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Abstract

RSA is one of the most famous cryptosystems and the security has been studied in

numerous papers. One main approach for the research is due to Coppersmith’s lattice

based methods that enable us to solve modular/integer equations with small solutions

in polynomial time. Indeed, several RSA vulnerabilities have been reported by using

the methods. Thus far, a number of attacks on RSA and its variants with some

special hints have been proposed, however, some of these attacks have obvious room

to be improved. The facts come from the technical hardness to apply Coppersmith’s

methods to RSA cryptanalyses. More concretely,

• how to formulate attack scenarios appropriately and

• how to construct appropriate lattices to solve equations

are technically hard problems. In this paper, we propose several improved polynomial

time attacks on RSA variants by resolving the above difficulties. Our first result

is an improved algorithm for solving the small inverse problem that relates to the

security evaluation of the small secret exponent (multi-prime) RSA. Our proposed

algorithm offers improved attacks on multi-prime RSA with small prime differences.

Our second results are improved partial key exposure attacks on CRT-RSA where

the attacks utilize partial exposed bits of CRT-exponents. We study attacks with the

most/least significant bits of dp or/and dq. For all the cases, we propose improved

attacks. Our third results are improved partial key exposure attacks on RSA for

general exposure scenarios. Our claimed scenarios contain several ones which have

been studied as special cases. We construct attacks that contain all the currently

known best attacks as special cases. Furthermore, we obtain improved attacks in

several specific scenarios. Our last results are improved small secret exponent attacks

and partial key exposure attacks on Takagi’s RSA and the prime power RSA both

of that have moduli N = prq. We propose simple lattice constructions to attack the

variants and obtain improved attacks.
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Chapter 1

Introduction

1.1 Background

1.1.1 Public Key Cryptosystem – Development and RSA

The information technology is indispensable for the modern society. In several sit-

uations, one has to consider the security of his digital data. Cryptography is the

fundamental technique to resolve the problem such as secure communication and in-

tegrity of data. Here, assume that Alice wants to send her secret message M to

Bob via an insecure channel. If they share a common secret k, they can achieve the

goal by utilizing a symmetric encryption scheme. Alice encrypts the message M as

C := Enck(M) by a symmetric encryption algorithm with a key k, then sends the

ciphertext C to Bob. Due to the correctness of the symmetric encryption scheme,

M = Deck(Enck(M)) holds. Hence, Bob gets the plaintext M = Deck(C) by a sym-

metric decryption algorithm with a key k. As we assumed, since they used an insecure

channel for the communication, an eavesdropper Eve may obtain the ciphertext C.

However, it does not matter. Due to the security of the symmetric encryption scheme,

Eve, who does not know the common secret k, cannot recover the plaintext by the

eavesdropped ciphertext c. As a result, Alice and Bob can successfully communicate

via an insecure channel. However, a simple question arises; how do Alice and Bob

share a common secret.

In 1976, Diffie and Hellman [DH76] resolved the key exchange problem in an elegant

way. Let p be a prime number. Then, Zp with the multiplication forms an abelian

cyclic group G of order p− 1. Let g ∈ G be a generator of G. Assume Alice and Bob

want to share a common secret via an insecure channel along with public p and g.

Alice picks random secret a ∈ Zp−1 and sends ga (mod p) to Bob. Bob picks random
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secret b ∈ Zp−1 and sends gb (mod p) to Alice. Then, Alice and Bob can share a

common secret k = gab (mod p). By eavesdropping the communication, what Eve

knows is (g, ga, gb). Among the cryptographic community, it is widely believed that

computing the secret gab from Eve’s knowledge is computationally hard where the

problem is called the Diffie-Hellman problem.

Diffie and Hellman’s work developed a notion of public key cryptography. Alice

and Bob share a common secret by utilizing the Diffie-Hellman key exchange proto-

col and communicate securely by utilizing symmetric key encryption schemes via an

insecure channel. Then, let us consider a case when many n users U1, . . . , Un want

to send their own secret message mi to other members in the same manner. For

the purpose, each user Ui should share a common secret ki,j with all the other users

U1, . . . , Ui−1, Ui+1, . . . , Un. The task requires
(
n
2

)
times run of the Diffie-Hellman key

exchange protocol. Therefore, the approach results in heavy communication cost that

depends on the number of users n.

In 1978, Rivest, Shamir, and Adleman [RSA78] proposed the first public key cryp-

tosystem that avoids the key exchange problem; the so-called RSA cryptosystem,

which we study in this paper. Let p and q be secret primes, N = pq, (e, d) be random

elements in Z∗
Φ(N) such that ed = 1 (mod Φ(N)) where Φ(N) = (p − 1)(q − 1) is

Euler’s totient function. In a public key cryptosystem, there are two forms of keys;

a public key pk and a secret key sk. RSA has a public key pk := (N, e) and a se-

cret key sk := (p, q, d). To communicate with Alice, Bob produces his public/secret

key pair. Then, Bob publishes the public key pk = (N, e) and store the secret key

sk = (p, q, d). Alice encrypts a plaintext M ∈ Z∗
N as C = Encpk(M) := Me (mod N)

by Bob’s public key and sends the ciphertext C to Bob. Bob uses his secret key

and recover the plaintext M by computing M = Decsk(C) := Cd (mod N). The de-

cryption works correctly where the fact is verified from Fermat’s little theorem; Med

(mod N) = M1+ℓΦ(N) (mod N) = M where ℓ is some integer. By eavesdropping the

communication, Eve learns the ciphertext C and Bob’s public key pk = (N, e). How-

ever, the security of a public key cryptosystem ensures that Eve cannot decrypt the

ciphertext even with the public key. Hence, Alice and Bob can communicate securely

via an insecure channel without any key exchanges.

Designing the RSA cryptosystem is one of the most fantastic breakthrough in the

context of cryptographic research thus far. Indeed, Rivest, Shamir, and Adleman

received the valuable Turing Award in 2003. After the invention, several public key

cryptosystems have been proposed (e.g., the ElGamal encryption scheme [Gam85],

the knapsack cryptosystem [MH78], and more), however, RSA is still one of the most
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widely-used public key cryptosystems. Today, it is a common knowledge that RSA is

not the first public key cryptosystem but the first “published” public key cryptosys-

tem. The notion of public key cryptosystems was mentioned in James Ellis in 1969.

In 1973, Clifford Cocks constructed a public key encryption scheme which is analo-

gous to RSA. In the next year, Malcom Williams developed a key exchange protocol

which is similar to Diffie-Hellman’s one. Since they were UK secret agencies worked

in Government Communications Headquarters, they did not publish the results due

to the secrecy policies.

Since the popularity, several variants of the RSA cryptosystem with higher efficiency

have been considered. The most well-known variant is the CRT-RSA as described by

Quisquater and Couvreur [QC82] where the scheme has secret keys dp and dq in

place of d where edp = 1 (mod p− 1) and edq = 1 (mod q − 1). CRT-RSA achieves

about four times faster decryption than the standard RSA. Some variants have the

composite integers N which are the product of more than two secret primes. The

Multi-Prime RSA has a composite integer N = p1 · · · pk. Other variants such that

Takagi’s RSA [Tak98] and the prime power RSA have a composite integer N = prq.

If the same size of composite N is used, these variants achieve faster key generation

and decryption than the standard RSA.

Thus far, several advanced forms of public key cryptosystems have been constructed

based on more useful algebraic structures and developments of cryptographic tech-

niques. The most typical two of them are bilinear pairing from elliptic curves and the

lattice-based cryptography. Here, we introduce the most basic application of pair-

ing; a one round tripartite key exchange protocol proposed by Joux [Jou00]. Let

G1, G2, and GT be cyclic groups of the same prime order p. A bilinear pairing ê

is a map such that ê : G1 × G2 → GT . G1 and G2 are subgroups of points on an

elliptic curve over a finite field where the group operations are denoted as addition.

GT is a subgroup of the multiplicative group of a finite field where the group op-

eration is denoted as multiplication. Let P1 and Q1 be a generator of G1 and G2,

respectively. In the context of cryptographic designs, non-degenerate, efficiently com-

putable pairings are used. For a non-degenerate pairing ê, if ê(P,Q) is an identity

element in GT , then either P or Q is an identity element in G1 or G2. The pow-

erful feature of pairings is its bilinearity which is useful in designing cryptographic

schemes; for a, b ∈ Zp, ê(aP1, bQ1) = ê(bP1, aQ1) = ê(P1, Q1)
ab holds. Then, we show

how Alice, Bob, and Charlie can share a common secret k via an insecure channel.

Alice, Bob, and Charlie pick random a, b, c ∈ Zp−1, respectively. Alice broadcasts

(aP1, aQ1) to Bob and Charlie, Bob broadcasts (bP1, bQ1) to Charlie and Alice, and
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Charlie broadcasts (cP1, cQ1) to Alice and Bob. Since Alice knows her own secret a

along with bP1 and cQ1 which Bob and Charlie broadcasted, she can compute k =

ê(bP1, cQ1)
a = ê(P1, Q1)

abc. Similarly, Bob and Charlie can compute the same secret

k as k = ê(cP1, aQ1)
b = ê(P1, Q1)

abc and k = ê(aP1, bQ1)
c = ê(P1, Q1)

abc, respec-

tively. Although an eavesdropper Eve can learn (P1, Q1, aP1, aQ1, bP1, bQ1, cP1, cQ1),

it is believed that computing k = ê(P1, Q1)
abc seems infeasible.

As the example suggests, bilinear pairings and also lattices enable us to con-

struct several advanced forms of public key cryptosystems that are infeasible to

obtain without such powerful primitives. Fully homomorphic encryption [Gen09,

vDGHV10, CMNT11, Bra12, CNT12, GHS12a, GHS12b, CCK+13, GSW13, JR13,

BGV14, BV14a, BV14b, CLT14, Nui14, CS15, NK15] have ciphertexts which one can

operate addition and multiplication without knowing its secret key. More concretely,

given C1 = Encpk(m1) and C2 = Encpk(m2) which are fully homomorphic ciphertexts

of plaintexts m1 and m2, anyone can compute Encpk(m1+m2) and = Encpk(m1 ·m2)

which are fully homomorphic ciphertexts of plaintexts m1+m2 and m1 ·m2. Identity-

based encryption [Coc01, BF03, BB04, Wat05, BW06, Gen06, Wat09, ABB10, LW10,

BB11, CHKP12, Lew12, CW13, AHY15, KY16, Yam16, ZCZ16] can use arbitrary

strings as its public key. Attribute-baed encryption and predicate encryption [OT09,

LOS+10, OT10, AFV11, YAHK11, LW11, ACM12, OT12b, OT12a, KSW13, Xag13,

Att14, BGG+14, Tak14, YAHK14, AY15, CGW15, GVW15a, GVW15b, OT15] can

control fine-grade access structure of its ciphertexts.

In 2013, one of the most expected cryptographic primitive was constructed by

Garg, Gentry, and Halevi [GGH13a]. They proposed a graded encoding scheme

which is an approximate multilinear map. Since a multilinear map is an ex-

tension of a bilinear map, a one round multipartite Diffie-Hellman key exchange

is a straightforward application. After that, other constructions of graded en-

coding schemes [CLT13, LSS14, ACLL15, CLT15, GGH15] have been proposed.

Based on the powerful map, numerous magical cryptosystems have been pro-

posed [FHPS13, GGH+13b, GGH+13c, GGSW13, HSW13, BWZ14, Gar14, YYHK14,

GLSW15, AFH+16, GMM+16].

1.1.2 Cryptanalysis – The Security of RSA

In Section 1.1.1, we introduce one side of cryptographic research, i.e., designing cryp-

tographic schemes. There is the other side of the research, i.e., cryptanalysis, which

is the main topic of this paper. The security of cryptographic schemes is verified by

attacking the schemes. If there are efficient attack algorithms, the security of the
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schemes are broken. Conversely, if there does not seem to be efficient ones, the fact

ensures the security.

Let us talk back about the Diffie-Hellman key exchange protocol. The security is

broken if there is an efficient algorithm for solving the Diffie-Hellman problem; given

(g, ga, gb) and the goal of the problem is computing gab. A simple approach is recov-

ering a secret a from (g, ga) (or equivalently recovering a secret b from (g, gb)) where

the problem is called a discrete logarithm problem. Shoup [Sho97] showed that any

generic algorithms should perform Ω(
√
p) group operations where p is the order of the

group G. Hence, if one uses the group G whose order p is exponentionally large with

respect to the security parameter, there exists no generic algorithms for computing

discrete logarithms efficiently. We call the fact that “there are no efficient algorithms

for solving the discrete logarithm problem” the discrete logarithm assumption, and

so do other problems. Although there are no proofs which show the polynomial time

equivalence between the Diffie-Hellman problem and the discrete logarithm problem,

the former problem is also believed to be computationaly hard. As one evidence, Mau-

rer and Wolf proved the polynomial time equivalence in some special groups [MW96].

Then, the Diffie-Hellman assumption has been used to ensure the security of crypto-

graphic schemes. It is widely believed that similar assumption also holds for bilinear

groups.

The Diffie-Hellman like problems are successful results. Unfortunately, there

are several cryptographic schemes whose security have been broken. It is widely

known that there are several critical attacks on knapsack cryptosystems [Sha82,

LO85, CJL+92]. Recently, a number of attacks on multilinear maps have been pro-

posed [CGH+15, CHL+15, CFL+16, CLLT16, HJ16, MSZ16]. As these negative ex-

amples suggest, cryptanalysts have to work extensively to guarantee the security of

existing cryptographic schemes.

Then, the time has come to discuss the security of RSA. Since RSA is one of the

most basic cryptosystems, the security has been discussed in numerous papers. The

security of RSA relates to the factorization of large composite integers N which is a

component of the pubic key. It is easy to see that the security of RSA is completely

broken if N is factorized. When N is factorized, then its prime factors p and q are

revealed. Recall the key generation ed = 1 (mod (p− 1)(q− 1)). If the public e along

with the prime factors p and q are known, the extended Euclidean algorithm enables

one to recover the remaining secret d. Hence, all ciphertexts C can be decrypted.

Here, we want to emphasize the fact that breaking RSA is easier than the factoriza-

tion of N , however, the reverse is not necessarily true. In a number of textbooks for
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information engineering which is not for experts of cryptgraphy, there are incorrect

statements written, i.e., “breaking RSA is no easier than the factorization of N”.

Here, “breaking RSA” means that given a ciphertext C, then computing its plaintext

M only with a public key (N, e). Most cryptographers expect that the statement is

true, however, there are no proofs. Moreover, Boneh and Venkatesan [BV98] showed

that there should be a gap between the hardness of breaking RSA and the factoriza-

tion of N . Thus far, however, there are no attacks known that do not factorize N but

break RSA. Indeed, there are some positive results that indicate that breaking RSA

is almost as hard as the factorization of N . In the original paper of RSA [RSA78],

the authors claimed the probabilistic polynomial time equivalence between computing

the secret d from the public key (N, e) and the factorization of N due to the work

by Miller [Mil75]. It means that there is a probabilistic polynomial time algorithm

to factorize N when (N, e, d) is given. Furthermore, Miller’s work suggests that there

is a deterministic polynomial time equivalence between computing the secret d from

the public key (N, e) and the factorization of N under the Extended Riemann’s Hy-

pothesis. However, it seems a strong assumption. Later, May [May04a], Coron and

May [CM07] proved the deterministic polynomial time equivalence between comput-

ing the secret d from the public key (N, e) and the factorization of N . Although the

results have the same restriction ed ≤ Φ(N)2, it covers a standard parameter setting.

Since there are no proofs for the polynomial time equivalence between breaking RSA

and computing the secret d, these results are not sufficient. By taking a different

approach, Aggarwal and Maurer [AM09] showed that a gap between breaking RSA

and the factorization of N does not seem large. In the paper, they proved that if

there exists a generic algorithm for breaking RSA, then the algorithm can factorize

N . Since they studied the problem only in the generic group model, the result is

not sufficient. However, as these results suggest, there are several conjectures that

“breaking RSA is no easier than the factorization of N”. Therefore, in the rest of this

paper, we assume that the statement is true.

Since the factorization problem is one of basic number theoretic problems, it has

been studied from ancient Greeks. However, no efficient algorithms are not known.

Indeed, the current state-of-the-art factorization algorithms [Pom84, Len87, LJMP90]

require subexponential time in the input length. It suggests that there does not seem

to be any efficient algorithms for breaking RSA.

To summarize the above discussion, RSA seems secure since the factorization is

computationally hard problem. However, thus far, several practical vulnerabilities

of RSA have been reported. The factorization problem for N = pq is computation-
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ally hard when p and q are randomly distributed. Since the sampling large primes

cannot be performed very efficiently, there are several implementations that some-

times use the same primes or sample secret primes from statistically biased distri-

butions. Lenstra et al. [LHA+12] and Heninger et al. [HDWH12] independently

showed that about 0.2% of public N ’s for SSL/TLS protocols can be factorized

efficiently since they share the same secret prime factors. Similarly, Bernstein et

al. [BCC+13] efficiently factorized 184 out of more than two million N ’s for Tai-

wan’s government-issued digital smart cards since they share the same secret prime

factors or the primes are sampled from statistically biased distributions. Not only

the distribution of secret primes p, q but also that of d may disclose the factoriza-

tion of N . If d is sampled as small integers, the decryption/signature generation

becomes faster. However, Wiener [Wie90] first showed that if too small d’s such that

d < N0.25 are used, then N can be factorized in polynomial time. After that, Boneh

and Durfee [BD00] further improved the bound to d < N0.292. Moreover, even if

RSA is implemented correctly, some portions of secret information can be extracted

via physical attacks against cryptographic devices where such attacks are called side

channel attacks. Kocher [Koc96] and Kocher, Jaffe, and Jun [KJJ99] showed that

power analysis can extract some secret information about d. Genkin, Shamir, and

Tromer [GST14] proposed an acoustic attack, which utilized acoustic information

during cryptographic operations, where the attack can extract whole RSA secret

keys from the GnuPG software. Boneh, DeMillo, and Lipton [BDL97] showed that

if the fault is induced during the CRT-RSA signature generation, the output faulty

signature discloses the factorization of N . Several follow-up papers have been pub-

lished to attack more secure systems [CJK+09, CNT10, BNNT11, BBD+13, FGL+13].

Halderman et al. [HSH+09] applied coldboot attack against laptop then some se-

cret information about (p, q, d) along with (dp, dq) can be extracted. Several pa-

pers [HS09, HMM10, PPS12, KSI13, KH14, Kun15] followed Halerman et al.’s work

and proposed key recovery attacks against RSA where the attacks utilize secret in-

formation which are extracted from coldboot attacks.

Since the secret information extracted from practical side channel attacks are not

the exact secret keys but some partial information of the secret keys in general,

cryptanalyses of RSA with its partial information have been studied in numerous

papers. Furthermore, such cryptanalyses are also interesting topic in the theoret-

ical sense since they assure the hardness for breaking RSA. Indeed, such attacks

have been analyzed before the development of side channel attacks. The most basic

problem for the research direction is the factorization problem with some portions of
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secret primes. Rivest and Shamir [RS85] proposed the polynomial time factorization

algorithm for N = pq with 3/5 of the most significant bits of p. Then Copper-

smith [Cop96a] proposed an improved algorithm that works with half of the most

significant bits of p. Herrmann and May [HM08] extends the attack with known

bits which are not in consecutive blocks. Maurer [Mau95] constructed a factor-

ization algorithm with the strong oracle that can answer arbitrary questions for

Yes/No. May and Ritzenhofen [MR09] introduced implicit hints for the prime fac-

tor and proposed implicit factoring algorithms where the work has been followed

by [SM09a, SM10, FMR10, SM11, TK14a, LPZ+15]. Not only the partial informa-

tion of the secret primes, attacks on RSA with the partial information of d have

also been studied [BDF98, BM03, EJMdW05, Aon09, SSM10, JL12, TK14d]. Other

attacks on RSA are summarized in [Cop97, Bon99, NS01, May03, May10].

1.1.3 Coppersmith’s Methods – Tools for Attacking RSA

In 1996, Coppersmith [Cop96b, Cop96a] introduced elegant techniques to solve uni-

variate modular equations with small solutions or bivariate integer equations with

small solutions in polynomial time by using the LLL lattice basis reduction algo-

rithm [LLL82]. Although there are no rigorous proofs, several evidences [AASW12,

Kun12, CHHS16] for the optimality of the methods have been claimed. In short,

to solve modular/integer equations, the methods first construct lattices that contain

algebraic structures of the polynomials. Since the short lattice vectors in the lattices

contain secret information of the small solutions, apply the LLL reduction and recover

the short vectors. In the original papers [Cop96b, Cop96a], Coppersmith mentioned

the algorithms for solving univariate modular equations and bivariate integer equa-

tions, however, the methods can be extended to equations with more variables under

reasonable assumptions. Although the original methods are hard to apply to equa-

tions with more variables, simplified reformulations have been proposed. Howgrave-

Graham [How97] proposed a simpler reformulation of the modular equations solving

method whereas Coron [Cor04, Cor07] proposed simpler reformulations of the integer

equations solving method. Then the methods are applied to cryptanalyses, especially

for RSA, in numerous papers. Indeed, several results for RSA cryptanalyses which

are introduced in Section 1.1.2 utilized the methods. Until recently, the cryptanalytic

results based on Coppersmith’s methods have theoretical flavor, however, Bernstein

et al. [BCC+13] first applied the methods to the realistic cryptanalysis.

However, it is hard task to construct optimal attacks on RSA by using Copper-

smith’s methods. There are two main difficulties for constructing nice attacks. The
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first difficulty is how to formulate attack scenarios as modular/integer equations. For

the same attack scenario, we can formulate it as several ways by using modular equa-

tions or integer equations. In general, we do not know optimal formulations before

we construct concrete attack algorithms. The second difficulty, which is the main

bottleneck of algorithm constructions via Coppersmith’s method, is how to construct

lattices to solve modular/integer equations. The qualities of attack algorithms de-

pend on underlying lattices. In other words, if we can construct appropriate lattices

which contain full algebraic structures of the polynomials, we can construct the best

attack. However, an optimal lattice construction methodology is not known. Hence,

we should construct each algorithm in an ad hoc manner.

Jochemsz and May [JM06] proposed one solution for resolving the above difficulties.

They proposed a general strategy for lattice constructions to solve both modular

equations and integer equations. The method is applicable to any equations and

offers to some extent nice algorithms. Indeed, there are no integer equations solving

algorithms that are better than ones based on the Jochemsz-May strategy.

However, the strategy cannot resolve the above difficulties completely. Lattice con-

structions for the modular method are simpler than those for the integer method

in general. Thus far, in the context of RSA cryptanalyses based on Coppersmith’s

methods, most attacks are based on the modular method due to its simplicity. How-

ever, once the integer method is applied, better attacks may be obtained. Although

attacks that solve modular equations based on the Jochemsz-May strategy are also

constructed by solving integer equations and reverse does not hold in general, there

are several attacks that have been analyzed only with the modular method. For ex-

ample, Ernst et al.’s partial key exposure attacks on RSA [EJMdW05] utilized the

integer method and no attacks with the same quality have been constructed based on

the modular method.

Moreover, the bottleneck of the Jochemsz-May strategy is that there are several

modular equations solving algorithms that are better than ones based on the strat-

egy. Due to its generality, the strategy does not capture specific algebraic structures

of underlying polynomials. If one exploits useful algebraic structures, then better al-

gorithms can be constructed. For example, in the context of Boneh and Durfee’s small

secret exponent attack on RSA [BD00], small d < N0.284 discloses the factorization

of N based on the Jochemsz-May strategy. However, Boneh and Durfee showed that

small d < N0.292 discloses the factorization of N by exploiting more useful algebraic

structures.
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1.2 Our Contributions

In this paper, we carefully analyze formulation of attack scenarios and lattice con-

structions. Then, we obtain several improved results in the context of the security

evaluation of RSA. More concretely, the spirits of our improvements owe to the fol-

lowing two approaches:

• solving integer equations based on the Jochemsz-May strategy,

• solving modular equations based on better lattice constructions than the

Jochemsz-May strategy by exploiting useful algebraic structures.

Chapter 3: We study solving a specific modular equation called the small in-

verse problem; given two integers (N, e) then solving a bivariate modular equation

x(N + y) ≡ 1 (mod e). The small inverse problem was introduced by Boneh and

Durfee [BD00] in the context of the small secret exponent attack on RSA; the attack

on RSA for small d. Thus far, more general formulation of the small inverse problem

has been analyzed by Weger [dW02], Sarkar, Maitra, and Sarkar [SMS08], Kunihiro,

Shinohara, and Izu [KSI14]. Concretely, Boneh and Durfee only studied the case

when the absolute value of the solution of y is bounded above by N1/2, however, the

follow-up papers studied arbitrary sizes.

In this paper, we first show that the results of Sarkar et al. and Kunihiro et al. are

not valid. Then, we propose an improved algorithm to solve the general version of the

small inverse problem. The improved result owes to our better lattice construction.

As a result, by using the algorithm, we propose an improved small secret exponent

attack on the Multi-Prime RSA, which has a public modulus N = p1 · · · pk, with small

prime differences; p1 < · · · < pk and pk − p1 < Nγ for 0 < γ ≤ 1/k.

(The results appeared in the international conference ICISC 2014 [TK14c] and the

international journal IEICE Transactions [TK17a]. )

Chapter 4: We study the partial key exposure attacks on CRT-RSA; attacks on

CRT-RSA when some portions of the most/least significant bits of CRT-exponents

dp or/and dq are exposed to attackers. Blömer and May [BM03] proposed attacks

with the most/least significant bits of dp or dq where dp, dq ≈ N1/2. Given the

most significant bits of dp, the attack works for e < N1/4 whereas given the least

significant bits of dp, the attack works for extremely small e = poly(logN). Sarkar

and Maitra [SM09b] proposed attacks with the most significant bits of dp and dq. As

opposed to Blömer and May’s attacks, although Sarkar and Maitra used more partial
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information than Blömer and May, their attack does not work for dp, dq ≈ N1/2.

Lu, Zhang, and Lin [LZL14] proposed improved attacks of Blömer and May with the

least significant bits of dp or dq. Lu et al.’s attack works for e < N3/8. We note

that Blömer and May’s attacks and Lu et al.’s attacks used Coppersmith’s method

to solve modular equations whereas Sarkar and Maitra’s attack used Coppersmith’s

method to solve integer equations.

In this paper, we use Coppersmith’s method to solve integer equations and improve

Blömer and May’s attacks and Lu et al.’s attacks. As opposed to previous results,

the interesting feature of our results is that attack conditions do not depend on the

position of exposed bits. Then, we propose the first partial key exposure attack on

CRT-RSA for e < N3/8 with the exposed most significant bits. We claim that our

attack is better than Lu et al.’s attack with the exposed least significant bits; our

attack works with less exposed bits than Lu et al. We also improve Sarkar and

Maitra’s attack with detailed analyses where our improved attack works for e < N

and dp, dq ≈ N1/2.

(The results appeared in the international conference ACNS 2015 [TK15] and ISC

2016 [TK16b]. )

Chapter 5: Thus far, partial key exposure attacks on RSA have been intensively

studied using lattice based Coppersmith’s methods. In the context, attackers are

given partial information of a secret exponent and prime factors of (Multi-Prime)

RSA where the partial information is exposed in various ways. Although these attack

scenarios are worth studying, there are several known attacks whose constructions

have similar flavor. In this paper, we try to formulate general attack scenarios to

capture several existing ones and propose attacks for the scenarios. Our attacks

contain all the state-of-the-art partial key exposure attacks, e.g., due to Ernst et al.

(Eurocrypt’05) and Takayasu-Kunihiro (SAC’14, ICISC’14), as special cases. As a

result, our attacks offer better results than previous best attacks in some special cases,

e.g., Sarkar-Maitra’s partial key exposure attacks on RSA with the most significant

bits of a prime factor (ICISC’08) and Hinek’s partial key exposure attacks on Multi-

Prime RSA (J. Math. Cryptology ’08). We claim that our contribution is not only

generalizations or improvements of the existing results. Since our attacks capture

general exposure scenarios, the results can be used as a tool kit; the security of some

future variants of RSA can be examined without any knowledge of Coppersmith’s

methods.

(The results will appear in the international conference CT-RSA 2017 [TK17b]. )
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Chapter 6: We study the security of Takagi’s RSA [Tak98] and the prime power

RSA. Both variants have the moduli N = prq where r is a fixed constant and p, q are

the same bit-size. The public/secret exponent, i.e., e and d, of Takagi’s RSA satisfies

ed = 1 (mod (p − 1)(q − 1)) whereas that of the prime power RSA satisfies ed = 1

(mod pr−1(p− 1)(q− 1)). For r = 1, these variants are the same as the original RSA.

Thus far, the small secret exponent attack; the attack for small d, and the partial

key exposure attacks; attacks when some portions of the most/least significant bits

of d are exposed to attackers, on these variants have been studied in several papers.

Itoh, Kunihiro, and Kurosawa [IKK09] proposed the small secret exponent attack

on Takagi’s RSA. Huang et al. [HHX+14] proposed the partial key exposure attacks

on Takagi’s RSA. Both attacks on the prime power RSA have studied in several

papers [Tak98, May04a, Sar14, LZPL15, Sar16]. However, Itoh et al.’s attack is the

only result that is the same as the best attack on the standard RSA for r = 1.

Furthermore, the spirit of lattice constructions for these attacks are hard to follow

due to the complicated moduli N = prq and key generation.
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In this paper, we propose generic transformations that convert the lattices to attack

the standard RSA to lattices to attack Takagi’s RSA and the prime power RSA. Hence,

our lattice constructions are relatively easy to understand. Moreover, our proposed

transformations enable us to construct improved attacks on the variants. Indeed,

we propose an improved small secret exponent attack on the prime power RSA and

improved partial key exposure attacks on both variants. Although not all our attacks

are the same as the best attacks on the standard RSA for r = 1, however, we claim

that our results are to some extent optimal from our simple lattice constructions.

(The results appeared in the international conference PKC 2016 [TK16a]. )
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Chapter 2

Preliminaries

In the beginning of this section, we introduce the RSA cryptosystem. In the re-

maining of this section, we introduce tools to solve modular equations and integer

equations; lattices and the LLL algorithm, the overview of Coppersmith’s method,

and the Jochemsz-May strategy.

2.1 RSA

In this section, we introduce the RSA cryptosystem and its CRT variants.

In 1978, Rivest, Shamir, and Adleman [RSA78] proposed RSA cryptosystems. In

this section, we introduce the RSA encryption scheme. Although there is the RSA

signature scheme, we omit the definition in this paper.

The original RSA encryption scheme consists of the following three algorithms (Gen,

Enc, Dec):

• Gen(λ): On input the security parameter λ, samples two distinct primes p and

q with the same bit-size and computes

N = pq.

Next, samples e and d where

ed = 1 (mod (p− 1)(q − 1)).

Then, Gen(λ) outputs the public key PK and the secret key SK where

PK := (N, e) and SK := (p, q, d).

The message space is defined as M := Z∗
N .
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• Enc(PK,M): On input the message M ∈ M and the public key (N, e), outputs

the ciphertext C where

C := Me (mod N).

• Dec(PK, SK, C): On input the chiphertext C and public key N and the secret

key d, outputs the message M by computing

M = Cd (mod N).

Notice that the decryption algorithm outputs the correct message M from Fermat’s

little theorem. If the public RSA modulus N is factorized, then whole the decryption

key including d can be computed efficiently. Hence, the factorization of N should be

computationally hard.

For the fast decryption, the Chinese Remainder Theorem is often used. We call the

scheme, the CRT-RSA encryption scheme. The CRT-RSA encryption scheme consists

of the following three algorithms (Gen, Enc, Dec):

• Gen(λ): On input the security parameter λ, samples two distinct primes p and

q with the same bit-size and computes

N = pq and qInv := q−1 (mod p).

Next, samples e and d, where

ed = 1 (mod (p− 1)(q − 1)),

then computes dp and dq, where

dp := d (mod p− 1) and dq := d (mod q − 1).

Then, Gen(λ) outputs the public key PK and the secret key SK, where

PK := (N, e) and SK := (p, q, d, dp, dq, qInv).

The message space is defined as M := Z∗
N .

• Enc(PK,M): On input the message M ∈ M and the public key (N, e), outputs

the ciphertext C, where

C := Me (mod N).

• Dec(PK, SK, C): On input the chiphertext C and public key N and the secret

key (p, q, dp, dq, qInv), computes Mp and Mq as

Mp := Cdp (mod p) and Mq := Cdq (mod q).
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Next, computes M ′ as

M ′ := qInv · (Mp −Mq) (mod p),

then outputs M by computing

M = Mq +M ′ · q.

The main computational cost of the decryption is the modular exponentiation. The

operation in the standard RSA is performed (mod N) whereas that in the CRT-RSA

is performed (mod p) and (mod q). Hence, the decryption becomes about four times

faster. In Chapter 4, we define dp and dq as

edp := 1 (mod p− 1) and edq := 1 (mod q − 1),

where the definitions are essentially the same.

2.2 Lattices

In this section, we define an integer lattice in Section 2.2.1 and explain a basic property

of the LLL lattice basis reduction algorithm in Section 2.2.2.

2.2.1 Definition

Let b1, . . . , bn ∈ Zn′
be linearly independent n′-dimensional vectors. All vectors are

row representations. The lattice L(b1, . . . , bn) spanned by the basis vectors b1, . . . , bn

is defined as

L(b1, . . . , bn) =


n∑

j=1

cjbj : cj ∈ Z for all j = 1, 2, . . . , n

 .

We also use matrix representations B ∈ Zn×n′
for the bases where each row corre-

sponds to a basis vector b1, . . . , bn. Then, a lattice spanned by the basis matrix B is

defined as:

L(B) = {cB : c ∈ Zn}.

We call n a rank of the lattice and n′ a dimension of the lattice. We call the lattice

full-rank when n = n′.

For the same lattice L(B), the representation of its basis is not unique. Let U ∈
Zn×n be an arbitrary unimodular matrix, i.e., an integer matrix with | det(U)| = 1.
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Then, UB is also a basis for L(B). We can verify the fact that any lattice points cB

in L(B) are equal to lattice points c′UB in L(UB) where c′ = cU−1.

Let P(B) be a fundamental parallelpiped of the lattice L(B) defined as:

P(B) = {cB : 0 ≤ cj < 1 for all j = 1, 2, . . . , n}.

Then we define a determinant of the lattice det(L(B)) as n-dimensional volume of

the fundamental parallelpiped. The value is computed as:

det(L(B)) =
√
det(BBT ),

where BT is a traspose of B. By definition, the determinant of a full-rank lattice is

computed as det(L(B)) = | det(B)|. Notice that the determinant is invariant with

respect to the representation of a lattice basis.

In cryptographic research, lattices are used in various ways such as crypto-

graphic designs [AD97, GGH97, HPS98, GPV08, Pei09, Reg09, MP12], security

proofs [Sho02, FOPS04, KOS10], and cryptanalyses. See [NS01] for more infor-

mation. In recent years, lattices are considered as one of the main cryptographic

tools in cryptographic research. In the context of cryptographic designs, lattice-

based schemes are believed as post-quantum ones and the security is guaranteed

by the powerful worst-case average-case reduction. Furthermore, thus far, nu-

merous advanced cryptosystems have been constructed such as the fully homo-

morphic encryption [Gen09, Bra12, GSW13, BGV14, BV14a, BV14b], the func-

tional encryption [ABB10, AFV11, ACM12, CHKP12, Xag13, BGG+14, GV15,

GVW15a, GVW15b, AFL16, Yam16, ZCZ16], and the cryptographic Multilinear

map [GGH13a, LSS14, GGH15].

