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1. Introduction

Modeling continuum phenomena in physics, biology, and economics by partial
differential equations is one of the important problems in applied mathematics.
In setting such dynamical systems, however, we cannot always know all parameter
values precisely. In that case, it is appropriate to assume that these parameters vary
in time or space depending on some unknown conditions. In addition, there are
many situations where the fluctuations of microscopic parameters have essential
influences in the description of the macroscopic system. In order to model such
situations, it is often useful to introduce “noise” term, i.e. a random field on time
and space variable. Especially, the stochastic partial differential equation (SPDE)
of the form

Lu = F (u,∇u) + ξ,

where L is a parabolic differential operator, ξ is a random force, and F is a linear
or nonlinear operator, has been actively studied from 1970s. SPDE of the above
form can be seen as a generalization of stochastic differential equation (SDE) into
an infinite dimensional space. A natural choice of the noise in SDE is a white
noise, i.e. time derivative of a Brownian motion, so that in SPDE a natural one is
a space-time white noise, which is a centered Gaussian random field with (formal)
covariance structure

E[ξ(t, x)ξ(s, y)] = δ(t− s)δ(x− y).

One of the problems about SPDE is the definition of the solution space. When
ξ is a space-time white noise, we can expect that the solution of SPDE behaves
roughly in time and space variable. For example, it is well known that the solution
u of the stochastic heat equation

(∂t −∆)u = ξ

on (t, x) ∈ [0,∞)×Td belongs to the space C([0,∞), C( 2−d
2 )−), where Cα = Bα

∞,∞ is

the Hölder-Besov space on Td and the regularity α− means that it can be replaced
by α − κ for every κ > 0. Thus when d ≥ 2, u is not even a function-valued.
This problem is related to the ill-posedness of the product of distributions u ∈ Cα

and v ∈ Cβ with α + β ≤ 0. So nonlinear SPDEs with space-time white noise are
sometimes ill-posed. Before recent breakthroughs explained below, SPDEs have
been mainly studied in the case that the solution is function-valued, i.e. in a lower
dimension or with smooth noise in spatial variable.

Recent theories of regularity structures by Hairer [10] or paracontrolled calculus
by Gubinelli, Imkeller, and Perkowski [7] constructed general local-in-time well-
posedness theories of the solutions of several singular SPDEs, e.g. KPZ equation
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([11, 8]), dynamical Φ4
d model ([10, 3]), and stochastic Navier-Stokes equation ([17]).

Although the mathematical tools used in these theories are different, both of them
are based on rough path theory of SDEs. In SDEs, the mapping from the noise
term into the (strong) solution is not continuous. By rough path theory, however,
we can show that the mapping from the pair of noise and its “iterated integral”
to the solution is continuous. The principles in [10, 7] are as follows. Instead of
considering the mapping from the noise ξ to the solution u, we construct large
spaces M and U such that the “enhanced” solution map M ∋ Ξ )→ u ∈ U and the
“projection” u )→ u are continuous. The elements Ξ ∈ M and u ∈ U are interpreted
as “enhanced” noise and “enhanced” solution, respectively. When we consider a
smooth approximation ξϵ of ξ (as ϵ ↓ 0), we can construct a natural lift Ξϵ, but Ξϵ

does not converge in the spaceM in general. So we introduce the “renormalization”
Ξ̂ϵ of Ξϵ such that Ξ̂ϵ converges to some limit Ξ̂ and the corresponding solution ûϵ

satisfies

Lûϵ = F ϵ(ûϵ,∇ûϵ) + ξϵ

with suitably renormalized nonlinear term F ϵ. With the help of the continuous
map M → U , we have the convergence of ûϵ to some limit û.

In this thesis, we apply Gubinelli-Imkeller-Perkowski’s theory to some singular
SPDEs and obtain suitable renormalizations of these equations. In addition, we
consider the global-in-time well-posedness of the solution. Since the general theories
ignore the concrete form of the nonlinear term F , global existence of the solution
u is non-trivial in general. We need to use technical properties of F in order to get
the global well-posedness.

