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Abstract 

In this study, I used the peristaltic locomotion of Drosophila embryos as a model to 

study the mechanism of how coordinated neural activities emerge during the development 

of the nervous system. Peristaltic locomotion in Drosophila embryos is achieved by 

propagation of muscle contractions from anterior to posterior or posterior to anterior of 

the body. The muscle movements are in turn generated by sequential activation of motor 

neurons in the corresponding neuromeres (segmental units of the central nervous system). 

Previous studies examined the development of the motor circuits in Drosophila larvae 

indirectly by observing the development of muscle activity. However, since these studies 

observed a global movement of muscles using muscle contraction as a measure, 

development of more local activities (such as activities in a single muscle or a small 

group of muscles) remained unknown. More importantly, activity of neurons that 

generates the muscle movement had not been studied. In this study, I first used calcium 

imaging of muscles to examine the activity of individual muscles during development and 

found local activity of muscles that were unnoticed in the previous studies. I then 

performed calcium imaging of central neurons and revealed for the first time the 

emergence of neuronal activity that generates larval locomotion during embryonic 

development. Finally, I show essential roles of gap junctions in the embryonic central 

circuits that autonomously (without the aid of sensory feedback) generate motor waves. 
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The requirement of gap junctions is transient since gap junctions are no longer required in 

the 3
rd

 instar larvae. My results suggest that there are two independent and 

complementary circuits in the embryos that generate motor waves, one involving GJs and 

the other mediated by sensory feedback.  
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Introduction 

Mechanism of Generation of Patterned Movements 

Most animals possess the ability to move. Aristotle defined and classified animals as 

beings that have nutritive power, self-motion and sense-perception in De Anima II 3. 

Most animals other than Porifera (such as sponges) and Pracozoa (flat animals) have the 

nervous system [1]. The nervous system of animals realizes self-motion and 

self-perception. Sensory neurons (SNs) input exterior information to interneurons (INs), 

INs then process information and output the appropriate activities to muscles through 

motor neurons (MNs) (Figure 1). 

In general, a neuron has the soma, the dendrite, and the axon. The soma is spherical 

and contains the cell nucleus. The dendrite and the axon are fibrous; synaptic signals from 

other neurons are received in the dendrites and synaptic signals to other neurons are sent 

via the axons. Neurons are connected to each other and form complex neural circuits 

(Figure 2A). Synaptic signals between neurons are transmitted at the structure called the 

synapse. There are two types of synapses: the chemical synapse and the electrical synapse. 

The chemical synapse transmits synaptic signals with chemical substances called 

neurotransmitters. When an action potential reaches the presynaptic axon terminal, 

presynaptic neuron releases neurotransmitters into the synaptic cleft. Neurotransmitters 

activate their receptors at the post synaptic dendrite and induce various neuronal 

responses. The electrical synapse transmits synaptic signals via direct cell-to-cell ionic 



 

7 

 

transfer. The electrical synapse is formed with the gap junctions (GJs), which are the 

complex of cell adhesion molecules (Figure 2B). 

Many animal movements are composition of various rhythmic patterned activities in 

muscles. The rhythmic pattern in muscles is the outputs of circuits in the nervous systems 

called CPGs (central pattern generators). CPGs are neural circuits that can generate 

rhythmic motor patterns in the absence of sensory feedback (SF) or descending inputs 

from the brain that carry specific timing information [2, 3] (Figure 3A). Many stereotyped 

motor outputs have been shown to be controlled by the CPGs, such as walking, breathing, 

and feeding [4] (Figure 3B). 

Interaction between Sensory Feedback and CPGs 

Although CPGs can generate rhythmic patterned activities by itself, animals should 

adapt to the changes in the environment to generate motor outputs appropriate for the 

circumstances. For this purpose, the pattern of CPGs is often modified by the inputs from 

SNs [5] (Figure 4A). Sensory inputs have been shown to modify the motor pattern 

generated by the CPGs during the flight of the Acridida [6] [7], swim of the Hirudinea [8], 

and locomotion of Drosophila [9] (Figure 4B). 

Development of the Nervous Systems 

How is the complex neural network constructed during development? Early work 

suggested that generation of neural networks can be divided into two phases: early wiring 
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that depends on the genetic blueprint and later rewiring that depends on the activity of 

neurons. Concerning the later phase of development, there exist two types of sources for 

the activity of neurons as describe below [10] (Figure 5). 

