
博士論文

論文題目 Automorphisms of positive entropy on some hy-
perKähler manifolds via derived automorphisms of K3 sur-
faces
(K3曲面の導来自己同型を用いた超ケーラー多様体上の
正エントロピー自己同型の構成について）

氏名　 大内　元気



AUTOMORPHISMS OF POSITIVE ENTROPY ON SOME
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AUTOMORPHISMS OF K3 SURFACES

GENKI OUCHI

Abstract. We construct examples of hyperKähler manifolds of Picard num-
ber two with automorphisms of positive entropy via derived automorphisms
of K3 surfaces of Picard number one. Our hyperKähler manifolds are con-
structed as moduli spaces of Bridgeland stable objects in derived categories of

K3 surfaces. Then automorphisms of positive entropy are induced by derived
automorphisms of positive entropy on K3 surfaces.

1. INTRODUCTION

1.1. Motivation and Results. The dynamical aspect of automorphisms of K3
surfaces was studied by Cantat [13] and McMullen [32]. It gave a new perspective
of the study of automorphisms of algebraic varieties. After that, Oguiso studied
the case of hyperKähler manifolds. A hyperKähler manifold is a simply connected
compact Kähler manifold with an everywhere non-degenerate holomorphic two form
unique up to scalar. Typical examples are K3 surfaces and Hilbert schemes of points
on them. More generally, Mukai [33], Yoshioka [47], Huybrechts [21] proved that
moduli spaces of Gieseker stable sheaves on projective K3 surfaces give examples
of hyperKähler manifolds deformation equivalent to Hilbert schemes of points on

K3 surfaces i.e. of K3[n]-type. In this paper, we study the dynamical aspect of au-
tomorphisms of moduli spaces of Gieseker stable sheaves on projective K3 surfaces
using technique of derived categories. A pair (X, f) of a compact Hausdorff space
X and a homeomorphism f : X → X is called a discrete topological dynamical sys-
tem. Then we are interested in behavior of iteration of the homeomorphism f . The
topological entropy htop(f) of f is a fundamental invariant of the discrete topolog-
ical dynamical system (X, f), which measures complexity of (X, f). The positivity
of the topological entropy htop(f) means that (X, f) is complicated. For example,
a homeomorphism of finite order gives the null entropy. From now on, we focus on
dynamics on projective hyperKähler manifolds. It is known that birational auto-
morphism groups of hyperKähler manifolds of Picard number one are finite groups.
Since automorphisms of positive entropy have infinite order, hyperKähler manifolds
of Picard number one do not have automorphisms of positive entropy. In the case
of Picard number two, Oguiso found a two dimensional example [40] and a four
dimensional example [39] of hyperKähler manifolds with automorphisms of posi-
tive entropy. They are constructed via the study of period maps. The geometry
of the two dimensional example can be understood explicitly [15]. On the other
hand, there are no explicit higher dimensional examples of hyperKähler manifolds
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of Picard number two with automorphisms of positive entropy so far. In general
setting, Amerik and Verbitsky proved that the following theorem recently.

Theorem 1.1. ([5]) Let M be a hyperKähler manifold with b2(M) ≥ 5. Then M
admits a projective deformation M ′ of Picard number two with symplectic automor-
phisms of positive entropy.

The main theorem of this paper gives explicit construction of such hyperKähler
manifolds as moduli spaces of Gieseker stable sheaves on projective K3 surfaces
of Picard number one. Moreover, we discuss relations between automorphisms of
moduli spaces and autoequivalences of derived categories of projective K3 surfaces.
We will give the precise statement in Theorem 1.5. In the case of Picard number
three, we can easily construct higher dimensional examples of hyperKähler mani-
folds with automorphisms of positive entropy. Let S be the Oguiso’s K3 surface of
Picard number two with an automorphism f of positive entropy. Then the natural
automorphism f [n] : S[n] → S[n] of f has a positive entropy for any positive integer
n. It is well known that automorphism groups of projective K3 surfaces of Picard
number one are Z/2Z or 1. The first case occur only for projective K3 surfaces of
degree two. So natural automorphisms are not interesting in this case. Moreover,
the following holds.

Proposition 1.2. ([39]) Let S be a projective K3 surface of Picard number one. Let
n > 0 be a positive integer. Then the birational automorphism group Bir(Hilbn(S))
of the Hilbert scheme of points on S is a finite group.

The main idea of this paper is that we use autoequivalences of derived categories
of K3 surfaces instead of automorphisms on them. Dimitrov, Haiden, Katzarkov
and Kontsevich [14] introduced the notion of the categorical entropy hcat(Φ) of
an endofunctor Φ on a triangulated category D. In the context of the algebraic
geometry, this is a generalization of topological entropy in the sense of the following
Theorem due to Kikuta and Takahashi [28].

Theorem 1.3. ([28]) Let X be a smooth projective variety and f : X → X be a
surjetive endomorphism. Then we have

hcat(Lf
∗) = htop(f).

The first observation of this paper is the following proposition.

Proposition 1.4. Let S be a projective K3 surface. Then there is an autoequiva-
lence Φ ∈ Aut(Db(S)) such that hcat(Φ) > 0.

Even for a projective K3 surface of Picard number one, we have autoequivalences
of positive entropy. We hope that some autoequivalences of positive categorical
entropy as in Proposition 1.4 can be understood as symmetry of moduli spaces of
Bridgeland stable objects. Bayer and Macri [9], [10] proved that moduli spaces
of Bridgeland stable objects in derived categories of projective K3 surfaces are

projective hyperKähler manifolds of K3[n]-type. By Bayer and Macri’s work, moduli
spaces of Gieseker stable sheaves on projective K3 surfaces can be described as
moduli spaces of stable objects with respect to some Bridgeland stability condition.
Since autoequivalences change stability conditions, autoequivalences do not induce
automorphisms of moduli spaces of stable objects in general. So we study variation
of stability conditions, namely wall and chamber structures on the space of stability
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conditions. For a given Mukai vector v, there is the wall and chamber structure
in the space of stability conditions. Bayer and Macri proved that there are three
types of walls, flopping walls, divisorial walls and fake walls. Before giving the main
theorem, we fix some notation. Let S be a projective K3 surface. Let H∗(S,Z)
be the Mukai lattice and H̃1,1(S,Z) be the (1, 1)-part of the Mukai lattice. We
denote the distinguished connected component of the space of stability conditions

on Db(S) by Stab∗(S). For a primitive vector v ∈ H̃1,1(S,Z) and a v-generic
stability condition σ ∈ Stab∗(S), the moduli space Mσ(v) of σ-stable objects with

Mukai vector v is a projective hyperKähler manifold of K3[n]-type and 2n = v2 +2
[9], [10]. The main results of this paper are as follows.

Theorem 1.5. (Theorem 3.6 Corollary 3.7) Let S be a projective K3 surface of

Picard number one. Let v ∈ H̃1,1(S,Z) be a primitive vector with v2 ≥ 2. Assume
that all walls with respect to v are fake walls. For any v-generic stability condition
σ ∈ Stab∗(S), there is an autoequivalence Φ ∈ Aut(Db(S)) such that the morphism

ϕ :Mσ(v) →Mσ(v), [E] 7→ [Φ(E)]

is an automorphism of Mσ(v) of positive entropy htop(ϕ) > 0. Moreover, we have
an inequality

1

2
dimMσ(v) · hcat(Φ) ≥ htop(ϕ).