2. Paracontrolled calculus and Funaki-Quastel approximation for
the KPZ equation

In Chapter 2, we consider the approximation of the KPZ equation

∂th = 1
2∂

2
xh+ 1

2 (∂xh)
2 + ξ

on (t, x) ∈ [0,∞)× T, where ξ is a space-time white noise. The KPZ equation was
introduced by Kardar, Parisi and Zhang [14] as a model for a growing interface
represented by a height function h with fluctuations. When we replace ξ by a
smeared noise ξϵ(t, x) = (ξ(t) ∗ ηϵ)(x) in x with even mollifier ηϵ and consider the
approximation

∂th
ϵ = 1

2∂
2
xh

ϵ + 1
2{(∂xh

ϵ)2 − cϵ}+ ξϵ

with a constant cϵ ∼ 1
ϵ depending on the choice of mollifier ηϵ, we can show that

hϵ converges to the so-called Cole-Hopf solution hCH as ϵ ↓ 0. However, this
approximation is not useful in considering the invariant measure. Instead, here we
consider the Funaki-Quastel’s approximation [6]

∂th̃
ϵ = 1

2∂
2
xh̃

ϵ + 1
2{(∂xh̃

ϵ)2 − cϵ} ∗ ηϵ2 + ξϵ,(2.1)

where ηϵ2 = ηϵ ∗ ηϵ. It is a common fact that the invariant measures are essentially
unchanged if we apply an operator A to the noise term and A2 to the drift term at
the same time. Indeed the Cole-Hopf solution hCH admits the distribution of the
Brownian bridge (B(x))x∈T as an invariant measure (in the sense of the tilt process

∂xhCH), and the approximation h̃ϵ admits the distribution of (B ∗ ηϵ(x))x∈T as

an invariant measure. In addition, the convergence of h̃ϵ to the process hCH(t) +
1
24 t was shown in [6] but only in the equilibrium case. In this chapter, we use
the paracontrolled calculus and show that the convergence of the approximation
(2.1) holds even for non-equilibrium case. As a consequence, the derivation of the
difference 1

24 t is easier than the method in [6].
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Let ϕ ∈ C∞
0 (R) satisfy ϕ(0) = 1 and ϕ(x) = ϕ(−x). Let η = F−1ϕ and consider

the mollifier ηϵ = ϵ−1η(ϵ−1·). Denote by Cδ = Bδ
∞,∞(T) the inhomogeneous Besov

space on T. Our main result is formulated as follows.

Theorem 2.1. For every periodic function h0 ∈ C0+ = ∪δ>0Cδ, there exists a
survival time T ϵ ∈ (0,∞] such that, (2.1) has a unique solution h̃ϵ on [0, T ] for

every T < T ϵ, and limϵ↓0 T ϵ = ∞ in probability. Furthermore, h̃ϵ converges to the

process h(t) = hCH(t) +
1
24 t in C((0, T ], C 1

2−δ) in probability for every δ > 0 and

T < ∞, where hCH is the Cole-Hopf solution starting at h̃0.

Remark 2.2. Precisely, the convergence h̃ϵ → h in probability considered here
means that

P (∥h̃ϵ − h∥
C([t,T ],C

1
2
−δ)

> λ, T < T ϵ) + P (T ≥ T ϵ) → 0

for every 0 < t < T and λ > 0.

This result is an extension of [6] to non-stationary solutions and furthermore
shows the convergence in probabilistically strong sense instead of law sense.

3. A coupled KPZ equation, its two types of approximations and
existence of global solutions

In Chapter 3, we consider the coupled Rd-valued KPZ equation

∂th
α = 1

2∂
2
xh

α + 1
2Γ

α
βγ∂xh

β∂xh
γ + σα

β ξ
β , 1 ≤ α ≤ d

on (t, x) ∈ [0,∞) × T, with given constants Γα
βγ and σα

β . Here (ξα) is a d-tuple of
independent space-time white noises. At least heuristically, if a microscopic system
with d (local) conserved quantities involves a weak asymmetry and if we expand a
macroscopic equation to second order, we can expect to obtain the coupled KPZ
equations in the space-time scaling limit of the microscopic system. See e.g. [5].
As in the scalar valued case, we can consider two types of approximations