1) Sensory inputs 

Sensory inputs from the environment or those from the body (namely, SF) play 

important roles in the development of the nervous systems [11]. A famous example of the 

role of sensory inputs during the development of neural systems is the critical period in 

the visual system. Refinement of visual systems depends on sensory inputs from the 

exterior world [12]. Similarly, there is evidence that SF plays critical roles during the 

development of motor systems. For example, SFs modulate the development of 

Drosophila motor circuits that generate peristaltic locomotion [13]. Indeed, increase of 

frequency of firing in SNs during the development of motor systems brings forward the 

onset of coordinated activities in muscles [14] (Figure 4B). In contract, inhibition of SNs 

during the development of motor systems delays the onset of coordinated activities in 

muscles [15], and decreases the speed of larval locomotion at 2
nd

 and 3
rd

 instar larvae [16] 

2) Spontaneous activities in the CNS 

Spontaneous activities of neurons are also reported as the source of activity-dependent 

refinement of neural circuits. In particular, spontaneously occurring wave-like activities 

that propagate among a population of neurons have been reported in many sensory 
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systems and other brain regions including the retina [17] [18] [19] [20], cochlea [21] [22] 

[23], hippocampus [24] [25] and cerebellum [26] . Also in motor systems, similar 

sequences are observed in the spinal cord of animals such as zebrafish [27] and chick [28]. 

Wave-like activity seen in these different brain regions is known to develop in a similar 

sequence. First, spontaneous and sporadic activities emerge in some population of cells. 

These sporadic activities are then integrated and correlated with others gradually, and 

finally develop into orchestrated activities that propagate along a wide region in the CNS 

(Figure 6). Inhibition of the spontaneous activity during the transition from sporadic to 

patterned neuronal activity was reported to disturb the emergence of patterned activities 

in zebrafish [27]. Spontaneous neural activities during development are also reported to 

have function in homeostatic regulation of neural activities [29] [30]. Spontaneous neural 

activities regulates not only the function of neural circuit but also that of single neurons. 

For example, spontaneous neural activities were reported to regulate the synaptic strength 

in the embryonic spinal cord [31]. Thus, spontaneous activities play important roles in 

development of neural circuits [32]. [33].  

Gap Junctions: Roles in Developing Nervous Systems 

GJs are intercellular channels in animal cells that mediate direct cell-to-cell transfer of 

ions and small molecules. They are formed by docking of two hemichannels that are 

composed of hexamers of cell adhesion molecules belonging to a family of integral 
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membrane proteins: connexins in vertebrates and innexins in invertebrates [34]. GJs have 

been known to mediate the spontaneous wave-like activity in many of the systems 

described above [35], including the retina [36], [37], hippocampus [38], and spinal cord 

[27] [39] [40]. GJs-coupled networks are involved not only in wavelike activities which 

spread isotropically but also in rhythmic patterned neural activities [41]. These 

GJs-coupled networks are often transiently created at the early stage of development 

before the chemical synapses are formed [42]. For example, electrical coupling of lumbar 

MNs mediated by GJs decreases to less than half during the maturation of the developing 

spinal cord [43] , retina [44] [45] or cerebral cortex [46] [47] Although electrical synapses 

are completely replaced with the chemical synapses in some systems, they remain into 

later stages of development and sometimes perform different functions in other systems 

[48]. Thus, GJs-coupled network coordinate the neural activities especially in the early 

stage of development. 

Drosophila as a model organism 

I used Drosophila embryos and larvae to study the development of the motor circuits. 

The Drosophila larva is an ideal model to study the mechanism of motor systems from 

the following reasons. First, its behavior is stereotypic and easy to quantify [49]. Second, 

highly sophisticated genetic tools can be used to visualize and manipulate specific 

component neurons in the system [50]. Third, its short life cycle (~10 days) allows 
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efficient genetic crosses and developmental analyses. I used these excellent features of the 

system to try to study the molecular and cellular mechanisms underlying the emergence 

of coordinated neural activities in developing neural circuits. 