2.2.2 LLL Reduction

One of the main cryptographic applications of lattices is the cryptanalysis. In gen-

eral, cryptanalytic problems are reduced to finding short vectors in integer lattices.

Hence, a number of algorithms to find the exact shortest lattice vectors have been

proposed, e.g., sieve algorithms [AKS01, NV08, MV10b, ADRS15, Laa15, BDGL16],

enumeration [Kan83, FP85, Hel85, HS07, GNR10, MW15, Wal15], random sampling

reduction [Sch03, FK15], the voronoi cell computation [MV10a], and more. However,

since finding the exact shortest vectors is NP-hard problem under the randomized

reduction [Ajt98], these algorithms run in at least exponential time in the lattice

dimension.
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In 1982, Lenstra, Lenstra, and Lovász [LLL82] proposed a polynomial time algo-

rithm to find short lattice vectors, called the LLL algorithm. Although the LLL

algorithm can find only 2O(n) approximate shortest lattice vectors in the worst case,

it is sufficient for our purpose.

Propostion 1 (LLL algorithm [LLL82, May03]). Given a lattice basis matrix B ∈
Zn×n′

, the LLL algorithm finds linearly independent vectors b′1 and b′2 in a lattice

L(B) where Euclidean norms of the vectors are bounded above by

∥b′1∥ ≤ 2(n−1)/4(det(L(B)))1/n and ∥b′2∥ ≤ 2n/2(det(L(B)))1/(n−1).

The running time is polynomial time in n, n′, and the maximum input length of B.

Thus far, faster variants of the LLL reduction [Sch88, KS01, NS05, Sch06, NS09,

NSV11, SMSV14, NS16] have been proposed. Furthermore, there exist several

blockwise generalizations of the LLL algorithm where they find 2O(n log log n/ logn)

approximate shortest lattice vectors in polynomial time, e.g., the BKZ reduc-

tion [Sch87, SE94, CN11, HPS11, AWHT16] and the slide reduction [GN08, Ngu10],

and more [GHKN06, MW16]. However, in this paper, we use the LLL reduction that

is sufficient for Coppersmith’s methods.

2.3 Coppersmith’s Methods

In this section, we introduce Coppersmith’s methods for solving modular/integer

equations with small solutions [Cop96b, Cop96a]. Instead of the original Copper-

smith method, we introduce Howgrave-Graham’s reformulation to solve modular

equations [How97] in Section 2.3.1 and Coron’s reformulation to solve integer equa-

tions [Cor04] in Section 2.3.2. Although Coron’s method [Cor04] is less efficient than

the original Coppersmith method [Cop96a] and Coron’s other method [Cor07], it is

simpler to analyze than the other methods.

For a k-variate polynomial h(x1, . . . , xk) =
∑

hi1,...,ikx
i1
1 · · ·xik

k , we define norms of

a polynomial as

∥h(x1, . . . , xk)∥ =
√∑

h2
i1,...,ik

and ∥h(x1, . . . , xk)∥∞ = max
i1,...,ik

|hi1,...,ik |.

2.3.1 Modular Equations Solving Method

At first, we show a modular method since an integer method makes use of the mod-

ular method. Coppersmith’s method can find solutions (x̃1, x̃2) of a bivariate mod-
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ular equation h(x1, x2) = 0 mod e when |x̃1| < X1, |x̃2| < X2, and X1X2 is rea-

sonably smaller than e. Let m be a positive integer. We construct n polynomials

h1(x1, x2), . . . , hn(x1, x2) that have the root (x̃1, x̃2) modulo em. Then, we construct

a matrix B whose rows consist of coefficients of h1(x1X1, x2X2), . . . , hn(x1X1, x2X2).

Applying the LLL algorithm to B and we obtain two short vectors b′1 and b′2, and

their corresponding polynomials h′(x1, x2) and h′
2(x1, x2). If norms of these polyno-

mials are small, they have the root (x̃1, x̃2) over the integers. The fact comes from

the following lemma.

Lemma 1 (Howgrave-Graham’s Lemma [How97]). Let h(x1, . . . , xk) ∈ Z[x1, . . . , xk]

be a polynomial over the integers that consists of at most n monomials. Let

X1, . . . , Xk, and R be positive integers. If the polynomial h(x1, . . . , xk) satisfies the

following two conditions:

1. h(x̃1, . . . , x̃k) = 0 mod R, where |x̃1| < X1, . . . , |x̃k| < Xk,

2. ∥h(x1X1, . . . , xkXk)∥ < R/
√
n.

Then, h(x̃1, . . . , x̃k) = 0 holds over the integers.

Therefore, if h′(x1, x2) and h′
2(x1, x2) satisfy Howgrave-Graham’s lemma, we can

compute Gröbner bases or a resultant of them and easily recover (x̃1, x̃2).

If the basis matrix is triangular, the volume of the lattice vol(L(B)) can be com-

puted as a product of all diagonals. Therefore, when we add an extra polynomial,

the polynomial is helpful when the absolute value of the diagonal is less than Wm.

Although May [May10] first noted the definition, Takayasu and Kunihiro [TK14d]

considered more general definition of helpful polynomials.

Definition 1 (Helpful Polynomials [TK14d]). To solve equations with a modulus W ,

consider a basis matrix B. We add a new shift-polynomial and construct a new basis

matrix B+. We call the polynomial a helpful polynomial, provided that

det(B+)

det(B)
≤ Wm.

Conversely, if the inequality does not hold, we call the polynomial an unhelpful poly-

nomial.

To maximize the solvable root bounds, a simple approach is to use as many helpful

polynomials as possible and as few unhelpful polynomials as possible as long as basis

matrices are triangular.

We should note that the methods need heuristic argument. There are no assurance

if new polynomials obtained by outputs of the LLL algorithm are algebraically inde-
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pendent. In this paper, we assume that these polynomials are always algebraically

independent and resultants of polynomials will not vanish since there have been few

negative reports that contradict the assumption.

2.3.2 Integer Equations Solving Method

Next, we show an integer method. Coppersmith’s method can find solutions

(x̃1, x̃2, x̃3) of a trivariate equation h(x1, x2, x3) = 0 over the integers when

|x̃1| < X1, |x̃2| < X2, |x̃3| < X3, and X1X2X3 is reasonably smaller than

∥h(x1X1, x2X2, x3X3)∥∞. Although we omit details of the method, we set a rea-

sonable integer R and remaining procedures are almost the same as modular case by

solving a modular equation h(x1, x2, x3) = 0 mod R. If we use the LLL algorithm

and obtain small polynomials h′
1(x1, x2, x3) and h′

2(x1, x2, x3) that satisfy Howgrave-

Graham’s Lemma, they have the same root as h(x1, x2, x3) over the integers. Fur-

thermore, the following Hinek-Stinson’s Lemma showed that they are algebraically

independent of h(x1, x2, x3).

Lemma 2 (Hinek-Stinson’s Lemma [HS06]). Let f(x1, . . . , xk) and g(x1, . . . , xk)

be two non-zero polynomials over Z of maximum degree δ separately in each vari-

able such that g(x1, . . . , xk) is a multiple of f(x1, . . . , xk) in Z[x1, . . . , xk]. Assume

that f(0, . . . , 0) ̸= 0 and g(x1, . . . , xk) is divisible by a non-zero integer r such that

gcd(f(0, . . . , 0), r) = 1. Then g(x1, . . . , xk) is divisible by r · f(x1, . . . , xk) and

∥g(x1, . . . , xk)∥ ≥ 2−(δ+1)k+1 · |r| · ∥f(x1, . . . , xk)∥∞.

More concretely, if norms of h′
1(x1, x2, x3) and h′

2(x1, x2, x3) are small enough to

contradict the inequality of Hinek-Stinson’s Lemma, they are algebraically indepen-

dent of h(x1, x2, x3). See [Cor04] for the detail.

Since the integer method is hard to understand, here, we summarize concrete lattice

constructions to solve integer equations based on the Jochemsz-May strategy [JM06].

To the best of our knowledge, there are no algorithms to solve integer equations that

are better than the algorithms based on the Jochemsz-May strategy. Let lj denote

the largest exponent of xj in the polynomial h(x1, . . . , xk) =
∑

hi1,...,ikx
i1
1 · · ·xik

k .

We set an (possibly large) integer W such that W ≤ ∥h(x1, . . . , xk)∥∞. Next, we

set an integer R := WX
l1(m−1)+t
1

∏k
u=2 X

lu(m−1)
j with some positive integers m

and t = O(m) such that gcd(R, h0,...,0) = 1. We compute c = h−1
0,...,0 mod R and
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h′(x1, . . . , xk) := c · h(x1, . . . , xk) mod R. We define shift-polynomials g and g′ as

g : xi1
1 · · ·xik

k · h(x1, . . . , xk) ·X l1(m−1)+t−i1
1

k∏
u=2

X
lu(m−1)−ij
j for xi1

1 · · ·xik
k ∈ S,

g′ : xi1
1 · · ·xik

k ·R for xi1
1 · · ·xik

k ∈ M\S,

for sets of monomials

S :=
∪

0≤j≤t

{xi1+j
1 · · ·xik

k |xi1
1 · · ·xik

k is a monomial of h(x1, . . . , xk)
m−1},

M :={monomials of xi1
1 · · ·xik

k · h(x1, . . . , xk) for x
i1
1 · · ·xik

k ∈ S}.

All these shift-polynomials g and g′ modulo R have the roots (x̃1, . . . , x̃k) that are the

same as h(x1, . . . , xk). We construct a lattice with coefficients of g(x1X1, . . . , xkXk)

and g′(x1X1, . . . , xkXk) as the bases. The shift-polynomials generate a triangular

basis matrix. Ignoring low order terms of m, LLL outputs short vectors that satisfy

Howgrave-Graham’s lemma when

k∏
j=1

X
sj
j < W |S| for sj =

∑
x
i1
1 ···xik

k ∈M\S

ij .

When the condition holds, we can find all small roots. See [JM06] for the detail.
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Chapter 3

General Bounds for the Small Inverse

Problem

3.1 Introduction

3.1.1 Background

The Small Inverse Problem. In [BD00], Boneh and Durfee introduced the small

inverse problem (SIP). Given two distinct large integers N and e, the goal of the SIP

is finding x̃ and ỹ such that x̃ is an inverse of N + ỹ (mod e) where x̃ and ỹ are

small, i.e., absolute values of x̃ and ỹ are bounded above by X := Nδ and Y := Nβ ,

respectively. The SIP can be formulated as the following modular equation,

x(N + y) ≡ 1 (mod e)

whose solution is (x, y) = (x̃, ỹ). In this paper, we call the problem the (δ, β)-SIP.

One of the typical cryptographic applications of the SIP is the small secret exponent

attack on RSA. Recall RSA key generation

ed ≡ 1 (mod Φ(N)),

where Φ(N) = (p− 1)(q − 1) = N − (p+ q) + 1. We can rewrite the equation as

ed+ ℓ(N − (p+ q) + 1) = 1

with some integer ℓ < Nδ. If we can solve the (δ, 1/2)-SIP, i.e., x(N+y) ≡ 1 (mod e),

whose solution is (x, y) = (ℓ,−(p+q)+1), we can factor the RSA modulus N . Notice

that | − (p + q) + 1| is bounded above by N1/2 within a constant factor since p and
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q are the same bit-size. When the public exponent e is full size, the size of the secret

exponent d is ≈ ℓ < Nδ. Boneh and Durfee [BD00] proposed lattice-based polynomial

time algorithms to solve the (δ, 1/2)-SIP. At first, they proposed an algorithm that

works when

δ <
7− 2

√
7

6
= 0.28474 · · · . (3.1)

This result improved the previous bound δ < 1/4 = 0.25 proposed by Wiener [Wie90].

In the same work, Boneh and Durfee further improved the bound to

δ < 1− 1√
2
= 0.29289 · · · . (3.2)

To obtain the stronger bound (3.2), they extracted sublattices from the previous

lattices that provided the weaker bound (3.1). However, the analysis for computing

the determinant of the sublattice is involved since the basis matrix is not triangular.

Boneh and Durfee [BD00] claimed that their bound may not be optimal. They

estimated that the bound should be improved to δ < 1/2. Although several pa-

pers [BM01, HM10, KSI14] have followed the work, no results that improved the

Boneh-Durfee stronger bound (3.2) have been reported and Aono et al. [AASW12]

showed some evidence of the optimality of the attack. Blömer and May [BM01] con-

sidered different lattice constructions to solve the (δ, 1/2)-SIP. Their algorithm works

when

δ <

√
6− 1

5
= 0.28989 · · · . (3.3)

Although the bound (3.3) is inferior to the Boneh-Durfee stronger bound (3.2), it

is superior to the weaker bound (3.1). Moreover, dimensions of the Blömer-May

lattices are smaller than those of the Boneh-Durfee lattices. However, the analysis

for computing the determinant of the lattice is still involved since the basis matrix is

not triangular.

Herrmann and May [HM10] revisited the Boneh-Durfee algorithms [BD00]. They

used a technique called unravelled linearization [HM09] and analyzed the determi-

nant of the lattice to obtain the stronger bound (3.2). They used the linearization

z = −1 + xy and transformed the basis matrices that were not triangular to be

triangular. The proof is very simple compared with Boneh and Durfee’s original

proof [BD00]. Kunihiro, Shinohara, and Izu [KSI14] followed the work and provided

a simpler proof for the Blömer-May algorithm [BM01] by using unravelled lineariza-

tion. Hence, unravelled linearization is a key technique to maximize solvable root

bounds of the SIP with simple analyses.
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General Bounds for the SIP. The SIP is an important problem in the context

of RSA cryptanalyses and has been analyzed in several papers. Then, several vari-

ants of the problem have been considered, small secret exponent attacks on variants of

RSA [DN00, IKK08], partial key exposure attacks [BM03, EJMdW05, Aon09, SSM10,

TK14d], multiple small secret exponent attacks [Aon13, TK14d], and more. To ana-

lyze the problem in detail, mathematical generalizations of the SIP [Kun11, Kun12]

have also been considered. One of the well considered generalizations is the (δ, β)-SIP

for an arbitrary 0 < β < 1, not only β = 1/2. To study the problem, generalizations

of lattices for the (δ, 1/2)-SIP [BD00, BM01] have been analyzed.

Weger [dW02] studied small secret exponent attacks on RSA for a small difference

of prime factors, e.g., |p− q| < Nγ with γ ≤ 1/2. In this case, they revealed that the

RSA modulus can be factorized when (δ, 2γ − 1/2)-SIP is solved. They extended the

Boneh-Durfee lattice constructions and proposed algorithms to solve the (δ, β)-SIP

for an arbitrary β. Their algorithms solve the (δ, β)-SIP when

δ < 1−
√
β for

1

4
≤ β < 1, (3.4)

δ < 1− 1

3

(
2
√
β(β + 3)− β

)
. (3.5)

The first bound (3.4) can be obtained by lattice constructions to obtain the Boneh-

Durfee stronger bound (3.2) whereas the second bound (3.5) can be obtained by

lattice constructions to obtain the Boneh-Durfee weaker bound (3.1). Weger [dW02]

also extended Wiener’s algorithm [Wie90] for the attack. The algorithm works when

δ <
3

4
− β. (3.6)

Although the bound (3.4) is the best among the three bounds, the algorithm works

only when 1/4 ≤ β < 1. The bound (3.5) is the better when 0 < β < 1/8 whereas

the bound (3.6) is the better when 1/8 ≤ β < 1/4.

Sarkar et al. [SMS08] studied small secret exponent attacks on RSA for the case

when attackers know the most significant bits of a prime factor p. They solved the

(δ, β)-SIP for an arbitrary β for the attack. In addition to Weger’s results [dW02],

Sarkar et al. extended the Blömer-May lattice constructions for the bound (3.3).

Sarkar et al.’s algorithm solves the (δ, β)-SIP when

δ <
2

5

(√
4β2 − β + 1− 3β + 1

)
. (3.7)

The bound is superior to Weger’s bound (3.5) and (3.6) when 3/35 ≤ β < 1/4.
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Kunihiro, Shinohara, and Izu [KSI14] considered a broader class of lattices which

is not straightforward generalizations of existing lattices for the (δ, 1/2)-SIP [BD00,

BM01]. To solve the (δ, β)-SIP for an arbitrary β, Kunihiro et al. analyzed hybrid

lattice constructions that included the Boneh-Durfee lattices for the stronger bound

(3.2) and the Blömer-May lattices for the bound (3.3). To be precise, Kunihiro et

al. considered a broader class of lattices, and the previous two lattices were special

cases of the class. Therefore, there may be chances to improve the previous result

by making use of the structures of two lattices, simultaneously. However, their result

becomes the same as Weger’s bound (3.4) for 1/4 ≤ β < 1 and Sarkar et al.’s bound

(3.7) for 0 < β < 1/4.

Small Secret Exponent Attacks on Multi-Prime RSA with Small Prime

Differences. Multi-Prime RSA is a variant of RSA whose public modulus N =∏k
j=1 pj is a product of k distinct primes p1, p2, . . . , pk. The bit length of all prime

factors are the same. Key generations of Multi-Prime RSA are the same as that of

standard RSA,

ed = 1 (mod Φ(N)),

where Φ(N) =
∏k

j=1(pj − 1).

Multi-Prime RSA becomes efficient for its low cost decryption for a large k since

the main computation costs are modular exponentiations with logN/k bits moduli

when Chinese Remaindering is used. Moreover, most algebraic attacks become less

efficient for a larger k such as small secret exponent attacks [Wie90, BD00] and partial

key exposure attacks [BM03, EJMdW05, TK14d]. As the standard RSA (for k = 2),

Multi-Prime RSA becomes insecure when extremely small secret exponents d < N δ

are used. Ciet et al. [CKLQ02] extended Wiener’s [Wie90] and Boneh and Durfee’s

attacks [BD00]. Extensions of Wiener’s attacks work when δ < 1/2k. To extend

Boneh and Durfee’s attacks, they solved the (δ, 1 − 1/k)-SIP. The algorithms work

when δ < 1−
√

1− 1/k. Both bounds become the same as the previous results [Wie90,

BD00] for k = 2.

Zhang and Takagi [ZT13] analyzed small secret exponent attacks on Multi-Prime

RSA with small prime differences*1. Assume p1 > p2 > · · · > pk without loss of

generality. Zhang and Takagi analyzed the case when |p1 − pk| < Nγ with 0 < γ ≤
1/k and revealed that Multi-Prime RSA becomes insecure when we can solve the

(δ, γ + 1 − 2/k)-SIP. After that the same authors [ZT14] gave an improved analysis.

*1 See also Bahig et al.’s work [BBN12]. They extended Weger’s attacks that are based on

Wiener’s work [Wie90]. The attacks work when δ < 1/k − γ/2.



26 Chapter 3 General Bounds for the Small Inverse Problem

!

"#$!

"%$! &'()!

Fig. 3.1. The comparison of the recoverable sizes of δ for 0 ≤ β ≤ 1/4. Our algorithm

works in the left below of the solid line.

Multi-Prime RSA becomes insecure when we can solve the (δ, 2γ + 1 − 3/k)-SIP.

When γ = 1/k, the results [ZT13, ZT14] becomes the same as that of Ciet et al.’s

results [CKLQ02] that solves the (δ, 1−1/k)-SIP. In addition, the improved result for

the standard RSA setting, i.e., for k = 2, becomes the same as Weger’s attack [dW02]

that solves the (δ, 2γ − 1/2)-SIP.

3.1.2 Our Contributions

In this paper, we study the (δ, β)-SIP for an arbitrary β. At first, we summarize

previous lattice constructions [BD00, BM01, dW02, SMS08, KSI14] to obtain the

bounds (3.4) to (3.7). We reveal that a generalization of the Blömer-May lattices

to obtain the bound (3.7) is not valid for β < 1/4. Therefore, although Sarkar et

al. [SMS08] and Kunihiro et al. [KSI14] claimed that the bound (3.7) is the best when

3/35 < β < 1/4, the results are incorrect. Among previous results, Weger’s bound

(3.5) and (3.6) is the best for 0 < β ≤ 1/8 and 1/8 < β < 1/4, respectively.

Next, we propose an improved algorithm to solve the (δ, β)-SIP for arbitrary β.
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Table 3.1. Numerical data of solvable δ for the (δ, β)-SIP.

β Ours (3.6) of [dW02] (3.5) of [dW02]

1/4 = 0.25 0.5 0.5 0.482408121

0.225 0.5255002 0.525 0.507109165

0.2 0.552146808 0.55 0.533333333

0.175 0.580217435 0.575 0.561398283

0.15 0.610102051 0.6 0.591742431

1/8 = 0.125 0.642374781 0.625 0.625

0.1 0.67793654 0.65 0.662149042

0.075 0.718337521 0.675 0.704843788

0.05 0.766666667 0.7 0.756325011

0.025 0.831074521 0.725 0.825

0 1 0.75 1

The spirit of our approach is the same as Kunihito et al. [KSI14]. We consider a

broader class of lattices that include Weger’s three lattices to obtain the bounds

(3.4)-(3.6) [dW02] for special cases. Therefore, there may be chances to improve the

previous results by making use of the structures of previous lattices, simultaneously.

Indeed, when 0 < β < 1/4, our algorithm works when

δ < 1− 2

3

(√
β(3 + 4β)− β

)
(3.8)

and the bound is superior to the previous bounds. This means that our lattice con-

structions make better use of algebraic structures of polynomials than previous anal-

yses to solve the (δ, β)-SIP [dW02]. As several previous works [HM10, KSI14, ZT14],

we analyze the determinant of lattices using unravelled linearization. Therefore, the

proof is rather simple.

Figure 3.1 compares recoverable sizes of δ between our algorithm and previous

ones [dW02, SMS08] to solve the (δ, β)-SIP for 0 ≤ β ≤ 1/4. Table 3.1 shows the

numerical data. When β = 1/4 and β = 0, our bound becomes the same as Weger’s

result δ < 0.5 and δ < 1, respectively. However, our algorithm is better than the two

results for 0 < β < 1/4.

As an application of our algorithm, we analyze small secret exponent attacks on

Multi-Prime RSA with small prime differences. It is clear that we can improve pre-

vious results since our algorithm to solve the (δ, β)-SIP is better than the algorithm

which was used in [ZT14].
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3.1.3 Roadmap

In Section 3.2, we define the (δ, β)-SIP and recall previous lattice constructions to

solve the (δ, β)-SIP. In Section 3.3, we propose our lattice constructions to solve the

(δ, β)-SIP for an arbitrary β. In Section 3.4, we analyze small secret exponent attacks

on Multi-Prime RSA with small prime differences.

3.2 Previous Lattice Constructions to Solve the (δ, β)-SIP

In Section 3.2.1, we formally define the (δ, β)-SIP and the common approach for

the lattice constructions. In Section 3.2.2, we explain the previous lattice construc-

tions [BD00, BM01, dW02, SMS08, HM10, KSI14]. The understanding of the latter

section enables readers to understand the spirit of our improvement.

3.2.1 Definition and Approach

In this section, we formally define the (δ, β)-SIP as follows.

Definition 2 (The (δ, β)-SIP). Given two distinct integers N and e with the same

bit-size and real numbers δ, β ∈ (0, 1), the goal of the the (δ, β)-SIP is finding integers

x̃ and ỹ that satisfy |x̃| < Nδ, |ỹ| < Nβ, and

x̃(N + ỹ) ≡ 1 (mod e).

In this paper, we also use X := N δ and Y := Nβ that denote upper bounds of

the absolute values of the solutions. Although we only consider the case when two

integers N and e are the same bit-size, it is easy to extend the following algorithms

to more general cases.

To solve the modular equation

f(x, y) = −1 + x(N + y) = 0 (mod e),

Boneh and Durfee [BD00] used two forms of shift-polynomials,

gx[i,u](x, y) := xi−ufu(x, y)em−u and gy[u,j](x, y) := yjfu(x, y)em−u.

Each polynomial gx[i,u](x, y) and gy[u,j](x, y) is called x-shifts and y-shifts, respectively.

When all indices i, u, and j are non-negative integers, both polynomials modulo em

have the same root (x̃, ỹ) as f(x, y), i.e., gx[i,u](x̃, ỹ) = 0 (mod em) and gy[u,j](x̃, ỹ) = 0
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(mod em). Let Ix and Iy denote sets of indices and B be the basis matrices that

consist of coefficients of shift-polynomials gx[i,u](x, y) with indices in Ix and gy[u,j](x, y)

with indices in Iy. The selection of shift-polynomials Ix and Iy is essential to maxi-

mize the solvable root bounds X and Y .

3.2.2 Previous Lattice Constructions

In the rest of this section, we summarize previous lattice constructions [BD00, BM01,

dW02, SMS08, HM10, KSI14] to solve the (δ, β)-SIP.

Weaker Boneh-Durfee Lattices. We introduce the Boneh-Durfee lattices [BD00]

to obtain the weaker bound (3.1); δ < (7 − 2
√
7)/6, and its generalization by

Weger [dW02] to obtain the bound (3.5); δ < 1
3 (β + 3 − 2

√
β(β + 3)). Boneh and

Durfee defined sets of indices as:

IwBD
x := {(i, u)|i = 0, 1, . . . ,m;u = 0, 1, . . . , i} ,

IwBD
y := {(u, j)|u = 0, 1, . . . ,m; j = 1, 2, . . . , ⌊ηm⌋} ,

with a parameter η ≥ 0. They constructed basis matrices B whose row vectors consist

of coefficients of gx[i,u](x, y) with indices in IwBD
x and gy[u,j](x, y) with indices in IwBD

y .

The matrices become triangular with diagonals

• XiY uem−u for gx[i,u](x, y) and

• XuY u+jem−u for gy[u,j](x, y).

Ignoring low order terms of m, the dimension and the determinant of the lattices are

computed as

n =

(
1

2
+ η

)
m2

and

det(B) = X( 1
3+

η
2 )m

3

Y ( 1
6+

η(1+η)
2 )m3

e(
1
3+

η
2 )m

3

,

respectively. The conditions for the (δ, β)-SIP to be solved, i.e., (det(B))1/n < em,

become

δ

(
1

3
+

η

2

)
+ β

(
1

6
+

η(1 + η)

2

)
+

(
1

3
+

η

2

)
<

1

2
+ η

which yields the bound

δ <
1− β + 3(1− β)η − 3βη2

2 + 3η
.
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To maximize the right hand side of the inequality, we set the parameter

η =
−2β +

√
β(β + 3)

3β

and the condition becomes the inequality (3.5);

δ <
1

3

(
β + 3− 2

√
β(β + 3)

)
.

Stronger Boneh-Durfee Lattices. To improve the bound, Boneh and Dur-

fee [BD00] extracted sublattices from the previous weaker Boneh-Durfee lattices

and constructed an algorithm that solves the (δ, 1/2)-SIP when the condition (3.2);

δ < 1 − 1/
√
2, holds. Weger [dW02] generalized the lattice constructions and con-

structed an algorithm that solves the (δ, β)-SIP when the condition (3.4); δ < 1−
√
β,

holds.

Boneh and Durfee redefined sets of indices as:

IsBD
x := {(i, u)|i = 0, 1, . . . ,m;u = 0, 1, . . . , i} ,

IsBD
y := {(u, j)|u = 0, 1, . . . ,m; j = 1, 2, . . . , ⌊τu⌋} ,

with a parameter 0 ≤ τ ≤ 1. They selected shift-polynomials gx[i,u](x, y) with indices

in IsBD
x and gy[u,j](x, y) with indices in IsBD

y . Although the basis matrices generated

by the polynomial selections are not triangular, Herrmann and May [HM10] showed

that the matrices can be transformed into triangular with a linearization

z = −1 + xy.

As the Boneh-Durfee weaker lattice, polynomials in IsBD
x generate a triangular matrix

with diagonals XiY uem−u. When the linearization z = −1 + xy is applied to the

polynomials, the matrix is still triangular with diagonals Xi−uZuem−u. Although

the matrix with extra polynomials in IsBD
y becomes non-triangular, the linearization

preserves the matrix to be triangular with diagonals Y jZuem−u. In short, existences

of monomials Xi−uZu for i = 0, 1, . . . ,m;u = 0, 1, . . . , i (that are equivalent to XiY u

for the same set of indices) enable the transformation. To summarize the discussion,

the basis matrices become triangular with diagonals

• Xi−uZuem−u for gx[i,u](x, y) and

• Y jZuem−u for gy[u,j](x, y).

Notice that the analysis requires a restriction τ ≤ 1. See [HM10] for the detailed

analysis.
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Ignoring low order terms of m, the dimension and the determinant of the lattices

are computed as

n =

(
1

2
+

τ

2

)
m2

and

det(B) = X
1
6m

3

Y
τ2

6 m3

Z( 1
6+

τ
3 )m

3

e(
1
3+

τ
6 )m

3

,

respectively. The conditions for the (δ, β)-SIP to be solved, i.e., (det(B))1/n < em,

becomes

δ · 1
6
+ β · τ

2

6
+ (δ + β)

(
1

6
+

τ

3

)
+

(
1

3
+

τ

6

)
<

1

2
+

τ

2

which yields the bound

δ <
1− β + 2(1− β)τ − βτ2

2 + 2τ
.

To maximize the right hand side of the inequality, we set the parameter

τ =

√
1

β
− 1

and the condition becomes the ineqality (3.4);

δ < 1−
√
β.

Although the bound is the best, the algorithm does not work for an arbitrary 0 <

β < 1. Since the restriction 0 ≤ τ =
√
1/β − 1 ≤ 1, the algorithm works only when

1/4 ≤ β ≤ 1.

Wiener Lattices. Weger [dW02] also considered the generalization of Wiener’s

algorithm [Wie90] and obtained the bound (3.6).*2 The bound can be obtained by

the special case of the stronger Boneh-Durfee lattice. We fix the parameter τ = 1 and

obtain the condition (3.6);

δ <
3

4
− β.

By the definition, the Wiener lattice is the special case of the stronger Boneh-Durfee

lattices.

Blömer-May Lattices. Blömer and May [BM01] extracted other sublattices from

the weaker Boneh-Durfee lattices and constructed an algorithm that solves the

*2 In Boneh and Durfee’s work [BD00], they obtain the Wiener’s bound δ < 1/4 for the (δ, 1/2)-

SIP [Wie90]. The bound can be obtained by the special case of the Boneh-Durfee lattice with

the fixed parameter η = 0 or τ = 0.
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(δ, 1/2)-SIP when the condition (3.3); δ < (
√
6 − 1)/5, holds. Sarkar et al. [SMS08]

generalized the lattice constructions and constructed an algorithm that solves the

(δ, β)-SIP when the condition (3.7); δ < 2
5

(√
4β2 − β + 1− 3β + 1

)
, holds.

Blömer and May defined sets of indices as:

IBM
x :=

{
(i, u)

∣∣∣∣ i = ⌊(1− µ)m⌋, ⌊(1− µ)m⌋+ 1, . . . ,m;

u = 0, 1, . . . , i

}
,

IBM
y :=

{
(u, j)

∣∣∣∣ u = ⌊(1− µ)m⌋, ⌊(1− µ)m⌋+ 1, . . . ,m;

j = 1, 2, . . . , ⌊u− (1− µ)m⌋

}
,

with a parameter 0 ≤ µ < 1. As the Boneh-Durfee lattices, the basis matrices

generated by the polynomial selections are not triangular. Following the work of

Herrmann and May [HM10], Kunihiro et al. [KSI14] used the same linearization

z = −1 + xy

and transformed the basis matrices to be triangular. Applying the linearization ap-

propriately and the basis matrices become triangular with diagonals

• Xi−uZuem−u for gx[i,u](x, y) and

• ZuY jem−u for gy[u,j](x, y).

See [KSI14] for the detailed analysis. Ignoring low order terms of m, the dimension

and the determinant of the lattices are computed as

n = µm2

and

det(B) = X
3µ−3µ2+µ3

6 m3

Y
µ3

6 m3

Z
µ
2 m3

e
µ
2 m3

,

respectively. The conditions for the (δ, β)-SIP to be solved, i.e., (det(B))1/n < em,

become

δ · 3µ− 3µ2 + µ3

6
+ β · µ

3

6
+ (δ + β) · µ

2
+

µ

2
< µ

which yields the bound

δ <
3− 3β − βµ2

6− 3µ+ µ2
.

To maximize the right hand side of the inequality, we set the parameter

µ =
1 + β −

√
4β2 − β + 1

β
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and the condition becomes the ineqality (3.7);

δ <
2

5

(√
4β2 − β + 1− 3β + 1

)
.

Although Sarkar et al. [SMS08] claimed that the bound is the best when 3/35 ≤
β < 1/4 for the (δ, β)-SIP, it is incorrect. Since the restriction of the parameter 0 ≤
µ =

(
1 + β −

√
4β2 − β + 1

)
/β < 1, the algorithm works only when 1/4 < β ≤ 1.

In this range, the bound (3.7) is weaker than the generalization of the Boneh-Durfee

stronger bound (3.4).

Kunihiro-Shinohara-Izu Lattices. Kunihiro et al. [KSI14] considered a broader

class of lattices for the (δ, β)-SIP. They defined sets of indices as:

IKSI
x :=

{
(i, u)

∣∣∣∣ i = ⌊(1− µ)m⌋, ⌊(1− µ)m⌋+ 1, . . . ,m;

u = 0, 1, . . . , i

}
,

IKSI
y :=

{
(u, j)

∣∣∣∣ u = ⌊(1− µ)m⌋, ⌊(1− µ)m⌋+ 1, . . . ,m;

j = 1, 2, . . . , ⌊τ(u− (1− µ)m)⌋

}
,

with two parameters 0 ≤ τ ≤ 1 and 0 ≤ µ < 1. The sets are hybrid sets consisting

of the stronger Boneh-Durfee lattices and the Blömer-May lattices. More concretely,

the previous two lattices are the special cases of the Kunihiro-Shinohara-Izu lattices;

when τ = 1 , the sets IKSI
x and IKSI

y become the same as the sets IsBD
x and IsBD

y

whereas when µ = 1, the sets IKSI
x and IKSI

y become the same as the setsIBM
x and

IBM
y .

As the stronger Boneh-Durfee lattices and the Blömer-May lattices, the basis matri-

ces generated by the polynomial selections are not triangular. Kunihiro et al. [KSI14]

used the same linearization

z = −1 + xy

and transformed the basis matrices to be triangular. Applying the linearization ap-

propriately and the basis matrices become triangular with diagonals

• Xi−uZuem−u for gx[i,u](x, y) and

• ZuY jem−u for gy[u,j](x, y).

See [KSI14] for the detailed analysis. Ignoring low order terms of m, the dimension

and the determinant of the lattices are computed as

n =
(2µ− µ2) + µ2τ

2
m2



34 Chapter 3 General Bounds for the Small Inverse Problem

and

det(B) = X
3µ−3µ2+µ3

6 m3

Y
µ3τ2

6 m3

Z
(3µ−3µ2+µ3)+(3µ2−µ3)τ

6 m3

e
(3µ−µ3)+µ3τ

6 m3

,

respectively. The conditions for the (δ, β)-SIP to be solved, i.e., (det(B))1/n < em,

become

δ · 3µ− 3µ2 + µ3

6
+ β · µ

3τ2

6
+ (δ + β) · (3µ− 3µ2 + µ3) + (3µ2 − µ3)τ

6

+
(3µ− µ3) + µ3τ

6
<

(2µ− µ2) + µ2τ

2

which yields the bound

δ <
(1− β)((3− 3µ+ µ2) + (3µ− µ2)τ)− βµ2τ2

2(3− 3µ+ µ2) + (3µ− µ2)τ
.

