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Abstract

In recent years, machine learning with neural network models has succeeded in the name
of deep learning. Novel model architectures and learning algorithms have achieved higher
performance than standard machine learning techniques in the various practical application
such as visual recognition, speech recognition and so on. However, its performance-oriented
development causes many heuristics which have little or no theoretical guarantee on the
optimality of the method. For developing and improving the techniques for training the
neural network models, it is indispensable to reveal how and why the neural network models
and their learning algorithms realize the higher performance. In this thesis, we focus on
two learning algorithms proposed in the context of deep learning and theoretically analyze
them. That is, Contrastive Divergence learning in restricted Boltzmann machines (RBMs)
and weight normalization. On the learning of the RBMs with continuous visible units, we
prove that Contrastive Divergence learning, a rough approximation of maximum likelihood
learning, has the same solutions as the exact learning algorithm. Besides, we reveal a
geometric structure of the solutions and what information they extract from input data. Based
on the theoretical insight obtained by the analysis, we also propose a novel efficient algorithm
for the RBMs. Next, we analyze a gradient method known as Weight Normalization, which
has experimentally made the convergence of learning faster. We identify the mechanisms of
the acceleration, that is, an automatic turning of a learning rate and scale invariant gradients.
Moreover, we extend the weight Normalization to a natural gradient method and confirm its
effectiveness in numerical experiments. Mathematical analysis and novel algorithms shown
in this thesis will be expected to advance the studies of deep learning further.
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Chapter 1

Introduction
Without a theory the facts are silent.

– Friederich A. von Hayek 1

In this 15 years, researchers have found that it is possible to train deep neural networks by
using plenty of computational resource, a significant amount of data and novel techniques for
training. In 2012, the deep neural network outperformed standard machine learning models
in ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [60]. Compared to the
previous years, the deep neural networks have achieved about a 10 % lower test classification
error rate and continues to update the record year after year. In speech recognition, deep
neural networks have also achieved about 10 % improvement on a word error rate [95]. The
application field of deep learning is not restricted to visual or audio data but has expanded
into natural language processing, playing games like Go [96], spectral analysis in high energy
physics [12], prediction of molecular electronic properties in chemistry [71] and more [64].

In contrast to the empirical success of deep learning in practical applications, there are
limited number of theoretical studies, which explain why and how the learning succeeds
and the neural network models can perform better than the traditional machine learning. To
understand the mechanism and to develop better algorithms, it is crucial to construct a theory
of learning.

In this section, we first explain background knowledge of this thesis: the recent develop-
ment of neural networks for practical application. Next, we briefly introduce the previous
theoretical studies of learning in hierarchical neural networks. Finally, we describe the objec-
tive of this thesis, that is, to construct theories of the recently developed learning algorithms
for hierarchical neural network models. Because the learning in the neural network models is

1This quote is attributed to him by William N. Butos [21].
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an optimization of matrices representing synaptic connectivity, it is important to understand
the geometry of the matrices.

1.1 Neural network models

There are various types of architectures such as fully-connected networks, convolutional
neural networks (CNN) and recurrent neural networks (RNN) [14, 64]. Although we focus
on the fully-connected networks as illustrated in Figure 1.1, mathematical foundations of the
neural networks are mostly common among the different architectures.

As described below, there are two types of formulation to represent neural networks, that
is, discriminative models and generative models.

1.1.1 Discriminative models

The discriminative model is the easiest way to formulate learning in neural network models.
It has a cost function, and its learning algorithm is derived from a gradient of the cost func-
tion. The gradient method in multi-layer neural networks is known as the backpropagation
algorithm [89]. Here, Figure 1.1 illustrates the typical fully-connected hierarchical neural
networks. For instance, one of the way to formulate the cost function on the network in
Figure 1.1 (b) is a squared error between input data and output data such as

E(W (1),W (2), ...,W (L)) =
1
T ∑

i
||yi−g(W (L) · · ·g(W (2)g(W (1)xi)))||2, (1.1)

where we have T input samples xi and their labels yi (i = 1,2, ...,T ). The activation function
is given by g(·). The weight matrix W (l) represents a strength of synaptic connectivity
between the l-th layer and (l +1)-th layer. For binary label samples, we usually define the
cost function as a cross-entropy.

Sigmoid and Tanh functions are classical and typical activation function, which imitate
the firing activity of biological neurons. Recently, rectified linear unit (ReLU) , i.e., g(x) =
0 (x≤ 0), x (x > 0) is widely used and give faster convergence and better generalization
errors in practical applications [74]. Some extensions of ReLU have also been proposed,
for instance, leaky ReLU which has the finite gradient with negative argument and can
further improve the convergence speed of learning [66]. MaxOut unit is a more complicated
activation than ReLU, which is defined by a mixture of linear activation functions [40]. When
trained with the Dropout algorithm [99], MaxOut is easier to optimize the parameters than
ReLU.
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Briefly speaking, the particular case of a two-layer network with the output yi replaced
by the input xi is known as auto-encoders (AEs). The AEs perform regression between an
input signal and its feedback signal from the hidden layer, and compress the information of
input data in an unsupervised manner. There are many types of variants of the auto-encoders
[14], for instance, denoising auto-encoder [104]. The denoising AE receives input samples
with added noise, and attempts to eliminate the noise by using the feedback signals. Deep
networks pre-trained by denoising AE can achieve better discrimination error rates than
those pre-trained by conventional AE and comparable discrimination error rates to those
pre-trained by RBMs [104].

Fig. 1.1 Network architectures studied in this thesis. (a) The two-layer network such as
auto-encoder and RBM. (b) The (L+1)-layer network with one input layer and L hidden
layers.

1.1.2 Generative models

Let us define a random variable for each neuron in a neural network model and the probability
distribution of the model. This model is known as the generative model. In the inference with
the generative model, we can utilize the framework of probabilistic learning algorithms such
as maximum likelihood estimation, Bayesian estimation with a prior distribution, variational
Bayesian methods, MCMC sampling and so on [14, 90]. In particular, the generative model
is useful for unsupervised tasks because it has its own probability distribution fitted to the
input data. The trained generative model enables us to generate artificial samples as used in
image generation or compensation of the input data [90].
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Boltzmann machines

Boltzmann machine is a typical generative neural network model defined by the following
probabilistic distribution [1]:

p(x) = exp(−xTWx)/Z, (1.2)

where the random variable xi for each neuron interacts with each other through a weight
matrix W . Note that, to realize exact inference in Boltzmann machines, we need to compute
a normalization constant Z. This normalization constant Z makes the Boltzmann machine
difficult to use in practice because it takes too much computational time to compute. To
overcome this problem, the researchers have developed the following restricted Boltzmann
machine.

Restricted Boltzmann machines

The restricted Boltzmann machine (RBM) is a bipartite graphical model of the two-layer
neural network illustrated in Figure 1.1 (a) [97, 42]. Its probability distribution is given by

p(h,v) = exp(−hTWv)/Z, (1.3)

where v denotes the visible random variable in the first layer and h denotes the hidden random
variable in the second layer. The visible and hidden units of the RBM are conditionally
independent of each other, that is,

p(h|v) = ∏
i

p(hi|v), (1.4)

p(v|h) = ∏
i

p(vi|h). (1.5)

This conditional independence of the variables in the same layer makes the sampling of
variables mix easily in the MCMC process of maximum likelihood (ML) learning [42].
Due to easy mixing, a rough approximation of ML learning, i.e., the contrastive divergence
explained in Chapter 2, have empirically succeeded to train RBMs with a finite number of
sampling.

There are various types of RBMs as briefly introduced in the following. The most
standard RBM holds binary visible and hidden random variables. There is an extension for
continuous input data such as images and sounds, that is, Gaussian-Bernoulli RBM, where
the visible variables obey continuous Gaussian distribution and the hidden ones follow binary.
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3-way RBM is the expansion of Gaussian-Bernoulli RBM and has probabilistic variables to
imitate the simple-cell-like and complex-cell-like activities [59]. It can capture the covariance
structure of the natural images and obtain even better features by stacking binary RBMs
above it. Ranzato et. al. have even further generalized the 3-way RBM and done extensive
experiments on natural image datasets [86]. A generalized formulation of RBMs is known as
exponential family harmoniums [109]. Although RBMs are likely to be used in unsupervised
learning, we can make use of discriminative RBMs in the case of supervised learning [61].

The maximum likelihood learning is a typical learning criterion of the RBMs. It is
noteworthy that many studies have also developed the alternative methods to the ML learning
in recent years. Contrastive divergence explained in Chapter 2 can been seen as a rough
approximation of the ML learning. TAP approximation has succeeded to train RBMs and
to make them perform comparable or better than those trained by contrastive divergence
learning [36]. Grosse and Salakhutdinov have proposed an approximated natural gradient
method with low computational complexity, which is scalable in large RBMs [41]. Training
based on Wasserstein distance makes Boltzmann machines more suitable to data completion
and denoising [71]. Cho et al. proposed a novel parameterization of variance parameters and
a parallel tempering learning algorithm for G-B RBM [25]. Their experiments demonstrated
that the proposed improvements overcome several difficulties encountered in training G-B
RBMs.

1.1.3 Deep generative models

It is possible to extend the restricted Boltzmann machines to multi-layer models illustrated
in 1.1 (b). Directed graph version of the multi-layer RBM is known as deep belief network
(DBN), and undirected version is known as deep Boltzmann machine (DBM). To approx-
imately realize ML learning in these deep generative models, we can use the wake-sleep
learning algorithm for training DBN [44] and the variational Bayes method for training DBM
[90]. In both of DBN and DBM, layerwise pre-training described in the following section
has succeeded to make them perform better.

Compared to deep discriminative models such as stacked auto-encoders and convolutional
neural networks, it is hard to train deep generative models. It is because marginalized
probability distributions P(v) and P(h|v) have too many modes (peaks) to make the sampling
algorithm mix states well. To overcome this difficulty for training the deep generative
models, generative stochastic networks (GSNs) [19], variational auto-encoders [57] and
generative adversarial networks (GAN) [39] have been developed over the past few years. In
unsupervised learning with image data, these models have enabled us to generate sharper
artificial images than the previous deep generative models.
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1.2 Techniques for learning in neural network models

The recent success of hierarchical neural networks owes a great deal to the development of
learning techniques. For instance, we sometimes explicitly or implicitly assume the sparse
firing on the activation of the neurons [43]. Regularization techniques such as max-norm and
Dropout are also essential to make the models achieve high generalization performance [99].
Researchers have also developed novel algorithms based on a fundamentally new principle
like adversarial training [39]. Although there are many important techniques to be explained,
we focus on the following two topics in this section: layerwise pre-training and gradient
methods.

1.2.1 Layerwise pre-training: deep networks composed by two-layer
networks

Layerwise pre-training is one of breakthrough techniques for training hierarchical neural
networks. In general, neural network models with millions of parameters are likely to overfit
to training samples. To overcome this problem in deep hierarchical neural networks, Hinton
and Salakhutdinov have proposed layerwise pre-training [45]. Before training all of the
layers by a supervised manner, one can train each neighboring two layers from the bottom
layer to the top layer one by one in an unsupervised manner. Experiments demonstrated that
this unsupervised layerwise pre-training finds typical features of input data, which make
easy to train all layers at the same time after the layerwise pre-training [31, 45]. In other
words, layerwise pre-training is a method to find good initial values of the parameters that
prevent overfitting. In particular, Erhan and Bengio have experimentally and quantitatively
confirmed that the supervised backpropagation after the unsupervised layerwise pre-training
converges faster to solutions with better generalization performance than the backpropagation
started from random initial values [31]. Bengio et al. speculate that the layerwise pre-training
disentangles the input data into more abstract features in deeper layers and that these abstract
features will be helpful to describe the unknown test dataset and to realize much lower
generalization errors [18].

1.2.2 Gradient methods

1st-order methods

The most primary method of learning is a steepest descent algorithm, which decreases the
cost function by using its 1-st order derivatives. In particular, the stochastic gradient decent
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(SGD) is widely used. This method computes the steepest descent gradient by using 10-500
training samples, or mini-batch, at each update. The extensions of the SGD such as AdaGrad,
RMSprop, and Adam modify the learning rates by normalizing the amplitude of the gradients
[56]. Let us remark that normalization techniques such as Batch Normalization [49] and
Weight Normalization [91] are also effective to make the gradient methods converge faster.
In particular, the Batch Normalization normalizes the input from the previous layer and it
stabilizes the learning dynamics. Besides it allows us to use a larger learning rate and to
remove the Dropout procedure. The Weight Normalization will be intensively investigated in
Chapter 4 and 5.

2nd-order methods

Hessian-Free (HF) method is an efficient approximation of Newton’s method [67] and has
lower computational time and smaller memory space suitable for large deep networks. The
deep auto-encoders trained by HF methods without layerwise pre-training has achieved
generalization errors comparable to those trained by SGD with layerwise pre-training. In the
recurrent neural networks, HF method also accomplished the state-of-the-art performance
[69].

There is an essential work to modify the Newton’s method for training hierarchical
neural networks, that is, saddle free Newton (SFN) algorithm [28]. The cost functions of
the hierarchical models are believed to have many saddle points (See Section 1.3.2). The
SFN algorithm corrects the steepest descent direction by an absolute Hessian matrix that
makes the learning dynamics escape from the saddle points along the direction with negative
eigenvalues of the Hessian. It succeeded to make the convergence of learning faster in a deep
auto-encoder and to find better solutions with lower generalization errors.

Note that the study of SFN also experimentally investigated the error landscape in 3-layer
nonlinear perceptrons [28]. They reported that most of the fixed points with higher errors
are not local minima but saddle points. In addition, they remarked that several statistical
models in statistical physics, such as Gaussian random field and spherical spin model, have
the same energy landscape. Furthermore, Fukumizu and Amari theoretically proved that the
3-layer perceptrons have bad saddle points where the learning dynamics become very slow
[35]. Therefore, the SFN algorithm is believed to be effective in deep learning and even in
other high-dimensional non-convex optimization problems.
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Natural gradient methods

The natural gradient method was invented to accelerate the 1st-order gradients by using un-
derlying Riemannian parameter space [5, 6]. It corrects the steepest decent direction by using
the Riemannian metric of Kullback-Leibler (KL) divergence, i.e., Fisher information matrix,
and has succeeded in practical applications. In particular, for training multi-layer perceptrons,
the natural gradient has been superior to other methods like 2nd-order optimization because
it can avoid or alleviate the plateau phenomena [82].

The natural gradient methods require the inversion of the Fisher information matrix and
it takes too much computational time. Because deep networks hold many parameters and
require much computational time and memory space, it seems to be difficult to use natural
gradient methods. Fortunately, natural gradient algorithms suited to the large-scale neural
networks have been developed such as the block diagonal approximation of the Fisher metric
[62], metric-free optimization with conjugate gradients [29], or approximation of the metric
by sufficient statistics unique to exponential family models [41].

1.3 Theory of neural networks

In contrast to success in practical applications, there are less theoretical studies to answer
why and how the neural network models perform well. Let us briefly overview the theoretical
studies related to this thesis.

1.3.1 Theory of models: expressive power

It has been known that 3-layer networks, in other words, shallow networks, are universal
approximators for continuous input data [13]. Recently, several studies have revealed that
the deep networks have more expressive power than the shallow ones [16, 73, 20, 84]. The
complexity of functions that the deep network can represent is known to grow exponentially
with the number of layers. In contrast, in the shallow network, the complexity cannot grow
exponentially but increases with a polynomial of the number of hidden units. Therefore,
if the number of hidden units is same between the deep network and the shallow one, the
expressive power of the deep network is much bigger than that of shallow one.

With regards to RBMs, several studies clarified that binary RBMs can approximate
arbitrarily well any probability distribution and that the representation power does not
decrease by stacking the binary RBMs [62, 72]. Moreover, the binary RBN never requires
more units than a binary RBM to represent a distribution with a certain accuracy [63]. Under
mild assumptions, Krause et al. also analyzed a DBN with continuous visible variables and
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showed that it approximates mixture of exponential families with an arbitrarily good accuracy
[58].

Note that the expressive power of the model is not necessarily equal to the easiness
of training or high generalization performance. In general, deep network models are hard
to train because of vanishing gradient problems [9, 6, 94]. The magnitude of the gradient
becomes much smaller in the lower layer and the learning is difficult to process. In addition,
even if the model potentially has a high expressive power, learning algorithms may converge
to the solution that corresponds to a poor expressive power or overfitting.

1.3.2 Theory of learning: dynamical analysis

In contrast to the expressive power of the neural network "models", the previous studies have
paid little attention to the theoretical perspective in "learning". There are several topics on
the theory of learning quite related to this thesis.

Error Landscape of 3-layer linear neural networks

In the neural network models with linear activation functions, we can derive exact solutions
by analytical calculation and obtain theoretical insight into the structure of the solution space.
Let us consider a 3-layer liner neural network with the following cost function,

E(W (1),W (2)) =
1
T ∑

i
||yi−W (2)W (1)xi||2. (1.6)

We assume that its learning algorithm is derived by the steepest decent update such as

dW (l)

dt
=−η

dE
dW (l)

(l = 1,2), (1.7)

where η denotes a given constant learning rate.
We can analytically obtain the fixed points of the learning dynamics in this 3-layer

network (1.7), where the gradients dWl/dt become zero. The stable points of eq. (1.7)
correspond to perform a singular value decomposition on the correlation matrix between the
input samples and the output samples [11]. The number of singular values extracted in the
trained network equals to that of hidden units. Therefore, the learning rules (1.7) perform a
kind of dimension reduction of the data.

It is remarkable that there exist unstable fixed points where the learning trajectory never
converges. Baldi and Hornik have proved that this stable fixed point is the global minimum
of the cost function and that there is no local minimum [11]. All of the other fixed points are
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saddle points. Because the saddle points always have higher training errors than the stable
global minimum, the learning trajectory escapes the saddle points and eventually converges
to the global minimum.

Note that a linear auto-encoder is a special case of the above 3-layer network, where the
target signal is given by the input sample such as y← x and the network has a tied weight,
i.e., W (2) =W (1)T . In this linear AE, the global minimum corresponds to perform principal
component analysis of the input data and the largest principal eigenvalues are extracted after
training [111, 78]. The number of the extracted eigenvalues is equivalent to the number
of the hidden units. There are saddle points with higher errors than the global minimum
and no local minima. Besides, when the number of the hidden units is less than that of the
input units, the linear AE is also known as a reduced rank regression [103]. It is notable that
Nakajima formulated the reduced rank regression by a probabilistic model and revealed the
exact solution of its Bayesian estimation [75].

Although this linear 3-layer network can only perform relatively simple information
processing, its learning dynamics of the weight matrix is nonlinear and a bit complicated.
Therefore, it seems to be difficult to analytically solve the differential equation (1.7). Sur-
prisingly, several studies have revealed that the differential equation (1.7) can be reduced to
the Riccati matrix differential equation and is solvable for broad initial conditions [113, 34].
Yan et al. have solved the case of linear AE [113] and Fukumizu has generalized the theory
into the case of the 3-layer linear perceptrons [34]. In addition, he derived the theoretical
values of the generalization error and discussed the occurrence of the overfitting in the linear
neural networks.

