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Abstract

This paper is an abstract of Ph.D. thesis ”Sharp Interface Limit for the Stochastic
Allen-Cahn Equation”. In this thesis, we treat our recent results about sharp interface
limit for the stochastic Allen-Cahn equations in several settings. Especially, we focus
on the generation and motion of interface. Finally, we show the simulation concerned
with these models.

1 Introduction

The Allen-Cahn equation is a reaction-diffusion equation with a bistable reaction term f .
This equation describes physical phenomena such as dynamical phase transition, and it
has the form: u̇ε(t, x) = ∆uε(t, x) +

1

ε
f(uε(t, x)), t > 0, x ∈ D,

uε(0, x) = uε0(x), x ∈ D,
(1.1)

where D ⊂ Rd is a domain, ε > 0, u̇ = ∂u
∂t and ∆u =

∑d
k=1

∂2u
∂x2

k
. We assume that the

reaction term f has ±1 as stable points and satisfies
∫ 1
−1 f(u)du = 0. The typical example

of the reaction term is f(u) = u − u3. Then, it is expected that the solution uε tends
to ±1 as ε → 0 in a very short time, and an interface appears to separate two different
phases ±1.
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Figure 1: Reaction term and phase separation
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The width of the interface is of order O(ε
1
2 ), thus the interface becomes sharp as ε → 0,

and we call this limit the sharp interface limit. In this thesis, we add an external random
noise to PDE (1.1), and study the sharp interface limit for the stochastic Allen-Cahn
equations in several settings. The stochastic Allen-Cahn equation is described as follows;

u̇ε(t, x) = ∆uε(t, x) +
1

ε
f(uε(t, x)) + Ẇ ε(t, x), t > 0, x ∈ D,

where Ẇ ε(t, x) is an external noise term which is depend on a time variable and a space
variable. We explain the meaning of this term and the solution uε in each chapter. We
can also refer Chapter 4 of Funaki [8] for the sharp interface limit of SPDEs.

1.1 Related topic and motivation

In recent studies of the deterministic case, the behaviors of the solution have been in-
vestigated. For example, Chen [3] studied the initial value problem (1.1) in one space
dimension, and classified the behavior of solution into four stages: (i) Phase separation:
In a very short time, the solution uε tends to ±1. In other words, interfaces are generated
in a time of order O(ε| log ε|). (ii) Generation of metastable patterns: Until the time of
order O(1), the solution uε enters into a neighborhood of standing waves associated with
f . (iii) Super-slow motion of interfaces: An approximated ODE governs the very slow

interface motion for a long time of order O(e
C
ε ) with C > 0 (Carr and Pego [2] also stud-

ied this stage). (iv) Annihilation of interfaces: Under the super-slow motion, when two
interfaces are close enough, the interfaces are annihilated and they restore the super-slow
motion. In this thesis, we are interested in the stages of generation of interface and motion
of interface.

On the other hand, Funaki [5] studied the case of stochastic Allen-Cahn equation. He
consider the external noise Ẇ ε(t, x) := εγa(x)Ẇ (t, x) where a ∈ C∞

0 (R) and Ẇ (t, x) is a
space-time (Gaussian) white noise. He proved that the proper time scale for the interface

motion is of order O(ε−2γ− 1
2 ) and the interface ξt ∈ R obeys the SDE;

dξt = α1a(ξt)dBt + α2a(ξt)a
′(ξt)dt, (1.2)

where α1 and α2 are the constants depending on f , and Bt is a one-dimensional Brownian
motion (see Chapter 2 for the detailed conditions of α1 and α2). The most important
point in his study is that the time scale for the motion of interface is totally different from
the deterministic case, and that the dynamics of interface is also described by the SDE.
These changes are from the contribution of the noise term. We proved the generation
of interface in [10], in the same setting as Funaki [5]. We proved that the interfaces are
formed until the time of order O(ε| log ε|). Weber [17] also investigated the annihilation of
interface. In his results, he proved that the interfaces are annihilated, and restore a new
phase once two interfaces reach the distance of order O(ε

1
2 | log ε|).
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Figure 2: Annihilation of interfaces

The order of width for the annihilation is slightly wider than that of the deterministic
case (see Chen [3]). He also took the time scale of order O(ε−2γ− 1

2 ) for the interface
motion. The interfaces behave as independent Brownian motions, and they are killing
each other at the limit ε → 0.