When 1/4 ≤ β < 1, we set the parameter µ = 1, τ =
√
1/β − 1, and obtain the

bound δ < 1 −
√
β that is the same as the stronger Boneh-Durfee lattices. When

0 < β < 1/4, we set the parameter µ = 1, τ = 1, and obtain the bound δ < 3/4 − β

that is the same as Wiener’s Lattice.*3

3.3 New Lattice Constructions to Solve the (δ, β)-SIP

In this section, we propose an improved algorithm to solve the (δ, β)-SIP. Inspired by

the work of [KSI14], we consider a broader class of lattices that contains the weaker

and stronger Boneh-Durfee lattices, and the Wiener lattices as special cases. The

three lattices provide the best results among previous results [dW02, SMS08, KSI14].

When 1/4 ≤ β < 1, our hybrid lattices become the same as the stronger Boneh-Durfee

lattices and yield the bound (3.4). When 0 < β < 1/4, our lattices make use of the

properties of the three lattices, i.e., the weaker and stronger Boneh-Durfee lattices,

and the Wiener lattices, simultaneously and obtain the following improved result.

Theorem 1. There is a polynomial time algorithm to solve the (δ, β)-SIP when the

following conditions hold:

δ < 1−
√
β for 1/4 ≤ β < 1,

δ < 1− 2

3

(√
(3 + 4β)β − β

)
for 0 < β <

1

4
.

*3 Although Kunihiro et al. [KSI14] claimed the lattices yield the bound (3.7) when 0 < β < 1/4,

the result is not correct as we noted above.
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3.3.1 The Lattice Construction

To solve the SIP, we define sets of indices

Ix := {(i, u)|i = 0, 1, . . . ,m;u = 0, 1, . . . , i} ,

Iy := {(u, j)|u = 0, 1, . . . ,m; j = 1, 2, . . . , ⌊ηm+ τu⌋} ,

with two parameters η ≥ 0 and 0 ≤ τ ≤ 1. The sets are hybrid sets with the weaker

and stronger Boneh-Durfee lattices, and the Wiener lattices. More concretely, the

previous three lattices are the special cases of our lattices; when τ = 0, the sets Ix
and Iy become the same as the sets IwBD

x and IwBD
y whereas when η = 0, the sets Ix

and Iy become the same as the sets IsBD
x and IsBD

y . Since the Wiener lattice is the

special case of the stronger Boneh-Durfee lattices, the Wiener lattice is the special

case of our lattices.

Our selections of polynomials generate basis matrices B that are not triangular.

However, as Herrmann and May’s analysis, we use the same linearization

z = −1 + xy

and the matrices can be transformed into triangular with diagonals

• Xi−uZuem−u for gx[i,u](x, y) and

• ZuY jem−u for gy[u,j](x, y).

The analysis is almost trivial from the previous analyses. At first, as the case of the

weaker Boneh-Durfee lattice, polynomials in Ix and Iy for j = 1, 2, . . . , ⌊ηm⌋ generate
a triangular matrix with diagonalsXiY uem−u for Ix andXuY u+jem−u for Iy and j =

1, 2, . . . , ⌊ηm⌋. When the linearization z = −1+xy is applied to the polynomials, the

matrix is still triangular with diagonals Xi−uZuem−u for gx[i,u](x, y) and ZuY jem−u

for gy[u,j](x, y). Hence, what we have to show is that the matrix is still triangular

when we use extra polynomials in Iy for u = 0, 1, . . . ,m; j = ⌊ηm⌋ + 1, ⌊ηm⌋ +

2, . . . , ⌊ηm + τu⌋. Notice that there are monomials XiY u for i = 0, 1, . . . ,m;u =

⌊ηm⌋, ⌊ηm⌋ + 1, . . . , ⌊ηm⌋ + i that correspond to diagonals for Ix and for Iy and

j = 1, 2, . . . , ⌊ηm⌋. The extra polynomials gy[u,j](x, y) for u = 0, 1, . . . ,m; j = ⌊ηm⌋+
1, ⌊ηm⌋ + 2, . . . , ⌊ηm + τu⌋ are (almost) equivalent to y⌊ηm⌋ times gy[u,j](x, y) with

indices in IsBD
y . Therefore, as the Boneh-Durfee stronger lattice, the existences of

the monomials XiY u for i = 0, 1, . . . ,m;u = ⌊ηm⌋, ⌊ηm⌋ + 1, . . . , ⌊ηm⌋ + i preserve

the matrix with the extra polynomials to be triangular by using the linearization

z = −1 + xy. The diagonals for the extra polynomials are ZuY jem−u.
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The dimension and the determinant of the lattices det(B) = XsXY sY ZsZese are

computed by

n =
m∑
i=0

i∑
u=0

1 +
m∑

u=0

⌊ηm+τu⌋∑
j=1

1 =

(
1

2
+ η +

τ

2

)
m2 + o(m2),

sX + sZ =
m∑
i=0

i∑
u=0

i+
m∑

u=0

⌊ηm+τu⌋∑
j=1

u =

(
1

3
+

η

2
+

τ

3

)
m3 + o(m3),

sY + sZ =
m∑
i=0

i∑
u=0

u+
m∑

u=0

⌊ηm+τu⌋∑
j=1

(u+ j)

=

(
1

6
+

η

2
+

τ

3
+

η2

2
+

τη

2
+

τ2

6

)
m3 + o(m3),

se =
m∑
i=0

i∑
u=0

(m− u) +
m∑

u=0

⌊ηm+τu⌋∑
j=1

(t− u) =

(
1

3
+

η

2
+

τ

6

)
m3 + o(m3).

Ignoring low order terms of m, the conditions for the (δ, β)-SIP to be solved, i.e.,

(det(B))1/n < em, become

δ <
1− β + 3(1− β)η + 2(1− β)τ − 3βη2 − 3βτη − βτ2

2 + 3η + 2τ
.

When 1/4 ≤ β < 1, to maximize the right hand side of the inequality, we set the

parameter η = 0 and τ =
√
1/β − 1, and obtain the bound

δ < 1−
√
β

that is the same as the bound (3.4).

When 0 < β < 1/4, we set the parameter

η =
−4β +

√
β(3 + 4β)

3β
and τ = 1,

and obtain the bound

δ < 1− 2

3

(√
(3 + 4β)β − β

)
.

This bound is the best among all known results [dW02, SMS08, KSI14] when 0 <

β < 1/4.
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3.3.2 An Observation of the Lattice

Although the lattice construction is obtained by a simple combination of the previous

three lattices, i.e., the weaker and the stronger Boneh-Durfee lattice and the Wiener

lattice, the construction should be appropriate. To show the fact, we introduce helpful

polynomials. The notion was introduced by May [May10], and Takayasu and Kuni-

hiro [TK14a] made use of the notion and proposed improved lattice constructions.

In lattice constructions to solve modular equations, we call polynomials helpful if

the absolute values of the diagonals are smaller than the modulus in triangular basis

matrices. Helpful polynomials enable us to solve modular equations for larger solu-

tions since the polynomials reduce the norm of vectors output by the LLL algorithm.

Takayasu and Kunihiro suggested that as many helpful polynomials as possible should

be selected in lattice constructions as long as the basis matrices are triangular.

To solve the (δ, β)-SIP for 1/4 ≤ β < 1 and δ < 1−
√
β, the above lattice (that is

equivalent to the stronger Boneh-Durfee lattice) contains as many helpful polynomials

as possible. That means all gy[u,j](x, y) in the lattice basis are helpful polynomials and

other gy[u,j](x, y) are not helpful since the diagonals ZuY jem−u for the polynomials

gy[u,j](x, y) with indices in u = 0, 1, . . . ,m; j ≤
(√

1/β − 1
)
u are always equivalent

to or smaller than the modulus em and and those for the polynomial with indices in

j >
(√

1/β − 1
)
u are larger than em:

ZuY jem−u ≤ em ⇔
(
1−

√
β + β

)
u+ βj ≤ u

⇔j ≤
(√

1/β − 1
)
u.

Although not all gx[i,u](x, y) in lattice basis are helpful, they contribute the basis

matrices to be triangular.

As we explained, the lattice construction is valid only when
√
1/β − 1 ≤ 1, i.e.,

β ≥ 1/4, since the unravelled linearization does not work well otherwise. Then we

consider to solve the (δ, β)-SIP for 0 < β < 1/4 and δ < 1− 2
3

(√
(3 + 4β)β − β

)
. In

this case, not all gy[u,j](x, y) in the lattice basis are helpful and not all helpful gy[u,j](x, y)

are in the lattice basis. However, our lattice construction is the best possible. For the

series of gy[u,j](x, y) for u = 0, 1, . . . ,m; j = ηm + u with some η, the corresponding

diagonals in the lattice basis are

ZuY ηm+uem−u = N (β+δ)u+β(ηm+u)+m−u

≤ N
− 2

3

(√
(3+4β)β−4β

)
u+(1+ηβ)m

.



38 Chapter 3 General Bounds for the Small Inverse Problem

Since β < 1/4,
√
(3 + 4β)β − 4β > 0 holds and the diagonals become smaller for

larger u. Hence, if possible, we want to select only gy[u,j](x, y) for larger u in the

lattice basis, however, unravelled linearization does not work well without gy[u,j](x, y)

for smaller u. Therefore, the best possible lattice construction is collecting as many

helpful series of gy[u,j](x, y) for u = 0, 1, . . . ,m; j = ηm + u as possible. The helpful

series of gy[u,j](x, y) for u = 0, 1, . . . ,m; j = ηm + u means the geometric mean of all

the diagonals is smaller than the modulus em. The geometric mean is calculated as(
m∏

u=0

ZuY ηm+uem−u

)1/(m+1)

≤N
− 1

3

(√
(3+4β)β−4β

)
m+(1+ηβ)m

=N

(
1− 1

3

(√
(3+4β)β−(4+3η)β

))
m
.

Hence, the series of gy[u,j](x, y) becomes helpful when the geometric mean is smaller

than em ≈ Nm, that is,√
(3 + 4β)β − (4 + 3η)β ≥ 0 ⇔ η ≤

−4β +
√
β(3 + 4β)

3β
.

The analysis suggests that our lattice contains all helpful series of gy[u,j](x, y) for

u = 0, 1, . . . ,m; j = ηm+ u.

3.4 On the Security of Multi-Prime RSA

In this section, we study the security of Multi-Prime RSA for small differences of the

prime factors.

3.4.1 Background and Our Improvement

We write the Multi-Prime RSA modulus as

N = p1p2 · · · pk

and assume the following two conditions p1 > p2 > · · · > pk without loss of generality,

and |p1 − pk| < Nγ . Define

p′j =
N

pj

and

∆k =

k∑
j=1

p′j − k

 k∏
j=1

p′j

1/k

.
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By definition,

p′1 < p′2 < · · · < p′k

and

k

 k∏
j=1

p′j

1/k

= kN (k−1)/k

holds.

In [ZT13, ZT14], Zhang and Takagi analyzed the security. They revealed that

Multi-Prime RSA becomes insecure if we can solve the (δ, β)-SIP.

Lemma 3 (Proposition 1 and Theorem 2 of [ZT13]). Let N = p1p2 · · · pk such that

p1 > p2 > · · · > pk be a Multi-Prime RSA modulus. All prime factors of N are

the same bit-size and p1 − pk < Nγ , 0 < γ < 1/k. Let e be a full size public

exponent whose corresponding secret exponent d is smaller than Nδ. When ∆k =∑k
j=1 p

′
j − k

(∏k
j=1 p

′
j

)1/k
is smaller than Nβ, if we can solve the (δ, β)-SIP, we can

factor the Multi-Prime RSA modulus N .

For the attack, bounding the size of ∆k is crucial. Although Zhang and Tak-

agi [ZT14] obtained a similar bound, i.e., 0 < ∆k < poly(k) ·N2γ+1−3/k from Propo-

sition 1 of [ZT14], we show a slightly better bound as follows.

Lemma 4. Let N = p1p2 · · · pk be composite integers and ∆k be defined as in Lemma

3, then

0 < ∆k < 2(k − 1) ·N2γ+1−3/k.

Zhang and Takagi [ZT14] used Newton’s Generalized Binomial Theorem to bound

the size of ∆k. See [ZT14] for detailed information. Since small k = 3, 4, 5 are used in

standard settings of Multi-Prime RSA, the term poly(k) can be assumed to be much

smaller than N . Therefore, Zhang and Takagi did not analyze the term in detail.

We give an alternative proof for Lemma 4 that does not use Newton’s Generalized

Binomial Theorem. Moreover, our proof shows poly(k) = 2(k − 1). Hence, our result

justifies the assumption, e.g., the term poly(k) is much smaller than N . The proof

will appear in Section 3.4.2.

Since we proposed an improved algorithm for the (δ, β)-SIP, i.e., Theorem 1, we

can improve the cryptanalysis of Multi-Prime RSA. Combining Lemma 3, Lemma 4,

and Theorem 1, we obtain the following result.

Theorem 2. Let the Multi-Prime RSA modulus N , public (resp. secret) exponent e
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(resp. d) as in Lemma 3. We can factor the Multi-Prime RSA modulus N when

δ < 1−
√

1 + 2γ − 3/k for
3

2

(
1

k
− 1

4

)
≤ γ <

1

k
,

δ < 1− 2

3

(√
(7 + 8γ − 12/k)(1 + 2γ − 3/k)− 1− 2γ + 3/k

)
for 0 < γ <

3

2

(
1

k
− 1

4

)
.

3.4.2 Proof of Lemma 4

To prove Lemma 4, we use the following Lemma 5 and Lemma 6. In all following

equations, if all indices j for pj in summations are larger than k, let j be j − k.

Lemma 5. Let N = p1p2 · · · pk be composite integers and ∆k be defined as in Lemma

3, then

∆k =
1

2

k−2∑
u=0

k∑
j=1

k−u−2∑
l=0

P1/k
u,j p

′(k−u−l−2)/k
j p

′l/k
j+u+1

(
p
′1/k
j − p

′1/k
j+u+1

)2
,

where

Pu,j =

1 for u = 0,

p′j+1p
′
j+2 · · · p′j+u for u = 1, 2, . . . , k − 2.

The proof of Lemma 5 is written at the end of this section.

Lemma 6. Let N = p1p2 · · · pk be composite integers, then∣∣∣p′1/ki − p
′1/k
j

∣∣∣ ≤ 2(k+1)/k

k
·Nγ−1/k2

,

for all i, j = 1, 2, . . . , k, i ̸= j.

Proof. By definition,

∣∣∣p′1/ki − p
′1/k
j

∣∣∣ = ∣∣∣∣∣ 1

p
1/k
i

− 1

p
1/k
j

∣∣∣∣∣ ·N1/k =

∣∣∣∣∣p
1/k
j − p

1/k
i

p
1/k
i p

1/k
j

∣∣∣∣∣ ·N1/k.

By definition, since p1 > p2 > · · · > pk,

<
p
1/k
1 − p

1/k
k

p
2/k
k

·N1/k =
p1 − pk

p
2/k
k

∑k−1
l=0 p

(k−l−1)/k
1 p

l/k
k

·N1/k
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<
p1 − pk

p
2/k
k

∑k−1
l=0 p

(k−1)/k
k

·N1/k =
p1 − pk

kp
(k+1)/k
k

·N1/k.

By definition, all prime factors p1, p2, · · · , pk are the same bit size. Hence, pk > 1
2N

1/k

holds, then

<
Nγ

k
(
1
2N

1/k
)(k+1)/k

·N1/k =
2(k+1)/k

k
·Nγ−1/k2

as required.

Combining Lemma 5 and Lemma 6, we can prove Lemma 4 as follows.

Proof of Lemma 4. From Lemma 5,

∆k =
1

2

k−2∑
u=0

k∑
j=1

k−u−2∑
l=0

P1/k
u,j p

′(k−u−l−2)/k
j p

′l/k
j+u+1

(
p
′1/k
j − p

′1/k
j+u+1

)2
.

By splitting the summation into two parts with respect to u = 0 and u = 1, 2, . . . , k,

=
1

2

k∑
j=1

k−2∑
l=0

p
′(k−l−2)/k
j p

′l/k
j+1

(
p
′1/k
j − p

′1/k
j+1

)2
+

1

2

k−2∑
u=1

k∑
j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k · p′(k−u−l−2)/k
j p

′l/k
j+u+1

(
p
′1/k
j − p

′1/k
j+u+1

)2
.

(3.9)

By definition, since p′1 < p′2 < · · · < p′k, we bound the first summation of equation

(3.9) as

1

2

k∑
j=1

k−2∑
l=0

p
′(k−l−2)/k
j p

′l/k
j+1

(
p
′1/k
j − p

′1/k
j+1

)2
<
1

2

k∑
j=1

k−2∑
l=0

p
′(k−2)/k
k

(
p
′1/k
k − p

′1/k
1

)2
=
1

2
k(k − 1)p

′(k−2)/k
k

(
p
′1/k
k − p

′1/k
1

)2
.

As the proof of Lemma 6, since pk > 1
2N

1/k, p′k = N/pk < 2N (k−1)/k holds, then

<
1

2
k(k − 1)

(
2N (k−1)/k

)(k−2)/k

·
(
p
′1/k
k − p

′1/k
1

)2
=

1

22/k
k(k − 1)N (k−1)(k−2)/k2

·
(
p
′1/k
k − p

′1/k
1

)2
.
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By Lemma 6,

<
1

22/k
k(k − 1)N (k−1)(k−2)/k2

·
(
2(k+1)/k

k
Nγ−1/k2

)2

=
4(k − 1)

k
N2γ+1−3/k.

Next, we bound the second summation of equation (3.9). By definition, since

p′1 < p′2 < · · · < p′k,

1

2

k−2∑
u=1

k∑
j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k · p′(k−u−l−2)/k
j p

′l/k
j+u+1

(
p
′1/k
j − p

′1/k
j+u+1

)2
<
1

2

k−2∑
u=1

k∑
j=1

k−u−2∑
l=0

p
′(k−2)/k
k

(
p
′1/k
k − p

′1/k
1

)2
=
(k − 2)(k − 1)k

4
· p′(k−2)/k

k

(
p
′1/k
k − p

′1/k
1

)2
.

Since p′k < 2N (k−1)/k,

<
(k − 2)(k − 1)k

4
·
(
2N (k−1)/k

)(k−2)/k

·
(
p
′1/k
k − p

′1/k
1

)2
=

(k − 2)(k − 1)k

2(k+2)/k
·N (k−1)(k−2)/k2

·
(
p
′1/k
k − p

′1/k
1

)2
.

By Lemma 6,

<
(k − 2)(k − 1)k

2(k+2)/k
·N (k−1)(k−2)/k2

·
(
2(k+1)/k

k
Nγ−1/k2

)2

=
2(k − 2)(k − 1)

k
N2γ+1−3/k.

Therefore, ∆k is bounded above by

∆k <
4(k − 1)

k
N2γ+1−3/k +

2(k − 2)(k − 1)

k
N2γ+1−3/k

= 2(k − 1)N2γ+1−3/k

as required.

In the rest of this section, we prove Lemma 5.

Proof of Lemma 5. We show the following equation

k∑
j=1

p′j =
1

2

k∑
j=1

k−2∑
l=0

(
p
′1/k
j − p

′1/k
j+1

)2
p
′(k−l−2)/k
j p

′l/k
j+1
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+
1

2

k−2∑
u=1

k∑
j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k ·
p
′(k−u−l−2)/k
j p

′l/k
j+u+1

(
p
′1/k
j − p

′1/k
j+u+1

)2
+ k

 k∏
j=1

p′j

1/k

that is equivalent to the equation of Lemma 5.

For all u = 2, 3, · · · , k,(
p
′1/k
i − p

′1/k
j

)2 u−2∑
l=0

p
′(u−l−2)/k
i p

′l/k
j

=
(
p
′1/k
i − p

′1/k
j

)(
p
′(u−1)/k
i − p

′(u−1)/k
j

)
=p

′u/k
i + p

′u/k
j − p

′1/k
i p

′(u−1)/k
j − p

′(u−1)/k
i p

′1/k
j .

Hence,

p
′u/k
i + p

′u/k
j

=
(
p
′1/k
i − p

′1/k
j

)2 u−2∑
l=0

p
′(u−l−2)/k
i p

′l/k
j + p

′1/k
i p

′(u−1)/k
j + p

′(u−1)/k
i p

′1/k
j . (3.10)

Next, by the equation (3.10),

k∑
j=1

(
p′j+1p

′
j+2 · · · p′j+u

)1/k (
p
′(k−u)/k
j + p

′(k−u)/k
j+u+1

)

=
k∑

j=1

(
p′j+1p

′
j+2 · · · p′j+u

)1/k · [
(
p
′1/k
j − p

′1/k
j+u+1

)2 k−u−2∑
l=0

p
′(k−u−l−2)/k
j p

′l/k
j+u+1

+ p
′1/k
j p

′(k−u−1)/k
j+u+1 + p

′(k−u−1)/k
j p

′1/k
j+u+1]

=
k∑

j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k ·
(
p
′1/k
j − p

′1/k
j+u+1

)2
p
′(k−u−l−2)/k
j p

′l/k
j+u+1

+

k∑
j=1

(
p′j+1p

′
j+2 · · · p′j+u

)1/k ·
(
p
′1/k
j p

′(k−u−1)/k
j+u+1 + p

′(k−u−1)/k
j p

′1/k
j+u+1

)
.

From the standard calculation, we slide the indices of the second term as

=
k∑

j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k ·
(
p
′1/k
j − p

′1/k
j+u+1

)2
p
′(k−u−l−2)/k
j p

′l/k
j+u+1



44 Chapter 3 General Bounds for the Small Inverse Problem

+

k∑
j=1

[(
p′jp

′
j+1 · · · p′j+u

)1/k · p′(k−u−1)/k
j+u+1 +

(
p′j+1p

′
j+2 · · · p′j+u+1

)1/k
p
′(k−u−1)/k
j

]

=
k∑

j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k ·
(
p
′1/k
j − p

′1/k
j+u+1

)2
p
′(k−u−l−2)/k
j p

′l/k
j+u+1

+

k∑
j=1

(
p′j+1p

′
j+2 · · · p′j+u+1

)1/k (
p
′(k−u−1)/k
j + p

′(k−u−1)/k
j+u+2

)
. (3.11)

Again, by the equation (3.10) for u = k,

k∑
j=1

p′j =
1

2

k∑
j=1

(
p′j + p′j+1

)
=
1

2

k∑
j=1

k−2∑
l=0

(
p
′1/k
j − p

′1/k
j+1

)2
p
′(k−l−2)/k
j p

′l/k
j+1

+
1

2

k∑
j=1

(
p
′1/k
j p

′(k−1)/k
j+1 + p

′(k−1)/k
j p

′1/k
j+1

)
.

From the standard calculation, we slide the indices of the second term as

=
1

2

k∑
j=1

k−2∑
l=0

(
p
′1/k
j − p

′1/k
j+1

)2
p
′(k−l−2)/k
j p

′l/k
j+1

+
1

2

k∑
j=1

(
p
′1/k
j+1p

′(k−1)/k
j+2 + p

′(k−1)/k
j p

′1/k
j+1

)

=
1

2

k∑
j=1

k−2∑
l=0

(
p
′1/k
j − p

′1/k
j+1

)2
p
′(k−l−2)/k
j p

′l/k
j+1 +

1

2

k∑
j=1

p
′1/k
j+1

(
p
′(k−1)/k
j + p

′(k−1)/k
j+2

)
.

For the second term, we recursively apply the transformation of the equation (3.11)

for u = 1, 2, . . . , k − 1 and obtain

=
1

2

k∑
j=1

k−2∑
l=0

(
p
′1/k
j − p

′1/k
j+1

)2
p
′(k−l−2)/k
j p

′l/k
j+1

+
1

2

k−2∑
u=1

k∑
j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k · p′(k−u−l−2)/k
j p

′l/k
j+u+1

(
p
′1/k
j − p

′1/k
j+u+1

)2
+

k∑
j=1

(
p′j+1p

′
j+2 · · · p′j+k−2

)1/k
p
′1/k
j p

′1/k
j+k−1.
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From the fact that

(
p′j+1p

′
j+2 · · · p′j+k−2

)1/k
p
′1/k
j p

′1/k
j+k−1 =

 k∏
j=1

p′j

1/k

for all j = 1, 2, . . . , k,

=
1

2

k∑
j=1

k−2∑
l=0

(
p
′1/k
j − p

′1/k
j+1

)2
p
′(k−l−2)/k
j p

′l/k
j+1

+
1

2

k−2∑
u=1

k∑
j=1

k−u−2∑
l=0

(
p′j+1p

′
j+2 · · · p′j+u

)1/k · p′(k−u−l−2)/k
j p

′l/k
j+u+1

(
p
′1/k
j − p

′1/k
j+u+1

)2

+ k

 k∏
j=1

p′j

1/k

as required.

3.5 Concluding Remarks

In this chapter, we studied the (δ, β)-SIP for an arbitrary β that relates to the security

of Multi-Prime RSA. Unlike the results of the (δ, 1/2)-SIP [BD00, BM01, HM10], the

results for the general (δ, β)-SIP are not widely known. Indeed, some previous results

reconstruct the algorithm to solve the problem, which had already been proved, and

did not refer to the previous works. Therefore, one of the contributions of this paper

is to summarize the previous results [BD00, BM01, dW02, HM10, KSI14, SMS08].

Moreover, we revealed that the bound (3.7) proposed by previous works [KSI14,

SMS08] is not valid.

The main contribution of the paper was to provide the improved lattice construction

for the (δ, β)-SIP. Our lattice covers a broader class and previous results [BD00, dW02]

that provide the best bounds among previous works are special cases of our lattice.

The lattice makes better use of the algebraic structures of modular polynomials and

we improved the previous bound.

Based on the improvement, we also showed the improved analysis for the security

of Multi-Prime RSA. Our result showed that Multi-Prime RSA is vulnerable than

expected when differences of prime factors are small.
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Chapter 4

Partial Key Exposure Attacks on

CRT-RSA

4.1 Introduction

4.1.1 Background

CRT-RSA. RSA [RSA78] is one of the most famous cryptosystems and is widely

used. Let N = pq be a public RSA modulus where prime factors p and q are the

same bit-size. A public exponent e and a secret exponent d satisfy ed = 1 (mod (p−
1)(q − 1)). For encryption/verifying and decryption/signing, one should calculate

heavy modular exponentiations. To speed up the calculation, one simple solution

is using a smaller public/secret exponent. However, the public RSA modulus can

be factorized in polynomial time when too small secret exponent is used. At first,

Wiener [Wie90] proposed a polynomial time attack on the small secret exponent RSA

that works when d < N0.25. Later, Boneh and Durfee [BD00] revisited the attack and

improved the bound to d < N0.284 using Coppersmith’s method [Cop96b]. Moreover,

they further improved the bound to d < N0.292 in the same work.

To thwart the attack and achieve faster calculations for decryption/signing, Chi-

nese Remainder Theorem (CRT) is often used as described by Quisquater and Cou-

vreur [QC82]. Instead of the original secret exponent d, one uses CRT-exponents dp

and dq which satisfy

edp = 1 (mod (p− 1)) and edq = 1 (mod (q − 1)).

However, when too small CRT-exponents are used, analogous attacks to [BD00] have

been proposed [May02, GHM05, BM06, JM07, HM10]. Hence, in this chapter, we
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only focus on a case when dp, dq ≈ N1/2.

Partial Key Exposure Attacks on RSA. It is widely known that factorization

and RSA problems become easy when certain amount of secret information is known

to attackers. Coppersmith [Cop96a] showed that the half most significant bits of a

prime factor suffices to factorize N . There have also been several results which use

not explicit bits of prime factors but implicit hints [MR09, SM09b, FMR10, SM11,

TK14a, LPZ+15, NIK15].

RSA becomes vulnerable also with partial bits of a secret exponent d. Boneh, Dur-

fee, and Frankel [BDF98] showed that the most/least significant bits (MSBs/LSBs)

of a secret exponent d enable us to factorize a public RSA modulus N . Later, sev-

eral papers revisited the attack [BM03, EJMdW05, Aon09, SSM10, JL12, TK14d],

and Ernst et al. [EJMdW05] first revealed that RSA is vulnerable even for a full size

public/secret exponent against the attack.

Partial Key Exposure Attacks on CRT-RSA. As with the standard RSA, several

attacks that use partial information of dp and dq, i.e., partial key exposure attacks on

CRT-RSA, have also been studied [BM03, SM09b, LZL14]. Blömer and May [BM03]

studied an attack scenario when the MSBs/LSBs of either dp or dq are known to

attackers. We call an attack for the scenario a single partial key exposure attack.

Blömer-May’s attacks work when the public exponent is small; e < N1/4 with the

MSBs of dp whereas e = poly(logN) with the LSBs of dp. On the other hand, the

attacks can recover unknown LSBs/MSBs of a CRT-exponent which are less than

N1/4 for extremely small e. Lu, Zhang, and Lin [LZL14] revisited Blömer-May’s

attack. When the MSBs of a CRT-exponent are known, Lu et al.’s attack is inferior

to Blömer-May’s attack unless the CRT-exponent is significantly smaller than N1/2.

Since we only study the security of CRT-RSA for dp, dq ≈ N1/2, we do not care Lu

et al.’s attack with the MSBs. When the LSBs of a CRT-exponent are known, they

proposed two attacks where the first attack works for e < N1/4 whereas the second

attack works for e < N3/8. On the other hand, the first attack can recover larger

unknown MSBs than the second attack for small e. For extremely small e, Lu et al.’s

first attack can recover unknown MSBs of a CRT-exponent which are less than N1/4

as Blömer-May’s attack. Therefore, Lu et al.’s attack with the LSBs is always better

than or equal to Blömer-May’s attack.

Sarkar and Maitra [SM09b] extended partial key exposure scenarios. Unlike the

above previous works [BM03, LZL14], Sarkar and Maitra studied an attack scenario

when the most significant bits of both dp and dq are known to attackers. Hence, they

utilized more partial information than Blömer-May and Lu et al. We call an attack
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Fig. 4.1. Recoverable conditions for partial key exposure attacks on CRT-RSA when

the most significant bits of either dp or dq are known to attackers.

for the scenario a double partial key exposure attack. To be precise, they also used

the MSBs of a prime factor p to construct their attack. For the moment, we ignore

the additional hints. Unfortunately, Sarkar and Maitra’s attack is not successful. It

means that they used more partial information, however, the attack is weaker than

other attacks [BM03, LZL14]. In particular, Sarkar and Maitra’s attack does not work

when dp, dq ≈ N1/2. The attack works only for smaller dp and dq.

4.1.2 Our Contributions

In this Chapter, we study single/double partial key exposure attacks on CRT-RSA

with the MSBs/LSBs. For all the attack scenarios, we propose improved attacks.

At first, we show that Lu et al.’s single attack with the LSBs does not achieve

their claimed bound, hence, we correct the analysis. The corrected attack works for

e < N3/8 as Lu et al. claimed, however, it requires more partial information than

they claimed. Next, we slightly modify Lu et al.’s lattice constructions and obtain

an improved attack. The improved attack works for e < N3/8 as Lu et al.’s attack,

however, it requires less partial information than their attack. We claim that the

improvement only stems from a slight modification, hence, it is not very technical.

Technical contributions of this chapter starts from the next improvement. Our

observation of the previous attacks [BM03, SM09b, LZL14] including the above cor-

rected attack is that the best attack conditions depend on positions of known bits.

For the single scenario, the best attack works for e < N1/4 with the MSBs of a CRT-

exponent whereas e < N3/8 with the LSBs. For the double scenario, there are no

attacks with the LSBs. An interesting feature of our improved attacks is that their



4.1 Introduction 49

!

Fig. 4.2. Recoverable conditions for partial key exposure attacks on CRT-RSA when

the most/least significant bits of both dp and dq are known to attackers.

attack conditions are independent of positions of known bits. Concretely, we propose

a single attack with the MSBs where the attack condition is the same as corrected

Lu et al.’s attack. Hence, we obtain the first single partial key exposure attack that

works for e < N3/8. In addition, we propose an improved double attack with the

MSBs and the first double attack with the LSBs where their attack conditions are

the same. Our double attacks are much better than any single attacks. Our double

attacks work for e < N and recover unknown LSBs/MSBs which are less than N1/3

for extremely small e.

Notice that Lu et al. proposed two single attacks where the first attack is better

than the second attack for small e. The above our single attack with the LSBs only

improves Lu et al.’s second attack. It means that the above attack is weaker than Lu

et al.’s first attack for small e. However, we further improve a single attack with the

LSBs. The attack works for e < N3/8 as the previous attacks, however, the attack

requires less partial information than the other attack in the range. To summarize,

we completely improve Lu et al.’s single attack with the LSBs.

The left of Figure 4.1 compares attack conditions between our attack and Blömer-
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May’s attack. The right of Figure 4.1 compares attack conditions between our attack

and Lu et al.’s attack. Figure 4.2 denotes an attack condition of our proposed attack.

Horizontal axis α denotes a size of public exponent; α = logN e. Vertical axis δ

denotes a logarithm of unknown bits with a base N . We obtain improvements in gray

areas.

4.1.3 Technical Overview

All the previous partial key exposure attacks on CRT-RSA utilized Coppersmith’s

methods. The methods have two forms; the first method solves modular equations

with small roots whereas the second method solves integer equations with small solu-

tions. To improve attacks is equivalent to constructing algorithms that recover larger

solutions. The recoverable sizes depend on two factors; a Newton polytope and a size

of a modulus. Note that the integer equation solving method sets a modulus whose

size depends on a norm of a polynomial. The simpler Newton polytope of a polyno-

mial is, and the larger the size of the modulus is, the larger solutions can be recovered.

To the best of our knowledge, there are no exact criteria to decide which methods,

i.e., the modular equation solving method or the integer equation solving method, are

the better for each attack scenario in the context of RSA cryptanalysis. Therefore,

we should decide which methods to be used appropriately. The appropriate decisions

enable us to obtain improved attacks at the first stage.

To maximize solvable solutions for both methods, we should design appropriate

lattices. For the purpose, Jochemsz and May [JM06] proposed general strategies for

the construction. If we follow the strategy, we can obtain to some extent nice algo-

rithms. Indeed, we do not know how to obtain integer equation solving algorithms

that outperform ones based on the Jochemsz-May strategy. However, there are mod-

ular equation solving algorithms that outperform ones based on the strategy. For

example, the strategy enables us to obtain Boneh-Durfee’s weaker attack that works

for d < N0.284. However, the stronger attack, which works for d < N0.292 cannot be

captured by the strategy. Therefore, appropriate lattice designs enable us to obtain

attacks that outperform ones based on the Jochemsz-May strategy. The appropriate

designs enable us to obtain an improved attack at the second stage.

Blömer and May and Lu et al. used the modular equation solving method whereas

Sarkar and Maitra used the integer equation solving method. As we suggested, (cor-

rected) Lu et al.’s attack with the LSBs works for larger e than Blömer-May’s attack

with the MSBs. We show that although the original paper used the modular equation

solving method, (corrected) Lu et al.’s attack is also available by using the integer
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equation solving method. We then show that both integer equations to attack on

CRT-RSA with the MSBs and LSBs have the same Newton polytope and are the

same norm. This observation is similar to Ernst et al.’s one in the context of partial

key exposure attacks on RSA [EJMdW05]. The fact enables us to obtain better at-

tack with the MSBs where the attack works in the same condition as Lu et al, i.e.,

for larger e. Similarly, we propose double attack with the LSBs that work under the

same condition as that with the MSBs.