The Motor Systems of Drosophila 

Drosophila larvae display several types of behaviors such as crawling, turning, bending, 

and rolling [51] (Figure 7A). The forward peristalsis is the most dominant behavior in 

Drosophila embryos and larvae, and is realized by the sequential muscle contraction from 

the posterior segment to anterior segment of the body (Figure 7B) [52]. During the 

backward peristalsis, which is induced when the larva receives noxious stimuli in the 

head, the sequential muscle contraction occurs in the opposite direction: from the anterior 

to posterior. These sequential muscle movements are generated by propagating activities 

of MNs along the segments in the CNS, called the neuromeres. The CNS of Drosophila is 

composed of the brain and ventral nerve cord (VNC) (Figure 8A). The VNC is an 

equivalent of the spinal cord of vertebrates and consists of three thoracic and eight 

abdominal neuromeres (T1 – T3, A1 – A8). Each neuromere innervates the muscles of the 

corresponding body segment (Figure 7C, Figure 8B). The VNC includes MNs that 

innervate muscles and generate various movements and INs that receive inputs from the 

brain, INs in the same or other segment and SNs, and process the received information. 
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The VNC also receives inputs from the SNs that carry sensory information from the 

corresponding body-wall segment. 

Recent studies in this and other laboratories have identified INs that regulate larval 

peristaltic locomotion. These include excitatory and cholinergic INs that mediate the 

segmental propagation of motor activity during forward locomotion (A27h) [53] or are 

necessary for local muscle contraction (CLI1 and CLI2) [54], inhibitory and GABAergic 

INs that regulate the segmental propagation of motor activity during both forward and 

backward locomotion (GDL) [53], and inhibitory and glutamatergic premotor INs that 

regulate the speed of peristalsis (PMSIs) [55] or are implicated in the termination of 

motor activity during the late phase of motor cycle (GVLIs) [56]. Mathematical models of 

larval locomotion have also been constructed based on the roles of these INs. Crawling of 

Drosophila larvae were simulated in a virtual system, enabling one to make predictions 

about the effects of perturbing specific component neurons [57]. 

Development of the Motor Systems of Drosophila larvae 

The motor system of Drosophila embryos and larvae is also an ideal model for the 

study of development of the neuromuscular systems. Development of motor activities of 

Drosophila embryo has previously been studied by observing muscles contraction [58, 59, 

13, 60, 15, 14]. These previous studies revealed how locomotory movements emerge 

sequentially during embryonic development as follows. First, local muscle contractions 
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appear at 14h After Eggs Laying (AEL). These initial contractions are myogenic and do 

not require neural activity. Such myogenic movements are also reported in the embryo of 

a shark [61]. Then neurally-induced muscle contractions appear at 17h AEL. These 

activities are initially uncoordinated and span only a few segments. However, they 

gradually become coordinated and matured into the wavelike activities that propagate the 

length of the embryos at 18h AEL [15] (Figure 9).  

Previous studies also showed that spontaneous activities in the CNS and SFs are 

necessary for the maturation of neural circuits. When the patterned neural activities in 

CNS were interfered during a late embryonic stage, maturation of CNS was interfered 

[14]. It was also reported that inhibition [16] or excitation [14] of SNs influenced the 

coordination of motor activities. 

Outline of this Research 

As described above, previous studies examined the development of the motor circuits 

in Drosophila larvae indirectly by observing the development of muscle activity. 

However, since these studies observed a global movement of muscles using muscle 

contraction as a measure, development of more local activities (such as activities in a 

single muscle or a small group of muscles) remained unknown. More importantly, activity 

of neurons that generates the muscle movement had not been studied. In this study, I first 

used calcium imaging of muscles to examine the activity of individual muscles during 
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development and found local activities of muscles that were unnoticed in the previous 

study. I then performed calcium imaging of central neurons and revealed for the first time 

the emergence of neuronal activity that generates larval locomotion during embryonic 

development. Finally, I show essential roles of GJs in the embryonic central circuits that 

autonomously (without the aid of SF) generate motor waves. The requirement of GJs is 

transient since GJs are no longer required in the 3
rd

 instar larvae. My results suggest that 

there are two independent and complementary circuits in the embryos that generate motor 

waves, one involving GJs and the other mediated by sensory feedback. Based on these 

results, I discuss roles of GJs and sensory feedback during motor circuit development. 
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