Error landscape of deep linear neural networks

Here, let us consider a deep linear neural network with more than four layers which has the
following cost function,

E(W (1),W (2), ...,W (L)) =
1
T ∑

i
||yi−W (L) · · ·W (2)W (1)xi||2. (1.8)

In this case, the following studies have revealed theoretical properties of the deep linear
neural network model. Kawaguchi proved that the steepest descent gradient of the cost
function (1.8) has only one stable global minimum, no local minima and saddle points which
have higher training errors than the global minimum [55]. Therefore, the structure of the
solution space in the deep linear neural network is similar to that in the 3-layer linear one.
Moreover, Saxe et al. found that the learning dynamics in the deep linear neural networks
becomes analytically tractable for special initial conditions [92]. Their analytical solution of
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the learning dynamics shows that the larger singular value of the data correlation matrix is
extracted faster. This means that the learning dynamics first captures the typical structure of
the data and pick up the detailed structure later. They also theoretically demonstrated that the
layerwise pre-training can speed up the convergence of the backpropagation algorithm. This
result supports the experimental results of deep learning [45].

Remarkably, some numerical experiments in multi-layer neural network models with
nonlinear activation functions also have confirmed that the training errors of local minima are
lower than those of global minima and suggested that the obstacle in the learning dynamics
is not the local minima but the saddle points [28].

Dynamical analysis in nonlinear neural networks

To analyze the learning dynamics of parameters in nonlinear neural network models, several
previous studies have investigated relatively simple models. In a 2-layer auto-encoder model
with continuous input variables and binary hidden variables, the stable fixed points of the
steepest decent gradient has been derived under some mild assumptions [7, 48]. Their theory
proved that those stable fixed points correspond to extract independent components from
input data.

In nonlinear hierarchical models, there are some singular regions of the parameter
space, where the redundant parameters degenerate. The dynamics of the steepest decent
gradient becomes very slow in the singular regions, and this slow transient dynamics is
known as plateau phenomena [6]. In 3-layer perceptrons with one output unit and two
nonlinear hidden units where the true solution exists in the singular region, dynamical
analysis derived the exact solution of the learning differential equation and revealed that the
singular regions compose so-called Milnor attractor [26]. Interestingly, the natural gradients
avoid or alleviate the plateaus in numerical experiments [82]. Dynamical analysis and
statistical mechanical analysis also theoretically confirmed that the natural gradient method
accelerates the convergence of the learning trajectory near the singular region [26, 87].

1.4 Contributions of this thesis

As remarked in the previous sections, the recent development of neural network models is
due in large part to the empirical success in practical applications. In particular, it is learning
algorithms different from the traditional optimization methods that make possible to train the
hierarchical neural networks in realistic computational time and to find reasonable solutions.
However, there are limited number of theoretical studies, which have revealed how and why
the learning algorithms in neural networks perform so well. Understanding the underlying



1.4 Contributions of this thesis 12

mechanism of the recently developed learning algorithms will be helpful to invent better
learning algorithms based on the theory.

In this thesis, we focus on two learning algorithms proposed in the context of deep
learning and theoretically analyze them. That is, contrastive divergence learning in restricted
Boltzmann machines and weight normalization. Moreover, the objective of this thesis is
not just to analyze the learning algorithms but also to invent better algorithms based on the
knowledge obtained in our analyses. The overview of this study is depicted in Figure 1.2.

In Chapter 2, we first prove that contrastive divergence learning, a rough approximation
of maximum likelihood learning, has the same solution with the exact method in restricted
Boltzmann machines with Gaussian visible units. By using dynamical analysis of weight
matrices, we analytically reveal the structure of the solution matrices. Our analysis also
identifies what specific information of input data RBMs extract at the solutions. The results
shown in Chapter 2 are based on our published papers [51, 53].

In Chapter 3, we propose an efficient algorithm for the RBMs based on the theoretical
insight into the structure of the solutions obtained in Chapter 2. In details, we reveal that the
likelihood and its gradients in the RBMs with Gaussian visible units are analytically tractable
when the weight matrix is constrained to the Stiefel manifold. We propose a novel algorithm
based on a geodesic flow on the Stiefel manifold. The results shown in Chapter 3 are based
on our published proceeding in an international conference [54].

Next, in Chapter 4, we analyze a gradient method for neural networks known as weight
normalization. The weight normalization is a kind of coordinate transformation and uses
radial and directional parameters to represent the weight matrix. It has experimentally made
the convergence of learning faster but the mechanism of the speed up remains unsolved. We
show that the weight normalization realizes an automatic turning of a learning rate and scale
invariant gradients.

In Chapter 5, we introduce a novel natural gradient algorithm by using the radial parame-
ters of weight normalization, which greatly reduces the computational cost of the inverse of
the metric. We confirm the effectiveness of the proposed algorithm by numerical experiments
with supervised learning in 3-layer and 4-layer neural networks. In addition, we demonstrate
several theoretical results, which uncover the geometric similarities of the Riemannian metric
for neural networks between the proposed natural gradient method and the traditional natural
gradient method.

Because both algorithms proposed in Chapter 3 and Chapter 5 are based on the geometric
structure of the weight matrix, investigation of the geometry seems to be essential for the
theory of the learning in neural networks.
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Fig. 1.2 Overview of this thesis.



Chapter 2

Dynamical Analysis of Learning in
Restricted Boltzmann Machines

The restricted Boltzmann machine (RBM) is an essential constituent of deep learning, but it
is hard to train by using maximum likelihood (ML) learning, which minimizes the Kullback-
Leibler (KL) divergence. Instead, contrastive divergence (CD) learning has been developed
as an approximation of ML learning and widely used in practice. To clarify the performance
of CD learning, in this study, we analytically derive the fixed points where ML and CDn

learning rules converge in two types of RBMs: one with Gaussian visible and Gaussian
hidden units and the other with Gaussian visible and Bernoulli hidden units. In addition, we
analyze the stability of the fixed points. As a result, we find that the stable points of CDn

learning rule coincide with those of ML learning rule in a Gaussian-Gaussian RBM. We also
reveal that larger principal components of the input data are extracted at the stable points.
Moreover, in a Gaussian-Bernoulli RBM, we find that both ML and CDn learning can extract
independent components at one of stable points. Our analysis demonstrates that the same
feature components as those extracted by ML learning are extracted simply by performing
CD1 learning. Expanding this study should elucidate the specific solutions obtained by CD
learning in other types of RBMs or in deep networks.

2.1 Introduction

The restricted Boltzmann machine (RBM) is a bipartite graphical model widely used as an
essential constituent of deep neural networks. The visible and hidden units of the RBM are
conditionally independent of each other [97, 42]. Contrastive divergence (CD) learning, an
approximate algorithm of maximum likelihood (ML) learning, efficiently uses this conditional
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independence [42]. If ML learning is used to train an RBM, it requires many iterations of
Gibbs sampling at each update step and takes too much computational time. In contrast,
CD learning requires only a few iterations of Gibbs sampling, iterated transitions between
visible units and hidden units. CDn learning uses n steps of Gibbs sampling. In particular,
CD1 learning is widely used and can complete the training in a short time. As evidenced
empirically, an RBM trained by CD1 learning achieves solutions close enough to those of
an RBM trained by ML learning [22]. Stacked RBMs pre-trained by CD1 learning have
performed well in practical applications such as visual image classification [45] and acoustic
modeling [27].

CD learning performs well enough to achieve success in practice, but there is little
theoretical evidence that shows that it performs well. The previous theoretical studies
demonstrated that the properties of CD learning are quite different from those of ML learning.
For instance, there are certain cases where CD learning does not converge because its gradient
does not obey any objective function [100]. In a simple case of an RBM with continuous
1-hidden and 1-visible units, Williams and Agakov gained theoretical insights into how
the gradients of CD learning are biased in comparison with those of ML learning [110].
In general, the gradient of CD learning is interpreted as a truncated expansion of the log-
likelihood gradient [15]. Even if the learning procedure converges to equilibrium solutions,
these solutions do not necessarily maximize the likelihood function [22].

The previous studies left a question unanswered: what specific solutions are commonly
or differently found by ML and CD learning? Although there are general conditions under
which CD learning gives the ML solutions [115, 3], these conditions are loose, and CD
solutions are hard to identify. For using CD learning in practice, it is important to identify the
specific solutions obtained by CD learning and clarify what features are extracted from input
data. A way to identify the solutions obtained by a learning rule is dynamical analysis of
equilibrium and its stability [4]. By obtaining fixed points of the learning rule and checking
their stability by using the perturbation method, the dynamical analysis has revealed what
weight matrix can be extracted as a stable fixed point. For instance, it has clarified principal
or minor components extracted in linear neural networks [78, 11, 23], principal components
extracted by ML learning in the probabilistic PCA model [102], and independent components
extracted by ICA algorithms [7, 48]. If dynamical analysis can be carried out on CD learning,
we can understand the features extracted by CD learning.

In this study, we used the dynamical analysis to identify the fixed points of ML and
CDn learning rules in two types of RBMs. First, we derived an exact analytical form of the
fixed points in a Gaussian-Gaussian RBM whose visible and hidden units are continuous
real values [110, 43]. The ML and CDn learning rules were explicitly formulated with
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model parameters. The analytical form demonstrated that ML learning extracts principal
components whose eigenvalues are larger than a certain value. In addition, we analyzed
the stability of the fixed points by using the perturbation method and revealed that a set
of the largest principal components is extracted at stable fixed points. Next, we derived
the analytical form for fixed points of CDn learning rule and found that it coincides with
that of ML learning. In addition, their stability also coincides with that of ML learning.
We thus concluded that CDn learning maximizes the likelihood function and extracts the
same principal components as ML learning. Moreover, we also apply the same dynamical
analysis to a Gaussian-Bernoulli RBM whose hidden units are binary [45, 65]. Under certain
conditions, we revealed that both ML and CDn learning in the Gaussian-Bernoulli RBM
have one common stable fixed point, where the Gaussian-Bernoulli RBM decomposes mixed
input signals to independent source signals.

Our new paper [53] is a complete version of our previous results [51]. Unlike in the
previous results, we generalize the analyses for the stability of the fixed points in Gaussian-
Gaussian RBM to the case where there is no constraint on the number of hidden units. In
addition, we demonstrate the previously omitted proofs of theories on the stable fixed point
in Gaussian-Bernoulli RBM. We also discuss the relationship between our theoretical results
and the previous studies such as experiments on natural images [65, 106] and nonlinear PCA
[80]. Moreover, in both RBMs, we added the learning rules with bias parameters in Appendix
A.

The results for CDn learning are independent of n. Because CD1 learning can extract the
same features as ML learning, CD1 learning seems to be efficient to train RBMs. Expanding
our analysis would help to elucidate features that can be extracted in RBMs with binary
visible units or stacked RBMs.

2.2 Model

2.2.1 Gaussian-Gaussian RBM

The probability distribution of a Gaussian-Gaussian RBM is defined as follows [110, 43]:

p(h,v) = exp

{
−

M

∑
i=1

(hi− ci)
2

2s2
i
−

N

∑
j=1

(v j−b j)
2

2σ2
j

+∑
i, j

Wi j
hi

si

v j

σ j

}
/Z, (2.1)

where v and h are random variables representing the states of the visible and hidden units,
respectively. Both hidden hi and visible v j take continuous values and obey Gaussian
distributions characterized by variances s2

i (i = 1, ...,M) and σ2
j ( j = 1, ...,N). Let us denote
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an M×N weight matrix by W , biases by ci and b j, and a normalization constant by Z. The
joint probability p(h,v) yields the following marginal distributions:

p(v) = N (v;Σ(I−W TW )−1(W T S−1c+Σ
−1b),Σ(IN−W TW )−1

Σ), (2.2)

p(h) = N (h;S(I−WW T )−1(WΣ
−1b+S−1c,S(IN−WW T )−1S), (2.3)

where we define a multivariate normal distribution with mean µ and variance Σ2 by
N
(
v; µ,Σ2). Let us denote the covariance matrix of the hidden units by an M×M diagonal

matrix S = diag(s1,s2, ...,sM), whose entries satisfy Sii = si and Si j = 0 (i ̸= j). In addition,
we denote the covariance matrix of the visible units by an N ×N diagonal matrix Σ =

diag(σ1,σ2, ...,σN). The conditional probabilities are also given by multivariate normal
distributions such as

p(h|v) = N
(
h;SWΣ

−1v+ c,S2) , (2.4)

p(v|h) = N
(
v;ΣW T S−1h+b,Σ2) . (2.5)

When training examples of v are given from the outside, we need to estimate W , b, and c
such that the marginal distribution p(v) is as close as possible to a distribution generating
training examples q(v). The model variances Σ2 and S2 are given and fixed. For mathematical
simplicity, we set the mean of input data to µ =

∫
dvq(v)v = 0 and the bias parameters to

b = c = 0 in the following learning rules. We can formulate a general case in the same way
as explained in Appendix A. In Section 2.3, we will also assume that the variances of the
visible and hidden units are homogeneous, i.e., Σ = σ IN , S = sIM, where IN denote an N×N
identity matrix.

ML learning rule

The learning rule of the maximum likelihood (ML) estimate of W is derived by minimizing the
Kullback-Leibler (KL) divergence between the input distribution and the model distribution
[42] and is given by

τ
dW
dt

= S−1{< hvT >0 −< hvT >∞

}
Σ
−1, (2.6)

where τ is a learning constant. The first term is defined by

< hvT >0=
∫

dhdvp(h|v)q(v)hvT , (2.7)
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where q(v) is the input data distribution. In contrast, the second term is defined by

< hvT >∞=
∫

dhdvp(h,v)hvT , (2.8)

which is the expectation with respect to the model distribution p(h,v). In practical application
of RBMs, the first term of ML learning is calculated by a finite number of training examples
and the second term is calculated by samples of the model distribution obtained by Gibbs
sampling. In this study, to analyze average behaviors of the learning rules, we neglect
fluctuations caused by the training examples and the Gibbs sampler and try to analytically
calculate each term by using its definition. In Gaussian-Gaussian RBM, the ML learning rule
(4) becomes

τ
dW
dt

=WΣ
−1CΣ

−1−W (IN−W TW )−1. (2.9)

Let us denote the data covariance matrix by C =
∫

dvq(v)vvT −µµT , where IN is an N×N
identity matrix.

CDn learning rule

In practical application of RBMs, CDn learning replaces the second term of ML learning
with < hvT >n, which is calculated by using samples obtained after n times iteration of
alternating Gibbs sampling between the visible and hidden layers [42]:

τ
dW
dt

= S−1{< hvT >0 −< hvT >n
}

Σ
−1. (2.10)

Figure 2.1 illustrates the alternating Gibbs sampling in CD learning. The point of CDn

learning is that the Gibbs sampling starts not from randomly chosen values but from some
training examples. In this study, to analyze average behaviors of CDn learning, we analytically
calculate the second term by an iterated integral of conditional probability distributions, that
is,

< hvT >n =
∫

dhdvp(h|v)pn(v)hvT , (2.11)

pn(vn) =
n−1

∏
k=0

∫
dhkdvk p(vk+1|hk)p(hk|vk)q(v0). (2.12)

It is noteworthy that CD learning is related to other variants of unsupervised learning methods
for generative models. For instance, One can regard Score Matching as the special CD1

learning with a Langevin Monte Carlo sampling in the limit of infinitesimal noise [47]. It
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has been also pointed out that the gradient of Minimum Probability Flow (MPF) is closely
related to that of CD1 but a bit different [98].

By using this analytical formulation, the CDn learning rule for the Gaussian-Gaussian
RBM is calculated to give a non-linear differential equation with the (4n+1)-th power of W
[110]:

τ
dW
dt

=WΣ
−1CΣ

−1−W

{
(W TW )n

Σ
−1CΣ

−1(W TW )n +
2n−1

∑
k=0

(W TW )k

}
. (2.13)

We found that the CD learning rule (2.13) corresponds to the ML learning rule (2.9) as
follows. Let us assume that the eigenvalues εi of W TW satisfy 0≤ εi < 1. This is a necessary
and sufficient condition in order for the marginal distribution (2.2) to have a positive definite
covariance. Under this condition, we can apply a Neumann series expansion to the inverse
matrix of the ML learning, that is,

(IN−W TW )−1 =
∞

∑
k=0

(W TW )k. (2.14)

The covariance matrix of pn(v) consists of a Neumann series terminated at the (2n−1)-th
term and the 4n-th power of W, i.e., (W TW )nΣ−1CΣ−1(W TW )n. Therefore, we can recognize
the CDn gradients as a kind of Taylor series approximation of the ML gradient. Note that
the CDn learning rule converges to the ML learning rule when n→ ∞. This means that an
infinite number of iterations of Gibbs sampling corresponds to ML learning.

In spite of the non-linearity of learning rules (2.9) and (2.13), in Section 2.3, we will
derive an analytical form of the fixed points and show their stability under the assumption of
homogeneous model variances, i.e., Σ = σ IN and S = sIM.

Fig. 2.1 Gibbs sampling in contrastive divergence learning.
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2.2.2 Gaussian-Bernoulli RBM

The Gaussian-Bernoulli RBM has binary hidden variables hi = {0,1} and Gaussian visible
variables vi, whose probability distribution is defined as follows [45, 65]:

p(h,v) = exp

{
−

N

∑
j=1

(v j−b j)
2

2σ2
j

+∑
i, j

Wi jhi
v j

σ j
+ cT h

}
/Z. (2.15)

The joint probability (2.23) yields the following marginalized probabilities:

p(v) =
M

∏
i=1

[1+ exp(wiΣv+ ci)]exp
{
−(v−b)T Σ−2(v−b)

2

}
/Z, (2.16)

p(h) = exp
{
||W T h||2

2
+(Σ−1Wb+ c)T h

}
/Z. (2.17)

where we define the i-th row vector of the matrix W by wi and the squared norm of a vector
by || · ||2. As easily confirmed, The distribution p(v) is composed of summation over 2M

Gaussian distribution. Therefore, we can recognize the expressive power of the Gaussian-
Bernoulli RBM as a subspace of a mixture of Gaussian. It is also noticeable that we can
interpret the distribution of hidden states, p(h), as the fully-connected Boltzmann machine
with the connectivity WW T . In addition, The conditional probabilities become

p(h|v) =
M

∏
i=1

g(wiΣ
−1v+ ci)

hi{1−g(wiΣ
−1v+ ci)}1−hi, (2.18)

p(v|h) = N
(
v;ΣW T h+b,Σ2) , (2.19)

where we denote a sigmoid function as g(·).
As assumed in Gaussian-Gaussian RBM, we set the model variances Σ2 to fixed values

and the bias parameters to b = c = 0 in the following learning rules.

ML learning rule

Assuming b = c = 0 for simplicity, we obtain the ML learning rule,

τ
dW
dt

=< g(WΣ
−1v)vT >0 Σ

−1−KW, (2.20)

where g(x), a sigmoid function with a vector argument x, denotes the vector whose i-th
element is g(xi). The first term < ·>0 is the average over the input distribution q(v). The
matrix K in the second term is the average over p(h) represents the interaction between
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hidden units, i.e.,

Ki j =
∑h hih j exp

(
||W T h||2/2

)
∑h exp(||W T h||2/2)

. (2.21)

To compute Ki j, we need to take summation over 2M hidden states and it takes too much
computational time in practice.