These attacks are based on the Jochemsz-May strategy. As we noted, we can-

not construct integer equation solving algorithms that outperform ones based on the

strategy. Among the above attacks which we proposed, corrected Lu et al.’s attack is

the only one which is available by solving modular equations. Hence, we analyze the

lattices to obtain the attack. Our careful analysis reveals that the lattice bases con-

tain some polynomials that do not contribute to maximize solvable solutions. Then,

we omit the useless polynomials from the lattice bases and obtain a better attack.

The approach is analogous to one that how Takayasu and Kunihiro [TK14d] improved

Ernst et al.’s attack in the context of partial key exposure attacks on RSA. Our pro-

posed attack is the first partial key exposure attack on CRT-RSA that do not rely on

the Jochemsz-May strategy.

4.1.4 Roadmap

In Section 4.2, we define the attack scenario for partial key exposure attacks on CRT-

RSA and summarize previous results [BM03, SM09b, LZL14]. In Section 4.3, we

propose our attacks when the most/least significant bits of either dp or dq are known.

In Section 4.4, we propose our attacks when the most/least significant bits of both dp

and dq are known. In Section 4.5,

4.2 Definitions and Previous Works

In Section 4.2.1, we define single/double partial key exposure scenarios. In Section

4.2.2, we summarize previous results proposed in [BM03, SM09b, LZL14].

4.2.1 Definitions of Partial Key Exposure Attacks on CRT-RSA

Let α and β denote the sizes of encryption/CRT exponents, i.e., e = Nα and dp, dq ≈
Nβ . We study single/double partial key exposure attacks on CRT-RSA; attackers are

given the MSBs/LSBs of dp or/and dq. Without loss of generality, we assume that



52 Chapter 4 Partial Key Exposure Attacks on CRT-RSA

attackers know some bits of dp for the single case. We formulate exposed bits. We

write CRT-exponents as

dp = dp0M + dp1 and dq = dq0M + dq1

with some positive integer M . When attackers are given the MSBs of dp, dq, they

know dp0 and dq0 with some positive integer M = Nδ. Attackers do not know the

LSBs such that dp1 , dq1 < N δ. Similarly, when attackers are given the LSBs of dp, dq,

they know dp0
, dq0 with some positive integer M = Nβ−δ. Attackers do not know the

MSBs such that dp1 , dq1 < Nδ.

4.2.2 Previous Results

We summarize the previous results for single/double partial key exposure attacks on

CRT-RSA with the MSBs/LSBs of CRT-exponents.

Theorem 3 (Single MSBs [BM03]). Let 0 < α ≤ 1/4. For a single MSBs partial key

exposure attacks on CRT-RSA, when

δ <
1

4
− α,

then public RSA modulus N can be factorized in polynomial time.

The attack of Theorem 3 is the best when α is small and β is large.

Theorem 4 (Single LSBs [BM03]). Let e = poly (logN). For a single LSBs partial

key exposure attacks on CRT-RSA, when

δ < β − 1

4
,

then public RSA modulus N can be factorized in polynomial time.

The attack of Theorem 4 is the first result for the exposed LSBs, however, it works

only for extremely small α.

Theorem 5 (Double MSBs Adapted from [SM09b]). Let 1/2− β < α < 5/4− 5β/2.

For a double MSBs partial key exposure attacks on CRT-RSA, when

δ <
(18− 36β − 12α)τ2 + (20− 40β − 16α)τ + 5− 10β − 4α

24τ3 + 30τ2 + 16τ + 4

holds for some τ ≥ 0, then public RSA modulus N can be factorized in polynomial

time.
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Theorem attack is the only known result for the double partial key exposure attacks

on CRT-RSA, however, it is weaker than even single attacks since the attack of

Theorem 5 does not work for β ≈ 1/2.

Theorem 6 (Single MSBs/LSBs [LZL14]). Let 1/2 < α + β < 3/4. For a single

MSBs/LSBs partial key exposure attacks on CRT-RSA, when(
α+ β − 1

2

)(
3

2
− δ − 2

√
α+ β − δ − 1

2

)
<

1

8
for 1−

√
2

4
≤ α+ β <

3

4
,

α+ β + δ <
1√
2
,

δ

(
2− α− β − 2

√
δ − α− β +

1

2

)
<

1

8
for

1

2
< α+ β ≤ 3

√
2

4
− 1

2
,

then public RSA modulus N can be factorized in polynomial time.

The attack is the best single attack with the LSBs for small α. Although the attack

with the MSBs is stronger than Blömer-May’s attack of Theorem 4 for small β, it is

weaker for β ≈ 1/2. Note that the second condition is valid when 1/2 < α+β ≤ 1/
√
2

and better than the other conditions when 3
√
2/4− 1/2 < α+ β < 1−

√
2/4.

Theorem 7 (Single LSBs Adapted from [LZL14]). Let 1/2 < α + β ≤ 7/8. For a

single LSBs partial key exposure attacks on CRT-RSA, when

δ <
5− 2

√
1 + 6(α+ β)

6
,

then public RSA modulus N can be factorized in polynomial time.

The attack is the best for large α and the first result which works for 1/4 < α ≤
3/8. Note that the condition of Theorem 7 is slightly worse than that was written

in [LZL14]. In Section 4.3.1, we show that Lu et al.’s analysis in [LZL14] is not valid.

Then we compute the valid condition of Theorem 7 in the section.

4.3 Single Partial Key Exposure Attacks on CRT-RSA by

Solving Integer Equations

In this section, we study the single MSBs/LSBs partial key exposure attacks on CRT-

RSA and show the following result.
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Theorem 8 (Single MSBs/LSBs). Let 1/2 < α+β ≤ 7/8. For the single MSBs/LSBs

partial key exposure attacks on CRT-RSA, when

−5 + 8(α+ β) + 8δ − 12δ2 − 2(1− 4δ)
√
1− 4δ < 0,

then public RSA modulus N can be factorized in polynomial time.

When the MSBs are given, the attack is the first result that works for 1/4 < α ≤
3/8. When the LSBs are given, the attack works for α ≤ 3/8 as Lu et al.’s attack of

Theorem 7. However, our attack is better than Lu et al.’s attack for large α.

In Section 4.3.1, we correct Lu et al.’s attack with the LSBs. Concretely, we com-

pute the attack condition of Theorem 7 by solving modular equations with the same

lattices which are used in [LZL14]. Then, we slightly modify the lattices and propose

an improved attack of Theorem 8. Although the attack construction is only applicable

for the exposed LSBs, we solve integer equations and propose an attack of Theorem

8 with the exposed MSBs. In Section 4.3.2, we solve integer equations by following

the Jochemsz-May basic strategy and propose attacks that work the same condition

as the second condition of Theorem 6. Furthermore, in Section 4.3.3, we solve integer

equations by following the Jochemsz-May extended strategy and propose attack of

Theorem 8.

4.3.1 A Correction and an Improvement of Lu et al.’s Attack

Recall the CRT-RSA key generation:

e(dp0M + dp1) = 1 (mod (p− 1))

which can be rewritten as

e(dp0M + dp1) = 1 + ℓ(p− 1)

with some integer ℓ. Since

ℓ =
edp − 1

p− 1
<

edp√
N/2

,

the absolute value of ℓ is bounded above by Nα+β−1/2 within a constant factor.

For the single LSBs partial key exposure attacks on CRT-RSA, Lu et al. [LZL14]

considered a modular polynomial

fLZL(x, y) := 1− edp1 + x(y − 1) (mod eM)
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whose root is (x, y) = (ℓ, p). They also used an additional variable z = q and the

Durfee-Nguyen technique [DN00]; yz = N , which Bleichenbacher and May [BM06]

first used to attack CRT-RSA. Absolute values of the root are bounded above by

X := Nα+β−1/2, Y := N1/2, Z := N1/2 within constant factors.

To solve a modular equation fLZL(x, y) = 0, they constructed a lattice whose basis

consists of the following shift-polynomials:

gLZL1
[i,j] (x, y, z) = xjzsfLZL(x, y)

i(eM)m−i,

gLZL2
[i,j] (x, y, z) = yjzsfLZL(x, y)

i(eM)m−i,

where s = ηm. These polynomials modulo (eM)m have the same root as the original

modular polynomial, i.e., gLZL1
[i,j] (ℓ, p, q) = 0 (mod (eM)m) and gLZL2

[i,j] (ℓ, p, q) = 0

(mod (eM)m). Then they collected shift-polynomials

gLZL1
[i,j] (x, y, z) for i = 0, 1, . . . ,m; j = 0, 1, . . . ,m− i,

gLZL2
[i,j] (x, y, z) for i = 0, 1, . . . ,m; j = 1, 2, . . . , t,

where t = τm in lattice bases. To reduce a determinant of the lattice, they multiply

the inverse of N modulo (eM)m. This operation eliminates the powers of N in

diagonals.

In [LZL14], Lu et al. computed a dimension of the lattice

n =
m∑
i=0

m−i∑
j=0

1 +
m∑
i=0

t∑
j=1

1 =

(
1

2
+ τ

)
m2 + o(m2),

and a determinant of the lattice det(L(B)) = (eM)seMXsXY sY ZsZ , where

seM =
m∑
i=0

m−i∑
j=0

(m− i) +
m∑
i=0

t∑
j=1

(m− i) =

(
1

3
+

τ

2

)
m3 + o(m3),

sX =
m∑
i=0

m−i∑
j=0

(i+ j) +
m∑
i=0

t∑
j=1

i =

(
1

3
+

τ

2

)
m3 + o(m3),

sY =

m∑
i=s

m−i∑
j=0

(i− s) +

m∑
i=0

t∑
j=max{1,s−i}

(i+ j − s)

=

(
(1 + τ − η)3

6
− (τ − η)3

6

)
m3 + o(m3),

sZ =
s∑

i=0

m−i∑
j=0

(s− i) +
s∑

i=0

s−i∑
j=1

(s− i− j) =
η2

2
m3 + o(m3).
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We should note that this computation has restrictions

η ≤ 1 and η ≤ τ.

The lattice yileds a condition XsXY sY ZsZ < (eM)mn−seM . Ignoring low order terms

of m, the condition becomes(
α+ β − 1

2

)(
1

3
+

τ

2

)
+

1

2

(
(1 + τ − η)3

6
− (τ − η)3

6
+

η2

2

)
< (α+ β − δ)

(
1

2
+ τ − 1

3
− τ

2

)
.

Optimizing parameters

η =
1− 2δ

2
and τ =

1− 4δ

2
,

they obtained the condition

24δ2 − 20δ + 7− 8(α+ β) > 0

which yields the bound

δ <
5−

√
48(α+ β)− 17

12
.

This bound is slightly better than that of Theorem 7. However, the bound is

not correct since the restriction η ≤ τ does not hold. Under the restriction, valid

optimized parameters are

η = τ =
1− 2δ

2
.

These parameters hold the restrictions η ≤ 1 and η ≤ τ . With the parameters, we

can obtain the valid condition

12δ2 − 20δ + 7− 8(α+ β) > 0

which yields the bound of Theorem 7;

δ <
5− 2

√
6(α+ β) + 1

6
.
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4.3.2 Attacks Based on the Jochemsz-May Basic Strategy

At first, we start from the attack which is based on the Jochemsz-May basic strategy.

The result is interesting since the lattice construction yields the second condition of

Theorem 6.

For the single MSBs partial key exposure attack on CRT-RSA, looking at CRT-RSA

key generation,

e(dp0M + dp1) = 1 + ℓ(p− 1)

with some integer ℓ whose absolute value is bounded above by Nα+β−1/2 within a

constant factor. We consider a polynomial over the integers

fsMSBs(x, y, z1) := csMSBs + ex+ y(z1 − 1)

whose root is (x, y, z1) = (−dp1 , ℓ, p) where csMSBs = 1− edp0M . If we can find two

polynomials which have the same roots over the integers as fsMSBs, we can recover

the roots. We also use an additional variable z2 = q and the Durfee-Nguyen tech-

nique [DN00]; z1z2 = N , which Bleichenbacher and May [BM06] and Lu et al. [LZL14]

used to attack CRT-RSA. Absolute values of the solution are bounded above by

X := Nδ, Y := Nα+β−1/2, Z1 := 2N1/2 within constant factors. For the notational

convenience, we also use Z2 := N/Z1. Notice that Z2 is not the upper bound of q.

Furthermore, Z2 is not an integer.

We set an integer

WsMSBs := Nα+β

since ∥fsMSBs(x, y, z1)∥∞ ≥ |csMSBs| ≈ Nα+β . Next, we set an integer

Rs1 := WsMSBs(XY )m−1Zm−1
1 Zk

2

= WsMSBs(XY )m−1Zm−k−1
1 Nk

with some integer m and k = ηm with a restriction

0 ≤ η ≤ 1

such that gcd(csMSBs, Rs1) = 1. We compute asMSBs1 = c−1
sMSBs (mod Rs1) and

f ′
sMSBs1(x, y, z1) := asMSBs1 · fsMSBs(x, y, z1) (mod Rs1).

Clearly, f ′
sMSBs1(x, y, z1) (mod Rs1) has the same root as fsMSBs(x, y, z1).
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Then we define a set of shift-polynomials gsMSBs1, gsMSBs2 and g′sMSBs1, g
′
sMSBs2

as

gsMSBs1 : xixyiyz
iz1−k
1 · f ′

sMSBs1(x, y, z1)X
m−1−ixY m−1−iyZ

m−1+k−iz1
1 Zk

2

for xixyiyz
iz1
1 ∈ Ss1,

gsMSBs2 : xixyiyz
k−iz1
2 · f ′

sMSBs1(x, y, z1)X
m−1−ixY m−1−iyZm−1

1 Z
iz1
2

for xixyiyz
iz1
1 ∈ Ss2,

g′sMSBs1 : xixyiyz
iz1−k
1 ·Rs1 for xixyiyz

iz1
1 ∈ Ms1\(Ss1 ∪ Ss2),

g′sMSBs2 : xixyiyz
k−iz1
2 ·Rs1 for xixyiyz

iz1
1 ∈ Ms2\(Ss1 ∪ Ss2),

for

S1 :=
{
xixyiyz

iz1
1 |xixyiyz

iz1
1 is a monomial of f ′

sMSBs1(x, y, z1)
m−1 and iz1 ≥ k

}
,

S2 :=
{
xixyiyz

iz1
1 |xixyiyz

iz1
1 is a monomial of f ′

sMSBs1(x, y, z1)
m−1 and iz1 < k

}
,

M1 :=

xixyiyz
iz1
1

∣∣∣∣ monomials of xi′xyi
′
yz

i′z1
1 · f ′

sMSBs1(x, y, z1)

for xi′xyi
′
yz

i′z1
1 ∈ Ss1 ∪ Ss2 and iz1 ≥ k

 ,

M2 :=

xixyiyz
iz1
1

∣∣∣∣ monomials of xi′xyi
′
yz

i′z1
1 · f ′

sMSBs1(x, y, z1)

for xi′xyi
′
yz

i′z1
1 ∈ Ss1 ∪ Ss2 and iz1 < k

 .

For shift-polynomials gsMSBs2, we eliminate the term z1z2 by using the Durfee-

Nguyen technique z1z2 = N . By definition, the set of indices are the same as:

Ss1 ⇔ ix = 0, 1, . . . ,m− 1− k; iy = k, k + 1, . . . ,m− 1− ix;

iz1 = k, k + 1, . . . ,m− 1− ix,

Ss2 ⇔ ix = 0, 1, . . . ,m− 1; iy = 0, 1, . . . ,m− 1− ix;

iz1 = 0, 1, . . . ,min{k − 1,m− 1− ix},

Ms1 ⇔ ix = 0, 1, . . . ,m− k; iy = k, k + 1, . . . ,m− ix; iz1 = k, k + 1, . . . ,m− ix,

Ms2 ⇔ ix = 0, 1, . . . ,m; iy = 0, 1, . . . ,m− ix; iz1 = 0, 1, . . . ,min{k − 1,m− ix}.

All these shift-polynomials gsMSBs1(x, y, z1, z2), gsMSBs2(x, y, z1, z2)

and g′sMSBs1(x, y, z1, z2), g
′
sMSBs2(x, y, z1, z2) modulo Rs1 have

the root (x, y, z1, z2) = (−dp1 , ℓ, p, q) which are the same as

fsMSBs(x, y, z1) and the definition of z2. In addition, all these shift-

polynomials gsMSBs1(xX, yY, z1Z1, z2Z2), gsMSBs2(xX, yY, z1Z1, z2Z2) and
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g′sMSBs1(xX, yY, z1Z1, z2Z2), g
′
sMSBs2(xX, yY, z1Z1, z2Z2) are divisible by

Xm−1Y m−1Zm−1
1 Zk

2 = Xm−1Y m−1Zm−k−1
1 Nk. We construct a lattice with

coefficient vectors of gsMSBs1(xX, yY, z1Z1, z2Z2), gsMSBs2(xX, yY, z1Z1, z2Z2) and

g′sMSBs1(xX, yY, z1Z1, z2Z2), g
′
sMSBs2(xX, yY, z1Z1, z2Z2) as the bases. We can

obtain two polynomials hs1(x, y, z1, z2) and hs2(x, y, z1, z2) from LLL outputs. Then,

h̃s1(x, y, z1) := zk1 · hs1(x, y, z1, z2) and h̃s2(x, y, z1) := zk1 · hs1(x, y, z1, z2), which

have the root (x, y, z1) = (−dp1 , ℓ, p) modulo Rs1 · pk, have the root over the integers

if the polynomials satisfy Howgrave-Graham’s Lemma. In addition, the polynomials

h̃s1(xX, yY, z1Z1) and h̃s2(xX, yY, z1Z1) with a common divisorXm−1Y m−1Zm−1
1 Nk

are algebraically independent of fsMSBs(x, y, z1) if they contradict to Hinek-Stinson’s

Lemma. Based on the Jochemsz-May basic strategy [JM06], the conditions can be

written as

X
m3

6 +o(m3)Y
m3

3 +o(m3)Z
(1−η)3

6 m3+o(m3)
1 Z

(
η2

2 − η3

6

)
m3+o(m3)

2 < W
m3

6 +o(m3)

sMSBs .

Ignoring low order terms of m, and the condition becomes

δ · 1
6
+

(
α+ β − 1

2

)
· 1
3
+

1

2
·
(
(1− η)3

6
+

η2

2
− η3

6

)
< (α+ β) · 1

6
.

The detailed calculation will be discussed later. We optimize the parameter

η = 1− 1√
2

which satisfies 0 ≤ η ≤ 1 and obtain the condition,

α+ β + δ <
1√
2
.

The condition corresponds to the second condition of Theorem 6.

4.3.3 Attacks Based on the Jochemsz-May Extended Strategy

Next, we show our lattice construction based on the Jochemsz-May extended strategy.

The lattice construction enables us to solve the equation fsMSBs(x, y, z1) = 0 for

larger α+ β and yields the condition of Theorem 8.

We set an integer

Rs2 := WsMSBs(XY )m−1Zm−1+t
1 Zk

2

= WsMSBs(XY )m−1Zm−1−k+t
1 Nk
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with some integers m, k = ηm, and t = τm with restrictions

0 ≤ τ ≤ η ≤ 1

such that gcd(csMSBs, Rs2) = 1. We compute asMSBs2 and

f ′
sMSBs2(x, y, z1) := asMSBs2 · fsMSBs(x, y, z1) (mod Rs2)

as in the basic strategy and define a set of shift-polynomials gsMSBs3, gsMSBs4 and

g′sMSBs3, g
′
sMSBs4 as

gsMSBs3 : xixyiyz
iz1−k
1 · f ′

sMSBs2(x, y, z1)X
m−1−ixY m−1−iyZ

m−1+k+t−iz1
1 Zk

2

for xixyiyz
iz1
1 ∈ Ss3,

gsMSBs4 : xixyiyz
k−iz1
2 · f ′

sMSBs2(x, y, z1)X
m−1−ixY m−1−iyZm−1+t

1 Z
iz1
2

for xixyiyz
iz1
1 ∈ Ss4,

g′sMSBs3 : xixyiyz
iz1−k
1 ·Rs2 for xixyiyz

iz1
1 ∈ Ms3\(Ss3 ∪ Ss4),

g′sMSBs4 : xixyiyz
k−iz1
2 ·Rs2 for xixyiyz

iz1
1 ∈ Ms4\(Ss3 ∪ Ss4),

for

Ss3 :=
∪

0≤j≤t

{
xixyiyz

iz1+j
1

∣∣∣∣ xixyiyz
iz1
1 is a monomial of f ′

sMSBs2(x, y, z1)
m−1

for iz1 ≥ k

}
,

Ss4 :=
∪

0≤j≤t

{
xixyiyz

iz1+j
1

∣∣∣∣ xixyiyz
iz1
1 is a monomial of f ′

sMSBs2(x, y, z1)
m−1

for iz1 < k

}
,

Ms3 :=

xixyiyz
iz1
1

∣∣∣∣ monomials of xi′xyi
′
yz

i′z1
1 · f ′

sMSBs2(x, y, z1)

for xi′xyi
′
yz

i′z1
1 ∈ Ss3 ∪ Ss4 and iz1 ≥ k

 ,

Ms4 :=

xixyiyz
iz1
1

∣∣∣∣ monomials of xi′xyi
′
yz

i′z1
1 · f ′

sMSBs2(x, y, z1)

for xi′xyi
′
yz

i′z1
1 ∈ Ss3 ∪ Ss4 and iz1 < k

 .

For shift-polynomials gsMSBs4, we eliminate the term z1z2 by using the Durfee-

Nguyen technique z1z2 = N . By definition, the set of indices are the same as:

Ss3 ⇔ ix = 0, 1, . . . ,m− 1− k + t; iy = k − t, k − t+ 1, . . . ,m− 1− ix;

iz1 = k, k + 1, . . . ,m− 1 + t− ix,

Ss4 ⇔ ix = 0, 1, . . . ,m− 1; iy = 0, 1, . . . ,m− 1− ix;
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iz1 = 0, 1, . . . ,min{k − 1,m− 1 + t− ix},

Ms3 ⇔ ix = 0, 1, . . . ,m− k + t; iy = k − t, k − t+ 1, . . . ,m− ix;

iz1 = k, k + 1, . . . ,m+ t− ix,

Ms4 ⇔ ix = 0, 1, . . . ,m; iy = 0, 1, . . . ,m− ix; iz1 = 0, 1, . . . ,min{k − 1,m+ t− ix}.

All these shift-polynomials gsMSBs3(x, y, z1, z2), gsMSBs4(x, y, z1, z2)

and g′sMSBs3(x, y, z1, z2), g
′
sMSBs4(x, y, z1, z2) modulo Rs1 have

the root (x, y, z1, z2) = (−dp1 , ℓ, p, q) which are the same as

fsMSBs(x, y, z1) and the definition of z2. In addition, all these shift-

polynomials gsMSBs3(xX, yY, z1Z1, z2Z2), gsMSBs4(xX, yY, z1Z1, z2Z2) and

g′sMSBs3(xX, yY, z1Z1, z2Z2), g
′
sMSBs4(xX, yY, z1Z1, z2Z2) are divisible by

Xm−1Y m−1Zm−1
1 Zk

2 = Xm−1Y m−1Zm−k+t−1
1 Nk. We construct a lattice with

coefficient vectors of gsMSBs3(xX, yY, z1Z1, z2Z2), gsMSBs4(xX, yY, z1Z1, z2Z2) and

g′sMSBs3(xX, yY, z1Z1, z2Z2), g
′
sMSBs4(xX, yY, z1Z1, z2Z2) as the bases. We can

obtain two polynomials hs3(x, y, z1, z2) and hs4(x, y, z1, z2) from LLL outputs.

Then, h̃s3(x, y, z1) := zk1 · hs3(x, y, z1, z2) and h̃s4(x, y, z1) := zk1 · hs4(x, y, z1, z2),

which have the root (x, y, z1) = (−dp1 , ℓ, p) modulo Rs2 · pk, have the root over

the integers if the polynomials satisfy Howgrave-Graham’s Lemma. In addition,

the polynomials h̃s3(xX, yY, z1Z1) and h̃s4(xX, yY, z1Z1) with a common divisor

Xm−1Y m−1Zm−1+t
1 Nk are algebraically independent of fsMSBs(x, y, z1) if they

contradict to Hinek-Stinson’s Lemma. Based on the Jochemsz-May extended

strategy [JM06], the conditions can be written as

X( 1
6+

τ
2 )m

3+o(m3)Y ( 1
3+

τ
2 )m

3+o(m3)Z
(1+τ−η)3

6 m3+o(m3)
1 Z

(
η2

2 − (η−τ)2

6

)
m3+o(m3)

2

< W
( 1

6+
τ
2 )m

3+o(m3)

sMSBs

by computing

sX =

m∑
i=0

m−i∑
j=0

(m− i− j) +

m∑
i=0

t∑
j=1

(m− i) =

(
1

6
+

τ

2

)
m3 + o(m3),

sY =
m∑
i=0

m−i∑
j=0

(i+ j) +
m∑
i=0

t∑
j=1

i =

(
1

3
+

τ

2

)
m3 + o(m3),

sZ1 =
m∑
i=s

m−i∑
j=0

(i− s) +
m∑

i=s−t

t∑
j=s−t−i

(i+ j − s) =
(1 + τ − η)3

6
m3 + o(m3),
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sZ2 =
s∑

i=0

m−i∑
j=0

(s− i) +
s∑

i=0

min{t,s−i}∑
j=1

(s− i− j) =

(
η2

2
− (η − τ)2

6

)
m3 + o(m3),

|S| =
m−1∑
ix=0

m−1−ix∑
iy=0

m−1+t−ix∑
iz1=0

1 =

(
1

6
+

τ

2

)
m3 + o(m3).

Ignoring low order terms of m, the condition becomes

δ ·
(
1

6
+

τ

2

)
+

(
α+ β − 1

2

)
·
(
1

3
+

τ

2

)
+

1

2
·
(
(1 + τ − η)3

6
+

η2

2
− (η − τ)2

6

)
< (α+ β) ·

(
1

6
+

τ

2

)
.

Let τ = 0 and we can obtain the condition based on the Jochemsz-May basic strategy.

To recover a larger root, we optimize the parameter

η =
1− 2δ

2
and τ =

√
1− 4δ − 2δ

2

and obtain the condition,

−5 + 8(α+ β) + 8δ − 12δ2 − 2(1− 4δ)
√
1− 4δ < 0.

Note that the restriction τ ≤ η ≤ 1 always holds. The restriction 0 ≤ τ holds only

when δ ≤ 1/
√
2 − 1/2. However, the condition always holds for α + β > 1/2, which

is the smallest choice of α+ β for CRT-RSA.

4.4 Double Partial Key Exposure Attacks on CRT-RSA by

Solving Integer Equations

For double MSBs/LSBs partial key exposure attacks on CRT-RSA, we obtain the

following result.

Theorem 9 (Double MSBs/LSBs). Let 1/2 < α+ β ≤ 3/2. For double MSBs/LSBs

partial key exposure attacks on CRT-RSA, when

δ <
(18− 12(α+ β))τ2 + (20− 16(α+ β))τ + 5− 4(α+ β)

24τ3 + 54τ2 + 40τ + 10
for

15

16
< α+ β <

3

2
,

δ <
5− 4(α+ β)

10
,

δ <
(12− 24(α+ β))τ3 + (27− 30(α+ β))τ2 + (20− 16(α+ β))τ + 5− 4(α+ β)

36τ2 + 40τ + 10
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for
1

2
< α+ β <

15

26
,

hold for some τ > 0, then public RSA modulus N can be factorized in polynomial

time.

Note that the second condition is vaild when 1/2 ≤ α + β ≤ 5/4 and better than

the other conditions when 15/26 ≤ α+ β ≤ 15/16.

4.4.1 Attacks Based on the Jochemsz-May Basic Strategy

As in a previous section, we start from the Jochemsz-May basic strategy. The lattice

construction yields the second condition of Theorem 9.

Recall the CRT-RSA key generation,

edp = 1 + ℓp(p− 1) and edq = 1 + ℓq(q − 1)

with some integers ℓp, ℓq ≈ Nα+β−1/2. We multiply following two equations

edp − 1− ℓp = ℓpp and edq − 1− ℓq = ℓqq,

and obtain

e2dpdq + edp(ℓq − 1) + edq(ℓp − 1)− (N − 1)ℓpℓq − (ℓp + ℓq − 1) = 0.

For the double MSBs partial key exposure attack on CRT-RSA, let

dp = dp0M + dp1 and dq = dq0M + dq1

and obtain

e2(dp0M + dp1)(dq0M + dq1) + e(dp0M + dp1)(ℓq − 1)

+ e(dq0M + dq1)(ℓp − 1)− (N − 1)ℓpℓq − (ℓp + ℓq − 1) = 0.

Then we consider the following polynomial over the integers:

fdMSBs(x1, x2, y1, y2) =e2x1x2 + (e2dq0M − e)x1 + (e2dp0M − e)x2 + ex1y2 + ex2y1

+ (edq0M − 1)y1 + (edp0M − 1)y2 − (N − 1)y1y2 + cdMSBs

whose root is (x1, x2, y1, y2) = (dp1 , dq1 , ℓp, ℓq) where cdMSBs = e2dp0dq0M
2−edp0M−

edq0M + 1. Absolute of the root are bounded above by X1 := Nδ, X2 := Nδ, Y1 :=

Nα+β−1/2, Y2 := Nα+β−1/2 within constant factors.
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We set an integer

WdMSBs := N2(α+β)

since ∥fdMSBs(x1, x2, y1, y2)∥∞ ≥ |(N − 1)y1y2| ≈ N2(α+β). Note that

fdMSBs(x1, x2, y1, y2) has the same monomials as the polynomial which Jochemsz and

May considered in [JM07]. Therefore, we use the same lattice construction as [JM07].

We set an integer

Rd1 := WdMSBs(X1X2Y1Y2)
m−1

with some integer m such that gcd(cdMSBs, Rd1) = 1. We compute adMSBs1 =

c−1
dMSBs (mod Rd1) and compute

f ′
dMSBs1(x1, x2, y1, y2) := adMSBs1 · fdMSBs(x1, x2, y1, y2) (mod Rd1).

We define a set of shift-polynomials gdMSBs1 and g′dMSBs1 as

gdMSBs1 :x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2

· f ′
dMSBs1(x1, x2, y1, y2)X

m−1−ix1
1 X

m−1−ix2
2 Y

m−1−iy1
1 Y

m−1−iy2
2

for x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd1,

g′dMSBs1 :x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ·Rd1 for x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Md1\Sd1,

for

Sd1 :=

{
x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2

∣∣∣∣ x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 is a monomial of

f ′
dMSBs1(x1, x2, y1, y2)

m−1

}
,

Md1 :=

{
monomials of

x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · f ′

dMSBs1(x1, x2, y1, y2)

∣∣∣∣ xix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd1

}
.

By definition, the set of indices are the same as:

Sd1 ⇔ ix1 = 0, 1, . . . ,m− 1− iy1 ; ix2 =; 0, 1, . . . ,m− 1− iy2 ; iy1 = 0, 1, . . . ,m− 1;

iy2 = 0, 1, . . . ,m− 1,

Md1 ⇔ ix1 = 0, 1, . . . ,m− iy1 ; ix2 =; 0, 1, . . . ,m− iy2 ; iy1 = 0, 1, . . . ,m;

iy2 = 0, 1, . . . ,m.

Shift-polynomials gdMSBs1 and g′dMSBs1 modulo Rd1 have the root (x1, x2, y1, y2) =

(dp1 , dq1 , ℓp, ℓq) which are the same as fdMSBs(x1, x2, y1, y2). We con-

struct a lattice with coefficient vectors of gdMSBs1(x1X1, x2X2, y1Y1, y2Y2) and
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g′dMSBs1(x1X1, x2X2, y1Y1, y2Y2) as the bases. Based on the Jochemsz-May strat-

egy [JM06], LLL outputs three short lattice vectors which satisfy Howgrave-Graham’s

Lemma when

(X1X2)
5
12m

4+o(m4)(Y1Y2)
5
12m

4+o(m4) < W
1
4m

4+o(m4)

dMSBs .

Ignoring low order terms of m, the condition becomes

δ · 2 · 5

12
+

(
α+ β − 1

2

)
· 2 · 5

12
< 2(α+ β) · 1

4
,

that is,

δ <
5− 4(α+ β)

10
.

The detailed calculation is discussed later.

4.4.2 Attacks Based on the Jochemsz-May Extended Strategy

Next, we show our lattice construction based on the Jochemsz-May extended strategy.

The lattice construction enables us to solve the equation fdMSBs(x1, x2, y1, y2) = 0

for larger α+ β and yields the condition of Theorem 9.

We set an integer

Rd2 := WdMSBs(X1X2)
m−1+t(Y1Y2)

m−1

with some integers m and t = τm such that gcd(cdMSBs, Rd2) = 1. We compute

adMSBs2 = c−1
dMSBs (mod Rd2) and

f ′
dMSBs2(x1, x2, y1, y2) := adMSBs2 · fdMSBs(x1, x2, y1, y2) (mod Rd2)

as in the basic strategy. We define a set of shift-polynomials gdMSBs2 and g′dMSBs2

as

gdMSBs2 :x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · f ′

dMSBs2(x1, x2, y1, y2)X
m−1+t−ix1
1 X

m−1+t−ix2
2 ·

Y
m−1−iy1
1 Y

m−1−iy2
2 for x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd2,

g′dMSBs2 :x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ·Rd2 for x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Md2\Sd2,

for

Sd2 :=
∪

0≤j1,j2≤t

{
x
ix1+j1
1 x

ix2+j2
2 y

iy1
1 y

iy2
2

∣∣∣∣ x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 is a monomial of

f ′
dMSBs2(x1, x2, y1, y2)

m−1

}
,
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Md2 :=

{
monomials of

x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · f ′

dMSBs2(x1, x2, y1, y2)

∣∣∣∣ xix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd2

}
.

By definition, the set of indices are the same as:

Sd2 ⇔ ix1 = 0, 1, . . . ,m− 1 + t− iy1 ; ix2 =; 0, 1, . . . ,m− 1 + t− iy2 ;

iy1 = 0, 1, . . . ,m− 1; iy2 = 0, 1, . . . ,m− 1,

Md2 ⇔ ix1 = 0, 1, . . . ,m+ t− iy1 ; ix2 =; 0, 1, . . . ,m+ t− iy2 ; iy1 = 0, 1, . . . ,m;

iy2 = 0, 1, . . . ,m.

Shift-polynomials gdMSBs2 and g′dMSBs2 modulo Rd2 have the root (x1, x2, y1, y2) =

(dp1 , dq1 , ℓp, ℓq) which are the same as fdMSBs(x1, x2, y1, y2). We con-

struct a lattice with coefficient vectors of gdMSBs2(x1X1, x2X2, y1Y1, y2Y2) and

g′dMSBs2(x1X1, x2X2, y1Y1, y2Y2) as the bases. Based on the Jochemsz-May strat-

egy [JM06], LLL outputs three short lattice vectors which satisfy Howgrave-Graham’s

Lemma when*1

(X1X2)
(τ2+ 9

4 τ
2+ 5

3 τ+
5
12 )m

4+o(m4)(Y1Y2)
( 3
2 τ

2+ 5
3 τ+

5
12 )m

4+o(m4) < W
(τ2+τ+ 1

4 )m
4+o(m4)

dMSBs .