The invariant measures of the stochastic Allen-Cahn equations with the boundary con-
dition uε(±1) = ±1 are also well-studied. For example, Weber [16] proved the concentra-
tion of the invariant measure on a minimizer of Ginzburg-Landau free energy. Allen-Cahn
equation can be described as the L2-gradient flow of this energy functional. Otto et. al.
[13] also proved that the invariant measure. Roughly speaking, the invariant measure of
uε converges weakly to the uniform distribution on the set {χξ|ξ ∈ [−1, 1]} ⊂ L2[−1, 1].
Their results are deeply related to the proof in Chapter 4.

We also mention about the multi-dimensional case. In this case, the interface motion
has been investigated in many articles. For example, we can refer de Mottoni and Schatz-
man [12]. In the multi-dimensional setting, the proper time scale is of order O(1) and
the interface develops by a motion by mean curvature. Alfaro et. al. [1] investigated the
multi-dimensional Allen-Cahn equation with the deterministic external force term gε;

u̇ε(t, x) = ∆uε(t, x) +
1

ε
f(uε(t, x)) + gε(t, x, uε), t > 0, x ∈ D.

In this case, the interfaces are generated at the time of order O(ε| log ε|), and an influence
of the external force remains in the mean curvature flow. Their result motivates us to
consider the method of super and sub solutions for the proof of the generation in the
stochastic case. We discuss about it in [11] and also in Chapter 3.

We explain the stochastic case. Here, we note that we cannot take the space-time
white noise as a noise term when the dimension is larger than 1, because the solution
becomes ill-posed. Reader can refer Funaki’s result [4] about the regularity of parabolic

SPDEs. Funaki [7] assumed that d = 2 and the noise ε−
1
2 ẇε

t where wε
t is smooth in time

and uniform in space almost surely. It converges to a one-dimensional Brownian motion
almost surely. In this case, he proved that the proper time scale is of order O(1) and the
interface motion is described by the mean curvature flow with the noise;

Vt = κ+ αẇt,

where Vt is a normal velocity of the interface, κ is a mean curvature of interface, the
constant α depends on f and wt is a one-dimensional Brownian motion. This result
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means that the effect of noise term remains in the mean curvature flow in O(1). We
note that he proved it until the convexity of the interface holds. As the special case of
Funaki’s result, Weber [15] proved the interface motion where the noise is defined by a
mollification in a time variable of the Brownian motion wε

t := (ηε ∗ w)(t) for d ≥ 2. We
proved the generation of interface for multi-dimensional case in [11]. We take the formal
derivative of Q-Brownian motion in time, which is smooth in space, as the external noise.
The interface is generated until the time of order O(ε| log ε|). We prove it in Chapter 3.
We can also consider a behavior of the solution after the generation as a future work. See
Funaki-Yokoyama [9] for the case that the volume of uε is preserved.

0

1
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t=0 t=O(ε|logε|)

Figure 3: Generation of interface in multi dimension

Here, we summarize the contents of this thesis. This thesis consists of five chapters.
Chapter 1 is an introduction. Our main results are included in Chapter 2, 3 and 4. Chapter
5 is about the simulation. We simulate the deterministic and stochastic Allen-Cahn equa-
tions in several settings in Chapter 5. We fix a filtered probability space (Ω,F , P, {Ft}).

2 Generation of interface for one-dimensional case

In Chapter 2, we treat the generation of interface for the one-dimensional Allen-Cahn
equation. We assume that D = R and Ẇ ε(t, x) := εγa(x)Ẇ (t, x) where a ∈ C∞

0 (R)
and Ẇ (t, x) is a space-time white noise on R. We also assume the boundary condition
uε(t,±∞) = ±1. The initial value uε0(x) satisfies

(i)∥uε0∥∞ + ∥uε′0 ∥∞ + ∥uε′′0 ∥∞ ≤ C0,

(ii)There exists a unique ξ0 ∈ [−1, 1] independent of ε > 0 such that uε0(ξ0) = 0,

(iii)|uε0(x)| ≥ Cε
1
2 (|x− ξ0| ≥ C ′ε

1
2 ),

(iv)|uε0(x)− 1|+ |uε′0 (x)|+ |uε′′0 (x)| ≤ εκCµ exp(−
√
µx
2 ) (x ≥ 1),

(v)|uε0(x) + 1|+ |uε′0 (x)|+ |uε′′0 (x)| ≤ εκCµ exp(
√
µx
2 ) (x ≤ −1).

