (Λg∗)g, δ)
ϕ // ((Λ(g/l)∗)l, d)

commutes for any subalgebra l of h that is reductive in g, where rest :
(Sh∗)h → (Sl∗)l denotes the restriction map.

5.4.2 A sufficient condition for Theorem 5.1.1 in terms of
invariants

Proposition 5.4.1. A homogeneous space G/H of reductive type satisfies
the assumptions of Theorem 5.1.1 (and therefore does not admit a compact
Clifford–Klein form) if there exist a connected compact subgroup C of G and
a homomorphism of graded algebras ϕ : (Sh∗C)

hC → (Sc∗C)
cC such that

(i) dimC > dimKH ,

(ii) C contains a maximal torus TH of KH , and

(iii) the diagram

(Sg∗C)
gC rest //

rest %%KK
KKK

KKK
KK

(Sh∗C)
hC rest //

ϕ

��

S(tH)∗C

(Sc∗C)
cC

rest

99tttttttttt

commutes.

Proof. It suffices to see that im(i : HN (g, h;R) → HN (g, tH ;R)) ⊂ IN . By
(iii),

((Sh∗C)
hC ⊗ (Λg∗C)

gC , δ)
rest⊗1 //

ϕ⊗1

��

(S(tH)∗C ⊗ (Λg∗C)
gC , δ)

((Sc∗C)
cC ⊗ (Λg∗C)

gC , δ)

rest⊗1

33gggggggggggggggggggg

is a commutative diagram of differential graded algebras. The induced com-
mutative diagram on cohomology

H•(gC, hC;C)
i //

ϕ⊗1

��

H•(gC, (tH)C;C)

H•(gC, cC;C)
i

44iiiiiiiiiiiiiiiii
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implies

im(i : HN (gC, hC;C) → HN (gC, (tH)C;C))
⊂ im(i : HN (gC, cC;C) → HN (gC, (tH)C;C)),

or equivalently,

im(i : HN (g, h;R) → HN (g, tH ;R)) ⊂ im(i : HN (g, c;R) → HN (g, tH ;R)),

while
im(i : HN (g, c;R) → HN (g, tH ;R)) ⊂ IN

by (i). This completes the proof.

5.5 The case of semisimple symmetric spaces

5.5.1 Semisimple symmetric pairs

Let g be a real semisimple Lie algebra and σ an involution of g. Let h = gσ

and q = g−σ be the fixed point sets of σ and −σ, respectively. We call (g, h)
a semisimple symmetric pair. We say that (g, h) is irreducible if g is simple
or (g, h) = (l ⊕ l,∆l) for some real simple Lie algebra l. Every semisimple
symmetric pair can be uniquely written as a direct sum of irreducible ones.

Take a Cartan involution θ of g such that θσ = σθ. Put k = gθ and p =
g−θ. We have a direct sum decomposition g = (k∩h)⊕(k∩q)⊕(p∩h)⊕(p∩q).
Let a be a maximal abelian subspace of p ∩ q. For α ∈ a∗, we put

gα = {X ∈ g : [Y,X] = α(Y )X for any Y ∈ a}.

Then Σ = {α ∈ a∗ : gα ̸= 0}∖ {0} satisfies the axioms of root system ([51,
Th. 5]). We call Σ the restricted root system of (g, h). If h = k, then Σ is
nothing but the restricted root system of the real semisimple Lie algebra g.
We fix a simple system Ψ of Σ and write Σ+ for the set of positive roots
with respect to Ψ.

5.5.2 ε-families of semisimple symmetric pairs

Let us review the notion of an ε-family of semisimple symmetric pairs, which
was introduced by Oshima–Sekiguchi [50]. A map ε : Σ → {±1} is called a
signature of Σ if it satisfies

• ε(−α) = ε(α) for any α ∈ Σ, and

• ε(α)ε(β) = ε(α+ β) for any α, β ∈ Σ with α+ β ∈ Σ.
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Given a signature ε of Σ, we define an involution σε of g by

σε(X) =

{
σ(X) (X ∈ zg(a)),

ε(α)σ(X) (X ∈ gα, α ∈ Σ).