Ignoring low order terms of m, the condition becomes

δ · 2 ·
(
τ2 +

9

4
τ2 +

5

3
τ +

5

12

)
+

(
α+ β − 1

2

)
· 2 ·

(
3

2
τ2 +

5

3
τ +

5

12

)
< 2(α+ β) ·

(
τ2 + τ +

1

4

)
,

that is,

δ <
(18− 12(α+ β))τ2 + (20− 16(α+ β))τ + 5− 4(α+ β)

24τ3 + 54τ2 + 40τ + 10
.

The condition becomes the same as the first condition of Theorem 9.

Next, we show how to obtain the third condition of Theorem 9. To solve the

equation fdMSBs(x1, x2, y1, y2) = 0, we set an integer

Rd3 := WdMSBs(X1X2)
m−1(Y1Y2)

m−1+t

with some integer m and t = τm such that gcd(cdMSBs, Rd3) = 1. We compute

adMSBs3 = c−1
dMSBs (mod Rd3) and

f ′
dMSBs3(x1, x2, y1, y2) := adMSBs3fdMSBs(x1, x2, y1, y2) (mod Rd3).

*1 In this paper, we omit the calculation since that is the same as [JM07]. See the paper for

detailed calculation.
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We define a set of shift-polynomials gdMSBs3 and g′dMSBs3 as

gdMSBs3 :x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · f ′

dMSBs3(x1, x2, y1, y2)X
m−1−ix1
1 X

m−1−ix2
2 ·

Y
m−1+t−iy1
1 Y

m−1+t−iy2
2 for x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd3,

g′dMSBs3 :x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ·Rd3 for x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Md3\Sd3,

for

Sd3 :=
∪

0≤j1,j2≤t

{
x
ix1
1 x

ix2
2 y

iy1+j1
1 y

iy2+j2
2

∣∣∣∣ x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 is a monomial of

f ′
dMSBs3(x1, x2, y1, y2)

m−1

}
,

Md3 :=

{
monomials of

x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · f ′

dMSBs3(x1, x2, y1, y2)

∣∣∣∣ xix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd3

}
.

By definition, the set of indices is the same as:

Sd3 ⇔ ix1 = 0, 1, . . . ,m− 1− iy1 ; ix2 =; 0, 1, . . . ,m− 1− iy2 ;

iy1 = 0, 1, . . . ,m− 1 + t; iy2 = 0, 1, . . . ,m− 1 + t,

Md3 ⇔ ix1 = 0, 1, . . . ,m− iy1 ; ix2 =; 0, 1, . . . ,m− iy2 ; iy1 = 0, 1, . . . ,m+ t;

iy2 = 0, 1, . . . ,m+ t.

Shift-polynomials gdMSBs3 and g′dMSBs3 modulo Rd3 have the root (x1, x2, y1, y2) =

(dp1 , dq1 , ℓp, ℓq) which is the same as fdMSBs(x1, x2, y1, y2). We con-

struct a lattice with coefficient vectors of gdMSBs3(x1X1, x2X2, y1Y1, y2Y2) and

g′dMSBs3(x1X1, x2X2, y1Y1, y2Y2) as the bases. Based on the Jochemsz-May strat-

egy [JM06], LLL outputs three short lattice vectors which satisfy Howgrave-Graham’s

Lemma when*2

(X1X2)
(τ2+ 9

4 τ
2+ 5

3 τ+
5
12 )m

4+o(m4)(Y1Y2)
( 3
2 τ

2+ 5
3 τ+

5
12 )m

4+o(m4) < W
(τ2+τ+ 1

4 )m
4+o(m4)

dMSBs .

The condition becomes the same as the third condition of Theorem 9.

4.5 Single Partial Key Exposure Attacks on CRT-RSA by

Solving Modular Equations

In this section, we further improve a single partial key exposure attack on CRT-RSA

with the least significant bits and obtain the following result.

*2 In this paper, we omit the calculation since that is the same as [JM07]. See the paper for

detailed calculation.
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Table 4.1. The comparison of recoverable δ for each attack.

α Ours [TK15] [LZL14]

0 0.25 0.207106 0.25

0.025 0.192823 0.184571 0.185591

0.05 0.170887 0.16529 0.157196

0.075 0.152602 0.148005 0.132106

0.1 0.135829 0.132125 0.107106

0.125 0.120241 0.11731 0.082106

0.15 0.105616 0.103344 0.057106

0.175 0.091797 0.090077 0.032106

0.2 0.078663 0.0774 0.007106

0.225 0.066120 0.065229 0.003794

0.25 0.054097 0.053501 0

0.275 0.042532 0.0421655 –

0.3 0.031378 0.0311793 –

0.325 0.020593 0.0205082 –

0.35 0.010144 0.0101234 –

0.375 0 0 –

Theorem 10. Let N = pq be a public RSA modulus where the prime factors p and

q are the same bit-size. Let e ≈ Nα denote a public exponent and dp ≈ N0.5 denote

a CRT exponent such that edp = 1 (mod (p − 1)). Given the public elements (N, e)

as well as d̃p > N0.5−δ which is the least significant bits of a CRT exponent. If

• δ < 5−2
√
1+14α
14 for 1

18 < α ≤ 3
8 , or

• η
(
α(1− 2(δ − α))− δ (1− 4(δ − α))

2
)
+α(δ−α)(1 + 2α− 4δ) < 0 where η =

2δ(1−4(δ−α))+2
√

δ(δ−α)(1+2α−8δ(1−2δ+2α))

1−2(δ−α) for 0 < α ≤ 1
18 ,

then the public modulus N can be factorized in polynomial time.

For the improvement, we solve the same modular equation as Lu et al. where the

analysis was written in Section 4.3.1. We obtain the result by designing better lattices
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to solve the equation. In Section 4.5.1, we observe corrected Lu et al.’s lattice which

we studied in Section 4.3.1.

4.5.1 Observation of the Lu et al. Lattice

Let d′p and d̃p be the most/least significant bits of dp, respectively. As we defined

above, d̃p > N0.5−δ and d′p < Nδ. Then the CRT-exponent can be rewritten as

dp = d′pM + d̃p where M ≈ N0.5−δ. To thwart the Jochemsz-May attack [JM07], we

only consider the case dp ≈ N0.5 in this section and omit the analysis of the other

case since the generalization is almost trivial. The key generation can be written as

e
(
d′pM + d̃p

)
= 1 + ℓ(p− 1)

with some integer ℓ. Lu et al. [LZL14] formulated the following equation:

1− ed̃p − eMx− y = 0 (mod p)

whose solution is (x, y) = (d′p, ℓ). There are two algorithms known to solve the equa-

tion due to Herrmann and May [HM08], and Takayasu and Kunihiro [TK14d]. Her-

rmann and May’s algorithm is based on the Jochemsz-May strategy whereas Takayasu

and Kunihiro’s algorithm is not. The latter algorithm works for larger δ than the for-

mer algorithm for small α; when α ≈ 0, the latter algorithm works for δ < 1/4 and the

former algorithm works for δ < (
√
2− 1)/2 = 0.20710 · · · . The fact shows that when

we can construct a better attack which cannot be obtained by the Jochemsz-May

strategy, it works with less partial information for the same α.

Lu et al., Takayasu and Kunihiro formulated the following equation

1− ed̃p + x(y − 1) = 0 (mod eM)

whose solution is (x, y) = (ℓ, p). They solved the equation where the lattice construc-

tion is based on the Jochemsz-May strategy as the Herrmann-May. However, the

formulation affects the resulting attack condition. The latter attack works for large

α than the former attack; when δ ≈ 0, the latter algorithm works for α < 3/8 and

the former attack works for α < (
√
2 − 1)/2 = 0.20710 · · · . The fact shows that the

latter formulation, i.e., mod eM equation, yields the attacks which work for larger α

than the former equation, i.e., mod p equation.

Our improved attack in this section is constructed by solving the mod eM equation

and the lattice does not follow the Jochemsz-May strategy. The improvement is

reasonable from the above discussion. Although we solve the same mod eM equation,
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Lu et al.’s attack is based on the Jochemsz-May strategy. Hence, our attack works

for larger δ than the previous attack. Although Lu et al.’s modulo p attack with

the Takayasu-Kunihiro attack is not based on the Jochemsz-May strategy, our attack

works for larger α than the previous attack. Therefore, our attack is better than the

previous best attacks for all α.

Lu et al. constructed a lattice whose basis consists of polynomials which have

the same root as the original polynomial modulo (eM)m. We want to analyze

the validity of the lattice construction by considering the helpful polynomials strat-

egy [May10, TK14d]. Based on the strategy, as many helpful polynomials (which have

diagonals whose sizes are smaller than (eM)m) as possible should be selected and as

few unhelpful polynomials (which have diagonals whose sizes are larger than (eM)m)

as possible should be eliminated as long as a basis matrix to be triangular.

Then we observe the corrected Lu et al. lattice after the parameter optimization.

There are polynomials with diagonals

• Xi+jY i−s(eM)m−i for i = s, s+ 1, . . . ,m; j = 0, 1, . . . ,m− i,

• Xi+jZs−i(eM)m−i for i = 0, 1, . . . , s− 1; j = 0, 1, . . . ,m− i,

• XiY i+j−s(eM)m−i for i = s− t, s− t+1, . . . ,m; j = s− t− i, s− t− i+1, . . . , t,

• XiZs−i−j(eM)m−i for i = 0, 1, . . . , s− 1; j = 1, 2, . . . ,min{t, s− i}.

We focus on the bottom two families of polynomials, i.e., g′[i,j](x, y, z). The lattice

basis does not contain as many helpful polynomials as possible since when polynomials

g′[i,j](x, y, z) for i =1, 2, . . . , s− 1; j = s− i

are added in the basis, the corresponding diagonals become

• Xi(eM)m−i for i = 1, 2, . . . , s− 1

and

Xi(eM)m−i = N(α+ 1
2−δ)m−( 1

2−δ)i < N(α+ 1
2−δ)m = (eM)m.

Similarly, the lattice basis contains some unhelpful polynomials which do not con-

tribute for the basis matrix to be triangular since the basis matrix is still triangular

without polynomials

g′[i,j](x, y, z) for i =

⌈
1−

√
1− 4δ

4δ
m

⌉
,

⌈
1−

√
1− 4δ

4δ
m

⌉
+ 1 . . . ,m; j = t

whose corresponding diagonals are
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• XiY i+t−s(eM)m−i for i = ⌈ 1−
√
1−4δ
4δ m⌉, ⌈ 1−

√
1−4δ
4δ m⌉+ 1, . . . ,m

and the following inequality holds:

XiY i+t−s(eM)m−i = N(α+ 1
2−δ)m+δi− 1

2 (s−t) > N(α+ 1
2−δ)m = (eM)m.

Notice that

δi− 1

2
(s− t) = δi− 1

2

(
1− 2δ

2
−

√
1− 4δ − 2δ

2

)
m = δ

(
i− 1−

√
1− 4δ

4δ
m

)
> 0

for all i =
⌈
1−

√
1−4δ
4δ m

⌉
,
⌈
1−

√
1−4δ
4δ m

⌉
+ 1, . . . ,m.

The above examples are not all the helpful polynomials which are not selected and

all the unhelpful polynomials which are selected. Hence, if we can construct more

appropriate lattices, the resulting attack condition can be improved.

4.5.2 Improved Lattice Construction for 1/18 < α ≤ 3/8

Based on the above observation, we construct more appropriate lattices than Lu et

al. More concretely, we select all helpful g′[i,j](x, y, z) for i + j ≥ s and do not select

any unhelpful g′[i,j](x, y, z) for i+ j ≥ s.

At first, we analyze which g′[i,j](x, y, z) for i + j ≥ s are helpful or not. As we

explained, the corresponding diagonals areXiY i+j−s(eM)m−i. Then the polynomials

are helpful when

XiY i+j−s(eM)m−i < (eM)m ⇔ αi+
1

2
(i+ j − s) <

(
α+

1

2
− δ

)
i

⇔ j < s− 2δi.

Therefore, we collect the following shift-polynomials:

g[i,j](x, y, z) for i = 0, 1, . . . ,m; j = 0, 1, . . . ,m− i and

g′[i,j](x, y, z) for i = 0, 1, . . . ,m; j = 1, 2, . . . , ⌊s− 2δi⌋

in a lattice basis. Here, we do not take into account if polynomials g[i,j](x, y, z) and

g′[i,j](x, y, z) for i+j < s are helpful or not, however, these polynomials contribute the

basis matrix to be triangular. Hence, we use the above collection of shift-polynomials

only when η > 2δ. Otherwise, polynomials g[i,j](x, y, z) for i + j > η
2δm do not

contribute the basis matrix to be triangular. We will analyze the other case in the

next section.
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We compute the resulting attack condition. A dimension n and a determinant of

the lattice det(L(B)) = XsXY sY ZsZ (eM)seM are computed by

n =

m∑
i=0

m−i∑
j=0

1 +

m∑
i=0

⌊s−2δi⌋∑
j=1

1 =

(
1

2
− δ + η

)
m2 + o(m2),

sX =

m∑
i=0

m−i∑
j=0

(i+ j) +

m∑
i=0

⌊s−2δi⌋∑
j=1

i =

(
1− 2δ

3
+

η

2

)
m3 + o(m3),

sY =

m∑
i=s

m−i∑
j=0

(i− s) +

m∑
i=0

⌊s−2δi⌋∑
j=max{s−i+1,0}

(i+ j − s) =
(1− 2δ)2

6
m3 + o(m3),

sZ =

s−1∑
i=0

m−i∑
j=0

(s− i) +

s−1∑
i=0

s−i∑
j=0

(s− i− j) =
η2

2
m3 + o(m3),

seM =

m∑
i=0

m−i∑
j=0

(m− i) +

m∑
i=0

⌊s−2δi⌋∑
j=1

(m− i) =

(
1− δ

3
+

η

2

)
m3 + o(m3).

LLL outputs short lattice vectors and the corresponding polynomials satisfies

Howgrave-Graham’s Lemma when XsXY sY ZsZ (eM)seM < (eM)mn. Ignoring low

order terms of m, the condition becomes

α

(
1− 2δ

3
+

η

2

)
+

1

2

(
(1− 2δ)2

6
+

η2

2

)
<

(
α+

1

2
− δ

)(
1

6
− 2δ

3
+

η

2

)
.

To maximize the right hand side of the inequality, we set the parameter η to be a

solution of

α
1

2
+

1

2
η =

(
α+

1

2
− δ

)
1

2
,

that is,

η =
1− 2δ

2
.

By substituting the parameter, the above attack condition becomes

7(1− 2δ)2 − 4(1− 2δ)− 8(α+ 1/2) + 4 > 0.

Therefore, the attack works when

δ <
5− 2

√
1 + 14α

14

as required.
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Notice that the attack works only when 1−2δ
2 > 2δ, that leads to δ < 1

6 and

equivalent to

α >
1

18
.

4.5.3 Improved Lattice Construction for 0 < α ≤ 1/18

In this section, we propose an improved attack for 0 < α ≤ 1/18, i.e., the second

condition of Theorem 10. We defined the collection of shift-polynomials in Section

4.2 by analyzing if polynomials g′[i,j](x, y, z) for i + j ≥ s are helpful or not. As we

explained, we use the lattice only when η > 2δ. Otherwise, polynomials g[i,j](x, y, z)

for i+ j > s
2δ do not contribute the basis matrix to be triangular.

To improve the attack for 0 < α ≤ 1/18, we analyze which polynomials g[i,j](x, y, z)

for i + j > s
2δ and i ≥ s are helpful or not. As we explained, the corresponding

diagonals are Xi+jY i−s(eM)m−i. Then the polynomials are helpful when

Xi+jY i−s(eM)m−i < (eM)m ⇔ α(i+ j) +
1

2
(i− s) <

(
α+

1

2
− δ

)
i

⇔ j <
s− 2δi

2α
.

Therefore, we collect the following shift-polynomials:

g[i,j](x, y, z) for i = 0, 1, . . . , ⌊ s

2δ
⌋; j = 0, 1, . . . ,min

{
m− i, ⌊s− 2δi

2α
⌋
}

and

g′[i,j](x, y, z) for i = 0, 1, . . . , ⌊ s

2δ
⌋; j = 1, 2, . . . , ⌊s− 2δi⌋

in a lattice basis. Here, we do not take into account if polynomials g[i,j](x, y, z) for

i + j > s
2δ and i ≤ s are helpful or not, however, these polynomials contribute the

basis matrix to be triangular.

We compute the resulting attack condition. A dimension n and a determinant of

the lattice det(L(B)) = XsXY sY ZsZ (eM)seM are computed by

n =

⌊ s
2δ ⌋∑
i=0

min{m−i,⌊ s−2δi
2α ⌋}∑

j=0

1 +

⌊ s
2δ ⌋∑
i=0

⌊s−2δi⌋∑
j=1

1

=

(
α

2(δ − α)

(
1− η

2δ

)(2δ − α

α
· η

2δ
− 1

)
+

1 + 2δ

2

( η

2δ

)2)
m2 + o(m2),

sX =

⌊ s
2δ ⌋∑
i=0

min{m−i,⌊ s−2δi
2α ⌋}∑

j=0

(i+ j) +

⌊ s
2δ ⌋∑
i=0

⌊s−2δi⌋∑
j=1

i
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=
α

δ − α

(
1− η

2δ

)(
−1

3
+

(
δ

2α
− 1

3

)
η

2δ
+

(
δ

2α
− 1

3

)( η

2δ

)2)
m3

+
1 + δ

3

( η

2δ

)3
m3 + o(m3),

sY =

⌊ s
2δ ⌋∑
i=s

min{m−i,⌊ s−2δi
2α ⌋}∑

j=0

(i− s) +

⌊ s
2δ ⌋∑
i=0

⌊s−2δi⌋∑
j=max{s−i+1,0}

(i+ j − s)

=
α2

2(δ − α)2

(
1− η

2δ

)(1

3
+

(
1

3
− δ(1 + 2α− 2δ)

α

)
η

2δ

)
m3

+
α2

2(δ − α)2

(
1− η

2δ

)( η

2δ

)2(1

3
− δ(1 + 2α− 2δ)

α
+

δ2(1 + 2α− 2δ)2

α2

)
m3

+
(1− 2δ)2

6

( η

2δ

)3
m3 + o(m3),

sZ =
s−1∑
i=0

m−i∑
j=0

(s− i) +
s−1∑
i=0

s−i∑
j=1

(s− i− j) =
η2

2
m3 + o(m3),

seM =

⌊ s
2δ ⌋∑
i=0

min{m−i,⌊ s−2δi
2α ⌋}∑

j=0

(m− i) +

⌊ s
2δ ⌋∑
i=0

⌊s−2δi⌋∑
j=1

(m− i)

=nm−
(
1 + δ

3
−
(
1

6

)( η

2δ

)3
+

α2

6(δ − α)2

(
1− η

2δ

))
m3

+
α2

6(δ − α)2
· η

2δ

(
1− η

2δ

)(3δ − α

α
− α2 − 3αδ + 3δ2

α2
· η

2δ

)
m3 + o(m3).

LLL outputs short lattice vectors and the corresponding polynomials satisfies

Howgrave-Graham’s Lemma when XsXY sY ZsZ (eM)seM < (eM)mn. Ignoring low

order terms of m, the condition becomes

δ2(1− 2(δ − α))
( η

2δ

)3
− 3δ2 (1− 4(δ − α))

( η

2δ

)2
+ 3δα · η

2δ
− α2 < 0.

To minimize the left hand side of the inequality, we set the parameter η to be a

solution of

δ(1− 2(δ − α))
( η

2δ

)2
− 2δ (1− 4(δ − α)) · η

2δ
+ α = 0,

that is,

η =
2δ (1− 4(δ − α)) + 2

√
δ(δ − α)(1 + 2α− 8δ(1− 2δ + 2α))

1− 2(δ − α)
.

By substituting the parameter, the above attack condition becomes

η
(
α(1− 2(δ − α))− δ (1− 4(δ − α))

2
)
+ α(δ − α)(1 + 2α− 4δ) < 0.
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It is equivalent to the second condition of Theorem 10.

4.6 Concluding Remarks

In this chapter, we proposed improved partial key exposure attacks on CRT-RSA when

attackers obtain the MSBs/LSBs of dp or/and dq. At first, we used Coppersmith’s

integer equations solving method for the improvement. The approach enables us to

obtain the improved attack with the MSBs of dp or dq for larger e < N3/8 and the

improved attack with the MSBs/LSBs of dp and dq. Next, we constructed better

lattices to solve modular equations and obtained the improvement for the attack with

the LSBs of dp or dq. The attack works with less partial information for all e < N3/8

than previous attacks.

An open problem is whether we can further improved an attack with the MSBs of

dp or dq. Compared with the analogous attack with the LSBs, the condition is quite

unnatural. In particular, the best attack for the smaller e proposed by Blömer-May

and that for the larger e by ours work under completely different conditions. Hence,

the best attack condition is covered by somewhat unnatural curve. As the attack with

the LSBs, we should find attacks that improve the existing ones for all e < N3/8.
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Chapter 5

Partial Key Exposure Attacks on RSA

for General Exposure Scenarios

5.1 Introduction

5.1.1 Background

Let N = pq be a public RSA modulus where p and q are distinct prime factors with

the same bit-size. A public/secret exponent e and d such that ed = 1 (mod Φ(N))

where Φ(N) is Euler’s totient function. There is a variant of RSA called Multi-Prime

RSA that have a public modulus N =
∏r

i=1 pi where pi’s are all distinct primes with

the same bit-size. A public/secret exponent of Multi-Prime RSA satisfies the same

equation as the standard RSA. Multi-Prime RSA offers faster decryption/signing by

combining with Chinese Remainder Theorem.

From the invention of RSA cryptosystems, hardness of the factorization/RSA prob-

lem have been intensively studied. One well known approach in the literature is lattice

based Coppersmith’s methods [Cop96a, Cop96b]. The method showed an RSA mod-

ulus N = pq can be factorized in polynomial time with half the most significant bits

of a prime factor. Although Coppersmith’s methods requires involved technical anal-

yses, the method has revealed the vulnerability of RSA in many papers. One of the

most famous result is Boneh and Durfee’s small secret exponent attack on RSA [BD00]

that factorizes an RSA modulus N in polynomial time when d < N1−1/
√
2 = N0.292···.

Ciet et al. [CKLQ02] extended the attack for Multi-Prime RSA and their attack works

when d < N1−
√

1−1/r.

Boneh, Durfee, and Frankel [BDF98] proposed several attacks on RSA called partial
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key exposure attacks that make use of the most/least significant bits (MSBs/LSBs)

of d. Afterwards, the research becomes a hot topic and numerous papers have been

published. Although the original attacks [BDF98] work only for a small e, several

improvements [BM03, EJMdW05, SSM10, TK14d] have been proposed using Copper-

smith’s methods [Cop96a, Cop96b]. In particular, Ernst et al. [EJMdW05] revealed

that RSA becomes vulnerable even for a full size e and Takayasu-Kunihiro’s attacks

[TK14d] contain Boneh-Durfee’s small secret exponent attack [BD00] as a special

case. Besides these results, numerous papers have studied partial key exposure at-

tacks for various attack scenarios; attacks on Multi-Prime RSA with the MSBs/LSBs

of d [Hin08], attacks on RSA with the MSBs of a prime factor [SMS08], attacks on

RSA with the MSBs/LSBs of d and the MSBs of a prime factor [SM08], attacks

on RSA where the prime factors share the same LSBs [SWS+08], attacks on RSA

where the prime factors are almost the same sizes [dW02], attacks on Multi-Prime

RSA where all the prime factors are almost the same sizes [TK14c, ZT13, ZT14], and

more.

Indeed, there are many papers that study partial key exposure attacks on RSA.

However, the situation does not immediately mean that the problem is worth studying

in such many papers. Among the above variants of the attack, some papers capture

almost the same attack scenarios. Hence, essentially the same algorithms have been

proposed in several papers. We do not think the situation is not desirable for the

development of the cryptographic research.

5.1.2 Our Contributions

To resolve the situation, we define a general partial key exposure scenario. For the

purpose, we classify some existing works with respect to three properties; attackers

know partial information of a secret exponent and prime factors for Multi-Prime RSA.

Since there are no results that capture the three properties simultaneously, we define

a general attack scenario as follows.

Definition 3 ((α, β, γ, δ)-Partial Key Exposure Attacks on RSA). Let N =
∏r

i=1 pi

where all p1, . . . , pr are distinct primes of the same bit-size. Let e = Nα and d =

Nβ such that ed = 1 (mod Φ(N)). Given (N, e, d̃, Φ̃(N)) where d̃ ≥ Nβ−γ is the

MSBs/LSBs of d and |Φ(N) − Φ̃(N)| ≤ Nδ, the goal of the problem is to compute

Φ(N).

We parametrize the problem with respect to (α, β, γ, δ). Notice that the number

of prime factors r is independent of the hardness of the problem. Although partial
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information of prime factors in previous works are defined in various ways, the above

definition captures several exposure scenarios simultaneously. For example, let us

focus on an attack on RSA with the most significant bits prime factors and an attack

on Multi-Prime RSA. Given p̃ which is the δ′ logN MSBs of an RSA prime factor p,

then we regard Φ̃(N) = N− p̃N1/2−δ′−⌊N/p̃N1/2−δ′⌋ and an attack on RSA with the

most significant bits of prime factors is captured by δ = 1/2− δ′ since |Φ(N)− Φ̃(N)|
is bounded above by N1/2−δ′ within a constant factor [SM08, SMS08]. Similarly, we

regard Φ̃(N) = N and an attack on Multi-Prime RSA is captured by δ = 1 − 1/r

since |Φ(N)−N | is bounded above by N1−1/r within a constant factor [Hin08]. Since

we analyze all 0 ≤ γ ≤ β and 0 ≤ δ ≤ 1, our definition covers several existing works

simultaneously. Moreover, the definition will cover other unknown variants that will

be studied in the future. Then our results can be viewed as a tool kit to study partial

key exposure attacks as [BM05]. It means that our results enable even beginners

of Coppersmith’s methods to examine the security of such future variants without

understanding the technical detail of this paper.

We use lattice based Coppersmith’s methods to solve integer/modular equations as

previous works and obtain the following results.

Theorem 11. Given the MSBs/LSBs of d, there are polynomial time algorithms to

solve (α, β, γ, δ)-Partial Key Exposure Attacks on RSA when

• γ <
3−δ−2

√
δ2+3(α+β−1)δ

3 .

Theorem 12. Given the MSBs of d, there are polynomial time algorithms to solve

(1, β, γ, δ)-Partial Key Exposure Attacks on RSA when

1. γ < 1− 2
3

(
δ +

√
δ(4δ − 3 + 6β)

)
for β < 1− δ −

√
δ(1−δ)

3 ,

2. γ <
1+β−

√
4δ−3(1−β)2

2 for 1 − δ −
√

δ(1−δ)
3 ≤ β < 1 − δ and 1/3 ≤ δ, and for

1− δ −
√

δ(1−δ)
3 ≤ β < 1−

√
δ
3 and δ < 1/3,

3. 3λτ − 3(1 − δ)τ2 + τ3 < (δτ−β+λ)3

δ(1+λ−2β) where λ = max{γ, β + δ − 1} and τ =

1 − β+δ−1
δ−

√
1+λ−2β

for 1 − δ ≤ β < 3(1−δ)(1+δ)
4 and 1/3 ≤ δ < 2/3, and for

1− δ ≤ β < δ − (2δ−1)2

δ2 and 2/3 ≤ δ,

4. γ ≤ 3(1−δ)2

4 for 3(1−δ)(1+δ)
4 ≤ β < 3(1−δ)2+4(1−δ)

4 and 1/3 ≤ δ < 2/3,

5. γ <
2+β−2δ−2

√
(β+δ−1)(β+4δ−1)

3 for 3(1−δ)2+4(1−δ)
4 ≤ β and 1/3 ≤ δ,

6. γ ≤ 1− 2
√
3δ
3 for 1−

√
δ
3 ≤ β and δ < 1/3.
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Fig. 5.1. Comparisons of partial key exposure attacks on RSA with the ≈ 3
16

logN

MSBs of p, i.e., (1, β, γ, 5/16)-partial key exposure attacks. We compare

how much portions of d should be exposed for β between Sarkar and

Maitra’s attack (gray areas) [SM08] and our Theorem 12 and 3 (red ar-

eas). The left (resp. right) figure represents the attack with the MSBs

(resp. LSBs).

Theorem 13. Given the LSBs of d, there are polynomial time algorithms to solve

(1, β, γ, δ)-Partial Key Exposure Attacks on RSA when

1. γ < 1− 2
3

(
δ +

√
δ(4δ − 3 + 6β)

)
for β < 1− δ −

√
δ(1−δ)

3 ,

2. γ <
1+β−

√
4δ−3(1−β)2

2 for 1− δ −
√

δ(1−δ)
3 ≤ β < 1− δ

2 −
√

3δ(4−δ)

6 ,

3. γ < 1− δ+2
√

δ(δ+3β)

3 for 1− δ
2 −

√
3δ(4−δ)

6 ≤ β.

First of all, our results cover all the known best attacks as special cases, e.g., The-

orem 11, the conditions 4–6 of Theorem 12, and the condition 3 of Theorem 13 for

δ = 1/2 are the same as Ernst et al.’s attack [EJMdW05]. Extensions of previous

works are not trivial at all. In the context of the algorithm construction of Copper-

smith’s methods, to tackle the equations with the more monomials requires the more

involved analyses. Hence, to extend some attacks with more partial information and

the extended attacks completely cover the original ones as special cases is challenging

in some cases. For example, Ernst et al.’s (1, β, γ, 1/2)-partial key exposure attack

[EJMdW05] for γ = β do not cover Boneh and Durfee’s (1, β, β, 1/2)-partial key ex-

posure attack [BD00]. It takes about ten years until the desired attacks [TK14d] were

proposed. Indeed, in this paper, we have to analyze eight attacks to obtain the best

results for all the cases.

Furthermore, our results offer improved attacks in some special cases. More con-
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Fig. 5.2. Comparisons of partial key exposure attacks on Multi-Prime RSA for the

number of prime factors r = 3, i.e., (1, β, γ, 2/3)-partial key exposure at-

tacks. We compare how much portions of d should be exposed for β between

Hinek’s attack (gray areas) [Hin08] and our Theorem 12 and 3 (red areas).

The left (resp. right) figure represents the attack with the MSBs (resp.

LSBs).

cretely, we improve Sarkar and Maitra’s partial key exposure attacks on RSA with

partial information of prime factors [SM08] for small d and Hinek’s partial key expo-

sure attacks on Multi-Prime RSA [Hin08]. See Figures 1 and 2 for detailed compar-

isons. Indeed, our attacks require smaller portions of partial information of d than

their attacks.

5.1.3 Technical Overview

To provide better attacks based on Coppersmith’s methods is equivalent to provide

better lattice constructions to solve the underlying equations. There is a well-known

strategy for the construction due to Jochemsz and May [JM06]. The construction

may be simple and easy to understand even for beginners of the research area. Ernst

et al. [EJMdW05] made use of the strategy for their attacks. Sarkar-Maitra [SM08],

Hinek [Hin08], and some other papers extended the attack of Ernst et al. Then, we

also follow the strategy and propose extended attacks in Section 5.2; Theorem 11, the

conditions 4–6 of Theorem 12, and the condition 3 of Theorem 13. The results based

on the strategy are almost naive extensions of the previous attacks although there

are some improved analyses in our results; the condition 6 of Theorem 12 in Section

5.2.3 improves Sarkar-Maitra’s attack.

Notice that the Jochemsz-May strategy does not always offer the best attacks and

lattice constructions that outperform the strategy require involved analyses. For ex-
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ample, Boneh and Durfee’s small secret exponent attack [BD00]; (1, β, β, 1/2)-partial

key exposure attack, does not seem to be captured by the strategy. To construct

better attacks, we make use of Takayasu and Kunihiro’s attacks [TK14c, TK14d]

where the attack in [TK14c] and [TK14d] solved (1, β, β, δ)-partial key exposure at-

tacks for 0 ≤ δ ≤ 1 and (1, β, γ, 1/2)-partial key exposure attacks for 0 ≤ γ ≤ β,

respectively. Technically, the former and the latter attack constructs a better lattice

with respect to the value of δ and γ, respectively. Moreover, they are the only exist-

ing partial key exposure attacks that outperform the Jochemsz-May strategy [JM06]

except the Boneh-Durfee attack and its straightforward extension. As we suggested

above, these lattice constructions [TK14c, TK14d] seem to be technically hard to

follow. Indeed, there are only a few papers [TK16a, TK16c] that make use of these

results to obtain better results. In this paper, we fully exploit the spirit of the lattice

constructions [TK14c, TK14d] and propose (1, β, γ, δ)-partial key exposure attacks

for arbitrary 0 ≤ γ ≤ β and 0 ≤ δ ≤ 1. Our attacks cover Takayasu and Kunihiro’s

attacks [TK14c, TK14d] for a fixed γ = β and δ = 1/2, respectively. We study the

attacks with the MSBs and LSBs of d in Section 5.3 and 5.4, respectively.

5.2 Attacks by Solving Integer Equations

In this section, we solve integer equations and propose three attacks, i.e., Attacks 1–3.

The Attack 1, 2, and 3 in Section 5.2.1, 5.2.2, and 5.2.3 corresponds to Theorem 11

and the condition 3 of Theorem 13, the conditions 4 and 5 of Theorem 12, and the

condition 6 of Theorem 12, respectively. Algorithm constructions in this section are

similar to Ernst et al. [EJMdW05].

5.2.1 The Attack 1

In this section, we consider (α, β, γ, δ)-partial key exposure attacks with the

MSBs/LSBs of d. When d̃ which is the MSBs/LSBs of d is given, RSA key gen-

eration can be written as e(d̃M̃ + d′M ′) = 1 + kΦ(N) with some integer k such that

|k| ≤ Nα+β−1. When d̃ is the MSBs (resp. LSBs), d′ denotes the LSBs (resp. MSBs)

of d, and M̃ = 2⌊γ logN⌋ and M ′ = 1 (resp. M̃ = 1 and M ′ = 2⌊(β−γ) logN⌋). Then,

we find the root of the following polynomial over the integers:

fi1(x, y, z) = c+ eM ′x+ y(Φ̃ + z),

where c = 1 − ed̃M̃ . If we can recover the root (x, y, z) = (−d′, k,Φ(N) − Φ̃(N)),

whole secret information can be computed. By definition, the absolute values of the
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root are bounded above by X := Nγ , Y := Nα+β−1, Z := Nδ. By solving the integer

equation based on the Jochemsz-May strategy [JM06], Theorem 11 and the condition

3 of Theorem 13 can be obtained.