∂th
ϵ,α = 1

2∂
2
xh

ϵ,α + 1
2Γ

α
βγ(∂xh

ϵ,β∂xh
ϵ,γ − cϵAβγ −Bϵ,βγ) + σα

β ξ
ϵ,β ,(3.1)

∂th̃
ϵ,α = 1

2∂
2
xh̃

ϵ,α + 1
2Γ

α
βγ(∂xh̃

ϵ,β∂xh̃
ϵ,γ − cϵAβγ − B̃ϵ,βγ) ∗ ηϵ2 + σα

β ξ
ϵ,β ,(3.2)

where cϵ is the same constant as above, Aβγ =
∑

δ σ
β
δ σ

γ
δ , and Bϵ,βγ and B̃ϵ,βγ are

constants behaving as O(| log ϵ|) in general. We can show that these approximations
have the same limit h under a well-adjusted choice of Bϵ,βγ and B̃ϵ,βγ .

For κ ∈ R and r ∈ N, (Cκ)r := Bκ
∞,∞(T;Rr) denotes the Rr-valued Besov space

on T. Our first two main theorems are formulated as follows.

Theorem 3.1. (1) Let δ ∈ (0, 1
2 ). For every h(0) ∈ (Cδ)d, there exists a unique

solution hϵ of the KPZ approximating equation (3.1) up to the survival time T ϵ
sur ∈

(0,∞] (i.e. T ϵ
sur = ∞ or limt↑T ϵ

sur
∥hϵ∥C([0,t],(Cδ)d) = ∞). With a proper choice

of Bϵ,βγ , there exists a random time Tsur ∈ (0,∞] such that Tsur ≤ lim infϵ↓0 T ϵ
sur

in probability and hϵ converges to some h in C((0, T ], (C1/2−δ′)d) in probability for
every δ′ > 0 and 0 < T < Tsur. This Tsur can be chosen maximal in the sense that
Tsur = ∞ or limT↑Tsur ∥h∥C([0,T ],(Cδ)d) = ∞. The survival time Tsur depends on the
initial value h(0) and driving processes.
(2) A similar result holds for the solution h̃ϵ of the KPZ approximating equation
(3.2) with some limit h̃ under a proper choice of B̃ϵ,βγ . Moreover, under a well-
adjusted choice of the renormalization factors Bϵ,βγ and B̃ϵ,βγ , we can make h = h̃.

Remark 3.2. Precisely, the convergence hϵ → h considered here means that

P (∥hϵ − h∥
C([t,T ],(C

1
2
−δ′ )d)

> λ, T < Tsur ∧ T ϵ
sur)
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+ P (T ϵ
sur ≤ Tsur − λ, Tsur < ∞) + P (T ϵ

sur ≤ T, Tsur = ∞) → 0

for every 0 < t < T and λ > 0. The convergence h̃ϵ → h also.

Theorem 3.3. All components of the renormalization matrices Bϵ and B̃ϵ behave
as O(1) if and only if the trilinear condition

Γ̂α
βγ = Γ̂α

γβ = Γ̂β
αγ , ∀α,β, γ(3.3)

holds, where Γ̂α
βγ = (σ−1)αα′Γα′

β′γ′σ
β′

β σγ′

γ . In particular, when (3.3) holds, we can

choose Bϵ = B̃ϵ = 0 in the approximations (3.1) and (3.2), and the corresponding
solutions hB=0 and h̃B̃=0 respectively converge as ϵ ↓ 0. In the limit, we have

h̃α
B̃=0

(t, x) = hα
B=0(t, x) + cαt, 1 ≤ α ≤ d,

where

cα =
1

24

∑

γ,γ′

σα
β Γ̂

β
α′α′′ Γ̂α′

γγ′ Γ̂α′′

γγ′ .

In order to obtain the global well-posedness, we assume the trilinear condition
(3.3). Under this condition, we will show that the process h admits the distribution
of ((σα

βB
β)(x))x∈T as an invariant measure (in the sense of the tilt process ∂xh),

where (Bα) is a d-tuple of independent Brownian bridges. As a consequence, we will
show that the limit h exists on whole [0,∞) almost surely, when the initial value is
sampled from this invariant measure. In addition, since Hairer and Mattingly [12]
showed that the solutions of several singular SPDEs in the sense of Hairer’s theory
are strong Feller processes, so we can indeed show the global well-posedness of the
coupled KPZ equation for every initial value.