CDn learning rule

Regarding the CD learning rule (2.10), the first term is the same as that in the ML learning
rule. The second term is difficult to formulate explicitly in terms of the weight matrix W :

τ
dW
dt

=< g(WΣ
−1v)vT >0 Σ

−1−< g(WΣ
−1v)vT >n Σ

−1, (2.22)

where < ·>n represents the average over the distribution pn(v).
Although it is difficult to derive all fixed points of the learning rules (2.20) and (2.22), we

will obtain one of the stable fixed points under the assumptions of Σ = σ IN , M = N, and the
other certain conditions in Section 2.4.

2.2.3 Bernoulli-Bernoulli RBM

Although we focus on the RBMs with Gaussian visible units in this study, let us remark
Bernoulli-Bernoulli RBM (sometimes referred to as "binary RBM" or just "RBM") for
comparison. The Bernoulli-Bernoulli RBM has binary visible and hidden variables vi,hi =

{0,1}, whose joint probability distribution is defined as follows [42]:

p(h,v) = exp(hTWv+bT v+ cT h)/Z. (2.23)

The joint probability (2.23) yields the following marginalized and conditional probabilities:

p(v) =
M

∏
i=1

[1+ exp(wiv+ ci)]exp(bT v)/Z, (2.24)

p(h) =
N

∏
j=1

[1+ exp(wT
j h+b j)]exp(cT h)/Z, (2.25)

p(h|v) =
M

∏
i=1

g(wiv+ ci)
hi{1−g(wiv+ ci)}1−hi, (2.26)

p(v|h) =
N

∏
j=1

g(wj
T v+b j)

v j{1−g(wj
T v+b j)}1−v j , (2.27)
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where we define the j-th row vector of the matrix W T by wT
j .

The structure of the probability density function p(v) is seemingly similar to that of
the Gaussian-Bernoulli RBM. However, they are essentially different from each other as
is intuitively described below. Let us relax the domain of the visible random variables
from binary numbers to continuous real ones. In this case, we can rewrite p(v) of the
Bernoulli-Bernoulli RBM by using delta functions such as

p(v) = lim
σ→0

M

∏
i=1

[1+ exp(wiv+ ci)]exp(bT v)
N

∏
j=1

{
e−

v2
j

2σ2 + e−
(v j−1)2

2σ2

}
/(
√

2πσZ). (2.28)

Before taking the limit for the delta function, we can recognize this distribution as the mixture
of two types of Gaussian distributions N (0,σ2) and N (1,σ2). In contrast, p(v) of the
Gaussian-Bernoulli RBM is composed from only one Gaussian distribution N (b,Σ) and
has a simpler structure than that of the Bernoulli-Bernoulli RBM.

2.3 Principal component extraction in Gaussian-Gaussian
RBM

The previous section gave the ML learning rule (2.9) and CDn learning rule (2.13) for the
Gaussian-Gaussian RBM. These learning rules are non-linear differential equations of the
weight matrix W and are difficult to solve analytically. Here, let us assume that the variances
of the visible and hidden units are homogeneous, i.e.,

Σ = σ IN , (2.29)

S = sIM. (2.30)

In this case, we demonstrate that both ML and CDn learning have the same analytical form
of stable fixed points. In addition, our analysis reveals that principal components of input
data are extracted in the Gaussian-Gaussian RBM at the stable fixed points.

2.3.1 ML Solutions

By setting dW/dt =O in the ML learning rule (2.9), we obtain the equation of the equilibrium
state, i.e.,

WC = σ
2W (IN−W TW )−1. (2.31)
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We can derive the following lemma about the fixed points W satisfying (2.31). As preparation,
let us denote a singular value decomposition of W by W = UAV , where U is an M×M
orthogonal matrix, A is an M×N diagonal matrix, and V is an N×N orthogonal matrix.

Lemma 1 Assume that the covariance matrix C has non-degenerate eigenvalues λi

(i = 1, ...,N), which satisfy λ1 > λ2 > · · · > λN . When there are k eigenvalues larger
than σ2 (k = 0, ...,N) such as λi > σ2, a necessary and sufficient condition for W =UAV
to satisfy (2.31) is 1) U is an arbitrary M×M orthogonal matrix, and 2) A is an M×N
diagonal matrix whose diagonal entries are All =

√
1− σ2

λil
(l = 1, ...,m) and all the

other entries are zero. The m distinct eigenvalues {λi1, ...,λim} (m≤ {k,M}) are chosen
from a set of the largest eigenvalues {λ1, ...,λk}, and 3) V diagonalizes the covariance
matrix such that C =V T diag(λ1, ...,λN)V .

Proof Without loss of generality, we can represent A to be an M×N diagonal matrix with
All = αl (l = 1, ...,m) and All′ = 0 for all the other entries, where we denote the rank of W
as m. Note that the case m = 0 where all diagonal entries satisfy All = 0 is a trivial fixed
point W = O. Substituting a singular value decomposition W =UAR into (2.31), we obtain
A
{

RCRT (IN−AT A)−σ2IN
}
= O. This equation needs RCRT to become

RCRT =

[
diag

(
σ2

1−α2
1
, ..., σ2

1−α2
m

)
O

O Q

]
. (2.32)

Note that Q is an (N −m)× (N −m) symmetric matrix. Diagonalizing Q by using an
orthogonal matrix P and a diagonal matrix DQ such that Q = PT DQP, we obtain

C =

([
Im O
O P

]
R

)T [
diag

(
σ2

1−α2
1
, ..., σ2

1−α2
m

)
O

O DQ

]([
Im O
O P

]
R

)
. (2.33)

Here, we diagonalize C = V T diag(λ1, ...,λN)V and assume that λi (i = 1, ...,N) are non-
degenerate eigenvalues of C. They can be ordered as λ1 > λ2 > · · ·> λN . It is necessary for

R to become R =

[
Im O
O PT

]
V . In addition, αl must be αl =

√
1−σ2/λil (l = 1, ...,m) and

αl = 0 (l = m+1, ...,M). The m eigenvalues λil (l = 1, ...,m) are chosen from a set of the
largest eigenvalues {λ1, ...,λk} and should satisfy m≤ k. Because m is the rank of W , m is
equal to or less than M by definition. Therefore, m≤min{k,M} is necessary. After all this,
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we obtain

W =UAR =U

diag
(√

1− σ2

λi1
, ...,

√
1− σ2

λim

)
O

O O

[Im O
O PT

]
V =UAV. (2.34)

The sufficient condition that the derived W =UAV satisfies (2.31) is easily confirmed.
Therefore, W =UAV is a necessary and sufficient condition for W to satisfy (2.31). □

As we can see from the analytical form W = UAV shown in Lemma 1, ML learning
extracts principal component vectors corresponding to larger eigenvalues λi > σ2 and reduces
the dimension of the input data. The extracted eigenvectors are rescaled by

√
1−σ2/λi.

Remarkably, the principal components extracted by ML learning are characterized by the
model variance of the visible units σ2, not that of the hidden units s2.

If one substitutes W = UAV into the model distribution, one can obtain the model
distribution of the visible units p(v) as the following Gaussian distribution:

p(v) = N
(
v;0,V T diag(λ1, ...,λm,σ

2, ...,σ2)V
)
. (2.35)

Let us define ηi as the eigenvalues of the model covariance
∫

dvp(v)vvT . The model
distribution (2.35) leads to ηi = λi (i = 1, ...,m), ηi = σ2 (i = m+1, ...,N). This means that
the smaller eigenvalues λi of the data covariance are replaced by the model variance σ2.

Because the whole set of fixed points is represented by W = UAV with an arbitrary
orthogonal matrix U , the solution space has rotational degrees of freedom. In addition, there
exist other degrees of freedom for the rank of W , that is, m (0 ≤ m ≤ min{k,M}). In the
following Theorem 1, we will show that m is limited to a certain value when we consider the
stability of W .

2.3.2 Stability of ML Solutions

We derived the analytical form of the fixed points, W =UAV , for the ML learning. However,
they include not only stable but also unstable points, to which the learning rule never
converges. A theoretical perturbation analysis around the fixed points leads to a necessary
and sufficient condition for stability.

Theorem 1 The fixed points W = UAV obtained in Lemma 1 are stable if and only if
the diagonal matrix A has a set of the largest eigenvalues, All =

√
1− σ2

λl
(l = 1, ...,m),

with m = min{k,M}.
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Proof Let us denote the gradient of the ML learning as F(W )≡WC−σ2W (IN−W TW )−1.
To prove that a fixed point is stable, we should show that the inner product between any
perturbation ∆W and ∆F ≡ F(W +∆W ) is negative around the fixed point. The first-order
approximation of ∆F expanded by ∆W becomes

∆F ∼ ∆W{C−σ
2(IN−W TW )−1}

−σ
2W (IN−W TW )−1(∆W TW +W T

∆W )(IN−W TW )−1. (2.36)

Here, we can represent the perturbation as ∆W =∑ab dWabUE(ab)V without loss of generality,
where dWab is an infinitesimal change, and entries of M×N matrix E(ab) are zero except for
the a-th row and the b-th column entry E(ab)

ab = 1. We set the matrix U to the same orthogonal
matrix as that of the fixed point W =UAV , whose stability we are now checking. The matrix
UE(ab)V means perturbing the a-th row of W by the b-th eigenvector of the covariance matrix
C on the coordinate rotated by U . Note that one can calculate the inner product by using a
matrix trace such as

Tr(∆W T
∆F) =

M

∑
i=1

N

∑
j=1

∆Wi j∆Fi j. (2.37)

After we substitute the expansion (2.36) and ∆W = ∑ab dWabUE(ab)V into the inner product
Tr(∆W T ∆F), we obtain a quadratic form of dWab (a= 1, ...,min{M,N}, b= 1, ...,min{M,N})
as

Tr(∆W T
∆F)∼−∑

a>b

[
dWab dWba

]
Q(ab)

[
dWab

dWba

]
−∑

a
ra(dWaa)

2, (2.38)

where,

Q(ab) ≡

[
s(ab)α2

a − t(b) s(ab)αaαb

s(ab)αaαb s(ab)α2
b − t(a)

]
, (2.39)

r(a) ≡ 2s(aa)
α

2
a − t(a), (2.40)

s(ab) ≡ σ2

(1−α2
a )(1−α2

b )
, (2.41)

t(a) ≡ λa−
σ2

1−α2
a
. (2.42)

Let us repeat that αl denotes αl =
√

1−σ2/λil (l = 1, ...,m), 0 (l = m+1, ...,N).
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A necessary and sufficient condition for W to be stable is that any matrix Q(ab) has
non-negative eigenvalues and that any ra is also non-negative:

Q(ab)
ii ≥ 0 (i = 1,2),

det(Q(ab))≥ 0, (2.43)

r(a) ≥ 0.

The stable points are slightly different in the following two cases: k ≤M and M < k. (i)
If k ≤M, r(a) becomes negative when we take the index a as m < a ≤ k. This means that
the fixed point with m < k is unstable. Because m must satisfy m≤ k as proved in Lemma
1, m = k is necessary for the stable points. In the case of m = k, all the conditions (2.44)
are satisfied for any a and b, and the fixed point becomes stable. (ii) If M < k, because m
is the rank of W , the value of m is limited to m≤M by definition. In the same manner as
case (i), m = M is necessary for the stable points. In addition, let us consider the case where
an eigenvalue λi such that λi < λM is extracted in a singular value αl =

√
1−σ2/λi. In

this case, there is an eigenvalue λ j such that λ j > λM, which does not appear in the other
singular values αl′ (l′ ̸= l), and Q(ab)

11 becomes negative, i.e., Q(ab)
11 = λi−λ j < 0. Therefore,

the stable fixed point requires all the M largest eigenvalues {λ1, ...,λM} to be extracted in
αl (l = 1, ...,M). This fixed point with m = M and the M largest eigenvalues satisfies all the
conditions (2.44) for any a and b and becomes stable. □

As indicated by Theorem 1, in the case of k ≤ M, the ML learning converges to the
stable fixed points with rank m = k and extracts all the eigenvalues larger than σ2. If all
of the input eigenvalues are smaller than σ2, the trivial solution W = O becomes stable.
In the case of M < k, where the number of hidden units is small enough, the ML learning
extracts only the largest M eigenvalues {λ1, ...,λM} among {λ1, ...,λk}. This means that the
Gaussian-Gaussian RBM can extract only the largest principal components by reducing the
model variance or the number of hidden units.

Ir is noteworthy that the threshold of eigenvalues, that is, σ2, is caused by a spatial
resolution of the model over the input space. The Gaussian model distribution p(v) has a
covariance matrix σ2(I−W TW ), whose eigenvalues η always satisfy η ≥ σ2. This means
that the lowest variance of the distribution p(v) is determined by σ2. We can also confirm
the spatial resolution of the model by the conditional distribution p(v|h) = N (σW T h,σ2).
This distribution means that the input space observed by a hidden state h has the constant
variance σ2. This spatial resolution may be regarded as a receptive field of h in terms of
neuroscience. Therefore, the components of the input with eigenvalues larger than σ2 are
crucial to increase the likelihood of the model but those with smaller ones are negligible.
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It is also remarkable that, if we ignore the rotational degrees of freedom caused by U , the
stable point is unique and is the global minimum of the likelihood function. All the other
fixed points are unstable and correspond to saddle points. There are no local minima. Figure
2.2 demonstrates the conceptual diagram of this landscape.

Fig. 2.2 Landscape of Likelihood function in Gaussian-Gaussian RBM.

2.3.3 CDn solutions

In the same way as shown for ML learning, we can also derive an analytical form for fixed
points of CDn learning rule. We obtain the following equation by setting dW/dt = 0 in the
CDn learning rule (2.13):

WC =W

{
(W TW )nC(W TW )n +σ

2
2n−1

∑
k=0

(W TW )k

}
. (2.44)

We can derive the following lemma for the fixed points satisfying (2.44).

Lemma 2 Assume that the covariance matrix C has non-degenerate eigenvalues λi

(i = 1, ...,N), which satisfy λ1 > λ2 > · · · > λN . When there are k eigenvalues larger
than σ2 (k = 0, ...,N) such as λi > σ2, a necessary and sufficient condition for W =UAV
to satisfy (2.44) is 1) U is an arbitrary M×M orthogonal matrix, and 2) A is an M×N
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diagonal matrix whose diagonal entries are All =
√

1− σ2

λil
(l = 1, ...,m) and all the other

entries are zero. The m distinct eigenvalues {λi1, ...,λim} (m≤min{k,M}) are chosen
from a set of the largest eigenvalues {λ1, ...,λk}, and 3) V diagonalizes the covariance
matrix such that C =V T diag(λ1, ...,λN)V .

Proof Without loss of generality, we can represent A to be an M×N diagonal matrix with
All = αl (l = 1, ....,m) and All′ = 0 for all the other entries, where we denote the rank of W
as m. Substituting a singular value decomposition W =UAR into (2.44), we obtain

A

{
(1−A2n)RCRT (1−A2n)−σ

2
2n−1

∑
k=0

A2k

}
= 0, (2.45)

for any i and j. This equation needs RCRT to satisfy (2.32). From here, we can prove Lemma
2 by using the same process as shown in Lemma 1. □

Lemmas 1 and 2 clarify that the fixed points of ML and CDn learning rules have the
same analytical form: W =UAV . Namely, the whole set of fixed points including stable and
unstable points in CDn learning coincides with that in ML learning.

2.3.4 Stability of CDn solutions

We can also derive the following necessary and sufficient condition for the stability of CDn

solutions.

Theorem 2 The fixed points W = UAV obtained in Lemma 2 are stable if and only if
the diagonal matrix A has a set of the largest eigenvalues, All =

√
1− σ2

λl
(l = 1, ...,m),

with m = min{k,M}.

Proof Let us denote the perturbation of the gradient (2.13) by ∆F , which consists of the
following first order approximation of (W TW )k:

(W̄ TW̄ )k ∼ (W TW )k +
k−1

∑
i=0

(W TW )k−i−1(W T
∆W +∆W TW )(W TW )i, (2.46)
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where W̄ =W +∆W with the fixed point W =UAV . Substituting the above expansion to the
CDn gradient, we obtain the following ∆F :

∆F = ∆W{C− (XnCXn +σ
2

2n−1

∑
k=1

Xk)}

−W
n−1

∑
i=0
{XnCXn−i−1(W T

∆W +∆W TW )X i

+Xn−i−1(W T
∆W +∆W TW )X iCXn}

−σ
2W

2n−1

∑
k=1

k−1

∑
i=0

Xk−i−1(W T
∆W +∆W TW )X i, (2.47)

where we define X =W TW .
For the inner product Tr(∆W T ∆F), we obtain the quadratic form (2.38) with the following

s(ab) and t(a):

s(ab) ≡ D(ab)
n (λaα

2n
a +λbα

2n
b )+σ

2
2n−1

∑
k=0

D(ab)
k , (2.48)

t(a) ≡ (1−α
4n
a )

(
λa−

σ2

1−α2
a

)
, (2.49)

where D(ab)
k = ∑

k−1
i=0 α

2(k−1−i)
a α2i

b . By using these results, we can prove Theorem 2 by using
the same process as shown in Theorem 1. □

Interestingly, as we can see from Theorem 2, the stability of CDn solutions coincides
with that of ML solutions. Thus, we can conclude that if the CDn learning converges to any
solution, CDn learning maximizes the likelihood function. Note that the analytical form of
stable CDn solutions is independent of n, the number of Gibbs sampling. Therefore, the
same principal components as in ML learning can be extracted simply by performing CD1

learning.
It is also remarkable that the model variance parameters are likely to be fixed to unit

values or the variances of the input data in practice [43]. This is because the learning of σ

often causes unstable learning dynamics and the result of estimation becomes poor. In that
sense, it is unnecessary to learn σ and our analysis with the fixed σ seems to be rational.
Although we have remarked the dynamical analysis of the learning of σ in appendix B, its
stable fixed points suggest that fixing σ is a reasonable condition.
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2.3.5 Related works

The following two models of principal component analysis (PCA) have similar equilibrium
solutions to Gaussian-Gaussian RBM.

Probabilistic PCA (PPCA) is a latent variable model of PCA, which gives the conditional
distribution of the visible variables when the hidden variables are known [102]. The ML
learning rule for PPCA is

τ
dW
dt

=W (σ2IN +W TW )−1C(σ2IN +W TW )−1−W (σ2IN +W TW )−1. (2.50)

Tipping and Bishop proved that the ML solutions in PPCA model are
W =Udiag

(√
λ1−σ2, ...,

√
λm−σ2,0, ...,0

)
V, and they also proved the stability of the

solutions [102] . ML learning of PPCA is similar to that of Gaussian-Gaussian RBM with
regard to extracting principal components whose eigenvalues are larger than the model
variance σ2. However, the singular values extracted by using PPCA are different from those
of Gaussian-Gaussian RBM.

Oja’s subspace algorithm is a method for carrying out PCA in a single-layer neural
network [78, 111]. Its learning rule is

τ
dW
dt

=WC−WCW TW. (2.51)

The subspace algorithm extracts principal components as stable equilibrium solutions [79].
In this respect, the subspace algorithm is similar to the Gaussian-Gaussian RBM but different
in that the singular values of W extracted by the subspace algorithm are always equal to 1.

We can also see that the subspace algorithm corresponds to a CD learning rule used to
train the Gaussian-Gaussian RBM as follows. Consider CD learning, which is one less step
of Gibbs sampling than CD1, that is, < hvT >=

∫
dv1dh0dv0 p(v1|h0)p(h0|v0)q(v0)h0vT

1 =

s(σ−1WCW TW +σW ). We call this CD1/2 learning. This is computationally easier, having
the learning rule τdW/dt = WC−WCW TW −σ2W , which corresponds to the subspace
algorithm with a weight decay, or L2 regularization. We can prove that this CD1/2 learning
has the same fixed points and stability as CDn learning.