If Conjecture 2.48 (Conjecture 5.3 in [28]) is true, then the following holds.

Conjecture 1.6. In the setting in Theorem 1.5, we have the equality

1

2
dimMσ(v) · hcat(Φ) = htop(ϕ).

We can construct examples of Mukai vectors having only fake walls.

Example 1.7. Let S be a K3 surface with NS(S) = Zh. Assume one of the
followings.

(1) h2 = 132, v = (4, h, 16), v2 = 4
(2) h2 = 510, v = (6, h, 42), v2 = 6
(3) h2 = 1160, v = (8, h, 72), v2 = 8
(4) h2 = 2210, v = (10, h, 110), v2 = 10

Then there are only fake walls with respect to v.

We will construct four dimensional examples of Theorem 1.5 from cubic fourfolds.

1.2. From cubic fourfolds. The geometry of cubic fourfolds give examples of hy-
perKähler manifolds. Beauville and Donagi [8] proved that the Fano scheme F (X)

of lines on a cubic fourfold X is a hyperKähler fourfold of K3[2]-type. CF.Lehn, M.
Lehn, CH. Sorger and D. Van straten [29] constructed the hyperKähler eightfold

Z(X) of K3[4]-type from twisted cubic curves on a cubic fourfold X not containing
a plane. Conjecturely, these hyperKähler manifolds can be described as moduli
spaces of stable objects in some K3 categories constructed from cubic fourfolds.
We recall the construction of the K3 category. Let X be a cubic fourfold. There is
a semi-orthogonal decomposition

Db(X) = ⟨AX ,OX ,OX(1),OX(2)⟩.
Kuznetsov [25], [26] proved that AX is a K3 category i.e. [2] is a Serre functor. Let
pr : Db(X) → AX be the left adjoint of the inclusion functor. We expect that F (X)
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is a moduli space of stable objects in AX with the numerical class [pr(Oline(1))]
[27], [31]. Similarly, the hyperKähler eightfold Z(X) is constructed as a moduli
space of stable objects in AX with the numerical class [pr(Opoint(1))] [3], [2], [37]
conjecturelly. In this paper, we treat only Fano schemes of lines on cubic fourfolds.
Sometimes, the K3 category AX is equivalent to the derived category of some K3
surface. Kuznetsov proposed the following conjecture.

Conjecture 1.8. ([26]) A cubic fourfold X is rational if and only if there is a K3
surface S such that AX is equivalent to Db(S).

Note that there are no known irrational cubic fourfolds so far. We recall works by
Hassett [19], Addington and Thomas [3], Galkin and Shinder [18] and Addington [1].
Let C be the moduli space of cubic fourfolds. Let X be a cubic fourfold. We say that
X is special if rkH2,2(X,Z) ≥ 2 holds. Otherwise, X is called very general. More
specifically, if X has a rank 2 primitive sublattice K ⊂ H2,2(X,Z) of discriminant d
such that H2 ∈ K, then X is called a special cubic fourfold of discriminant d. Here,
H ∈ H2(X,Z) is the hyperplane class. Let Cd be the (possibly empty) codimension
one subvariety of special cubic fourfolds of discriminant d. Hassett proved that Cd
is not empty if and only if

(∗): d > 6 and d ≡ 0 or 2 (mod 6).

Moreover, Hassett [19] proved that X has an associated K3 surface at the level of
Hodge theory if and only if d satisfies (∗) and

(∗∗): d is not divisible by 4, 9 or any odd prime p ≡ 2 (mod 3).

Addington and Thomas [3] proved the following theorem from the viewpoint of
derived categories.

Theorem 1.9. ([3]) Let X be a cubic fourfold.

• If there is a K3 surface S such that AX ≃ Db(S), then we have X ∈ Cd for
some integer d satisfying (∗) and (∗∗).

• Let d be an integer satisfying (∗) and (∗∗). Then the set

Ud := {X ∈ Cd | AX ≃ Db(S)} ⊂ Cd
is a non-empty Zariski open subset.

By Galkin and Shinder’s work [18], we have the following conjecture.

Conjecture 1.10. If X is a rational cubic fourfold, then F (X) is birational to the
Hilbert scheme of two points on some K3 surface.

This conjecture comes from calculation in the Grothendieck ring of algebraic
varieties. They proved Conjecture 1.10 under some assumption. However, there
are counterexamples of their assumptions (See [6], [30], [24]). Addington [1] proved
that Conjecture 1.8 and Conjecture 1.10 are not compatible. Conjecture 1.10 is
true for known rational cubic fourfolds[8], [1], [36].

Theorem 1.11. ([1]) Let X be a cubic fourfold.

• There is a K3 surface S such that F (X) is birational to a moduli space of
stable sheaves on S if and only if d satisfies (∗) and (∗∗).

• There is a K3 surface S such that F (X) is birational to a Hilbert scheme
of two points on S if and only if there is an integer d satisfying (∗) and
(∗ ∗ ∗): The equation a2d = 2n2 + 2n+ 2 has an integral solution (a, n).
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The integer 74 satisfies (∗) and (∗∗). However, it does not satisfy (∗ ∗ ∗).

We study automorphisms of Fano schemes of lines on special cubic fourfolds of
discriminant 74.

Theorem 1.12. Take X ∈ C74 such that rkH2,2(X,Z) = 2. Then there is an
automorphism ϕ ∈ Aut(F (X)) such that htop(ϕ) > 0.

Theorem 1.12 gives examples of Theorem 1.5.

1.3. Plan of the paper. In Section 2, we review the lattice theory, hyperKähler
manifolds, Bridgeland stability conditions on K3 surfaces, moduli spaces of sta-
ble objects, the theory of entropy and some results about automorphisms of hy-
perKähler manifolds. In Section 3, we prove Proposition 1.4, Theorem 1.5, Example
1.7 and Theorem 3.6. In Section 4, we prove Theorem 1.12.

1.4. Notation. We work over the complex number field C. For a triangulated
category D of finite type over C, let K(D) be the Grothendieck group of D. For
objects E,F ∈ D, we define χ(E,F ) :=

∑
i∈Z(−1)idimExti(E,F ). we define the

numerical Grothendieck group Knum(D) as the quotient group K(D)/Kerχ. Here,
the subgroup Kerχ consists of objects E such that χ(E,F ) = 0 for any object
F ∈ D. If D is the derived category of a smooth projective variety X, we write
K(X) (resp. Knum(X)) shortly. For a smooth projective variety X, we denote the
real vector space of 1-cycles on X modulo numerical equivalence by N1(X). We
assume that hyperKähler manifolds are projective. We write the spherical twist
STE of a spherical object E ∈ Db(X) for a smooth projective variety.
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warmful encouragement. The author also would like to thanks Naoki Koseki for
listening his talk patiently. This work was supported by the program for Leading
Graduate Schools, MEXT, Japan. This work is also supported by Grant-in-Aid for
JSPS Research Fellow 15J08505.