Let µA be the Gaussian measure on the space (C−1/2−δ
0 )d := {u ∈ (C1/2−δ)d ;

∫
T u =

0}, δ > 0, under which u = (uα)dα=1 ∈ (C−1/2−δ
0 )d has the covariance

E[uα(x)uβ(y)] = Aαβδ(x− y).

Note that µA is the distribution of (∂xσB)x∈T, which is the limit in law of that of(
∂x(σB ∗ ηϵ)

)
x∈T as ϵ ↓ 0.

Theorem 3.4. Let δ ∈ (0, 1
2 ) and assume the trilinear condition (3.3). Then there

exists a subset H ⊂ (C−1/2−δ
0 )d such that µA(H) = 1, and if ∂xh(0) ∈ H, the

convergence to the limiting process h as above holds on whole [0,∞) (i.e. Tsur = ∞
almost surely). Moreover, the spatial derivative u = ∂xh of the limit process h is a

Markov process on (C−1/2−δ
0 )d which admits µA as an invariant measure.

Remark 3.5. Proposition 5.4 of Hairer and Mattingly [12] (combined with Theorem
3.4) shows that the limit process h exists on [0,∞) almost surely for all initial values

h(0) ∈ (C1/2−δ)d, since the measure µA has a dense support in (C−1/2−δ
0 )d.

4. Global well-posedness of complex Ginzburg-Landau equation with
space-time white noise

In Chapter 4, we consider the stochastic complex Ginzburg-Landau (CGL) equa-
tion

∂tu = (i+ µ)∆u− ν|u|2u+ λu+ ξ

on (t, x) ∈ [0,∞)×T3, where µ > 0, ν ∈ {z ∈ C ;ℜz > 0}, λ ∈ C, and ξ is a complex
space-time white noise, which is a complex-valued centered Gaussian random field
with covariance structure

E[ξ(t, x)ξ(s, y)] = 0, E[ξ(t, x)ξ(s, y)] = δ(t− s)δ(x− y).
4



The CGL equation appears as a generic amplitude equation near the threshold for
an instability in fluid mechanics, as well as in the theory of phase transition in
superconductivity. Randomly forced CGL equation in spatial dimension d ≥ 1 has
been mainly studied in the case that ξ is a smeared noise in x, or that d = 1 and ξ is
a space-time white noise, e.g. [1, 2, 9, 15]. In our case (d = 3 and ξ is a space-time
white noise), as an application of the paracontrolled calculus, we can show that the
solution uϵ of the approximating equation

∂tu
ϵ = (i+ µ)∆uϵ − ν|uϵ|2uϵ + Cϵuϵ + ξϵ(4.1)

with suitable Cϵ ∼ 1
ϵ converges to a process u locally in time. See [13] for details.

In order to obtain the global well-posedness, we use the method in [16], where
Mourrat and Weber showed the global well-posedness of the dynamical Φ4 model on
the 3-dimensional torus. In the deterministic setting [4], the a priori L2p-inequality
of the solution u of the CGL equation holds with p > 3

2 and

p < 1 + µ(µ+
√
1 + µ2).

In this chapter, we improve the method in [16] in order that it can be applied to
the a priori L2p-inequality of the CGL equation for every p close to 3

2 , and we show
the a priori estimate of the solution of the stochastic CGL equation when µ > 1

2
√
2
.

Let Cα = Bα
∞,∞ be the complex-valued Besov space on T3.

Theorem 4.1. Let µ > 1
2
√
2
. Choose sufficiently small κ > 0 depending on µ.

For every initial value u0 ∈ C− 2
3+κ, the solution uϵ of (4.1) has a limit u, which is

independent of the choice of η, such that for every T > 0

lim
ϵ↓0

∥uϵ − u∥
C([0,T ],C− 2

3
+κ)

= 0

in probability.
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