See [10] for some constants C0, C, C ′, κ, µ and Cµ, where µ := f ′(0).
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Theorem 2.1. We set ūε(t, x) := uε(ε−2γ− 1
2 t, x) and γ is a constant such that

there exist constants κ > κ′ > 1 which satisfy{
(κ′ + 21

40 + γ
10) ∨ 2κ′ < κ < γ − Cf

µ ,

1 < κ′ < 1
20 + γ

5 .

Then there exist an a.s. positive random variable C(ω) ∈ L∞(Ω) and stochastic processes
ξεt such that

P (∥ūε(t, ·)− χξεt
(·)∥L2(R) ≤ δ for all t ∈ [C(ω)ε2γ+

3
2 | log ε|, T ]) → 1 (ε → 0),

for all δ > 0 and T > 0. Moreover, the distribution of the process ξεt on C([0, T ],R) weakly
converges to that of ξt and ξt obeys the SDE (1.2).

We prove that the interface is formed until the time of order O(ε| log ε|). We prove it
by estimating the energy inequality for the solution uε, and the convergence of uε to the
minimizer of Ginzburg-Landau free energy which corresponds to the Allen-Cahn equation.

3 Generation of interface for multi-dimensional case

We also show the generation of interface in the multi-dimensional setting by assuming that
a noise term has a regularity in a space variable. We show it in Chapter 3 and in [11]. In
this chapter, we set D ⊂ Rd as a domain, and Ẇ ε(t, x) := εγẆQ(t, x) where WQ(t, x) is
a Q-Brownian motion which is smooth in space. We also assume the Neumann boundary
condition, and the initial value u0 ∈ C2(R) satisfies ∥u0∥∞ + ∥u′0∥∞ + ∥u′′0∥∞ ≤ C0.

Theorem 3.1. If there exist constants C1 > 0, κ and α satisfying κ > α > 1
2 , κ > 1

and α
µ + κ

p < C1 < 1
µ , then there exists a positive constants γ̃d > 0 which depends on a

dimension d, and, for all γ ≥ γ̃d, we have that

(i) lim
ε→0

P (−1− εκ ≤ uε(x,C1ε| log ε|) ≤ 1 + εκ for all x ∈ D) = 1

(ii) lim
ε→0

P (uε(x,C1ε| log ε|) ≥ 1− εκ for x ∈ D such that u0(x) ≥ ε1−C1µ) = 1

(iii) lim
ε→0

P (uε(x,C1ε| log ε|) ≤ −1 + εκ for x ∈ D such that u0(x) ≤ −ε1−C1µ) = 1

Also in this case, the generation of interface occurs until the time of order O(ε| log ε|).
We prove the comparison theorem for SPDEs by applying the maximal principle for PDEs,
in the process of proof for this theorem. We also apply these methods to a one-dimensional
setting where the motion of interface is studied by Funaki [6] with the special noise. And
thus, we connect it to his result.

4 Reflected Brownian motion derived by a sharp interface
limit

In Chapter 4, we study the case that the equation on the interval [−1, 1] has Dirichlet
boundary conditions uε(±1) = ±1. We take the noise Ẇ ε(t, x) := εγẆ (t, x) where Ẇ (t, x)
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is a space-time white noise on [−1, 1]. In this case, we can expect that interface can be
reflected at the boundary.

Theorem 4.1. Let a probability measure P ε on C([0, T ], L2[−1, 1]) be the distribution of

ūε(t, x) := uε(ε−2γ− 1
2 t, x) with the initial value uε0, and let P on C([0, T ], L2[−1, 1]) be

that of the Markov process χ√
2B(α2

1t)
where B(t) is a reflected Brownian motion on [−1, 1]

which start at ξ0 ∈ [−1, 1] and α1 := ∥∇m∥−1
L2 . If γ > 19

4 , then P ε converges to P weakly
on C([0, T ], L2[−1, 1]) as ε → 0.