2.3.6 Feature extraction realized by stacking Gaussian-Gaussian RBMs

One of the techniques to train deep networks is layerwise pretraining, which stacks RBMs
[45]. Here, let us consider stacking Gaussian-Gaussian RBMs as the simplest model of the
layerwise pretraining.
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Because each G-G RBM reduces the input space by using principal components, stacking
G-G RBMs realizes step-by-step noise reduction. First, G-G RBMs implicitly reduce the
noise by the hyperparameter σ . Furthermore, if the number of hidden units is limited and
smaller than the dimension of the input signals, G-G RBMs reduce the noise again. As you
can see in the previous studies of unsupervised layerwise pretraining [45], the deep network
composed by RBMs has a pyramidal network structure, where the number of hidden units is
gradually decreased in higher layers. Considering stacking G-G RBMs, one can see that this
network structure is crucial to reduce the effective dimension of the input data and to capture
valuable information of the input.

Certainly, stacking Gaussian-Gaussian RBMs are poor as information processing because
it performs only principal component analysis that can be realized by only one Gaussian-
Gaussian RBM. However, we can analog the step-by-step noise reduction realized by the
stacking Gaussian-Gaussian RBM to a step-by-step projection realized by stacking RBMs
with nonlinear units. As known in several numerical experiments, RBMs with binary units
project input data to a low dimensional feature space from layer to layer [31, 18]. For
instance, after the training with MNIST dataset, strokes of the hand-written numbers are
extracted in the first RBM. In the following RBMs at higher layers extract the combination
of the strokes. Finally, the RBM in top layer extracts the manifold of each number, which is
quite low dimensional compared to the number of pixels of the input samples [31]. Therefore,
stacking RBMs with nonlinear units is the step-by-step projection to the low dimensional
space, or so-called, manifold unfolding [18]. In the case of the stacked G-G RBMs, the
counterpart of the projection to the low dimensional space appears as a noise reduction by
using the principal components.

2.4 Independent component extraction in Gaussian-Bernoulli
RBM

The dynamical analysis shown in the previous section can be extended to the Gaussian-
Bernoulli RBM. Here, let us assume that the number of units is N = M, having homogeneous
variances Σ = σ IN . In this case, we found the following sufficient condition for stable fixed
points of ML and CDn learning rules in the Gaussian-Bernoulli RBM.
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2.4.1 ML solution

Theorem 3 Assume that 1) the input distribution q(v) is a linear mixture of independent
source signals, that is, v = Bs and q(s) = q(s1)q(s2) · · ·q(sN), where the mixing matrix
B is an N×N orthogonal matrix, and 2) the source signals are positive, si > 0, and their
means satisfy µi =

∫
dsiq(si)si≫ σ . Under these assumptions, a sufficient condition for

stable fixed points of ML learning rule is W = DBT , where D = σ−1diag(µ1,µ2, ...,µN).

Proof Let us assume that a fixed point is represented by the product of a diagonal matrix
D = diag(d1,d2, ...,dN) and the unmixing matrix BT , i.e., W = DBT . Under assumption 1)
in Theorem 3, we substitute W = DBT into the condition dW/dt = 0 and then obtain the
following equations:

< sig(disi/σ)>q(si) = σdig
(
d2

i /2
)
, (2.52)

µi < g
(
d js j/σ

)
>q(s j) = σdig

(
d2

i /2
)

g
(
d2

j/2
)

(i ̸= j), (2.53)

where < · >q(si) represents the average over the distribution q(si). Note that the left-hand
sides of (2.52, 2.53) correspond to the first term of the ML gradient < g(Wv/σ)vT >0, and
the right hand sides correspond to the second term σKW .

Here, let us assume that di is very large, i.e., di≫ 1. This assumption allows the sigmoid
functions to converge as follows:

g(disi/σ)→ 1 (si > 0), (2.54)

g(d2
i /2)→ 1. (2.55)

If we also assume positive source signals si > 0, the averages in (2.52, 2.53) converge to
constant values as follows:

< sig(disi/σ)>q(si)→ µi, (2.56)

< g
(
d js j/σ

)
>q(s j)→ 1. (2.57)

Therefore, the equations (2.52, 2.53) are reduced into µi = σdi (i = 1, ...,N). As a conse-
quence, the weight matrix W = DBT with di = µi/σ ≫ 1 is a fixed point of the ML learning
rule.

Next, we prove the stability of this W = DBT . Let us denote the gradient of the ML
learning as F(W ) ≡< g(Wv/σ)vT >0 −σKW . The gradient perturbed around the fixed
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point is expanded by the first-order of ∆W as follows:

∆F ∼< ∆gvT >0 −σK∆W −σ∆KW. (2.58)

The first term of ∆F comes from the first term of F(W ). The vector ∆g denotes a perturbation
of the sigmoid function, whose i-th element is given by

∆gi ≡ g(wiv/σ){1−g(wiv/σ)}∆wiv. (2.59)

The second and third terms of ∆F come from the second term of F(W ). The matrix ∆K ≡
K(W +∆W )−K(W ) represents a perturbation of the interaction K. We can represent the
perturbation as ∆W = ∑ab dWabE(ab)BT and expand ∆K by the first-order of ∆W as

∆Ki j = ∑
ab

db[< hih jhahb >p(h)

−< hih j >p(h)< hahb >p(h)](dWab +dWba), (2.60)

where < ·>p(h) denotes the average over the following model distribution at the fixed point:

p(h;W = DBT ) = ∏
i

g(d2
i /2)hi{1−g(d2

i /2)}1−hi. (2.61)

Because p(h;W = DBT ) is independent among the hidden variables hi, we can explicitly
calculate < ·>p(h) as the products of the sigmoid functions g(d2

i /2).
Here, the convergences (2.54, 2.55) let each term of ∆F converge as follows:

< ∆giv j >0→ 0, (2.62)

∆Ki j→ 0, (2.63)

Ki j→ 1. (2.64)

Therefore, the inner product becomes

Tr(∆W T
∆F)→−σTr(∆W T 11T

∆W )

=−σ ∑
a
(∑

b
dWab)

2. (2.65)

The notation 1 denotes a vector whose elements are all 1. Since we obtain the negative inner
product Tr(∆W T ∆F)< 0 for any perturbation, W = DBT is a stable point. □
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At stable fixed point W = DBT obtained in Theorem 3, the Gaussian-Bernoulli RBM
functions as independent component analysis (ICA). It is equivalent to the unmixing matrix,
which is obtained by ICA [7, 48]. Namely, W = DBT separates the input data v into
independent source signals s such as Wv = DBT Bs = Ds. Therefore, the Gaussian-Bernoulli
RBM decomposes the mixed input signals to the independent source signals. In addition,
each hidden unit hi becomes the detector of each independent source si as is confirmed by a
conditional distribution:

p(hi = 1|v) = sigmoid(µisi/σ
2). (2.66)

Note that the limit µi ≥ σ assumed in Theorem 3 corresponds to a deterministic situation.
Under this situation, the conditional probability p(hi = 1|v) always gets activated when
the information source si is given as the input. In addition, another conditional probability
p(v|h), or the receptive field of the input space, also becomes deterministic under the limit
of σ → 0. This is obvious because p(v|h) is represented by v = diag(µ)AT h+σN (0,1).

In the case of learning rules including bias parameters, we can also obtain a similar stable
fixed point. In addition, we can relax assumption 2) of Theorem 3 as shown in Appendix A.

2.4.2 CDn solution

Theorem 4 Under the same assumptions, 1) and 2), in Theorem 3, a sufficient
condition for stable fixed points of CDn learning rule is W = DBT , where D =

σ−1diag(µ1,µ2, ...,µN).

Proof Let us assume that a fixed point is represented by W = DBT as assumed in the proof
of Theorem 3. Because the first term of CDn gradient is the same as that of ML gradient,
what we should analyze here is the second term < g(Wv/σ)vT >n. Transforming visible
variables such as vk = Bsk (k = 1, ...,n) and substituting W = DBT , the distribution pn(v) is
transformed into the following form:

pn(sn) =
n−1

∏
k=0

N

∏
i=1

∑
hk,i

∫
dsk,i p(sk+1,i|hk,i)p(hk,i|sk,i)q(s0,i), (2.67)

where sk,i denotes the i-th element of sk, the sample obtained after k iterated Gibbs sampling.
It is a remarkable property that the matrix W = DBT decomposes the chain of Gibbs sampling
into the products of each chain for the i-th variables si and hi. The conditional distributions



2.4 Independent component extraction in Gaussian-Bernoulli RBM 35

are written by:

p(sk+1,i|hk,i) = N
(
sk+1,i;σdihk,i,σ

2) , (2.68)

p(hk,i|sk,i) = g(disk,i/σ)hk,i{1−g(disk,i/σ)}1−hk,i. (2.69)

When we assume that di is very large, i.e., di≫ 1, pn(s) is analytically tractable and we
can obtain the explicit expression of the second term
< g(Wv/σ)vT >n as below. The assumption di ≫ 1 lets the conditional distributions
p(hk,i|sk,i) converge as follows:

p(hk,i = 1|sk,i)→ 1, (2.70)

p(hk,i = 0|sk,i)→ 0 (sk,i > 0). (2.71)

If the previous sample sk,i is positive, the above convergences let the distribution of the next
sample sk+1,i converge to the following Gaussian distribution (k = 0, ...,n−1):

p(sk+1,i|sk,i) = ∑
hk,i

p(sk+1,i|hk,i)p(hk,i|sk,i)

→N (sk+1,i;σdi,σ
2). (2.72)

Let us repeat that we assumed positive source signals s0,i > 0. In addition, under the
assumption that di is very large, i.e., di≫ 1, the Gaussian distribution (2.72) has a large mean
value and mostly generates positive samples sk+1,i > 0. Therefore, the iterated integral (2.67)
with a finite number of n is reduced to the sequential integral of the Gaussian distribution
(2.72), and we obtain

pn(sn,i)→N (sn,i;σdi,σ
2). (2.73)

As a result, we can evaluate the second term of CDn gradient as follows:

< g(wiv/σ)v >n→
∫

dsnN (sn;σd,σ2IN)Bsn

= σBd, (2.74)

where d = (d1,d2, ...,dN)
T .

Additionally, the first term of CDn gradient < g(wiv/σ)v >0 converges to → Bµ by
using the convergence (2.54). It coincides with the second term when µ = σd. Therefore,
W = DBT with di = µi/σ ≫ 1 (i = 1, ...,N) is a sufficient condition for the fixed point.
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Next, we prove the stability. The gradient of CDn learning perturbed by ∆W becomes

∆F =< ∆gvT >0 −< ∆gvT >n −
∫

dvg(Wv/σ)vT
∆pn(v). (2.75)

The first term of ∆F converges to 0 as shown in ML learning (2.62-2.64). In the same way,
the second term of ∆F also converges to 0. In the following proof, we will show to what
values the third term of ∆F converges.

The third term corresponds to a perturbation of pn(v) and is decomposed into three terms:

∆pn(vn) =
n−1

∑
k=0

∑
hk

p(vn|hk)
∫

dvk∆p(hk|vk)pk(vk)

+
n−2

∑
k=0

∫
dvk+1dvk p(vn|vk+1)∑

hk

∆p(vk+1|hk)p(hk|vk)pk(vk)

+
∫

dvn−1 ∑
hn−1

∆p(vn|hn−1)p(hn−1|vn−1)pn−1(vn−1). (2.76)

The first term of ∆p(vn) consists of the conditional distribution perturbed around the equi-
librium W = DBT such as ∆p(h|v) ≡ p(h|v;W +∆W )− p(h|v;W ). The second and third
terms of ∆p(vn) consist of another perturbed conditional distribution such as ∆p(v|h) ≡
p(v|h;W +∆W )− p(v|h;W ). These conditional distributions are expanded by the first-order
of ∆W :

∆p(h|v)∼ p(h|v){h−g(Wv/σ)}T
∆Wv/σ , (2.77)

∆p(v|h)∼ p(v|h)(v−σW T h)T
∆W T h/σ . (2.78)

Let us transform variables such as vk = Bsk and replace ∆W with ∆WBT . Under the
assumption di≫ 1, the following integral in the first term of ∆pn(v) becomes∫

ds∆p(h|s)pk(s) =
∫

dsp(h|s)pk(s){h−g(Ds/σ)}T
∆W s/σ

→ 0. (2.79)

Note that pk(s) mostly generates positive samples s, as you can see from (2.73). The positive
sample si > 0 lets the conditional distribution p(h|s) in (2.79) obey the convergences (2.70,
2.71). Therefore, the first term of ∆pn(v) converges to 0. For the second term of ∆pn(v), by
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summing over h in the same way as shown in the convergence (2.72), we obtain

∑
h

∆p(sk+1|h)p(h|sk) = ∑
h

p(sk+1|h)p(h|sk)(sk+1−σDh)T
∆W T h/σ

→N (sk+1;σd,σ2)(sk+1−σd)T
∆W T 1/σ . (2.80)

In addition, the transition probability p(sn|sk+1) converges to N (sn;σd,σ2IN). Calculating
the integral of the product of (2.80) and p(sn|sk+1) over sk+1, we find that the second term
of ∆pn(v) converges to 0. In comparison, the third term of ∆pn(v) converges to a nonzero
value as follows:∫

dsng(Dsn/σ)sT
n

∫
dsn−1 ∑

hn−1

∆p(sn|hn−1)p(hn−1|sn−1)pn−1(sn−1)

→
∫

dsn1sT
n N (sn;σd,σ2)(sn−σd)T

∆W T 1/σ

= σ11T
∆W. (2.81)

After all this, the inner product converges to the same quadratic form as that of ML
learning (2.65):

Tr(∆W T
∆F)→−σTr(∆W T 11T

∆W )

=−σ ∑
a
(∑

b
dWab)

2. (2.82)

Because the inner product always becomes negative, W = DBT is a stable point. □

We have thus proven the remarkable fact that CDn learning can obtain the same stable
solution as ML learning and that the mixed input signals are decomposed into independent
source signals (See also Appendix A and B).

Note that there are some trivial expansions of the theorems. In the theorems, we assumed
that the number of hidden units M is equivalent to that of visible units N. We also required
that the number of independent sources K equals M. In the same way as shown in the proof,
when M > N, W = DBT with D = σ−1diag(µ1, ...,µK,0, ....,0) becomes a stable fixed point.
The case K < N is equivalent to K = N with (sK+1 = · · ·= sN = 0) and the W = DBT also
becomes a stable fixed point. Interesting case is overcomplete independent sources, K > N
and M > N, but we cannot analyze this case as an extension of the above theorems and it
remains to be an open problem.
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2.4.3 Marginal distribution p(v) at ICA solution

In Gaussian-Bernoulli RBM with the uniform model variance σ2, the marginal distribution
of visible variables becomes

p(v) = Πi[1+ exp(σ−1wiv)]exp
(
− v2

2σ2

)
/Z, (2.83)

where Z in a normalization constant. As described in Section 2.2.2, this distribution is
composed of the summation over 2M Gaussian distributions. Wang, Melchior, and Wiskott
experimentally demonstrated that the Gaussian distributions composing p(v) are likely to be
allocated to independent components after training [106]. As shown in Fig. 2.3, our ICA
solution realizes the same allocation and it means that this allocation is one of the maximum
likelihood solutions.

Remarkably, Vinnikov and Shalev-Shwartz theoretically and experimentally demonstrated
that the K-means method, one of the unsupervised learning algorithms for clustering, can
extract independent components [105]. Since its clusters are allocated along independent
components, this allocation seems to be similar to the allocation realized in Gaussian-
Bernoulli RBM. Our ICA solution and the study of the K-means suggest that the unsupervised
clustering algorithm is likely to extract independent components if the dataset is generated
by a mixture of independent sources.
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Fig. 2.3 Comparison between input distribution and model distribution in Gaussian-Bernoulli
RBM. (a) Input distribution q(v) observed in the coordinate system v′ = AT v. (b) Model
distribution p(v) at ICA solution. The color represents the log probability. Each black cross
means the location of the mean of the Gaussian distribution, which composes the marginal
distribution p(v).
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2.4.4 Related works

Theorem 4 gives a theoretical insight into several experimental results [65, 106]. In particular,
Wang et al. trained a Gaussian-Bernoulli RBM by CD1 learning in modeling natural images
[106]. They demonstrated that a trained Gaussian-Bernoulli RBM is likely to obtain solutions
close to those obtained by the ICA algorithm.

We can also consider the CD1/2 learning in the Gaussian-Bernoulli RBM. Its learning
rule becomes

τ
dW
dt

=< g(Wv/σ)vT >0 −σJW, (2.84)

where the matrix J has entries Ji j =< g(wiv/σ)g(w jv/σ)>0 (i ̸= j) and Jii =< g(wiv/σ)2 >0.
In the case of the CD1/2 learning, we can also prove that it has the same fixed point
and stability as CDn learning. Note that, if we take σ = 1 and add an additional term
g(wiv/σ)(1−g(wiv/σ)) to the diagonal elements Jii, the CD1/2 learning is equivalent to
the nonlinear PCA rule. The nonlinear PCA rule is based on Hebbian learning between linear
neurons in an input layer and the nonlinear neurons in another layer [80]. Oja demonstrated
that it can extract the independent components of the input data at stable fixed points [80].

2.5 Experimental results

2.5.1 Gaussian-Gaussian RBM

Here, we show that the results of a simulation on the Gaussian-Gaussian RBM agree very
well with the theorems described in Section 2.3.

Figure 2.4 (a) shows that the Gaussian-Gaussian RBM trained by ML learning extracted
principal components corresponding to λi > σ2. We set the number of units to N = M = 10
and the model variance to σ2 = s2 = 1/4. We artificially generated 10-dimensional input
data in the following way. We first generated samples xi (i = 1,2, ...,10) from independent
uniform distributions on [-1, 1]. To create input variables with small variances such that
λi < σ2, we scaled the sample vector x by diagonal matrix D = diag(0.2,0.4, ...,2). Then, to
allow a covariance matrix of input data to have off-diagonal elements, we mixed the scaled
samples Dx by a random orthogonal matrix Q, i.e., v = QDx. We used these samples v as
the input to the Gaussian-Gaussian RBM. The black points in Figure 2.4 (a) represent the
principal eigenvalues λi of the input. Note that we can theoretically calculate them by λi =

D2
iiVar[xi] (i = 1,2, ...,10). The red points in Figure 2.4 (a) represent the mean and standard

deviation of the principal eigenvalues extracted in the weight matrix, ηi, in 20 simulation
trials. Note that we estimated ηi, where batch input consisted of 1000 training examples
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Fig. 2.4 Extraction of principal components in Gaussian-Gaussian RBM. (a) The red points
are the principal eigenvalues extracted in the weight matrix, ηi (N = M = 10, model variance
σ2 = s2 = 1/4). The black points are the principal eigenvalues of input data, λi. The gray
dashed line represents the value of the model variance σ2 = 1/4. (b) The eigenvalues ηi
extracted by CD1 learning with the same model and input data as used in the case of ML
learning.