2. PRELIMINARY

2.1. Lattices. In this subsection, we collect fundamental facts about the lattice
theory.

Definition 2.1. A lattice is a pair (L, q) of a finitely generated free abelian group
L and an integer-valued non-degenerate quadratic form q. A lattice (L, q) is called
even if q(v) ∈ 2Z holds for any v ∈ L. We often denote a lattice (L, q) by L. The
signature of L is the signature of the quadratic form q.

Primitivity of sublattices and discriminants of lattices are used in the definition
of special cubic fourfolds of discriminant d.

Definition 2.2. Let L be a lattice. A sublattice N of L is called primitive if the
quotient L/N is torsion free. A vector v ∈ L is called primitive if the sublattice Zv
is primitive, equivalently v = λw for some λ ∈ Z and w ∈ L implies λ = ±1.

Definition 2.3. Let L be a lattice. The discriminant discL of L is the determinant
of a Gram matrix of L. A lattice L is called unimodular if the discriminant discL
is ±1.
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Recall the notion of discriminant groups to give the statement of Lemma 2.6.

Definition 2.4. Let (L, q) be an even lattice. Using the quadratic form q, we
get the natural injective map L → L∗. The quotient group L∗/L is called the
discriminant group d(L) of L. This is an finite abelian group. The discriminant
form qL : d(L) × d(L) → Q/2Z is the quadratic form on d(L) induced by the
quadratic form q.

Definition 2.5. Let L be an even lattice. We denote the group of isometries of
L by O(L). The group O(L) is called the orthogonal group of L. We also denote
the group of isometries of the discriminant group by O(d(L)). For g ∈ O(L), g is
the isometry of d(L) induced by g. There is the homomorphism O(L) → O(d(L))
sending g → g.

The following lemma will be used in Proposition 3.4.

Lemma 2.6. ([35]) Let N be a primitive sublattice of an even unimodular lattice
(L, q). Consider an isometry g ∈ O(N). If g = 1 holds, then there is a lift g̃ ∈ O(L)
such that g̃|N = g and g̃|L⊥ = 1.

From K3 surfaces, we get the notion of Mukai lattice.

Definition 2.7. Let S be a K3 surface. We define the Mukai pairing ⟨−,−⟩ on
H∗(S,Z) as follow:

⟨(r1, c1,m1), (r2, c2,m2)⟩ := c1c2 − r1m2 − r2m1.

The lattice H∗(S,Z) is called the Mukai lattice and it is the even unimodular lattice
of signature (4, 20). The Mukai lattice H∗(S,Z) has the weight two Hodge structure

H̃(S) defined by H̃2,0(S) = H2,0(S). We denote the algebraic part of the Mukai
lattice H∗(S,Z) by

H̃1,1(S,Z) =
( 2⊕

i=0

Hi,i(S,Q)
)
∩H∗(S,Z).

We denote the group of Hodge isometries on H∗(S,Z) by OHodge(H
∗(S,Z)). Let

O+
Hodge(H

∗(S,Z)) ⊂ OHodge(H
∗(S,Z)) be the subgroup of all Hodge isometries pre-

serving positive definite 4-spaces in H∗(S,R).

We will use the derived Torelli theorem to construct autoequivalences. Tak-
ing cohomological Fourier-Mukai transforms, we get the homomorphism (−)H :
Aut(Db(S)) → OHodge(H

∗(S,Z)).

Theorem 2.8. ([34], [42], [23]) The image Im(−)H of the homomorphism (−)H is
equal to O+

Hodge(H
∗(S,Z)).

Definition 2.9. We denote the subgroup Aut0(Db(S)) of Aut(Db(S)) as follow:

Aut0(Db(S)) := Ker((−)H : Aut(Db(S)) → O+
Hodge(H

∗(S,Z)).

2.2. HyperKähler manifolds. In this section, we recall basic terminology on
hyperKähler manifolds.

Definition 2.10. A hyperKähler manifold is a simply connected smooth projective
variety M such that H0(Ω2

M ) is spanned by an everywhere non-degenerate holomor-
phic two form.
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In this paper, we always assume that hyperKähler manifolds are projective.
Let M be a hyperKähler manifold. The second cohomology group of M has

the non-degenerated quadratic form qM : H2(M,Z) → Z so called the Beauville-
Bogomolov-Fujiki form. Then H2(M,Z) becomes an even unimodular lattice of
signature (3, b2(M)− 3) and qM satisfies the Fujiki relation∫

M

α2n = FM · qM (α)n.

Here, we write dimM = 2n and FM > 0 is the Fujiki constant of M .

Definition 2.11. Let D be a divisor on M . The divisor D is called movable if the
intersection ∩m≥1Bs|mD| of base loci of mD has at least codimension two in M .
The divisor D is called positive if qM (D) > 0 and DH > 0 hold for a fixed ample
divisor H.

Definition 2.12. The ample cone Amp(M) of M is the real cone generated by
ample divisors on M . The movable cone Mov(M) of M is the real cone generated
by movable divisors on M . The positive cone Pos(M) is the positive cone of M
with respect to the Beauville-Bogomolov-Fujiki form.

We will use the following in the proof of Proposition 3.4.

Lemma 2.13. ([21]) LetM be a hyperKähler manifold. Consider a homomorphism
Bir(M) → O(H2(M,Z)), f−1 7→ f∗. Then it’s kernel is a finite group.

2.3. Bridgeland stability conditions on K3 surfaces. In this subsection, we
recall the notion of Bridgeland stability conditions on derived categories of K3
surfaces. Let S be a K3 surface.

Definition 2.14. Let E ∈ Db(S) be an object in Db(S). We define the Mukai
vector v(E) of E as follow:

v(E) := ch(E)
√
td(S) ∈ H̃1,1(S,Z).

The Mukai vector induces the surjective homomorphism

v : K(S) → H̃1,1(S,Z).

Remark 2.15. By Hirzebruch-Riemann-Roch theorem, we have −χ(E,F ) = ⟨v(E), v(F )⟩
for any E,F ∈ Db(S). So the Mukai vector gives isometry v : Knum(S) →
H̃1,1(S,Z) with respect to the Euler pairing −χ(−,−) and the Mukai pairing ⟨−,−⟩.

Definition 2.16. ([11]) Fix a norm || − || on Knum(S)⊗ R. A stability condition
σ = (Z, {P(ϕ)}ϕ∈R) is a pair of a group homomorphism Z : Knum(S) → C (called
a central charge) and a collection {P(ϕ)}ϕ∈R of full additive subcategories P(ϕ)
(called σ-semistable objects with phase ϕ) such that the followings hold.

• For any ϕ ∈ R and 0 ̸= E ∈ P(ϕ), we have Z(E) ∈ R>0e
iπϕ.

• For any ϕ ∈ R, we have P(ϕ+ 1) = P(ϕ)[1].
• If ϕ1 > ϕ2, then we have Hom(E1, E2) = 0 for any Ei ∈ P(ϕi).
• For any E ∈ Db(S), there exists exact triangles Ei−1 → Ei → Fi (1 ≤ i ≤
n) and ϕ1 > ϕ2 > · · · > ϕn such that Fi ∈ P(ϕi) and E0 = 0, En = E.
This property is called the Harder-Narasimhan property.