As we can see, the proper time scale is of order O(ε−2γ− 1
2 ), and we get a reflected

Brownian motion as the interface motion. However, analyzing the behavior like a reflection
at the boundary is not simple because of its singularity. We regard the solution uε as the
L2[−1, 1]-valued Markov process, consider the Dirichlet form which corresponds to uε and
specify the interface motion through Mosco convergence of the Dirichlet form.

5 Simulations

In Chapter 5, we simulate the deterministic and stochastic Allen-Cahn equations, and
discuss about the difference between both settings visually. For the simulation in one
space dimension, we used C language, and for multi dimension, we used FreeFem++-cs.

5.1 One-dimensional settings

At first, we simulate the one-dimensional stochastic Allen-Cahn equation;

u̇(t, x) = ∆u(t, x) + af(u(t, x)) + bẆt(x), t > 0, x ∈ [−1, 1],

where a > 0, b ∈ R, f(u) = u − u3 and Ẇt(x) is a space-time white noise. We impose
Dirichlet boundary conditions u(±1) = ±1. The methods of this simulation is based on
Saito [14]. First we take N ∈ N and set h := 1

N+1 and τ := h2. We also set a lattice
Qh := {(xi, tn)|xi = −1+ ih (0 ≤ i ≤ 2N +1), tn = nτ}, and define a discretized solution
uni on (xi, tn) ∈ Qh. By discretizing this equation, we can describe this as following;

un+1
i − uni

τ
=

uni+1 − 2uni + uni−1

h2
+ af(uni ) + b

Wn+1
i −Wn

i

τ
.

Here, the external noise term is defined by Wn+1
i −Wn

i =
√
τGn

i where {Gn
i } are random

variables which are parametrized by i and n, they are independent and obey the normal
distribution N(0, 1). We note that

√
τGn

i obeys N(0, τ), and this represents the difference
of Brownian motion on each time step. This term is an approximation of a space-time
white noise. Finally, we calculate uni inductively.

5.1.1 Reflection of interface at the boundary

Before the stochastic case, we consider the deterministic case (b = 0). We change the time
as ū(t) := u(ct). The initial value takes value −1 on xi = −1 and takes 1 on xi ̸= −1.
Now we simulate the case that a = 103, b = 0, c = 104 and N = 150.
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We can see that the interface almost stops immediately although we take very long
time scale. Actually, this moves, however, the speed of interface is extremely slow. This
is the super slow motion. On the other hand, the motion of interface becomes totally
different if we take b = 2.
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In this case, the solution becomes singular, and the interface perturbs randomly and
fast. We can observe a reflected Brownian motion as an interface motion. Moreover, we
can expect that we can take the value γ to be smaller than 19

4 which is lower bound of γ
in Theorem 4.1.

5.1.2 Annihilation of interfaces

We also consider the annihilation of interface. First, we simulate the deterministic case.
We set the initial value u0(x) := sin 21πx

2 .
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The annihilation occurs symmetrically because of the boundary conditions and the
definition of the reaction term f . Next we consider the stochastic case, which is investi-
gated by Weber [17]. We set the initial value u0(x) := − sin 11πx

2 . We change the initial
value because the annihilation occurs too fast if we take u0(x) := sin 21πx

2 . However, we
can observe essentially the same phenomena as the deterministic case.
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As we can see, the interfaces move like the independent Brownian motions, and the
annihilation randomly occurs. This result is involved with that of Weber [17].

5.2 Multi-dimensional settings

Now, we consider the two-dimensional Allen-Cahn equation;
u̇(t, x) = ∆u(t, x) + af(u(t, x)) +

√
aẆt, t > 0, x ∈ D,

u(0, x) = u0(x), x ∈ D,
∂u
∂ν (t, x) = 0, t > 0, x ∈ ∂D

The domain D ⊂ R2 is a square [0, 1] × [0, 1], the reaction term is defined by f(u) :=
1
2(u − u3) and we impose Neumann boundary condition. We take a white noise only in
time as the external noise, and a := 10−2. We use the finite element method for the
simulation. If we set a time change ū(t, x) = u(a−1t, x), then we have the weak form;

