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Abstract

One of the most important aspects of plasma physics is the exis-

tence of a scale hierarchy. The scale hierarchy encapsulates the complexity

of plasmas, which is reflected in the richness of plasma behavior in labora-

tory as well as in astrophysical and space plasmas. Such plasma phenomena

require a nonlinear interaction between distinct scales. A typical example of

a plasma fluid model endowed with scale hierarchy is extended magnetohy-

drodynamics (MHD). Extended MHD is the generalization of ideal MHD,

and it is endowed with two primary two-fluid effects, i.e., Hall drift and

electron inertia effects. These effects constitute the scale hierarchy in the

extended MHD model—three disparate scales; one of them is the large scale

defining the macroscopic structures, while the other two arise because of the

ion and electron skin depths. By invoking the framework of Hamiltonian

mechanics, the role of small scales in the creation of nonlinear structures in

plasma can be thoroughly delineated.

Hence, in this dissertation, we present a rigorous and complete math-

ematical formulation of the noncanonical Hamiltonian structure of the ex-

tended MHD model for the first time. The underlying Poisson structure of

the basic dynamical equations is obtained using a novel Lie algebra (gener-

ating bracket). This generating bracket satisfies an extended permutation

law, which gives a unified framework for proving the important Jacobi’s

identity for hydrodynamical and magnetohydrodynamical models. The for-
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mulated Poisson algebra is shown to possess a nontrivial center, i.e., the

Hamiltonian system is noncanonical in nature. Hence, this property gives

rise to the Casimir invariants (generalized helicities). These Casimir invari-

ants for extended MHD and the subsumed models are calculated, i.e., for

Hall, inertial, and ideal MHD. Moreover, the necessary boundary conditions

for extended MHD are investigated.

The extended MHD model is applied to derive nonlinear Alfvén,

helicon, and TG waves, as well as for studying turbulence in the solar wind.

The Casimir invariants of the system, which are features of the noncanonical

nature of the Hamiltonian of the system, are the key to studying such

plasma processes. Since the dynamics of plasma are restricted to stay on

the surfaces of constant Casimir, thus all of these nonlinear phenomena

appear as structures embodied on Casimir leaves.

Firstly, using the Casimir invariants in determining the equilibrium

of the system by extremizing the energy-Casimir functional, the exact non-

linear Alfvén wave solutions of the fully nonlinear extended MHD system

are derived for the first time. The solutions consist of two Beltrami eigen-

functions, which incorporate different length scales. A remarkable feature

of the inclusion of these small-scale effects is that the wave patterns are no

longer arbitrary; the large-scale component of the wave cannot be indepen-

dent of the small-scale component, and the coexistence of them forbids the

large-scale component to have a free wave form. This is in marked contrast

to the ideal MHD picture where the Alfvén wave propagating on a uniform

ambient magnetic field keeps its arbitrary shape constant.
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Second, we originate a rigorous nonlinear theory for helicon and

Trivelpiece-Gould (TG) waves that delineates the multi-scale structure of

electromagnetic waves in extended MHD. The derived analytical solutions,

which satisfy the set of nonlinear equations of extended MHD, manifest the

intrinsic coupling of the large scale and the electron skin depth small scale;

the former is realized as a helicon mode and the latter as a TG mode. In the

regime of relatively low frequency or high density, however, the combination

is shown to be comprised of the TG mode and an ion cyclotron wave (slow

wave). The energy partition between these modes is determined by the

helicities carried by the wave fields.

Finally, we use the nonlinear Alfvénic wave solutions to derive the

kinetic and magnetic spectra by resorting to a Kolmogorov-like hypothesis

based on the assumption of constant cascading rates of the energy and

generalized helicities of extended MHD. The magnetic and kinetic spectra

are derived in the ideal, Hall, and electron inertia regimes. The resultant

spectra are compared against the observational evidence and shown to be

in good agreement.

Thus, by tackling these set of problems, the utility and elegance of

the Hamiltonian formalism in understanding the scale hierarchy of plasma

fluid models has been demonstrated.
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Chapter 1

Introduction

1.1 Scale hierarchy

The complexity in plasma physics arises from the existence of the

scale hierarchy brought about by small-scale effects such as Hall drift and

electron inertia. The scale hierarchy is one of the key issues in plasma

physics. Magnetic reconnection, turbulence, flares and accretion discs are

few examples of the processes created by the interactions of different scales

[15, 17, 18, 123, 124]. These interactions of the disparate scales are derived

from the nonlinearity of the system. Therefore, it is physically true to state

that the microscopic processes strongly affect the evolution of structures at

macroscopic scales even if they are not expressed in the final macroscopic

event. In the macroscopic level, ideal fluid equations are sufficient (with a

fair degree of accuracy ) to govern the overall dynamics of these systems.

However, it is these idealized laws that prevent certain processes from oc-

curring. The singular perturbation that represents the physics controlling

microscopic scale on the macroscopic equations of motion, is the means of

breaking these idealizations and allowing the creation of such patterns at

new characteristic scales. This singular perturbation appears in the macro-

scopic equations of motion as a higher order derivatives term multiplied by

a small parameter. The identification and understanding of the changes
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caused by the singular perturbation is the measure of our success in under-

standing the evolution of the system.

1.2 From ideal to extended magnetohydrodynamics

Ideal magnetohydrodynamics (MHD) can be considered as the most

basic single-fluid model for describing the dynamics of electrically conduct-

ing fluids, such as plasmas, in a strong magnetic field. It represents the

simplest and widely applied theory for describing the macroscopic equilib-

rium and stability properties of plasma in the laboratory as well as space

and astrophysical plasmas [51, 89, 143]. Ideal MHD has simply generalized

the hydrodynamic theory of fluids by coupling the latter with the classical

electrodynamics theory (Maxwell’s equations). In standard plasma physics

texts, ideal MHD is often derived as a limiting case of the two-fluid model,

the latter of which is obtained by taking moments of the Boltzmann equa-

tion [30,51,81]. In spite of all these approximations, the ideal MHD model

still possesses a conservation of mass, momentum and energy. Another

non-trivial conserved quantity in ideal MHD is the conservation of mag-

netic topology (frozen-in condition) [81]. The frozen-in condition means

that the fluid and magnetic field are frozen in each other, i.e., there is no

vertical motion. In other words, the propagation of a plasma element is re-

stricted to a magnetic field line, which is initially connected. One other very

important property of ideal MHD is the conservation of the magnetic and

cross helicities. Because of the importance of these helicities as topological

quantities [16,113,114], they are essential for the theory of self-organization

2



and relaxation of plasmas [161,162,174].

However, despite its considerable simplicity and elegance, ideal MHD

model often falls short of describing interesting phenomena in plasmas orig-

inating from different scale hierarchies which are scaled by ion and electron

inertial lengths. For example, as noted above, the electric field in the direc-

tion of the magnetic field must vanish in the ideal MHD model, by which

the topology of magnetic field lines (such as the linking numbers or writhe)

are invariant [16,113,114,182]. In a high-temperature (collisionless) plasma,

topological change of magnetic field lines can occur at a small scale on which

the electron inertia produces a finite parallel electric field, which, however,

is ignored in the ideal MHD model.

We can elucidate the most striking effects of the scale hierarchy in

MHD models from the perspective of linear theory. For instance, ideal MHD

can be considered dispersionless since all waves, e.g., sound waves, and

compressible and shear Alfvén waves, have the same dispersion relations

of the form ω2 ∼ k2, which mean that waves with different wavelengths

propagate with the same phase velocity. However, moving beyond the ideal

MHD regime by including small-scale effects such as Hall drift, which is

referred to as Hall MHD, the ideal single waves branch bifurcates and new

wave modes (dispersive waves) introduced. Hall MHD is distinguished from

the ideal MHD by additional term (Hall current) in the induction equation

(Ohm’s law). Hall term can be mathematically considered as a singular

perturbation of ideal MHD since it is expressed in terms of a high spatial

derivative term multiplied by a small factor [177, 181]. This small factor

3



introduces a short length scale (ion skin depth) to the scale-free ideal MHD.

Hall term also causes the decoupling of the ion fluid and the magnetic field;

however, the electron fluid still tied to the magnetic field lines. Also, because

of the high nonlinearity of the Hall term, waves with short wavelength are

allowed to propagate with different phase velocity ( ω2 ∼ k4); these waves

are called whistler waves. Including electron inertia into the Hall MHD,

arrive at the vicinity of extended MHD. Extended MHD is endowed with

two small length scales, the electron, and ion skin depths. As in the case

of the Hall MHD, the inclusion of the electron inertia effect change the

profiles of the waves propagated in plasma, in which a further bifurcation

of the waves branches occurred and new modes appeared such as kinetic

and inertial Alfvén waves. Roughly speaking, we can see that the scale

hierarchy in MHD models is built by the electron and ion skin depths, in

which ideal MHD is scaleless, and then comes Hall MHD with one intrinsic

physical scale (ion skin depth), and at the end is extended MHD that brings

two intrinsic physical scales (electron and ion skin depths). Hall MHD

has been successfully employed in space and laboratory plasmas [32, 76],

especially in the regimes which the Hall current effect becomes significant

such as magnetic reconnection [17], turbulence [54, 71, 82, 87, 90, 108], and

dynamo [91,99,109,111] as well as in neutron stars [45] and protoplanetary

discs [171]. However, in the regimes when the electron inertia effect becomes

effective, Hall MHD suffers some crucial limitations, such as in fast magnetic

reconnection [20,149] and small scale turbulence [72].

As we showed above, in the linear level of the analysis, the scale

hierarchy in plasma is very clear, and the role of the small scale effects

4



can be explicitly written down. However, if the phenomena are nonlinear,

the analysis becomes drastically complicated. This complexity comes from

the coupling between the small scale effects. Hence, the scale hierarchy

in the context of nonlinear physics requires a more general mathematical

framework for analyzing these effects. Our strategy is to use the Hamil-

tonian structure, in which the role of this scale hierarchy could be clearly

elaborated.

1.3 Geometrical theory

Mathematical models in plasma physics are rather complex, due

to the existence of many variables described by a large number of highly

nonlinear equations. This complexity is often indicative of the richness of

plasma behavior in the laboratory as well as in astrophysical and space

plasmas. However, this is true only when such models do not violate any

of the fundamental laws of physics, e.g., the physical conservation laws. To

ensure that, these models has to be formulated in terms of Lagrangian or

Hamiltonian mechanics.

Besides that the Hamiltonian formalism guarantees the preservation

of the energy of a dynamical system for closed boundary conditions, and it

is also an elegant framework to study dynamics in geometrical perspective.

Since the plasma fluid models are noncanonical Hamiltonian systems [117],

hence, geometrical invariants arose due to the topological defect (kernel) of

the Poisson bracket; these invariants are called Casimir invariants. Casimir

invariants play a crucial role in determining the equilibria and analyzing
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stability of a dynamical system, which guarantees non-trivial equilibrium

states of the system. This is done by constructing the so-called energy-

Casimir functional [13, 67, 83]. We refer the reader to Chapter 2, in which

a detailed discussion of this issue is provided. Moreover, Hamiltonian for-

mulation of plasma models also shows promising results in studying phe-

nomena such as magnetic reconnection [33,68,125], dynamos [91,110], and

turbulence [119,183,184].

The Hamiltonian formalism of the ideal magnetohydrodynamics (MHD)

system was given for the first time by Morrison and Green [117]; see [63] for

recent studies on the noncanonical properties of the Poisson bracket. Many

different attempts have been made to generalize the model to include small-

scale effects, and formulate them as Hamiltonian systems; see [69,133,178]

for different Hamiltonian forms of Hall MHD, [77] for the Casimir invariants

of noncanonical Hall MHD, [178] for the canonized Hamiltonian formalism

of Hall MHD and its action principle delineating the limiting path to the

ideal MHD system. Another important effect is due to the electron in-

ertia, which brings about a finite parallel electric field, allowing magnetic

field lines reconnect. In this direction, two-dimensional models have been

intensively studied; see [33,62,142,159,160] as well as [94] for recent devel-

opments.

1.4 Objective and outline of the thesis

This thesis is devoted to exploring the theory of extended MHD in

the framework of Hamiltonian mechanics. The merit of extended MHD
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lies in its capability of describing of the scale hierarchy of plasma systems,

i.e., it can explain the underlying small-scale physics both in the ion skin

depth and electron skin depth regimes. From the perspective of Hamiltonian

mechanics, the multi-scale effect on three phenomena in plasma physics will

be elucidated by deriving fully-nonlinear exact solutions.

The thesis outline is described below.

• In Chapter 2, we shall present a brief review of noncanonical Hamil-

tonian mechanics and some of its features.

• In Chapter 3, the derivation of the extended MHD model starting

from the two-fluid model and its Hamiltonian structure is presented.

A basic theorem on Lie algebras is unearthed for proving the Jacobi’s

identity. This Lie algebra is used to generate the noncanonical Pois-

son bracket for the Hall, inertial and Hall MHD systems. Boundary

conditions and Casimir invariants are also investigated.

• In Chapter 4, we start by constructing the linear theory of the ex-

tended MHD model and studying several limits of the dispersion

relation. Based on the results obtained in Chapter 2, we shall in-

vestigate the nonlinear Alfvén wave in extended MHD. The Casimir

invariants of the system serve as the root for studying these nonlinear

structures. Via constructing equilibrium solutions (so-called Beltrami

equilibrium) on Casimir leaves, we derive nonlinear wave solutions.

The dispersion relation is exactly that of the linear theory, while the

wave amplitude may be arbitrarily large.
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• In Chapter 5, a complete nonlinear theory for helicon and TG waves is

constructed. We start with the linear theory for helicon waves. Sub-

sequently, the exact solutions of the double curl Beltrami equation are

derived in the cylindrical geometry. To construct the nonlinear theory

we follow the same approach used in Chapter 4. Detailed discussions

of the dispersion relations for different boundary conditions, energy

deposition and the partition of the waves energy are presented.

• In Chapter 6, extended MHD is used to derive the kinetic and mag-

netic spectra by resorting to a Kolmogorov-like hypothesis based on

the constant cascading rates of the energy and Casimir invariants of

this model. The magnetic and kinetic spectra are derived in the ideal,

Hall, and electron inertia regimes. The resultant spectra are com-

pared against the observational evidence, and shown to be in good

agreement.

• In Chapter 7, the main conclusions arising from the work accom-

plished in this thesis are presented.
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Chapter 2

Noncanonical Hamiltonian mechanics: A

review

2.1 Canonical Hamiltonian mechanics

The description of a dynamical system in a Hamiltonian form re-

quires the specification of a Hamiltonian and the formulation of a Poisson

bracket; the Hamiltonian is physically the energy of the dynamical system,

whilst the Poisson bracket mathematically characterizes the geometry. In

other words, the Hamiltonian mechanics formulates the energy of the dy-

namical system as a function on a phase space X (Hamiltonian) and char-

acterizes the geometry of the phase space using a Poisson bracket (Poisson

manifold). Before going further, we would like to note that all discussions in

this chapter are based on the following references [12,13,85,95,115,116,138].

Let us consider a dynamical system that described by

dqi

dt
=

∂

∂pi
H (q,p) , (2.1)

dpi
dt

= − ∂

∂qi
H (q,p) , (2.2)

where q =
∑N

i=1 q
i (t) are the N position coordinates, p =

∑N
i=1 pi (t) are

the N conjugate momenta and N is the number of the degree of freedom of

the system. Here H is a function denoting the Hamiltonian of the system.
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The above system of equations (2.1) and (2.2) are known as Hamilton’s

canonical equations.

The above canonical equations can be rewritten in a more general

form as follows:

dz

dt
= Jc

∂

∂z
H (z) , (2.3)

where the state vector z = (q,p) =
∑2N

i=1 z
i, is a point in an affine space

X = R
2N , H (z) is a Hamiltonian (a smooth function on X), and Jc is a

canonical (symplectic) Poisson operator, which is an antisymmetric 2N×2N

matrix with the form

J =




0N IN

−IN 0N


 . (2.4)

Here, IN and 0N represent N ×N identity and null matrices, respectively.

We define a bilinear form

{F,G} =

(
∂F

∂z
, Jc

∂G

∂z

)
,

=
N∑

i,j

∂F

∂zi
J
ij
c

∂G

∂zj
,

=
N∑

i

(
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
, (2.5)

where F and G are any arbitrary scalar smooth functions (observables)

of the dynamical variables (q,p) on the affine space X. The bracket { , }

defined by (2.5) denotes a Poisson bracket, wherein it is a bilinear derivative

map to a scalar function. In other words, it is a map that maps two smooth

scalars functions F and G to produce a new smooth scalar functional (the

left-hand side of (2.5)), defined over the affine space X.
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Now, we can construct an adjoint representation of Hamilton’s equa-

tions (2.3) as

d

dt
F = {F,H },

=
N∑

i

(
∂F

∂qi
∂H

∂pi
− ∂F

∂pi

∂H

∂qi

)
. (2.6)

Thus, we can write the Hamilton’s canonical equations (2.1) and

(2.2) in terms of the Poisson bracket (2.5) as follows:

dqi

dt
=

{
qi,H

}
, (2.7)

dpi
dt

= {pi,H } . (2.8)

For any given bracket to be a Poisson bracket, it must satisfy the

following postulates. In the case of canonical system defined above it easy

to derive those axioms using its definition (2.5).

Let E, F and G be any arbitrary functions of the dynamical vari-

ables. The Poisson bracket properties are:

I. Antisymmetry: If we interchange the two functions in the bracket

slots, the bracket sign has to change,

{F,G} = −{G,F} ∀F,G ∈ C∞ (X) , (2.9)

Proof.

{F,G} =
N∑

i

(
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
,

= −
N∑

i

(
∂G

∂qi
∂F

∂pi
− ∂G

∂pi

∂F

∂qi

)
,

= −{G,F} . #
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Also, it follows from the anti-symmetry property of the Poisson bracket

that Hamiltonian systems conserve energy,

dH

dt
= {H ,H } = 0. (2.10)

II. Bilinearity:

{E,αF + βG} = α {E,F}+ β {E,G} ∀E,F,G ∈ C∞ (X) , (2.11)

where α and β are real numbers.

Proof.

{E,αF + βG} =
N∑

i

(
∂E

∂qi
∂ (αF + βG)

∂pi
− ∂E

∂pi

∂ (αF + βG)

∂qi

)
,

=
N∑

i

[
α

(
∂E

∂qi
∂F

∂pi
− ∂E

∂pi

∂F

∂qi

)
+ β

(
∂E

∂qi
∂G

∂pi
− ∂E

∂pi

∂G

∂qi

)]
,

= α {E,F}+ β {E,G} .

This proves that the bracket is linear, using the antisymmetry (2.9)

together with (2.11), it is straightforward to show that the linearity

propriety holds on both sides of the Poisson bracket. #

III. Leibniz rule:

{E F,G} = E {F,G}+ {E,G}F ∀E,F,G ∈ C∞ (X) , (2.12)

Proof.

{E F,G} =
N∑

i

(
∂ (E F )

∂qi
∂G

∂pi
− ∂ (E F )

∂pi

∂G

∂qi

)
,

=
N∑

i

[
E

(
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
+

(
∂E

∂qi
∂G

∂pi
− ∂E

∂pi

∂G

∂qi

)
F

]
,

= E {F,G}+ {E,G}F. #
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IV. Constant function C: If one of the observables is constant, the Poisson

bracket is equal to zero,

{F,C} = 0 ∀F ∈ C∞ (X) , (2.13)

The proof can be directly obtained from the definition of the Poisson

bracket (2.5).

V. Jacobi’s identity:

{E, {F,G}}+ {G, {E,F}}+ {F, {G,E}} = 0 ∀E,F,G ∈ C∞ (X) ,

(2.14)

which holds for the Poisson brackets formed from any three functions.

In other words, the summation of the brackets formed by cyclic per-

mutations of any three functions must be equal zero.

Proof.

The proof of the Jacobi’s identity is rather difficult since it contains

second order derivatives of the functions E, F and G. At first, we shall

collect all the terms that contain a second order derivative of one of

the functions, e.g., F . The first and second brackets of (2.14) are the

only terms contained a second order derivative of F , since the third

bracket involves only the first derivative of F . Now, we will write

the sum of the first and second brackets of (2.14) in terms of linear

differential operators defined by

{E,F} =
∂E

∂qi
∂F

∂pi
− ∂E

∂pi

∂F

∂qi
= LeF,
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and similarly,

{G,F} = LgF.

Then the sum can be written as

{E, {F,G}}+ {G, {E,F}} = (LgLe − LeLg)F.

It is very clear in the above equation that this combination of the

linear operators Le and Lg does not involve a second order derivative

of F . To show that, let us define the linear operators in more general

form

Le =
N∑

l

el
∂

∂zl
,

Lg =
N∑

l

gl
∂

∂zl
,

where el and gl are arbitrary functions of the variables zl, l = 1, ..., N .

Then

LeLg =
N∑

l,m

elgm
∂2

∂zl∂zm
+

N∑

l,m=1

el
∂gm
∂zl

∂

∂zm
,

LgLe =
N∑

l,m

glem
∂2

∂zl∂zm
+

N∑

l,m=1

gl
∂em
∂zl

∂

∂zm
.

The subtraction of the above equations yields

LeLg − LgLe =
N∑

l,m

(
el
∂gm
∂zl

− gl
∂em
∂zl

)
∂

∂zm
,

which is an operator including only single differentiations. Therefore,

all the second order derivatives of F on the left-hand side of (2.14)
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cancel out. It is easy to show that the same applies for the other

functions E and G, and so the left-hand side of (2.14) is identically

zero, which proves the Jacobi’s identity.

Now, we can generalize the space X = R
2N to a general cotangent

bundle T ∗M of a smooth manifoldM of dimension N , which represents the

phase space of the system. Therefore, we can define a symplectic 2-form in

terms of the local coordinates (q,p) as

ω = dq ∧ dp =
N∑

i

dqi ∧ dpi, (2.15)

where we have used the symbol d to denote the exterior derivative and the

symbol ∧ to denote the exterior product. The merit of defining a 2-form is

to allow us to define a Hamiltonian vector fieldXH , such that iXH
ω = dH ,

where the definition of the Left-hand side is provided below.

Let

XH =
N∑

i

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

)
,

then

iXH
ω =

N∑

i

dqi ∧ dpi
N∑

j

(
∂H

∂pj

∂

∂qj
− ∂H

∂qj
∂

∂pj

)
,

since, dqi ∂
∂qj

= δij , dpi
∂

∂pj
= δij, dq

i ∂
∂pj

= 0, dpi
∂

∂qj
= 0, and dqi ∧ dpi =

−dpi ∧ dqi, we have

iXH
ω =

N∑

i

dqi ∧ dpi
(
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

)

=
N∑

i

(
∂H

∂pi
dpi +

∂H

∂qi
dqi
)

= dH
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The Poisson bracket (2.5) can be written in terms of the symplectic

2-form ω as

{F,G} = ω (XF , XG) , (2.16)

where XF and XG are the gradient (or Hamiltonian) vector fields of the F

and G. Then, we have

{F,G} = ω (XF , XG) ,

=
N∑

i

dqi ∧ dpi
N∑

j

(
∂F

∂pj

∂

∂qj
− ∂F

∂qj
∂

∂pj

) N∑

k

(
∂G

∂pk

∂

∂qk
− ∂G

∂qk
∂

∂pk

)

=
N∑

i

(
∂F

∂pi
dpi +

∂H

∂qi
dqi
) N∑

k

(
∂G

∂pk

∂

∂qk
− ∂G

∂qk
∂

∂pk

)

=
N∑

i

(
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
,

In the generalized coordinates z = (q,p), we may write the above relation

as

{F,G} = ω (XF , XG) =
N∑

i,j

∂F

∂zi
J
ij
c

∂G

∂zj
, (2.17)

where Jc = J−1
c .

2.2 Noncanonical Hamiltonian mechanics

In reality, most of the physical systems are described by noncanon-

ical (physical) variables (coordinates). Noncanonical Hamiltonian systems

are common in classical field theories, e.g., fluid and plasma systems. In

this section, we shall explore the notion of noncanonical Hamiltonian me-

chanics. We still restrict ourselves to systems with finite degrees of freedom.
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The noncanonical Hamiltonian system is a generalization of the canonical

Hamiltonian system to a phase space, in which the Poisson operator is a

function of the state vector. The system still has to preserve the energy

(2.10).

As in the previous section, let us consider a physical system described

by a state vector z of dimension N . Here, N is an arbitrary finite number,

which is not necessary even. This system is said to be Hamiltonian, if and

only if it satisfy the Hamilton’s equation of motion

dz

dt
= {z,H } , (2.18)

where { , } here denote the noncanonical Poisson bracket. This bracket still

has to satisfy the conditions of antisymmetry, bilnearity, Leibniz rule and

the Jacobi’s identities, mentioned in Sec. 2.1. Introducing the noncanonical

Poisson operator J (z), that is now a function of the state vector z, the

general Hamilton’s equation of motion (2.18) can be written as

dz

dt
= J (z)

∂

∂z
H (z) . (2.19)

The Poisson operator J (z) is said to be singular, if the condition detJ = 0

holds true. This singularity in the Poisson operator gives rise to some scalar

functions C (z). Those functions C (z) satisfy

{F (z) , C (z)} = 0, (2.20)

for any function F . These functions are usually referred to as Casimir

element.
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In this case, there exists a theory known as the Lie-Darboux theorem

[95], in which enables us to separate the canonical part of the noncanonical

Poisson operator under a limited condition. The theory stated that if the

Rank(J) = 2m < N (m is constant) and the detJ = 0, then, there exist a k

independent Casimir elements (C1, ..., Ck), such that N = 2m+ k. In that

case, the Poisson operator J can be transformed to the following standard

form

J
⋆ =




0m Im
−Im 0m

0k


 . (2.21)

We can note that the new operator J⋆ subsumed a canonical part of rank(J⋆) =

2m and a degenerate part with k’s extraneous coordinates. This means that

there are k null eigenfunctions of the J⋆ represented by the Casimir elements

given by the solution of the following differential equation,

J
ij ∂C

l

∂zj
= 0, l = 1, 2...k. (2.22)

Before moving further, it is worth remarking here that, the Lie-Darboux

theorem applies only for finite-dimensional systems and does not give any

method to identify the new coordinates, i.e., we can not obtain the equations

of motions in terms of the new coordinates.