• There exists a constant C > 0 such that ||E|| < C · |Z(E)| for any 0 ̸= E ∈
∪ϕ∈RP(ϕ). This property is called the support property.

7



We denote the set of all stability conditions on Db(S) by Stab(S). For ϕ ∈ R, a
simple object of P(ϕ) is called a σ-stable object with phase ϕ.

Bridgeland [11] proved that there is a structure of a complex manifold on Stab(S).

Theorem 2.17. ([11]) There is the topology on Stab(S) such that the map

Stab(S) → HomZ(Knum(S),C), (Z,P) 7→ Z

is a local homeomorphism. In particular, the space of stability conditions Stab(S)
on S has a structure of a complex manifold.

Remark 2.18. ([11]) Let σ = (Z,P) ∈ Stab∗(S) be a stability condition. For an
interval I, we denote by P(I) the extension-closed subcategory generated by objects
E ∈ P(ϕ) for all ϕ ∈ I. Then P((0, 1]) is the heart of a bounded t-structure in
Db(S).

We recall the properties of spaces of stability conditions on K3 surfaces. Let

P(S) be the set of all classes in H̃1,1(S,Z) ⊗ C , whose real and imaginary parts

span a positive definite real plane in H̃1,1(S,Z) ⊗ R. The subset P+(S) is the

connected component of P(S), which contains a class eiω ∈ H̃1,1(S,Z) ⊗ C for an

ample divisor ω on S. Let ∆(S) be the set of (−2)-classes in H̃1,1(S,Z). We define
the subset P+

0 (S) as

P+
0 (S) := P+(S) \

∪
δ∈∆(S)

δ⊥.

Theorem 2.19 ([12]). There is a connected component Stab∗(S) ⊂ Stab(S) such
that the map π : Stab∗(S) → P+

0 (S) which sends (Z,P) 7→ Ω is a covering map.
Here, the class Ω is determined by the property Z(−) = ⟨Ω,−⟩. The group of all
autoequivalences preserving Stab∗(S) and acting trivially on H∗(S,Z) is the group
of deck transformations of π.

Conjecture 2.20 ([12]). The group Aut(Db(S)) of autoequivalences of Db(S) pre-
serves the connected component Stab∗(S). Moreover, Stab∗(S) is simply connected.

Theorem 2.21. ([7]) Assume that S has Picard number ρ(S) = 1. Then Conjecture
2.20 is true.

The following proposition is a stronger version of Theorem 2.8. We will use this
version in Section 3.

Proposition 2.22. ([23]) Let Aut∗(Db(S)) be the group of autoequivalences of
Db(S) preserving Stab∗(S). The homomorphism

(−)H : Aut∗(Db(S)) → O+
Hodge(H

∗(S,Z))

is surjective.

We recall wall and chamber structures on spaces of stability conditions on K3
surfaces.

Definition 2.23. Let v be a primitive Mukai vector. A stability condition σ ∈
Stab∗(S) is called v-generic if there is no strictly σ-semistable objects with Mukai
vector v.
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Proposition 2.24. ([12], [45], [10]) Fix a primitive Mukai vector v ∈ H̃1,1(S,Z).
There is a locally finite set of walls (real codimension one submanifolds) in Stab(S),
which satisfies the following properties. We call a connected component of the com-
plement of walls a chamber.

• Let C be a chamber. If E is a σ-semistable object with Mukai vector v, then
E is τ -semistable for any τ ∈ C.

• A stability condition σ ∈ Stab∗(S) is in some chamber if and only if σ is
v-generic.

In Subsection 2.4, we will recall Bayer and Macri’s classification of walls [9], [10].

2.4. Moduli spaces of Bridgeland stable objects on K3 surfaces. In this
subsection, we recall Bayer and Macri’s work on moduli spaces of Bridgeland stable

objects on K3 surfaces [9], [10]. Let S be a K3 surface. Let v ∈ H̃1,1(S,Z) be a
primitive Mukai vector with v2 > 0. Take a v-generic stability condition σ ∈
Stab∗(S). Denote the moduli stack of σ-semistable objects with Mukai vector v by
Mσ(v).

Bayer and Macri [9] proved existence and projectivity of coarse moduli spaces of
Bridgeland stable objects on K3 surfaces.

Theorem 2.25. ([9], [10]) Let v ∈ H̃1,1(S,Z) be a primitive Mukai vector with
⟨v, v⟩ ≥ −2. Let σ ∈ Stab∗(S) be a v-generic stability condition. Then the coarse
moduli space Mσ(v) of σ-stable objects with Mukai vector v exists as a hyperKähler

manifold of K3[n]-type and dimMσ(v) = 2 + ⟨v, v⟩. Note that the coarse moduli
space Mσ(v) is non-empty.

Recall the notion of quasi-universal families on the coarse moduli space Mσ(v).

Definition 2.26. ([9]) Let M be a connected algebraic space of finite type over C.
• An object E ∈ Db(M×S) is called a quasi-family of objects in Mσ(v)(SpecC)
if for any closed point p ∈M , there is an object E ∈ Mσ(v) and a positive
integer ρ > 0 such that E|p×S ≃ E⊕ρ. Then ρ is independent to a choice of
p ∈M and called the similitude of E.

• Two quasi-families E , E ′ ∈ Db(M × S) are called equivalent if there are
vector bundles V, V ′ on M such that E ⊗ p∗MV ≃ E ′ ⊗ p∗MV

′,
• A quasi-family E ∈ Db(M × S) is called a quasi-universal family if for any
algebraic scheme M ′ and a quasi-family E ′ ∈ Db(M ′×S), there is a unique
morphism f :M ′ →M such that Lf∗E is equivalent to E ′.

Remark 2.27. ([9]) Let v ∈ H̃1,1(S,Z) be a primitive Mukai vector with ⟨v, v⟩ ≥
−2. Let σ ∈ Stab∗(S) be a v-generic stability condition. Then the coarse mod-
uli space Mσ(v) has a quasi-universal family E ∈ Db(Mσ(v) × S), unique up to
equivalence.

Using it, we obtain the following Hodge isometry, so called Mukai homomor-
phism.

Proposition 2.28. ([9]) Let v ∈ H̃1,1(S,Z) be a primitive Mukai vector with
⟨v, v⟩ > 0. Let σ ∈ Stab∗(S) be a v-generic stability condition. Let E ∈ Db(Mσ(v)×
S) be a quasi-universal family of similitude ρ. We define a homomorphism θ : v⊥ →
H2(Mσ(v),Z) as follow:

θv(w) :=
1

ρ
· [ΦH

E (w)]2.
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Here, [−]2 means the degree two part and we consider the orthogonal complement
v⊥ in H∗(S,Z). Then the homomorphism θv : v⊥ → H2(Mσ(v),Z) is a Hodge
isometry and independent to a choice of E.