We write hε = gσε and qε = g−σε . It is easily checked that σε commutes
with σ and θ, and a is a maximal abelian subspace of p ∩ qε. Thus, Σ
is also a restricted root system of the semisimple symmetric pair (g, hε).
The set F ((g, h)) = {(g, hε) : ε is a signature of Σ} is called an ε-family of
semisimple symmetric pairs ([50, §6]).

Let α ∈ Σ. Since the involution θσ leaves gα invariant, we have a
direct sum decomposition gα = g+α ⊕ g−α , where g±α are the eigenspaces of
θσ with eigenvalues ±1, respectively. Put m±(α; h) = dim g±α . Note that
m±(α; h) = m±(−α; h). If ε is a signature of Σ, we have

m±(α; hε) =

{
m±(α; h) if ε(α) = 1,

m∓(α; h) if ε(α) = −1.

A semisimple symmetric pair (g, h) is said to be basic ifm+(α; h) ⩾ m−(α; h)
for any α ∈ Σ with α/2 /∈ Σ ([50, Def. 6.4]). A typical example of a basic
pair is a Riemannian symmetric pair (g, k). For any ε-family F of semisimple
symmetric pairs, there exists a basic pair in F unique up to isomorphism
([50, Prop. 6.5]).

5.5.3 A characterization of the basic pairs

The following result should be known to experts, but we give a proof for the
sake of completeness.

Lemma 5.5.1. If a semisimple symmetric pair (g, h) is basic, an inequality
dim(k∩ h) ⩾ dim(k∩ hε) holds for any signature ε of Σ. Equality is attained
if and only if (g, hε) is also basic.

Proof. There is a direct sum decomposition

k ∩ h = zg(a) ∩ k ∩ h⊕
⊕
α∈Σ+

{X + σ(X) : X ∈ g+α }.

Hence,

dim(k ∩ h) = dim(zg(a) ∩ k ∩ h) +
∑
α∈Σ+

m+(α; h).

Similarly,

dim(k ∩ hε) = dim(zg(a) ∩ k ∩ hε) +
∑
α∈Σ+

m+(α; hε)

= dim(zg(a) ∩ k ∩ h) +
∑

α∈Σ+,
ε(α)=1

m+(α; h) +
∑

α∈Σ+,
ε(α)=−1

m−(α; h).
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Notice that α/2 /∈ Σ if ε(α) = −1. Since (g, h) is basic, we have

dim(k ∩ h)− dim(k ∩ hε) =
∑

α∈Σ+,
ε(α)=−1

(m+(α; h)−m−(α; h)) ⩾ 0.

If equality is attained, then m+(α; h) = m−(α; h) for any α ∈ Σ+ with
ε(α) = −1. This implies that m±(α; hε) = m±(α; h) for any α ∈ Σ, thus
(g, hε) is basic. Conversely, if (g, hε) is basic, equality is clearly attained.

5.5.4 Half-signatures

We say that δ : Σ → {±1,±
√
−1} is a half-signature of Σ if it satisfies

• δ(−α) = δ(α)−1 for any α ∈ Σ, and

• δ(α)δ(β) = δ(α+ β) for any α, β ∈ Σ with α+ β ∈ Σ.

We remark that any map Ψ → {±1,±
√
−1} (resp. Ψ → {±1}) is uniquely

extended to a half-signature (resp. signature) of Σ. Hence, for each signature
ε of Σ, there exist 2r half-signatures δ such that δ2 = ε (r = dim a). Given
a half-signature δ of Σ, we define an automorphism fδ of gC by

fδ(X) =

{
X (X ∈ (zg(a))C),

δ(α)X (X ∈ (gα)C, α ∈ Σ)

and put gδ = {X ∈ g : fδ(X) = X}.

Lemma 5.5.2 (cf. [49, Lem. 1.3]). Let ε be a signature of Σ and δ a half-
signature of Σ such that δ2 = ε. Then,

(1) fδ(hC) = (hε)C.

(2) h ∩ gδ = hε ∩ gδ.