2.3 Casimir invariant

The Casimir invariants are one of the most interesting features of the

noncanonical Poisson brackets, which is a consequence of the topological

defect (kernel) of the Poisson operator. A Casimir function need to satisfy
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the following identity:

{F (z) , C (z)} = 0, (2.23)

This implies that the gradient of C (z) is

J (z)
∂C (z)

∂z
= 0. (2.24)

Moreover, we can easy see that the Casimir is an invariant of the dynamical

system. Due to the antisymmetry of the Poisson operator, we can obtain

d

dt
C (z) = {C (z) ,H (z)} = 0. (2.25)

We can observe from the above relations that even when the Hamiltonian is

one of the system invariants, the Poisson bracket of it does not vanish. This

implies that the Casimir is a feature of the kinematics or in another word

a geometrical constant of motion in the phase space. Thus, the properties

of the Casimir invariant are determined by the degenerate structure of the

Poisson operator, not the Hamiltonian.The Casimir invariant as a constant

of motion constrains the dynamics to the surface of constant Casimir invari-

ants. Such a constant Casimir is called leaf, and the phase space is foliated

by such leaves.

2.4 Energy-Casimir functional

The existence of Casimir invariants has some interesting consequences.

One of the most promising consequences of the existence of a Casimir in-

variant is that the physical Hamiltonian of the system is not unique. To
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clarify the last sentence, let us replace the physical Hamiltonian (H (z))

by (Hµ (z)), defined by

Hµ (z) = H (z)− µC (z) , (2.26)

where µ is constant. Substituting (2.26) into the equations of motion (2.18),

gives

dz

dt
= {z,Hµ (z)} ,

= {z,H (z)} − µ {z, C (z)} ,

= {z,H } , (2.27)

where the antisymmetry (2.9) and bilinearity (2.11) properties of the Pois-

son bracket are used and equation (2.24) is invoked. From (2.27), we can

observe that substituting the perturbed Hamiltonian (2.26) into the equa-

tions of motion (2.18), does not change the dynamics. However, the equi-

librium of the system may change under the substitution of (2.26). Let us

discuss the latter sentence in more detail.

Let z0 be an equilibrium point that satisfies the equation of motion

dz

dt
|z0 = J (z0)

∂

∂z
H (z) |z0 = 0. (2.28)

If the Poisson operator is non-singular (canonical), i.e., det(J) 6= 0, this

means that the equilibria of the system are the extremal points of the

Hamiltonian only, i.e., ∂zH = 0 . So, in canonical Hamiltonian mechan-

ics, the equilibria of the dynamical system can only be described by the

structure of the Hamiltonian. If we moved to the noncanonical case, the

situation is completely different. Now, the Poisson operator is singular,
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i.e., det(J) = 0, thus, the noncanonical system can have a richer set of

equilibrium points, because of the existence of the null-space of the Pois-

son operator. This null-space is spanned by the Casimir invariants of the

system. As already mentioned, the dynamics are restricted to surfaces of

constant Casimir invariants, therefore, the equilibrium points can be char-

acterized as fixed points on the Casimir leaves. Consequently, the equilibria

of the noncanonical system can be obtained as critical points on the Casimir

leaves by

∂

∂z
Hµ (z) = 0, (2.29)

where Hµ defined by (2.26) is known as the energy-Casimir function [13,

67,83].

2.5 Infinite-dimensional noncanonical systems

The finite-dimensional Hamiltonian formulation discussed above used

usually to describe discrete systems such as particles, whilst the infinite-

dimensions are critical for describing field theories such as hydrodynamics

and magnetohydrodynamics. Moving to the infinite-dimensional systems

(or continuous systems), we have to use the functionals instead of functions,

and the functional derivative instead of partial derivative. We prepare gen-

eral notations to formulate infinite-dimensional noncanonical Hamiltonian

systems.

Analogous to the finite-dimensional case, a general Hamiltonian equa-

tion can be written as

∂u

∂t
= J (u)

∂

∂u
H (u) , (2.30)

21



where the state vector u is a point in a phase space (Hilbert space) X,

H (u) is a Hamiltonian (a smooth functional on X), ∂uH is the gradient

of H in X, and J (u) is a Poisson operator (co-symplectic 2-covector). In

the latter discussions, the state vector u is a vector-valued function on a

base space Ω ⊂ R3. The inner product of the phase space X is defined by

〈u, v〉 =
∫
Ω
u · vd3x.

The Poisson bracket that is still mandated to satisfy the formal

properties, e.g., antisymmetry, Leibniz property, and Jacobi’s identity, can

be defined as

{F,G} =

〈
∂

∂u
F, J

∂

∂u
G

〉
, (2.31)

where F and G are scalar smooth functionals on the phase space X. The

adjoint representation of Hamilton’s equation (2.30) reads, for an arbitrary

observable F ∈ C∞
{ , } (X).

d

dt
F = {F,H }. (2.32)

Before going further, it is worth remarking that, all the above dis-

cussions about the Casimir invariants and the energy-Casimir method can

be defined here analogously to the finite-dimensional case.

Next, we shall give example of the infinite-dimensional noncanonical

Hamiltonian system, ideal fluid.

2.5.1 The ideal fluid

Consider a 3 + 1 barotropic ideal fluid in Eulerian coordinates (de-

noted by x := (x, y, z) and t). The equations of motion comprise of the
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mass conservation

∂ρ

∂t
= −∇ · (ρV ) , (2.33)

the dynamical equation for velocity,

∂V

∂t
= − (∇× V )× V −∇

(
h+

V 2

2

)
, (2.34)

where ρ is mass density, V fluid velocity and h(ρ) is the enthalpy (the

relation between the fluid scalar pressure p and the enthalpy is∇h = ρ−1∇p.

The Hamiltonian (energy) of the ideal fluid is given by

H =

∫

Ω

ρ

{
V 2

2
+ U (ρ)

}
d3x, (2.35)

where U is the internal energy of the system, which is connected to the

enthalpy by ∂ρU(ρ)
∂ρ

= h (ρ).

The noncanonical Poisson operator is

J =




0 −∇·

−∇ −ρ−1 (∇× V )× ◦


 , (2.36)

and the corresponding noncanonical Poisson bracket of the barotropic com-

pressible fluid is given by

{F,G} =

∫

Ω

[
ρ−1 (∇× V ) · (∂V F × ∂VG)

−
(
∂ρF (∇ · ∂VG)− (∇ · ∂V F ) ∂ρG

)]
d3x, (2.37)

where the state vector is u = (ρ,V )t, and ∂u the functional derivative of

the arbitrary scalar functionals F and G with respect to the dynamical

variables of the system u.
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Now, we can easily show that the bracket (2.37) satisfies the antisym-

metry and Leibniz properties by using a standard vector calculus identity.

However the proof of the Jacobi’s identity is not that easy to obtain. A

complete proof of the Jacobi’s identity is given in Chapter. 3, see lemma 1.

Using the above Hamiltonian structure, we can derive the equations

of motion (2.33) and (2.34) from the Poisson bracket (2.37) using Hamilton’s

equations,

∂u

∂t
= {u,H } . (2.38)

At first, we will calculate the gradient of the Hamiltonian, which is

∂uH =




∂ρH

∂V H


 =




V 2

2
+ h

ρV


 . (2.39)

To drive the equation of mass conservation, one need to introduce the fol-

lowing functional

∂u

∂t
=

∫

Ω

ρδ (x− x0) d
3x, (2.40)

to remove the integrals from (2.38), where δ is the delta function. Then,

using (2.39) and (2.40) in (2.38), we have

∂ρ

∂t
= −∇ · (ρV ) ,

The derivation of the velocity equation of motion can be done through

a similar procedure. It is seen from (2.38) that two terms involving the func-

tional derivative of V are manifested, the first and third terms, which after

simple manipulation lead to

∂V

∂t
= − (∇× V )× V −∇

(
h+

V 2

2

)
,
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Now to find the Casimir invariants of the ideal fluid, we have to

satisfy the condition {F,C} for all F. Using Poisson bracket (2.37), the

Casimir condition imply

ρ−1 (∇× V )× ∂V C +∇∂ρC = 0,

∇ · ∂V C = 0.

The solution of this system of equations yields

total mass

C1 =

∫

Ω

ρd3x, (2.41)

fluid helicity

C2 =

∫

Ω

V · ∇ × V d3x. (2.42)

Applying the energy-Casimir functional (2.26), which now reads

Hµ = H − µ1C1 − µ2C2,

then the equilibrium points are given by setting ∂Hµ = 0, which gives

ρV = µ2∇× V , (2.43)

V 2

2
+ h = µ1. (2.44)
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2.5.1.1 Beltrami fields

Beltrami fields are eigenfunctions of the curl operator (∇× ) when

the flow field and its associated vorticity are aligned. Considering the in-

compressible fluid limit that (∇ · V = 0), which yields a constant density

(ρ = 1), the equilibrium equation (2.43) gives the Beltrami flow equation

∇× V =
1

µ2

V , (2.45)

The general solution of equation (2.45) can be given as

V = aG, (2.46)

where a is a constant, and G is the eigenfunction of the single Beltrami

condition (∇ × G = λG) with λ = 1
µ2
. In the rectangular coordinates

(x, y, z), the eigenfunctions of the Beltrami equation possess the form of a

sinusoidal function given in a form of a circularly polarized wave, as

G1 =




sin (λz)
cos (λz)

0


 .
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Chapter 3

Hamiltonian formalism of extended

magnetohydrodynamics

3.1 Extended MHD model

3.1.1 Two-fluid system

Consider a collisionless plasma consisting of electrons with charge

(−e) and one kind of ions with charge(Ze), where Z is charge number. The

set of the dissipativeless two-fluid equations is

∂ne

∂t
= −∇ · (neVe) , (3.1)

∂ni

∂t
= −∇ · (niVe) . (3.2)

neme

(
∂Ve

∂t
+ (Ve · ∇)Ve

)
= −∇pe − ene (E + Ve ×B) , (3.3)

nimi

(
∂Vi

∂t
+ (Vi · ∇)Vi

)
= −∇pi + Zeni (E + Vi ×B) , (3.4)

where the two-fluid variables ne, Ve, ni and Vi are the electron density, the

electron velocity, the ion density and the ion velocity respectively. pe and pi

denote the electron and ion pressures, whilst E and B are the electric and

magnetic fields, and me and mi are the electron and ion masses. The two-

fluid system of equations (3.1)-(3.4) are closed by the Maxwell’s equations,

∇×E = −∂B
∂t

, (3.5)
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∇×B = µ0J +
1

c2
∂E

∂t
, (3.6)

∇ ·E =
τ

ǫ0
, (3.7)

∇ ·B = 0, (3.8)

with the current and charge density,

J ≡ e (ZniVi − neVe) , τ ≡ e (Zni − ne) , (3.9)

acting as sources. Here, c = 1/
√
ǫ0µ0 is the speed of light, whilst ǫ0 and µ0

are the permittivity and permeability of vacuum space.

3.1.2 One-fluid system

We are now in a position to derive the one-fluid MHD model from

the two-fluid equations (3.1)-(3.4). Imposing the quasineutrality condition

(τ ∼= 0), which is one of the most fundamental properties that plasmas

have to maintain, we obtain a system of equations governing the total mass

density ρ, the center of mass velocity V , and the current density J . By

adding of the electron and ion continuity equations((3.1) and (3.2)), we

obtain the mass conservation law

∂ρ

∂t
= −∇ · (ρV ) . (3.10)

where ρ = (mini +mene) = (1 + δ)min (δ = me/mi is a small parameter;

by charge neutrality, we put ni = ne = n). Notice that, without loss of

generality, for simplicity, we put Z = 1. The formulae of the electron

velocity Ve and the ion velocity Vi in terms of the plasma flow velocity V

and the plasma current density J are

Ve = V − J

en (1 + δ)
and Vi = V + δ

J

en (1 + δ)
. (3.11)

28



Summing the equations of motion (3.3) amd (3.4) yields the momentum

equation

ρ

(
∂V

∂t
+ (V · ∇)V

)
= −∇p+ J ×B − me

e
(J · ∇)

J

en
, (3.12)

where p = pi + pe is the total pressure. Notice that, the last term on

the right-hand side of equation (3.12) is of O(δ), which plays an essential

role in conservation of energy [79]. To make (3.12) exact up to O(δ2), we

should replace me by m
′
e = me/(1 + δ). The other equation determines the

evolution of electron fluid momentum. Instead of using Ve, we write the

electron inertia in terms of J/en:

me

e2

[
∂

∂t

(
J

n

)
+ (V · ∇)

J

n
+

(
J

n
· ∇
)
V −

(
J

n
· ∇
)

J

en

]

= E + V ×B − 1

en

(
J ×B −∇pe

)
, (3.13)

where E is the electric field. On the left-hand side of equation (3.13), we

have neglected

me

e

dV

dt
≡ me

e

(
∂V

∂t
+ (V · ∇)V

)
,

assuming

∣∣∣∣
dV

dt

∣∣∣∣ <<
∣∣∣∣
d

dt

(
J

en

)∣∣∣∣ .

This approximation may not be appropriate in discussions of some phenom-

ena in which the momentum balance between electrons and ions plays an

essential role; for example see the studies on whistler oscillitons [49, 106,

139,172]. The merit of replacing Ve by J/en and writing the electron fluid

equation as (3.13) is, by combining with pre-Maxwell relation ∇×B = J ,
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the dimensions of dynamical variables are substantially reduced; see (3.18).

Summarizing the equations and normalizing variables in the standard Alfvén

units, we obtain a system of governing equations

∂ρ

∂t
= −∇ · (ρV ) , (3.14)

ρ

(
∂V

∂t
+ (V .∇)V

)
= −∇p+ J ×B − d2e (J · ∇)

J

ρ
, (3.15)

E + V ×B = −di
ρ
∇pe + di

J

ρ
×B

+d2e

[
∂

∂t

(
J

ρ

)
+ (V · ∇)

J

ρ
+

(
J

ρ
· ∇
)
V

]

−did2e
(
J

ρ
· ∇
)

J

ρ
, (3.16)

where de = c/(ωpeL) is the normalized electron skin depth, di = c/(ωpiL) is

the normalized ion skin depth, whilst ωpe and ωpi are the electron and ion

plasma frequencies, and L is the system size.

The above equations are coupled with the pre-Maxwell equations

∇×E = −∂B
∂t

, (3.17)

and

∇×B = J . (3.18)

We omit Maxwell displacement current to make the field equations consis-

tent with the above fluid equations. There are some phenomena, however,

in which charge neutrality may be broken (see [169]), then one needs to

consider independent electron and ion densities.
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3.2 Noncanonical Hamiltonian structure of extended

MHD

3.2.1 Poisson algebra of extended MHD

Operating ∇× on both side of (3.16), assuming barotropic pressures

(ρ−1∇p = ∇h (ρ), ρ−1∇pe = ∇he (ρ), where h (ρ) is the total enthalpy and

he (ρ) is the electron enthalpy) and using (3.18), we obtain a system of

evolution equations

∂ρ

∂t
= −∇ · (ρV ) , (3.19)

∂V

∂t
= − (∇× V )× V + ρ−1 (∇×B)×B∗

−∇
(
h+

V 2

2
+ d2e

(∇×B)2

2ρ2

)
, (3.20)

∂B∗

∂t
= ∇× (V ×B∗)− di∇×

(
ρ−1 (∇×B)×B∗

)

+d2e∇×
(
ρ−1 (∇×B)× (∇× V )

)
, (3.21)

where

B∗ = B + d2e∇× ρ−1 (∇×B) . (3.22)

For the simplicity, we consider a domain S3 with periodic boundary condi-

tions.

The conservation of energy of the extended MHD was studied by

[78,79]; the total energy is given as

H :=

∫

Ω

{
ρ

(
V 2

2
+ U (ρ)

)
+
B2

2
+ d2e

(∇×B)2

2ρ

}
d3x. (3.23)
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This H is the natural candidate for the Hamiltonian.

To formulate the Hamiltonian system, we consider a phase space

spanned by the variables ρ,V , and B∗; we denote the state vector by

u = (ρ,V ,B∗)t. Then, B in H must be evaluated as a function of B∗ and

ρ by (3.22). The gradient of the Hamiltonian H is

∂uH =




∂ρH

∂V H

∂B∗H




=




V 2

2
+ h+ d2e

(
(∇×B)2

2ρ2

)

ρV

B



. (3.24)

Now, we propose a Poisson operator for the extended MHD equa-

tions:

J =




0 −∇· 0

−∇ − (∇×V )×◦
ρ

(∇×◦)×B∗

ρ

0 ∇× (◦×B∗)
ρ

[
−∇×

(
(∇×◦)×B∗

ρ

)

+d2e∇×
(

(∇×◦)×(∇×V )
ρ

) ]




, (3.25)

With the Poisson operator (3.25) and the Hamiltonian (3.23), Hamil-

ton’s equation (2.30) reproduces the extended MHD equations (3.19), (3.20),

and (3.21).

Using the periodic boundary conditions, we can easily demonstrate

the antisymmetry of J. Hence the Poisson bracket defined by this J satisfies

antisymmetry. However, the proof of Jacobi’s identity is rather elaborate.

Leaving it for the next section, we end this section by stating the main

assertion:
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Theorem 1 (Poisson algebra of extended MHD). We define a bilinear form

{F,G} = 〈∂uF, J∂uG〉.

Then, { , } is a Poisson bracket, and C∞
{ , }(X) is a Poisson algebra. Pro-

viding it with a Hamiltonian H of (3.23), we obtain the extended MHD

system.

Before concluding this section we want to mention that, if we con-

struct a bracket by a semidirect product of sub Lie algebras, we can prove

that the bracket satisfies Jacobi’s identity [102–104]. Examples of ideal

fluid, MHD and multifluid plasmas [70, 152], as well as Hall-MHD [69],

were studied by this method. However, the present model of generalized

MHD is not an example of such systems.

3.3 Jacobi’s identity

3.3.1 Basic algebra

We have yet to prove Jacobi’s identity for the Poisson bracket. Ap-

parently, it is not of a Lie-Poisson type. Complexity is caused by the factor

ρ−1, as well as differential operator ∇× appearing in many places of J.

However, there is a basic, common permutation relation that generates the

total Poisson system. We prove the following lemma:

Lemma 1. On C∞(X), we define a bracket (bilinear form)

[F,G]pq,r =

∫

Ω

[
ρ−1 (∇× p) · (∂qF × ∂rG)

−∂ρF (∇ · ∂rG)− ∂qF · ∇∂ρG
]
d3x, (3.26)
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where p, q, and r are vector fields arbitrarily chosen from V or A∗ (where

A∗is the vector potential and is related to B∗ by the relation B∗ = ∇×A∗).

This bracket satisfies an antisymmetry relation

[F,G]pq,r = − [G,F ]pr,q ,

as well as a permutation law

[
E, [F,G]pq,r

]p
s,p

+
[
G, [E,F ]ps,q

]p
r,p

+
[
F, [G,E]pr,s

]p
q,p

= O(∂2), (3.27)

where O(∂2) denotes terms including second-order derivatives. Hence, the

sum over the permutation vanishes on the modulo operation by ∂2.

The combination of the functionals E, F, G and the corresponding

state variables q, r, s is a unique aspect of this bracket. Notice that the

permutation law (3.27) resembles Jacobi’s identity. In fact, the algebraic

relation delineated by this Lemma 1 is the root cause of Jacobi’s identity

satisfied by the Poisson bracket.

Proof of Lemma 1

The antisymmetry is evident. To prove Jacobi’s identity, we have to

calculate the functional derivative of the bracket. Because of the inhomo-

geneous factor ρ−1 (∇× p) included in the bracket, the derivatives such as

∂ρ [F,G]
p

q,r and ∂p [F,G]
p

q,r are sums of the terms that consist of only first

derivatives of F and G, as well as the terms including second-order deriva-

tives (the second-order terms are modulo-outed in (3.27)). The former ones

are such that

∂ρ [F,G]
p

q,r = −ρ−2 (∇× p) · (∂qF × ∂rG) +O(∂2),
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∂p [F,G]
p

q,r = ∇× ρ−1 (∂qF × ∂rG) +O(∂2).

The permutation law is given as

[
E, [F,G]pq,r

]p
s,p

+
[
G, [E,F ]ps,q

]p
r,p

+
[
F, [G,E]pr,s

]p
q,p

=
∫

Ω

{
(∇× p) · [ρ−1∂sE × [∇× (∂qF × ρ−1∂rG)]]

+∂sE · ∇[ (∇× p) ·
(
ρ−1∂qF × ρ−1∂rG

)
]

+ (∇× p) · [ρ−1∂rG× [∇× (∂sE × ρ−1∂qF )]]

+∂rG · ∇[ (∇× p) ·
(
ρ−1∂sE × ρ−1∂qF

)
]

+ (∇× p) · [ρ−1∂qF × [∇× (∂rG× ρ−1∂sE)]]

+∂qF · ∇[ (∇× p) ·
(
ρ−1∂rG× ρ−1∂sE

)
]
}
d3x

+O(∂2). (3.28)

Denoting e := ∂sE, etc., equation (3.28) reads

[
E, [F,G]pq,r

]p
s,p

+
[
G, [E,F ]ps,q

]p
r,p

+
[
F, [G,E]pr,s

]p
q,p

=
∫

Ω

{ (∇× p) · [ρ−1e× [∇× (f × ρ−1g)]]

+e · ∇[ (∇× p) ·
(
ρ−1f × ρ−1g

)
]+ 			 }d3x

+O(∂2) (3.29)

where 			 denotes the summation over cyclic permutation of the vectors e,f ,

and g. After integrating by parts, the integrand of
[
E, [F,G]pq,r

]p
s,p

can be

written as

(∇× p) · {ρ−1e×
[
∇×

(
f × ρ−1g

)]
−
(
ρ−1f × ρ−1g

)
∇ · e}. (3.30)

The term bracketed by { } can be rewritten by vector identities as

ρ−1e× [f
(
∇ · ρ−1g

)
− ρ−1g (∇ · f) +

(
ρ−1g · ∇

)
f − (f · ∇) ρ−1g]
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−
(
ρ−1f × ρ−1g

)
∇ · e

The second term and the last term cancel by summation over permutations.

To deal with the residual terms in (3.30), we use the symmetry of the curl

operator

p · ∇ ×
{
ρ−1e× [f

(
∇ · ρ−1g

)
+
(
ρ−1g · ∇

)
f − (f · ∇) ρ−1g]

}
.

Invoking Levi-Civita symbol, we may write

ǫijk∂j

{
ǫklmρ

−1 el [fm∂n
(
ρ−1gn

)
+ ρ−1gn∂nfm − fn∂n

(
ρ−1gm

)
]
}

= ∂j

{
ρ−1ei[∂n

(
ρ−1gnfj

)
− fn∂n

(
ρ−1gj

)
]

−ρ−1ej[∂n
(
ρ−1gnfi

)
− fn∂n

(
ρ−1gi

)
]
}
. (3.31)

The last two terms are manipulated as

−∂n
(
ρ−2gnfiej

)
+ ρ−1gnfi∂n

(
ρ−1ej

)
+ ∂n

(
ρ−2gifnej

)
− ρ−1gi∂n

(
ρ−1fnej

)
.

Now (3.31) is summarized as

∂j∂n
[
ρ−2 (gifnej − gnfiej)

]
+ ∂j

[
ρ−1ei∂n

(
ρ−1gnfj

)
− ρ−1gi∂n

(
ρ−1fnej

)]

+∂j
[
ρ−1gnfi∂n

(
ρ−1ej

)
− ρ−1fnei∂n

(
ρ−1gj

)]
.

each term of which cancels out by summation over the permutation. (QED)

Remark 1. If we choose p = q = r = V , the bracket (3.26) is the Poisson

bracket of the barotropic compressible fluid:

{F,G} =

∫

Ω

[
ρ−1 (∇× V ) · (∂V F × ∂VG)

−∂ρF (∇ · ∂VG)− ∂V F · ∇∂ρG
]
d3x, (3.32)
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where the state vector is u = (ρ,V )t. The Poisson operator corresponding

to Poisson bracket (3.32) is

J =




0 −∇·

−∇ −ρ−1 (∇× V )× ◦


 . (3.33)

Giving a Hamiltonian

H :=

∫

Ω

ρ

(
V 2

2
+ U (ρ)

)
d3x, (3.34)

Hamilton’s equations read

∂ρ

∂t
= −∇ · (ρV ) , (3.35)

∂V

∂t
= − (∇× V )× V −∇

(
h+

V 2

2

)
. (3.36)

3.3.2 Jacobi’s identity for the Poisson bracket of extended MHD

Now we complete the proof of Theorem (1) by verifying Jacobi’s

identity for the Poisson bracket

{F,G} = −
∫

Ω

{
[Fρ∇ ·GV + FV · ∇Gρ]−

[
ρ−1 (∇× V ) · (FV ×GV )

]

−
[
B∗ · ρ−1(FV × (∇×GB∗) ) +B∗ · ρ−1( (∇× FB∗)×GV )

]

+di
[
B∗ · ρ−1( (∇× FB∗)× (∇×GB∗) )

]

−d2e
[
(∇× V ) · ρ−1( (∇× FB∗)× (∇×GB∗) )

] }
d3x, (3.37)

where the subscripts indicate functional derivative of the functional F,G

with respect to the state variables ρ,V ,B∗, i.e Fρ = ∂ρF .