{v(1),v(2), ...,v(1000)} artificially generated from the above procedure. As is claimed in
Theorem 1, ML learning extracted only larger eigenvalues ηi = λi > σ2. In addition, the
smaller eigenvalues corresponding to λi < σ2 were replaced with the model variance such as
ηi = σ2, as shown in the model distribution (2.35).

Figure 2.4 (b) presents the results of CD1 learning on the same model and input data as
used on ML learning. In the simulation, to observe the averaged behaviors of the learning,
we used Gibbs sampling for the CD1 learning on the batch input. At each learning step,
we generated samples for CD1, h(i)

1 and v(i)1 , by using transition probabilities p(h(i)
1 |v

(i)
1 ),

p(v(i)1 |h
(i)
0 ) and p(h(i)

0 |v(i)). Then, we calculated the second term < hvT >1 by the average

∑
1000
i=1 h(i)

1 v(i)T1 /1000. CD1 learning in the simulation extracted the principal components as
expected from Theorem 2. Remarkably, the CD1 learning results shown in Figure 2.4 (b)
extracted the same principal components as ML learning did in Figure 2.4 (a). The second
term of ML learning takes a long time to run many iterations of Gibbs sampling. In contrast,
CD1 learning only needs one step of Gibbs sampling and therefore saves computational
time. In the simulation, CD1 learning efficiently obtained the same principal components
and model distribution p(v) as ML learning did.
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Fig. 2.5 Extraction of independent components by CD1 learning in Gaussian-Bernoulli RBM.
(a) Uniform distribution of independent sources s1 and s2 (N = M = 2, σ2 = 1/4). (b)
Distribution of input data q(v) generated from v = Bs. (c) Distribution of output p(y) defined
by y =Wv, where W is obtained by CD1 learning.

2.5.2 Gaussian-Bernoulli RBM

We show simulation results demonstrating that the Gaussian-Bernoulli RBM extracted
independent components as is claimed in Section 2.4.

Figure 2 presents the results of CD1 learning in the Gaussian-Bernoulli RBM with
N = M = 2 and σ2 = 1/4. We set the independent source signals as non-negative uniform
distributions q(s1) and q(s2) in Figure 2.5 (a). The input distribution q(v) in Figure 2.5 (b)
was generated from v = Bs. In the same way as shown in the experiments on the Gaussian-
Gaussian RBM, we used batch input and calculated the second term of the CD1 gradient by
the average ∑

1000
i=1 h(i)

1 v(i)T1 /1000. Note that the distribution q(v) corresponds to the source
distribution rotated by the orthogonal matrix B. After CD1 learning, we obtained the stable
solution W as is described in Theorem 4. Figure 2.5 (c) shows the result of the CD1 learning
by using an output distribution of y =Wv = Ds. The output yi became the source signal si

scaled by di = µi/σ . Because the output decides the activation probability of the hidden unit
by p(hi = 1|v) = sigmoid(yi/σ), the i-th hidden unit detects the i-th independent source.

Note that the stable solution W = DBT proved in Theorems 3 and 4 is not a necessary
condition for the stable solutions but a sufficient one. There could be stable solutions that
differ from W = DBT . If we began the training from initial values of W close enough to
DBT , the matrix W converged to the solution W = DBT in the simulation.
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2.6 Conclusion

We analytically derived the fixed points of the CDn learning rule and proved their stability
by using the perturbation method. In the Gaussian-Gaussian RBM, we revealed that the
fixed points of CDn learning rule have the same analytical form and stability as those of
ML learning rule. We also clarified that principal components whose eigenvalues are larger
than a certain value are extracted at the fixed points. These results mean that a trained
Gaussian-Gaussian RBM reduces the dimension of input data on the basis of its principal
components. Moreover, in the Gaussian-Bernoulli RBM, we revealed that both ML and CDn

learning can extract independent components from input data at one of their stable fixed
points. Because our analytical results are independent of the number of Gibbs sampling n, it
was demonstrated that the same feature components extracted by ML learning are obtained
simply by performing CD1 learning. Note that we assumed there are infinity number of input
samples.

By expanding our analytical method, we expect to identify the features that are commonly
or differently found by ML and CD learning in other types of models such as RBMs with
binary visible units and deep generative models. It would also be practical to investigate how
sparsity regularization [65] and rectified linear units [74] affect the stable points and change
the extraction of features.

In this year, some studies [112, 50] have reported that there exist relatively general
sufficient conditions where the parameters estimated by CDn learning can coincide with
maximum likelihood estimators in some of exponential family. It is noteworthy that our
sufficient conditions shown in the RBMs with Gaussian visible units are different from the
conditions proposed by them. Building a bridge between our study and theirs will elucidate
more general conditions where both CDn and ML learning coincide with each other.

A further direction of this study will be to investigate the dynamics of CDn learning
rules. The previous theoretical studies on the Oja’s learning rule (2.51) obtained an explicit
expression of its time course [113, 24]. It is also worth remarking that the dynamics for
special initial conditions are exactly solved in unsupervised pre-training and backpropagation
learning of deep linear neural networks [92]. It remains to be explored whether we can
apply the techniques of the previous works to the dynamics of CDn learning and clarify its
convergence properties.



Chapter 3

Maximum Likelihood Learning of RBMs
with Gaussian Visible Units on the Stiefel
Manifold

The restricted Boltzmann machine (RBM) is a bipartite graphical model that is widely used
as a building block of deep neural networks [45], but it is hard to train by using maximum
likelihood (ML) learning. Computation of the likelihood is analytically intractable and
requires many iterations of Gibbs sampling, which entails a lengthy computation. Here,
contrastive divergence (CD) learning has been developed as an approximate way of computing
the gradient of ML learning and is commonly used in practice [45, 101]. CD learning
computes the ML gradient with samples obtained by a limited number of Gibbs samplings
and empirically converges close enough to the ML solutions in a short time [22]. However,
in general, there are almost no theoretical guarantees of convergence or maximization of the
likelihood in CD learning [100].

In this study, we reveal that the likelihood and its gradients in RBMs with Gaussian
visible units are analytically tractable when the weight matrix is constrained to the Stiefel
manifold. We propose a novel algorithm based on geodesic flow on the Stiefel manifold
for Gaussian-Bernoulli RBM and demonstrate its effectiveness in experiments on natural
image patches. Because our algorithm has a tractable likelihood, there are advantages to
using it to monitor the convergence and maximization of the likelihood. Moreover, we prove
theoretically that the proposed method arrives at essentially the same solution as standard
ML learning in Gaussian-Gaussian RBM.
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3.1 Geodesic flow of ML learning on Stiefel Manifold

3.1.1 Definition of geodesic flow on Stiefel manifold

Let us consider the problem of minimizing a cost function L with regards to a parameter
matrix A ∈ RM×N . We assume M ≤ N and that M row vectors of A are mutually orthogonal
N-dimensional unit vectors satisfying AAT = IM. The set of all such matrices is known as the
Stiefel manifold. In particular, the Stiefel manifold with N = M reduces to the orthogonal
group. When one minimizes L by using the steepest descent algorithm, the update rule is
given by

At+1 = At− ε∆A, (3.1)

where ε is a small learning constant and ∆A = dL/dA. It should be noted that, because At+1

is not in the manifold, it is necessary to project At+1 to the manifold in each iteration [77].
In contrast, by considering an extension of the natural gradient method, one can minimize

L along geodesic flows on the Stiefel manifold as follows [32]:

At+1 = At exp
(
ε(AT

t ∆A−∆AT At)
)
. (3.2)

As a background knowledge, let us briefly describe how to derive the above update
rule. Figure 3.1 shows the overview of the derivation. First, we need to project the gradient
∆A to the tangent space of the Stiefel manifold. Let us denote the Stiefel manifold as
VM(RN) and its tangent space as TAVM(RN). The projection to TAVM(RN) is given by
∆A−A∆AT A [32, 5]. Next, we transform the coordinate system of A so that the At becomes
an identity matrix. In that coordinate system, we denote the tangent space as TIVM(RN). By
the coordinate transformation, the projection to the tangent space is also transformed into
∆//A = (∆A−A∆AT A)AT = (∆AAT −A∆AT ). In the Stiefel manifold, it is known that the
geodesic from the identity with a velocity X is given by an exponential map exp(−εX), where
t is an infinitesimal time step. Therefore, the update along the geodesic is exp(−ε∆//A).
Note that we need to pull back the coordinate system into the original space with the tangent
space TAVM(RN). That is given by Aexp(−ε∆//A) and we thus obtain the update rule (3.2).

Because At being on the Stiefel manifold ensures that At+1 will also be on it, we can
omit the projection to the manifold in each iteration. In practical applications such as ICA,
this geodesic algorithm has outperformed the standard steepest decent algorithms [77, 32].
It is also remarkable that the effective dimension of the matrix on the Stiefel manifold is
MN−M(M+1)/2 because of the constraints. The effective dimension of the M×N matrix
without any constraint is MN. For instance, in the case of M = N, the effective dimension
of the Stiefel manifold becomes N(N− 1)/2, which is almost half of the matrix without
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the constraints. Therefore, optimization on the Stiefel manifold reduces the number of
parameters and can act as a regularization for better generalization [32].

Fig. 3.1 Update along the geodesic flow on the Stiefel manifold.

3.1.2 Gaussian-Bernoulli RBM

In the following, we apply the above geodesic algorithm to two types of RBM with Gaussian
visible units. First, we consider the following model distribution of a Gaussian-Bernoulli
RBM with an uniform model variance [45]:

p(h,v) = exp
(
− 1

2σ2 ||v−b||2 + 1
σ

hTWv+ cT h
)
/Z. (3.3)

Let us denote binary hidden variables as hi = {0,1} (i = 1, ...,M) and continuous visible
variables as vi (i = 1, ...,N). Moreover, we consider the variance of the visible units by σ2

and the normalization constant by Z. We estimate the weight matrix W ∈ RM×N and bias
vectors b and c.

The maximum likelihood (ML) estimate is obtained by minimizing the negative log-
likelihood L =−

∫
q(v) ln p(v)dv, where q(v) denotes the input distribution and p(v) denotes

the marginal model distribution. The steepest gradient of the negative log-likelihood is given
by Wt+1 =Wt +ε∆W with ∆W =< hvT >q −< hvT >p [45]. Let us denote the average over
training examples generated from q(v) as < ·>q and the average over the model distribution
as < hvT >p. After marginalizing h in the first term and v in the second term, the update
∆W can be transformed into

∆W =< g(Wv/σ + c)vT >q −(σ < hhT >p(h) W+< h >p(h) bT ), (3.4)
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where g(x), a function with a vector argument x, denotes a vector whose i-th element is a
sigmoid function g(xi). The second term is analytically intractable because one needs to
take a summation over an exponential number of hidden states obeying the following model
distribution:

p(h) = exp
(
||W T h||2

2
+(Wb/σ + c)T h

)
/Z. (3.5)

This distribution is equivalent to a full-connected Boltzmann machine with the connectiv-
ity WW T and it takes too much computational time to compute its statistic without any
assumption or approximation.

Surprisingly, we can avoid this analytically intractable summation by constraining the
parameter space of W . Let us assume that the weight matrix W is constrained to W = DA,
where A is included in the Stiefel manifold and D is a diagonal matrix D= diag(d1,d2, ...,dM).
Substituting W = DA into (3.5), the model distribution p(h) becomes independent among
the hidden variables:

p(h) =
M

∏
i=1

g(yi)
hi(1−g(yi))

1−hi, (3.6)

where we define yi = d2
i /2+ diaib/σ + ci and denote the i-th row vector of A by ai. The

constraint of W = DA corresponds not only to reducing the dimension of the search space W
but also to giving a prior that hidden units act independently.

Using the independent distribution (3.6), we can compute the update rule (3.4) analytically
as follows:

∆A = D[< g(Wv/σ + c)vT >q −(σKW +g(y)bT )], (3.7)

where Kii = g(yi) (i = 1, ...,M) and Ki j = g(yi)g(y j) (i ̸= j). The update rule of A is given
by (3.2) with (3.7). In addition, the update rules of the other parameters are given by the
ordinary steepest directions:

di← di + ε[< g(diaiv/σ + ci)aiv >q −g(yi)(aib+σdi)], (3.8)

b← b+ ε[< v >q −(b+σW T g(y))], (3.9)

c← c+ ε[< g(Wv/σ + c)>q −g(y)]. (3.10)

Moreover, the constraint W = DA makes the negative log-likelihood analytically tractable as
follows:

L =<
1

2σ2 ||v−b||2−Σi ln(1+ ediaiv/σ+ci)>q +Σi ln(1+ eyi)+N ln(
√

2πσ). (3.11)
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In general, L is analytically intractable and difficult to use to monitor the progress of learning
in the Gaussian-Bernoulli RBM. Although there are several methods to approximately
estimate the likelihood function, its accuracy is controversial [43]. In addition, even such
approximated estimation methods require Gibbs sampling and take much computational
time to compute the likelihood at each time step on the way of learning. In contrast, our
method requires rather low computational complexity O(M2N) to compute the likelihood
and can monitor how well and determine where the learning trajectory converges on the way
of learning. This property enables us to easily choose optimal hyperparameter and better
initial conditions.

3.1.3 Gaussian-Gaussian RBM

We can also obtain the geodesic ML learning rule in Gaussian-Gaussian RBM, whose model
distribution is defined as follows [53, 110]:

p(h,v) = exp
(
− 1

2s2 ||h− c||2− 1
2σ2 ||v−b||2 + 1

sσ
hTWv

)
/Z, (3.12)

where both visible and hidden units take continuous real values. Note that the likelihood
and its gradient in the standard ML learning without any constraint are analytically tractable
in Gaussian-Gaussian RBM [53]. In this study, we consider ML learning with W = DA in
order to obtain an insight into how this constraint changes the solution compared with that of
standard ML learning. The geodesic ML learning on the Stiefel manifold is given by

A← Aexp
(
ε(AT D2AC−CAT D2A)/2

)
, (3.13)

di← di + εdi[< (aiv)2 >q −σ
2/(1−d2

i )], (3.14)

where C is the data covariance matrix of the input distribution q(v). We set the mean values
of the input data to

∫
vq(v)dv = 0 and set the bias parameters to b = c = 0 for simplicity, but

we can also formulate and analyze the general case in the same way.

3.1.4 Other variants

As a simple extension, we can generalize the proposed learning algorithms with orthogonal
constraints to the following model;

q(h,v) = exp

(
−∑

j

v2
j

2σ2
j
+∑

i, j
Wi jφi(hi)

v j

σ j

)
/Z, (3.15)
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where φ(·) is an arbitrary function and each hi represents a continuous or a discrete random
variable not limited to a binary one. The notation σ j represents the model variance of the
j-th visible variable. The G-G and G-B RBMs are included in this model as the special cases.
Because the analytical tractability under the orthogonal constraint requires either visible units
or hidden units obey continuous Gaussian variable, a model distribution q(v,h), where v and
h are replaced with each other in the model definition (3.15), is also analytically tractable.

As is pointed out in the footnote of the previous study [108], products of student-T (PoT)
model is reduced to a generative model of ICA under the orthogonal constraints. Because the
generative model of ICA is analytically tractable, we can also apply the geodesic algorithm
with orthogonal constraints as is often used in the studies of ICA.

3.2 Analysis of Gaussian-Gaussian RBM

Here, we provide a theoretical guarantee that ML learning on the Stiefel manifold arrives at
essentially the same ML solution as standard ML learning in Gaussian-Gaussian RBM. We
consider only the case of M = N in the following analysis, but we can also analyze general
situations in the same way.

As assumed in the analysis of Gaussian-Gaussian RBM in Chapter 2, let us assume
that the data covariance matrix C has non-degenerate eigenvalues λi (i = 1, ...,N) satisfying
λ1 > · · ·> λk >σ2 > λk+1 > · · ·> λN and is diagonalized such that C =V T diag(λ1, ...,λN)V ,
where V is an N×N orthogonal matrix. Under these assumptions, the previous study found
that the stable solution of standard ML learning is limited to the following W̄ [53]:

W̄ =Udiag
(√

1−σ2/λ1, ...,
√

1−σ2/λk,0, ...,0
)

V, (3.16)

where U is an arbitrary N ×N orthogonal matrix. At the stable solution W̄ , the model
distribution becomes a Gaussian distribution: p(v) = N (v;0,V T diag(λ1

, ...,λk,σ
2, ...,σ2)V ). This mode distribution means that the trained Gaussian-Gaussian

RBM extracts only the largest k principal components, whose eigenvalues are larger than the
model variance σ2.

Under the assumptions of the previous study, we find that the ML learning on the Stiefel
manifold (3.13, 3.14) has the following analytical solutions:
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Theorem 5 The stable equilibrium solution of ML learning on the Stiefel manifold (3.13,
3.14) is W̄ = diag

(√
1−σ2/λ1, ...,

√
1−σ2/λk,0, ...,0

)
V .

Proof The update rule (3.13) stops at AT D2AC = CAT D2A. Because AT D2A and C are
commutative, these matrices are simultaneously diagonalizable, and we obtain an equilibrium
Ā =V . In addition, substituting Ā =V into (3.14), we get d̄i = 0 or d̄i =

√
1−σ2/λi with

λi > σ2.
Next, we check the stability of the equilibrium solution in a similar process as shown

in the standard ML learning [53]. We can represent the perturbation of A along the Stiefel
manifold as ∆A≡ Aexp(AT ∆XA)−A, where ∆X is an N×N alternative matrix whose entries
satisfy ∆Xi j =−∆X ji. Because the perturbation ∆Xi j takes an infinitesimal value |∆Xi j| ≪ 1,
we get ∆A ∼ ∆XA. The stable solution requires the following inner product to become
negative:

Tr
(
∆AT

∆FA
)
+Σi∆di∆Fdi

∼
N

∑
a<b

∆X2
ab(d

2
a−d2

b)(λb−λa)+
N

∑
i=1

∆d2
i
{

λi− (1+d2
i )/(1−d2

i )
2
σ

2} , (3.17)

where ∆di denotes the perturbation of di. When one transforms the update rule (3.13) into the
form At+1−At = FA(At ,di,t) and the update rule (3.14) into di,t+1−di,t = Fdi(At ,di,t), the
perturbations of the gradients, ∆FA and ∆Fdi , are given by ∆FA = FA(Ā+∆A, d̄i +∆di) and
∆Fdi = Fdi(Ā+∆A, d̄i +∆di). We can easily confirm that the inner product (3.17) becomes
negative if and only if D̄ = diag

(√
1−σ2/λ1, ...,

√
1−σ2/λk,0, ...,0

)
. Therefore, the ML

learning on the Stiefel manifold has the global minimum W̄ = D̄Ā. □

We have thus proven the remarkable fact that constraining the weight space to W = DA
corresponds to eliminating the rotational degrees of freedom caused by U in the standard ML
stable solution. In addition, the model distribution p(v) coincides with that of standard ML
learning. Therefore, ML learning on the Stiefel manifold gives essentially the same solution
as standard ML learning. In that sense, the orthogonal constraint is a natural assumption to
eliminate the redundancy of the solution space.

In the case of M < N, we can also analytically obtain the ML solutions. Although some
local minima appear in the ML learning with W = DA, the global minima coincide with
those of the standard ML solutions, as is shown with M = N.
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3.3 Experiments on Gaussian-Bernoulli RBM

To confirm the effectiveness of our method, we trained a Gaussian-Bernoulli RBM with
the algorithm (3.7-3.10) on natural image patches sampled from the van Hateren natural
image database [65]. In the preprocessing, we applied global contrast normalization and
ZCA whitening to 50,000 image patches of 14x14 pixels. The data set consisted of 40,000
training cases and 10,000 test cases. We set σ2 to be on the same scale as the variance of the
data.