Bayer and Macri [9] constructed nef divisors on Mσ(v) from stability conditions
on Db(S). Let C ∈ Stab∗(S) be the chamber containing the stability conditon σ.
Then we write MC(v) := Mσ(v). Let E ∈ Db(Mσ(v) × S) be a quasi-universal
family of similitude ρ.

Theorem 2.29. ([9]) For a stability condition τ = (Z,P) ∈ C, we define a divisor
lτ ∈ NS(MC(v))R as follow:

lτ ([C]) := Im

(
−Z(v(ΦE(OC))

Z(v)

)
∈ R.

Here, [C] ∈ N1(MC(v)) is a numerical class of a curve C on MC(v). Then lτ ∈
NS(MC(v)) is a well-defined nef divisor. If τ is v-generic, then we have lτ ∈
Amp(MC(v)).

Let σ0 ∈ Stab∗(S) be a generic stability condition on a wall W. Let σ+ and σ−
be v-generic stability conditions nearby W in opposite chambers.

Theorem 2.30. ([9]) The divisors lσ0,± ∈ NS(Mσ±(v)) are nef and big. Moreover,

they induce birational contractions π± : Mσ±(v) → M± contracting objects which
are S-equivalent each other with respect to σ0.

We recall the classification of walls.

Definition 2.31. ([9], [10]) We call a wall W:

• a fake wall, if π± :Mσ±(v) →M± is an isomorphism.
• a totally semistable wall, if M st

σ0
(v) = ∅..

• a flopping wall, if we can identify M+ = M− and the π± induce flopping
contractions.

• a divisorial wall, if the morphisms π± : Mσ±(v) → M± are both divisorial
contractions

Bayer and Macri [10] classified walls in term of Mukai lattices.

Definition 2.32. ([10]) For a wall W ⊂ Stab∗(S), we define a sublattice HW ⊂
H̃1,1(S,Z) as follow:

HW :=
{
w ∈ H̃1,1(S,Z) | ImZ(w)

Z(v)
= 0 for all (Z,P) ∈ W

}
.

Then HW is a rank two hyperbolic lattice containing the Mukai vector v.

Definition 2.33. ([10]) Let H ⊂ H̃1,1(S,Z) be a hyperbolic sublattce. A class
w ∈ H is called positive if w2 ≥ 0 and ⟨v, w⟩ > 0 hold.

The following is the classification of walls.

Theorem 2.34. ([10]) Let W ⊂ Stab∗(S) be a wall.

(a) The wall W is a divisorial wall if one of the three conditions hold:
(Brill-Noether): there exists a (−2)-class a ∈ HW with ⟨a, v⟩ = 0.
(Hilbert-Chow): there exists an isotropic class a ∈ HW with ⟨a, v⟩ =

1.
(Li-Gieseker-Uhlenbeck): there exists an isotropic class a ∈ HW with

⟨a, v⟩ = 2.
10



(b) Otherwise, if there are positive classes a, b ∈ HW such that v = a+ b, or if
there is a (−2)-class a ∈ HW with 0 < ⟨a, v⟩ ≤ v2/2, then the wall W is a
flopping wall.

(c) Assume that (a) or (b) does not hold. Then the wall W is a fake wall.

We can deduce the following description of the nef cone Amp(Mσ(v)) from The-
orem 2.34.

Theorem 2.35. ([10], Theorem 12.1) Consider the chamber decomposition of the
positive cone Pos(Mσ(v)) whose walls are given by linear subspaces of the form

θv(v
⊥ ∩ a⊥)

for all a ∈ H̃1,1(S,Z) such that −2 ≤ a2 < v2/4 and 0 ≤ ⟨v, a⟩ ≤ v2/2. Then the
nef cone Amp(Mσ(v)) is one of the chambers of above chamber decomposition.

Remark 2.36. In Theorem 2.35, the upper bound a2 < v2/4 comes from the
hyperbolicity of the lattice H := ⟨v, a⟩.

Theorem 2.37. ([10]) Let W ⊂ Stab∗(S) be a wall. Let σ0 ∈ W be a generic
stability condition. Take stability conditions σ± nearby W in opposite chambers.
Then there is a possibly contravariant autoequivalence Φ : Db(S) → Db(S) and
a common open subset U ⊂ Mσ±(v) such that for any u ∈ U , the corresponding
objects Eu ∈ Mσ+

(v) and Fu ∈ Mσ−(v) are related via Fu = Φ(Eu). If W is
a fake wall, then we can take an open set U as Mσ+(v),Mσ−(v) respectively and

Φ ∈ Aut0(Db(S)).

2.5. Topological entropy. In this subsection, we recall the notion of topological
entropy. We need only Theorem 2.41 and Theorem 2.42. Let X be a compact
topological space with a metric space structure (X, d). Let f : X → X be a
surjective continuous map. To define the topological entropy, we need the notion
of (n.ϵ)-separated subsets of X.

Definition 2.38. ([44]) Take a positive real number ϵ > 0 and a positive integer
n > 0. Points x, y ∈ X are (n, ϵ)-separated if max0≤i≤n−1d(f

i(x), f i(y)) ≥ ϵ.
A subset F ⊂ X is called (n, ϵ)-separated if any two distinct points x, y ∈ F are
(n, ϵ)-separated. Due to compactness of X, we can prove that

Nd(n, ϵ) := max{#F | F ⊂ X is (n, ϵ)-separated.}
is finite.

Definition 2.39. ([44]) The topological entropy htop(f) of f is defined as follow:

htop(f) := lim
ϵ→+0

lim sup
n→∞

logNd(n, ϵ)

n
∈ [0,∞].

The topological entropy htop(f) of f is independent of a choice of a metric d on the
topological space X.

Topological entropy is related to spectral radii.

Definition 2.40. Let V be a finite dimensional vector space and ϕ : V → V be an
linear map. The spectral radius ρ(ϕ) of ϕ is the maximum of the absolute value of
eigen values of ϕ.

We can compute topological entropy by the following theorems.
11



Theorem 2.41. ([17], [16], [46]) Let X be a smooth projective variety. Consider
a surjective holomorphic endomorphism f : X → X. Then the following holds:

htop(f) = log ρ(f∗|⊕dimX
p=0 Hp,p(X,Z))

= log ρ(f∗|⊕dimX
p=0 H2p(X,Z)).

Theorem 2.42. ([38]) Let M be a hyperKähler manifold. Let f : M → M be a
surjective holomorphic endomorphism. Then we have

htop(f) =
1

2
dimM · log ρ(f∗|H2(M,Z)).

2.6. Categorical entropy. In this subsection, we recall the notion of the categori-
cal entropy of endofunctors on triangulated categories [14]. Let D be a triangulated
category. Consider an endofunctor Φ : D → D.

Definition 2.43. An object G in D is called a splitting generator if for any object
E ∈ D, there are exact triangles Ei−1 → Ei → G[ni] (1 ≤ i ≤ k) and some object
E′ ∈ D such that E0 = 0, Ek = E ⊕ E′.

Theorem 2.44. ([43]) Let X be a quasi-projective scheme. Let OX(1) be a very

ample line bundle on X. Then G :=
⊕dimX

i=0 OX(i) is a splitting generator of the
triangulated category Perf(X) of perfect comlexes on X. In particular, if X is
smooth, G is a splitting generator of Db(X).