Proof. These immediately follow from

h =zg(a) ∩ h⊕
⊕
α∈Σ+

{X + σ(X) : X ∈ gα},

hε =zg(a) ∩ h⊕
⊕

α∈Σ+,
ε(α)=1

{X + σ(X) : X ∈ gα}

⊕
⊕

α∈Σ+,
ε(α)=−1

{X − σ(X) : X ∈ gα},

gδ =zg(a)⊕
⊕

α∈Σ+,
δ(α)=1

{X + σ(Y ) : X,Y ∈ gα}.
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5.5.5 Semisimple symmetric spaces

Let G be a connected linear semisimple Lie group whose Lie algebra is g.
Suppose that the involution θ of g lifts to G, and let H be an open subgroup
of Gθ. The homogeneous space G/H is called a semisimple symmetric space
associated with the semisimple symmetric pair (g, h). In this chapter, we
always assume that H is connected. Let θ be a Cartan involution of G such
that θσ = σθ. Then K = Gθ and KH = K ∩ H are maximal compact
subgroups of G and H, respectively. Let ε be a signature of the restricted
root system Σ of (g, h). The involution σε of g lifts to G ([54, Lem. 1.6]).
Let Hε be the identity component of Gσε . Then KHε = K∩Hε is a maximal
compact subgroup of Hε.

5.5.6 A sufficient condition for Proposition 5.4.1 in terms of
ε-families

Now, we can prove:

Proposition 5.5.3. Let G/H a semisimple symmetric space such that (g, h)
is basic. Let ε be a signature of Σ such that (g, hε) is not basic. Let δ be a
half-signature of Σ such that δ2 = ε. If rank(k∩hε) = rank(k∩hε∩gδ), then
G/Hε satisfies the assumptions of Proposition 5.4.1 (and therefore does not
admit a compact Clifford–Klein form).

Proof. Let
(fδ|hC)

∗ : (S(hε)
∗
C)

(hε)C ∼−→ (Sh∗C)
hC

be the isomorphism induced by fδ|hC : hC
∼−→ (hε)C (Lemma 5.5.2 (1)). Take

a maximal torus THε of K ∩Hε such that tHε ⊂ k ∩ hε ∩ gδ, which exists by
the rank assumption. By Lemma 5.5.2 (2), we have THε ⊂ K ∩H. Consider
the following diagram:

(S(hε)
∗
C)

(hε)C

rest

''OO
OOO

OOO
OOO

O

(fδ|hC )
∗

��
(Sg∗C)

gC

rest
77oooooooooooo

rest ''OO
OOO

OOO
OOO

(Sh∗C)
hC

rest
��

S(tHε)
∗
C

(S(k ∩ h)∗C)
(k∩h)C

rest

77ooooooooooo

The right-hand side triangle clearly commutes since fδ|(tHε )C
is the identity

map of (tHε)C. Take a Cartan subalgebra j of g containing a. The restriction
map rest : (Sg∗C)

gC → Sj∗C is injective by Chevalley’s restriction theorem ([9,
Ch. VIII, §8, no. 3, Th. 1]), while fδ|jC is the identity map of jC. This shows
that f∗δ : (Sg∗C)

gC ∼−→ (Sg∗C)
gC is the identity map, and therefore the left-hand

side triangle commutes. We conclude by Lemma 5.5.1 that G/Hε satisfies
the assumptions of Proposition 5.4.1.
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5.6 Examples

5.6.1 Nonbasic semisimple symmetric spaces of type (C,R)

Let us consider a semisimple symmetric pair (g, h) such that g is a complex
semisimple Lie algebra and h its real form (this case is called “type (C,R)”
in [50]). Let ε be a signature of a restricted root system Σ of (g, h) and δ
any half-signature such that δ2 = ε. It is easy to check that hε is a real form
of g. In this case,

√
−1a is a maximal abelian subspace of k∩hε =

√
−1p∩qε

and is contained in k∩ hε ∩ gδ. This implies rank(k∩ hε) = rank(k∩ hε ∩ gδ).
From Proposition 5.5.3, we conclude:

Corollary 5.6.1. Let G be a connected complex semisimple Lie group and
H its connected real form. If the semisimple symmetric pair (g, h) is not
basic, G/H does not admit a compact Clifford–Klein form.