To examine Jacobi’s identity, we have to study the derivatives of

the bracket by the state variables, which consists of two groups of terms;
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group (A) is the collection of terms that include second-order derivatives

(such as FB∗,V ). Formally, group (A) is generated by pretending that the

coefficients in the Poisson operator J are independent to (or, different from)

the state vector u. The terms of group (A) cancel out when summed up in

{E, {F,G}}+ 			. Group (B) summarizes the remaining terms that are due

to the derivatives of J by u; explicitly, we have

{F,G}ρ mod ∂2 = −ρ−2 (∇× V ) · (FV ×GV )

−ρ−2B∗ · [FV × (∇×GB∗)]

−ρ−2B∗ · [(∇× FB∗)×GV ]

+di

[
ρ−2B∗ · [(∇× FB∗)× (∇×GB∗)]

]

−d2e
[
ρ−2 (∇× V ) · [(∇× FB∗)× (∇×GB∗)]

]
,

(3.38)

{F,G}V mod ∂2 = ∇× ρ−1 (FV ×GV )

+d2e

[
∇× ρ−1( (∇× FB∗)× (∇×GB∗) )

]
,(3.39)

{F,G}B∗ mod ∂2 = ρ−1(FV × (∇×GB∗) )

+ρ−1( (∇× FB∗)×GV )

−di
[
ρ−1( (∇× FB∗)× (∇×GB∗) )

]
. (3.40)

In what follows, we show that the remaining group (B) terms cancel out.
By (3.38), (3.39), and (3.40), we obtain

{E, {F,G}}+ 			=∫

Ω
EV ·

[
∇
(
ρ−2 (∇× V ) · (FV ×GV )

)
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−ρ−1 (∇× V )× [∇× ρ−1
(
FV ×GV

)
]

]
d3x

+

∫

Ω
EV ·

[
∇
(
ρ−2B∗ · [FV × (∇×GB∗)]

)

+[∇× (ρ−1FV × (∇×GB∗) )]× ρ−1B∗

]
d3x

+

∫

Ω
EV ·

[
∇
(
ρ−2B∗ · [(∇× FB∗)×GV ]

)

+[∇× (ρ−1 (∇× FB∗)×GV )]× ρ−1B∗

]
d3x

−di

∫

Ω
EV ·

[
∇
(
ρ−2B∗ · [(∇× FB∗)× (∇×GB∗)]

)

+[∇× (ρ−1 (∇× FB∗)× (∇×GB∗) )]× ρ−1B∗

]
d3x

+d2e

∫

Ω
EV ·

[
∇
(
ρ−2 (∇× V ) · [(∇× FB∗)× (∇×GB∗)]

)

−ρ−1 (∇× V )× [∇× (ρ−1 (∇× FB∗)× (∇×GB∗) )]

]
d3x

−di

∫

Ω
EB∗ · ∇ ×

[
[∇× (ρ−1FV × (∇×GB∗) )]× ρ−1B∗

+[∇× (ρ−1 (∇× FB∗)×GV )]× ρ−1B∗

]
d3x

+d2e

∫

Ω
EB∗ · ∇ ×

[
[∇× (ρ−1FV × (∇×GB∗) )]× ρ−1 (∇× V )

+[∇× (ρ−1 (∇× FB∗)×GV )]× ρ−1 (∇× V )

]
d3x

+

∫

Ω
EB∗ · ∇ ×

[
[∇× ρ−1

(
FV ×GV

)
]× ρ−1B∗

]
d3x

+d2e

∫

Ω
EB∗ · ∇ ×

[
[∇× (ρ−1 (∇× FB∗)× (∇×GB∗) )]× ρ−1B∗

]
d3x

+d2i

∫

Ω
EB∗ · ∇ ×

[
[∇× (ρ−1 (∇× FB∗)× (∇×GB∗) )]× ρ−1B∗

]
d3x

−did
2
e

∫

Ω
EB∗ · ∇ ×

[
[∇× ρ−1( (∇× FB∗)× (∇×GB∗) )]× ρ−1 (∇× V )

]
d3x+ 			

+O(∂2). (3.41)

To prove Jacobi’s identity, we collect terms that have the same combina-
tions of functional derivatives such that (EV , FV , GV ), (EV , FV , GB∗), ...,(EB∗ , FB∗ , GB∗).
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Then,

{E, {F,G}}+ 			=∫

Ω

{
(∇× V ) · [ρ−1EV × (∇× ρ−1 (FV ×GV ) )]

+EV · [∇(ρ−2 (∇× V ) · (FV ×GV ) )]

+ (∇× V ) · [ρ−1GV × (∇× ρ−1 (EV × FV ) )]

+GV · [∇(ρ−2 (∇× V ) · (EV × FV ) )]

+ (∇× V ) · [ρ−1FV × (∇× ρ−1 (GV × EV ) )]

+FV · [∇(ρ−2 (∇× V ) · (GV × EV ) )]

}
d3x

+

∫

Ω

{
B∗ · [ρ−1 (∇× EB∗)× (∇× ρ−1 [FV ×GV ] )]

+B∗ · [ρ−1GV × (∇× ρ−1 [(∇× EB∗)× FV ] )]

+GV · ∇[ρ−2B∗ · ( (∇× EB∗)× FV )]

+B∗ · [ρ−1FV × (∇× ρ−1 [GV × (∇× EB∗)] )]

+FV · ∇[ρ−2B∗ · (GV × (∇× EB∗) )]

}
d3x

+

∫

Ω

{
B∗ · [ρ−1EV × (∇× ρ−1 [FV × (∇×GB∗)] )]

+EV · ∇[ρ−2B∗ · (FV × (∇×GB∗) )]

+B∗ · [ρ−1 (∇×GB∗)× (∇× ρ−1 [EV × FV ] )]

+B∗ · [ρ−1FV × (∇× ρ−1 [(∇×GB∗)× EV ] )]

+FV · ∇[ρ−2B∗ · ( (∇×GB∗)× EV )]

}
d3x

+

∫

Ω

{
B∗ · [ρ−1EV × (∇× ρ−1 [(∇× FB∗)×GV ] )]

+EV · ∇[ρ−2B∗ · ( (∇× FB∗)×GV )]

+B∗ · [ρ−1GV × (∇× ρ−1 [EV × (∇× FB∗)] )]

+GV · ∇[ρ−2B∗ · (EV × (∇× FB∗) )]

+B∗ · [ρ−1 (∇× FB∗)× (∇× ρ−1 [GV × EV ] )]

}
d3x

−di

∫

Ω

{
B∗ · [ρ−1EV × (∇× ρ−1 [(∇× FB∗)× (∇×GB∗)] )]

+EV · ∇[ρ−2B∗ · ( (∇× FB∗)× (∇×GB∗) )]

+B∗ · [ρ−1 (∇×GB∗)× (∇× ρ−1 [EV × (∇× FB∗)] )]
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+B∗ · [ρ−1 (∇× FB∗)× (∇× ρ−1 [(∇×GB∗)× EV ] )]

}
d3x

+d2e

∫

Ω

{
(∇× V ) · [ρ−1EV × (∇× ρ−1 [(∇× FB∗)× (∇×GB∗)] )]

+EV · ∇[ρ−2 (∇× V ) · ( (∇× FB∗)× (∇×GB∗) )]

+ (∇× V ) · [ρ−1 (∇×GB∗)× (∇× ρ−1 [EV × (∇× FB∗)] )]

+ (∇× V ) · [ρ−1 (∇× FB∗)× (∇× ρ−1 [(∇×GB∗)× EV ] )]

}
d3x

−di

∫

Ω

{
B∗ · [ρ−1 (∇× EB∗)× (∇× ρ−1 [FV × (∇×GB∗)] )]

+B∗ · [ρ−1 (∇×GB∗)× (∇× ρ−1 [(∇× EB∗)× FV ] )]

+B∗ · [ρ−1FV × (∇× ρ−1 [(∇×GB∗)× (∇× EB∗)] )]

+FV · ∇[ρ−2B∗ · ( (∇×GB∗)× (∇× EB∗) )]

}
d3x

+d2e

∫

Ω

{
(∇× V ) · [ρ−1 (∇× EB∗)× (∇× ρ−1 [FV × (∇×GB∗)] )]

+ (∇× V ) · [ρ−1 (∇×GB∗)× (∇× ρ−1 [(∇× EB∗)× FV ] )]

+ (∇× V ) · [ρ−1FV × (∇× ρ−1 [(∇×GB∗)× (∇× EB∗)] )]

+FV · ∇[ρ−2 (∇× V ) · ( (∇×GB∗)× (∇× EB∗) )]

}
d3x

−di

∫

Ω

{
B∗ · [ρ−1 (∇× EB∗)× (∇× ρ−1 [(∇× FB∗)×GV ] )]

+B∗ · [ρ−1GV × (∇× ρ−1 [(∇× EB∗)× (∇× FB∗)] )]

+GV · ∇[ρ−2B∗ · ( (∇× EB∗)× (∇× FB∗) )]

+B∗ · [ρ−1 (∇× FB∗)× (∇× ρ−1 [GV × (∇× EB∗)] )]

}
d3x

+d2e

∫

Ω

{
(∇× V ) · [ρ−1 (∇× EB∗)× (∇× ρ−1 [(∇× FB∗)×GV ] )]

+ (∇× V ) · [ρ−1GV × (∇× ρ−1 [(∇× EB∗)× (∇× FB∗)] )]

+GV · ∇[ρ−2 (∇× V ) · ( (∇× EB∗)× (∇× FB∗) )]

+ (∇× V ) · [ρ−1 (∇× FB∗)× (∇× ρ−1 [GV × (∇× EB∗)] )]

}
d3x

+d2i

∫

Ω

{
B∗ · [ρ−1 (∇× EB∗)× (∇× ρ−1 [(∇× FB∗)× (∇×GB∗)] )]

+B∗ · [ρ−1 (∇×GB∗)× (∇× ρ−1 [(∇× EB∗)× (∇× FB∗)] )]

+B∗ · [ρ−1 (∇× FB∗)× (∇× ρ−1 [(∇×GB∗)× (∇× EB∗)] )]

}
d3x
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+d2e

∫

Ω

{
B∗ · [ρ−1 (∇× EB∗)× (∇× ρ−1 [(∇× FB∗)× (∇×GB∗)] )]

+B∗ · [ρ−1 (∇×GB∗)× (∇× ρ−1 [(∇× EB∗)× (∇× FB∗)] )]

+B∗ · [ρ−1 (∇× FB∗)× (∇× ρ−1 [(∇×GB∗)× (∇× EB∗)] )]

}
d3x

−did
2
e

∫

Ω

{
(∇× V ) · [ρ−1 (∇× EB∗)× (∇× ρ−1 [(∇× FB∗)× (∇×GB∗)] )]

+ (∇× V ) · [ρ−1 (∇×GB∗)× (∇× ρ−1 [(∇× EB∗)× (∇× FB∗)] )]

+ (∇× V ) · [ρ−1 (∇× FB∗)× (∇× ρ−1 [(∇×GB∗)× (∇× EB∗)] )]

}
d3x

+O(∂2). (3.42)

To apply Lemma1, we rewrite (3.42) in terms of the bilinear form (3.26):

{E, {F,G}}+ 			=
[
E, [F,G]VV ,V

]V
V ,V

+
[
G, [E,F ]VV ,V

]V
V ,V

+
[
F, [G,E]VV ,V

]V
V ,V

+
[
E, [F,G]A

∗

V ,V

]A∗

A∗,A∗
+
[
G, [E,F ]A

∗

A∗,V

]A∗

V ,A∗
+
[
F, [G,E]A

∗

V ,A∗

]A∗

V ,A∗

+
[
E, [F,G]A

∗

V ,A∗

]A∗

V ,A∗
+
[
G, [E,F ]A

∗

V ,V

]A∗

A∗,A∗
+
[
F, [G,E]A

∗

A∗,V

]A∗

V ,A∗

+
[
E, [F,G]A

∗

A∗,V

]A∗

V ,A∗
+
[
G, [E,F ]A

∗

V ,A∗

]A∗

V ,A∗
+
[
F, [G,E]A

∗

V ,V

]A∗

A∗,A∗

−di

([
E, [F,G]A

∗

A∗,A∗

]A∗

V ,A
∗
+
[
G, [E,F ]A

∗

V ,A∗

]A∗

A∗,A∗
+
[
F, [G,E]A

∗

A∗,V

]A∗

A∗,A∗

)

+d2e

([
E, [F,G]VA∗,A∗

]V
V ,V

+
[
G, [E,F ]VV ,A∗

]V
A∗,V

+
[
F, [G,E]VA∗,V

]V
A∗,V

)

−di

([
E, [F,G]A

∗

A∗,V

]A∗

A∗,A∗
+
[
G, [E,F ]A

∗

A∗,A∗

]A∗

V ,A∗
+
[
F, [G,E]A

∗

V ,A∗

]A∗

A∗,A∗

)

+d2e

([
E, [F,G]VA∗,V

]V
A∗,V

+
[
G, [E,F ]VA∗,A∗

]V
V ,V

+
[
F, [G,E]VV ,A∗

]V
A∗,V

)

−di

([
E, [F,G]A

∗

V ,A∗

]A∗

A∗,A∗
+
[
G, [E,F ]A

∗

A∗,V

]A∗

A∗,A∗
+
[
F, [G,E]A

∗

A∗,A∗

]A∗

V ,A∗

)

+d2e

([
E, [F,G]VV ,A∗

]V
A∗,V

+
[
G, [E,F ]VA∗,V

]V
A∗,V

+
[
F, [G,E]VA∗,A∗

]V
V ,V

)

+d2i

([
E, [F,G]A

∗

A∗,A∗

]A∗

A∗,A∗
+
[
G, [E,F ]A

∗

A∗,A∗

]A∗

A∗,A∗
+
[
F, [G,E]A

∗

A∗,A∗

]A∗

A∗,A∗

)

+d2e

([
E, [F,G]A

∗

A∗,A∗

]A∗

A∗,A∗
+
[
G, [E,F ]A

∗

A∗,A∗

]A∗

A∗,A∗
+
[
F, [G,E]A

∗

A∗,A∗

]A∗

A∗,A∗

)
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−did
2
e

([
E, [F,G]VA∗,A∗

]V
A∗,V

+
[
G, [E,F ]VA∗,A∗

]V
A∗,V

+
[
F, [G,E]VA∗,A∗

]V
A∗,V

)

+O(∂2). (3.43)

By Lemma1, only O(∂2) terms remain on the right-hand side and the rest

of the terms vanish. As we have mentioned, on the other hand, O(∂2)

vanishes in {E, {F,G}}+ 			. Hence, Jacobi’s identity has been proved.

3.4 Extended MHD Casimir invariants

The Poisson bracket (3.37) posses three independent Casimir invari-

ants, given as

• electron helicity at the one-fluid limit

C1 =
1

2

∫

Ω

(
A∗ − 2d2e

di
V

)
·B∗d3x, (3.44)

• ion helicity at the one-fluid limit

C2 =
1

2

∫

Ω

[
(A∗ + diV ) · (B∗ + di∇× V ) + d2eV · (∇× V )

]
d3x,

(3.45)

• total mass density

C3 =

∫

Ω

ρ d3x, (3.46)

whilst the following are dependent invariants, which are created as a special

combinations of (3.44) and (3.45),

• combined modified magnetic and flow helicities

C4 =
1

2

∫

Ω

[
A∗ ·B∗ + d2eV · (∇× V )

]
d3x, (3.47)
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• combined modified cross and flow helicities

C5 =
1

2

∫

Ω

V · [2B∗ + di∇× V ] d3x, (3.48)

• generalized helicity

C6 =
1

2

∫

Ω

P ∗
± ·
(
∇× P ∗

±

)
d3x, (3.49)

where P ∗
± = V + θ±A

∗ and θ± =
(
di ±

√
d2i + 4d2e

)
/ (2d2e).

It is also worth to mention here that, the extended MHD invariants (3.49),

which endow two helicities akin to the magnetic or fluid helicity, is different

from ideal MHD in this respect since the ideal MHD has only one [1,2,92,93].

This has to do with the fact that Hall MHD (and, in a similar manner,

extended MHD as well) is a singular perturbation of ideal MHD [100,179].

3.5 Boundary conditions

Unlike the canonical Poisson bracket, if we deal with noncanonical

Poisson bracket, the boundary condition will become critical. To prove the

bracket properties, viz., antisymmetry, Leibniz property, Jacobi’s identity,

or to derive the equations of motion from the Poisson bracket, or to find

Casimir invariants of the dynamical system, surface terms must be vanished

using appropriate boundary conditions.

The Poisson bracket (3.37) in the following form

{F,G} = −
∫

Ω

{
[Fρ (∇ ·GV )− (∇ · FV )Gρ]−

[
ρ−1 (∇× V ) · (FV ×GV )

]

−
[
B∗ · ρ−1(FV × (∇×GB∗) ) +B∗ · ρ−1( (∇× FB∗)×GV )

]
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+di
[
B∗ · ρ−1( (∇× FB∗)× (∇×GB∗) )

]

−d2e
[
(∇× V ) · ρ−1( (∇× FB∗)× (∇×GB∗) )

] }
d3x, (3.50)

directly satisfies the antisymmetry using the standard vector calculus iden-

tities without the needs of boundary conditions.

The boundary conditions required for the Jacobi’s identity can be

easily identified through the proof of the permutation law (3.27). We found

that the required boundary conditions to prove the Jacobi’s identity are

n×A∗|∂Ω = 0 ⇐⇒ n ·B∗|∂Ω = 0,

n× V |∂Ω = 0

In order to obtain the equations of motions, we shall use the adjoint

representation

d

dt
F = {F,H }, (3.51)

which needs a specific choose of the functional F in order to represent the

dynamical variables of the system, i.e., ρ, V and B∗, and the gradient of

the Hamiltonian. The later is given in (3.24), which require the following

boundary condition

n×B|∂Ω = 0.

Then, defining the functional F in terms of the delta function as

F =

∫

Ω

f δ (x− x0) d
3x, (3.52)

45



where f represents the dynamical variables. The delta function will use to

eliminate the integrals from the both sides of the above equation of motion

(3.51).

To drive the continuity equation (3.20), the functional F is

F =

∫

Ω

ρ δ (x− x0) d
3x,

and since the functional derivative Fρ appears only once in the Poisson

bracket (3.50), equation (3.51) yields

∂ρ

∂t
= −∇ · (ρV ) ,

which no integrations by parts are used, and then no boundary conditions

are needed.

In order to drive the momentum equation (3.21), we follow a very

similar procedure. Looking at the bracket (3.50), we can see that there are

three terms involving FV ,

(∇ · FV )Hρ + ρ−1 (∇× V ) · (FV × HV ) +B∗ · ρ−1(FV × (∇× HB∗) ),

where the first term only needs integration by parts, which require the

following boundary condition

n · FV |∂Ω = 0,

for all functionals. Thus, using standard vector calculus identities, we have

∂V

∂t
= − (∇× V )× V + ρ−1 (∇×B)×B∗

−∇
(
h+

V 2

2
+ d2e

(∇×B)2

2ρ2

)
,
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Finally, derivation of the generalized Ohms law (3.22) required inte-

grations by parts for all of the rest three terms of the bracket (3.50)

B∗ · ρ−1( (∇× FB∗)× HV )− diB
∗ · ρ−1( (∇× FB∗)× (∇× HB∗) )

+d2e (∇× V ) · ρ−1( (∇× FB∗)× (∇× HB∗) ),

which needs the following boundary condition

n× FB∗ |∂Ω = 0,

to yield

∂B∗

∂t
= ∇× (V ×B∗)− di∇×

(
ρ−1 (∇×B)×B∗

)

+d2e∇×
(
ρ−1 (∇×B)× (∇× V )

)
.

For the invariants of the extended MHD given in Sec. 3.4, we found

that the required boundary conditions can be given as

n ·B∗|∂Ω = 0,

n× V |∂Ω = 0.

To summarize the above calculations, it should be noted that, the

Poisson bracket (3.50) with the the following boundary condition

n ·B∗|∂Ω = 0, (3.53)

n× V |∂Ω = 0., (3.54)
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define a Poisson algebra. Also, for some limited class of observables that

satisfies the following boundary conditions

n× FB∗ |∂Ω = 0, (3.55)

n · FV |∂Ω = 0, (3.56)

for all the functionals, we can convert the Poisson bracket (3.50) to the

conventional form

{F,G} = 〈Fu, JGu〉 , (3.57)

where Poisson operator J is defined by (3.25). Then we can directly recover

the extended MHD equations of motion.

3.6 Macroscopic limits of extended MHD

3.6.1 Hall MHD

The Hall MHD system of equations is an approximate two-fluid

model, in which electrons are considered to be completely inertia-less, and

then the magnetic field lines are frozen in the electron fluid, whilst ions

are considered to be decoupled from the magnetic field lines. To see the

relation to the extended MHD, we present the formulation.

Upon setting the electron skin depth de = 0 (neglecting electron in-

ertia), in the extended MHD model (3.19)-(3.21), we obtain the normalized

Hall MHD equations,

∂ρ

∂t
= −∇ · (ρV ) , (3.58)
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∂V

∂t
= − (∇× V )× V + ρ−1 (∇×B)×B −∇

(
h+

V 2

2

)
, (3.59)

,

∂B

∂t
= ∇× (V ×B)− di∇×

(
ρ−1 (∇×B)×B

)
. (3.60)

In Hall MHD, the state vector is u = (ρ,V ,B)t, and the energy is

HH :=

∫

Ω

{
ρ

(
V 2

2
+ U (ρ)

)
+
B2

2

}
d3x. (3.61)

Also, under the same condition the extended MHD Poisson operator (3.25)

reduces into

JH =




0 −∇· 0

−∇ − (∇×V )×◦
ρ

(∇×◦)×B

ρ

0 ∇× (◦×B)
ρ

−di∇×
(

(∇×◦)×B

ρ

)



, (3.62)

3.6.1.1 Poisson bracket and Jacobi’s identity for Hall MHD

The noncanonical Poisson bracket of the Hall MHD system is given

as

{F,G} = −
∫

Ω

{
[Fρ∇ ·GV + FV · ∇Gρ] +

[
FV · ρ−1 ((∇× V )×GV )

]

−
[
B · ρ−1 (FV × (∇×GB)) +B · ρ−1 ((∇× FB)×GV )

]

+di
[
B · ρ−1 ((∇× FB)× (∇×GB))

] }
d3x. (3.63)

The Poisson bracket of Hall MHD can be rewritten in terms of the gener-

ating bracket (3.26) as

{F,G} = [F,G]VV ,V + [F,G]AV ,A + [F,G]AA,V − di [F,G]
A

A,A

+

∫

Ω

[Fρ∇ ·GV + FV · ∇Gρ] d
3x. (3.64)
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After similar calculations as (3.42), we may write the Hall MHD Jacobi
identity as

{E, {F,G}}+ 			=
[
E, [F,G]VV ,V

]V
V ,V

+
[
G, [E,F ]VV ,V

]V
V ,V

+
[
F, [G,E]VV ,V

]V
V ,V

+
[
E, [F,G]AV ,V

]A
A,A

+
[
G, [E,F ]AA,V

]A
V ,A

+
[
F, [G,E]AV ,A

]A
V ,A

+
[
E, [F,G]AV ,A

]A
V ,A

+
[
G, [E,F ]AV ,V

]A
A,A

+
[
F, [G,E]AA,V

]A
V ,A

+
[
E, [F,G]AA,V

]A
V ,A

+
[
G, [E,F ]AV ,A

]A
V ,A

+
[
F, [G,E]AV ,V

]A
A,A

−di

[ [
E, [F,G]AA,A

]A
V ,A

+
[
G, [E,F ]AV ,A

]A
A,A

+
[
F, [G,E]AA,V

]A
A,A

]

−di

([
E, [F,G]AA,V

]A
A,A

+
[
G, [E,F ]AA,A

]A
V ,A

+
[
F, [G,E]AV ,A

]A
A,A

)

−di

([
E, [F,G]AV ,A

]A
A,A

+
[
G, [E,F ]AA,V

]A
A,A

+
[
F, [G,E]AA,A

]A
V ,A

)

+d2i

([
E, [F,G]AA,A

]A
A,A

+
[
G, [E,F ]AA,A

]A
A,A

+
[
F, [G,E]AA,A

]A
A,A

)

+O(∂2), (3.65)

which, by Lemma1, vanishes, proving Jacobi’s identity.

3.6.1.2 Hall MHD Casimir invariants

The Hall MHD has three independent Casimir invariants given by

• magnetic helicity

CH
1 =

1

2

∫

Ω

A ·B d3x, (3.66)

• ion helicity

CH
2 =

1

2

∫

Ω

(A+ diV ) · (B + di∇× V ) d3x, (3.67)
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• total mass

CH
3 =

∫

Ω

ρ d3x, (3.68)

and the independent invariant, which is a result of the combination of the

magnetic and ion canonical helicities

• combined cross and fluid helicities

CH
4 =

1

2

∫

Ω

V · (2B + di∇× V ) d3x, , (3.69)

We can easily show that the Casimir invariants (3.66) and (3.67) are the

reductions of the extended MHD Casimir invariants (3.44), (3.45) , respec-

tively, whilst the dependent invariant (3.69) from (3.48), in the limit of

de → 0.

3.6.2 Inertial MHD

The inertial MHD model is obtained by setting the ion skin depth

di = 0 (neglecting Hall drift) in the extended MHD model, which yields

∂ρ

∂t
= −∇ · (ρV ) , (3.70)

∂V

∂t
= − (∇× V )× V + ρ−1 (∇×B)×B∗

−∇
(
h+

V 2

2
+ d2e

(∇×B)2

2ρ2

)
, (3.71)

∂B∗

∂t
= ∇× (V ×B∗) + d2e∇×

(
ρ−1 (∇×B)× (∇× V )

)
. (3.72)
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The energy is

Hinertial :=

∫

Ω

{
ρ

(
V 2

2
+ U (ρ)

)
+
B2

2
+ d2e

(∇×B)2

2ρ

}
d3x. (3.73)

With respect to the state vector u = (ρ,V ,B∗)t, the Poisson operator of

the inertial MHD is

Jinertial =




0 −∇· 0

−∇ − (∇×V )×◦
ρ

(∇×◦)×B∗

ρ

0 ∇× (◦×B∗)
ρ

d2e∇×
(

(∇×◦)×(∇×V )
ρ

)



. (3.74)

It may appear unphysical to drop di while retaining de since electron

inertia length scale is much less than the Hall length scale. However, this

limit may be valid when the timescale of current changes is much shorter

than the electrons gyro period [79].