We set an (possibly large) integer W such that W < Nα+β since

∥fi1(xX, yY, zZ)∥∞ ≥ max{|c|, |eM ′X|} ≈ Nα+β . Next, we set an integer R :=

W (XY )m−1 · Zm+r−1+t with some integers m = ω(r) and t = τm where τ ≥ 0 such

that gcd(R, c) = 1. We compute c′ = c−1 (mod R) and f ′
i1(x, y, z) := c · fi1(x, y, z)

(mod R). We define shift-polynomials gi1 and g′i1 as

gi1 : xiXyiY ziZ · f ′
i1 ·Xm−1−iXY m−1−iY Zm+r−1+t−iZ for xiXyiY ziZ1 ∈ S,

g′i1 : xiXyiY ziZ ·R for xiXyiY ziZ1 ∈ M\S,

for sets of monomials

S :=
∪

0≤j≤t

{
xiXyiY ziZ+j

∣∣∣∣xiXyiY ziZ is a monomial of fi(x, y, z1)
m−1

}
,

M :=

{
xiXyiY ziZ

∣∣∣∣ monomials of xi′Xyi
′
Y zi

′
Z · fi(x, y, z) for xi′Xyi

′
Y zi

′
Z ∈ S

}
.

By definition of sets of monomials S and M , it follows that

xiXyiyziZ ∈ S ⇔ iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1− iX ;

iZ = 0, 1, . . . , iY + t,

xiXyiyziZ ∈ M ⇔ iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m− iX ; iZ = 0, 1, . . . , iY + t.

All these shift-polynomials gi1 and g′i1 modulo R have the root (x, y, z) =

(−d′, k,Φ(N) − Φ̃(N)) that is the same as fi1(x, y, z). We build a lattice with these

polynomials.

Based on the Jochemsz-May strategy, the integer equation fi1(x, y, z) = 0 can be

solved when

X( 1
6+

τ
2 )m

3

Y ( 1
3+

τ
2 )m

3

Z

(
1
6+

τ
2+

τ2

2

)
m3

< W ( 1
6+

τ
2 )m

3

⇔ γ

(
1

6
+

τ

2

)
+ (α+ β − 1)

(
1

3
+

τ

2

)
+ δ

(
1

6
+

τ

2
+

τ2

2

)
< (α+ β)

(
1

6
+

τ

2

)
.

By substituting τ = 1−γ−δ
2δ , the claimed inequality of Theorem 11 can be obtained:

γ <
3− δ − 2

√
δ2 + 3(α+ β − 1)δ

3
.

The condition 3 of Theorem 13 can be obtained by substituting α = 1.
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5.2.2 The Attack 2

In this section, we consider (1, β, γ, δ)-partial key exposure attacks with the MSBs of

d. As in Section 5.2.1, when d̃ which is the MSBs of d is given, RSA key generation

can be written as e(d̃M+d′) = 1+kΦ(N) with some integer k such that |k| ≤ Nβ and

M = 2⌊γ logN⌋. In this section, we use an additional information k̃ = ⌊(ed̃−1)/Φ̃(N)⌋
which is an approximation to k. From the simple calculation,

|k̃ − k| =

∣∣∣∣∣ed̃M − 1

Φ̃(N)
− ed− 1

Φ(N)

∣∣∣∣∣ =
∣∣∣∣∣Φ(N)(ed̃M − 1)− Φ̃(N)(ed− 1)

Φ̃(N)Φ(N)

∣∣∣∣∣
=

∣∣∣∣∣e(Φ(N)d̃M − Φ̃(N)d) + (Φ̃(N)− Φ(N))

Φ̃(N)Φ(N)

∣∣∣∣∣
=

∣∣∣∣∣eΦ̃(N)(d̃M − d)− (Φ̃(N)− Φ(N))(ed̃M − 1)

Φ̃(N)Φ(N)

∣∣∣∣∣
≤

∣∣∣∣∣e(d̃M − d)

Φ(N)

∣∣∣∣∣+
∣∣∣∣∣ (Φ̃(N)− Φ(N))(ed̃M − 1)

Φ̃(N)Φ(N)

∣∣∣∣∣ .
By definition,∣∣∣∣∣e(d̃M − d)

Φ(N)

∣∣∣∣∣ ≤ Nγ and

∣∣∣∣∣ (Φ̃(N)− Φ(N))(ed̃M − 1)

Φ̃(N)Φ(N)

∣∣∣∣∣ ≤ Nβ+δ−1.

Therefore, k̃ satisfies the following condition:

|k̃ − k| < 2Nλ where λ = max{γ, β + δ − 1}.

The approximate value enables us to obtain better results for large β. Since Sarkar

and Maitra [SM08] used λ = max{γ, β − 1/2} for δ ≤ 1/2, we improve the bound

although the following lattice construction is completely the same. We find the root

of the following polynomial over the integers:

fi2(x, y, z) = c+ ex+ (k̃ + y)(Φ̃ + z),

where c = 1− ed̃M̃ as in Section 5.2.1. If we can recover the root (x, y, z) = (−d′, k−
k̃,Φ(N)− Φ̃(N)), whole secret information can be computed. The absolute values of

the root are bounded above by X := Nγ , Y := Nλ, Z := Nδ where λ = max{γ, β +

δ−1}. Although the absolute values of solutions become smaller than those in Section
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3.1, the result in this section is not always better since the Newton polygon of the

polynomial becomes more complex.

We set an (possibly large) integer W such that W < N1+λ since

∥fi2(xX, yY, zZ)∥∞ ≥ |Φ̃(N)Y | ≈ N1+λ. Next, we set an integer R := WXm−1 ·
Y m+r−1+tZm−1 with some integers m = ω(r) and t = τm where τ ≥ 0 such that

gcd(R, c) = 1. We compute c′ = c−1 (mod R) and f ′
i2(x, y, z) := c · fi2(x, y, z)

(mod R). We define shift-polynomials gi1 and g′i1 as

gi2 : xiXyiY ziZ · f ′
i2 ·Xm−1−iXY m−1+t−iY Zm+r−1−iZ for xiXyiY ziZ1 ∈ S,

g′i2 : xiXyiY ziZ ·R for xiXyiY ziZ1 ∈ M\S,

for sets of monomials

S :=
∪

0≤j≤t

{
xiXyiY +jziZ

∣∣∣∣xiXyiY ziZ is a monomial of fi(x, y, z1)
m−1

}
,

M :=

{
xiXyiY ziZ

∣∣∣∣ monomials of xi′Xyi
′
Y zi

′
Z · fi(x, y, z) for xi′Xyi

′
Y zi

′
Z ∈ S

}
.

By definition of sets of monomials S and M , it follows that

xiXyiyziZ ∈ S ⇔ iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1 + t− iX ;

iZ = 0, 1, . . . ,m− 1− iX ,

xiXyiyziZ ∈ M ⇔ iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m+ t− iX ; iZ = 0, 1, . . . ,m− iX .

All these shift-polynomials gi2 and g′i2 modulo R have the root (x, y, z) = (−d′, k −
k̃,Φ(N)− Φ̃(N)) that is the same as fi2(x, y, z). We build a lattice with these poly-

nomials.

Based on the Jochemsz-May strategy [JM06], the integer equation fi1(x, y, z) = 0

can be solved when X( 1
3+

τ
2 )m

3

Y

(
1
2+τ+ τ2

2

)
m3

Z( 1
2+

τ
2 )m

3

< W ( 1
3+

τ
2 )m

3

. By substitut-

ing τ = 1−γ−δ−λ
2λ , the conditions 4 and 5 of Theorem 12 can be obtained. To follow

the definition λ = max{γ, β+δ−1}, λ = γ when β < 3(1−δ)2+4(1−δ)
4 and λ = β+δ−1

otherwise.

5.2.3 Attack 3

In this section, we propose a better lattice construction than that in Section 5.2.2.

Notice that the Newton polygon of fi2(x, y, z) is symmetric with respect to y and z.

Hence, we should add extra shifts for the smaller variable. From the bound of the

Attack 2, Y = Nλ = N3(1−δ)2/4 ≥ Z = Nδ when δ < 1/3. Therefore, we add extra
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shifts for z for such small δ. We construct a lattice that is symmetric with respect

to y and z from that in Section 5.2.2 and the integer equation fi2(x, y, z) = 0 can

be solved when X( 1
3+

τ
2 )m

3

Y ( 1
2+

τ
2 )m

3

Z

(
1
2+τ+ τ2

2

)
m3

< W ( 1
3+

τ
2 )m

3

. By substituting

τ = 1−λ−2δ
2δ , the condition 6 of Theorem 12 can be obtained. Notice that when

δ < 1/3, β + δ − 1 < γ ≤ 1− 2
√
3δ
3 always hold for β < 1.

5.3 Attacks with the MSBs of d by Solving Modular

Equations

In this section, we solve modular equations and propose three attacks, i.e., Attacks

4–6, for (1, β, γ, δ)-partial key exposure attacks with the MSBs of d. The Attack 4,

5, and 6 in Section 5.3.1, 5.3.2, and 5.3.3 correspond to the conditions 2, 3, and 1 of

Theorem 12, respectively. Algorithm constructions in Section 5.3.1 and 5.3.2, that in

Section 5.3.3 are similar to Takayasu-Kunihiro’s [TK14d] and [TK14c], respectively.

5.3.1 The Attack 4

As in Section 5.2.2, when d̃ which is the MSBs of d is given, RSA key generation can

be written as e(d̃M + d′) = 1 + kΦ(N) with some integer k such that |k| ≤ Nβ and

M = 2⌊γ logN⌋. Then, we find the root of the following modular polynomial:

fMSBs,m(x, y) = 1 + (k̃ + x)(Φ̃(N) + y) (mod e),

where k̃ = ⌊(ed̃− 1)/Φ̃(N)⌋ which is an approximation to k as in Section 5.2.2. If we

can recover the root (x, y) = (k − k̃,Φ(N)− Φ̃(N)), whole secret information can be

computed. To obtain better results than integer equations based method in Section

5.2, we use a linearized variable z = (k̃+ x)y+1. The absolute values of the root are

bounded above by X := Nλ, Y := Nδ, Z := Nβ+δ where λ = max{γ, β + δ − 1}.
To solve the modular equation fMSBs,m(x, y) = 0, we use the following shift-

polynomials gMSBs.m1
[u,i] (x, y) and gMSBs.m2

[u,i] (x, y):

gMSBs.m1
[u,i] (x, y) := xu−ifMSBs,m(x, y)iem−i and

gMSBs.m2
[u,j] (x, y) := yjfMSBs,m(x, y)uem−u.

All these shift-polynomials gMSBs.m1
[u,i] and gMSBs.m2

[u,j] modulo em have the root (x, y) =

(k − k̃,Φ(N) − Φ̃(N)) that is the same as fMSBs,m(x, y). We build a lattice with

these polynomials. In this section, we show a basic lattice construction to solve the
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modular equation and the resulting algorithm works when 1 − δ −
√

δ(1−δ)
3 ≤ β <

1 − δ and 1/3 ≤ δ, and when 1 − δ −
√

δ(1−δ)
3 ≤ β < 1 −

√
δ
3 and δ < 1/3. In

the lattice construction, we use shift-polynomials gMSBs.m1
[u,i] (x, y) and gMSBs.m2

[u,i] (x, y)

with indices in Ix and Iy, where

Ix ⇔ u = 0, 1, . . . ,m; i = 0, 1, . . . , u and

Iy ⇔ u = 0, 1, . . . ,m; j = 1, 2, . . . ,

⌊
β − λ

δ
m+

1 + λ− δ − 2β

δ
u

⌋
,

respectively. Although the selections of shift-polynomials generate non-triangular

basis matrices, we partially apply the linearization z = (k̃ + x)y + 1 and the basis

matrices can be transformed into triangular as in [TK14c]. We follow the result and

the basis matrices have diagonals

• Xu−⌈lMSBs(i)⌉Y i−⌈lMSBs(i)⌉Z⌈lMSBs(i)⌉em−i for gMSBs.m1
[u,i] (x, y) and

• Xu−⌈lMSBs(u+j)⌉Y u+j−⌈lMSBs(u+j)⌉Z⌈lMSBs(u+j)⌉em−u for gMSBs.m2
[u,j] (x, y)

where

lMSBs(j) := max

{
0,

δj − (β − λ)m

1 + λ− 2β

}
.

Notice that the result is valid only when 1+λ−δ−2β
δ ≤ 1, i.e., β ≥ 1+λ−2δ

2 , since

unravelled linearization does not work well otherwise in the sense that the diagonals

of triangular basis matrices become larger. We define the above polynomial selections

for all the gMSBs.m2
[u,j] (x, y) to be helpful.

Lemma 7. Assume there are shift-polynomials gMSBs.m1
[u,u′+j′] (x, y) for u = u′+ j′, . . . ,m

and gMSBs.m2
[u,u′+j′−u](x, y) for u = u′ + 1, . . . , u′ + j′ − 1 in lattice bases. Then,

shift-polynomials gMSBs.m2
[u′,j′] (x, y)are helpful polynomials when u′ = 0, 1, . . . ,m; j′ =

1, . . . , ⌊β−λ
δ m + 1+λ−δ−2β

δ u⌋, whereas shift-polynomials gMSBs.m2
[u′,j′] (x, y)are unhelpful

polynomials when u′ = 0, 1, . . . ,m; j′ > β−λ
δ m+ 1+λ−δ−2β

δ u.

Proof. Consider the basis matrix B. We add a new shift-polynomial gMSBs2
[u′,j′] (x, y)

and construct the basis matrix B+. The value det(B+)/ det(B) can be computed as

det(B+)

det(B)
= Y j′Zu′

em−u′
·
(
XY

Z

)m−u′

,

where the size is bounded above by Nδj′+(β+δ)u′+m−u′+(λ−β)(m−u′) within a constant

factor. This value is smaller than the size of the modulus em, if and only if

δj′ + (β + δ)u′ +m− u′ + (λ− β)(m− u′) ≤ m
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⇔ j′ ≤ β − λ

δ
m+

1 + λ− δ − 2β

δ
u′

as required.

When m + β−λ
δ m + 1+λ−δ−2β

δ m = 1−β
δ m ≤ 1, i.e., β ≥ 1 − δ, shift-polynomials

gMSBs.m1
[u,j] (x, y) for u ≥ β−λ

2β+δ−λ−1 ; i ≥
β−λ

2β+δ−λ−1 are unhelpful polynomials and do not

contribute for the basis matrices to be triangular. In addition, when 1+λ−δ−2β
δ ≤ 0,

i.e., β ≥ 1+λ−δ
2 , not all the gMSBs.m2

[u,j] (x, y) become helpful polynomials. Hence, we

use the above collection of shift-polynomials only when β < min{1− δ, 1+λ−δ
2 }.

We show that the above lattice yields the condition 2 of Theorem 12. For the

purpose, we compute the dimension

n = |Ix ∪ Iy| =
1− λ

2δ
m2 + o(m2),

and the determinant of the lattices det(B) = XsXY sY ZsZese , where

sX =
∑

(u,i)∈Ix

(u− ⌈lMSBs(i)⌉) +
∑

(u,j)∈Iy

(u− ⌈lMSBs(u+ j)⌉)

=
1 + β − 2λ

6δ
m3 + o(m3),

sY + sZ =
∑

(u,i)∈Ix

i+
∑

(u,j)∈Iy

(u+ j) =
1− β − λ+ β2 − βλ+ λ2

6δ2
m3 + o(m3),

sZ =
∑

(u,i)∈Ix

⌈lMSBs(i)⌉+
∑

(u,j)∈Iy

⌈lMSBs(u+ j)⌉ = 1 + λ− 2β

6δ
m3 + o(m3),

se =
∑

(u,i)∈Ix

(m− i) +
∑

(u,j)∈Iy

(m− u) =
1 + β − 2λ+ δ

6δ
m3 + o(m3),

as required. We can find solutions of fMSBs(x, y) = 0 provided that (det(B))1/n <

em. Ignoring low order terms of m, the inequality becomes

λ2 − (1 + β)λ+ β2 − β + 1− δ > 0

that yields the bound

λ <
1 + β −

√
−3 + 4δ + 6β − 3β2

2
.

To satisfy the restriction 1+λ−2δ
2 ≤ β < min{1 − δ, 1+λ−δ

2 } discussed above, the

condition is valid only when 1 − δ −
√

δ(1−δ)
3 ≤ β < 1 − δ and 1/3 ≤ δ, and when

1− δ −
√

δ(1−δ)
3 ≤ β < 1−

√
δ
3 and δ < 1/3. Notice that the bound is always larger

than β + δ − 1. When β ≥ 1−
√

δ
3 and δ < 1/3, the Attack 3 becomes the best.
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5.3.2 The Attack 5

In this section, we propose an attack for larger β, i.e., β ≥ 1 − δ for 1/3 ≤ δ. As

discussed above, the polynomial selections in Section 5.3.1 have unhelpful polynomials

in this case and we should eliminate them to obtain better results. For the purpose, in

this section, we use shift-polynomials gMSBs.m1
[u,i] (x, y) and gMSBs.m2

[u,j] (x, y) with indices

in Ix and Iy, where

Ix ⇔ u = 0, 1, . . . ,m; i = 0, 1, . . . ,min{u, t} and

Iy ⇔ u = 0, 1, . . . ,m; j = 1, 2, . . . ,min

{⌊
β − λ

δ
m+

1 + λ− δ − 2β

δ
u

⌋
, t− u

}
for some integer t, respectively. The parameter τ = t/m should be optimized later.

The selections of shift-polynomials generate basis matrices that are not triangular.

However, we partially apply the linearization z = (k̃+ x)y+1 and the basis matrices

can be transformed into triangular as in Section 5.2.3. Moreover, the diagonals of the

basis matrices are the same as those in Section 5.2.3. Hence, Lemma 7 also holds.

We use the above polynomial selections when β−λ
δ m < t and 1+λ−δ−2β

δ > 0 hold,

i.e., β < min{δτ + λ, 1+λ−δ
2 }, since all the gMSBs.m2

[u,j] (x, y) do not become helpful

polynomials otherwise.

We show that the above lattice yields the condition 3 of Theorem 12. For the

purpose, we compute the dimension

n = |Ix ∪ Iy| =
(
τ − (δτ − β + λ)2

2δ(1 + λ− 2β)

)
m2 + o(m2),

and the determinant of the lattices det(B) = XsXY sY ZsZese , where

sX =
∑

(u,i)∈Ix

(u− ⌈lMSBs(i)⌉) +
∑

(u,j)∈Iy

(u− ⌈lMSBs(u+ j)⌉)

=

(
τ

2
− (δτ − β + λ)3

6δ(1 + λ− 2β)2

)
m3 − sZ + o(m3),

sY + sZ =
∑

(u,i)∈Ix

i+
∑

(u,j)∈Iy

(u+ j)

=

(
τ2

2
− (δτ − β + λ)3

3δ2(1 + λ− 2β)
− (β − λ)(δτ − β + λ)2

2δ2(1 + λ− 2β)

)
m3 + o(m3),

sZ =
∑

(u,i)∈Ix

⌈lMSBs(i)⌉+
∑

(u,j)∈Iy

⌈lMSBs(u+ j)⌉
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=

(
(δτ − β + λ)2

2δ(1 + λ− 2β)
− (δτ − β + λ)3

3δ(1 + λ− 2β)2

)
m3 + o(m3),

se =
∑

(u,i)∈Ix

(m− i) +
∑

(u,j)∈Iy

(m− u)

= τm3 − τ2

2
m3 +

τ3

6
m3 − (δτ − β + λ)2

2δ(1 + λ− 2β)
m3 +

(δτ − β + λ)3

6δ(1 + λ− 2β)2
m3 + o(m3).

We can find solutions fMSBs(x, y) = 0 provided that (det(B))1/n < em. Ignoring

low order terms of m, the inequality becomes

λ
τ

2
− (1− δ)

τ2

2
+

τ3

6
<

(δτ − β + λ)3

6δ(1 + λ− 2β)
.

To maximize the solvable root bounds, we set τ = 1 − β+δ−1
δ−

√
1+λ−2β

. To satisfy the

restriction β < min{δτ + λ, 1+λ−δ
2 } discussed above, the attack works when 1 − δ ≤

β < 3(1−δ)(1+δ)
4 and 1/3 ≤ δ < 2/3, and when 1 − δ ≤ β < δ − (2δ−1)2

δ2 and 2/3 ≤ δ.

The attack 2 becomes the best for larger β.

5.3.3 The Attack 6

In this section, we propose an attack for smaller β, i.e., β < 1 − δ −
√

δ(1−δ)
3 . As

discussed above, the polynomial selections in Section 5.3.1 collect gMSBs.m2
[u,j] (x, y)

where all the shifts are not helpful. The defect follows from the fact that when
1+λ−δ−2β

δ > 1, the unravelled linearization does not work well and the diagonals

of the resulting triangular basis matrices become larger. Hence, in this section, we

use shift-polynomials gMSBs.m1
[u,i] (x, y) and gMSBs.m2

[u,j] (x, y) with indices in Ix and Iy,
where

Ix ⇔ u = 0, 1, . . . ,m; i = 0, 1, . . . , u and

Iy ⇔ u = 0, 1, . . . ,m; j = 1, 2, . . . , t+ u,

for some integer t, respectively. The parameter τ = t/m should be optimized later.

The selections of shift-polynomials generate basis matrices that are not triangular.

However, we partially apply the linearization z = (k̃+ x)y+1 and the basis matrices

can be transformed into triangular as in Section 5.3.1. Moreover, the diagonals of the

basis matrices are the same as those in Section 5.2.3 by modifying

lMSBs(k) := max

{
0,

k − τm

2

}
.

Hence, Lemma 7 also holds.
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We show that the above lattice yields the condition 1 of Theorem 12. For the

purpose, we compute the dimension

n = |Ix ∪ Iy| = (1 + τ)m2 + o(m2),

and the determinant of the lattices det(B) = XsXY sY ZsZese , where

sX =
∑

(u,i)∈Ix

(u− ⌈lMSBs(i)⌉) +
∑

(u,j)∈Iy

(u− ⌈lMSBs(u+ j)⌉)

=

(
1

3
+

τ

2

)
m3 + o(m3),

sY + sZ =
∑

(u,i)∈Ix

i+
∑

(u,j)∈Iy

(u+ j) =

(
2

3
+ τ +

τ2

2

)
m3 + o(m3),

sZ =
∑

(u,i)∈Ix

⌈lMSBs(i)⌉+
∑

(u,j)∈Iy

⌈lMSBs(u+ j)⌉ = 1

3
m3 + o(m3),

se =
∑

(u,i)∈Ix

(m− i) +
∑

(u,j)∈Iy

(m− u) =
1 + τ

2
m3 + o(m3).

We can find solutions of fMSBs(x, y) = 0 provided that (det(B))1/n < em. Ignoring

low order terms of m, the inequality becomes

λ

(
1

3
+

τ

2

)
+ δ

(
2

3
+ τ +

τ2

2

)
+ β

1

3
+

1 + τ

2
< 1 + τ.

To maximize the right hand side of the inequality, we set the parameter τ = 1−2δ−λ
2δ

and the condition becomes

λ <
3− 2δ − 2

√
4δ2 − 3δ + 6βδ

3

as required.

5.4 Attacks with the LSBs of d by Solving Modular Equations

In this section, we solve modular equations and propose two attacks, i.e., Attacks 6

and 7, for (1, β, γ, δ)-partial key exposure attacks with the LSBs of d. The Attack 7

and 8 in Section 5.4.1 and 5.4.2 corresponds to the conditions 2 and 1 of Theorem

13, respectively. Algorithm constructions in Section 5.4.1 and that in Section 5.4.2 is

similar to Takayasu-Kunihiro’s [TK14d] and [TK14c], respectively.
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5.4.1 The Attack 7

As in Section 5.2.1, when d̃ which is the LSBs of d is given, RSA key generation can

be written as e(d̃ + d′M) = 1 + kΦ(N) with some integer k such that |k| ≤ Nβ and

M = 2⌊(β−γ) logN⌋. Then, we find the root of the following modular polynomials:

fLSBs.m1(x, y) := 1− ed̃+ x(Φ̃(N) + y) (mod eM),

fLSBs.m2(x, y) := 1 + x(Φ̃(N) + y) (mod e).

If we can recover the root (x, y) = (k,Φ(N)− Φ̃(N)), whole secret information can be

computed. To obtain better results than integer equations based method in Section

5.2, we use a linearized variable z = xy + 1. The absolute values of the root are

bounded above by X := Nβ , Y := Nδ, Z := Nβ+δ.

To solve the modular equations fLSBs.m1(x, y) = 0 and fLSBs.m2(x, y) = 0, we use

the following shift-polynomials gLSBs.m1
[u,i] (x, y) and gLSBs.m2

[u,j] (x, y):

gLSBs.m1
[u,i] (x, y) := xu−ifLSBs.m1(x, y)

i(eM)m−i and

gLSBs.m2
[u,j] (x, y) := yjfLSBs.m1(x, y)

u−⌈lLSBs(j)⌉fLSBs.m2(x, y)
⌈lLSBs(j)⌉·

em−uMm−(u−⌈lLSBs(j)⌉),

where

lLSBs(j) = max

{
0,

δj − (β − γ)m

1− 2β + γ − δ

}
.

All these shift-polynomials gLSBs.m1
[u,i] and gLSBs.m2

[u,j] modulo (eM)m have the root

(x, y) = (k,Φ(N) − Φ̃(N)) that is the same as fLSBs,m1(x, y) and fLSBs,m2(x, y).

We build a lattice with these polynomials. In this section, we show a basic lattice

construction to solve the modular equations and the resulting algorithm works when

1 − δ −
√

δ(1−δ)
3 ≤ β < 1 − δ

2 −
√

3δ(4−δ)

6 . In the lattice construction, we use shift-

polynomials gLSBs.m1
[u,i] (x, y) and gLSBs.m2

[u,j] (x, y) with indices in Ix and Iy, where

Ix ⇔ u = 0, 1, . . . ,m; i = 0, 1, . . . , u and

Iy ⇔ u = 0, 1, . . . ,m; j = 1, 2, . . . ,

⌊
β − λ

δ
m+

1 + λ− δ − 2β

δ
u

⌋
,

respectively. Although the selections of shift-polynomials generate non-triangular

basis matrices, we partially apply the linearization z = xy+1 and the basis matrices

can be transformed into triangular as in [TK14c]. We follow the result and the basis

matrices have diagonals
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• XuY i(eM)m−i for gLSBs.m1
[u,i] (x, y) and

• Xu−⌈lLSBs(u+j)⌉Y u+j−⌈lLSBs(u+j)⌉Z⌈lLSBs(u+j)⌉em−uMm−(u−⌈lLSBs(u+j)⌉) for

gLSBs.m2
[u,j] (x, y).

Notice that the result is valid only when 1+γ−δ−2β
δ ≤ 1, i.e., β ≥ 1+γ−2δ

2 , since

unravelled linearization does not work well otherwise. We define the above polynomial

selections for all the gMSBs.m2
[u,j] (x, y) to be helpful.

Lemma 8. Assume there are shift-polynomials gLSBs.m2
[u′+i,j′+i](x, y) for i = 1, 2, . . . ,m−

u′ in lattice bases. Then, shift-polynomials gLSBs.m2
[u′,j′] (x, y)are helpful polynomials

when u′ = 0, 1, . . . ,m; j′ = 1, . . . , ⌊β−γ
δ m + 1+γ−δ−2β

δ u′⌋, whereas shift-polynomials

gLSBs.m2
[u′,j′] (x, y)are unhelpful polynomials when u′ = 0, 1, . . . ,m; j′ > β−γ

δ m +
1+γ−δ−2β

δ u′.

Proof. Consider the basis matrix B. We add a new shift-polynomial gLSBs.m2
[u′,k′] (x, y)

and construct the basis matrix B+. The value det(B+)/ det(B) can be computed as

det(B+)

det(B)
= Y j′Zu′

em−u′
Mu′

,

where the size is bounded above by Nδj′+(δ+β)u′+m−u′+(β−γ)u′
within a constant

factor. This value is smaller than the size of the modulus (eM)m, if and only if

δj′ + (δ + β)u′ +m− u′ + (β − γ)u′ ≤ (1 + β − γ)m

⇔ j′ ≤ β − γ

δ
m+

1− 2β + γ − δ

δ
u′

as required.

When 1+γ−δ−2β
δ ≤ 0, i.e., β ≥ 1+γ−δ

2 , all the shift-polynomials gLSBs.m2
[u,j] (x, y)

in the above selection do not become a helpful polynomial since the assumption in

Lemma 8 fails. Hence, we use the above collection of shift-polynomials only when

β < 1+γ−δ
2 .

We show that the above lattice yields the condition 2 of Theorem 13. For the

purpose, we compute the dimension

n = |Ix ∪ Iy| =
1− γ

2δ
m2 + o(m2),

and the determinant of the lattices det(B) = XsXY sY ZsZeseMsM , where

sX + sZ =
∑

(u,i)∈Ix

u+
∑

(u,j)∈Iy

u =
1− β − γ

6δ
m3 + o(m3),
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sY + sZ =
∑

(u,i)∈Ix

i+
∑

(u,j)∈Iy

(u+ j) =
1− β − γ + β2 − βγ + γ2

6δ2
m3 + o(m3),

sZ =
∑

(u,i)∈Ix

⌈lMSBs(i)⌉+
∑

(u,j)∈Iy

⌈lMSBs(u+ j)⌉ = 1− 2β + γ

6δ
m3 + o(m3),

se =
∑

(u,i)∈Ix

(m− i) +
∑

(u,j)∈Iy

(m− u) =
1 + β − 2γ + δ

6δ
m3 + o(m3),

sM =
∑

(u,i)∈Ix

(m− i) +
∑

(u,j)∈Iy

(m− (u− ⌈lLSBs(j)⌉)) = 2− β − γ

6δ
m3 + o(m3).

We can find solutions of fLSBs.m1(x, y) = 0 and fLSBs.m2(x, y) = 0 provided that

(det(B))1/n < (eM)m. Ignoring low order terms of m, the inequality becomes

γ2 − (1 + β)γ + β2 − β + 1− δ > 0

that yields the bound

γ <
1 + β −

√
−3 + 4δ + 6β − 3β2

2

as required. To satisfy the restriction 1+γ−2δ
2 ≤ β < 1+γ−δ

2 discussed above, the

condition is valid only when 1 − δ −
√

δ(1−δ)
3 ≤ β < 1 − δ

2 −
√

3δ(4−δ)

6 . When

1− δ
2 −

√
3δ(4−δ)

6 ≤ β, Theorem 11 becomes the best.

5.4.2 The Attack 8

In this section we propose an attack that works when β < 1−δ−
√

δ(1−δ)
3 . In the lattice

construction, we use the same shift-polynomials gLSBs.m1
[u,i] (x, y) and gLSBs.m2

[u,j] (x, y)

where

lLSBs(j) = max {0, j − τm}

with indices in Ix and Iy, where

Ix ⇔ u = 0, 1, . . . ,m; i = 0, 1, . . . , u and

Iy ⇔ u = 0, 1, . . . ,m; j = 1, 2, . . . , t+ u,

respectively. The parameter τ = t/m should be optimized later. Although the selec-

tions of shift-polynomials generate non-triangular basis matrices, we partially apply

the linearization z = xy+1 and the basis matrices can be transformed into triangular
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as in Section 5.4.1. The basis matrices have the same diagonals as those in Section

5.4.1 although the function lLSBs(j) is modified.

We show that the above lattice yields the condition 1 of Theorem 12. For the

purpose, we compute the dimension

n = |Ix ∪ Iy| = (1 + τ)m2 + o(m2),

and the determinant of the lattices det(B) = XsXY sY ZsZeseMsM , where

sX =
∑

(u,i)∈Ix

u+
∑

(u,j)∈Iy

u =

(
2

3
+

τ

2

)
m3 + o(m3),

sY + sZ =
∑

(u,i)∈Ix

i+
∑

(u,j)∈Iy

(u+ j) =

(
2

3
+ τ +

τ2

2

)
m3 + o(m3),

se =
∑

(u,i)∈Ix

(m− i) +
∑

(u,j)∈Iy

(m− u) =
1 + τ

2
m3 + o(m3),

sM =
∑

(u,i)∈Ix

(m− i) +
∑

(u,j)∈Iy

(m− (u− ⌈lLSBs(j)⌉))

=

(
2

3
m3 +

τ

2

)
m3 + o(m3).

We can find solutions of fLSBs.m1(x, y) = 0 and fLSBs.m2(x, y) = 0 provided that

(det(B))1/n < (eM)m. Ignoring low order terms of m, the inequality becomes

β

(
2

3
+

τ

2

)
+ δ

(
2

3
+ τ +

τ2

2

)
+

1 + τ

2
+ (β − γ)

(
2

3
+

τ

2

)
< (1 + β − γ)(1 + τ).

To maximize the right hand side of the inequality, we set the parameter τ = 1−2δ−γ
2δ

and the condition becomes

γ <
3− 2δ − 2

√
4δ2 − 3δ + 6βδ

3

as required.

5.5 Concluding Remarks

In this paper, we defined partial key exposure attacks on RSA to capture general

scenarios. Indeed, several existing works can be viewed as special cases of our general

definition. Then we constructed eight attacks for the scenario. These attacks contain

all the state-of-the-art partial key exposure attacks as special cases. Furthermore,
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our attacks improve several existing attacks in some cases. Due to our generalized

definition of partial key exposure scenarios, we believe that our attacks can be used as

a tool kit. The results enable even beginners of Coppersmith’s methods to examine

the security of several future variants of RSA and upcoming partial key exposure

scenarios.

Although we tried to capture as wide class of partial key exposure scenarios as pos-

sible in this paper, we could only capture Multi-Prime RSA with partial information.

There are other papers that studied partial key exposure attacks on other variants of

RSA; RSA with moduli N = prq [LZPL15, Sar16, TK16a], CRT-RSA [BM03, TK15,

TK16b], RSA with multiple exponent pairs [PHL+15, TK14b, TK16c], and more. It

should be interesting open problems to study generalized partial key exposure sce-

narios for these variants as our work.
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Chapter 6

Cryptanalyses of RSA with Moduli

N = prq

6.1 Introduction

6.1.1 Background

RSA [RSA78] is one of the most well-known cryptosystems. Let N be the public RSA

modulus, a product of two distinct primes p and q with the same bit-size. The public

and secret exponents are positive integers such that

ed = 1 (mod (p− 1)(q − 1)).

The RSA cryptosystem has been extensively studied in numerous papers including lat-

tice based cryptanalysis. In this paper, we introduce two well-analyzed attacks; small

secret exponent attacks and partial key exposure attacks. Boneh and Durfee [BD00]

showed that a public RSA modulus N can be factorized when a secret exponent d is

small, e.g., they proposed a weaker result d < N0.284 and a stronger result d < N0.292.

Several papers [BM03, EJMdW05, SSM10, TK14d] have studied the security of RSA

when some portions of the most significant bits (MSBs) or the least significant bits

(LSBs) of d are exposed to attackers. The attack of Ernst et al. [EJMdW05] are the

best results for general cases, e.g., the MSBs or the LSBs are exposed for general sizes

of e and d. Although Blömer and May [BM03] and Sarkar et al. [SSM10] achieved

the same result, they are only special cases of Ernst et al., e.g., Blömer and May’s

attack works only with the LSBs and the attack of Sarkar et al. works only with the

MSBs and large e. Takayasu and Kunihiro [TK14d] proposed an improved attack of

Ernst et al. for specific parameters, e.g., small d.
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There are some variants of RSA. In this paper, we study two of them that we call

Takagi’s RSA [Tak98] and the prime power RSA. Both have a public RSA modulus

N = prq

for r ≥ 2 with distinct primes p and q with the same bit-size. A public and a secret

exponent e ≈ Nα and d ≈ Nβ satisfy

ed = 1 (mod (p− 1)(q − 1))

for Takagi’s RSA and

ed = 1 (mod pr−1(p− 1)(q − 1))

for the prime power RSA, respectively. The security of the variants have been ana-

lyzed; May [May04b] proposed small secret exponent attacks and partial key exposure

attacks on the prime power RSA, and Itoh et al. [IKK08] proposed small secret ex-

ponent attacks on Takagi’s RSA. Recently, the research area becomes a hot topic

and several papers have been published. Huang et al. [HHX+14] proposed partial

key exposure attacks on Takagi’s RSA. Sarkar [Sar14] proposed small secret exponent

attacks on the prime power RSA, and further improved the result in [Sar16] with a

result for partial key exposure attacks. The result is better than May for small r.