For the reader’s convenience, we list in Table 5.2 the nonbasic pair (g, h)
such that g is a simple complex Lie algebra and h its real form (cf. [50, §§1,
6]). The sign ⋆ in Table 5.2 signifies that the nonexistence of a compact
Clifford–Klein form seems to be a new result.

g h Conditions

sl(2n,C) sl(2n,R) n ⩾ 1

⋆ sl(p+ q,C) su(p, q) p, q ⩾ 1

⋆ so(p+ q,C) so(p, q) p, q ⩾ 2, (p, q) ̸= (2, 2)

⋆ so(2n+ 1,C) so(2n, 1) n ⩾ 1

⋆ so(2n,C) so∗(2n) n ⩾ 3

sp(n,C) sp(n,R) n ⩾ 1

⋆ sp(p+ q,C) sp(p, q) p, q ⩾ 1

e6,C e6(6) —

e6,C e6(2) —

⋆ e6,C e6(−14) —

e7,C e7(7) —

⋆ e7,C e7(−5) —

⋆ e7,C e7(−25) —

e8,C e8(8) —

⋆ e8,C e8(−24) —

f4,C f4(4) —

⋆ f4,C f4(−20) —

g2,C g2(2) —

Table 5.2: Irreducible symmetric pairs (g, h) to which Corol-
lary 5.6.1 is applicable
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5.6.2 Half-signatures arising from hyperbolic elements

Let (g, h) be a semisimple symmetric pair. As before, let σ be an involution
of g corresponding to h and θ a Cartan involution of g commuting with σ.
We define ha = gσθ (= (k∩ h)⊕ (p∩ q)) and qa = g−σθ (= (k∩ q)⊕ (p∩ h)).
The semisimple symmetric pair (g, ha) is called the associated pair of (g, h).

Corollary 5.6.2. A semisimple symmetric space G/H does not admit a
compact Clifford–Klein form if ha = zg(X0) for some X0 ∈ p∖ {0}.

Proof. Let a be a maximal abelian subspace of p containing X0 and Σ the
restricted root system of g with respect to a. We have a direct sum decom-
position qa = qa+ ⊕ qa−, where

qa+ =
⊕
α∈Σ,

α(X0)>0

gα, qa− =
⊕
α∈Σ,

α(X0)<0

gα.

It is easily checked that [qa+, q
a
+] = [qa−, q

a
−] = 0, [qa+, q

a
−] ⊂ ha. Hence, a

map

δ : Σ → {±1,±
√
−1}, α 7→


0 if α(X0) = 0,
√
−1 if α(X0) > 0,

−
√
−1 if α(X0) < 0.

is a half-signature of Σ. Put ε = δ2. By construction, we have h = kε and
ha = gδ. Thus k∩ kε = k∩ kε ∩ gδ = k∩ h. Now, Corollary 5.6.2 follows from
Proposition 5.5.3 if we could prove that (g, h) is not basic. If (g, h) is basic,
i.e. h is isomorphic to k, then σ and θ are two commuting Cartan involutions
of g, hence σ = θ ([19, Proof of Cor. 6.19]). Then g = ha = zg(X0), which is
absurd.

For the reader’s convenience, we list in Table 5.3 the irreducible sym-
metric pairs (g, h) such that ha = zg(X0) for some X0 ∈ p ∖ {0} (cf. [50,
§1]). The sign ⋆ in Table 5.3 signifies that the nonexistence of a compact
Clifford–Klein form seems to be a new result. We remark that some exam-
ples such as (sl(p + q,C), su(p, q)) (p, q ⩾ 1) appear in both Table 5.2 and
Table 5.3.

g h Conditions

⋆ sl(p+ q,C) su(p, q) p, q ⩾ 1

⋆ sl(p+ q,R) so(p, q) p, q ⩾ 1
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⋆ sl(p+ q,H) sp(p, q) p, q ⩾ 1

su(n, n) sl(n,C)⊕ R n ⩾ 1

⋆ so(n+ 2,C) so(n, 2) n ⩾ 3

⋆ so(2n,C) so∗(2n) n ⩾ 3

so(p+ 1, q + 1) so(p, 1)⊕ so(1, q) p, q ⩾ 0, (p, q) ̸= (0, 0), (1, 1)

so(n, n) so(n,C) n ⩾ 3

so∗(4n) sl(n,H)⊕ R n ⩾ 2

sp(n,C) sp(n,R) n ⩾ 1

sp(n,R) sl(n,R)⊕ R n ⩾ 1

sp(n, n) sp(n,C) n ⩾ 1

⋆ e6,C e6(−14) —

⋆ e6(6) sp(2, 2) —

e6(−26) f4(−20) —

⋆ e7,C e7(−25) —

e7(7) sl(4,H) —

e7(−25) e6(−26) ⊕ R —

Table 5.3: Irreducible symmetric pairs to which Corol-
lary 5.6.2 is applicable

5.6.3 Examples obtained by direct computations

In Subsections 5.6.1 and 5.6.2, we systematically constructed examples of
a homogeneous space that does not admit a compact Clifford–Klein form
using Proposition 5.5.3. In this subsection, we shall give some examples via
direct verification of Proposition 5.4.1.