As is shown in Figure 3.2 (a), our method achieved cost values comparable to those of the
persistent contrastive divergence (CD) algorithm [101] in the Gaussian-Bernoulli RBM with
M = 16 and N = 196. The thick line in Figure 3.2 (a) represent the mean over ten training
runs with different random initializations, and the filled areas represent the standard deviation.
The CD algorithm with no constraint on W has an intractable likelihood, but we set the
number of hidden units to a small value and computed the exact value of the likelihood. Our
method was constrained to W = DA and had fewer free parameters than the CD algorithm.
Nevertheless, it achieved the same cost values as the CD algorithm.

We also trained a Gaussian-Bernoulli RBM with N = M = 196 with our method. Because
we can compute the likelihood function by using (3.11) even in the case of large M, we can

Fig. 3.2 Gaussian-Bernoulli RBM trained by the proposed method on natural image dataset.
(a) Comparison of proposed method and CD algorithm. Negative log-likelihoods are shown
as the cost function (we set M = 16, N = 196). Red lines represent the results obtained by
the proposed algorithm and black one show those by the conventional CD algorithm. Note
that upper lines correspond to test errors, the cost functions with 1000 test samples, and that
lower ones are training errors, the cost functions with 10000 training samples. (b) Gabor-like
filters obtained by proposed method (we set M = N = 196).
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easily monitor the convergence of the cost function. We randomly selected the learned filters
and the reshaped rows of W with di ̸= 0, and show them in Figure 3.2 (b). As Gabor-like
filters are extracted, our method would seem to be useful in feature extraction.

3.4 Conclusion and future work

We proposed a novel algorithm to train RBMs with continuous visible units, where the
constraint on the Stiefel manifold enables us to compute analytical values of the likelihood
and its gradients. In the experiments on Gaussian-Bernoulli RBM, our method achieved
comparable performance with the CD algorithm. For Gaussian-Gaussian RBM, we provided
a theoretical guarantee that the proposed method obtains the essentially same solution as that
of standard ML learning.

A further direction of study is to apply a similar constraint on the parameter space to
more general forms of RBMs, such as exponential family harmoniums and stacked RBMs. In
deep networks, it has been suggested that orthogonal weight matrices obtained by layerwise
pre-training accelerate the convergence of the supervised learning through all layers [92]. It
remains to be explored how to apply our method to the pre-training of the deep networks.



Chapter 4

Analysis of Learning Dynamics in
Weight Normalization

Developments of the gradient method have provided essential contributions to the training
of deep neural networks. The stochastic gradient descent (SGD) has been developed for
optimizing large-scale networks with a large amount of data. Improvements of the SGD
such as Adagrad, RMSprop, and Adam [56] have succeeded in achieving the state-of-the-art
performances.

In particular, Salimans & Kingma have proposed weight normalization (WN), which
separates a weight vector to radial directional and parameters and then optimizes them [91].
Weight normalization is easy to implement and has negligible computational complexity
compared to the conventional SGD. From the experimental perspective, the weight nor-
malization has succeeded to speed up the convergence of learning in such deep networks
as the convolutional neural network (CNN), variational auto-encoder, the recurrent neural
network composed from LSTM and the deep Q-network [91]. Numerical experiments also
reported that the effect of weight normalization is even better than batch normalization [49]
on the convergence speed. However, it remains theoretically uncovered why and how the
weight normalization facilitates the convergence speed of learning. It will be convenient to
understand the mechanism of the acceleration to develop better optimization methods in deep
learning.

In this chapter, we briefly analyze the weight normalization in the context of a coordinate
transformation in a dynamical system. Explicitly evaluating the Jacobian matrix of the
coordinate transformation from the parameterization of the weight normalization to the
conventional weight matrix, we derive an effective learning rate of the weight normalization.
We reveal that the effective learning rate is automatically tuned like the annealing of a
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learning rate. In addition, we show that it realizes scale invariant gradients against the scale
transformation of the weight matrix in multi-layer ReLU networks.

4.1 Definition of weight normalization

The conventional steepest decent gradient is given by

∆W =−η∇W l, (4.1)

where W is a weight matrix and l is a given cost function. The stochastic gradient decent
(SGD) compute this steepest decent gradient by using mini-batch data. In contrast, weight
normalization reparameterizes the weight matrix by

wi = ri
vi

||vi||
, (4.2)

where wi is an N×1 vertical vector and its vector transposition wT
i denotes the i-th row vector

of the weight matrix W (i = 1,2, ...,N) [91]. The parameter ri means a radial parameter of
the weight vector and an N×1 vertical vector vi represents the direction of the weight vector.

Note that ||x|| means L2 norm of the vector
√

∑i x2
i . We reparameterize all of the weight

vectors wi in the network to the parameters of the weight normalization.
In the weight normalization, the update rule at the time step t is given by the following

steepest descent gradient [91]:

ri(t +1) = ri(t)+∆ri, (4.3)

vi(t +1) = vi(t)+∆vi, (4.4)

with

∆ri =−η∇ril, (4.5)

∆vi =−η∇vil, (4.6)

where η is a constant learning rate. We can compute this update of the weight normalization
by using the gradient of the conventional SGD, i.e., ∇wil as follows:

∆ri =−η v̂T
i ∇wil, (4.7)

∆vi =−η
ri

||vi||
(I− v̂iv̂T

i )∇wil, (4.8)
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where we denote the unit vector composed by vi as v̂i = vi/||vi||. Weight normalization is
easy to use in practice because one can implement weight normalization by a minor change
of the conventional SGD program code and its computational complexity is negligible.

Empirically, Salimans and Kingma found that one can set the learning rate η to a relatively
large value because ||vi|| in the update (4.8) monotonically increases with the time step [91].
In the following section, we give more sophisticated insight into this phenomena by analysis.

4.2 Learning dynamics projected onto the Cartesian coor-
dinate W

To know the difference between the update rule of the weight normalization and that of the
conventional SGD, we consider pulling back the update rule of the weight normalization into
the parameter space of the conventional SGD learning. Let us denote the coordinate of the
weight normalization as

qi =

[
ri

vi

]
. (4.9)

To avoid complicated notation, let us omit the index of the weight vector i in the following
formulation.

Let us represent the update rule of the weight normalization by the following form:

∆q =−η∇ql. (4.10)

In general, if a learning dynamics is transformed from a coordinate system q into a
coordinate system w, the equation of the dynamics should be transformed as follows:

∂q
∂w

∆w =−η
∂w
∂q

∇wl, (4.11)

∂w
∂q

=

[
v̂T

ri
||v||(I− v̂v̂T )

]
≡ J. (4.12)

The matrix J means an (N+1)×N Jacobian matrix whose entry Jab is given by ∂wb
∂qa

. Because
∂w
∂q

∂q
∂w becomes an N×N identity matrix, we obtain the following learning dynamics by
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multiplying JT to eq. (4.11):

∆w =−ηJT J∇wl (4.13)

=−η

{
v̂v̂T +

r2

||v||2
(I− v̂v̂T )

}
∇wl. (4.14)

This update represents a learning dynamics of the weight normalization observed in the
Cartesian coordinate system W . Compared to the conventional SGD, the gradient of the
weight normalization is modified by JT J. In other words, we can recognize JT J as an
effective learning rate for the conventional SGD. In detailed, because the matrix v̂v̂T is a
projection operator onto the direction of the weight vector v̂, the first term in the update
(4.14) is a gradient along v̂. In contrast, the second term is a gradient orthogonal to v̂. Figure
4.1 (a) shows the relationship among each component.

Furthermore, in our numerical experiments, the gradient along the weight vector, i.e.,
v̂T ∇wl, is likely to become quite smaller compared to the other component of the gradient as
shown in Figure 4.1 (b). Therefore, neglecting the terms including v̂T ∇wl, we may consider
the following approximation of the gradient (4.14):

∆w∼−η
r2

||v||2
∇wl. (4.15)

If we assume that each component of v̂ and ∇wl is given by mutually independent random
variable N(0,1/N) and that the number of the units N is large enough, the central limit
theorem gives us v̂T ∇wl ∼ N(0,1/N). Therefore, under this assumption, the gradient along
the weight vector becomes small enough to be neglected and the approximation (4.15)
becomes reasonable.

4.3 Automatic tuning of learning rate in weight normaliza-
tion

As shown in (4.14), we found that weight normalization is equivalent to assume the effective
learning rate JJT in SGD. This effective learning rate functions as an automatic tuning of a
given learning rate η as follows.

The component of the gradient orthogonal the direction of the weight vector, i.e., (I−
v̂v̂T )∇vl, has an effective learning rate r2/||v||2 in the update (4.14). Here, let us remark that
||v||2 monotonically increases [91]. Because the gradient of v always satisfies vT ∆v = 0, we
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Fig. 4.1 Learning dynamics of weight normalization projected into the Cartesian coordinate
system W . (a) Projection of the SGD gradient ∇wl to the weight vector. (b) The magnitude
of the projected components of the SGD gradient. The blue line shows the magnitude of the
gradient along the weight vector. The red one shows the magnitude of the gradient orthogonal
to the weight vector (4-layer Tanh network with 500 hidden units in each layer, input data:
MNIST, η = 0.1).

get
||v(t +1)||2−||v(t)||2 = ||∆v||2 ≥ 0, (4.16)

when the update is given by v(t +1) = v(t)+∆v. This means that the magnitude ||v(t)||2

increases with the time step t. Therefore, the effective learning rate r2/||v||2 monotonically
decreases. Therefore, the weight normalization (WN) implicitly realizes an annealing of
the learning rate. As shown in Figure 4.2 (a), even if the given learning rate η took a large
value, the training cost of WN converged smoothly. In contrast, the learning trajectory of
conventional SGD became disturbed in the same situation and slowly converged to the higher
training cost than WN. Besides, the SGD frequently diverged for larger learning rates but the
WN converged. Therefore, we may set a large learning rate in weight normalization, and this
leads to the fast convergence of the learning. Although the previous paper has empirically
reported the similar automatic turning in the weight normalization [91], we have theoretically
clarified it by deriving the effective learning rate in the Cartesian coordinate system. The
magnitude ||v|| seemingly affects the SGD by the form of 1/||v|| as one can see in eq. (4.8).
However, when one properly considers the projection into the Cartesian coordinate system, it
actually affects the SGD by the form of the square, i.e., 1/||v||2. It is also noteworthy that, if
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the approximation (4.15) is valid, the automatic turning of the effective learning rate appears
more remarkably.

In Appendix C, we consider another parameterization with the radial parameters, where
the directional parameters are given by a spherical coordinate system. As revealed by the
coordinate transformation, the automatic turning does not appear in the spherical coordinate
system. The automatic turning seems to be specific to the weight normalization method.

0 10 20 30 40 50
Epoch

0

0.1

0.2

0.3

0.4

0.5

C
os

t

SGD
SM-SGD
WN

0 10 20 30 40 50
Epoch

0

0.5

1

1.5

2

2.5

C
os

t

SGD
WN

(b)(a)

Fig. 4.2 The effects of weight normalization. (a) Learning dynamics with a large learning
rate (4-layer Tanh network with 100 hidden units in each layer, input data: MNIST, η = 1.5).
The thick lines show the values of the cost function with training samples and dashed ones
show those with test samples. The black lines show the learning trajectories of SGD and the
green lines show those of WN from the same initial condition. (b) Learning dynamics when
the initial conditions are given by an unbalanced allocation (4-layer ReLU network with 100
hidden units in each layer, input data: MNIST, η = 0.02). All lines show the expectation
among 10 different random initialization seeds. The red line shows the SGD with the scaled
metric.

4.4 Scale invariance of weight normalization

We also found that the effective learning rate JT J contributes to preserving scale invariance
of the weight normalization gradients in multi-layer ReLU networks. The cost function of
the ReLU networks include W (L+1)ReLU(W (L)hL), where W (L) denotes the weight matrix
between the L-th layer and (L+1)-th layer and hL represents the output from the previous
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layer. Even if the scales of the weight matrices change with a constant value a such as

w(L)→ aw(L), (4.17)

w(L+1)→ a−1w(L+1), (4.18)

the value of the cost function is invariant.
However, the values of SGD gradients change such as

∇w(L)l→ a−2
∇w(L)l, (4.19)

∇w(L+1)l→ a2
∇w(L+1)l. (4.20)

This means that the gradients are scale-dependent. When the scale of the weight matrix
becomes large on the way of learning, the gradients in one layer vanishes and those in another
layer diverges. Several studies have also pointed out that the scale-dependent gradients slow
down the convergence of learning in the ReLU networks [76, 91].

Te effective learning rate of the weight normalization is helpful to overcome the scale
dependence of the SGD gradients. Under the scale transformation (4.17, 4.18), the gradients
of the weight normalization are transformed as follows:

r2

||v||2
∇w(L)l→

(ar)2

||v||2
a−2

∇w(L)l =
r2

||v||2
∇w(L)l, (4.21)

r2

||v||2
∇w(L+1)l→

(r/a)2

||v||2
a2

∇w(L+1)L =
r2

||v||2
∇w(L+1)l. (4.22)

Therefore, the weight normalization gradients are scale invariant. In addition, under the
approximation (4.15), the component of the gradient vertical to the weight vector is likely to
become dominant and then the scale invariance appears more strongly.

Here, let us remark that Badrinarayanan et al. have proposed a SGD gradient with a
learning rate proportional to ||wi||2 such as

∆w =−η ||w||2∇wl, (4.23)

which is scale invariant [10]. Note that one can regard this gradient as a natural gradient with
a metric G = daig(WW T )−1. They referred to this metric as scaled metric. Because the
effective learning rate of the weight normalization r2/||v||2 includes scaled metric ||w||2 = r2,
weight normalization partially functions as the scaled metric. As shown in Fig. 4.2 (b),
the numerical experiments demonstrated that the weight normalization and the SGD with
the scaled metric (SM-SGD) converge faster than the SGD in a 4-layer ReLU network. In
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the experiments, we have set the initial values of the weight in an unbalanced condition
to explicitly observe the effect of the scale invariance [76]. In detailed, we generated the
initial values of the weight W (1), W (2) and W (3) from uniform random variables [38] and
then scaled them such as 5W (1), 5W (2) and W (3)/25. Because of the automatic tuning of the
effective learning rate, the WN converged more smoothly and faster than the SM-SGD.

4.5 Discussion

In this chapter, we have analyzed the gradient of the weight normalization. As a result, we
found that it acts as an automatic turning of the given learning rate, which monotonically
decreases with the magnitudes of the directional parameters. Therefore, one can set a larger
learning rate in the weight normalization. We also revealed that the gradients of the weight
normalization are scale invariant and this invariance is related to the scaled metric. These
two properties seem to make the weight normalization converge faster than SGD.

Recently, Yoshida et al. have challenged to theoretically analyze the learning dynamics
of the weight normalization in simple perceptrons [114]. They have derived the statistical
mechanical formulation of the learning dynamics and showed that the weight normalization
can converge faster than SGD. Their theory has also pointed out that automatic turning of a
learning rate is essential to speed up the convergence.

The scale invariance of the weight normalization appears in the widely-used networks
with ReLU units. However, it does not appear in general nonlinear networks such as those
with sigmoid units. In Chapter 5, we improve the weight normalization to make the gradients
invariant against any nonlinear transformation, that is, natural gradients.



Chapter 5

Radial Natural Gradient

The natural gradient is a powerful method that improves the transient dynamics of learning
because it utilizes the Riemannian structure of the parameter space. In particular, for training
multi-layer perceptrons, the natural gradient is superior to other methods such as second-
order optimization because it can avoid or alleviate the plateaus where the learning dynamics
becomes very slow [82]. However, the main drawback of the natural gradient method is the
high computational cost for the inverse of the metric. To facilitate the learning in hierarchical
models in practical applications, it is necessary to develop a method to reduce the Fisher
metric to smaller one, which preserves the essential geometries of the original space [81].

In this chapter, we introduce radial natural gradient learning, an efficient method with a
simplified version of the natural gradient that accelerates the transient dynamics of learning.
We use weight normalization, which separates the weight vectors in a multi-layer network
into their radial parameters and direction parameters, and then propose a radial Fisher metric
in the subspace of radial parameters. The computation of this metric requires much less
computational cost than that of the standard Fisher metric. Our theoretical analysis indicates
that the radial Fisher metric captures some of the geometry of the original Fisher metric.
As is known in the case of the standard Fisher metric, the natural gradient with the radial
Fisher metric is also expected to alleviate plateau phenomena caused by a singularity of the
parameter space and hence accelerates the convergence of the learning. We confirmed the
effectiveness of our method in several numerical experiments with multi-layer perceptrons
and benchmark datasets. Expansion of this study should be an easy way to reduce the
computational complexity and accelerate the convergence of learning in large-scale neural
network models for practical applications.
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5.1 Natural gradient

We first briefly overview the natural gradient method [5]. The natural gradient update of the
parameter θ is written by

θt+1 = θt−ηtG−1
∇θ l(θt), (5.1)

where ∇θ is the 1st-order differentiation and G denotes a Riemannian metric matrix. When
the objective function l(θ) is given by the negative log likelihood of a probabilistic model,
we use the following Fisher information matrix as the metric:

G = E
[
∇θ log p(x;θ)∇θ log p(x;θ)T ] . (5.2)

The natural gradient takes the Riemannian structure of the parameter space into account.
It is invariant under arbitrary coordinate transformation and does not depend on a specific
coordinate system. In contrast, conventional SGD is the steepest descent under the Euclidean
space and is not invariant under the transformation. Even if the parameter space has an
ill-shaped error landscape, the natural gradient provides isotropic convergence properties. A
more intuitive interpretation of the natural gradient is that it gives the steepest direction of
the object function under the constraint of

dθ
T Gdθ = const. (5.3)

In particular, the natural gradient in an online regime can achieve Fisher efficient estimation
asymptotically if the learning rate is chosen correctly [5]. The natural gradient learning has
performed well in various fields of machine learning such as neural networks, independent
component analysis, reinforcement learning and MCMC methods [6].

However, the naive implementation of natural gradient learning requires the inversion of
the metric, which takes too much computational time. In the following section, we propose
another novel metric, whose dimension is much less than the traditional Fisher information
metric, and it is suitable for practical applications.

5.1.1 Fisher metric of radial parameters

If one can find a subspace of the whole parameter space in which its metric captures most of
the original geometric structure, we can develop a natural gradient method that takes less
computational time. To generate such a subspace, in this study, we use weight normalization
explained in Chapter 4, wi = rivi/||vi||, where ri is a radial parameter and vi/||vi|| is a vector
with unit norm. In weight normalization, each radial parameter ri determines the scale of
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the weight vector of the i-th unit and is responsible for its averaged activity. If ri becomes
zero, the i-th unit receives no input and gets eliminated from the network. Therefore, the
learning of the radial parameters seems to be crucial to train the network. However, as
described in the update (4.8) and (4.14), the effective learning rate appears only for the
directional parameters. The learning rate of the radial parameters is not directly tuned in the
standard weight normalization. If we tune it by such gradient methods as natural gradient,
the convergence speed of the learning may become further improved.