⟨ū(t)− ū(0), φ⟩ =
∫ t

0
{a−1⟨∇ū(s),∇φ⟩+ ⟨f(ū(s)), φ⟩}ds+ ⟨Wt, φ⟩

where ⟨·, ·⟩ is an inner product on L2(D) and φ ∈ C∞
0 (D) is a test function. Then, we can

apply the finite element method. We reset the time scale when we visualize the simulation.
In this case, the interface motion appears as the motion by mean curvature.
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5.2.1 Motion by mean curvature

We simulate the deterministic case u̇(t, x) = ∆u(t, x) + af(u(t, x)) at first. We take the
initial value u0 := 1A(x)− 1D\A(x) where A := {(x, y) ∈ R2|(x− 0.5)2 + (y− 0.5)2 ≤ 0.2}
and a = 100. The red part is the phase 1, and the blue part is the phase −1.

(1) t = 0 (2) t = 300

The interface shrinks because the interface motion obeys the motion by mean curva-
ture. Next, we consider the stochastic case u̇(t, x) = ∆u(t, x) + af(u(t, x)) +

√
aẆt.

(1) t = 0 (2) t = 100

(3) t = 200 (4) t = 300

The interface perturbs, and the radius of the circle moves randomly. The color of
each phase also perturbs uniformly because we take the noise which is uniform in a space
variable. Next, we consider the case that interface touches the boundary at the initial
time. In this case, we have the initial value u0 := 1B(x) − 1D\B(x) where B := {(x, y) ∈
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R2|(x − 0.5)2 + (y − 0.5)2 ≤ 0.25}. The interface touches at (0.5, 0), (1, 0.5), (0.5, 1)
and (0, 0.5) at the initial time. The interface motion becomes totally different from the
previous case. Here, we consider the deterministic case.

(1) t = 0 (2) t = 20

(3) t = 100 (4) t = 300

In this case, the interface sticks to the boundary, and it does not shrink. The phase
which takes value 1 becomes wide. Finally, we can observe one quarter of a circle at each
corner, and this shrinks to the corner slowly. We consider the stochastic case at last.

(1) t = 0 (2) t = 20
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(3) t = 100 (4) t = 300

The figure of interface develops similarly as the deterministic case, however it perturbs
randomly. The effect of noise remains in O(1) as in the result of Funaki [7].

5.2.2 Volume preserving case

Finally, we consider the volume preserving case;
u̇(t, x) = ∆u(t, x) + a

{
f(u(t, x))−

∫
D
− f(u(t, x))dx

}
+ αẇε

t , t > 0, x ∈ D,

u(0, x) = u0(x), x ∈ D,
∂u
∂ν (t, x) = 0, t > 0, x ∈ ∂D

which is discussed in Funaki and Yokoyama [9]. The constant α depends on f . The term∫
D− f(u)dx := 1

|D|
∫
D f(u)dx is an average of f(u). In the deterministic case (ẇε

t ≡ 0), the
volume of u is preserved because of Neumann boundary condition.

(1) t = 0 (2) t = 20

(3) t = 100 (4) t = 300
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We take the constant α = 1 in this section. We observe that the volume of two
phases is preserved. Thus, the interface motion is similar to that of the non-preserving
case, and we can see that one quarter of a circle appears at each corner, however, the
interface motion stops. In the stochastic case, we can get

∫
D u(t, x)dx = wε

t from an easy
calculation. The process wε

t , in Funaki and Yokoyama [9], is smooth and depends only on
time t. This process converges to a Brownian motion, and the convergence is very slow
(the speed of convergence is of order O(log log | log ε|)). However, we take a white noise
in our simulation directly. We also change the initial value u0 := 1C(x)− 1D\C(x) where
C := {(x, y) ∈ R2|(x− 0.5)2 + (y − 0.5)2 ≤ 0.09}.

(1) t = 0 (2) t = 2

(3) t = 3 (4) t = 8

In this case, the interface perturbs, however, it disappears suddenly. The non-local
term

∫
D− f(u)dx := 1

|D|
∫
D f(u)dx perturbs because of the noise. Then, the reaction term

does not become odd, and the solution becomes a traveling wave temporally. This causes
the results such that the interface expands or shrinks suddenly. Also in the article [9],
they mentioned that this dynamics is sensitive to the noise, and we can expect that this
is the reason of this result.
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