Lu et al. [LZPL15] proposed small secret exponent attacks and partial key exposure

attacks on the prime power RSA that fully improve May’s attack and are better than

Sarkar’s attack for r ≥ 5.

Attacks of May [May04b], and Lu et al. [LZPL15] make use of the special structure

of a public modulus N = prq and a key generation equality of the prime power RSA.

Then, their attacks do not work for the standard RSA. However, a naive approach for

the analysis of RSA variants should be generalizations of the attacks on the standard

RSA. By definition, Takagi’s RSA and the prime power RSA become the same as

the standard RSA for r = 1. Hence, the attacks on the variants for r = 1 should

completely cover the currently known best attacks on the standard RSA; the stronger

Boneh-Durfee small secret exponent attack, partial key exposure attacks of Ernst

et al., and Takayasu and Kunihiro. Since a public modulus N and key generations

for the variants are more involved than the standard RSA, the analyses also become

involved. Indeed, almost all the algorithm constructions and their strategies are too

complicated to understand since the connections with those for the standard RSA are

unclear. Moreover, existing attacks on the variants for r = 1 do not fully cover the

currently known best attacks on the standard RSA.
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6.1.2 Our Contributions

In this paper, we study the security of Takagi’s RSA and the prime power RSA. The

main focus of this paper is to generalize the currently known best attacks on the

standard RSA, e.g., small secret exponent attacks and partial key exposure attacks,

to the variants and to exploit the connections between their algorithm constructions.

We show that the lattices used to attack the standard RSA can be transformed into

lattices to attack the variants with simple operations. More concretely, the lattices

used to attack the standard RSA can be transformed into lattices to attack Takagi’s

RSA (resp. the prime power RSA) by multiplying {1, q, pq, p2q, . . . , pr−1q} (resp.

{qa, pqa, p2qa, . . . , pr−1qa, pr−1qa+1} with some integer a) to all the polynomials in

the bases. Hence, dimensions of the lattices that we use to attack the variants are

larger by a factor of (r + 1) of the original lattices to attack the standard RSA. We

believe that the connections offer better understanding for our algorithm constructions

and enable us to easily generalize other attacks for their variants. As applications of

our generalizations, we obtain the following results:

• In Section 6.2, we propose a partial key exposure attack on Takagi’s RSA that

fully generalizes the attack of Ernst et al. [EJMdW05]. Our attack becomes

the same as Huang et al. [HHX+14] with the exposed LSBs and better than

the attack with the exposed MSBs for all α, β, and r.

• In Section 6.3, we give a simpler proof for the Itoh et al. small secret expo-

nent attack on Takagi’s RSA that fully generalizes the stronger Boneh-Durfee

attack [BD00]. Our alternative proof fully generalizes that of Herrmann and

May [HM10] for the stronger Boneh-Durfee attack and enables us to under-

stand the Itoh et al. attack in detail. Based on the understanding, we propose

a partial key exposure attack on Takagi’s RSA with the exposed LSBs that

fully generalizes Takayasu and Kunihiro’s attack [TK14d]. The attack is better

than our attack in Section 6.2 and that of Huang et al. [HHX+14] for all α and

r when β is small.

• In Section 6.4, we propose a small secret exponent attack on the prime power

RSA that fully generalizes the weaker Boneh-Durfee attack [BD00]. To ob-

tain the attack is technically easy since it is an extension of Sarkar’s at-

tack [Sar16] for arbitrary α. However, the extension reveals an important fact.

Although Sarkar’s attack, which captures only for α = 1, is weaker than Lu

et al. [LZPL15] for r ≥ 5, our attack is better than Lu et al. for all r when



6.1 Introduction 99

α is small. In addition, we propose a partial key exposure attack that fully

generalizes the Ernst et al. [EJMdW05]. Our attack is better than Sarkar’s

result for small α and β, and is better than Lu et al. [LZPL15] for small r.

• In Section 6.5, we propose a small secret exponent attack on the prime power

RSA that (almost) fully generalizes the stronger Boneh-Durfee [BD00]. The

attack is better than our attack in Section 6.4. In addition, we propose a

partial key exposure attack that (almost) fully generalizes Takayasu and Ku-

nihiro [TK14d]. The attack is better than all known attacks for small r and

β.

Since the elliptic curve method factorization [Len87] becomes efficient for large r and

Boneh et al. [BDH99] revealed that only a 1/(r + 1) fraction of the most significant

bits of p suffices to factorize the modulus, they are the more important for small r.

Then, we mainly compare our results and previous works for r = 2 and 3 throughout

the paper, although we analyze the security for arbitrary r.

6.1.3 Technical Overview

In 1996, Coppersmith introduced lattice based methods to solve univariate modu-

lar equations [Cop96b] and bivariate integer equations [Cop96a], and they can be

extended to more variables with a reasonable assumption (that we discuss later).

The method is useful to evaluate the security of RSA. See [Cop97, Cop01, NS01,

May03, May10]. Indeed, small secret exponent attack was firstly mentioned by

Wiener [Wie90]. The attack is based on a continued fraction approach and works

when d < N0.25. Later, Boneh and Durfee revisited the attack and improved the

bound to d < N0.292 using Coppersmith’s method. Although the original Copper-

smith method is conceptually involved, simpler reformulations have been proposed;

for modular equations by Howgrave-Graham [How97] and for integer equations by

Coron [Cor04, Cor07]. In short, the methods construct a lattice whose bases consist

of coefficients of polynomials that have the same roots as the original equations. By

finding short lattice vectors using the LLL reduction, the original equations can be

solved. The methods can solve modular (resp. integer) equations when sizes of roots

are to some extent smaller than the modulus (resp. the norm of polynomial).

To maximize solvable root bounds, appropriate selections of lattice bases are es-

sential. Jochemsz and May [JM06] proposed a conceptually simple strategy for the

lattice constructions. Although the strategy does not always offer the best results,

usually offers the best or similar bounds. For example, the Boneh-Durfee weaker result
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d < N0.284 can be obtained based on the strategy. Especially, the strategy is the more

compatible with integer equations based analysis. To the best of our knowledge, there

are no algorithms solving integer equations outperforming the Jochemsz-May strat-

egy; currently known best algorithms solving any integer equations can be captured

by the Jochemsz-May strategy. Furthermore, most algorithms by solving modular

equations based on the Jochemsz-May strategy can also be obtained by solving in-

teger equations based on the strategy although reverse does not always hold. For

example, in the context of partial key exposure attacks on the standard RSA, Ernst

et al. [EJMdW05] solved integer equations, whereas Blömer and May [BM03], and

Sarkar et al. [SSM10] solved modular equations, and all these results are captured by

the Jochemsz-May strategy. As we noted, attacks of Blömer and May, and Sarkar

et al. are only the special cases of Ernst et al. However, in the context of secu-

rity analyses of Takagi’s RSA and the prime power RSA, there are no results known

that solved integer equations. Therefore, we solve integer equations for Takagi’s RSA

(Section 6.2) and the prime power RSA (Section 6.4), and fully generalize the weaker

Boneh-Durfee and Ernst et al.

Although the differences are small, there are some results that outperform the

Jochemsz-May strategy by solving modular equations, e.g., the stronger Boneh-Durfee

attack d < N0.292 [BD00]. In general, analyses to obtain attacks outperforming the

Jochemsz-May strategy are difficult. Indeed, there are no results known that attack

Takagi’s RSA or the prime power RSA outperforming the Jochemsz-May strategy

except the Itoh et al. small secret exponent attack on Takagi’s RSA [IKK08]. In

the context of the stronger Boneh-Durfee attack, the proof is involved since determi-

nants of lattices, whose basis matrices are non-triangular, should be calculated. For

the purpose, Boneh and Durfee introduced geometrically progressive matrix although

the notion is unfamiliar. Since Itoh et al. followed the proof, the analysis is also

involved. The fact makes it difficult to obtain partial key exposure attacks on Tak-

agi’s RSA outperforming the Jochemsz-May strategy. As the hope of such situations,

Herrmann and May [HM10] gave a simpler proof for the stronger Boneh-Durfee at-

tack. They used unravelled linearization [HM09] and transformed Boneh and Durfee’s

non-triangular basis matrices to be triangular. The simpler proof offers better under-

standing of the attack. Based on the understanding, Takayasu and Kunihiro extended

the stronger Boneh-Durfee attack to partial key exposure attacks outperforming the

Jochemsz-May strategy. As the same way, we give a simpler proof of the Itoh et

al. and propose a partial key exposure attack on Takagi’s RSA outperforming the

Jochemsz-May strategy (Section 6.3). Moreover, we analyze better lattice construc-
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tions and propose small secret exponent attacks and partial key exposure attacks on

the prime power RSA outperforming the Jochemsz-May strategy (Section 6.5).

6.2 Attacks on Takagi’s RSA by Solving Integer Equations

In this section, we analyze the security of Takagi’s RSA by solving integer equations.

In Section 6.2.1, we give an alternative proof of the Itoh et al. small secret exponent

attack [IKK08] that was proposed by solving modular equations. In Section 6.2.2,

we propose a partial key exposure attack that fully generalizes the attack of Ernst et

al. [EJMdW05].

6.2.1 Small Secret Exponent Attack

In this section, we revisit the Itoh et al. small secret exponent attacks [IKK08]. The

result fully generalizes the weaker Boneh-Durfee [BD00] in the sense that it completely

covers their attack, i.e.,

β <
7− 2

√
7

6

for r = 1 and α = 1.

Theorem 14 ([IKK08]). Let N = prq be a public modulus and let e ≈ Nα and

d ≈ Nβ be public exponent and secret exponent of Takagi’s RSA, respectively. If

β <
7− 2

√
1 + 3(r + 1)α

3(r + 1)
for α ≤ 1

r + 1

holds, then Takagi’s RSA modulus N can be factorized in polynomial time.

Although the original paper [IKK08] solved modular equations for the attack, we

solve integer equations and give an alternative proof. The proof is convenient to

analyze partial key exposure attacks in Section 6.2.2. Moreover, we exploit the exact

connection between the algorithm constructions of Itoh et al. and the weaker Boneh-

Durfee.

Proof. Recall the key generation for Takagi’s RSA;

ed = 1 + ℓ(p− 1)(q − 1)

with some integer |ℓ| ≈ Nα+β−2/(r+1). To recover the secret exponent d, we use the

following polynomial

fT.SSE.i(x, y, z1, z2) = 1 + ex+ y(z1 + 1)(z2 + 1)
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whose root over the integers is

(x, y, z1, z2) = (−d, ℓ,−p,−q).

The absolute values of the root for (x, y, z1) are bounded above by

X := Nβ , Y := Nα+β−2/(r+1), Z1 := N1/(r+1)

within constant factors. For the notational convenience, we also use Z2 := N/Zr
1 . We

set an (possibly large) integer W such that

W < Nα+β

since ∥fT.SSE.i(xX, yY, z1Z1, z2Z2)∥∞ ≥ |eX| ≈ Nα+β . Next, we set an integer

R := W (XY )m−1Zm+r−1+t
1 Zm−1+t

2

with some integers m = ω(r) and t = τm where τ ≥ 0. We define shift-polynomials

gT.SSE.i and g′T.SSE.i as

gT.SSE.i : x
iXyiY z

iZ1
1 z

iZ2
2 · fT.SSE.i ·Xm−1−iXY m−1−iY Z

m+r−1+t−iZ1
1 Z

m−1+t−iZ2
2

for xiXyiY z
iZ1
1 z

iZ2
2 ∈ S1 ∪ S2,

g′T.SSE.i : x
iXyiY z

iZ1
1 z

iZ2
2 ·R for xiXyiY z

iZ1
1 z

iZ2
2 ∈ (M1 ∪M2)\(S1 ∪ S2),

for sets of monomials

S1 :=
∪

0≤j≤t

{
xiXyiY z

iZ1
+j

1

∣∣∣∣ xiXyiY z
iZ1
1 is a monomial of fT.SSE.i(x, y, z1, z2)

m−1

}
,

S2 :=
∪

0≤j≤t

xiXyiY z
iZ1
1 z

iZ2
+j

2

∣∣∣∣
xiXyiY z

iZ1
1 z

iZ2
2 is a monomial of

s̃ · fT.SSE.i(x, y, z1, z2)
m−1 for iZ2 ≥ 1

where s̃ = {zr−1
1 z2, z

r−2
1 z2, . . . , z1z2}

 ,

M1 :=

xiXyiY z
iZ1
1

∣∣∣∣ monomials of xi′Xyi
′
Y z

i′Z1
1 · fT.SSE.i(x, y, z1, z2)

for xi′Xyi
′
Y z

i′Z1
1 ∈ S1

 ,

M2 :=

xiXyiY z
iZ1
1 z

iZ2
2

∣∣∣∣ monomials of xi′Xyi
′
Y z

i′Z1
1 z

i′Z2
2 · fT.SSE.i(x, y, z1, z2)

for iZ2 ≥ 1 where xi′Xyi
′
Y z

i′Z1
1 z

i′Z2
2 ∈ S2

 .

By definition of sets of monomial S1, S2,M1, and M2, it follows that

xiXyiyz
iZ1
1 ∈ S1 ⇔ iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1− iX ;
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iZ1 = 0, 1, . . . , iY + t,

xiXyiyz
iZ1
1 z

iZ2
2 ∈ S2 ⇔ iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1− iX ;

iZ1 = 0, 1, . . . , r − 1; iZ2 = 1, 2, . . . , iY + t+ 1,

xiXyiyz
iZ1
1 ∈ M1 ⇔ iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m− iX ;

iZ1 = 0, 1, . . . , iY + t,

xiXyiyz
iZ1
1 z

iZ2
2 ∈ M2 ⇔ iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m− iX ; iZ1

= 0, 1, . . . , r − 1;

iZ2 = 1, 2, . . . , iY + t+ 1.

All these shift-polynomials gT.SSE.i(x, y, z1, z2) and g′T.SSE.i(x, y, z1, z2) mod-

ulo R have the root (x, y, z1, z2) = (−d, ℓ,−p,−q) that are the same as

fT.SSE.i(x, y, z1, z2). All these shift-polynomials gT.SSE.i(xX, yY, z1Z1, z2Z2) and

g′T.SSE.i(xX, yY, z1Z1, z2Z2) have a common divisor R. We replace each occurrence of

zr1z2 by N and construct a lattice with coefficients of gT.SSE.i(xX, yY, z1Z1, z2Z2) and

g′T.SSE.i(xX, yY, z1Z1, z2Z2) as the bases. The shift-polynomials generate a triangular

basis matrix. We compute

|S1 + S2| = (r + 1)

(
1

6
+

τ

2

)
m3 + o(m3),

sX =
∑

xiX yiY z
iZ1
1 z

iZ2
2

∈ (M1 ∪ M2)\(S1 ∪ S2)

iX = (r + 1)

(
1

6
+

τ

2

)
m3 + o(m3),

sY =
∑

xiX yiY z
iZ1
1 z

iZ2
2

∈ (M1 ∪ M2)\(S1 ∪ S2)

iY = (r + 1)

(
1

3
+

τ

2

)
m3 + o(m3),

sZ =
∑

xiX yiY z
iZ1
1 z

iZ2
2

∈ (M1 ∪ M2)\(S1 ∪ S2)

(iZ1
+ iZ2

) = (r + 1)

(
1

6
+

τ

2
+

τ2

2

)
m3 + o(m3).

Ignoring low order terms of m, based on the Jochemsz-May strategy, LLL outputs

short vectors that satisfy Howgrave-Graham’s Lemma and that contradict Hinek-

Stinson’s Lemma when XsXY sY ZsZ < W |S1+S2| holds. The condition becomes
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X(r+1)( 1
6+

τ
2 )m

3

Y (r+1)( 1
3+

τ
2 )m

3

Z
(r+1)

(
1
6+

τ
2+

τ2

2

)
m3

< W (r+1)( 1
6+

τ
2 )m

3

. (6.1)

Then, the inequality becomes

β(r + 1)

(
1

6
+

τ

2

)
+

(
α+ β − 2

r + 1

)
(r + 1)

(
1

3
+

τ

2

)
+

1

r + 1
(r + 1)

(
1

6
+

τ

2
+

τ2

2

)
< (α+ β)(r + 1)

(
1

6
+

τ

2

)
that leads to

0 < −(r + 1)α− (r + 1) (2 + 3τ)β + 3 + 3τ − 3τ2.

To maximize the right hand side of the inequality, we set the parameter

τ =
1− (r + 1)β

2

and the condition becomes

β <
7− 2

√
1 + 3(r + 1)α

3(r + 1)

as required. To satisfy the restriction τ ≥ 0, the condition β ≤ 1
r+1 should hold. The

condition results in α ≥ 1
r+1 .

The algorithm construction fully generalizes that of Ernst et al. that is a partial key

exposure extension of the weaker Boneh-Durfee by solving integer equations, although

the connection is hard to follow from the original proof in [IKK08]. In [EJMdW05],

Ernst et al. used a similar polynomial as fT.SSE.i and the condition becomes

X( 1
6+

τ
2 )m

3

Y ( 1
3+

τ
2 )m

3

Z

(
1
6+

τ
2+

τ2

2

)
m3

< W ( 1
6+

τ
2 )m

3

.

Clearly, the condition relates to the above one. The connection comes from our

definition of sets of monomials S1, S2,M1, and M2 that are generalizations of those

of Ernst et al. by a factor of (r + 1). More concretely, each of our S1 and S2 for

iZ1
= 0, 1, . . . , r − 1 play the same role as that for Ernst et al. and so do M1 and

M2 for iZ1 = 0, 1, . . . , r − 1. Hence, our n, sX , sY , and sZ are larger by a factor of

(r+1) of Ernst et al. As a result, we successfully proposed a generalization the weaker

Boneh-Durfee. In Section 6.2.2, we use the same sets of monomials S1, S2,M1, and

M2 and construct a generalization of the partial key exposure attack of Ernst et al.
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6.2.2 Partial Key Exposure Attack

In this section, we propose partial key exposure attacks on Takagi’s RSA that satisfy

the following property.

Theorem 15. Let N = prq be a public modulus and let e ≈ Nα and d ≈ Nβ be public

exponent and secret exponent of Takagi’s RSA, respectively. When (β − δ) logN bits

of the most significant bits or the least significant bits are exposed, if

δ <
5− 2

√
−5 + 3(r + 1)(α+ β)

3(r + 1)
for

2

r + 1
≤ α+ β

holds, then Takagi’s RSA modulus N can be factorized in polynomial time.

The result fully generalizes Ernst et al. [EJMdW05] in the sense that it completely

covers their attack, i.e.,

β <
5− 2

√
−5 + 6(α+ β)

6

for r = 1. When the LSBs are exposed, our attack becomes the same as Huang et

al. [HHX+14]. Although the attack of Huang et al. with the MSBs is weaker than

that with the LSBs, our attacks work in the same conditions. We can obtain the

advantage by solving integer equations. When the MSBs are exposed, our attack is

always better than Huang et al. [HHX+14] that works when

δ <
7−

√
−39 + 24(r + 1)(α+ β)

4(r + 1)
.

Figures 6.1 compare Theorem 15 and Huang et al. for r = 2 and 3. Our attack is the

better for all β, e.g., our attack works with less partial information.

Proof. Recall the key generation for Takagi’s RSA with the exposed bits (regardless

of the MSBs or the LSBs);

e
(
d̃+ (d− d̃)

)
= 1 + ℓ(p− 1)(q − 1)

with some integer |ℓ| ≈ Nα+β−2/(r+1). To recover unknown parts d − d̃, we use the

following polynomial

fT.PKE.i(x, y, z1, z2) = 1− ed̃+ eMx+ y(z1 + 1)(z2 + 1),
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Fig. 6.1. Comparisons of partial key exposure attacks on Takagi’s RSA when the

MSBs are exposed for α = 1/(r + 1). We compare how much portions of

d should be exposed for β between the attack of Huang et al. [HHX+14]

and our Theorem 15. The left figure is for r = 2 and the right figure is for

r = 3.

where M = 1 (resp. M = 2⌊(β−δ) logN⌋) with the exposed MSBs (resp. LSBs) whose

root over the integers is

(x, y, z1, z2) =
(
−(d− d̃), ℓ,−p,−q

)
.

The absolute values of the root (x, y, z1) are bounded by

X := Nδ, Y := Nα+β−2/(r+1), Z1 := 2N1/(r+1).

For the notational convenience, we also use the notation Z2 := N/Zr
1 .

These formulations and those for small secret exponent attacks in Section 6.2.1

are essentially the same when we use the Jochemsz-May strategy. That means the

Newton polygons of polynomials fT.SSE.i(x, y, z1, z2) and fT.PKE.i(x, y, z1, z2) are the

same, e.g., there are six monomials for variables 1, x, y, yz1, yz2, and yz1z2. Hence,

we use almost the same algorithm construction. We set an (possibly large) integer W

such that

W < Nα+β

since ∥fT.SSE.i(xX, yY, z1Z1, z2Z2)∥∞ ≥ max{|1 − ed̃|, |eMX|} ≈ Nα+β . Next, we

set an integer

R := W (XY )m−1 · Zm+r−1+t
1 Zm−1+t

2

with some integers m = ω(r) and t = τm where τ ≥ 0 such that gcd(R, 1− ed̃) = 1.
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We compute c = (1− ed̃)−1 (mod R) and

f ′
T.PKE.i(x, y, z1, z2) := c · fT.PKE.i(x, y, z1, z2) (mod R).

We define shift-polynomials gT.PKE.i and g′T.PKE.i as

gT.PKE.i : x
iXyiY z

iZ1
1 z

iZ2
2 · f ′

T.PKE.i ·Xm−1−iXY m−1−iY Zm+r−1+t−iZ1−iZ2

for xiXyiY z
iZ1
1 z

iZ2
2 ∈ S1 ∪ S2,

g′T.PKE.i : x
iXyiY z

iZ1
1 z

iZ2
2 ·R for xiXyiY z

iZ1
1 z

iZ2
2 ∈ (M1 ∪M2)\(S1 ∪ S2),

for sets of monomials S1, S2,M1, and M2 that are the same as in Section 6.2.1 where

fT.SSE.i is replaced by f ′
T.PKE.i. All these shift-polynomials gT.PKE.i and g′T.PKE.i

modulo R have the root (x, y, z1, z2) = (−(d − d̃), ℓ,−p,−q) that are the same as

fT.PKE.i(x, y, z1, z2). We replace each occurrence of zr1z2 by N and construct a lattice

with coefficients of gT.PKE.i(xX, yY, z1Z1, z2Z2) and g′T.PKE.i(xX, yY, z1Z1, z2Z2) as

the bases. Hence, ignoring low order terms of m, based on the Jochemsz-May strat-

egy [JM06], LLL outputs short lattice vectors that satisfy Howgrave-Graham’s Lemma

when the inequality (5.1) holds. For partial key exposure attacks (regardless of the

MSBs or the LSBs are exposed), the inequality becomes

δ(r + 1)

(
1

6
+

τ

2

)
+

(
α+ β − 2

r + 1

)
(r + 1)

(
1

3
+

τ

2

)
+

1

r + 1
(r + 1)

(
1

6
+

τ

2
+

τ2

2

)
< (α+ β)(r + 1)

(
1

6
+

τ

2

)
that leads to

0 < −(r + 1) (α+ β)− (r + 1)δ (1 + 3τ) + 3 + 3τ − 3τ2.

To maximize the right hand side of the inequality, we set the parameter

τ =
1− (r + 1)δ

2

and the condition becomes

δ <
5− 2

√
−5 + 3(r + 1)(α+ β)

3(r + 1)

as required. To satisfy the restriction η ≥ 0, the condition δ ≤ 1
r+1 should hold. The

condition results in 2
r+1 ≤ α+ β.
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As we claimed in Section 6.2.1, the algorithm construction fully generalizes Ernst

et al.

In Section 6.3.2, we propose an improved attack when the LSBs are exposed. It

seems that our Theorem 15 with the exposed MSBs is hard to be improved. Although

there exist attacks that are better than Ernst et al. (the other attack of Ernst et

al. [EJMdW05] and Takayasu and Kunihiro’s attack [TK14d]), by definition, it seems

difficult to generalize the attacks for Takagi’s RSA since both attacks make use of the

MSBs of ℓ. To compute the MSBs of ℓ, we have to know the MSBs of (p−1)(q−1). It is

possible for the standard RSA since pq = N . However, it seems difficult for Takagi’s

RSA. Hence, to improve Theorem 15, we have to exploit the special structure of

Takagi’s RSA or improve the attacks on the standard RSA without the knowledge of

the MSBs of ℓ.

6.3 Attacks on Takagi’s RSA by Solving Modular Equations

In this section, we analyze the security of Takagi’s RSA by solving modular equations.

In Section 6.3.1, we give an alternative proof of the Itoh et al. small secret exponent

attack [IKK08] that is analogous to Herrmann and May [HM10]. In Section 6.3.2, we

propose a partial key exposure attack that fully generalizes Takayasu and Kunihiro’s

result [TK14d].

6.3.1 Small Secret Exponent Attack

In this section, we prove the following Itoh et al. small secret exponent attack.

The result fully generalizes the stronger Boneh-Durfee [BD00] in the sense that it

completely covers their attack, i.e., β < 1− 1/
√
2 for r = 1 and α = 1.

Theorem 16 ([IKK08]). Let N = prq be a public modulus and let e ≈ Nα and

d ≈ Nβ be public exponent and secret exponent of Takagi’s RSA, respectively. If

β <
2−

√
(r + 1)α

r + 1
for

1

r + 1
≤ α

holds, then Takagi’s RSA modulus N can be factorized in polynomial time.

The original proof in [IKK08] is involved since they used geometrically progressive

matrix. We use unravelled linearization [HM09] and offer simpler proof. Moreover,

we exploit the exact connection between the algorithm constructions of Itoh et al.

and the stronger Boneh-Durfee.
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Proof. Recall the key generation for Takagi’s RSA modulo N = prq,

ed = 1 + ℓ(p− 1)(q − 1)

with some integer |ℓ| ≈ Nα+β−2/(r+1). Itoh et al. [IKK08] considered a polynomial

fT.SSE.m(x, y1, y2) = 1 + x(y1 + 1)(y2 + 1).

The polynomial modulo e has the root

(x, y1, y2) = (ℓ,−p,−q).

The absolute values are bounded above by

X := Nα+β−2/(r+1), Y1 = Y2 := N1/(r+1).

Let m = ω(r) be an integer and τ ≥ 0. To solve a modular equation

fT.SSE.m(x, y1, y2) = 0 (mod e), we use shift-polynomials

gT.SSE.m(x, y1, y2) = xiXy
iY1
1 y

iY2
2 fu

T.SSE.m(x, y1, y2)e
m−u

with indices in

Ix1 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = 0; iY2 = 0, or

Ix2 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = 0, 1, . . . , r − 1; iY2 = 1,

Iy1 ⇔ u = 0, 1, . . . ,m; iX = 0; iY1 = 1, 2, . . . , ⌈τu⌉; iY2 = 0, or

Iy2 ⇔ u = 0, 1, . . . ,m; iX = 0; iY1 = 0, 1, . . . , r − 1; iY2 = 2, 3, . . . , ⌈τu⌉.

All these shift-polynomials gT.SSE.m modulo em have the roots (x, y1, y2) =

(ℓ,−p,−q) that are the same as fT.SSE.m. We replace each occurrence of yr1y2 by

N and construct a lattice with coefficients of gT.SSE.m(xX, y1Y1, y2Y2) as the bases.

Here, we observe why the construction offers a bound outperforming the Jochemsz-

May strategy. In the above Iy1 and Iy2, iY1 and iY2 are upper bounded by ⌈τu⌉ that

depend on u. In the Jochemsz-May strategy, the corresponding indices (iZ1 − iY and

iZ2 − iY in S1, S2,M1, and M2 in Section 6.2.1) are bounded by t = τm that only

dependsm. Since the former covers the latter, we can analyze broader classes of lattice

constructions. The restriction of the Jochemsz-May strategy offers simpler analysis

with a triangular basis matrix although that does not always offer the best bound.

Moreover, the parameter is eventually set to τ = 1−(r+1)β. The optimization follows

from the fact that shift-polynomials gT.SSE.m with indices in Iy1 and Iy2 reduce the
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norm of outputs of the LLL algorithm, e.g., the diagonals for the shift-polynomials

are smaller than the modulus em. This observation enables readers to understand our

improvements in Section 6.5 easily.

However, the former selection requires involved analysis since the shift-polynomials

generate non-triangular basis matrices. The dependence of the Jochemsz-May strat-

egy always generates triangular basis matrices and the analysis is easy. To construct

partial key exposure attacks outperforming the Jochemsz-May strategy, we require

better understanding for small secret exponent attacks. For the purpose, we show

an analogous elementary proof to Herrmann and May [HM10]. Although the above

shift-polynomials generate non-triangular basis matrices, we can transform it to be

triangular by using unravelled linearization.

Lemma 9. Using a linearization z1 = 1 + xy1 and z2 = 1 + xy2, the above shift-

polynomials generate a triangular basis matrix. The diagonals of the basis matrix for

gT.SSE.m are

• Xu+iXY u
1 em−u for indices in Ix1,

• Xu+iXY
iY1
1 Y u+1

2 em−u for indices in Ix2,
• Y

iY1
1 Zu

1 e
m−u for indices in Iy1,

• Y
iY1
1 Y2Z

u
2 e

m−u for indices in Iy2.

Indeed, the transformation is analogous to Herrmann and May [HM10], and

show the exact connection with the stronger Boneh-Durfee and the Itoh et al. at-

tack although the connection is hard to follow from the original proof [IKK08].

The shift-polynomials for indices in Ix1 and Ix2 for iY1 = 0, 1, . . . , r − 1 (resp.

Iy1 and Iy2 for iY1 = 0, 1, . . . , r − 1) play the same role as x-shifts (resp. y-

shifts) of the stronger Boneh-Durfee. Ignoring low order terms of m, the di-

mension of the lattice is (r + 1)
(
1
2 + τ

2

)
m2, and the determinant of the ba-

sis matrix is X(r+1)( 1
3+

τ
3 )m

3

Y
(r+1)

(
1
6+

τ
3+

τ2

6

)
m3

e(r+1)( 1
3+

τ
6 )m

3

. Notice that Z1 =

Z2 ≈ XY . Again, we stress the connection with the stronger Boneh-Durfee.

In the proof, a dimension of a lattice is
(
1
2 + τ

2

)
m2 and its determinant is

X( 1
3+

τ
3 )m

3

Y

(
1
6+

τ
3+

τ2

6

)
m3

e(
1
3+

τ
6 )m

3

. Hence, it is clear that the algorithm construc-

tion of Itoh et al. is a generalization of that for the stronger Boneh-Durfee. We

set the parameter τ = 1 − (r + 1)β, and obtain Theorem 16. Here, we omit overall

calculations since they are completely the same as those in [IKK08].
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Fig. 6.2. Comparisons of partial key exposure attacks on Takagi’s RSA when the

LSBs are exposed and α = 1/(r + 1). We compare how much portions of

d should be exposed for β between the attack of Huang et al. [HHX+14]

and our Theorem 17. The left figure is for r = 2 and the right figure is for

r = 3.

6.3.2 Partial Key Exposure Attack

In this section, we propose a partial key exposure attack on Takagi’s RSA that satisfies

the following property.

Theorem 17. Let N = prq be a public modulus and let e ≈ Nα and d ≈ Nβ be public

exponent and secret exponent of Takagi’s RSA, respectively. When (β − δ) logN bits

of the least significant bits are exposed, if

δ <
2 + (r + 1)β −

√
−12 + 4(r + 1)α+ 12(r + 1)β − 3(r + 1)2β2

2(r + 1)
and

β ≤
9−

√
−3 + 12(r + 1)α

6(r + 1)

hold, then Takagi’s RSA modulus N can be factorized in polynomial time.

The result fully generalizes Takayasu and Kunihiro’s result [TK14d] in the sense

that it completely covers their attack, i.e.,

δ <
1 + β −

√
−1 + 6β − 3β2

2
and β <

9−
√
21

12

for r = 1 and α = 1.

When the LSBs are exposed and β ≤ 9−
√

−3+12(r+1)α

6(r+1) , our attack is better than
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Huang et al. [HHX+14] that works when δ <
5−2

√
−5+3(r+1)(α+β)

3(r+1) . Figures 6.2 com-

pare our results and Huang et al. for r = 2 and 3. Our attack is the better for small

β, e.g., our attack works with less partial information.

Proof. Recall the key generation for Takagi’s RSA with the exposed LSBs;

e(d1M + d0) = 1 + ℓ(p− 1)(q − 1)

with some integer |ℓ| ≈ Nα+β−2/(r+1). To recover the unknown MSBs of the secret

exponent d1, we use the following polynomials

fT.PKE.m1(x, y1, y2) = 1− ed0 + x(y1 + 1)(y2 + 1) and

fT.PKE.m2(x, y1, y2) = 1 + x(y1 + 1)(y2 + 1)

whose roots with appropriate moduli are

(x, y1, y2) = (ℓ,−p,−q),

e.g., fT.PKE.m1(ℓ,−p,−q) = 0 (mod eM) and fT.PKE.m2(ℓ,−p,−q) = 0 (mod e).

The absolute values are bounded above by

X := Nα+β−2/(r+1), Y1 = Y2 := 2N1/(r+1)

within constant factors. Let m = ω(r) be an integer and define a function

lr(k) = max

{
0,

k − (r + 1)(β − δ)m

1 + (r + 1)(δ − 2β)

}
.

To solve modular equations fT.PKE.m1(x, y1, y2) = 0 (mod eM) and

fT.PKE.m2(x, y1, y2) = 0 (mod e) simultaneously, we use following shift-polynomials

gT.PKE.m1(x, y1, y2) = xiXy
iY1
1 y

iY2
2 fu

T.PKE.m1(x, y1, y2)(eM)m−u,

gT.PKE.m2(x, y1, y2) = y
iY1

+k1

1 y
iY2

+k2

2 f
u−⌈lr(k1+k2)⌉
T.PKE.m1 (x, y1, y2)·

f
⌈lr(k1+k2)⌉
T.PKE.m2 (x, y1, y2)e

m−uMm−(u−⌈lr(k1+k2)⌉).

To construct a lattice we use gT.PKE.m1 with indices in Ix1, Ix2 and gT.PKE.m2 with

indices in Iy1, Iy2 where

Ix1 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = 0; iY2 = 0,

Ix2 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = 0, 1, . . . , r − 1; iY2 = 1,
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Iy1 ⇔ u = 0, 1, . . . ,m; iY1 = 0; iY2 = 0;

k1 = 1, 2, . . . , ⌊(r + 1)(β − δ)m+ (1 + (r + 1)(δ − 2β))u⌋; k2 = 0,

Iy2 ⇔ u = 0, 1, . . . ,m; iY1 = 0, 1, . . . , r − 1; iY2 = 1; k1 = 0;

k2 = 1, 2, . . . , ⌊(r + 1)(β − δ)m+ (1 + (r + 1)(δ − 2β))u⌋.