Let us consider a neural network model with each unit represented by g(wix+bi) with
wi = rivi/||vi||, where g(·) is an activation function and x denotes the input from the previous
layer. The whole parameter set θ is given by all of the units {ri,vi,bi} in the network. For
this parameterizaton, we define a novel Riemannian metric for weight normalized parameters,

Grad = E

 ∇rl(x;θ)∇rl(x;θ)T ∇rl(x;θ)∇bl(x;θ)T O
∇bl(x;θ)∇rl(x;θ)T ∇bl(x;θ)∇bl(x;θ)T

O IV

 , (5.4)

where r denotes the vector composed of all radial parameters ri and b denotes that of
bi. The matrix entries for radial parameters and bias terms are prat of the original Fisher
information matrix. The directional part of the matrix is given by a dim.(V )× dim.(V )

identity matrix IV , where V means a set of the all directional entries vi j. We refer to
the above metric as radial Fisher metric and the following natural gradient update as
Radial Natural Gradient (RNG) learning :

θ
(t+1) = θ

(t)− εG−1
rad∇l(W (t)). (5.5)

The RNG learning is different from the conventional natural gradient learning with the
exact Fisher information matrix, G f ull , because Grad neglects the non-diagonal components
including the directional parameters such as ∇V l∇V lT , ∇V l∇rlT and ∇V l∇blT . Therefore,
the RNG learning is not necessarily invariant under arbitrary coordinate transformation, but
it is invariant under any transformation of the radial and bias parameters (r′,b′) = f (r,b).
This property makes the gradient invariant by the non-linear transformation of the inside of
the activation function, whose scale wix is changed or the bias bi is shifted.

Because the metric of the direction parameters v is assumed to be Euclidean having only
diagonal elements, the computational complexity of the inverse of Grad is much less than that
of G f ull . The computation cost of the inverse of G f ull depends on the number of parameters
K and is O(K3). In contrast, that of Grad depends on the number of hidden units N and is
O(N3). For example, let us consider a multi-layer network with L layers and M units in
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each layer. The computational complexity of RNG learning is O(L3N3) at each update step.
This is much less than that of exact natural gradient O(L3N6). In addition, RNG is more
efficient than the adaptive natural gradient (ANG) learning proposed by Park et al. [82].
In ANG learning we estimate the inverse of the Fisher information matrix G−1

f ull by using
the Sherman–Morrison formula, that is, G−1

t+1 = (1+ηt)G−1
t +ηtG−1

t ∇θ log p∇θ log pT G−1
t

. Its computational complexity is given by O(L2N4). Because most of the deep networks
satisfy N≫ L, the computational complexity of RNG learning is much less than that of ANG
learning, and RNG learning seems to be suitable for large-scale network models.

Furthermore, in Section 5.2, our theories reveal that the radial metric Grad has a similar
singular structure as the Fisher metric G f ull . The radial metric is expected to inherit the
essential geometry of G f ull . In numerical experiments, we confirmed that the radial natural
gradient performs well around such singular regions.

5.1.2 Robustness against vanishing gradients

In a multi-layer model with a sigmoidal nonlinearity φ such as

f (x;θ) = φ(WLφ(WL−1(· · ·φ(W1x))), (5.6)

whose gradient is likely to become close to 0 because the differentiation of a nonlinearity
becomes ∇θ φ(z;θ)≃ 0 at large |z|. Therefore, the gradient almost vanishes and the learning
becomes very slow. The natural gradient with the metric G f ull is known to be robust against
this vanishing gradient problem [6]. When the Riemannian metric of the parameter space is
given by a matrix F , the natural gradient vector is given by ∇̃l = F−1∇l. The Riemannian
magnitude of the natural gradient becomes ||∇̃θ l||2 = ∇̃θ lT F∇̃θ l = Tr(∇θ l∇θ lT F−1).

Concerning the radial natural gradient, we can prove that its magnitude has a finite lower
bound so that it effectively overcomes the vanishing gradient problem.

Theorem 6 The magnitude of the radial natural gradient has a finite bound such that
E[||∇̃l||2]≥ N where N is the number of radial parameters.

Proof In this proof, we denote bias parameters as 0 for simplicity, but the general case
can be easily proved. By taking the average over the data samples, the magnitude of

the radial natural gradient is given by E[||∇̃l||2] = Tr

(
E

[
∇rl∇rlT ∇rl∇V lT

∇V l∇rlT ∇V l∇V lT

]
G−1

rad

)
,

where we denote the differentiation with regard to direction coordinates by ∇V . Because of
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Grad =

[
E[∇rl∇rlT ] O

O I

]
, we obtain E[||∇̃l||2] = N +Tr E

[
∇V l∇V lT ]. Since the matrix

E
[
∇V l∇V lT ] is positive semi-definite by definition, the magnitude is equal to or larger than

N. In the case including bias parameters, this bound becomes 2N. □

Note that the conventional natural gradient learning with G f ull has E[||∇̃l||2] = K, where
K denotes the number of all parameters. Compared to the conventional natural gradient
learning, the magnitude may become smaller in RNG learning, but the magnitude has a lower
bound and is guaranteed to stay finite.

5.2 Singularity of radial Fisher metric

The Fisher information matrix is always semi-positive definite by definition but is not
necessarily regular or positive definite. The parameter spaces of hierarchical systems such as
multi-layer perceptrons include singularities due to the symmetry and degeneration of hidden
units. Such singular structure is ubiquitous not only in multi-layer perceptrons but also in
Gaussian mixture models, Bayesian network, and many other cases [8].

Problems arise in such singular models. Numerical experiments and Dynamical analyses
have revealed that these singular regions cause plateaus and the 1st-order gradients like SGD
become very slow here [26]. To overcome this problem, natural gradient methods is effective
[82, 87, 6]. If the learning approaches a singular region, some eigenvalues of the metric
become close to 0 and the inverse of the metric diverges. On the other hand, the value of the
gradient ∇l is close to 0, and the natural gradient G−1∇l can take finite values. Therefore,
the natural gradient can escape from singular region with finite velocity but SGD cannot.

In this section, we theoretically demonstrate that the geometric structure of the Fisher
information matrix is preserved in the radial metric. Also, our numerical experiments show
that the radial natural gradient can rapidly escape from a singular region where SGD learning
becomes slow.

5.2.1 Singularity of radial Fisher metric: the general case

The singular points of the radial parameter space always capture those of the whole weight
parameter space as briefly proved in the following theorem:

Theorem 7 When the radial metric Grad is singular, then the Fisher information matrix
G f ull is singular.
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Proof The radial metric Grad is singular if and only if there exists a nonzero vector z
such that zT Gradz = 0. Because of zT Gradz = E[(zT ∇θ l)(zT ∇θ l)T ] = 0, the condition of
singularity is equivalent to the linear dependence among the differentiation of the object
function ∇θ l, that is, vT ∇θ l = 0 with nonzero v.

Here, the radial parameters are given by ri =
√

∑ j W 2
i j and the chain rule of differentiation

becomes ∇rl = J∇W l, where J = dW
drT is a Jacobian matrix. This Jacobian matrix becomes

Ji j = Vi j/||vi|| ((i−1)N +1 ≤ j ≤ iN), otherwise it is 0. We can easily confirm JJT = I,
where I is an N×N identity matrix.

Therefore, we obtain zT ∇rl = zT

[
J O
O I

][
∇W l
∇bl

]
= 0 at the singular regions of

Grad . This means that the differentiation [∇W l ∇bl]T is linearly dependent with a vector

z̄ =

(
zT

[
J O
O I

])
. In other words, z̄ is the singular region of the whole parameter space

W such that z̄T G f ull z̄ = 0. Therefore, the Fisher information matrix G f ull is singular. □

5.2.2 Singularity of radial Fisher metric: 3-layer perceptron network

Theorem 7 gives a general insight into the singular regions of the radial metric, but it is
unclear at which parameter Grad and G f ull become singular simultaneously. As shown in the
following propositions, we theoretically found common parameter space where both of Grad

and G f ull become singular in a 3-layer perceptron networks [35].
Let us define the 3-layer perceptron network with N input units xk (k = 1, ...,N), H

hidden units, and M output units fi(x) (i = 1, ..,M) by

fi(x;θ) =
H

∑
j=1

Ui jφ

(
N

∑
k=1

Wjkxk +b j

)
+ ci. (5.7)

We assume that the conditional probability distribution of output y given input x is given
by a Gaussian distribution such as p(yi|x) = exp(||yi− fi(x;θ)||2/σ2)/

√
2πσ [33]. Its

log-likelihood function is given by log p(y|x;θ)q(x), where q(x) is input data distribution.
Maximization of the negative log-likelihood is equivalent to minimization of a square error
||yi− fi(x;θ)||2. In this case, the Fisher information matrix becomes

G f ull = ∑
i

Eq[∇θ fi∇θ f T
i ]. (5.8)
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In practice, the expectation over input distribution is computed by the empirical expectation
over training samples.

A previous study [33] has revealed that the singular regions of G f ull (5.8) is limited to
the following cases:

Theorem 8 (proved in [33]) The Fisher information matrix G f ull in the 3-layer percep-
tron network is singular if and only if : (A) u j = 0 for ∃ j or (B) wi = 0 for ∃i or (C)
(wi,bi) =±(w j,b j) for some two different indices i and j.

Note that we demote u j = (U1 j,U2 j, ...,UM j)
T and wi = (Wi1,Wi2, ...,WiN). The all of

cases mean the singular regions where the redundant parameters are eliminated. Such singular
regions in multi-layer neural networks are known to form saddle structures [35, 87]. The
natural gradient method is helpful to avoid them.

The condition (A) corresponds to the case where the j-th unit in the output layer is
eliminated. The condition (B) is the case where the i-th unit in the hidden layer is eliminated.
The condition (C) is a more non-trivial case where the i-th and j-th units becomes unidenti-
fiable viewed from the output units. The dynamical analysis in the 3-layer perceptron has
theoretically revealed that these singular regions cause plateaus and SGD learning becomes
very slow here [26]. In particular, dynamical analysis with one output unit and two hidden
units has revealed that the singular regions compose so-called Milnor attractor.

At least, with regard to the singular region (A), we found the following fact:

Theorem 9 Under the condition of singularity (A), the radial metric Grad becomes
singular.

Proof The condition of singularity is equivalent to the linear dependence among the
differentiation of the model function ∇θ f, that is, zT f = 0 with nonzero z. Note that we
denote f = ( f1, f2, ..., fM)T . Without loss of generality, we may assume the index of the
singular condition as j = 1. Because of ∇r1f = 0 and ∇b1f = 0, we can get a nonzero vector
z, whose entries zr j and zb j satisfy zr j∇r jf+ zb j∇b jf = 0. Therefore, Grad is singular. □

Furthermore, regarding the singularity (C), we found,



5.2 Singularity of radial Fisher metric 67

Theorem 10 Under the assumption of ui = ±u j and the condition of singularity (C),
the radial metric Grad becomes singular.

Proof We denote the radial expression of W as Wkl = r(W )
k V (W )

kl . Without loss of generality,
we may assume the index of the singular condition as i= 1 and j = 1. Under the condition (C),
we get ∇

r(W )
1

f = φ ′u1 and ∇
r(W )

2
f = φ ′u2, where φ ′ = ∇

r(W )
1

(v1x) ·φ(w1x+b1). Here let us

assume that the weight matrix U , which is written by Ukl = r(U)
k V (U)

kl in weight normalization,
satisfies ui = ±u j. Under this assumption, we can compose a nonzero vector z such that
z

r(W )
1

∇
r(W )

1
f+ z

r(W )
2

∇
r(W )

2
f = 0. Therefore, Grad is singular. □

Although we need additional degenerate weights ui = ±u j, the singularity (C) also
becomes the singularity of the radial metric. Note that, if we train neural network models
with tied weight, i.e. UT =W , ui =±u j is naturally derived from the condition (C). The tied
weight is widely used in training of auto-encoders or restricted Boltzmann machines.

The singularity (A) is known as the eliminating singularity and the singularity (C)
as overlapping singularity [107]. In the natural gradient learning with the Fisher metric,
dynamical analysis has theoretically revealed that when the number of hidden units is
redundant for representing input data, the learning converges to these singular regions rapidly
and makes the convergence of learning faster [26]. On the RNG learning, We can expect
the similar effect because the radial metric inherits the singularity of the Fisher metric. In
section 5, we empirically evaluate that RNG learning converges faster than SGD learning
and avoids the plateaus.

Note that we can extend the above propositions to the case where the activation function
at output units becomes nonlinear such as φ( fi). We omit the detail, but the necessary
techniques for this extension are described in [33].

In the following experiments, we will confirm that our radial natural gradient learning
avoids singular regions, which causes plateaus, and converges faster than SGD learning.

5.2.3 Numerical experiments with a toy model

First, to explicitly evaluate the transient dynamics of learning, we trained a simple 3-layer
perceptron with 1 output unit, 2 hidden units, and 8 input units. We artificially generated
1000 training samples x from Gaussian distribution N(0,1) and their teacher signals by
f (x;θ ∗) = ∑

2
i=1 φ(wix) with a true parameter θ ∗. We set a mini batch size of 100 in all of

training algorithms.
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Fig. 5.1 Transient dynamics of supervised learning in simple 3-layer perceptron network with
artificial input data. (a) The value of cost function with training samples. (b) Difference of
orientation between w1 and w2 measured by |cosθ |. (c) Eigenvalues of the Fisher information
matrix G f ull at t = 10.

Figure 5.1 (a) reveals that RNG learning converges much faster than SGD learning and
weight normalization (WN) learning. The lines in figures represent expectation among 20
different random initialization seeds, and the training cost means the cost function on training
data samples. Because the number of model parameters is small enough, we can compute the
exact natural gradient (NG) learning with G f ull . The dynamics of RNG learning was more
similar to that of NG than those of SGD and WN learning.

We can also confirm that RNG learning inherits important properties of NG learning
as shown in Figures 5.1 (b) and (c). In Figure 5.1 (b), we show the angle between w1

and w2 measured by cosθ = w1 ·w2/||w1||||w2||. The transient dynamics of SGD and WN
learning took long time to approach the singular regions w1 =±w2 and to get rid of them.
Therefore, even when the true solution exists at regular regions, the singular structure affects
the dynamics of learning. Moreover, Figure 5.1 (c) shows that the eigenvalues of SGD and
those of WN took near zero values on the way of learning, where the magnitude of the
gradient became small. In contrast, the eigenvalues of RNG and those of NG were larger
than those of the 1st-order gradient methods. From the above, we can conclude that RNG
learning can rapidly escape from the singular regions.

5.3 Related works: efficient approximations of natural gra-
dient

Various kinds of studies have challenged to find a tractable approximation to the Fisher metric
G f ull . The simplest one is a diagonal approximation, but it does not work well. Recently,
more sophisticated methods have been developed for the approximation. The unitwise
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Fisher metric is an excellent way of reducing computational cost, keeping the performance
of the natural gradient high [81]. Topmoumoute online natural gradient (TONGA) is an
approximation to the natural gradient that assumes block diagonal structure [88], and low-
rank structure within each block. Kronecker-factored approximate curvature (K-FAC) uses a
Kronecker product of two much smaller matrices which approximates the coarse structure of
the Fisher metric [68]. Factorized natural Gradient (FANG) projects the Fisher metric to a
low-dimensional space of sufficient statistics and reduces the size of the metric [41] .

Another approach is to avoid the computation of inverse of the metric. Hessian-free (H-F)
optimization uses an iterative method to implicitly compute the inverse of the Fisher metric
[67]. It solves the linear system with a series of matrix-vector products.

It is also noteworthy that several studies have proposed the methods to approximately
realize natural gradients just by transforming the parameters into the coordinate system where
the Fisher matrix becomes an identity [85, 30].

The above works approximate the Fischer metric to some degrees, but it has not been
clarified how the singularity changes from the exact Fisher metric. In contrast, we have
confirmed that our radial metric inherits some of the fundamental singularities from the exact
Fisher metric. It may be possible to combine the above-related works with radial metric and
further improve the computational cost and performance.

5.4 Experiments with benchmark dataset

5.4.1 MNIST dataset

To empirically evaluate the performance of the radial natural gradient learning in practical
applications, we conducted numerical experiments using multi-layer perceptrons and an
MNIST digit recognition dataset (28× 28). The dataset is composed of 60000 training
samples and 10000 test samples. We normalized the intensity of the MNIST dataset to [0 1]
and subtracted the mean activation of each pixel from the data [93].

Figures 5.2 show that the radial natural gradient (RNG) learning converged faster than the
stochastic gradient descent (SGD) methods and the conventional weight normalization (WN)
in a 4-layer perceptron with tanh nonlinearity. We used cross-entropy as the cost function for
multiple classes classification and softmax function as the output p(y|x). Its Fisher metric
has been given by Park et al. [82] and we utilized it. The lines in the figures represent the
expectation and standard deviation among five different random initialization seeds. The
initialization of parameters was given by uniform distributions [38]. Note that we selected
the hyperparameters of SGD and WN from the following grid specifications: learning
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rates in [1,0.5,0.1,0.05,0.01], the coefficient of L2 regularization in [10−3,10−4,10−5], and
mini-batch size in [250,500]. We avoided using structure-dependent learning rates such as
annealing with step because we want to check unalloyed effects of our proposed algorithms
rather than to achieve the state-of-the-art performance. We only used L2 normalization to
prevent overfitting in all experiments. In RNG learning, we further searched a learning rate
of the radial parameters in [0.01,0.005,0.001] to prevent the natural gradient from diverging.
The Figure 5.2 shows the best learning trajectories with the hyperparameters which achieved
the lowest test classification errors. In both of the update step number and the CPU time, the
training cost and the test classification error of RNG converged faster than those of SGD and
NG. Besides, the RNG has achieved better generalization errors than the other methods.

Let us look at some technical issues to improve natural gradient learning. First, to avoid
numerical instability, we added a damping parameter η in the inverse of the metric such as
(Grad +ηI)−1 [68]. we also searched the damping term in [10−3,10−4,10−5]. Second, we
adaptively updated the metric by

G(t+1)
rad = βG(t)

rad +(1−β )
t

∑
i

∇ f (xi)∇ f (xi)
T/T, (5.9)

with β = 0.9 to reduce the effect of noise caused by mini-batch input [82, 70]. Note that the
most expensive operation regarding computational cost in RNG learning is the computation
of the inverse of Grad . Fortunately, the metric does not need to be updated in every iteration,
since it is unlikely to change very quickly during the training. In our experiments, we update
the metric and computed its inversion once every 100 mini-batches.

As shown in Figure 5.2 (c) and (d), We also confirmed the training of 4-layer networks
with ReLU units. We set the network size and the hyperparameters in the same way as in the
case of Tanh. Compared to the Tanh network in Figure 5.2 (a) and (b), our RNG gave less
improvement of the WN learning on the speed of convergence and the generalization error.
Because the WN learning performs scale invariance as investigated in Chapter 4.4, the effect
of the radial natural gradient seems to be limited in the ReLU networks. From the above,
we can conclude that RNG performs better than SGD and WN, especially in the multi-layer
Tanh networks.

5.4.2 CIFAR-10 dataset

Next, we also conducted numerical experiments using multi-layer perceptrons and a CIFAR-
10 dataset. The CIFAR-10 dataset consists of (32× 32) pixel color images classified to
10 different classes with 50000 training samples and 10000 test samples. We normalized
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each channel of each pixel to [0 1] and to zero mean. We set the network size and the
hyperparameters in the same way as the experiments with MNIST.