To fix notations, we give explicit generators of (Skg∗C)
gC for gC = sl(n,C)

and so(n,C). Define invariant polynomials fk ∈ (Sk(gl(n,C)∗))gl(n,C) (k =
1, 2, . . . , n) on the Lie algebra gl(n,C) by

det(λIn−X) = λn+f1(X)λn−1+f2(X)λn−2+ · · ·+fn(X) (X ∈ gl(n,C)).

For the convenience, we put f0 = 1 and fk = 0 for k < 0 and k > n. We
use the same notation fk for the restriction of fk to sl(n,C) or to so(n,C).
Then,

Fact 5.6.3 ([9, Ch. VIII, §13]). (1) The n−1 elements f2, f3, . . . , fn gen-
erate the algebra (S(sl(n,C)∗))sl(n,C) and are algebraically independent.
We have f1 = 0.

69



(2) If n = 2m + 1, the m elements f2, f4, . . . , f2m generate the algebra
(S(so(n,C)∗))so(n,C) and are algebraically independent. We have f1 =
f3 = · · · = f2m+1 = 0.

(3) If n = 2m, the m elements f2, f4, . . . , f2m−2, f̃ generate the al-
gebra (S(so(n,C)∗))so(n,C) and are algebraically independent, where
f̃ ∈ (Sm(so(n,C)∗))so(n,C) is the Pfaffian of n×n skew-symmeric ma-
trices. We have f1 = f3 = · · · = f2m−1 = 0 and f2m = f̃2.

Corollary 5.6.4. A homogeneous space

SO0(p+ r, q)/SO0(p, q) (p, q, r ⩾ 1, q : odd)

does not admit a compact Clifford–Klein form.

Proof. Put G = SO0(p + r, q) and H = SO0(p, q). When p is odd, this has
been already proved in Chapter 4 (see Table 4.1). Let p be even. Take a
connected compact subgroup C of G to be

C = SO(p+ 1)× SO(q) ⊂ SO0(p+ r, q) = G

and define a homomorphism

ϕ : (Sh∗C)
hC = (S(so(p+ q,C)∗))so(p+q,C)

→ (S(so(p+ 1,C)∗))so(p+1,C) ⊗ (S(so(q,C)∗))so(q,C) = (Sc∗C)
cC

by

ϕ(f2k) =
∑

i+j=k

f2i ⊗ f2j (1 ⩽ k ⩽ p+ q − 1

2
).

Then C and ϕ satisfy the assumptions of Proposition 5.4.1.

Corollary 5.6.5. An irreducible symmetric space

SO0(p+ r, q)/(SO0(p, q)× SO(r)) (p, q, r ⩾ 1, q : odd)

does not admit a compact Clifford–Klein form.

Proof. This is immediate from Corollary 5.6.4 since SO(r) is compact.

Remark 5.6.6. Corollary 5.6.5 seems new when p is even, q is odd, the
inequality p + r ⩽ q holds and (p, q, r) ̸= (2k, 2k + 1, 1) (k ⩾ 1). It was
also previously known that SO0(p + r, q)/(SO0(p, q) × SO(r)) (p, q, r ⩾ 1)
does not admit a compact Clifford–Klein form if p, q are both odd, the
inequality p + r > q holds or (p, q, r) = (2k, 2k + 1, 1) (k ⩾ 1). On
the other hand, it admits a compact Clifford–Klein form if (p, q, r) =
(1, 2n, 1), (3, 4n, 1), (1, 4, 2), (1, 4, 3) or (7, 8, 1) (n ⩾ 1) (cf. Remarks 5.1.5
and 5.1.6). The remaining cases are, as far as the author knows, open.
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Corollary 5.6.7. A homogeneous space

SL(n,R)/SL(m,R) (n > m ⩾ 2, m : even)

does not admit a compact Clifford–Klein form.