3.6.2.1 Poisson bracket and Jacobi’s identity for inertial MHD

The Poisson bracket of the inertial MHD system is written as

{F,G} = −
∫

Ω

{
[Fρ∇ ·GV + FV · ∇Gρ]−

[
ρ−1 (∇× V ) · (FV ×GV )

]

−
[
B∗ · ρ−1(FV × (∇×GB∗) ) +B∗ · ρ−1( (∇× FB∗)×GV )

]

−d2e
[
(∇× V ) · ρ−1( (∇× FB∗)× (∇×GB∗) )

]}
d3x. (3.75)

Using the generating bracket (3.26), the inertial MHD Poisson bracket

(3.75) can be written as

{F,G} = [F,G]VV ,V + [F,G]A
∗

V ,A∗ + [F,G]A
∗

A∗,V + d2e [F,G]
V

A∗,A∗

+

∫

Ω

[Fρ∇ ·GV + FV · ∇Gρ] d
3x. (3.76)
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Then, the Jacobi identity for the inertial MHD can be obtained directly
from (3.43) by imposing the limit di = 0, which gives

{E, {F,G}}+ 			=
[
E, [F,G]VV ,V

]V
V ,V

+
[
G, [E,F ]VV ,V

]V
V ,V

+
[
F, [G,E]VV ,V

]V
V ,V

+
[
E, [F,G]A

∗

V ,V

]A∗

A∗,A∗
+
[
G, [E,F ]A

∗

A∗,V

]A∗

V ,A∗
+
[
F, [G,E]A

∗

V ,A∗

]A∗

V ,A∗

+
[
E, [F,G]A

∗

V ,A∗

]A∗

V ,A∗
+
[
G, [E,F ]A

∗

V ,V

]A∗

A∗,A∗
+
[
F, [G,E]A

∗

A∗,V

]A∗

V ,A∗

+
[
E, [F,G]A

∗

A∗,V

]A∗

V ,A∗
+
[
G, [E,F ]A

∗

V ,A∗

]A∗

V ,A∗
+
[
F, [G,E]A

∗

V ,V

]A∗

A∗,A∗

+d2e

([
E, [F,G]VA∗,A∗

]V
V ,V

+
[
G, [E,F ]VV ,A∗

]V
A∗,V

+
[
F, [G,E]VA∗,V

]V
A∗,V

)

+d2e

([
E, [F,G]VA∗,V

]V
A∗,V

+
[
G, [E,F ]VA∗,A∗

]V
V ,V

+
[
F, [G,E]VV ,A∗

]V
A∗,V

)

+d2e

([
E, [F,G]VV ,A∗

]V
A∗,V

+
[
G, [E,F ]VA∗,V

]V
A∗,V

+
[
F, [G,E]VA∗,A∗

]V
V ,V

)

+d2e

([
E, [F,G]A

∗

A∗,A∗

]A∗

A∗,A∗
+
[
G, [E,F ]A

∗

A∗,A∗

]A∗

A∗,A∗
+
[
F, [G,E]A

∗

A∗,A∗

]A∗

A∗,A∗

)

+O(∂2). (3.77)

As in the previous cases, O(∂2) terms cancels. Hence, Lemma1, we obtain

Jacobi’s identity.

3.6.2.2 Inertial MHD Casimir invariants

Akin to the extended and Hall MHD, the inertial MHD has three

independent Casimir invariants:

• modified cross helicity

C in
1 =

∫

Ω

V ·B∗d3x, (3.78)

• electron canonical helicity

C in
4 =

1

2

∫

Ω

P ⋆ · (∇× P ⋆) d3x, (3.79)
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where P ⋆ = V ± 1
de
A∗.

• total mass helicity

C in
3 =

∫

Ω

ρ d3x. (3.80)

The combination of the Casimir invariants (3.78) and (3.79) yields

• combined modified magnetic helicity and fluid helicity

C in
2 =

1

2

∫

Ω

[
A∗ ·B∗ + d2eV · (∇× V )

]
d3x, (3.81)

The first Casimir (3.78) comes from (3.44) by multiply the latter by − di
2d2e

,

and then sitting di → 0. Further, (3.79) obtained by setting di = 0 in (3.49).

The last Casimir is identical to (3.47), and also can be directly obtained by

neglecting di in (3.45).

3.6.3 Indeal MHD

Finally, neglecting both the ion and electron skin depths concur-

rently yields the plasma physics simplest model, ideal MHD. Notice that,

Hamiltonian structure of the ideal MHD was first given in [117]. The gov-

erning equations are composed as follow

∂ρ

∂t
= −∇ · (ρV ) , (3.82)

∂V

∂t
= − (∇× V )× V + ρ−1 (∇×B)×B −∇

(
h+

V 2

2

)
, (3.83)

∂B

∂t
= ∇× (V ×B) . (3.84)
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Furthermore, it was shown that the ideal MHD dynamical equations (3.82),

(3.83), and (3.84), conserve the energy:

Hideal :=

∫

Ω

{
ρ

(
V 2

2
+ U (ρ)

)
+
B2

2

}
d3x. (3.85)

The dynamical variable in ideal MHD is u = (ρ,V ,B)t.

The ideal MHD Poisson operator has the form

Jideal =




0 −∇· 0

−∇ − (∇×V )×◦
ρ

(∇×◦)×B

ρ

0 ∇× (◦×B)
ρ

0



. (3.86)

3.6.3.1 Poisson bracket and Jacobi’s identity for ideal MHD

The ideal MHD has a Poisson bracket given as

{F,G} = −
∫

Ω

{
[Fρ∇ ·GV + FV · ∇Gρ]−

[
ρ−1 (∇× V ) · (FV ×GV )

]

−
[
B · ρ−1(FV × (∇×GB) ) +B · ρ−1( (∇× FB)×GV )

]}
d3x.

(3.87)

Poisson bracket (3.87) can be written in terms of the generating bracket

(3.26), as

{F,G} = [F,G]VV ,V + [F,G]AV ,A + [F,G]AA,V +

∫

Ω

[Fρ∇ ·GV + FV · ∇Gρ] d
3x.

(3.88)

Also, so, the Jacobi identity for the ideal MHD in terms of the generating
bracket (3.26) can be written as

{E, {F,G}}+ 			=
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[
E, [F,G]VV ,V

]V
V ,V

+
[
G, [E,F ]VV ,V

]V
V ,V

+
[
F, [G,E]VV ,V

]V
V ,V

+
[
E, [F,G]AV ,V

]A
A,A

+
[
G, [E,F ]AA,V

]A
V ,A

+
[
F, [G,E]AV ,A

]A
V ,A

+
[
E, [F,G]AV ,A

]A
V ,A

+
[
G, [E,F ]AV ,V

]A
A,A

+
[
F, [G,E]AA,V

]A
V ,A

+
[
E, [F,G]AA,V

]A
V ,A

+
[
G, [E,F ]AV ,A

]A
V ,A

+
[
F, [G,E]AV ,V

]A
A,A

+O(∂2). (3.89)

Thus, the Jacobi’s identity (3.89) verified by using the advantages of

Lemma1.

3.6.3.2 Ideal MHD Casimir invariants

It is well known that the ideal MHD has the following Casimir in-

variants:

• Magnetic helicity

C i
1 =

1

2

∫

Ω

V ·B d3x, (3.90)

• Cross helicity

C i
2 =

∫

Ω

V ·B d3x, (3.91)

• Total mass

C i
3 =

∫

Ω

ρ d3x. (3.92)
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Chapter 4

Alfvén waves as creations on Casimir leaves

of extended MHD

4.1 Alfvén waves

Alfvén waves are the most typical electromagnetic phenomena in

magnetized plasmas. In particular, nonlinear Alfvén waves deeply influ-

ence various plasma regimes in laboratory as well as in space, which have

a crucial role in plasma heating [14, 65, 105], turbulence [22, 57, 154], re-

connection [131], etc. An interesting property of the Alfvén waves, the

amplitudes as well as wave forms are totally arbitrary when they propa-

gate on a homogenous ambient magnetic field [44, 66]. In fact, we often

observe large-amplitude Alfvén waves in orderly propagation (for example

Ref. [121]). To put it in theoretical language, the set A of Alfvén waves

after an appropriate transformation (see Ref. [100]), is a closed linear sub-

space, i.e., every linear combination of the members of A gives solution to

the fully nonlinear wave equation. Needless to say, the set of general solu-

tions to a linear equation is, by definition, a linear subspace. However, it is

remarkable that the nonlinear MHD equation has such a linear subspace A

of solutions.

Here we investigate the underlying mechanism producing such solu-

tions in the context of a more accurate framework, generalized MHD. When
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we take into account dispersion effects (we consider both ion and electron

inertial effects [1, 79]), the wave forms are no longer arbitrary (remember

that the ideal MHD model is dispersion free). Yet, we find that the general-

ized MHD system has a linear subspace of nonlinear solutions. The Casimir

invariants of the system are the root cause of this interesting property [176].

We start by giving Linear dispersion relation of extended MHD mod-

els, e.g., ideal, Hall, and extended MHD. We derive nonlinear wave solutions

of the extended MHD Models by putting the problem in the perspective of

Hamiltonian mechanics. Via constructing equilibrium solutions (so-called

Beltrami equilibrium) on Casimir leaves, we derive nonlinear wave solu-

tions. The dispersion relation is exactly that of the linear theory, while the

wave amplitude may be arbitrarily large. The wave function is composed

of two components bearing distinct length scales.

4.2 Linear dispersion relation of extended MHD

In this section, we shall construct the linear theory for the extended

MHD equations (3.19), (3.20) and (3.21), see Sec. 3.2.1. Then we shall

discuses the limits to the Hall and ideal MHD models.

To look for the linear dispersion relation we split the fields to their

ambient and fluctuating parts, as

V = v,

B = êz + b,

ρ = 1 + ρ̃,





(4.1)
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where B0 = êz is the ambient magnetic field, ρ0 = 1 is the equilibrium

density, which all equilibrium quantities are given in normalized units and

the ambient flow is considered to be zero. The perturbed quantities are

proportional to exp (ik · r − iωt), where ω is the frequency and k is the

wavevector. Notice that the total pressure is considered to be barotropic

and adiabatic, i.e., it obeys the relation

p = sρν , (4.2)

where s is the proportional constant and ν is the adiabatic index. Then the

perturbed equation of state may be given as

∇p̃ = C2
s∇ρ̃, (4.3)

where Cs ∝
√
ν is the speed of sound. It is evident from the above relations

that the incompressible limit is corresponding to an infinite adiabatic index

ν and so an infinite speed of sound Cs.

Now, substituting the ansatz (4.1) along with (4.3) in the linearized

equations of the extended MHD system (3.19)-(3.21), yields, respectively,

ρ̃ =
k · v
ω

, (4.4)

−ωv = (k × b)× êz −
Cs

ω
k (k · v)

= (kzb− kbz)−
Cs

ω
k (k · v) , (4.5)

−ω
[
1 + d2ek

2
]
b = k × (v × êz)− idik × ([k × b]× êz)−

Cs

ω
k (k · v)

= (kzv − (k · v) êz)− idikz (k × b) , (4.6)
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where we used the vector calculus identities along with the notations

b∗ =
[
1 + d2ek

2
]
b. (4.7)

The notation k · b = 0 is also used, which came from the fact that the

magnetic field must be divergence-free. Taking the dot product from the

LHS of (4.5) with k, we get

k · v =
ωk2bz

ω2 − C2
sk

2
(4.8)

The z-component of (4.5) and (4.6), respectively, are

ωvz =
Cs

ω
kz (k · v) (4.9)

−ω
[
1 + d2ek

2
]
bz = (kzvz − (k · v))− idikzjz (4.10)

where jz = (k × b) · êz.

Combining (4.9) and (4.10), we end up with

ω
[
1 + d2ek

2
]
bz = k2bz

(
(ω2 − C2

sk
2
z)

ω (ω2 − C2
sk

2)

)
+ idikzjz. (4.11)

By taking the cross product on both sides of (4.5) and (4.6) with k and

then calculating the z-component, this leads us to

−ω (k × v) · êz = kzbz, (4.12)

−ω
[
1 + d2ek

2
]
jz = (k × v) · êz + idik

2kzjz. (4.13)

Thus, we can express jz as

jz = −i diωk
2kzbz

(ω2 [1 + d2ek
2]− k2z)

(4.14)
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Substituting (4.14) into (4.11), we ends up with the linear dispersion rela-

tion of the extended MHD,

[
Γω2 − k2z

] [
Γω4 −

(
1 + ΓC2

s

)
k2ω2 + C2

sk
2k2z
]
= d2iω

2k2k2z
(
ω2 − C2

sk
2
)
,

(4.15)

where Γ = [1 + d2ek
2]. We note that the first term in the LHS of (4.15)

gives the Alfvén dispersion relation and the second term gives the fast and

slow magneto-acoustic dispersion relations when individually set to zero,

which both are modified by the electron inertia effect. These two terms

are coupled together by the RHS term of (4.15), which arises from the Hall

effect.

Now, a few general observations regarding this dispersion relation

(4.15) are in order.

• When the electron skin depth ignored (de → 0), the dispersion relation

(4.15) reduces to the Hall MHD dispersion relation [44, 122], which

reads

[
ω2 − k2z

] [
ω4 −

(
1 + C2

s

)
k2ω2 + C2

sk
2k2z
]
= d2iω

2k2k2z
(
ω2 − C2

sk
2
)
.

(4.16)

• When both the electron and ion skin depths ignored (de and di → 0)

in (4.15), the results is the dispersion relation of the ideal MHD [44],

[
ω2 − k2z

] [
ω4 −

(
1 + C2

s

)
k2ω2 + C2

sk
2k2z
]
= 0. (4.17)
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• When Cs → ∞ (incompressible fluid), the dispersion relation (4.15)

have the solutions,

ω =
−kz

(1 + d2ek
2)

[
±dik ∓

√
d2i k

2

4
+ (1 + d2ek

2)

]
(4.18)

• When Cs = 0 (cold plasma) or Cs → ∞ (incompressible fluid), the

dispersion relation (4.15) for parallel propagation (kz = k) possesses

the same solutions,

ω =
−k

(1 + d2ek
2)

[
±dik ∓

√
d2i k

2

4
+ (1 + d2ek

2)

]
(4.19)

• In the case of warm plasma, which the sound speed is finite, the dis-

persion relation (4.15) has six solutions. In Fig. 4.1, the three positive

frequency solutions are plotted against wavenumber k. To do that,

we first introduce the angle θ to be the angle between the ambient

magnetic field and the wave vector, so that kz = k cos (θ). Figs. 4.1a

- 4.1d, shows the dispersion relations of three mode obtained from

(4.15), for parallel propagation (θ◦ = 0)and different sound speed.

The values of the sound speed are chosen relative to the Alfvén speed

(VA = 1 in normalized units). The dispersion relation of the sound

wave (ω = Csk), plotted as a reference to identify the coupling and the

converting between the different modes. We note that for Cs << VA

the sound wave (orange line) is uncoupled from the fast and slow mag-

netoacoustic waves (red and blue lines respectively), and the sound

mode survives only for very low and very high frequency, which is

evanescent in between, as shown in Fig.4.1a. As the sound speed in-

creased, different coupling arises between the three different modes, as
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shown in Figs. 4.1b, 4.1c and 4.1d. We also observe the conversion of

the solutions from mode to another as the sound speed change. Figs.

4.1e and 4.1f shows the interaction of the mode for two examples of

oblique propagations (θ◦ = 15 and θ◦ = 85).
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Figure 4.1: The dispersion relation in warm Plasmas governed by the ex-
tended MHD for fixed ion skin depth di = 1 and electron skin depth
de = 0.0233. Figs. (a), (b), (c) and (d), for parallel propagation θ = 0
and different value of the sound speed Cs. Figs. (e) and (f), For oblique
propagation θ◦ = 15 and θ◦ = 85 and fixed sound speed Cs = 0.7. The
dashed magenta line is the sound wave dispersion relation (ω = Csk), which
used as a reference. The two vertical dashed lines separate the ideal, Hall
and electron inertia regimes respectively (when viewed from left to right).
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4.3 Nonlinear Alfvén waves

4.3.1 Nonlinear Alfvén waves in ideal MHD

Here we consider an ideal MHD plasma obeying the dynamical equa-

tions (3.82), (3.83) and (3.84), see Sec. 3.6.3, which the Hamiltonian struc-

ture ideal MHD is presented. The existence of Casimir invariants is the

signature of the noncanonicality, by which the orbits in the phase space are

restricted to stay on the Casimir leaves (the level-sets of the Casimir in-

variants) [116]. The equilibrium points are, then, the stationary points

of the Hamiltonian (energy) on the Casimir leaves. The cross helicity

C i
2 =

∫
Ω
V · B d3x (see Sec. 3.6.3.2) is one of the Casimir invariants of

MHD, which is relevant to the present purpose of constructing nonlinear

Alfvén waves.

Minimizing the Hamiltonian (3.85) with the constraint on C i
2, we

obtain

V = ±B. (4.20)

Evidently, every B, being combined with V = ±B, is an equilibrium (∂t =

0) solution of the ideal incompressible MHD equations.

We can convert these equilibrium stats to Alfvén waves propagating

on a homogeneous ambient magnetic field B0 (which can be arbitrarily

chosen) [176]. Let us rewrite B and V = ±B as

B = B0 + b, V = ±B0 + v. (4.21)

Boosting the coordinate x → x ∓B0t, we find that the decomposed com-

ponent (which is the wave component) satisfies
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∂v

∂t
= −(∇× v)× v + (∇× b)× (b+B0)

−∇(V 2/2 + P ), (4.22)

∂b

∂t
= ∇× [v × (b+B0)], (4.23)

which are exactly the Alfvén wave equations with an ambient field B0.

Notice that the wave component b and v propagate with the Alfvén velocity

±B0.

4.3.2 Nonlinear Alfvén waves in Hall MHD

We consider a collisionless plasma consisting of a completely mag-

netized electrons and a partially magnetized ions. This plasma is governed

by the Hall MHD, which the dynamical equations are (3.58)-(3.60). The

Hamiltonian structure of Hall MHD has been discussed in Sec.3.6.1, which

the equations of motion are shown to conserve the energy,

HH :=

∫

Ω

{
ρ

(
V 2

2
+ U (ρ)

)
+
B2

2

}
d3x. (4.24)

Also, it is shown that the Hall MHD Poisson bracket possess the following

Casimir invariants;

CH
1 =

1

2

∫

Ω

A ·B d3x, (4.25)

CH
2 =

1

2

∫

Ω

(A+ diV ) · (B + di∇× V ) d3x, (4.26)

CH
3 =

∫

Ω

ρ d3x, (4.27)

We can invoke the method of [176,177] to construct nonlinear wave solutions

by the Casimir invariants and the Hamiltonian. We first construct energy-
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Casimir equilibrium by extremizing

Hµ (u) = H (u)−
3∑

n=1

µnCn (u) . (4.28)

Using the energy (4.24) along with the Casimir invariants (4.25)-(4.27) in

(4.28), the Euler-Lagrange equation ∂uHµ = 0 can read as follow:

• the functional derivative with respect to B gives

∇×B = (µ1 + µ2)B + diµ2∇× V , (4.29)

• the functional derivative with respect to V gives

ρV = diµ2 (B + di∇× V ) , (4.30)

• the functional derivative with respect to ρ gives

V 2

2
+ h (ρ)− µ3 = 0, (4.31)

where µ1, µ2 and µ3 are Lagrange multipliers.

Assuming that the system incorporated incompressible flow (∇ · V = 0)

with a constant mass density ρ = 1, equations (4.29) and (4.30) combine

to yield a double-curl Beltrami equation

∇×∇×B −
(
µ1 +

1

d2iµ2

)
∇×B +

1

d2i

(
1 +

µ1

µ2

)
B = 0. (4.32)

This can be factorized in terms of a single Beltrami as

(curl − λ+) (curl − λ−)B = 0, (4.33)
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where the eigenvalues λ± are determined by

λ+ + λ− = µ1 +
1

d2iµ2
,

λ+λ− = 1
d2i

(
1 + µ1

µ2

)
.



 (4.34)

Equation (4.33) shows that the general solution of the double-curl Beltrami

(4.32) can be given by a linear combination of two curl operator eigenfunc-

tions, such as

B = a+G+ + a−G−, (4.35)

with G± are the eigenfunctions of the operator ((curl − λ±)G± = 0) and

a± are arbitrary constants.

Let us now use solution (4.35) along with the equilibrium equations

(4.29) and (4.30) to define the corresponding flow field solution. This leads

us to

V = dia+ (λ+ − µ1)G+ + dia− (λ− − µ1)G−. (4.36)

Now, we are in a position to construct the nonlinear wave solutions of the

Hall MHD. Let us first setting one of the Beltrami eigenvalues to be zero,

i.e., λ− = 0 which implies that the corresponding eigenfunction G− =

G0 constant (harmonic field). Then, equations (4.34), (4.35) and (4.36),

become, respectively,

µ1 = −µ2 = µ
H
,

λ+ = λ
H
= µ

H
− 1

d2iµH

,

}
(4.37)

B = a0G0 + a
H
G

H
, (4.38)
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V = −dia0µH
G0 −

a
H

diµH

G
H
, (4.39)

where the index H indicates the Hall MHD.

Considering that the harmonic field to be the ambient magnetic field,

i.e., G0 = B0 = ẑ in normalized units with a0 = 1. Thus, we can look to

the solutions (4.38) and (4.39) as consisting of an ambient component and

wave component. Thence, those solutions can be rewritten as

B = ẑ + b, V = −di µH
ẑ + v, (4.40)

where

b = −diµH
v. (4.41)

It is important to note that equations (4.40) and (4.41) are representing the

Beltrami stationary solutions satisfying

0 = ∇× (V ×B)− di∇×
(
ρ−1 (∇×B)×B

)
, (4.42)

0 = ∇× [V × (B + V )] + (1− di)∇× ((∇×B)×B) , (4.43)

Boosting the system under Galilean-transformation, which gives the coordi-

nate of a point in the moving reference frame (moves with uniform velocity)

as measured from the fixed frame, yields the new coordinates:

(x, y, z) 7−→ (x, y, ξ) := (x, y, z + di µH
t) .

where t 7→ τ := t and z 7→ ξ := z + di µH
t. The transformations of

derivatives with respect to the coordinates are

∇x,y,z 7→ ∇̃x,y,ξ,
∂

∂t
7→ ∂

∂τ
+ di µH

∂

∂ξ
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where for 3-vector X (with ∇ ·X = 0),

−µ
H

∂X

∂ξ
= ∇× (µ

H
ẑ ×X) ,

is true. Upon using (4.40), we can boost the equilibrium system (4.42) and

(4.43) in to

∂b

∂τ
= ∇̃ × [

(
v − ∇̃ × b

)
×B], (4.44)

∂
(
b+ ∇̃ × v

)

∂τ
= ∇̃ × [v ×

(
B + ∇̃ × v

)
] + (1− di) ∇̃ ×

((
∇̃ × b

)
×B

)
.

(4.45)

Hence, the stationary solutions appear to propagate along the direction of

the ambient magnetic field as observed in the moving frame, which forms the

exact nonlinear Alfvén waves solution of the incompressible Hall MHD. The

waves propagate with phase velocity di µH
, whilst the Beltrami eigenvalue

λ
H
= k in boosted frame is shown as a wave number. We use equation(4.37)

to find an expression for µ
H
. We end up with

µ
H±

=
k

2
±
√
k2

4
+

1

d2i
. (4.46)

Then, the nonlinear dispersion relation reads as

ω
H±

= dik

[
k

2
±
√
k2

4
+

1

d2i

]
, (4.47)

In Fig. 4.2 the dispersion relation (4.47) is plotted for di = 1. The positive

branch (ω
H+

) represents by red line (top) corresponding to the whistler

mode, whilst the negative branch (ω
H−

) represents by blue line (bottom)

corresponding to the shear ion cyclotron waves, which saturates to the ion

cyclotron frequency.
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Figure 4.2: Hall MHD dispersion relation profile for di = 1. The two
vertical dashed lines separate the ideal, Hall and electron inertia regimes
respectively (when viewed from left to right).

4.3.3 Nonlinear Alfvén waves in extended MHD

Now we will proceed to extend our analysis to generalized MHD. We

will follow the method described in Sec. 4.3.2. In this section, we seek to

study the effect of the inclusion of the electron inertia on the propagation of

waves. To focus on the electron inertia effect and for sake of simplicity, we

start by changing the normalization of the extended MHD equations given

in Sec. 3.1.2, in which the magnetic field is normalized to the ambient filed

B0, the velocity to the Alfvén speed (VA = B0/
√
µ0ρ0), time to the ion

gyroperiod ω−1
ci , and the space variables to the ion skin depth di. After

some manipulations the extended MHD equations in the new normalized

variables are comprise of

∂ρ

∂t
= −∇ · (ρV ) , (4.48)

∂V

∂t
= − (∇× V )× V + ρ−1 (∇×B)×B∗
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−∇
(
h+ V 2/2 + d2e (∇×B)2 /2ρ2

)
, (4.49)

∂B∗

∂t
= ∇× (V ×B∗)−∇×

(
ρ−1 (∇×B)×B∗

)

+ d2e∇×
(
ρ−1 (∇×B)× (∇× V )

)
, (4.50)

where

B∗ = B + d2e∇× ρ−1 (∇×B) , (4.51)

As shown in Sec. 3.4, the extended MHD has six helicities. Here we choose

three helicities to build the equilibrium. It should be noted here that, any

combinations of the helicities yield the same equilibrium (We should use at

least three different helicities; one for each fluid (electrons and ions) and

the conservation of mass). The extended MHD invariants are

C1 =

∫

Ω

B∗ ·
(
V − 1

2d2e
A∗

)
d3x, (4.52)

C2 =
1

2

∫

Ω

[B∗ ·A∗ + d2eV · (∇× V ) ]d3x, (4.53)

C3 =

∫

Ω

ρ d3x, (4.54)

with the total energy

H =

∫

Ω

{
ρ

(
|V |2
2

+ U (ρ)

)
+

B ·B∗

2

}
d3x. (4.55)

4.3.3.1 Beltrami equilibria

To construct the Beltrami equilibria, we start from the energy-

Casimir functional of the extended MHD system, which reads as

Hµ (u) = H (u)−
3∑

n=1

µnCn (u) . (4.56)
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The critical points on the Casimir leaves are found by setting ∂uHµ = 0

which yields

∇×B = µ1∇× V +

(
µ2 −

µ1

d2e

)
B∗, (4.57)

ρV = µ1B
∗ + µ2d

2
e∇× V , (4.58)

V 2

2
+ h (ρ) + d2e

(∇×B)2

2ρ2
− µ3 = 0, (4.59)

where µ1, µ2 and µ3 are Lagrange multipliers. Notice that (4.59) is Bernoulli’s

equation. Now, consider the incompressible flow (∇ · V = 0) with a con-

stant mass density ρ = 1. Then, combining (4.57) and (4.58) with the aid

of (4.51), we get the triple curl Beltrami equation,

∇×∇×∇×B − η1∇×∇×B + η2∇×B − η3B = 0,

(4.60)

where

η1 =

(
2− µ1

d2eµ2

)
/∆,

η2 =

(
µ2 +

1

d2eµ2

− µ1

d2e

(
1 +

µ1

µ2

))
/∆,

η3 =

(
1− µ1

d2eµ2

)
/
(
d2e∆

)
,

∆ = d2e

[
µ2 −

µ1

d2e

(
1 +

µ1

µ2

)]
.