Definition 2.45. ([14]) Let E and F be objects in D. Take a real number t ∈ R.
We define the complexity δt(G,E) of F with respect to E as follow:

δt(G,E) := inf

{ k∑
i=1

enit | Ei−1 → Ei → G[ni](1 ≤ i ≤ k), E0 = 0, Ek = E ⊕ E′
}
.

Using complexity, we can define the notion of the categorical entropy.

Definition 2.46. ([14]) Let G be a splitting generator of D. We define the cate-
gorical entropy ht(Φ) of Φ at t ∈ R as follow:

ht(Φ) := lim
n→∞

log δt(G,Φ
n(G))

n
∈ R ∪ {−∞}.

We call the entropy h0(Φ) of Φ at 0 the categorical entropy hcat(Φ) of Φ. Then we
have hcat(Φ) ≥ 0. The entropy of Φ is independent to a choice of a generator G.

The following is the analogue of Theorem 2.41.

Theorem 2.47. ([14]) Let X be a smooth projective variety with Hodd(X,C) = 0.
Consider an autoequivalence Φ ∈ Aut(Db(X)) and let ΦH : H∗(X,C) → H∗(X,C)
be the induced linear map on the cohomology group. Then hcat(Φ) ≥ log ρ(ΦH).

Proof. This is Theorem 2.8 in [14]. The assumption Hodd(X,C) = 0 implies the
assumption in Lemma 2.7 in [14]. □

For a K3 surface S, we haveHodd(S,C) = 0. Kikuta and Takahashi [28] proposed
the following conjecture.

Conjecture 2.48. ([28]) Let X be a smooth projective variety. For Φ ∈ Aut(Db(X)),
we have

hcat(Φ) = log ρ([Φ]).

Here, [Φ] is the induced isomorphism on Knum(X).

12



2.7. Automorphisms of hyperKähler manifolds of Picard number two. In
this subsection, we collect important facts about automorphisms of hyperKähler
manifolds of Picard number two. First, Hilbert schemes of points on K3 surfaces
of Picard number one have finite birational automorphism groups.

Proposition 2.49. ([39]) Let S be a K3 surface of Picard number one. Let n > 0
be a positive integer. Then the biratiuonal automorphism group Bir(Hilbn(S)) of
the Hilbert scheme of points on S is a finite group.

The following theorem due to Oguiso [39] is important in the proof of the main
theorem.

Theorem 2.50. ([39]) Let M be a hyperKähler manifold of Picard number two.
Let l1 = R≥0x1 and l2 = R≥0x2 be boundary rays of the nef cone Amp(M). Then
the followings hold.

(1) The boundary ray l1 is rational if and only if the boundary ray l2 is rational.
(2) If the boundary ray l1 is rational, then the automorphism group AutM is a

finite group.
(3) If the boundary ray l1 is irrational, then Amp(M) = Mov(M) = Pos(M)

and AutM = BirM is an infinite group. Moreover, an automorphism f ∈
AutM with ord(f) = ∞ has the positive topological entropy.

The following theorem due to Amerik and Vervitsky [5] ensures the existence of
hyperKähler manifolds satisfying Theorem 2.50 (3).

Theorem 2.51. ([5]) Let M be a (possibly non-projective) hyperKähler manifold
with b2(M) ≥ 5. Then M admits a projective deformation M ′ with infinite group
of symplectic automorphisms and Picard number two.

3. MAIN THEOREMS

3.1. Derived automorphisms of positive entropy on K3 surfaces. In this
subsection, we will prove the existence of autoequivalences of derived categories of
K3 surfaces with positive entropy.

Theorem 3.1. Let S be a K3 surface. Then there is an autoequivalence Φ ∈
Aut(Db(S)) such that hcat(Φ) ≥ log ρ(ΦH) > 0.

Proof. We will construct Φ ∈ Aut(Db(S)) as a composition of two spherical twists.
The first spherical twist is defined by Φ1 := STOS . We will define the second
spherical twist Φ2. Take an ample divisor h on S and write h2 = 2d. Consider a
(−2)-class

w := (d+ 1, dh, d2 − d+ 1) ∈ H̃1,1(S,Z).

Take a general ample divisor H on S with respect to w. Then there is a H-stable
sheaf E with Mukai vector v(E) = w by non-emptyness result ([47], Theorem 0.1).
Since w2 = −2, E is a spherical object. We define the second spherical twist by
Φ2 := STE . We set Φ := Φ1 ◦ Φ2 ∈ Aut(Db(S)). Consider a sublattice L of the
Mukai lattice defined by

L := H0(S,Z)⊕ Zh⊕H4(S,Z).
13



The representation matrices of ΦH
1 |L,ΦH

2 |L with respect to (1, 0, 0), (0, h, 0), (0, 0, 1) ∈
L are as follow:

ΦH
1 |L =

 0 0 −1
0 1 0
−1 0 0

 ,ΦH
2 |L =

 −d3 2d2(d+ 1) −(d+ 1)2

−d(d2 − d+ 1) 2d3 + 1 −d(d+ 1)
−(d2 − d+ 1) 2d2(d2 − d+ 1) −d3

 .

So we have

ΦH |L =

 (d2 − d+ 1)2 −2d2(d2 − d+ 1) d3

−d(d2 − d+ 1) 2d3 + 1 −d(d+ 1)
d3 −2d(d+ 1) (d+ 1)2

 .

The eigen values of ΦH |L are

1,
d4 + 4d2 ± (d3 + 2d)

√
d2 + 4

2
.

Since d ≥ 1, we have

hcat(Φ) ≥ log ρ(ΦH) ≥ log
7 + 3

√
5

2
> 0.

□

Remark 3.2. Let S be a K3 surface with NS(S) = Zh and h2 = 2d. If d = 1, then
Aut(S) = Z/2Z. If d > 1, then Aut(S) = 1. However, there is an autoequivalence
Φ ∈ Aut(Db(S)) with hcat(Φ) ≥ log ρ(ΦH) > 0 by Theorem 3.1.

In the next subsection, we will discuss the relation between autoequivalences on
K3 surfaces and automorphisms of moduli spaces of stable objects. Unfortunately,
there is an autoequivalence on a K3 surface with positive entropy such that it does
not induce automorphisms of moduli spaces of stable objects.

Example 3.3. Let S be a K3 surface with NS(S) = Zh and h2 = 4. Consider a
Mukai vector v := (1, 0,−1). Then there is an autoequivalence Φ ∈ Aut(Db(S))
such that hcat(Φ) ≥ log ρ(ΦH) > 0 and ΦH(v) = v. Take a v-generic stability
condition σ ∈ Stab∗(S). Then the moduli space Mσ(v) is birational to the Hilbert
scheme Hilb2(S) of two points on S. So Bir(Mσ(v)) is finite by Proposition 2.49.
In particular, Φ does not induce an automorphism on Mσ(v).