Proof. Put G = SL(n,R) and H = SL(m,R). Take a connected compact
subgroup C of G to be

C = SO(m+ 1) ⊂ SL(n,R) = G

and define a homomorphism

ϕ : (Sh∗C)
hC = (S(sl(m,C)∗))sl(m,C) → (S(so(m+1,C)∗))so(m+1,C) = (Sc∗C)

cC

by ϕ(fk) = fk (2 ⩽ fk ⩽ m). Then C and ϕ satisfy the assumptions of
Proposition 5.4.1.

Remark 5.6.8. Corollary 5.6.7 seems new when (n,m) = (2k+2, 2k) (k ⩾
2). It was also previously known that SL(n,R)/ SL(m,R) (n > m ⩾ 2) does
not admit a compact Clifford–Klein form if n−3 ⩾ m, (n,m) = (2k+1, 2k)
(k ⩾ 1) or (n,m) = (4, 2) (cf. Remark 5.1.5). The remaining cases (n,m) =
(2k + 3, 2k + 1), (2k + 2, 2k + 1) (k ⩾ 1) are, as far as the author knows,
open.

5.6.4 Enlargement of Lie groups

The following lemma provides some other examples of a homogeneous space
without compact Clifford–Klein forms.

Lemma 5.6.9. Let G/H be a homogeneous space of reductive type satisfy-
ing the assumptions of Proposition 5.4.1. Let G̃ be a connected Lie group
containing G as a closed subgroup. Let L be a connected closed subgroup
of G̃ such that G ∩ L = {1}, L ⊂ ZG̃(G) and G̃/(H × L) is a homoge-

neous space of reductive type. Then G̃/(H × L) satisfies the assumptions
of Proposition 5.4.1 (and therefore does not admit a compact Clifford–Klein
form).

Proof. Let C be a connected compact subgroup of G and ϕ : (Sh∗C)
hC →

(Sc∗C)
cC a homomorphism of graded algebras satisfying the conditions (i)–

(iii) of Proposition 5.4.1. Let KL be a maximal compact subgroup of L
and

rest : (Sl∗C)
lC → (S(kL)

∗
C)

(kL)C

denote the restriction map. Let C̃ = C ×KL and

ϕ̃ : (S(h⊕ l)∗C)
(h⊕l)C = (Sh∗C)

hC ⊗ (Sl∗C)
lC

ϕ⊗rest−−−−→ (Sc∗C)
cC ⊗ (S(kL)

∗
C)

(kL)C = (S(c⊕ kL)
∗
C)

(c⊕kL)C .

Then C̃ and ϕ̃ satisfy the conditions (i)–(iii) with respect to G̃/(H×L).
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For instance,

SL(p1 + · · ·+ pn + q,R)/(SL(p1,R)× · · · × SL(pn,R))

(n ⩾ 1, p1, . . . , pn ⩾ 2,
∏
i

pi : even, q ⩾ 1)

does not admit a compact Clifford–Klein form by Lemma 5.6.9 and the proof
of Corollary 5.6.7.

5.6.5 Relation with Theorem 2.1.2 (2)

We proved in Chapter 2 the following result:

Fact 5.6.10 (Theorem 2.1.2 (2)). Let G be a Lie group and H its closed
subgroup with finitely many connected components. Let KH be a maximal
compact subgroup of H. If the homomorphism

i : HN (g, h;R) → HN (g, kH ;R) (N = dimG− dimH)

is not injective, there is no compact manifold locally modelled on G/H.

If the homomorphism i : HN (g, h;R) → HN (g, kH ;R) is not injective,

im(i : HN (g, h;R) → HN (g, tH ;R)) ⊂ IN

trivially holds. Thus Theorem 5.1.1 yields the following corollary, which is
slightly weaker than Theorem 2.1.2 (2):

Corollary 5.6.11. Let G be a connected linear Lie group and H its con-
nected closed subgroup. Let KH be a maximal compact subgroup of H. If
the homomorphism

i : HN (g, h;R) → HN (g, kH ;R) (N = dimG− dimH)

is not injective, G/H does not admit a compact Clifford–Klein form.

Remark 5.6.12. Note that i : HN (g, h;R) → HN (g, tH ;R) is injective if
and only if so is i : HN (g, h;R) → HN (g, kH ;R), for i : H•(g, kH ;R) →
H•(g, tH ;R) is always injective by a variant of the splitting principle ([17,
Th. 6.8.2]).
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