The general solution of (4.60) can be expressed in terms of a single Beltrami

fields Gl (l = 0, 1, 2) , such that

(curl − λl)Gl = 0 (in Ω) ,

n ·Gl = 0 (on Ω)
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for more details see Refs. [100,180]. Then, (4.60) can be written as

(curl − λ0) (curl − λ1) (curl − λ2)B = 0, (4.61)

where the eigenvalues λ0, λ1 and λ2 are given by

λ0 + λ1 + λ2 = η1,

λ0λ1 + λ1λ2 + λ2λ0 = η2,

λ0λ1λ2 = η3.





(4.62)

Now constructing the general solution, which is the linear combination of

three eigenfunctions given as,

B = a0G0 + a1G1 + a2G2, (4.63)

where al’s are arbitrary constants. Substituting in (4.57) and (4.58), the

corresponding flow is given by

V =

[
σ
(
1 + d2eλ

2
0

)
+
d2eµ2

µ1

λ0

]
a0G0

+

[
σ
(
1 + d2eλ

2
1

)
+
d2eµ2

µ1

λ1

]
a1G1

+

[
σ
(
1 + d2eλ

2
2

)
+
d2eµ2

µ1

λ2

]
a2G2, (4.64)

where σ = µ1 + µ2

(
1− d2eµ2

µ1

)
.

Now, setting one of the Beltrami eigenvalues equal to zero (λ0 = 0)(which

implies that the corresponding eigenfunction is a harmonic field), yields a

special class of Beltrami solutions, see Ref. [176]. Letting λ0 = 0, three

consequences immediately follow from (4.62),

µ1 = d2eµ2 = µ,

λ1 + λ2 = η1,

λ1λ2 = η2.





(4.65)

74



Now, solving (4.65) yields

λ± =
1

2µd2e

[
−1±

√
1− 4d2e (µ

2 − 1)
]
, (4.66)

where we chose λ+ = λ1 and λ− = λ2. Under this conditions the general

flow solution becomes

V = µa0G0 +
1

µ
(a1G1 + a2G2) . (4.67)

Based on the geometry (xyz−plane/space), the eigenfunctions G1 and G2

are naturally sinusoidal functions. To satisfy the single Beltrami condition,

the eigenfunctions are given in the form of a circularly polarized wave;

G1 =




sin (λ1z)
cos (λ1z)

0


 , G2 =




sin (λ2z)
cos (λ2z)

0


 .

An immediate generalization to a more complex Beltrami field, so called

ABC flow is possible [cf. [97]]. These V and B have oscillatory ampli-

tudes, thus the Bernoulli condition (4.59) demands a non-constant h (ρ).

We assume that the sound velocity is sufficiently large so that ρ may be as-

sumed to be constant and consistent to (4.60). On the other hand, Beltrami

solutions (4.63) and (4.67) imply that the magnetic field and the flow ve-

locity are not necessarily aligned, unless µ = ±1. Additionally, we observe

that the solutions are expressed as a combination of three Beltrami eigen-

functions Gl, in which two of them have a large scale (compared with the

electron skin depth de), whereas the third is in scale hierarchy of de. Since

in the Hall MHD limit de → 0, one of the eigenvalues (λ+ → (1− µ2) /µ)

is finite, whilst the other (λ− → −∞) is singular and therefore the corre-

sponding eigenstate G2 is divergent; see Figs. 4.3. This singularity can be
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removed by setting the arbitrary constant (a2) associated with the divergent

eigenstate (G2) to zero.

G2

G

G1

(a)

G2

G

G1

(b)

Figure 4.3: The profiles of the eigenfunctions G1, G2 and their superpo-
sition G = a1G1 + a2G2 for µ = 2, a1 = a2 = 1; (a) de = 0.26 and (b)
de = 10−8.
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4.3.3.2 Exact wave solutions of the extended MHD

To examine the propagation of the wave component, we assume that

G0 serve as an ambient field. Now, setting G0 = ẑ and a0 = 1, ( G0 repre-

sents the normalized ambient magnetic field). From (4.67) the correspond-

ing ambient flow is V0 = µ ẑ. The magnetic and flow fields become

B = b+ ẑ, V = v + µẑ, (4.68)

where

b = µv. (4.69)

Let us show explicitly that the Beltrami solution (4.68)-(4.69) can be mod-

ified to wave solution by boosting the coordinate. The Beltrami solution is

the stationary solution satisfying

0 = ∇× [ (V −∇×B)×B∗], (4.70)

0 = ∇× [V × (B∗ +∇× V ) ], (4.71)

∇ · V = 0, (4.72)

∇ ·B = 0, ∇ ·B∗ = 0. (4.73)

Transforming the system under Galilean-boost yields the new coordinates:

(x, y, z) 7−→ (x, y, ξ) := (x, y, z − µt) .
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where t 7→ τ := t and z 7→ ξ := z − µt. The transformations of derivatives

with respect to the coordinates are

∇x,y,z 7→ ∇̃x,y,ξ,
∂

∂t
7→ ∂

∂τ
− µ

∂

∂ξ

where for 3-vector X (with ∇ · X = 0), −µ∂X
∂ξ

= ∇ × (µẑ ×X) is true.

Using (4.68), equations (4.70) and (4.71) can be boosted in the new coor-

dinates into

∂B∗

∂τ
= ∇̃ ×

[ (
v − ∇̃ ×B

)
×B∗

]
, (4.74)

∂
(
B∗ + ∇̃ × v

)

∂τ
= ∇̃ ×

[
v ×

(
B∗ + ∇̃ × v

) ]
, (4.75)

which are the Alfvén wave equations with a homogeneous ambient field

B0 = ẑ. Thence, on the boosted frame, the fluctuating parts of the previous

stationary solution appears as propagating waves, which forms an exact so-

lution of the incompressible extended MHD equations. Here, we notice that

the wave components are a superposition of two Beltrami eigenfunctions,

which implies that only a definite wave functions (sinusoidal functions), can

propagate with fixed shape. Further, the phase velocity here is given by µ,

which from (4.65) may be written as

µ± =
1

(1 + d2ek
2)

[
−k
2
±
√
k2

4
+ (1 + d2ek

2)

]
, (4.76)

where the eigenvalue k := λ1 or λ2, serves as the wave number. Then, the

corresponding circularly polarized wave dispersion relation (ω = −µ (ẑ · k)),

which in the case k = k ẑ reads as

ω± =
−k

(1 + d2ek
2)

[
−k
2
±
√
k2

4
+ (1 + d2ek

2)

]
. (4.77)
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Figure 4.4: Normalized dispersion relation profiles for de = 0 (dashed-red)
and de = 0.0233 (blue); (a) (ω−) and (b) (ω+) .

which represents the dispersion relation of the fully nonlinear wave solu-

tions. In the limit (de → 0), (4.77) is reduced to the dispersion relation of

exact solution of Hall MHD [97,176]. We also observe that the inclusion of

the electron inertia effect not only modifies waves modes, remove the singu-

larities associated with the exact solution of Hall MHD, but also captured

more of the physics of the full two-fluid model; see Figs. 4.4.

On the limiting cases of the nonlinear waves We shall now investi-

gate the various regimes of interest, and list the expressions for (4.76) and
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(4.77) accordingly.

1. First, consider the limit k ≪ 1, which in dimensional units is tanta-

mount to stating that kdi ≪ 1. This indicates that we are operating

in the ideal MHD domain, and we arrive at

µ± → ±1, ω± → ∓k (êB◦
· êz) , (4.78)

which corresponds to the shear Alfvén waves of ideal MHD (that are

co- and counter-propagating).

2. Next, consider the case where Hall effects are important, but electron

inertia can still be neglected, i.e. the Hall regime. In this instance,

the conditions (in the dimensionless units) are given by k > 1 and

d2ek
2 ≪ 1. The dispersion relations reduce to

µ+ → 1/k, ω+ → −1 (êB◦
· êz) ,

µ− → −k, ω− → k2 (êB◦
· êz) , (4.79)

implying that ω+ is the magnetosonic-cyclotron branch since ω+ is

the ion gyrofrequency. On the other hand, ω− is the shear-whistler

mode, as seen from the dispersion relation.

We record important features of the Hall regime before moving on to

the next case. As opposed to the ideal MHD regime, or the electron

inertia one (discussed below), the Hall regime is bounded strictly from

below and above. As a consequence, the range is somewhat ‘narrow’

and care must be taken when investigating it in greater detail. Sec-

ondly, it may appear as though the whistler mode ω− is unbounded
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as it is proportional to k2. However, this is incorrect since we have

implicitly assumed that the inequality d2ek
2 ≪ 1 is applicable. In

turn, this suggests that the whistler mode is rendered invalid when

considering frequencies higher than the electron gyrofrequency.

3. The third regime of interest is when electron inertia effects become

important, even dominant. This regime requires that the conditions

k ≫ 1 and d2ek
2 ≫ 1 be met. In this instance, we find that

µ± → θ±/k, ω± → −θ± (êB◦
· êz) , (4.80)

where θ± =
(
−1±

√
1 + 4d2e

)
/2d2e. By substituting the relation

d2e ≪ 1, in terms of the normalized variables, into the expression for

θ±, we note that θ− approximates the normalized electron gyrofre-

quency, whilst θ+ approximates the normalized ion gyrofrequency. It

is important to recognize that θ± depends on the dimensionless elec-

tron skin depth, and thereby gives rise to a direct relationship between

the electron skin depth and ω±, i.e. the ion or electron gyrofrequency

(for θ+ and θ− respectively).

Thus, the magnetosonic-cyclotron branch in the electron inertia regime

approaches the same limit as its Hall counterpart; this is seen by com-

paring the expressions for ω+ in both cases. However, the dispersion

relation for the whistler-mode branch in Hall MHD (given by ω−),

is such that it would diverge for k → ∞. The role of electron iner-

tia in this case is to impose a strict upper bound (viz. the electron

gyrofrequency) on the frequency attainable by this whistler-mode.
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Chapter 5

Nonlinear helicons

5.1 What is helicons?

Helicons (synonymously-called whistlers) are low frequency (com-

pared with the electron cyclotron frequency) circularly polarized electro-

magnetic waves propagating along an ambient magnetic field. The word

helicon was first used by Arigrain [5] in 1960 to describe low frequency

electromagnetic waves that propagate along a strong applied magnetic field

in a solid state plasmas. Helicons have variety of applications such as plasma

sources [27,40,88,150], spacecraft propulsion [4,38,153,164] as well as in lab-

oratory plasma experiments [157, 158]. The linear theory of helicon waves

has been studied in great detail for a particular frequency range much lower

than electron cyclotron frequency and much higher than the ion cyclotron

frequency, in which the ions are considered immobile (see [28, 42, 43], and

references therein). While early theory ignored electron mass, Boswell [26]

found that finite electron inertia gives rise of a second quasi-electrostatic

waves called Trivelpiece-Gould (TG) waves [167].

5.2 Linear theory

Consider a homogenous incompressible plasma in cylindrical geom-

etry. If the ion motion is neglected, the extended MHD (see Sec. 3.2.1) will
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reduced to

∂B∗

∂t
= −di∇× ((∇×B)×B∗) (5.1)

where

B∗ = B + d2e∇× (∇×B) . (5.2)

linearize (5.1) about the equilibrium B0 = ẑ (in normalized units), as

B = ẑ + b. (5.3)

The resultant equation is

−iω
(
b+ d2e∇×∇× b

)
= −di∇× [(∇× b)× ẑ] . (5.4)

Note that, solutions of the form

F = f(r) exp[i(mθ + kz − ωt)], (5.5)

are considered.

Using vector identity the right hand side of the above equation can

be written as

∇× [(∇× b)× ẑ] = ik∇× b. (5.6)

Now, equation (5.4) can be rewritten as

d2eω∇×∇× b− dik∇× b+ ωb = 0. (5.7)

equation (5.7) can be factored as

(curl − β1) (curl − β2) b = 0, (5.8)
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where the eigenvalues β1 and β2 are given by

β1 + β2 =
dik
d2eω

,

β1β2 =
1
d2e
.

}
(5.9)

The general solution of (5.8) is therefore the sum of the solutions of

∇× b = β1b, (5.10)

∇× b = β2b. (5.11)

where

β1,2 =
dik

2d2eω

[
1∓

√
1− 4

d2eω
2

d2i k
2

]
, (5.12)

which is obtained by solving equations (5.9) for β. It is worth here remark-

ing that the root β1 with (−) sign represents helicon mode, whilst β2 with

(+) represents TG mode.

5.2.1 Beltrami field in cylindrical geometry

Our problem now is turned to solve the single Beltrami field

(curl − β)G = 0 (in Ω) , (5.13)

n ·G = 0 (on Ω) , (5.14)

where G is a solenoidal vector field.

Taking the curl of (5.13), using the vector calculus identity, and

invoking (5.14), we obtain the vector Helmholtz equation

∇2G+ β2G = 0. (5.15)
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To solve the vector Helmholtz equation we use the tricky method introduced

by Hansen [64], in which the vector field G could be written as a linear

combination of three fields,

L = ∇ψ, (5.16)

T = ∇× (ψa) , (5.17)

S = ∇×∇× (ψa) , (5.18)

where a is either a position vector or a constant unit vector and ψ is a

scalar function satisfied the scalar Helmholtz equation

∇2ψ + β2ψ = 0. (5.19)

Then the general solution of equation (5.15) is

G = c1L+ c2T + c3S. (5.20)

where c’s are arbitrary constant.

Before proceeding further, we want to notice that, it is not necessary

that every solution of equation (5.15) to be a solution of equation (5.13),

however, the reverse is true. To ensure that the general solution (5.20) is

also a solution of (5.13) we need to subject it to the constraint given by

(5.14) which implies that the vector field is solenoidal (∇ ·G). Looking to

(5.16)-(5.18) we can observe that the term L does not contribute to the

vector field G since the curl of L vanishes (∇ × L = 0). Then, (5.20)

becomes

G = c2T + c3S. (5.21)
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Substituting (5.21) into the single Beltrami (5.13) yields

∇×G = βG,

c2∇×∇× ψa+ c3∇×∇×∇× ψa = βc2∇× ψa+ βc3∇×∇× ψa,

c2∇×∇× ψa+ β2c3∇× ψa = βc2∇× ψa+ βc3∇×∇× ψa,

(5.22)

which implies c2 = λc3 = 1. Therefore, the general solution of (5.13) is

G = β∇× ψa+∇×∇× ψa. (5.23)

In cylindrical coordinates, the above form of the solution is often known

as the Chandrasekhar-Kendall eigenfunctions, although they did not pro-

vide the explicit form of the solution in [37]. The completeness of the

Chandrasekhar-Kendall eigenfunctions was investigated in [175]. The so-

lutions to the Helmholtz equation (5.19) in cylindrical coordinates (r, θ, z)

is

G = β∇ψ × ẑ +∇× (∇ψ × ẑ) , (5.24)

with

ψ = Jm (γr) ei(mθ+kz), (5.25)

where Jm serves the Bessel function of the first kind of order m and γ2 =

β2 − k2 ( γ here serve as a transverse wave number). Note that we here

consider only the choice of a = ẑ. Then,

L = ∇ψ,
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=

[
∂

∂r
(Jm (γr)) r̂ +

im

r
Jm (γr) θ̂ + ikJm (γr) ẑ

]
ei(mθ+kz), (5.26)

T = ∇ψ × ẑ,

=

[
im

r
Jm (γr) r̂ − ∂

∂r
(Jm (γr)) θ̂

]
ei(mθ+kz), (5.27)

S = ∇× (∇ψ × ẑ) ,

=

[
ik
∂

∂r
(Jm (γr)) r̂ − mk

r
Jm (γr) θ̂ + γ2Jm (γr) ẑ

]
ei(mθ+kz).(5.28)

Therefore, the general solution (5.24) becomes

G =
{[

λ
im

r
Jm (γr) + ik

∂

∂r
(Jm (γr))

]
r̂

−
[
mk

r
Jm (γr) + λ

∂

∂r
(Jm (γr))

]
θ̂

+γ2Jm (γr) ẑ
}
ei(mθ+kz). (5.29)

Then the components of the general solution of equation (5.8) are

br(r) =

(
iA1

γ21

)[
mβ1
r
Jm(γ1r) + k

∂Jm(γ1r)

∂r

]

+

(
iA2

γ22

)[
mβ2
r
Jm(γ2r) + k

∂Jm(γ2r)

∂r

]
, (5.30)

bθ(r) = −
(
A1

γ21

)[
mk

r
Jm(γ1r) + β1

∂Jm(γ1r)

∂r

]

−
(
A2

γ22

)[
mk

r
Jm(γ2r) + β2

∂Jm(γ2r)

∂r

]
, (5.31)

bz (r) = A1Jm (γ1r) + A2Jm (γ2r) (5.32)

where A1 and A2 are the arbitrary constants, which serve here as wave

amplitudes.

Before concluding this part, we point out that different boundary

conditions and the corresponding dispersion relation will be discussed in

Sec. 5.3.5.
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5.2.2 Verification of solutions

The above solution has to verify two equations; the first one is the

divergence free condition (∇ · B = 0) and the second one is the double

Beltrami equation (5.7). Since the general solution of (5.7) is a linear com-

bination of the eigenfunctions of a single Beltrami equation, so we need

only to verify the solution of a single Beltrami equation (∇× b = βb). The

solution has the form

b =

{(
iA

γ2

)[
mβ

r
Jm(γr) + k

∂Jm(γr)

∂r

]
r̂

−
(
A

γ2

)[
mk

r
Jm(γr) + β

∂Jm(γr)

∂r

]
θ̂

+AJm (γr) ẑ

}
ei(mθ+kz−ωt). (5.33)

∇ · b =
∂br
∂r

+
br
r
+

1

r

∂bθ
∂θ

+
∂bz
∂z

= −mβ
r2
Jm(γr) +

mβ

r

∂

∂r
Jm(γr) + k

∂2

∂r2
Jm(γr) +

mβ

r2
Jm(γr)

+
k

r

∂

∂r
Jm(γr)−

m2kβ

r2
Jm(γr)−

mβ

r

∂

∂r
Jm(γr) + kγ2Jm(γr)

= 0. (5.34)

∇× b =

[
1

r

∂bz
∂θ

+
∂bθ
∂z

]
r̂ +

[
∂br
∂z

− ∂bz
∂r

]
θ̂ +

[
1

r

∂ (rbθ)

∂r
− 1

r

∂br
∂θ

]
ẑ

=

{
imA

r
Jm(γr) +

(
ikA

γ2

)[
mk

r
Jm(γr) + β

∂Jm(γr)

∂r

]}
r̂

−
{(

kA

γ2

)[
mβ

r
Jm(γr) + k

∂Jm(γr)

∂r

]
− A

∂Jm(γr)

∂r

}
θ̂

+

{(
A

γ2

)[
m2β

r2
Jm(γr) +

mk

r

∂Jm(γr)

∂r

]

−
(
A

γ2

)[
mk

r

∂Jm(γr)

∂r
− mk

r2
Jm(γr) + β

∂2Jm(γr)

∂r2

]
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−
(
A

γ2

)[
mk

r2
Jm(γr) +

β

r

∂Jm(γr)

∂r

]}
ẑ

= β

{(
iA

γ2

)[
mβ

r
Jm(γr) + k

∂Jm(γr)

∂r

]
r̂

−
(
A

γ2

)[
mk

r
Jm(γr) + β

∂Jm(γr)

∂r

]
θ̂

+A Jm (γr) ẑ

}
ei(mθ+kz−ωt)

= βb. (5.35)

5.3 Nonlinear theory

5.3.1 Incompressible extended MHD

The equations of extended MHD (see Sec. 3.2.1) after some algebraic

manipulations can be cast in the incompressible limit into the following

form:

∂B∗

∂t
= ∇× [(V − di∇×B)×B∗]

+d2e∇× ((∇×B)× (∇× V )) , (5.36)

∂ (B∗ +∇× V )

∂t
= ∇× [V × (B∗ +∇× V ) + (1− di) (∇×B)×B∗]

+d2e∇× ((∇×B)× (∇× V )) , (5.37)

where

B∗ = B + d2e∇× ρ−1 (∇×B) . (5.38)

The extended MHD system is endowed with a Hamiltonian structure [1].

On the phase space of state variables u = (V ,B∗), we can define a Poisson

bracket, which has two independent Casimir invariants (existence of Casimir
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invariants make the Poisson bracket noncanonical):

C1 =
1

2

∫

Ω

(
A∗ − 2d2e

di
V

)
·B∗d3x, (5.39)

C2 =
1

2

∫

Ω

[
(A∗ + diV ) · (B∗ + di∇× V )

+d2eV · (∇× V )
]
d3x, (5.40)

The energy is given by

E =

∫

Ω

{
|V |2
2

+
B ·B∗

2

}
d3x. (5.41)

Writing E in terms of u gives the Hamiltonian.

5.3.2 Beltrami equilibria

Now we follow the method described in Sec. 4.3.3. We first construct

energy-Casimir equilibrium by extremizing

Eµ (u) = E (u)−
2∑

n=1

µnCn (u) . (5.42)

The Euler-Lagrange equation ∂uEµ = 0 reads

∇×B = (µ1 + µ2)B
∗ +

(
diµ2 −

d2e
di
µ1

)
∇× V , (5.43)

ρV =

(
diµ2 −

d2e
di
µ1

)
B∗ +

(
d2i + d2e

)
µ2∇× V , (5.44)

where µ1 and µ2 are Lagrange multipliers. Equations (5.43) and (5.44)

combine to yield a triple-curl Beltrami equation

∇×∇×∇×B − α1∇×∇×B + α2∇×B − α3B = 0,

(5.45)
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where

α1 = [
(
d2i + d2e

)
µ2 + d2e (µ1 + µ2) ]/∆,

α2 =

[
1 +

(
d2i + d2e

)
(µ1 + µ2)µ2 −

(
diµ2 −

d2e
di
µ1

)2
]
/∆,

α3 = [µ1 + µ2]/∆,

∆ = d2e

[
(
d2i + d2e

)
µ2 (µ1 + µ2)−

(
diµ2 −

d2e
di
µ1

)2
]
.

Equation (5.45) can be factored as

(curl − λ0) (curl − λ1) (curl − λ2)B = 0, (5.46)

where the eigenvalues λ0, λ1 and λ2 are given by

λ0 + λ1 + λ2 = α1,

λ0λ1 + λ1λ2 + λ2λ0 = α2,

λ0λ1λ2 = α3.





(5.47)

The general solution of (5.46) can be written as a linear combination of

three Beltrami eigenfunctions [179]:

B =
2∑

l=0

alGl, (5.48)

whereGl’s are the Beltrami eigenfunctions satisfying (∇×Gl = λlGl), and

al’s are arbitrary constants. By substituting (5.48) into (5.43) and (5.44),

the corresponding flow is given by

V =
2∑

l=0


σ
(
1 + d2eλ

2
l

)
+

(d2i + d2e)µ2(
diµ2 − d2e

di
µ1

)λl


 alGl, (5.49)

where σ =
(
diµ2 − d2e

di
µ1

)
− (d2i+d2e)(µ1+µ2)µ2

(

diµ2−
d2e
di

µ1

) .
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We make a special choice for one of the Beltrami eigenvalues to set

λ0 = 0. Then, the corresponding eigenfunction becomes a harmonic field.

Two consequences immediately follow from (5.47):

µ1 = −µ2 = µ,

λ1 + λ2 = α1,

λ1λ2 = α2.





(5.50)

Now, solving (5.50) yields

λ1,2 =
di

2d2eµ⋆

[
1∓

√
1− 4d2e

d2i
(µ2

⋆ − 1)

]
, (5.51)

where µ⋆ = (d2i + d2e)µ/di. Under this condition the general flow solution

becomes

V = −µ⋆a0G0 −
1

µ⋆

(a1G1 + a2G2) . (5.52)

We can write down the Beltrami solutions explicitly, for example, in

the cylindrical coordinates:

B = a0G0 + b, V = −µ⋆a0G0 + v, (5.53)

v =
−1

µ⋆

b. (5.54)

where

b = a1G1 + a2G2

=

{ 2∑

l=1

al

(
λl
im

r
Jm (γlr) + ik

∂

∂r
(Jm (γlr))

)
r̂

−
2∑

l=1

al

(
mk

r
Jm (γlr) + λl

∂

∂r
(Jm (γlr))

)
θ̂

+
2∑

l=1

alγ
2
l Jm (γlr) ẑ

}
ei(mθ+kz), (5.55)
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where γ2l = λ2l − k2 measures the transverse wave numbers, k is the axial

wave number and Jm is the Bessel function of first kind of order m.

5.3.3 Nonlinear helicon waves

We can derive wave solutions from the forgoing equilibrium solutions.