Proof. Consider a (−2)-class w := (3, 2h, 3) ∈ H̃1,1(S,Z). This is used in the proof
of Theorem 3.1. So we can take a spherical object E ∈ Db(S) with Mukai vector
v(E) = w. By Theorem 3.1, Φ := STOS ◦ STE satisfies hcat(Φ) ≥ log ρ(ΦH) > 0.
Since v = (1, 0,−1) is orthogonal to v(OS) = (1, 0, 1) and w, we have ΦH(v) =
v. □

3.2. Crossing fake walls. In this subsection, we discuss the relation between
autoequivalences of K3 surfaces and automorphisms of moduli spaces of stable
objects. Let S be a K3 surface. First, we prove that automorphisms of moduli
space of stable objects with infinite order induce autoequivalences on S.

Proposition 3.4. Let v ∈ H̃1,1(S,Z) be a primitive Mukai vector with v2 > 0.
Let σ ∈ Stab∗(S) be a v-generic stability condition. If ϕ ∈ Aut(Mσ(v)) is an
automorphism of infinite order, then there is a positive integer n > 0 and Φ ∈
Aut∗(Db(S)) such that ΦH(v) = v and the following diagram commutes.
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v⊥
ΦH

//

θσ,v

��

v⊥

θσ,v

��
H2(Mσ(v),Z)

ϕ∗n
// H2(Mσ(v),Z)

Here, we take the orthogonal v⊥ in H∗(S,Z) and all homomorphisms are Hodge
isometries.

Proof. Consider the composition g := θ−1
σ,v ◦ ϕ∗ ◦ θσ,v. By lemma 2.13, we have

ord(g) = ∞. Since d(v⊥) is a finite group, there is a positive integer m > 0 such
that gm = 1. So we can take a Hodge isometry ψ ∈ OHodge(H

∗(S,Z)) such that
ψ|v⊥ = gm, ψ(v) = v by Lemma 2.6. Then ψ2 preserves positive definite 4-spaces
in H∗(S,R). By Proposition 2.22, there is an autoequivalence Φ ∈ Aut∗(Db(S))
such that ΦH = ψ2. Putting n := 2m, we have the commutative diagram in the
statement. □

By Example 3.3, an autoequivalence of infinite order does not necessarily induce
an automorphism of a moduli space of stable objects. We will consider the converse
problem in Theorem 3.6 . First, we show the following proposition.

Proposition 3.5. Let v ∈ H̃1,1(S,Z) be a primitive Mukai vector with v2 > 0.
Consider an autoequivalence Φ ∈ Aut(Db(S)). Let σ ∈ Stab∗(S) be a v-generic
stability condition and τ ∈ Stab∗(S) be a ΦH(v)-generic stability condition. If Φ
induces an isomorphism Φ : Mσ(v) → Mτ (Φ

H(v)) defined by [E] 7→ [Φ(E)], then
we have the following commutative diagram:

v⊥

θσ,v

��

ΦH
// v⊥

θτ,v
��

H2(Mσ(v),Z)
Φ∗ // H2(Mτ (v),Z)

The following theorem is deduced from Proposition 3.5.

Theorem 3.6. Let v ∈ H̃1,1(S,Z) be a primitive Mukai vector with v2 > 0. Let
σ ∈ Stab∗(S) be a v-generic stability condition. Consider an autoequivalence Φ ∈
Aut(Db(S)) such that Φ∗σ ∈ Stab∗(S) and ΦH(v) = v. If there is a generic path
γ : [0, 1] → Stab∗(S) crossing only fake walls with γ(0) = Φ∗σ and γ(1) = σ, then
there is Φγ ∈ Aut0(Db(S)) such that Φγ ◦ Φ induces an automorphism Φγ ◦ Φ :
Mσ(v) →Mσ(v) satisfying the following commutative diagram:

v⊥

θσ,v

��

ΦH
// v⊥

ΦH
γ =1

//

θΦ∗σ,v

��

v⊥

θσ,v

��
H2(Mσ(v),Z)

Φ∗ // H2(MΦ∗σ(v),Z)
Φγ∗ // H2(Mσ(v),Z)

Here, all homomorphisms are Hodge isometries and we take the orthogonal comple-
ment v⊥ in H∗(S,Z).
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Proof of Proposition 3.5. Let E ∈ Db(Mσ(v) × S) be a quasi-universal family of
similitude ρ. Let F ∈ Db(Mτ (Φ

H(v)) × S) be a Fourier-Mukai kernel of the com-
position ΦΦEϕ

∗ : Db(Mτ (Φ
H(v))) → Db(S) of Fourier-Mukai functors. Here, we

denote the isomorphism Φ : Mσ(v) → Mτ (Φ
H(v)) by ϕ : Mσ(v) → Mτ (Φ

H(v)). It
is enough to show that F is a quasi-universal family of Mτ (Φ

H(v)) by Proposition
2.28. We can prove that F is a quasi-family. In fact, for any point [E] ∈Mτ (Φ

H(v)),
we have ΦF ([E ]) ≃ E⊕ρ by the definition of F ∈ Db(Mτ (Φ

H(v)) × S). Take a
quasi-universal family E ′ ∈ Db(Mτ (Φ

H(v))× S) of similitude ρ′. Then there exists
a unique morphism f : Mτ (Φ

H(v)) → Mτ (Φ
H(v)) such that L(f × idS)

∗E ′ and F
are equivalent. So there are vector bundles V1 and V2 on Mτ (Φ

H(v)) such that
L(f × idS)

∗E ′ ⊗ p∗V1 ≃ F ⊗ p∗V2, where p : Mτ (Φ
H(v))× S → Mτ (Φ

H(v)) is the
projection. Let [E] ∈Mτ (Φ

H(v)) be a point. We have the isomorphisms

Eρ·rkV2 ≃ (F ⊗ p∗V2)|[E]×S

≃ (L(f × idS)
∗E ′ ⊗ p∗V1)|[E]×S

≃ L(f × idS)
∗E ′|⊕rkV1

[E]×S

≃ (L(f × idS)
∗E ′ ⊗ p∗f∗V1)|[E]×S

≃ (L(f × idS)
∗E ′ ⊗ L(f × idS)

∗p∗V1)|[E]×S

≃ L(f × idS)
∗(E ′ ⊗ p∗V1)|[E]×S

≃ f([E])⊕ρ′·rkV1 .

The last isomorphism is due to the following commutative diagram:

[E]× S

��

f×idS // f([E])× S

��
Mτ (Φ

H(v))× S
f×idS // Mτ (Φ

H(v))× S

Since E and f(E) are τ -stable in the same phase, we have f(E) ≃ E and ρ · rkV1 =
ρ · rkV2. So we have f = idS . Hence, we have proved that F is a quasi-universal
family of Mτ (Φ

H(v)). □

Corollary 3.7. Let S be a K3 surface of Picard number one. Let v ∈ H̃1,1(S,Z) be
a primitive Mukai vector with v2 > 0. If there does not exist a vector a ∈ H̃1,1(S,Z)
such that −2 ≤ a2 < v2/4 and 0 ≤ ⟨v, a⟩ ≤ v2/2, then there is an autoequivalence
Φ ∈ Aut(Db(S)) such that ΦH(v) = v and log ρ(ΦH) > 0. In particular, for
any v-generic stability condition σ ∈ Stab∗(S), there exist an autoequivalence Ψ ∈
Aut0(Db(S)) such that ϕ := ΨΦ :Mσ(v) →Mσ(v) is an automorphism with

1

2
dimMσ(v) · hcat(Φ) ≥ htop(ϕ) > 0.