The Figure 5.3 (a) and (b) show the best learning trajectories with the hyperparameters
which achieved the lowest test classification errors. The all gradient methods were more
likely to overfit than the training with MNIST. Therefore, we estimated the lowest test error
by early stopping. The training cost and the test classification error of RNG converged faster
than those of SGD and NG in both 3-layer and 4-layer perceptrons with the tanh nonlinearity.
The RNG achieved the lowest test classification errors. than the other methods.

5.5 Discussion

We have introduced a novel natural gradient algorithm by using radial parameters of weight
matrices, which greatly reduces the computational cost of the inverse of the metric. In this
study, although we focused on the supervised learning in multi-layer perceptrons, our method
is applicable and very suitable for various kinds of training in hierarchical models with
weight matrices such as convolutional neural networks and variational autoencoders. In such
models, our natural gradient method will be helpful for accelerating the convergence of the
learning.

In our experiments, because the radial metric is small enough for computing the inverse
of the metric matrix, we have directly computed the inversion and have not applied any
approximation for avoiding the computation of the inverted matrix. In the case of a very large
network or where the computational time and memory space are limited, it will be helpful
to combine our method with the adaptive natural gradient (ANG) or algorithms for more
large-scale problems such as Hessian-Free methods or block diagonal approximation of the
matrix [69, 88]. In addition, Martens remarked that the on-line optimization of a damping
parameter considerably improves the performance of natural gradients [70]. Applying such
technical issues to radial natural gradients will further accelerate the convergence of learning.

In this study, we considered the Riemannian structure only for radial parameters and
assumed the Euclidean space for directional parameters. If one can find a metric with the low
computational cost for the directional parameters, it may further improve the convergence of
learning. Because the directional parameters are constrained to the high-dimensional sphere,
it may be helpful to use the projection methods to the sphere as is used in the algorithms for
independent component analysis [48].

It is also interesting to apply the dynamical analysis of learning into the radial natural
gradient [26, 107]. It will elucidate how the learning trajectory avoids the plateau phenom-
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ena caused by the singular regions and theoretically prove the effectiveness of the radial
parameterization.
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Fig. 5.2 Transient dynamics of supervised learning on MNIST. We trained 4-layer networks
with 1000 units in each hidden layer. (a) Cost function on training data samples. The
cost function consists of the cross-entropy and the activation function is given by Tanh.
We represented the SGD learning as the black line, the weight normalization learning as
the green line, and our proposed method as the red line. (b) Classification error rate on
test data samples. (c) Cost function on training data samples with the ReLU network. (d)
Classification error rate on test data samples with the ReLU network.
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Fig. 5.3 Transient dynamics of supervised learning on CIFAR-10. (a) Classification error rate
on test data samples in the 3-layer network. 1000 hidden units are given by Tanh function.
(b) Classification error rate on test data samples in the 4-layer network. 1000 hidden units
are given by Tanh function.



Chapter 6

Conclusion

In this thesis, we demonstrated analyses of the learning algorithms for deep learning
and proposed novel algorithms based on the analyses. Especially, we focused on two types
of heuristic learning algorithms: contrastive divergence learning in RBMs and a gradient
method known as weight normalization.

In Chapter 2, we performed the dynamical analysis on the contrastive divergence learn-
ing in Gaussian-Gaussian RBM and proved that it has the same solutions with maximum
likelihood learning. In the case of Gaussian-Bernoulli RBM, we found that at least one of
the contrastive divergence solutions coincides with one of the maximum likelihood solutions.
Our theoretical results support the experimental knowledge that maximum likelihood solu-
tions are obtained simply by performing CD1 learning. In Chapter 4, we analyzed the weight
normalization, which has been empirically known as a method to accelerate the convergence
of learning. By investigating Jacobian matrix of the coordinate transformation, we revealed
that the acceleration is attributed to the effective learning rate, which realizes the automatic
turning of the given learning rate and scale invariant gradients.

As remarked in Chapter 1, we have worked on not only the analyses of learning algorithms
but also the propositions of novel efficient learning algorithms. In Chapter 3, based on our
theoretical insight obtained by the analysis in Chapter 2, we derived analytically tractable
maximum likelihood learning for the RBMs with Gaussian visible units. The orthogonal
constraint, which is a natural assumption derived from the structure of the weight matrix,
enabled us to propose the novel efficient algorithm along the geodesic flow. In Chapter 5, we
also proposed a natural gradient algorithm for the weight normalization and investigated its
effectiveness in the numerical experiments.

The heuristic algorithms investigated here may lead to the extension of the traditional
techniques in machine learning. The contrastive divergence has been suggested to be efficient
for the maximum likelihood estimation of exponential family models [112, 50]. Such
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reparameterization approach as the weight normalization and natural neural networks [30]
will be applied to other hierarchical models similar to the neural networks such as mixture
models and factor analysis [6, 107]. Besides, the mathematical analyses and improvement
of the heuristics shown in this thesis will be expected to enable the theory of deep learning
to advance further. As a final remark, we discuss the possible directions of the theoretical
advances related to this study as bellow.

6.1 Efficient algorithms based on geometry

As shown in Chapter 2, the maximum-likelihood learning in Gaussian-Gaussian RBM has
the cost function without local minima. There is one global minimum and then the other fixed
points are saddle points. Interestingly, several theories have revealed that the cost function
of the multi-layer discriminative models with a linear activation function also has the same
geometric structure [55, 11]. Besides, experiments with nonlinear activation function have
also observed similar phenomena [28]. Therefore, this geometric structure of the landscape
seems to be an universal property in neural network models or even in other non-convex
optimization problems [28, 37]. It will be helpful for speeding up the convergence of learning
to develop the algorithms that easily escape from the saddle points, such as the saddle-free
Newton’s method.

We expect that it will also be one of the promising direction to investigate the effectiveness
of the natural gradient methods. Because the conventional optimization methods in neural
networks have based on the 1st-order gradients, the annoying adjustment of the learning
coefficient is inevitable to make the learning converge. Although the recently developed
1st-order heuristics like Adam [56] can partially avoid the adjustment, geometric optimization
methods like the natural gradient seems to be more efficient because they automatically tune
the learning rate by using the curvature of the parameters. In addition, as we introduced the
geodesic flow of the weight matrix on the Stiefel manifold in Chapter 3, the natural gradient
method with the orthogonal constraints may be effective in other neural network models.
Saxe et al. have pointed out that the orthogonal constraints on weight matrices raise the
acceleration of the convergence of the backpropagation algorithm because the orthogonality
prevents the vanishing gradient phenomena [92]. Similar approaches also succeeded in the
optimization of the recurrent neural networks [9]. Furthermore, there are other types of
natural gradient methods, for instance, the natural gradient constraining the weight matrix
to be regular [7]. This constraint may enable us to accelerate the convergence of learning
because the irregularity of the weight matrix causes the plateau phenomena as discussed
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in Chapter 6. It is also noteworthy that the information of the curvature can prevent the
overfitting in some experiments with natural gradients [83, 70].

In this study, we concentrate on the specific geometric structure observed in learning
with RBMs and weight normalization. With regards to more general geometric structure,
information geometry gives mathematical insight [6]. In the information geometry, various
kinds of learning algorithms are described by universal frameworks, for instance, the dual
projections between input data and model distributions. The framework of information
geometry may be helpful to unify or to give a better understanding of the recent algorithms
developed for neural network models such as score matching [46], minimum probability flow
[98], variational auto-encoder [57] and generative adversarial network [39]. Let us remark
that our recent work has already given elementary results about the information geometry of
the score matching [52]. Using the Riemannian metric of the score functions, it derived the
natural gradient algorithm for score matching methods.

6.2 Residual subjects for theory of learning

In Chapter 2 and 3, we have investigated the RBMs with continuous Gaussian units. In
contrast, analysis of RBMs with discrete, in particular, binary visible and hidden units remain
as a matter to be discussed. The difficulty of analysis in the discrete cases seems not to be
peculiar to the generative models like RBMs but common with discriminative models with
nonlinear activation functions. As is described in Chapter 1, several studies have recently
investigated the learning dynamics and its solution space in deep linear networks. However,
this network performs only linear transformation, that is, principal component analysis
regardless of the number of layers. This is too simple information processing compared to
those observed in practical neural network models with realistic datasets. It will be necessary
to construct the theory of learning in the models with the discrete random variables or the
nonlinear activation functions. To attack this problem, analytical methods developed in
statistical physics will be helpful such as the dynamical mean-field theory in random neural
network models [84] and the replica method developed in associative memory models [2].

One more essential question which remains to be uncovered is what kind of information
is extracted in a hierarchical structure of the network. Some numerical experiments have
reported that a higher layer is likely to extract higher level abstraction of input information,
which may allow much easier generalization performance and transfer learning [18]. How-
ever, this tendency has not been confirmed by any theory. In addition, the relevance between
the extracted features and the landscape of the error function with no local minima is also
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unclear. We expect that expanding the dynamical analysis shown in Chapter 3 will be a
promising way to solve these problems.

It is also a challenge for the future to bridge the gap between learning in machine learning
and that in biology. The most basic technique in training neural networks, that is, the
backpropagation algorithm, is biologically implausible [17]. It seems to be non-trivial where
the cost function and its derivatives are represented in the realistic neural networks and how
the derivatives are transmitted thorough synaptic weights. Bridging the gap may inspire
heuristic algorithms for machine learning based on Hebbian learning rule or other synaptic
learning rules in neuroscience.

As known from the above, there are still many problems to overcome for constructing the
theory of learning in neural networks. Attacking the remaining problems will enable us to
establish mathematical foundations of the neural algorithms and to build a better system of
artificial intelligence based on them.



Appendix A

Dynamical analysis including bias
parameters

Gaussian-Gaussian RBM
As shown in Chapter 2, we have derived stable fixed points of ML and CDn learning rules
of the weight matrix W . Although We assumed that bias parameters are zero in the main
claims, We can also derive stable fixed points of learning rules including bias parameters and
generalize our theoretical results.

The ML learning rules of b and c are defined as follows:

τ
db
dt

= Σ
−2{< v >0 −< v >∞}, (A.1)

τ
dc
dt

= S−2{< h >0 −< h >∞}. (A.2)

The simultaneous learning rules of the parameters {W,b,c} become the following equations:

τ
dW
dt

= F +WΣ
−1(µµ

T −ηη
T )Σ−1 +S−1c(µ−η)T

Σ
−1, (A.3)

τ
db
dt

= Σ
−2(µ−η), (A.4)

τ
dc
dt

= S−1WΣ
−1(µ−η), (A.5)

where we define F ≡WΣ−1CΣ−1−W (IN−W TW )−1 and
η ≡ Σ(IN −W TW )−1 (W T S−1c+Σ−1b

)
. Let us define the mean value of input data as

µ =
∫

dvq(v)v and the data covariance as C =
∫

dvq(v)vvT −µµT .
In the following dynamical analysis, we assume homogeneous variances Σ = σ IN and

S = sIM as in Section 2.3. The condition db/dt = 0 gives µ = η , that is,

µ = (IN−W TW )−1
(

σ

s
W T c+b

)
. (A.6)

This equation satisfies dc/dt = 0 and requires τdW/dt = F . Because τdW/dt = F is
equivalent to a learning rule with no bias parameter, the fixed point is W =UAV obtained in



79

Lemma 1. Therefore, (A.6) with the W =UAV is a necessary and sufficient condition that
the fixed points of b and c must satisfy.

It is a necessary and sufficient condition for stable points that the following inner product
is negative for any perturbation:

Tr
(

∆W T dW
dt

)
+∆bT db

dt
+∆cT dc

dt
, (A.7)

where we denote perturbations around the fixed point by W +∆W,b+∆b, and c+∆c. After
straightforward calculation, the inner product (A.7) can be reduced to the following form:

Tr
(
∆W T

∆F
)
− 1

σ2 ∆η
T (IN−W TW )∆η . (A.8)

The notation ∆η represents the first-order expansion of η :

∆η = (IN−W TW )−1
(

σ

s
∆W T c+

σ

s
W T

∆c+∆b
)

+(IN−W TW )−1(W T
∆W +∆W TW )η . (A.9)

Because (IN−W TW ) is a positive semidefinite matrix, the second term of the inner product
(A.8) is negative for any perturbation. In addition, Tr

(
∆W T ∆F

)
is negative if and only if W

becomes the stable fixed point as obtained in Theorem 1. Consequently, the stable points are
the W obtained in Theorem 1 and such b and c that satisfy the relation (A.6).

We can also show that the above fixed points are stable points of CDn learning rule.
The CDn learning rules including bias parameters correspond to (A.3 - A.5) with F ≡
WΣ−1CΣ−1−W

{
(W TW )nΣ−1CΣ−1(W TW )n +∑

2n−1
k=0 (W TW )k} and η ≡Σ(W TW )nΣ−1µ+

Σ∑
n−1
k=0(W

TW )k (W T S−1c+Σ−1b
)
. In a similar process as shown in ML learning, fixed

points become W = UAV obtained in Lemma 2 and µ = η . Using an identity, (IN −
(W TW )n)(IN−W TW )−1 = ∑

n−1
k=0(W

TW )k, we can reduce µ = η of CDn learning to that of
ML learning (A.6). We can also prove the stability of the fixed points in the same manner as
ML learning.

Gaussian-Bernoulli RBM
We can extend the stable points of ML learning rule obtained in Section 2.4 into those of
ML learning rule including bias parameters. We use assumption 1) shown in Theorem 3 and
assume the fixed point to be represented by W = DBT . First, we substitute W = DBT into
dW/dt = O and obtain

< sig(disi/σ + ci)>p(si) = (σdi + zi)g(ai) , (A.10)

µi < g
(
d js j/σ + c j

)
>p(s j) = (σdig(ai)+ zi)g(a j) (i ̸= j), (A.11)

where we define z≡ BT b and ai ≡ d2
i /2+dizi/σ + ci. Second, the condition of db/dt = 0

gives
µi = σdig(ai)+ zi. (A.12)
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Last, the condition of dc/dt = 0 gives

< g(disi/σ + ci)>p(si)= g(ai). (A.13)

Because we can reproduce the condition (A.11) by multiplying conditions (A.12) and (A.13),
the conditions (A.10), (A.12), and (A.13) are necessary and sufficient for W = DBT to
become the equilibrium.

Here, we assume ci to be expanded by di such that ci = γid2
i /σ , where γi is a constant

coefficient. Under this assumption, we can relax the non-negativity, si ≥ 0, assumed in
Theorem 3 into si ≥ −γidi because the parameter ci shifts the argument of the sigmoid
function from disi/σ to disi/σ + ci = di/σ(si + γdi). In addition, if we also assume di≫ 1
and ai≫ 1 in (A.10), (A.12) and (A.13), the sigmoid function converges to 1, and then, we
obtain the relation that zi and di should satisfy

zi = σdi−µi. (A.14)

Substituting this equation of zi into ai, we obtain ai = (1/2− γi/σ)d2
i + µidi/σ . Because

we assumed di≫ 1 and ai≫ 1 to obtain (A.14), γi needs to satisfy γi > 2σ . As a result, we
obtain the extended ML solutions W = DBT and ci = γid2

i /σ (γi > 2σ), where di≫ 1 and
zi satisfy (A.14).

In a process shown in Gaussian-Gaussian RBM, we can also prove the stability of this
fixed point. Also, we can obtain the same stable point in the case of CDn learning rules
including the bias parameters.



Appendix B

Learning dynamics of model variance σ 2

In Chapter 2, we fixed the model variance σ2 to a constant value for simplicity. We can also
derive the stable fixed points of learning rules including learning of σ .

Gaussian-Gaussian RBM
In Gaussian-Gaussian RBM, ML learning rule of σ is given by

τ
dσ

dt
=−dKL(q(v)||p(v))

dt
(B.1)

=
∑

N
i=1 λi−σTr(W TWC)

σ3 − N
σ
. (B.2)

The fixed points σ and W are derived by solving simultaneous equations dσ/dt = 0 and
dW/dt = O. As described below, we can conclude that the learning of σ is unnecessary.

The fixed point W becomes the same one obtained in Theorem 1. When M ≥ N, the
stable fixed point becomes σ2 = λN . The G-G RBM extracts all of the input eigenvalues
λ1 > λ2 > · · ·> λN =σ2 and cannot perform any dimension reduction of the input. Therefore,
the learning of σ seems to be unnecessary for the RBM to realize the noise reduction.
When M < N, it becomes σ2 = ∑

N
i=M+1 λi/(N−M). In this case, N−M eigenvalues, i.e.,

λM+1 > · · ·> λN , are not extracted. In other words, the principal eigenvalues are extracted
in the G-G RBM as many as the number of hidden units M. Because we can obtain the same
solution without training σ , the learning of σ is unnecessary.

CDn learning rule of σ is given by

τ
dσ

dt
=−dKL(q(v)||pn(v))

dt
(B.3)

=
∑

N
i=1 λi−σTr((I−W TW )

{
σ−2(W TW )nC(W TW )n +∑

2n−1
k=0 (W TW )k})

σ3 − N
σ
.

(B.4)

In the same process as ML learning of σ , we can derive the stable fixed points of CDn method
including the learning of σ and find that they coincide with those obtained by ML learning.
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Gaussian-Bernoulli RBM
ML learning rule of σ is given by

τ
dσ

dt
=<
||v||2−σg(σ−1Wv)TWv

σ3 >0 −
N
σ
. (B.5)

As assumed in Chapter 2.4, let us assume that the input data are generated from the indepen-
dent information sources. The fixed point W becomes the same one obtained in Theorem
4. By using the similar deformation of formula as shown in the proof of Theorem 4, we
can obtain one of stable fixed points, that is, σ2 = ∑

N
k=1 Var[sk]. Because σ only affects

the coefficient of the ICA solution, the learning of σ does not change independent feature
extraction realized in G-B RBM. In the same process, we can also derive the stable fixed
points of CDn learning, which are the same W and σ as obtained in ML learning.



Appendix C

Steepest descent direction with a
spherical coordinate system

Instead of weight normalization, let us consider a reparameterization on the N dimensional
sphere, that is, w = re, where r denotes a radial length and e denotes a unit vector. In this
case, the steepest decent direction at time step t is given by

r(t +1) = r(t)−η∇rl, (C.1)
ẽ(t +1) = e(t)−η∇el, (C.2)
e(t +1) = ẽ(t +1)/||ẽ(t +1)||. (C.3)

Note that update (C.3 ) means the projection onto the sphere.
When we assume the learning rate is small enough and take a first order approximation

of the update (C.3 ), we obtain

e(t +1)∼ e(t)−ηr(I− e(t)e(t)T )∇wl. (C.4)

Compared to the update of weight normalization (4.8), the effective learning rate of the
directional parameters replaced from r/||v|| to r. From the viewpoint of the parameter
transformation, the Jacobian matrix becomes

J =
∂w
∂e

=

[
eT

r(I− eeT )

]
. (C.5)

Then, the learning dynamics in the Cartesian coordinate system W follows

∆w =−ηJT J∇wl (C.6)

=−η
{

eeT + r2(I− eeT )
}

∇wl. (C.7)

Therefore, the steepest descent direction with the spherical coordinate system does not
perform the automatic turning of the given learning rate shown in Chapter 4.3. It performs
only the scale invariance shown in Chapter 4.4.
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