Evidently (5.53)-(5.55) are equilibrium solutions satisfying

0 = ∇× [ (V − di∇×B)×B∗], (5.56)

0 = ∇× [V × (B∗ +∇× V )

+ (1− di) (∇×B)×B∗], (5.57)

∇ · V = 0, (5.58)

∇ ·B = 0, ∇ ·B∗ = 0. (5.59)

Here we assume that the harmonic fieldG0 represents the ambient magnetic

field, and the other components G1 and G2 are “wave fields” propagating

on G0. Setting (G0 = ẑ) and (a0 = 1), we write

B = ẑ + b, V = −µ⋆ẑ + v, (5.60)

Next, we transform the coordinates by Galilean-boost:

(r, θ, z) 7−→ (r, θ, ξ) := (r, θ, z + µ⋆t) ,

where t 7→ τ := t and z 7→ ξ := z + µ⋆t. The derivatives transform as

∇r,θ,z 7→ ∇̃r,θ,ξ, and
∂
∂t

7→ ∂
∂τ

+ µ⋆
∂
∂ξ
. For a 3-vector R such that ∇ ·R = 0,

we may calculate −µ⋆
∂R
∂ξ

= ∇×(µ⋆ẑ ×R). Applying the above coordinates
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transformations along with (5.60), the equilibrium equations (5.56) and

(5.57) transform into

∂b∗

∂τ
= ∇̃ ×

[ (
v − di∇̃ × b

)
×B∗

]
, (5.61)

∂
(
b∗ + ∇̃ × v

)

∂τ
= ∇̃ ×

[
v ×

(
B∗ + ∇̃ × v

)

+(1− di)
(
∇̃ × b

)
×B∗

]
, (5.62)

which read as wave equations. Hence, our triple Beltrami solution, which

is now denoted as (5.60), can be regarded as a wave solution propagating

on the ambient field B0 = ẑ.

Let us extract wave characteristic quantities from the Beltrami so-

lutions; we put

B = ẑ + b e−iωt, V = v e−iωt, (5.63)

v =

(−k
ω

)
b, (5.64)

where b is given by (5.55). Equation (5.64) determines the relation between

the the magnetic and velocity fields in the wave. Note that here µ⋆ serves

as the phase velocity. We can rewrite the eigenvalues equation (5.51) in

terms of the frequency (ω = kµ⋆) as

λ1,2 =
dik

2d2eω

[
1∓

√
1− 4

d2e
d2i

(
ω2

k2
− 1

)]
. (5.65)

The eigenvalues (5.65) are identical to the eigenvalues obtained from the

linear analysis (when the ions are considered immobile), except for the

last term under the square-root. This term recovers the ion inertia effect,

yielding an ion cyclotron wave mode (cf. Fig.5.1) which has been ignored

in previous studies.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: The relation between k (axial wave number) and λ (Beltrami
eigenvalue measuring the reciprocal length scale of wave field variation). In
(a), (b), (c) and (d), di = 1 and de = 0.0233 are fixed, while ω is changed
as a parameter. In (e) and (f), ω = 1 is fixed, while the skin depths are
changed. The shaded region above the dashed line of k = λ is the evanescent
domain. The dashed red curve shows the limit of immobile ions given by
(5.12). The regime of λ < 1/di may be approximated by ideal MHD, and
the regime of 1/di < λ < 1/de by Hall MHD, while the electron inertia
plays important role in the regime of 1/de < λ.
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In Fig. 5.1 k − λ diagrams are presented in which the helicon and

TG modes are represented by an ”orange line” and the ion cyclotron mode

by a ”blue line”. We have inserted two vertical dashed lines in each plot

to separate the ideal (λ < 1/di), Hall (1/di < λ < 1/de) and the electron

inertia (λ > 1/de) domains. Notice that the ion cyclotron mode arises when

λ or k is negative. Figs. 5.1a-5.1d are the k−λ curves for different values of

the applied magnetic field. We can observe that for ω > 1800 in normalized

units all modes become evanescent (no propagation). As the value of ω

decreases the helicon and TG modes appeared, when it reaches a definite

value (ω ≤ 1 in normalized units) a third mode arises. We also observed a

particular coupling between the different modes, a for the values of k < ω

the coupling occurs between Helicon and TG waves, whilst the ion cyclotron

wave is coupled with the TG wave for the values of k > ω. To examine

the effect of the plasma density, we plot the k− λ relation for two different

values of the skin depth; see. Figs. 5.1e and 5.1f). The change of the plasma

density (thus, the skin depth) strongly influences the waves coupling.

5.3.4 Electric field and energy deposition

We shall now compute the electric field E using Faraday’s law (3.17)

and the generalized Ohm’s law (3.16). Generalized Oham’s law (3.16) en-

abled us to calculate the z-component of the electric field Ez while the

transverse components E⊥ could be computed using (3.17).

From equation (3.16), we obtain the follow:

E = di (∇×B)×B∗ − V ×B∗ + d2e
∂

∂t
J , (5.66)
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where B∗ = B + d2e∇ × ∇ × B. Substituting the solutions (5.63)-(5.55)

into (5.66), the resultant equation is

E = di (∇× b)× b∗ + di (∇× b)× ẑ − v × b∗ − v × ẑ + d2e
∂

∂t
J , (5.67)

where b∗ = b + d2e ×∇× b. Then, using Beltrami condition (∇× b = λb)

and (5.64) in (5.67) yields

Ez = −iωd2eλbz (r) . (5.68)

The transverse components could be calculated from (3.17) as follow:

∇×E = iωb. (5.69)

The r-component of (5.69) is

1

r

∂Ez

∂θ
− ∂Eθ

∂z
= iωbr,

im

r
Ez − ikEθ = iωbr, (5.70)

which leads us to

Eθ = −ω
k

(
br +

imd2eλ

r
bz

)
. (5.71)

Similarly, θ-component of (5.69) is

∂Er

∂z
− ∂Ez

∂r
= iωbθ,

ikEr −
∂Ez

∂r
= iωbθ, (5.72)

which leads us to

Er =
ω

k

(
bθ − d2eλbz

)
. (5.73)
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Notice that equations (5.68), (5.71) and (5.73) satisfy the z-component of

(5.69).

We now in the position to compute the energy deposition. Since the

transverse components of the electric field and magnetic field are perpen-

dicular, and hence, only the z-component will contribute to the energy loss.

Then the rate of losing energy is

−dW
dt

= 〈J ·E〉 = 〈JzEz〉 . (5.74)

From (5.55) The current density is given by

J = ∇×B

= λ1a1G1 + λ2a2G2

= Jλ1
+ Jλ2

. (5.75)

where the Beltrami ∇×B = λB is used.

Then, the real part of the Jz is

Re (Jz) =
[
a1λ1γ

2
1Jm (γ1r) + a2λ2γ

2
2Jm (γ2r)

]
cos (Θ) , (5.76)

and for electric field is

Re (Ez) = ωd2e

[
a1λ1γ

2
1Jm (γ1r) + a2λ2γ

2
2Jm (γ2r)

]
sin (Θ) ,

= d22
d

dt
Re (Jz) , (5.77)

where Θ = [mθ + kz − ωt]. Thus,

−dW
dt

= 〈JzEz〉 = 0. (5.78)
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Equations (5.78) shows that the energy loss rate for collisionless plasma is

zero, because of the 90◦ phase difference between the current Jz and the

electric field Ez. Including resistivity would make a nonzeo energy loss,

since in this case the current and the electric field (E = ηJ) are parallel,

where η is plasma resistivity.

5.3.5 Dispersion relation

5.3.5.1 Bounded plasma

Conducting boundary: Considering the case of a plasma rod of radius

a bounded by a perfectly conducting material, the boundary condition here

is that the tangential components of the electric field should be zero, which

yield Ez = Eθ = 0 at the boundary.

Applying those boundary to (5.68) and (5.71), yield respectively,

a1γ
2
1Jm (γ1a) + a2γ

2
2Jm (γ2a) = 0, (5.79)

a1

(
λ1
m

a
Jm (γ1a) + k

∂

∂r
(Jm (γ1r)) |r=a

)

+a2

(
λ2
m

a
Jm (γ2a) + k

∂

∂r
(Jm (γ2r)) |r=a

)
= 0. (5.80)

Then the dispersion relation can be given by the following determinant
∣∣∣∣∣∣∣

a1γ
2
1Jm (γ1a) a2γ

2
2Jm (γ2a)

a1

[
λ1m
a Jm (γ1a) + k

∂Jm(γ1r)
∂r |r=a

]
a2

[
λ2m
a Jm (γ2a) + k

∂Jm(γ2r)
∂r |r=a

]

∣∣∣∣∣∣∣
= 0.

(5.81)
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Insulating boundary: Considering a plasma column confined by an in-

sulating tube of radius a, the boundary condition here requires the calcu-

lation of the fields in the vacuum region.

In the vacuum region there are no conducting currents, which means

J = 0 = ∇× b. (5.82)

Taking the curl of (5.82) yields

∇×∇× b = 0, (5.83)

Since (∇ · b = 0), then

∇2b = 0, (5.84)

The vacuum fields are therefore given by

br = − ia3
k

∂

∂r
Km (kr) , (5.85)

bθ =
a3m

rk
Km (kr) , (5.86)

bz = a3Km (kr) , (5.87)

where Km is the modified Bessel function of the second kind of order m.
Connecting the vacuum fields (5.85) to the plasma fields (5.55) at the
boundary yield the dispersion relation
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1

[
λ1m
a Jm (γ1a)

+ k
∂Jm(γ1r)

∂r |r=a

]
a2

[
λ2m
a Jm (γ2a)

+ k
∂Jm(γ2r)

∂r |r=a

] −a3
k

∂Km(kr)
∂r

−a1

[
mk
a Jm (γ1a)

+ λ1
∂Jm(γ1r)

∂r |r=a

]
−a2

[
mk
a Jm (γ2a)

+ λ2
∂Jm(γ1r)

∂r |r=a

] a3m
ak Km (ka)

a1γ
2
1Jm (γ1a) a2γ

2
2Jm (γ2a) a3Km (ka)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

(5.88)
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Before moving farther, we refer the reader to [28, 42, 43, 47, 80] for

in-depth discussions of these Boundary conditions.

5.3.6 The partitions of the wave energy

As an interesting property of the nonlinear solution (5.48), the coef-

ficients a1 and a2 can be arbitrarily chosen to combine two Beltrami eigen-

functions. Here we study how they are determined by physical conditions.

One possible, conventional argument is to relate such coefficients to bound-

ary conditions on the electromagnetic field. However, it is known that

boundary conditions fall short of determining the coefficients (in the linear

theory) [27, 41, 48]. We can approach the problem from a different angle;

based on our Hamiltonian formalism, we can invoke the Casimir invariants

(helicities) to quantify the coefficients. Inserting the solution (5.63)-(5.64)

into (5.39) and (5.40), we obtain the helicities represented in terms of a1

and a2 (and other plasma parameters). Numerically inverting this some-

what involved relation, we obtain the ratio a1/a2, as well as the energy

partition, as functions of the helicities.

The auxiliary relation between the magnetic and flow fields (5.64) is

used to determine the wave energy partition. First, we used the recurrence

relations

m

r
Jm (γr) =

γ

2
(Jm−1 (γr) + Jm+1 (γr)) ,

∂

∂r
Jm (γr) =

γ

2
(Jm−1 (γr)− Jm+1 (γr)) ,

101



in the fluctuated magnetic field equation (5.55), which yield

b =

{ 2∑

l=1

ial

(
(λl + k) Jm−1 (γlr) + (λl − k) Jm+1 (γlr)

)
r̂

−
2∑

l=1

al

(
(λl + k) Jm−1 (γlr)− (λl − k) Jm+1 (γlr)

)
θ̂

+
2∑

l=1

alγ
2
l Jm (γlr) ẑ

}
ei[mθ+kz−ωt], (5.89)

where the arbitrary constants are redefined as a1 =
a1γ1
2

and a2 =
a2γ2
2
. The

real part of the magnetic field can be read as

b = −
2∑

l=1

ial

(
(λl + k) Jm−1 (γlr) + (λl − k) Jm+1 (γlr)

)
sin (mθ + kz − ωt)r̂

−
2∑

l=1

al

(
(λl + k) Jm−1 (γlr)− (λl − k) Jm+1 (γlr)

)
cos (mθ + kz − ωt)θ̂

+
2∑

l=1

alγ
2
l Jm (γlr) cos (mθ + kz − ωt)ẑ. (5.90)

To determine the free parameters in the above equation, we used the in-

variants of the system (5.39), (5.40) and (5.41). We start by defining the

element of volume in cylindrical coordinates as

d3x = r dr dθ dz,

where 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π and −L ≤ z ≤ L, a is the cylinder radius and

L is the cylinder half length. Assume that

L =
πn

k
, (5.91)

where n is an integer. This yields the following integration relations

∫ L

−L

cos
(nπ
L
x
)
cos
(mπ
L
x
)
dx =

{
L n = m 6= 0

0 n 6= m
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∫ L

−L

sin
(nπ
L
x
)
sin
(mπ
L
x
)
dx =

{
L n = m 6= 0

0 n 6= m

∫ L

−L

sin
(nπ
L
x
)
cos
(mπ
L
x
)
dx = 0

∫ L

−L

sin
(nπ
L
x
)
dx = 0

∫ L

−L

cos
(nπ
L
x
)
dx = 0

Starting by the Hamiltonian (energy) (5.41), which becomes

E =

∫

Ω

{
|v|2
2

+
B ·B∗

2

}
d3x, (5.92)

= EK + EM . (5.93)

the magnetic part is

EM =
1

2

∫ a

0

∫ 2π

0

∫ L

−L

B ·B∗r dr dθ dz, (5.94)

where

B∗ = ẑ + b+ d2e∇×∇× b, (5.95)

and b is given by the superposition of the solutions of two Beltrami equa-

tions

b = a1G1 + a2G2.

Then,

b∗ = a1
(
1 + d2eλ

2
1

)
G1 + a2

(
1 + d2eλ

2
1

)
G2. (5.96)
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Use of the above information the magnetic energy can be written as

EM = 2πLa21
(
1 + d2eλ

2
1

) ∫ a

0

[
(λ1 + k)2 [Jm−1 (γ1r)]

2

+(λ1 − k)2 [Jm+1 (γ1r)]
2 + 2γ21 [Jm (γ1r)]

2
]
rdr

+2πLa22
(
1 + d2eλ

2
2

) ∫ a

0

[
(λ2 + k)2 [Jm−1 (γ2r)]

2

+(λ2 − k)2 [Jm+1 (γ2r)]
2 + 2γ22 [Jm (γ2r)]

2
]
rdr

+2πLa1a2
[(
1 + d2eλ

2
1

)
+
(
1 + d2eλ

2
2

)]
×

∫ a

0

[
(λ1 + k) (λ2 + k) Jm−1 (γ1r) Jm−1 (γ2r)

+ (λ1 − k) (λ2 − k) Jm+1 (γ1r) Jm+1 (γ2r) + 2γ1γ2Jm (γ1r) Jm (γ2r)
]
rdr.

(5.97)

The kinetic part of the energy is

EK =
1

2

∫ a

0

∫ 2π

0

∫ L

−L

v2r dr dθ dz, (5.98)

but,

v = −k

ω
b. (5.99)

Then,

EK =
1

2

(
k

ω

)2 ∫ a

0

∫ 2π

0

∫ L

−L

b2r dr dθ dz,

= 2πL

(
k

ω

)2

a21

∫ a

0

[
(λ1 + k)2 [Jm−1 (γ1r)]

2

+(λ1 − k)2 [Jm+1 (γ1r)]
2 + 2γ21 [Jm (γ1r)]

2
]
rdr

+2πL

(
k

ω

)2

a22

∫ a

0

[
(λ2 + k)2 [Jm−1 (γ2r)]

2

+(λ2 − k)2 [Jm+1 (γ2r)]
2 + 2γ22 [Jm (γ2r)]

2
]
rdr
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+4πL

(
k

ω

)2

a1a2

∫ a

0

[
(λ1 + k) (λ2 + k) Jm−1 (γ1r) Jm−1 (γ2r)

+ (λ1 − k) (λ2 − k) Jm+1 (γ1r) Jm+1 (γ2r) + 2γ1γ2Jm (γ1r) Jm (γ2r)
]
rdr.

(5.100)

Thus, the total energy may be written as

E =

[
1 + d2eλ

2
1 +

(
k

ω

)2
]
A2

1 +

[
1 + d2eλ

2
2 +

(
k

ω

)2
]
A2

2

+2

[
1 +

d2e
2

(
λ21 + λ22

)
+

(
k

ω

)2
]
A2

3, (5.101)

where

A2
1 = 2πLa21

∫ a

0

[
(λ1 + k)2 [Jm−1 (γ1r)]

2

+(λ1 − k)2 [Jm+1 (γ1r)]
2 + 2γ21 [Jm (γ1r)]

2
]
rdr,

= 2πLa21X1 (5.102)

A2
2 = 2πLa22

∫ a

0

[
(λ2 + k)2 [Jm−1 (γ2r)]

2

+(λ2 − k)2 [Jm+1 (γ2r)]
2 + 2γ22 [Jm (γ2r)]

2
]
rdr,

= 2πLa22X2 (5.103)

A2
3 = 2πLa1a2

∫ a

0

[
(λ1 + k) (λ2 + k) Jm−1 (γ1r) Jm−1 (γ2r)

+ (λ1 − k) (λ2 − k) Jm+1 (γ1r) Jm+1 (γ2r) + 2γ1γ2Jm (γ1r) Jm (γ2r)
]
rdr,

= 2πLa1a2X3 (5.104)

are constants determined by the above integrals. The helicities C1 and C2

read

C1 =
1

2

∫

Ω

B∗ ·
(
A∗ − 2d2e

di
v

)
d3x,
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=

[
(1 + d2eλ

2
1)

λ1
+ 2

d2ek

diω

] (
1 + d2eλ

2
1

)
A2

1

+

[
(1 + d2eλ

2
2)

λ2
+ 2

d2ek

diω

] (
1 + d2eλ

2
2

)
A2

2

+

[(
1

λ1
+

1

λ2

)(
1 + d2eλ

2
1

) (
1 + d2eλ

2
2

)

+4

(
d2ek

diω

)(
1 +

d2e
2

(
λ21 + λ22

))]
A2

3, (5.105)

and

C2 =
1

2

∫

Ω

[
(A∗ + diV ) · (B∗ + di∇× V )

+d2eV · (∇× V )
]
d3x,

=

[
(1 + d2eλ

2
1)

2

λ1
− 2di

(
k

ω

)(
1 + d2eλ

2
1

)
+
(
d2i + d2e

)
λ1

(
kB

ω

)2
]
A2

1

+

[
(1 + d2eλ

2
2)

2

λ2
− 2di

(
k

ω

)(
1 + d2eλ

2
2

)
+
(
d2i + d2e

)
λ2

(
k

ω

)2
]
A2

2

+

[ (
d2i + d2e

)(kB
ω

)2

(λ1 + λ2)− 4di

(
k

ω

)(
1 +

d2e
2

(
λ21 + λ22

))

+

(
1

λ1
+

1

λ2

)(
1 + d2eλ

2
1

) (
1 + d2eλ

2
2

) ]
A2

3,

(5.106)

At that point, we shall use the ratio of (5.105) and (5.106) to determine the

ratio of the arbitrary constants a1/a2 numerically. Then, we flip the results

and got the arbitrary constants ratio a1/a2 as a function of the helicities

ratio C1/C2 (see Fig.5.2). Figure 5.2 shows how the helicon-TG energy

ratio is changed by the helicities.
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Figure 5.2: The relation between Helicon-TG energy ratio EH/ETG and the
helicities ratio C1/C2. Here, we assume di = 1, de = 0.0233 and m = 0. In
(a) ω = 20, and (b) ω = 0.2.
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The Casimir invariants (5.39) and (5.40) can be related to the two-

fluid (electrons and ions) helicities, respectively, in the one-fluid model lim-

its. In two-fluid plasma consisting of electrons and ions, the invariants can

be written as
∫
Ω
Pe,i.∇×Pe,id

3x, where Pe,i is the canonical momentum for

each specie (Pe,i = me,iVe,i + qe,iA). At the one-fluid limit, the extended

MHD invariants and the two-fluid helicities reduce into the same quantities.

Since the helicity is the measure of the wave polarization, or the twist of

the perturbed (generalized) magnetic field lines, this figure can be used for

the practical purpose of designing the wave-launching system to optimize

the wave energy partition.
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Chapter 6

Extended MHD turbulence

6.1 Feasibility of extended MHD for modeling turbu-

lence

Current measurements and analysis of the solar wind spectrum in

the regime L . de (sometimes interpreted as the ‘dissipation’ range) appear

to suggest that a power law behavior, with a slope of approximately −4, is

manifested [59,134,136,151]; see also [135]. However, the measurements in

the dissipation range are prone to instrumentation errors, as pointed out

in [137], which has also led to other interpretations of the spectrum in its

vicinity [9, 10]. Moreover, at these small scales, the magnetic fluctuations

are not purely homogeneous and exhibit signs of intermittency [127]. On

account of all the complexities inherent in solar wind turbulence, gaining a

thorough understanding of this phenomenon is, arguably, one of the current

major goals [31, 58].

It has become increasingly common to model the solar wind spec-

tra at scales smaller than the ion (or electron) skin depth by means of

(gyro)kinetic simulations [34, 73, 75, 132, 163] or hybrid fluid-kinetic mod-

els [35,36,128,145,170], but computational and analytic studies of the solar

wind by means of Hall MHD are also quite common [108, 112, 147, 155].

However, it is incorrect to use Hall MHD to study the physics near the
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electron skin depth (which equals the electron gyroradius when the elec-

tron plasma beta is around unity). For this reason, there have been several

studies centred around electron MHD, which can include the effects of elec-

tron inertia [19, 21, 46, 53, 107, 120]. However, a chief limitation of electron

MHD is the assumption of stationary ions. As a result, the model cannot

be applied to systems where the mean velocity is significant.

Extended MHD is endowed with a mean flow, electron inertia and

the Hall drift, it gives rise to both electron and Hall MHD as limiting

cases [78]. For this reason, we shall employ it as our basic physical model in

determining the energy and helicities spectra. Our method relies upon the

construction of fully nonlinear Alfvén wave solutions for extended MHD,

which are then used for computing the spectra. Notice that, the same

solutions were constructed using a more general approach in Chapter 4;

see Sec. 4.3.3. We demonstrate that our model reproduces many previous

results, both experimental and theoretical; on the latter front, we show that

it yields spectra that are distinct from those predicted by Hall MHD, and

that are quite similar to the observational data from the solar wind [31,136]

and other collisionless plasmas [86].

6.2 Extended MHD: the mathematical preliminaries

In this Section, we present a brief overview of extended MHD, and

discuss some of its chief mathematical properties.

Recalling the equations of extended MHD, see Sec. 3.2.1, which
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comprise of the continuity equation

∂ρ

∂t
= −∇ · (ρV ) , (6.1)

the dynamical equation for the velocity,

∂V

∂t
= − (∇× V )× V + ρ−1 (∇×B)×B∗

−∇
(
h+

V 2

2
+ d2e

(∇×B)2

2ρ2

)
, (6.2)

and the extended MHD Ohm’s law

∂B∗

∂t
= ∇× (V ×B∗)−∇×

(
ρ−1 (∇×B)×B∗

)

+d2e∇×
(
ρ−1 (∇×B)× (∇× V )

)
, (6.3)

where

B∗ = B+ d2e∇× ρ−1 (∇×B) , (6.4)

is the suitable dynamical variable (instead of the conventional magnetic

field), and is widely used in electron MHD [60]. It is important to recognize

that these equations have been normalized in Alfvénic units, as discussed

in Sec. 4.3.3. Moreover, the length scales are normalized in units of the ion

skin depth λi = c/ωpi for the sake of simplicity, i.e. it amounts to setting

L = λi. The incompressible limit of extended MHD is easily obtained by

setting ρ = 1 in the normalized units.

It is well known that extended MHD [1, 78, 92] yields a conserved

energy of the form

E =

∫

Ω

{
ρ

(
|V |2
2

+ d2e
|J |2
2ρ

+ U (ρ)

)
+

|B|2
2

}
d3x,

=

∫

Ω

{
ρ

(
|V |2
2

+ U (ρ)

)
+

B ·B∗

2

}
d3x, (6.5)
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Moreover, extended MHD is endowed with the following helicities (see Sec.

3.4):

he =
1

2

∫

Ω

(
A∗ − 2d2eV

)
·B∗d3x, (6.6)

hi =
1

2

∫

Ω

[
(A∗ + V ) · (B∗ +∇× V ) + d2eV · (∇× V )

]
d3x,

(6.7)

G =
1

2

∫

Ω

[
A∗ ·B∗ + d2eV · (∇× V )

]
d3x, (6.8)

K =
1

2

∫

Ω

V · [2B∗ +∇× V ] d3x, (6.9)

C± =

∫

Ω

P ∗
± ·
(
∇× P ∗

±

)
d3x, (6.10)

where P ∗
± = V + θ±A

∗ and θ± =
(
−1±

√
1 + 4d2e

)
/(2d2e) constitute the

two constants. It should be noted that, for clarity, different notations have

been chosen to define the above extended MHD invariants. Also, we do not

mention here the conservation of mass (3.46) since it will not be used in the

following calculations.

6.3 Nonlinear wave solutions of extended MHD

In this section, we shall derive a certain class of nonlinear wave

solutions for incompressible extended MHD using an alternative approach

equivalent to the one that discussed in Sec. 4.3.3. This is done by adopting

an approach akin to the one outlined in [82,96,97].
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6.3.1 The derivation of the nonlinear wave solutions

The equations of incompressible extended MHD can be manipulated,

and thereby cast into the following form:

∂B∗

∂t
= ∇× [ (V −∇×B)×B∗], (6.11)

∂ (B∗ +∇× V )

∂t
= ∇× [V × (B∗ +∇× V ) ], (6.12)

along with the auxiliary condition

∇× ((∇×B)× (∇× V )) = 0, (6.13)

which will be commented on later. For now, it suffices to note that this term

will obviously vanish when the magnetic and velocity fields are parallel (or

anti-parallel) to one another. Furthermore, the condition (6.13) eliminates

the last term on the RHS of (6.3), and thereby enables us to arrive at

(6.11) and (6.12). The above equations must be supplemented with the

incompressibility conditions

∇ · V = 0, (6.14)

∇ ·B∗ = 0, ∇ ·B = 0. (6.15)

We shall now describe a class of nonlinear waves that were first derived

and investigated in [82,96,97]; the electron inertia corrections that arise are

explicitly displayed throughout.