Proof. Take a v-generic stability condition σ ∈ Stab∗(S). By Theorem 2.35 and
the assumption for the vector v, we obtain Amp(Mσ(v)) = Pos(Mσ(v)). By Propo-
sition 2.28 and the assumption for the vector v, the boundary rays of the nef cone
Amp(Mσ(v)) are irrational. So there is an automorphism ψ ∈ Aut(Mσ(v)) with
htop(ψ) > 0 due to Theorem 2.50. Using Proposition 3.4, there exist an positive
integer n and an autoequivalence Φ ∈ Aut∗(Db(S)) such that ΦH(v) = v,ΦH |v⊥ =
ψ∗n and log ρ(ΦH) = log ρ(ψ∗n|H2(Mσ(v),Z)) > 0. The positivity is deduced from
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Theorem 2.42. Due to the assumption for the vector v, all walls with respect to
v are fake walls by Theorem 2.34. So we can show the remaining statement by
Theorem 3.6. □

In the next subsection, we will construct examples of Corollary 3.7.

3.3. Examples. In this subsection, we give examples of K3 surfaces and Mukai
vectors satisfying the assumption in Corollary 3.7. First, we see six and eight
dimensional examples. We will see a four dimensional example in the next section.

Example 3.8. Let S be a K3 surface with NS(S) = Zh and h2 = 132. Let

v := (4, h, 16) ∈ H̃1,1(S,Z) be a Mukai vector. Then v is primitive and v2 = 4.

Moreover, there does not exist a vector a ∈ H̃1,1(S,Z) such that −2 ≤ a2 < v2/4
and 0 ≤ ⟨v, a⟩ ≤ v2/2.

Proof. Let a = (s, th, u) ∈ H̃1,1(S,Z). Since ⟨v, a⟩ = 132t− 16s− 4u ∈ 4Z and the
Mukai lattice is even, it is enough to consider the equations

⟨v, a⟩ = 0, a2 = −2, 0

by Corollary 3.7. Then we have u = 33t− 4s and

v⊥ = ⟨(1, 0,−4), (0, h, 33)⟩Z.

Here, we take the orthogonal complement in H̃1,1(S,Z). Note that the Gram matrix

of v⊥ is

(
8 −33

−33 132

)
. Since the determinant of the Gram matrix is 33, v⊥ does

not have isotropics. So we consider the equation

(1) 4x2 − 33xy + 66y2 = −1.

Taking modulo 3, we obtain the contradiction x2 ≡ 2 (mod3). Hence, the equation

(1) does not have integral solutions. So there does not exist a vector a ∈ H̃1,1(S,Z)
such that −2 ≤ a2 < v2/4 and 0 ≤ ⟨v, a⟩ ≤ v2/2. □

Example 3.9. Let S be a K3 surface with NS(S) = Zh and h2 = 510. Let

v := (6, h, 42) ∈ H̃1,1(S,Z) be a Mukai vector. Then v is primitive and v2 = 6.

Moreover, there does not exist a vector a ∈ H̃1,1(S,Z) such that −2 ≤ a2 < v2/4
and 0 ≤ ⟨v, a⟩ ≤ v2/2.

Proof. In the same way as the proof of Example 3.8, it is sufficient to prove thet
the equation

(2) 7x2 − 85xy + 255y2 = −1

does not have integral solutions. Taking mudulo 5, we obtain the contradiction
x2 ≡ 2 (mod5). Hence the equation (2) does not have integral solutions. □

We can construct more examples similarly.

Example 3.10. Let S be a K3 surface with NS(S) = Zh and h2 = 1160. Let

v := (8, h, 72) ∈ H̃1,1(S,Z) be a Mukai vector. Then v is primitive and v2 = 8.

Moreover, there does not exist a vector a ∈ H̃1,1(S,Z) such that −2 ≤ a2 < v2/4
and 0 ≤ ⟨v, a⟩ ≤ v2/2.
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Proof. In the same way as the proof of Example 3.8 and Example 3.9, it is sufficient
to prove that the equation

(3) 9x2 − 145xy + 580y2 = −1

does not have integral solutions. We can check it using [4]. □

Example 3.11. Let S be a K3 surface with NS(S) = Zh and h2 = 2210. Let

v := (10, h, 110) ∈ H̃1,1(S,Z) be a Mukai vector. Then v is primitive and v2 = 10.

Moreover, there does not exist a vector a ∈ H̃1,1(S,Z) such that −2 ≤ a2 < v2/4
and 0 ≤ ⟨v, a⟩ ≤ v2/2.

Proof. In the same way as the proof of Example 3.8, Example 3.9 and Example
3.10, it is sufficient to prove that the equation

(4) 9x2 − 145xy + 580y2 = ±1

does not have integral solutions. We can check them using [4]. □

4. FROM CUBIC FOURFOLDS

Let X be a cubic fourfold. Consider the semiorthogonal decomposition

Db(X) = ⟨AX ,OX ,OX(1),OX(2)⟩

and the projection functor pr : Db(X) → AX . For i ∈ Z, we define λi :=
[pr(Oline(i))] ∈ Knum(AX). Addington proved the following lemmas.

Lemma 4.1. ([1], Proposition 7) Let X be a cubic fourfold. Then there is a Hodge
isometry

NS(F (X))(−1) ≃ λ⊥1 .

Here, we take the orthogonal complement λ⊥1 in Knum(AX).

Lemma 4.2. ([1], Lemma 9) If X ∈ Cd, then there is an element τ ∈ Knum(AX)
such that ⟨λ1, λ2, τ⟩ is a primitive sublattice of discriminant d with Euler pairing−2 1 0

1 −2 0
0 0 2k

 where d = 6k

−2 1 0
1 −2 1
0 1 2k

 where d = 6k + 2.

For a special cubic fourfold X with rkH2,2(X,Z) = 2, the Picard number of
F (X) is two.

Theorem 4.3. Let X be a special cubic fourfold of discriminant 74. Assume that
rkH2,2(X,Z) = 2. Then there is an automorphism ϕ ∈ Aut(F (X)) such that
htop(ϕ) > 0.

Proof. Note that 74 = 6 · 12 + 2. Moerover, F (X) is isomorphic to a moduli space
of stable objects in the derived category of some K3 surface by Theorem 1.11 and
[10]. By lemma 4.2, there is τ ∈ Knum(AX) such that

Knum(AX) = ⟨λ1, λ2, τ⟩
18



with the Gram matrix

−2 1 0
1 −2 1
0 1 24

. By Lemma 4.1, we obtain

NS(F (X)) = ⟨λ1 + 2λ2, τ⟩

with the Gram matrix

(
6 −2
−2 −24

)
. Since

det

(
6 −2
−2 −24

)
= −148,

NS(F (X)) does not contain any isotropies. So it is enough to show that the equation

6x2 − 4xy − 24y2 = −2

does not have any integral solutions by Corollary 3.7. In fact, we can check it using
[4]. □
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