Assuming that there is no ambient flow, we can split the velocity

and magnetic field into the ambient and wave components, denoted by the

subscript ‘◦’ and lowercase letters respectively, as follows

B = êB◦
+ b, V = v, (6.16)
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where êB◦
is the direction that the constant ambient field (in the normalized

units) is oriented. Using the definition (6.4), we find that

B∗ = êB◦
+ b∗, b∗ = b+ d2e∇× (∇× b) . (6.17)

Substituting (6.16) and (6.17) into (6.11) and (6.12), the resultant equations

are

∂b∗

∂t
= ∇× [ (v −∇× b)× b∗]

+∇× [ (v −∇× b)× êB◦
], (6.18)

∂ (b∗ +∇× v)

∂t
= ∇× [v × (b∗ +∇× v) ]

+∇× [v × êB◦
]. (6.19)

Let us now suppose that the following (special) conditions were to be sat-

isfied

b∗ =
1

µ1

(v −∇× b) , (6.20)

b∗ +∇× v =
1

µ2

v. (6.21)

By substituting (6.20) and (6.21) into (6.18) and (6.19), the nonlinear terms

are eliminated, leaving us with the following linear time-dependent equa-

tions:

∂b∗

∂t
= µ1∇× [b∗ × êB◦

], (6.22)

∂v

∂t
= µ2∇× [v × êB◦

], (6.23)
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which can be easily solved as they possess wave solutions of the form

b∗ = b∗
k exp [ik · x+ iµ1 (êB◦

· k) t], (6.24)

v = vk exp [ik · x+ iµ2 (êB◦
· k) t]. (6.25)

But, in addition to satisfying (6.22) and (6.23), they must also meet the

additional constraints imposed by (6.20) and (6.21). This necessitates µ1 =

µ2 = µ, and transforms (6.20) and (6.21) into

vk − µb∗k = ik × bk, (6.26)

vk − µb∗k = iµk × vk. (6.27)

These two equations imply that

bk = µvk, (6.28)

which is a powerful relation between the fluctuating (wave) components

of the flow and the magnetic field. This compact expression, along with

(6.16), (6.24) and (6.25) will be shown to yield nonlinear Alfvén wave solu-

tions of incompressible extended MHD. It has also been verified via back-

substitution into the extended MHD equations.

Here, we wish to reiterate an important fact. It is the imposition of

(6.20) and (6.21) that enables us to successfully handle the nonlinear terms

inherent in (6.18) and (6.19). Thus, it appears as though the subsequent

derivation, as exemplified by (6.22) and (6.23), is akin to a standard lin-

ear wave analysis. However, this is not merely a linear treatment, as the
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relations (6.20) and (6.21), which were essential in “eliminating” the non-

linearities, are analyzed and addressed in the discussion preceding (6.26)

and (6.27), and in the equations themselves.

Thus, our analysis does take into account all nonlinear terms, which

are necessary in any study of turbulence as the latter involves scale-to-scale

coupling. We observe that our use of the conditions (6.20) and (6.21) to

eliminate the nonlinear contributions is a well-established approach [3, 82,

96,98]. In fact, a similar result was also derived in [140] (see Footnote #30),

and the general methodology behind these approaches can be traced to the

classic text of [173].

A remarkable feature of (6.28) is that it satisfies the condition (6.13),

which was one of the conditions that we’d imposed at the beginning of our

analysis. As stated earlier, we refer the reader to [3] (see also [96]) for an

alternative derivation, that does not rely upon this additional constraint

for obtaining (6.28).

Let us now use (6.28) along with the expression b∗k = bk − d2ek ×

(k × bk), which follows from (6.17) and (6.24). We substitute these relations

into either (6.26) or (6.27). This leads us to

k × (k × vk) +
i

d2eµ
k × vk =

(µ2 − 1)

d2eµ
2

vk, (6.29)

which can be further simplified upon using a suitable vector calculus iden-

tity, and k · vk = 0. Thus, we end up with

k × vk = −iα (k)vk, (6.30)
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where α (k) is given by

α (k) =
(1− µ2)

µ
− µd2ek

2. (6.31)

It is worth remarking that (6.30) is the Fourier transformed version of the

Beltrami equation (∇× v = αv) with a non-constant α. We are now in a

position to compute the final relation for α - this is done by taking the cross

product of (6.30) with k, and then using (6.30) once again. We find that

α (k) = ±k, (6.32)

which can then be combined with (6.31) to solve for µ. The resulting

equation is a quadratic, which leads to two solutions for µ (denoted by µ±)

that are given by

µ± (k) =
1

(1 + d2ek
2)

[
−k
2
±
√
k2

4
+ (1 + d2ek

2)

]
, (6.33)

and let us focus on the simple case wherein k = k ẑ, following the path

prescribed in [82,97]. The frequency ω = −µ (êB◦
· k) reads as

ω± =
−k

(1 + d2ek
2)

[
−k
2
±
√
k2

4
+ (1 + d2ek

2)

]
(êB◦

· ẑ) . (6.34)

The final expressions for (6.33) and (6.34) are identical to (4.76) and (4.77)

obtained in Sec. 4.3.3.2.

Before concluding this part, we point out that each value of µ gives

rise to two distinct fully nonlinear wave solutions that resemble the famous

ABC equilibria. Also, we refer the reader to Sec. 4.3.3.2, for the discussion

of the various limiting cases of the dispersion relation (6.34).
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6.4 The spectral energy distributions for extended

MHD

In this section, we shall focus on deriving the energy spectra for

extended MHD by invoking a Kolmogorov-like hypothesis regarding the

energy and generalized helicity cascades. We follow this up with pictorial

representations of the various spectra.

6.4.1 Extended MHD invariants in Fourier space

We shall list the primary invariants of extended MHD, and give their

Fourier representations. The total energy in extended MHD is given by

E =
1

2

∫

Ω

{
|V |2 +B ·B∗

}
d3x

=
1

2

∑

k

{
|vk|2 +

(
1 + d2ek

2
)
|bk|2

}
, (6.35)

and the relation b∗
k = bk − d2ek × (k× bk) = (1 + d2ek

2) bk was used to

simplify, and eventually obtain, the above expression.

Next, we shall consider the independent and dependent Casimir in-

variants of extended MHD, which are given in Sec. 6.2. We start by he

(6.6) which can be viewed as analogous to the two-fluid electron helicity in

the single-fluid limit. It is given by

he =
1

2

∫

Ω

(
A∗ − 2d2eV

)
·B∗ d3x,

=
∑

k

{
i (1 + d2ek

2)

2k2
(k × bk)− d2evk

}

·
{(

1 + d2ek
2
)
b−k

}
, (6.36)
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where we have used A∗
k = (1 + d2ek

2)Ak, along with the relations

B∗ = ∇×A∗,

B = ∇×A,

Ak =
i

k2
k × bk,

the last of which follows from (6.28), (6.30) and (6.32) along with the use

of suitable vector calculus identities.

The second invariant hi (6.7) can be viewed as the two-fluid ion

helicity in the single fluid limit. It is defined as follows:

hi =
1

2

∫

Ω

[
(A∗ + V ) · (B∗ +∇× V ) + d2eV · (∇× V )

]
d3x,

=
1

2

∑

k

{{
i (1 + d2ek

2)

k2
(k × bk) + vk

}

·
{(

1 + d2ek
2
)
b−k − ik × v−k

}

−id2evk · k × v−k

}
. (6.37)

Next, we consider the invariant G (6.8). It is given by

G =
1

2

∫

Ω

[
B∗ ·A∗ + d2eV · (∇× V )

]
d3x,

=
1

2

∑

k

{
i (1 + d2ek

2)
2

k2
(k × bk) · b−k

−id2evk · k × v−k

}
. (6.38)

Further, the invariant K (6.9) can be viewed as

K =

∫

Ω

V ·
(
B∗ +

1

2
∇× V

)
d3x,

=
∑

k

vk ·
{(

1 + d2ek
2
)
b−k −

i

2
k × v−k

}
. (6.39)
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Finally, we consider the two generalized invariants given by (6.10). They

can be expressed as follows:

C± =
1

2

∫

Ω

(θ±A
∗ + V ) · (θ±B∗ +∇× V ) d3x,

=
1

2

∑

k

{
iθ± (1 + d2ek

2)

k2
(k × bk) + vk

}

·
{
θ±
(
1 + d2ek

2
)
b−k − ik × v−k

}
, (6.40)

where

|θ±| =
∣∣∣∣∣
−1±

√
1 + 4d2e

2d2e

∣∣∣∣∣ ≈





1, for θ+ (6.41)

1

d2e
, for θ− (6.42)

as noted in Sec. 4.3.3.2. Here, we wish to reiterate that (6.38), (6.39) and

(6.40) are not independent; they can be constructed as a special combi-

nations of the independent Casimir invariants (6.36) and (6.37). Indeed,

it is more ‘natural’ to regard (6.40) as the invariant helicities of extended

MHD, on account of their similarity with magnetic helicity in terms of their

structure.

6.4.2 The derivation of the spectra for extended MHD

We are now in a position to derive the various spectra of interest in

the different regimes. To do so, we shall rely upon an approach based on

the classical arguments presented by [79]. We shall adopt the notation and

methodology outlined in [82] henceforth. In quantitative terms, we assume

that the (total) energy cascade rate is the product of the energy (6.35) and

the inverse of the eddy turnover time τ , the latter of which is given by

τ = (k|vk|)−1. Thus, the energy cascading rate, denoted by ǫE, is evaluated
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to be

ǫE = k|vk|
(
1 + µ2

(
1 + d2ek

2
) ) |v2k|

2
, (6.43)

and we had invoked (6.28) to express (6.35) purely in terms of vk. We

introduce the omnidirectional spectral function WE (k) that corresponds to

the kinetic energy per unit mass per unit wave vector k, and is thus found

to equal

WE (k) =
|v2k|
k

(6.44)

= (2ǫE)
2/3 k−5/3

[
1 + µ2

(
1 + d2ek

2
) ]−2/3

.

Similarly, it is possible to define the omnidirectional spectral distribution

function for the magnetic energy density ME (k). This can be related to

WE (k) by means of (6.28), thereby yielding

ME (k) = µ2WE (k) (6.45)

A similar set of arguments, and scaling relations can be thus devised for the

helicities. As pointed our earlier, only two of (6.36), (6.38) and (6.40) are

truly independent. For the sake of completeness, however, we shall present

the scaling relations for all of these helicities.

Let us start with (6.36) first. Assuming that the eddy turnover time

is τ as before, we find that its cascading rate (ǫhe
) is

ǫhe
= k|vk|

[
µ
(
1 + d2ek

2
) (
µ
(1 + d2ek

2)

2k
− d2e

)]
|v2k|. (6.46)

The associated kinetic and magnetic spectral energy can be computed in a

similar manner, and they are given by

Whe
(k) = (ǫhe

)2/3
[
µ
(
1 + d2ek

2
) (
µ
(1 + d2ek

2)

2k
− d2e

)]−2/3

k−5/3,(6.47)
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Mhe
(k) = µ2Whe

(k) . (6.48)

Next, we consider the invariant (6.37) and repeat the above set of arguments

and algebra. The cascading rate ǫhi
takes on the form

ǫhi
= k|vk|

[(
k + µ

(
1 + d2ek

2
) )2

+ d2ek
2
] |v2k|
2k

, (6.49)

and the spectral energies are

Whi
(k) =

(2ǫhi
)2/3

k

[(
k + µ

(
1 + d2ek

2
) )2

+ d2ek
2

]−2/3

, (6.50)

Mhi
(k) = µ2Whi

(k) . (6.51)

Again, we consider the invariant (6.38). The cascading rate ǫG has the form

ǫG = k|vk|
[
d2ek

2 + µ2
(
1 + d2ek

2
)2 ] |v2k|

2k
, (6.52)

and the spectral energies are

WG (k) =
(2ǫG)

2/3

k

[
d2ek

2 + µ2
(
1 + d2ek

2
)2 ]−2/3

, (6.53)

MG (k) = µ2WG (k) . (6.54)

Further, the cascading of the invariant K (6.39) is

ǫK = (kvk)
[k
2
+ µ

(
1 + d2ek

2
) ]
v2k, (6.55)

with

WK (k) = (ǫK)
2/3
[k
2
+ µ

(
1 + d2ek

2
) ]−2/3

k−5/3, (6.56)

MK (k) = µ2WK (k) . (6.57)

Moving on the generalized helicities (which are arguably the true analogs

of the magnetic or fluid helicity), we find that the cascading rate ǫC±
is

ǫC±
= k|vk|

(
k + θ±µ

(
1 + d2ek

2
) )2 |v2k|

2k
, (6.58)
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leading us to the spectral energies

WC±
(k) =

(
2ǫC±

)2/3

k

[
k + θ±µ

(
1 + d2ek

2
) ]−4/3

, (6.59)

MC±
(k) = µ2WC±

(k) . (6.60)

We round off this section by pointing out the fact that there are two different

values of µ that are given by (6.33). Hence, for each of the spectral energies,

the two cases must be considered separately.

6.4.3 The kinetic and magnetic spectral plots

In Figs. 6.1 - 6.6, the kinetic and magnetic spectra, denoted by W±

and M± respectively, have been plotted as a function of k (where k := kdi).

The ‘±’ corresponds to the two values of µ given by (6.33). In each of the

plots, we have included two vertical lines, which serve to separate the ideal

(k < 1), Hall (k > 1 and k < 1/de) and electron inertia (k > 1/de) regions.

An inspection of (6.47) reveals that it blows up at approximately

k = 1/de. This feature is not present in any of the other spectra. Hence,

we observe the existence of singular behaviour in Fig. 6.2 that is absent in

the rest of the figures. As we have reiterated earlier, we shall consider only

Figs. 6.1 and 6.6 to be independent and of importance, since they represent

the spectra arising from the energy and generalized helicity invariants.

In each of the figures, we have explicitly labelled certain spectral

indices. The reason behind our logic is that we examine the ideal, Hall and

electron inertia regimes in detail in Sec. 6.5, where we obtain the spectra

for these limiting cases. These spectra are compared against the figures,

thereby serving as a mutual consistency check.
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Figure 6.1: Here, WE+
and WE−

are the two values of (6.44) corresponding
to µ+ and µ− respectively; the latter duo are given by (6.33). Recall that
k has been normalized in units of 1/di. The values of ME+

and ME−
are

computed by means of (6.45). The two vertical dotted lines separate the
ideal, Hall and electron inertia regimes respectively (when viewed from left
to right).
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Figure 6.2: Here,Whe+ andWhe− are the two values of (6.47) corresponding
to µ+ and µ− respectively; the latter duo are given by (6.33). Recall that
k has been normalized in units of 1/di. The values of Mhe+ and Mhe− are
computed by means of (6.48). The two vertical dotted lines separate the
ideal, Hall and electron inertia regimes respectively (when viewed from left
to right).
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Figure 6.3: Here, Whi+ andWhi− are the two values of (6.50) corresponding
to µ+ and µ− respectively; the latter duo are given by (6.33). Recall that
k has been normalized in units of 1/di. The values of Mhi+ and Mhi− are
computed by means of (6.51). The two vertical dotted lines separate the
ideal, Hall and electron inertia regimes respectively (when viewed from left
to right).
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Figure 6.4: Here, WG+
and WG−

are the two values of (6.53) corresponding
to µ+ and µ− respectively; the latter duo are given by (6.33). Recall that
k has been normalized in units of 1/di. The values of MG+

and MG−
are

computed by means of (6.54). The two vertical dotted lines separate the
ideal, Hall and electron inertia regimes respectively (when viewed from left
to right).
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Figure 6.5: Here, WK+
and WK−

are the two values of (6.56) corresponding
to µ+ and µ− respectively; the latter duo are given by (6.33). Recall that
k has been normalized in units of 1/di. The values of MK+

and MK−
are

computed by means of (6.57). The two vertical dotted lines separate the
ideal, Hall and electron inertia regimes respectively (when viewed from left
to right).
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Figure 6.6: Here, theWC ’s are the four values of (6.59) corresponding to µ+

and µ− respectively. The first sign denotes the choice of C (either C+ and
C−) and the second denotes the choice of µ, whose expressions are given
by (6.33). Recall that k has been normalized in units of 1/di. The values
of the MC ’s are found by using (6.60), and they are also four in number.
The two vertical dotted lines separate the ideal, Hall and electron inertia
regimes respectively (when viewed from left to right).
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6.5 The energy spectra of extended MHD in different

regimes

In this Section, we shall draw upon the results of Secs. 4.3.3.2 and

6.4.2, and explicitly present the power-law scalings for the spectral energies

in various regimes.

6.5.1 The ideal MHD regime

As noted in Sec. 4.3.3.2, the ideal MHD regime is obtained in the

limit k ≪ 1 in the normalized units. In this instance, it is known that

µ± → ±1. Thus, we end up with the following set of relations:

WE1
(k) = (2ǫE)

2/3 k−5/3 = ME1
(k) , (6.61)

Whe1
(k) = (2ǫhe

)2/3 k−1 = Mhe1
(k) , (6.62)

Whi1
(k) = (2ǫhi

)2/3 k−1 = Mhi1
(k) , (6.63)

WG1
(k) = (2ǫG)

2/3 k−1 = MG1
(k) , (6.64)

WK1
(k) = (ǫK)

2/3 k−5/3 = MK1
(k) , (6.65)

WC1+
(k) =

(
2ǫC+

)2/3
k−1 = MC1+

(k) , (6.66)

WC1−
(k) =

(
2d4e ǫC−

)2/3
k−1 = MC1−

(k) . (6.67)

The magnetic energy spectral are exactly equal to the kinetic energy spec-

tral in each instance, since µ2 = 1. Note that in each of the above expres-

sions, the label ‘1’ denotes the ideal MHD (Alfvénic) limit.
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6.5.2 The Hall regime

The regime where Hall effects are important (and dominant) is given

by k > 1 and d2ek
2 ≪ 1. In the Hall regime, there are two values for µ±

that are very different, and thereby necessitate a different treatment.

By the subscript ‘2’ we shall refer to the case with the above limits

and where µ+ → k−1. In this instance, we find that

WE2
(k) = (2ǫE)

2/3 k−5/3,

ME2
(k) = (2ǫE)

2/3 k−11/3, (6.68)

Whe2
(k) = (2ǫhe

)2/3 k1/3,

Mhe2
(k) = (2ǫhe

)2/3 k−5/3, (6.69)

Whi2
(k) = (2ǫhi

)2/3 k−7/3,

Mhi2
(k) = (2ǫhi

)2/3 k−13/3, (6.70)

WG2
(k) = (2ǫG)

2/3 k1/3,

MG2
(k) = (2ǫG)

2/3 k−5/3, (6.71)

WK2
(k) = (2ǫK)

2/3 k−7/3,

MK2
(k) = (2ǫK)

2/3 k−13/3, (6.72)

WC2+
(k) =

(
2ǫC+

)2/3
k−7/3,

MC2+
(k) =

(
2ǫC+

)2/3
k−13/3, (6.73)
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WC2−
(k) =

(
2d4e ǫC−

)2/3
k1/3,

MC2−
(k) =

(
2d4e ǫC−

)2/3
k−5/3. (6.74)

In the other limit, we are interested in the case where µ− → −k, and this

case is represented by the label ‘3’ henceforth. In this instance, the spectra

are given by

WE3
(k) = (2ǫE)

2/3 k−3,

ME3
(k) = (2ǫE)

2/3 k−1, (6.75)

Whe3
(k) = (2ǫhe

)2/3 k−7/3,

Mhe3
(k) = (2ǫhe

)2/3 k−1/3, (6.76)

Whi3
(k) =

(ǫhi

2

)2/3
k−7/3,

Mhi3
(k) =

(ǫhi

2

)2/3
k−1/3, (6.77)

WG3
(k) = (2ǫG)

2/3 k−7/3,

MG3
(k) = (2ǫG)

2/3 k−1/3, (6.78)

WK3
(k) = (2ǫK)

2/3 k−7/3,

MK3
(k) = (2ǫK)

2/3 k−1/3, (6.79)

WC3+
(k) = 2−4/3

(
2ǫC+

)2/3
k−7/3,

MC3+
(k) = 2−4/3

(
2ǫC+

)2/3
k−1/3, (6.80)

WC3−
(k) =

(
2d4e ǫC−

)2/3
k−7/3,

MC3−
(k) =

(
2d4e ǫC−

)2/3
k−1/3. (6.81)
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6.5.3 The electron inertia regime

When the electron inertia effects become important, and dominate

the landscape, the conditions k ≫ 1 and d2ek
2 ≫ 1 must be met. In this

regime, the two values of µ± give rise to different spectra, as in Sec. 6.5.2.

In the first case, µ+ → 1/k, and this is denoted by the subscript ‘4’.

The various spectra exhibit the following scalings:

WE4
(k) = (2ǫE)

2/3 k−5/3,

ME4
(k) = (2ǫE)

2/3 k−11/3, (6.82)

Whe4
(k) =

(
2d−2

e ǫhe

)2/3
k−7/3,

Mhe4
(k) =

(
2d−2

e ǫhe

)2/3
k−13/3, (6.83)

Whi4
(k) = (2ǫhi

)2/3 k−7/3,

Mhi4
(k) = (2ǫhi

)2/3 k−13/3, (6.84)

WG4
(k) =

(
2d−4

e ǫG
)2/3

k−7/3,

MG4
(k) =

(
2d−4

e ǫG
)2/3

k−13/3, (6.85)

WK4
(k) = (2ǫK)

2/3 k−7/3,

MK4
(k) = (2ǫK)

2/3 k−13/3, (6.86)

WC4+
(k) =

(
2ǫC+

)2/3
k−7/3,

MC4+
(k) =

(
2ǫC+

)2/3
k−13/3, (6.87)
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WC4−
(k) = 2−4/3

(
2ǫC−

)2/3
k−7/3,

MC4−
(k) = 2−4/3

(
2ǫC−

)2/3
k−13/3. (6.88)

When we consider the other limit, it corresponds to µ− → 1/ (d2ek)

and we use the label ‘5’ to identify this case. The spectral distributions for

the magnetic and kinetic energies are

WE5
(k) =

(
2d2e ǫE

)2/3
k−5/3,

ME5
(k) =

(
2d−4

e ǫE
)2/3

k−11/3, (6.89)

Whe5
(k) =

(
2d−2

e ǫhe

)2/3
k−7/3,

Mhe5
(k) =

(
2d−8

e ǫhe

)2/3
k−13/3, (6.90)

Whi5
(k) =

(ǫhi

2

)2/3
k−7/3,

Mhi5
(k) =

(ǫhi

2

)2/3
d−4
e k−13/3, (6.91)

WG5
(k) = (2ǫG)

2/3 k−7/3,

MG5
(k) = (2ǫG)

2/3 d−4
e k−13/3, (6.92)

WK5
(k) = (2ǫK)

2/3 k−7/3,

MK5
(k) = (2ǫK)

2/3 d−4
e k−13/3, (6.93)

WC5+
(k) = 2−4/3

(
2ǫC+

)2/3
k−7/3,

MC5+
(k) = 2−4/3

(
2ǫC+

)2/3
d−4
e k−13/3, (6.94)
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WC5−
(k) =

(
2d4e ǫC−

)2/3
k−7/3,

MC5−
(k) =

(
2d−2

e ǫC−

)2/3
k−13/3. (6.95)

This completes our analysis of the spectra in the different regimes, and

for the various choices of the parameters. Our scalings are verified to be

entirely consistent with the plots presented in Sec. 6.4.3.

We wish to observe that the primary difference between our model,

and the results obtained in [82] is that the latter lacks electron inertia effects.

Hence, the results of Secs. 6.5.1 and 6.5.2 are identical to that of [82], but

our results in the regime where electron inertia effects are dominant, viz.

the findings of Sec. 6.5.3, are altogether new.

6.6 Discussion and analysis

As the ideal MHD regime has been studied by many authors (see

for e.g. the text by [18]), we shall not focus on it in detail. Instead, we

focus primarily on the Hall and electron inertia regimes in our analysis.

Let us commence our comparison by first studying the Hall regime, and

comparing our results with the detailed analytical and numerical results

of [54]; some of the chief conclusions obtained therein were also corrobo-

rated by [108]. The simulations undertaken by [54] demonstrated that the

magnetic fluctuations can exhibit a wide range of power-law behaviour; see

Fig. 6.7 which summarizes the magnetic energy spectra through different

scales given in [54, 108, 136]. This conclusion matches our results in Sec.

6.5.2. Moreover, a careful inspection of Sec. 3.2 of [54] confirms that their

findings are in exact agreement with our model:
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Figure 6.7: A schematic plot of the magnetic energy spectra in different
scales.

1. As per [54], the kinetic energy exhibits a −5/3 slope, whilst the mag-

netic energy is characterized by a −11/3 spectrum in the Hall regime.

This is precisely the scaling obtained in (6.68).

2. It was found in [54] that the magnetic energy displays a −5/3 scaling

at large scales, and the −11/3 scaling at small scales. This is in

contrast to the kinetic energy which displays the −5/3 behaviour at

all scales. A careful inspection of (6.61) and (6.68) confirms that this

is indeed the case.

3. The fact that the magnetic energy is slightly greater than the kinetic

energy can be explained naturally via Hall MHD [54,82,144,155], and

is also consistent with observations [31, 61, 101]. The µ− case in the

Hall regime, that was studied in Secs. 4.3.3.2 and 6.5.2, is consistent
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with these results.

One minor difference between our results and that of [54, 108] that the

upper bound on the magnetic energy spectral index is −11/3 in the latter

case, whereas our model suggests that −13/3 can be achieved, as seen from

(6.73). The scaling of −13/3 is also supported by the previous Kolmogorov-

like analysis of Hall MHD by [82] who also emphasized the important point

that, in their model, the steepened spectra were very much a part of the

inertial range, and were distinct from the dissipation range invoked in earlier

studies.

In general, the fact that the Hall and electron inertia regimes pre-

dict slopes steeper than −5/3 is not a surprising fact, as this prediction

has plenty of observational evidence in its favour [31, 135,136,156]. One of

the remarkable features of the solar wind turbulence spectrum is the po-

tential existence of three different magnetic spectra, with spectral ‘breaks’

separating them [23], of which two are well-documented: the Kolmogorov

−5/3 spectrum at large scales, and an extended inertial range between

the ion and electron gyroscales with an index of approximately −2.5 to

−3 [6,7,10,29,50,136,151]. The last, on the other hand, is quite contested

since it has been modelled as a power-law with an index of possibly around

−4 by [136] (see also [151]), and as an exponential by [9, 10]. We will re-

turn to this aspect later and examine the reasons behind this ambiguity in

greater detail. 3D anisotropic spectra have also suggested that such steep

power laws do exist at sufficiently small scales [135]. This range is some-

times referred to as the dissipation range, and merits an extended discussion
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of its features below.

If we suppose that such (steep) power laws do exist, one must search

for potential candidates to explain this behaviour. At such scales, kinetic

effects are likely to play an important role. For instance, it is expected

that Landau damping plays a major role, in conjunction with the Kinetic

Alfvén Wave (KAW) and (passive) ion entropy cascades, by transferring the

energy to collisional scales and leading to ion and electron heating [140].

Collisionless damping also plays an important role in regulating the spectra

in the dissipation range. For instance, it was shown in [73] by means of a

local cascade model (with critical balance) that the spectrum could exhibit

an exponential fall-off, quite similar to the results obtained in [9, 10]. On

the other hand, when the critical balance conjecture was abandoned, it

was shown in [74] that steep spectra that were nearly power-law in nature

could be obtained, thus analogous to the analysis of solar wind observations

undertaken by [136].

In addition, there are many other effects associated with Landau

damping, as a result of which it has been identified as a major player in

explaining the non-universal power law spectra of the solar wind [126]. In

addition to Landau damping, we also wish to point out the major role played

by other kinetic effects such as pressure anisotropy and its accompanying

kinetic instabilities [84], phase mixing [141], intermittency and coherent

structures [146]; a summary of some of these aspects can be found in [140].

Hence, there has been a great deal of work centred around (gyro)kinetic

simulations of the solar wind [34,73,163,166] and hybrid fluid-kinetic mod-
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els [36, 165, 168]. Regardless of the physical model used, either kinetic

Alfvénic waves or whistler waves are the primary candidates responsible

for this turbulence [24, 39]. The analysis by [130] suggests that the former

cannot serve as a viable candidate, as the whistlers subject to collisionless

damping and do not reach the electron gyroscale (see also [56]), but this

issue cannot be said to have been conclusively settled. This opens up the

possibility of using Hall MHD, which serves as a natural model for whistler

waves [52,97]. Typically, Hall MHD and/or whistler turbulence yield spec-

tra with the slope of −7/3 [6,7,54,108,147,148,155], which falls within the

second, and not the third, range as per the observational evidence.

Furthermore, there are some inherent limitations to using Hall MHD

as a universal model for solar wind turbulence, as discussed in [72]. From

the perspective of two-fluid theory, the effects of electron inertia cannot be

ignored at scales comparable to the electron skin depth [81], implying that

Hall MHD cannot serve as our physical model.1 It is at this juncture that

we invoke the results from Sec. 6.5.3 that accurately capture the effects of

electron inertia (as extended MHD was used in this work).

A careful scrutiny of Sec. 6.5.3 reveals that all of the magnetic en-

ergy spectral indices are either −11/3 or −13/3. We particularly emphasize

the −13/3 slope as this does not appear to have been predicted before by

any of the existent fluid models in the electron inertia regime, although [82]

had discussed this scaling in the context of Hall MHD earlier. It is also

1It is known that β ≈ 1 − 2 for the solar wind [118, 136], implying that the electron
gyroradius and skin depth are approximately equal to each other.
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very intriguing to note that the theoretically predicted slope of −13/3 is

quite close to the value of −4.16 that was obtained from the solar wind

observations at the smallest scales [136].

A cautionary statement is necessary: although the predictions of

our model are quite similar to the solar wind data, the latter cannot be

viewed as exact in this regime on account of instrumental inaccuracies [8,

137]. Instead, it has been shown that a spectrum of slopes peaked around

approximately −4 is manifested [9, 137]. Hence, we can argue that our

scalings are fairly close to the experimental evidence, as well as the 2D

and 3D PIC simulation studies by [34] and [55] which have reported fairly

similar results. We also wish to emphasize that a steep spectra, with a

power-law index of −4.228, has also been observed for the interplanetary

magnetic field, and this fact is evident upon inspection of Fig. 1 of [86].

This is conventionally attributed to the ‘dissipation’ range, but it is possible

that this spectra could arise from the existence of an extended inertial range

that gives rise to the aforementioned −13/3 spectrum in the electron inertia

(and Hall) regime.

The −11/3 slope is interesting in its own right, as it exactly matches

the results from the two-fluid simulations of [11]. The −11/3 spectrum also

arises when electron MHD is used as the basic physical model [107]. As

pointed out before, electron MHD is a limiting case of extended MHD, and

it is founded on the narrow assumption that the ions are stationary. Thus, it

is the complexity and broad scope of our model that is primarily reasonable

for recovering a diverse spectrum of results in Sec. 6.5.
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One of the other features that emerges from the wide-ranging nature

of our model is that, in Sec. 6.5.3 and the first half of Sec. 6.5.2, we find

that the magnetic energy spectra differs from the kinetic energy spectra by

a factor that is proportional to 1/k2. This arises on account of the fact that

there is a factor of µ2 involved, and µ ∝ k−1 in these instances. We observe

that a somewhat similar result has been presented in [25], whose detailed

analysis of MHD simulations and observations revealed that W −M ∝ k−2
⊥ .

We end our analysis on a cautionary note, by summarizing some

of the limitations of our treatment. Whilst it is true that extended MHD

is a much better model than ideal (or Hall) MHD, it does not capture

kinetic or dissipative effects. Moreover, we have not addressed the issue of

parallel vs perpendicular (with respect to the mean magnetic field) magnetic

fluctuations in our analysis, and this anisotropy is known to be an important

feature of the solar wind [31] and other astrophysical plasmas [18]. However,

we believe that the consistency of our results with all of the previous studies

described above augurs well for this model. We also find that the spectra are

not truly power laws (in the universal sense), as seen from Sec. 6.4.3. This

agrees with the recent overview presented in [31]; see also the arguments

put forth in [129].
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Chapter 7

Conclusions

We have investigated the theory of extended MHD, especially by

establishing the Hamiltonian-mechanical framework of the governing equa-

tions. The formulation of extended MHD has exact conservation of energy.

By putting the extended MHD phenomena into the perspective of Hamil-

tonian mechanics, a variety of nonlinear structures has been elucidated by

deriving fully nonlinear exact solutions. The theories provided us with a

new understanding of different nonlinear dispersive waves in magnetized

plasmas. The extended MHD model has been applied to derive nonlinear

Alfvén, helicon and TG waves, as well as study turbulence in the solar wind.

The Casimir invariants of the system, which are features of the noncanoni-

cality of the Hamiltonian of the system, are the key of studying such plasma

processes. Since the dynamics of plasma are restricted to stay on the sur-

faces of constant Casimir, thus all those phenomena appear as structures

embodied on Casimir leaves.

In Chapter 2, we gave a brief review of the Hamiltonian theory

of canonical and noncanonical dynamical systems in finite and infinite di-

mensional, with some emphasis on the Casimir invariants and the energy-

Casimir method. As an example, we have presented the Hamiltonian struc-

ture of the ideal fluid. Casimir invariants of the system have been identified,
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and the energy-Casimir functional has been employed to construct the Bel-

trami equilibrium solution.

In Chapter 3, we presented a rigorous and complete mathematical

formulation of the Hamiltonian and Poisson bracket for the extended MHD

model for the first time. In proving Jacobi’s identity, we have unearthed

an underlying algebraic relation that is represented by a generating bracket

(3.26) satisfying an extended permutation law, which gives a unified frame

for proving the Jacobi’s identity for the hydrodynamics and magnetohydro-

dynamics models. The formulated Poisson algebra has a nontrivial center,

i.e., the Hamiltonian system is noncanonical. Hence, there are Casimir in-

variants (helicities). We have studied the Casimir invariants of the extended

MHD and the subsumed models, i.e., Hall MHD, inertial MHD and ideal

MHD. We also have investigated the required boundary conditions for the

extended MHD.

Chapter 4 is devoted to Alfvén waves as creations on Casimir leaves

of extended MHD. We began by deriving the linear dispersion relation of

extended MHD, and investigating its limits to Hall and ideal MHD. More-

over, we have considered the cases of an incompressible plasma (Cs → ∞),

a cold plasma (Cs = 0) and a warm plasma (Cs 6= 0), separately. Then,

using the features of the Casimir invariants in determining the equilibrium

of the system by extremizing the energy-Casimir functional, we have de-

rived the exact Alfvén wave solutions of the fully nonlinear extended MHD

system for the first time. The solutions consist of two Beltrami eigenfunc-

tions, which incorporated different length scales. A remarkable feature of
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inclusion of the small-scale effects is that the wave patterns are no longer

arbitrary; the large-scale component of the wave cannot be independent of

the small scale component, and the coexistence of them forbids the large-

scale component to have a free wave form. This is in marked contrast to the

ideal MHD picture that an Alfvén wave keeps an arbitrary shape constant

when it propagates on a uniform ambient magnetic field. The solutions for

ideal MHD and Hall MHD are also presented.

In Chapter 5, we have elucidated the multi-scale structure of elec-

tromagnetic waves in extended MHD. The derived analytical solution, sat-

isfying the set of nonlinear equations, manifests the intrinsic coupling of

the large scale and the electron skin depth small scale; the former is re-

alized as a helicon and the latter as a TG mode. When the density is

sufficiently high or the frequency is low, the TG mode chooses a different

partner, which is the ion-cyclotron slow wave. It is remarkable that the

coupling of such two modes imitates a linear combination. Moreover, the

dispersion relations obtained by the linearized model do apply for fully non-

linear solutions with arbitrary amplitudes. This ’superficial linearity’ is a

manifestation of the beautiful algebraic structure underlying the extended

MHD system. Such simplicity is because the Hamiltonian and the Casimir

invariants are quadratic functionals of the wave fields. Moreover, we have

studied the energy partition between these modes, which is determined by

the helicities carried by the wave fields.

Chapter 6 is devoted entirely to study extended MHD turbulence

and its applications to the solar wind. We have utilized the properties of
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nonlinear Alfvén waves in extended MHD obtained in Chapter 4, which

yielded an exact relation between the magnetic and kinetic fluctuations.

Then, we have employed this result in conjunction with the Kolmogorov-

like hypothesis, namely that the cascade rates of the energy and helici-

ties (extended MHD invariants) were a product of the eddy turnover time

and the corresponding energy and helicities. Based on this procedure, we

have derived the magnetic and kinetic energy spectra in the ideal, Hall and

electron inertia regimes. We demonstrate that our theoretical findings re-

produced many previous results (experimental and theoretical) and showed

a good agreement with the observational data in electron inertia regime.

These theoretical predictions of our model emerge from the presence of an

extended inertial range (electron inertia length scale), which is in contrast

to the concept of the dissipation range in the Hall MHD based turbulent

model. Hence, extended MHD constitutes a viable model for extracting the

turbulent spectra across all scales, including those smaller than the electron

gyroradius.

To conclude, the newly formulated Hamiltonian system of extended

MHD is capable of analyzing various nonlinear phenomena on a wide range

of scale hierarchy realized in plasma. While there are various formulations

of ’generalized MHD’ most of them fail to have proper structures to fulfill,

for example, the energy conservation law. The underlying Poisson structure

of the basic equations of motion has been obtained using a novel Lie algebra

(generating bracket). Various variational principles have been applied for

finding nontrivial interesting structures, which have an intrinsic multi-scale

property, e.g., Alfvén, helicon and TG waves. The turbulent spectra for all
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scales in extended MHD have been derived using the fully nonlinear waves

solutions in conjunction with the Kolmogorov-like hypothesis.
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breaks of Alfvénic turbulence in a collisionless plasma. Astrophys.

J., 806:238, 2015.

149



[24] S. Boldyrev, K. Horaites, Q. Xia, and J. C. Perez. Toward a theory

of astrophysical plasma turbulence at subproton scales. Astrophys.

J., 777:41, 2013.

[25] S. Boldyrev, J. C. Perez, J. E. Borovsky, and J. J. Podesta. Spectral

scaling laws in magnetohydrodynamic turbulence simulations and in

the solar wind. Astrophys. J., 741:L19, 2011.

[26] R. W. Boswell. Dependence of helicon wave radial structure on elec-

tron inertia. Aust. J. Phys., 25(4):403, 1972.

[27] R. W. Boswell. Effect of boundary conditions on radial mode struc-

ture of whistlers. J. Plasma Phys., 31(02):197, 1984.

[28] R. W. Boswell and F. F. Chen. Helicons-the early years. IEEE

Trans. Plasma Sci., 25(6):1229–1244, 1997.

[29] S. Bourouaine, O. Alexandrova, E. Marsch, and M. Maksimovic. On

spectral breaks in the power spectra of magnetic fluctuations in fast

solar wind between 0.3 and 0.9 AU. Astrophys. J., 749:102, 2012.

[30] S. I. Braginskii. Transport processes in a plasma. Reviews of Plasma

Physics, 1:205, 1965.

[31] R. Bruno and V. Carbone. The solar wind as a turbulence laboratory.

Living Rev. Sol. Phys., 10, 2013.

[32] J. L. Burch, T. E. Moore, R. B. Torbert, and B. L. Giles. Magneto-

spheric multiscale overview and science objectives. Space Sci. Rev.,

199:5–21, 2016.

150



[33] E. Cafaro, D. Grasso, F. Pegoraro, F. Porcelli, and A. Saluzzi. In-

variants and geometric structures in nonlinear Hamiltonian magnetic

reconnection. Phys. Rev. Lett., 80(20):4430–4433, 1998.

[34] E. Camporeale and D. Burgess. The dissipation of solar wind turbu-

lent fluctuations at electron scales. Astrophys. J., 730:114, 2011.

[35] S. S. Cerri, F. Califano, F. Jenko, D. Told, and F. Rincon. Subproton-

scale cascades in solar wind turbulence: Driven hybrid-kinetic simu-

lations. Astrophys. J., 822:L12, 2016.

[36] B. D. G. Chandran, T. J. Dennis, E. Quataert, and S. D. Bale. In-

corporating kinetic physics into a two-fluid solar-wind model with

temperature anisotropy and low-frequency Alfvén-wave turbulence.

Astrophys. J., 743:197, 2011.

[37] S. Chandrasekhar and P. C. Kendall. On force-free magnetic fields.

Astrophys. J., 126:457, 1957.

[38] F. R. Chang-Dı́az. Plasma propulsion for interplanetary flight. Thin

Solid Films, 506-507:449–453, 2006.

[39] C. H. K. Chen, S. Boldyrev, Q. Xia, and J. C. Perez. Nature of

subproton scale turbulence in the solar wind. Phys. Rev. Lett.,

110(22):225002, 2013.

[40] F. F. Chen. Industrial applications of low-temperature plasma physics.

Phys. Plasmas, 2(6):2164, 1995.

151



[41] F. F. Chen. Physics of helicon discharges. Phys. Plasmas, 3(5):1783,

1996.

[42] F. F. Chen and D. Arnush. Generalized theory of helicon waves. I.

Normal modes. Phys. Plasmas, 4(9):3411, 1997.

[43] F. F. Chen and R. W. Boswell. Helicons-the past decade. IEEE

Trans. Plasma Sci., 25(6):1245–1257, 1997.

[44] N. F. Cramer. The physics of Alfvén waves. Wiley-VCH Verlag

GmbH & Co. KGaA, Weinheim, FRG, 2001.

[45] A. Cumming, P. Arras, and E. Zweibel. Magnetic field evolution in

neutron star crusts due to the hall effect and Ohmic decay. Astrophys.

J., 609:999–1017, 2004.

[46] S. Dastgeer, A. Das, P. Kaw, and P. H. Diamond. Whistlerization and

anisotropy in two-dimensional electron magnetohydrodynamic turbu-

lence. Phys. Plasmas, 7:571–579, 2000.

[47] B. Davies. Helicon wave propagation: effect of electron inertia. J.

Plasma Phys., 4(01):43, 1970.

[48] B. Davies and P. J. Christiansen. Helicon waves in a gaseous plasma.

Plasma Phys., 11, 1969.

[49] E. Dubinin, K. Saure, and J. F. McKenzie. Nonlinear stationary

whistler waves and whistler solitons (oscillitons). Exact solutions. J.

Plasma Phys., 69(4):S0022377803002319, 2003.

152



[50] L. Franci, S. Landi, L. Matteini, A. Verdini, and P. Hellinger. High-

resolution hybrid simulations of kinetic plasma turbulence at proton

scales. Astrophys. J., 812:21, 2015.

[51] Freidberg, J. P. Ideal magnetohydrodynamics. Publisher: Plenum

Press, New York, NY, 1987.

[52] S. Galtier. Wave turbulence in incompressible Hall magnetohydro-

dynamics. J. Plasma Phys., 72:721–769, 2006.

[53] S. Galtier. Exact scaling laws for 3D electron MHD turbulence. J.

Geophys. Res., 113:A01102, 2008.

[54] S. Galtier and E. Buchlin. Multiscale Hall-magnetohydrodynamic

turbulence in the solar wind. Astrophys. J., 656:560–566, 2007.

[55] S. P. Gary, O. Chang, and J. Wang. Forward cascade of whistler tur-

bulence: Three-dimensional particle-in-cell simulations. Astrophys.

J., 755:142, 2012.

[56] S. P. Gary and C. W. Smith. Short-wavelength turbulence in the

solar wind: Linear theory of whistler and kinetic Alfvén fluctuations.

J. Geophys. Res., 114(A13):A12105, 2009.

[57] P. Goldreich and S. Sridhar. Toward a theory of interstellar turbu-

lence. 2: Strong alfvenic turbulence. Astrophys. J., 438:763, 1995.

[58] M. L. Goldstein. Major unsolved problems in space plasma physics.

Astrophys. Space Sci., 277:349–369, 2001.

153



[59] M. L. Goldstein, R. T. Wicks, S. Perri, and F. Sahraoui. Kinetic

scale turbulence and dissipation in the solar wind: key observational

results and future outlook. Phil. Trans. Royal Soc. Lon. Ser. A,

373:20140147–20140147, 2015.

[60] A. V. Gordeev, A. S. Kingsep, and L. I. Rudakov. Electron magne-

tohydrodynamics. Phys. Rep., 243:215–315, 1994.

[61] R. Grappin, M. Velli, and A. Mangeney. ’Alfvenic’ versus ’standard’

turbulence in the solar wind. Annales Geophysicae, 9:416–426, 1991.

[62] D. Grasso, E. Tassi, H. M. Abdelhamid, and P. J. Morrison. Structure

and computation of two-dimensional incompressible extended MHD.

arXiv 1611.00955, 2016.

[63] E. Hameiri. The complete set of Casimir constants of the motion in

magnetohydrodynamics. Phys. Plasmas, 11(7):3423, 2004.

[64] W. W. Hansen. A New type of expansion in radiation problems.

Phys. Rev., 47(2):139–143, 1935.

[65] A. Hasegawa and L. Chen. Plasma heating by Alfvén-wave phase

mixing. Phys. Rev. Lett., 32(9):454–456, 1974.

[66] C. Hasegawa, A. and Uberoi. The Alfvén wave. Technical, National

Information Service, Springfield, VA, 1982.

[67] R. D. Hazeltine, D. D. Holm, J. E. Marsden, and P. J. Morrison.

Generalized Poisson brackets and nonlinear Liapunov stability: Ap-

plication to reduced MHD. Plasma Physics, 1984.

154



[68] M. Hirota, Y. Hattori, and P. J. Morrison. Explosive magnetic recon-

nection caused by an X-shaped current-vortex layer in a collisionless

plasma. Phys. Plasmas, 22(5):052114, 2015.

[69] D. D. Holm. Hall magnetohydrodynamics: Conservation laws and

Lyapunov stability. Phys. Fluids, 30(5):1310, 1987.

[70] D. D. Holm and B. A. Kupershmidt. Poisson brackets and clebsch

representations for magnetohydrodynamics, multifluid plasmas, and

elasticity. Phys. D Nonlinear Phenom., 6(3):347–363, 1983.

[71] D. Hori, M. Furukawa, S. Ohsaki, and Z. Yoshida. A shell model for

the Hall MHD system. J. Plasma Fusion Res., 81:141–142, 2005.

[72] G. G. Howes. Limitations of Hall MHD as a model for turbulence in

weakly collisional plasmas. Nonlinear Processes in Geophys., 16:219–

232, 2009.

[73] G. G. Howes, S. C. Cowley, W. Dorland, G. W. Hammett, E. Quataert,

and A. A. Schekochihin. A model of turbulence in magnetized plas-

mas: Implications for the dissipation range in the solar wind. J.

Geophys. Res., 113:A05103, 2008.

[74] G. G. Howes, J. M. Tenbarge, and W. Dorland. A weakened cas-

cade model for turbulence in astrophysical plasmas. Phys. Plasmas,

18(10):102305–102305, 2011.

[75] G. G. Howes, J. M. Tenbarge, W. Dorland, E. Quataert, A. A. Schekochi-

hin, R. Numata, and T. Tatsuno. Gyrokinetic simulations of so-

155



lar wind turbulence from ion to electron scales. Phys. Rev. Lett.,

107(3):035004, 2011.

[76] J. D. Huba. Hall magnetohydrodynamics in space and laboratory

plasmas. Phys. Plasmas, 2:2504–2513, 1995.

[77] Y. Kawazura and E. Hameiri. The complete set of Casimirs in Hall-

magnetohydrodynamics. Phys. Plasmas, 19(8):082513, 2012.

[78] I. Keramidas Charidakos, M. Lingam, P. J. Morrison, R. L. White,

and A. Wurm. Action principles for extended magnetohydrodynamic

models. Phys. Plasmas, 21(9):092118, 2014.

[79] K. Kimura and P. J. Morrison. On energy conservation in extended

magnetohydrodynamics. Phys. Plasmas, 21(8):082101, 2014.

[80] J. P. Klozenberg, B. McNamara, and P. C. Thonemann. The disper-

sion and attenuation of helicon waves in a uniform cylindrical plasma.

J. Fluid Mech., 21(03):545, 1965.

[81] N. A. Krall and A. W. Trivelpiece. Principles of plasma physics.

International Series in Pure and Applied Physics. McGraw-Hill, 1973.

[82] V. Krishan and S. M. Mahajan. Magnetic fluctuations and Hall

magnetohydrodynamic turbulence in the solar wind. J. Geophys.

Res., 109(A18):A11105, 2004.

[83] M. D. Kruskal and C. R. Oberman. On the stability of plasma in

static equilibrium. Phys. Fluids, 1(4):275, 1958.

156



[84] M. W. Kunz, A. A. Schekochihin, C. H. K. Chen, I. G. Abel, and S. C.

Cowley. Inertial-range kinetic turbulence in pressure-anisotropic as-

trophysical plasmas. J. Plasma Phys., 81(5):325810501, 2015.

[85] L. D. Landau and E. M. Lifshits. Mechanics. Butterworth-Heinemann,

3 edition edition, 1976.

[86] R. J. Leamon, C. W. Smith, N. F. Ness, W. H. Matthaeus, and H. K.

Wong. Observational constraints on the dynamics of the interplan-

etary magnetic field dissipation range. J. Geophys. Res., 103:4775,

1998.

[87] G. Lesur, M. W. Kunz, and S. Fromang. Thanatology in protoplan-

etary discs. The combined influence of Ohmic, Hall, and ambipolar

diffusion on dead zones. Astron. Astrophys., 566:A56, 2014.

[88] W. Li, Y. Ruan, B. Luther-Davies, A. Rode, and R. Boswell. Dry-

etch of As2 S3 thin films for optical waveguide fabrication. J. Vac.

Sci. Technol. A Vacuum, Surfaces, Film., 23(6):1626, 2005.

[89] A. E. Lifschitz. Magnetohydrodynamics and spectral theory. Springer

Netherlands, Dordrecht, 1989.

[90] M. Lingam and A. Bhattacharjee. A heuristic model for MRI turbu-

lent stresses in Hall MHD. Mon. Not. R. Astron. Soc., 460:478–488,

2016.

[91] M. Lingam and A. Bhattacharjee. Hall current effects in mean-field

dynamo theory. Astrophys. J., 829(1):51, 2016.

157



[92] M. Lingam, G. Miloshevich, and P. J. Morrison. Concomitant Hamil-

tonian and topological structures of extended magnetohydrodynam-

ics. Phys. Lett. A, 380:2400–2406, 2016.

[93] M. Lingam, P. J. Morrison, and G. Miloshevich. Remarkable con-

nections between extended magnetohydrodynamics models. Phys.

Plasmas, 22(7):072111, 2015.

[94] M. Lingam, P. J. Morrison, and E. Tassi. Inertial magnetohydrody-

namics. Phys. Lett. A, 379(6):570–576, 2015.

[95] R. G. Littlejohn. Singular Poisson tensors. In AIP Conf. Proc. Vol.

88, pages 47–66. AIP, 1982.

[96] S. Mahajan and H. Miura. Linear superposition of nonlinear waves.

J. Plasma Phys., 75:145–152, 2009.

[97] S. M. Mahajan and V. Krishan. Exact solution of the incompressible

Hall magnetohydrodynamics. Mon. Not. R. Astron. Soc. Lett.,

359:L27–L29, 2005.

[98] S. M. Mahajan and M. Lingam. Multi-fluid systems–Multi-Beltrami

relaxed states and their implications. Phys. Plasmas, 22(9):092123,

2015.

[99] S. M. Mahajan, N. L. Shatashvili, S. V. Mikeladze, and K. I. Sigua.

Acceleration of plasma flows due to reverse dynamo mechanism. As-

trophys. J., 634:419–425, 2005.

158



[100] S. M. Mahajan and Z. Yoshida. Double curl Beltrami flow: Diamag-

netic structures. Phys. Rev. Lett., 81(22):4863–4866, 1998.

[101] E. Marsch. Kinetic physics of the solar corona and solar wind. Living

Rev. Sol. Phys., 3, 2006.

[102] J. E. Marsden, T. Raiu, and A. Weinstein. Semidirect products and

reduction in mechanics. Trans. Am. Math. Soc., 281(1):147–147,

1984.

[103] J. E. Marsden and A. Weinstein. The Hamiltonian structure of the

Maxwell-Vlasov equations. Phys. D Nonlinear Phenom., 4(3):394–

406, 1982.

[104] J. E. Marsden and A. Weinstein. Coadjoint orbits, vortices, and Cleb-

sch variables for incompressible fluids. Phys. D Nonlinear Phenom.,

7(1-3):305–323, 1983.

[105] S. W. McIntosh, B. De Pontieu, M. Carlsson, V. Hansteen, P. Boerner,
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