All these shift-polynomials gT.PKE.m1 and gT.PKE.m2 modulo (eM)m have the root

(x, y1, y2) = (ℓ,−p,−q) that is the same as fT.PKE.m. We replace each occurrence of

yr1y2 by N and construct a lattice with coefficients of gT.PKE.m1(xX, y1Y1, y2Y2) and

gT.PKE.m2(xX, y1Y1, y2Y2) as the bases.

As in the proof of Theorem 16, the shift-polynomials gT.PKE.m1 with indices in Ix1
and Ix2 for iY1 = 0, 1, . . . , r−1 (resp. gT.PKE.m2 with indices in Iy1 and Iy2 for iY1 =

0, 1, . . . , r−1) play the same role as x-shifts (resp. y-shifts) of Takayasu and Kunihiro.

The shift-polynomials generate a triangular basis matrix using a linearization z1 =

1 + xy1 and z2 = 1 + xy2. Assume 1 + (r + 1)(δ − 2β) ≥ 0 and the diagonals of the

basis matrix are

• Xu+iXY u
1 em−u for gT.PKE.m1 with indices in Ix1,

• Xu+iXY
iY1
1 Y u+1

2 em−u for gT.PKE.m1 with indices in Ix2,
• Xu−⌈lr(k1)⌉Y

u−⌈lr(k1)⌉+k1

1 Z
⌈lr(k1)⌉
1 em−uMm−(u−⌈lr(k1)⌉) for gT.PKE.m2 with in-

dices in Iy1,
• Xu−⌈lr(k2)⌉Y

iY1
1 Y

u−⌈lr(k2)⌉+k1+1
2 Z

⌈lr(k2)⌉
2 em−uMm−(u−⌈lr(k2)⌉) for gT.PKE.m2

with indices in Iy2.

In Iy1 and Iy2, k1 and k2 are upper bounded by ⌊(r + 1)(β − δ)m+ (1 + (r + 1)(δ −
2β))u⌋. As Takayasu and Kunihiro, the definition follows from the fact that the

shift-polynomials reduce norms of output vectors by the LLL algorithm.

As the proof of Theorem 16, all these values are larger by a factor of (r + 1) of

Takayasu and Kunihiro’s. We compute a dimension

n = |I1 ∪ I2 ∪ I3 ∪ I4| = (r + 1)

(
1− r + 1

2
δ

)
m2 + o(m2),

and a determinant of the lattice det(L(B)) = XsXY sY ZsZeseMsM , where

sX + sZ =
∑

(u, iX , iY1
, iY2

)

∈ I1 ∪ I2

(u+ iX) +
∑

(u, iY1
, iY2

, k1, k2)

∈ I3 ∪ I4

u

= (r + 1)

(
2

3
− r + 1

6
(β + δ)

)
m3 + o(m3),
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sY + sZ =
∑

(u, iX , iY1 , iY2 )

∈ I1 ∪ I2

(u+ iY1
+ iY2

)

+
∑

(u, iY1 , iY2 , k1, k2)

∈ I3 ∪ I4

(u+ iY1 + iY2 + k1 + k2)

= (r + 1)

(
2

3
− r + 1

3
(δ + β) +

(r + 1)2

6
(δ2 − βδ + β2)

)
m3 + o(m3),

se =
∑

(u, iX , iY1
, iY2

)

∈ I1 ∪ I2

(m− u) +
∑

(u, iY1
, iY2

, k1, k2)

∈ I3 ∪ I4

(m− u)

= (r + 1)

(
1

2
+

r + 1

6
β − r + 1

3
δ

)
m3 + o(m3),

sM =
∑

(u, iX , iY1 , iY2 )

∈ I1 ∪ I2

(m− u) +
∑

(u, iY1 , iY2 , k1, k2)

∈ I3 ∪ I4

(m− (u− ⌈l(k1 + k2)⌉))

= (r + 1)

(
2

3
− r + 1

6
(β + δ)

)
m3 + o(m3).

LLL outputs short lattice vectors that satisfy Howgrave-Graham’s Lemma when

(det(L(B)))1/n < (eM)m that leads to(
α+ β − 2

r + 1

)
(r + 1)

(
2

3
− r + 1

6
(β + δ)

)
+

1

r + 1
(r + 1)

(
2

3
− r + 1

3
(δ + β) +

(r + 1)2

6
(δ2 − βδ + β2)

)
+α(r + 1)

(
1

2
+

r + 1

6
β − r + 1

3
δ

)
+ (β − δ)(r + 1)

(
2

3
− r + 1

6
(β + δ)

)
<(α+ β − δ)(r + 1)

(
1− r + 1

2
δ

)
.

Ignoring low order term of m, the inequality becomes

(r + 1)2δ2 − (r + 1)(2 + (r + 1)β)δ + 4− (r + 1)α− 2(r + 1)β + (r + 1)2β2 > 0.
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Hence, we obtain the bound of Theorem 17

δ <
2 + (r + 1)β −

√
−12 + 4(r + 1)α+ 12(r + 1)β − 3(r + 1)2β2

2(r + 1)

as required. To satisfy the restriction 1 + (r + 1)(δ − 2β) ≥ 0, the condition β ≤
9−

√
−3+12(r+1)α

6(r+1) should hold.

6.4 Attacks on the Prime Power RSA by Solving Integer

Equations

In this section, we analyze the security of the prime power RSA by solving integer

equations. In Section 6.4.1, we propose a small secret exponent attack that fully

generalizes the weaker Boneh-Durfee result [BD00]. In Section 6.4.2, we propose a

partial key exposure attack that fully generalizes Ernst et al. [EJMdW05].

6.4.1 Small Secret Exponent Attack

In this section, we propose small secret exponent attacks on the prime power RSA

that satisfy the following property.

Theorem 18. Let N = prq be a public modulus for r ≥ 2 and let e ≈ Nα and d ≈ Nβ

be public exponent and secret exponent of the prime power RSA, respectively. If

0 < −r(r + 1)2α+ r(r + 1)(1− β)(2(r + 1) + 3rτ)− 1− 3rη(1 + rη)−

r3(1− η + τ)3 + r2(η − τ)3 where η =
r(r + 1)(1− β)− 1

2r

and τ = η −
r −

√
−r + (r + 1)2(1− β)

r + 1
for

3r3 + r2 + r − 1

4(r + 1)
≤ α, or

β <
r + (

√
r − 1)2

2r(r + 1)
− α

2
for

r + (
√
r − 1)2

r(r + 1)
< α ≤ 3r3 + r2 + r − 1

4(r + 1)

holds, then prime power RSA modulus N can be factorized in polynomial time.

The result extends Sarkar’s attack [Sar16] for arbitrary α although they solved mod-

ular equations. The result for r = 1 does not cover the weaker Boneh-Durfee [BD00].

Moreover, the second condition becomes β < 1/4 for r = 1 and α = 1 that is the same

as Wiener’s result [Wie90]. Indeed, Sarkar did not claim the connection with their

attack and the weaker Boneh-Durfee at all. However, we think that the result fully
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generalizes the weaker Boneh-Durfee. Although we should use parameters (η and τ

such that η ≥ τ in the following proof) that do not exactly cover lattices for the

weaker Boneh-Durfee to make use of the special structure of the prime power RSA,

the construction is conceptually the same. Moreover, we will show in Section 6.4.2

that our construction covers Ernst et al. [EJMdW05] that is a partial key exposure

extension of the weaker Boneh-Durfee. The proof is convenient to analyze partial key

exposure attacks in Section 6.2.2.

Proof. Recall the key generation for the prime power RSA; ed = 1+ℓpr−1(p−1)(q−1)

with some integer |ℓ| ≈ Nα+β−1. To recover the secret exponent d, we use the

following polynomial

fPP.SSE.i(x, y, z1, z2) = 1 + ex+ yzr−1
1 (z1 − 1)(z2 − 1)

whose root over the integers is (x, y, z1, z2) = (−d, ℓ, p, q). The absolute values of the

root (x, y, z1) are bounded by X := Nβ , Y := Nα+β−1, Z1 := 2N1/(r+1). For the

notational convenience, we also use Z2 := N/Zr
1 . We set an (possibly large) integer

W such that W < Nα+β since ∥fPP.SSE(xX, yY, z1Z1, z2Z2)∥∞ ≥ |eX| ≈ Nα+β .

Next, we set an integer R := W (XY )m−1Z
r(m−1−a+t)
1 Zm−1

2 with some integers m =

ω(r), t = τm, and a = ηm where τ ≥ 0 and η ≥ τ . We define shift-polynomials

gPP.SSE.i and g′PP.SSE.i as

gPP.SSE.i : x
iXyiY z

iZ1
1 z

iZ2
2 · fPP.SSE.i ·Xm−1−iXY m−1−iY Z

r(m−1−a+t)−iZ1
1 Z

m−1−iZ2
2

for xiXyiY z
iZ1
1 z

iZ2
2 ∈ S,

g′PP.SSE.i : x
iXyiY z

iZ1
1 z

iZ2
2 ·R for xiXyiY z

iZ1
1 z

iZ2
2 ∈ M\S,

for sets of monomials

S :=
∪

0≤j≤rt

xiXyiY z
iZ1

+j
1 z

iZ2
2

∣∣∣∣
xiXyiY z

iZ1
1 z

iZ2
2 is a monomial of

s̃ · fPP.SSE.i(x, y, z1, z2)
m−1 where

s̃ =
{
za2 , z1z

a
2 , z

2
1z

a
2 , . . . , z

r
1z

a
2 , z

r−1
1 za+1

2

}
 ,

M :=

xiXyiY z
iZ1
1 z

iZ2
2

∣∣∣∣ monomials of xi′Xyi
′
Y z

i′Z1
1 z

i′Z2
2 · fPP.SSE.i(x, y, z1, z2)

where xi′Xyi
′
Y z

i′Z1
1 z

i′Z2
2 ∈ S

 ,

with an integer a = ηm for η ≥ τ . By definition, it follows that

xiXyiyz
iZ1
1 z

iZ2
2 ∈ S ⇔ iX = 0, 1, . . . ,m− a+ t− 1;

iY = a− t, a− t+ 1, . . . ,m− 1− iX ;
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iZ1 = 0, 1, . . . , r(iY − a+ t); iZ2 = 0, and

iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1− iX ;

iZ1 = max{0, r − iY + r(iZ2 − 1− a)}, . . . , r − 1;

iZ2 = a+ 1, a+ 2, . . . , a+ ⌈(iY + 1)/r⌉, and

iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1− iX ;

iZ1 = 0, 1, . . . , r − 1; iZ2 = max{0,−iY + a− t}, . . . , a,

xiXyiyz
iZ1
1 z

iZ2
2 ∈ M ⇔ iX = 0, 1, . . . ,m− a+ t; iY = a− t, a− t+ 1, . . . ,m− iX ;

iZ1 = 0, 1, . . . , r(iY − a+ t); iZ2 = 0, and

iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m− iX ;

iZ1 = max{0, r − iY + r(iZ2 − 1− a)}, . . . , r − 1;

iZ2 = a+ 1, a+ 2, . . . , a+ ⌈(iY + 1)/r⌉, and

iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m− iX ; iZ1 = 0, 1, . . . , r − 1;

iZ2 = max{0,−iY + a− t}, . . . , a.

All these shift-polynomials gPP.SSE.i(x, y, z1, z2) and g′PP.SSE.i(x, y, z1, z2) mod-

ulo R have the root (x, y, z1, z2) = (−d, ℓ,−p,−q) that are the same as

fPP.SSE.i(x, y, z1, z2). All these shift-polynomials gPP.SSE.i(xX, yY, z1Z1, z2Z2) and

g′PP.SSE.i(xX, yY, z1Z1, z2Z2) have a common divisor R. We replace each occurrence

of zr1z2 by N and construct a lattice with coefficients of gPP.SSE.i(xX, yY, z1Z1, z2Z2)

and g′PP.SSE.i(xX, yY, z1Z1, z2Z2) as the bases. The shift-polynomials generate a

triangular basis matrix.

We compute

|S| =
(
r + 1

6
+

r

2
τ

)
m3 + o(m3),

sX =
∑

xiX yiY z
iZ1
1 z

iZ2
2

∈ M\S

iX =

(
r + 1

6
+

r

2
τ

)
m3 + o(m3),

sY =
∑

xiX yiY z
iZ1
1 z

iZ2
2

∈ M\S

iY =

(
r + 1

3
+

r

2
τ

)
m3 + o(m3),
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sZ1 =
∑

xiX yiY z
iZ1
1 z

iZ2
2

∈ M\S

iZ1 =

(
r2(1− η + τ)3

6

)
m3 + o(m3),

sZ2 =
∑

xiX yiY z
iZ1
1 z

iZ2
2

∈ M\S

iZ2 =

(
1

6r
+

1

2
η +

r

2
η2 − r

6
(η − τ)3

)
m3 + o(m3).

Ignoring low order terms of m, based on the Jochemsz-May strategy [JM06], LLL

outputs short vectors that satisfy Howgrave-Graham’s Lemma and contradict Hinek-

Stinson’s Lemma when XsXY sY Z
sZ1
1 Z

sZ2
2 < W |S| holds. The condition becomes

X( r+1
6 + r

2 τ)m
3

Y ( r+1
3 + r

2 τ)m
3

Z

(
r2(1−η+τ)3

6

)
m3

1 Z
( 1

6r+
1
2η+

r
2 η

2− r
6 (η−τ)3)m3

2 < W ( r+1
6 + r

2 τ)m
3

(6.2)

Then, the inequality becomes

β

(
r + 1

6
+

r

2
τ

)
+ (α+ β − 1)

(
r + 1

3
+

r

2
τ

)
+

1

r + 1

(
r2(1− η + τ)3

6
+

1

6r
+

1

2
η +

r

2
η2 − r

6
(η − τ)3

)
<(α+ β)

(
r + 1

6
+

r

2
τ

)
that leads to

0 <− r(r + 1)2α+ r(r + 1)(1− β)(2(r + 1) + 3rτ)− 1

− 3rη(1 + rη)− r3(1− η + τ)3 + r2(η − τ)3. (6.3)

To maximize the right hand side of the inequality, we set parameters

η =
r(r + 1)(1− β)− 1

2r
and τ = η −

r −
√

−r + (r + 1)2(1− β)

r + 1

that result in the first condition of Theorem 18.

To satisfy the restriction τ ≥ 0, the condition β ≤ r2−r−1+2
√
r

r(r+1) should hold. The

condition results in α ≥ 3r3+r2+r−1
4(r+1) . Other restrictions η ≥ τ and η ≥ 0 always hold.

In the other cases, e.g. α ≤ 3r3+r2+r−1
4(r+1) , we fix the parameter τ = 0. To maximize

the right hand side of the inequality (6.3), we set the other parameter

η = 1− 1√
r
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and the condition becomes

β <
r + (

√
r − 1)2

2r(r + 1)
− α

2

as required. Since the prime power RSA satisfies α + β > 1 by definition, α >
r+(

√
r−1)2

r(r+1) should hold.

This attack is an extension of Sarkar’s attack [Sar16] for arbitrary α. However, the

extension offers an advantage of the approach although Sarkar did not claim. Lu et

al. [LZPL15] claimed that their attack, which works when β < r(r−1)
(r+1)2 , is better than

Sarkar’s attack for r ≥ 5. Indeed, the attack of Lu et al. is better than Theorem

18 for α = 1 (that is equivalent to Sarkar’s attack). However, our attack becomes

better than the attack of Lu et al. for small α. Considering the restriction α+β > 1,

although the attack of Lu et al. works when α > 3r+1
(r+1)2 , our attack works when

α > r+(
√
r−1)2

r(r+1) . Hence, our attack works for smaller α than Lu et al. In Section 6.5.1,

we propose further (although slight) improvements and compare our results and Lu

et al.

We note that the restriction η ≥ τ comes from the fact that we can obtain better

results than η < τ for small secret exponent attacks on the prime power RSA for r ≥ 2.

As we claimed, the algorithm construction fully generalizes the weaker Boneh-Durfee.

That means the weaker Boneh-Durfee result can be obtained by setting η < τ . The

connection is hard to follow from Sarkar’s proof [Sar16] and they did not claim it. As

our previous proofs, the construction comes from our definition of sets of monomials

S and M that play the same roles as those for Ernst et al. that is a partial key

exposure extension of the weaker Boneh-Durfee. More concretely, each of our S for

s̃ =
{
za2 , z1z

a
2 , z

2
1z

a
2 , . . . , z

r−1
1 za2 , z

r−1
1 za+1

2

}
play the same role as that for Ernst et al.

and so do M . However, our n, sX , sY , and sZ do not become larger by a factor of

(r+1) of those of Ernst et al for the asymmetry of p and q for the prime power RSA

key generation. So far, the asymmetry made it difficult to exploit the connection

between the standard RSA and the prime power RSA, and to generalize attacks on

the standard RSA to the prime power RSA.

6.4.2 Partial Key Exposure Attack.

In this section, we propose partial key exposure attacks on the prime power RSA that

satisfy the following property.

Theorem 19. Let N = prq be a public modulus and let e ≈ Nα and d ≈ Nβ be public

exponent and secret exponent of prime power RSA, respectively. When (β − δ) logN



120 Chapter 6 Cryptanalyses of RSA with Moduli N = prq

!
"#$%#&'(!

")*+&'(!

,-+!./0+123/3456!

!!

"!
#
$
%&
!
! ! "#$%#&'(!

")*+&'(!

,-+!./0+123/3456!

!!

"!
#
$
%&
!
!

Fig. 6.3. Comparisons of partial key exposure attacks on the prime power RSA

when the MSBs are exposed for α = 1. We compare how much portions

of d should be exposed for β between the attack of Lu et al. [LZPL15],

Sarkar [Sar16], and our Theorem 19. The left figure is for r = 2 and the

right figure is for r = 3.

bits of the most significant bits or the least significant bits are exposed, if

0 < −r(r + 1)2(α+ β) + r(r + 1)(1− δ)((r + 1) + 3rτ) + r(r + 1)2 − 1

− 3rη(1 + rη)− r3(1− η + τ)3 + r2(η − τ)3 where

η =
r(r + 1)(1− δ)− 1

2r
and τ = η −

r −
√

−r + (r + 1)2(1− δ)

r + 1

for 1 < α+ β ≤ 3r3 + r2 + 5r − 1

4r(r + 1)
, or

δ < 1−
r +

√
12r2(r + 1)(α+ β)− r(9r2 + 14r − 3)

3r(r + 1)
for

3r3 + r2 + 5r − 1

4r(r + 1)
≤ α+ β

holds, then prime power RSA modulus N can be factorized in polynomial time.

The result fully generalizes Ernst et al. [EJMdW05] in the sense that it completely

covers their attack, i.e., β <
(
5− 2

√
−5 + 6(α+ β)

)
/6 for r = 1. Moreover, we

exploit the exact connection between the algorithm constructions of Theorem 19 and

the Ernst et al.

When the MSBs are exposed, our attack is better than that of Sarkar when α+ β

is small and is better than that of Lu et al. when r is small. Figures 6.3 compare

Theorem 19 and those of Lu et al. and Sarkar for r = 2 and 3. Our attack is the

better for small β, e.g., our attack works with less partial information.

Proof. Recall the key generation for prime power RSA with the exposed bits (regard-
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less of the MSBs or the LSBs); e(d̃+(d−d̃)) = 1+ℓpr−1(p−1)(q−1) with some integer

|ℓ| ≈ Nα+β−1. To recover unknown parts d− d̃, we use the following polynomial

fPP.PKE.i(x, y, z1, z2) = 1− ed̃+ eMx+ yzr−1
1 (z1 − 1)(z2 − 1),

where M = 1 (resp. M |2⌊(β−δ) logN⌋) with the exposed MSBs (resp. LSBs) whose

roots over the integers are (x, y, z1, z2) = (−(d − d̃), ℓ, p, q). The absolute values are

bounded by X := Nδ, Y := Nα+β−1, Z1 := 2N1/(r+1). For the notational conve-

nience, we also use Z2 := N/Zr
1 .

These formulations and that for small secret exponent attacks in Section 6.4.1

are essentially the same when we use the Jochemsz-May strategy. That means the

Newton polygons of polynomials fPP.PKE.i(x, y, z1, z2) and fPP.PKE.i(x, y, z1, z2) are

the same, e.g., there are six monomials for variables 1, x, yzr−1
1 , yzr1 , yz

r−1
1 z2, and

y. Hence, we use almost the same algorithm construction. We set an (possibly

large) integer W such that W < Nα+β since ∥fPP.PKE.i(xX, yY, z1Z1, z2Z2)∥∞ ≥
max{|1 − ed̃|, |eMX|} ≈ Nα+β . Next, we set an integer R := W (XY )m−1 ·
Z

r(m−1−a+t)
1 Zm−1

2 with some integers m = ω(r) and t = τm where τ ≥ 0 such that

gcd(R, 1−ed̃) = 1. We compute c = (1−ed̃)−1 (mod R) and f ′
PP.PKE.i(x, y, z1, z2) :=

c · fPP.PKE.i(x, y, z1, z2) (mod R). We define shift-polynomials gPP.PKE.i and

g′PP.PKE.i as

gPP.PKE.i :x
iXyiY z

iZ1
1 z

iZ2
2 · f ′

PP.PKE.i ·Xm−1−iXY m−1−iY Z
r(m−1−a+t)−iZ1
1 Z

m−1−iZ2
2

for xiXyiY z
iZ1
1 z

iZ2
2 ∈ S,

g′PP.PKE.i :x
iXyiY z

iZ1
1 z

iZ2
2 ·R for xiXyiY z

iZ1
1 z

iZ2
2 ∈ M\S,

for sets of monomials S and M that are the same as in Section 6.4.1 where

fPP.SSE.i is replaced by f ′
PP.PKE.i. All these shift-polynomials gPP.PKE.i(x, y, z1, z2)

and g′PP.PKE.i(x, y, z1, z2) modulo R have the root (x, y, z1, z2) = (−(d −
d̃), ℓ,−p,−q) that are the same as fPP.PKE.i(x, y, z1, z2). All these shift-polynomials

gPP.PKE.i(xX, yY, z1Z1, z2Z2) and g′PP.PKE.i(xX, yY, z1Z1, z2Z2) have a common di-

visor R. Hence, based on the Jochemsz-May strategy [JM06], LLL outputs short lat-

tice vectors that satisfy Howgrave-Graham’s Lemma and contradict Hinek-Stinson’s

Lemma when the inequality (6.2) holds. For partial key exposure attacks (regardless

of the MSBs or the LSBs are exposed), the inequality becomes

δ

(
r + 1

6
+

r

2
τ

)
+ (α+ β − 1)

(
r + 1

3
+

r

2
τ

)
+

1

r + 1

(
r2(1− η + τ)3

6
+

1

6r
+

1

2
η +

r

2
η2 − r

6
(η − τ)3

)
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<(α+ β)

(
r + 1

6
+

r

2
τ

)
that leads to

0 <− r(r + 1)2(α+ β) + r(r + 1)(1− δ)((r + 1) + 3rτ) + r(r + 1)2

− 1− 3rη(1 + rη)− r3(1− η + τ)3 + r2(η − τ)3.

To maximize the right hand side of the inequality, we set parameters

η =
r(r + 1)(1− δ)− 1

2r
and τ = η −

r −
√

−r + (r + 1)2(1− δ)

r + 1

that result in the first condition of Theorem 19. To satisfy the restriction η ≥ τ , the

condition δ ≥ 1
r+1 should hold. The condition results in α+β ≤ 3r3+r2+5r−1

4r(r+1) . Notice

that other restrictions τ ≥ 0 and η ≥ 0 always hold.

For smaller α+β, we use the other lattice construction that fully generalizes Ernst

et al. However, the construction is essentially the same as previous one as we noted

in the proof of Theorem 18. Indeed, we use the same shift-polynomials gPP.PKE.i

and g′PP.PKE.i with the same sets of monomials S and M . The only difference is a

restriction of parameters η ≤ τ . Hence, by definition, it follows that

xiXyiyz
iZ1
1 z

iZ2
2 ∈ S ⇔ iX = 0, 1, . . . ,m− a+ t− 1;

iY = a− t, a− t+ 1, . . . ,m− 1− iX ;

iZ1 = 0, 1, . . . , r(iY − a+ t); iZ2 = 0, and

iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1− iX ;

iZ1 = max{0, r − iY + r(iZ2 − 1− a)}, . . . , r − 1;

iZ2 = a+ 1, a+ 2, . . . , a+ ⌈(iY + 1)/r⌉, and

iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1− iX ;

iZ1 = 0, 1, . . . , r − 1; iZ2 = max{0,−iY + a− t}, . . . , a,

xiXyiyz
iZ1
1 z

iZ2
2 ∈ M ⇔ iX = 0, 1, . . . ,m− a+ t; iY = a− t, a− t+ 1, . . . ,m− iX ;

iZ1
= 0, 1, . . . , r(iY − a+ t); iZ2

= 0, and

iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m− iX ;

iZ1 = max{0, r − iY + r(iZ2 − 1− a)}, . . . , r − 1;

iZ2 = a+ 1, a+ 2, . . . , a+ ⌈(iY + 1)/r⌉, and

iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m− iX ; iZ1 = 0, 1, . . . , r − 1;

iZ2 = max{0,−iY + a− t}, . . . , a.
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All these shift-polynomials gPP.PKE.i and g′PP.PKE.i modulo R have the roots

(x, y, z1, z2) = (−d, ℓ,−p,−q) that are the same as fPP.PKE.i(x, y, z1, z2). We re-

place each occurrence of zr1z2 by N and construct a lattice with coefficients of

gPP.PKE.i(xX, yY, z1Z1, z2Z2) and g′PP.SSE.i(xX, yY, z1Z1, z2Z2) as the bases. The

shift-polynomials generate a triangular basis matrix.

We compute

|S| =
(
r + 1

6
+

r

2
τ

)
m3 + o(m3),

sX =
∑

xiX yiY z
iZ1
1 z

iZ2
2

∈ M\S

iX =

(
r + 1

6
+

r

2
τ

)
m3 + o(m3),

sY =
∑

xiX yiY z
iZ1
1 z

iZ2
2

∈ M\S

iY =

(
r + 1

3
+

r

2
τ

)
m3 + o(m3),

sZ1
=

∑
xiX yiY z

iZ1
1 z

iZ2
2

∈ M\S

iZ1
=

(
r2(1− η + τ)3

6
− r2(τ − η)3

6

)
m3 + o(m3),

sZ2 =
∑

xiX yiY z
iZ1
1 z

iZ2
2

∈ M\S

iZ2 =

(
1

6r
+

1

2
η +

r

2
η2
)
m3 + o(m3).

Ignoring low order terms of m, based on the Jochemsz-May strategy [JM06], LLL

outputs short vectors that satisfy Howgrave-Graham’s Lemma and contradict Hinek-

Stinson’s Lemma when XsXY sY Z
sZ1
1 Z

sZ2
2 < W |S| holds. The condition becomes the

inequality

X( r+1
6 + r

2 τ)m
3

Y ( r+1
3 + r

2 τ)m
3

Z

(
r2(1+τ−η)3

6 − r2(τ−η)3

6

)
m3

1 Z
( 1

6r+
1
2η+

r
2 η

2)m3

2

< W ( r+1
6 + r

2 τ)m
3

.

Then, the inequality becomes

β

(
r + 1

6
+

r

2
τ

)
+ (α+ β − 1)

(
r + 1

3
+

r

2
τ

)
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+
1

r + 1

(
r2(1 + τ − η)3

6
− r2

6
(τ − η)3 +

1

6r
+

1

2
η +

r

2
η2
)

<(α+ β)

(
r + 1

6
+

r

2
τ

)
that leads to

0 <− (r + 1)2(α+ β) + (2(r + 1)2 + 3r(r + 1)τ)− δ((r + 1)2 + 3r(r + 1)τ)

− r2(1 + τ − η)3 + r2(τ − η)3 − 1

r
− 3η − 3rη2.

To maximize the right hand side of the inequality, we set parameters

η =
r(r + 1)(1− δ)− 1

2r
and τ = η +

(r + 1)(1− δ)− r

2r

and the condition becomes

δ < 1−
r +

√
12r2(r + 1)(α+ β)− r(9r2 + 14r − 3)

3r(r + 1)

as required. To satisfy the restriction η ≤ τ , the condition δ ≤ 1
r+1 should hold. The

condition results in 3r3+r2+5r−1
4r(r+1) ≤ α + β. Notice that other restrictions τ ≥ 0 and

η ≥ 0 always hold.

In Section 6.5.2, we propose an improved attack with the LSBs. However, it seems

that our Theorem 19 with the exposed MSBs also has room for improvements. As

opposed to Takagi’s RSA, and as the standard RSA, we can compute the MSBs of

ℓ since we know the MSBs of pr−1(p− 1)(q − 1). Indeed, the result of Sarkar makes

use of the fact and generalize the other attack of Ernst et al. In addition, there exists

better attacks by Takayasu and Kunihiro for small β. To generalize the attack to the

prime power RSA remains as a future work.

6.5 Attacks on the Prime Power RSA by Solving Modular

Equations

In this section, we analyze the security of prime power RSA by solving modular

equations. In Section 6.5.1, we propose a small secret exponent attack that (almost)

fully generalizes the stronger Boneh-Durfee result [BD00]. In Section 6.5.2, we propose

a partial key exposure attack that (almost) fully generalizes Takayasu and Kunihiro’s

result [TK14d].
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Fig. 6.4. Comparisons of small secret exponent attacks on the prime power RSA. We

compare recoverable values β for α between the attack of Lu et al. [LZPL15]

and our Theorem 20. The left figure is for r = 2 and the right figure is for

r = 3.

6.5.1 Small Secret Exponent Attack

In this section, we propose small secret exponent attacks on the prime power RSA

that satisfy the following property.

Theorem 20. Let N = prq be a public modulus and let e ≈ Nα and d ≈ Nβ be

public exponent and secret exponent of prime power RSA, respectively. If

β < 1−
−r +

√
4r(r + 1) + 4r2(3r + 4)(r + 1)2α

r(3r + 4)(r + 1)

for α ≥ 9(r + 1)2

(r + 2)2(3r + 4)
− 1

r(r + 1)(3r + 4)
, or

β <
7r2 + 17r + 9−

√
36r4 + 204r3 + 376r2 + 292r + 84 + 4r(r + 1)2(r + 3)α

r(r + 1)

for α >
−4r2 − 8r − 3 + 2

√
(r + 1)(4r3 + 15r2 + 10r + 3)

r(r + 1)

holds, then prime power RSA modulus N can be factorized in polynomial time.

The result (almost) fully generalizes the stronger Boneh-Durfee [BD00] in the sense

that it is better than the weaker Boneh-Durfee and weaker than the stronger Boneh-

Durfee for r = 1, i.e., β < (15−2
√
30)/14 = 0.28896 · · · . Since the results of Theorem

20 are better than those of Theorem 18, they are outperforming the Jochemsz-May.

Since Theorem 20 works when α >
−4r2−8r−3+2

√
(r+1)(4r3+15r2+10r+3)

r(r+1) , it works for
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Table 6.1. Comparisons of small secret exponent attacks on the prime power RSA.

We compare recoverable values β for α between the attack of Lu et

al. [LZPL15], our Theorem 18, and Theorem 20 for r = 5.

α [LZPL15] Theorem 18 Theorem 20

1 0.5555 0.5442 0.5495

0.9 0.5555 0.5670 0.5730

0.8 0.5555 0.5911 0.5979

0.7 0.5555 0.6167 0.6244

0.6 0.5555 0.6442 0.6528

0.5 0.5555 0.6741 0.6837

0.4 – 0.7073 0.7179

0.3 – 0.7452 0.7561

smaller α than Theorem 18. Indeed, Theorem 20 is (although slightly) always better

than Theorem 18. Figures 6.4 compare Theorem 20 and Lu et al. for r = 2 and 3.

Theorem 20 is the better for all α and the differences become larger for smaller α.

Moreover, Tables 6.1 and 6.2 compare Lu et al., Theorem 18, and Theorem 20 for

r = 5 and 6, respectively. When α = 1, Lu et al. is the best. However, our attack

becomes the better for smaller α.

Proof. Recall the key generation for the prime power RSA; ed = 1+ℓpr−1(p−1)(q−1)

with some integer |ℓ| ≈ Nα+β−1. To recover the secret exponent d, we use the

following polynomial

fPP.SSE.m(x, y1, y2) = 1 + xyr−1
1 (y1 − 1)(y2 − 1).

The polynomial modulo e has roots (x, y1, y2) = (ℓ, p, q). The absolute values are

bounded by X := Nα+β−1, Y1 = Y2 := 2N1/(r+1). Let m = ω(r) and a = ηm

be integers. To solve a modular equation fPP.SSE.m(x, y1, y2) = 0 (mod e), we use

shift-polynomials

gPP.SSE.m(x, y1, y2) = xiXy
iY1
1 y

a+iY2
2 fu

PP.SSE.m(x, y1, y2)e
m−u

with indices in

Ix1 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = 0, 1, . . . , r − 1; iY2 = 0,
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Table 6.2. Comparisons of small secret exponent attacks on the prime power RSA.

We compare recoverable values β for α between the attack of Lu et

al. [LZPL15], our Theorem 18, and Theorem 20 for r = 6.

α [LZPL15] Theorem 18 Theorem 20

1 0.6122 0.5738 0.5798

0.9 0.6122 0.5950 0.6017

0.8 0.6122 0.6174 0.6248

0.7 0.6122 0.6412 0.6494

0.6 0.6122 0.6668 0.6759

0.5 0.6122 0.6946 0.7046

0.4 0.6122 0.7254 0.7364

0.3 – 0.7607 0.7724

0.2 – 0.8036 0.8106

Ix2 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = r − 1; iY2 = 1,

Iy ⇔ u = 0, 1, . . . ,m; iX = 0; iY1 = 1, 2, . . . , ⌊(1− (r + 1)β)u⌋+ ra; iY2 = 0.

All these shift-polynomials gPP.SSE.m modulo em have the roots (x, y1, y2) =

(ℓ,−p,−q) that are the same as fPP.sse.m(x, y1, y2). We replace each occurrence

of yr1y2 by N and construct a lattice with coefficients of gPP.SSE.m(xX, y1Y1, y2Y2)

as the bases.

As in the proof of Theorem 18, the shift-polynomials gPP.SSE.m with indices in

Ix1 for iY1 = 0, 1, . . . , r − 1 and Ix2 play the same role as x-shifts of the stronger

Boneh-Durfee by a factor of (r + 1). Although gPP.SSE.m with indices in Iy plays

the same role as y-shifts of the stronger Boneh-Durfee by a factor of r since iY1 is

upper bounded by ⌊(1− (r + 1)β)u⌋+ ra that depends on u. However, there are no

additional y-shifts which play the same role as the stronger Boneh-Durfee. Notice that

all polynomials are multiplied by ya2 and the operation plays the same role as the y-

shifts of the weaker Boneh-Durfee. Hence, our Theorem 20 (almost) fully generalizes

the stronger Boneh-Durfee and is always better than Theorem 18. We do not know

how to fully generalize the stronger Boneh-Durfee and we think there may be room

for improvements.

Assume that ⌊(1 − (r + 1)β)u⌋ + ra ≥ 0, e.g., η ≥ ((r + 1)β − 1)/r, and the

shift-polynomials generate triangular basis matrix with diagonals
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• Xu+iXY
max{0,r(u−a)+iY1

}
1 Y

max{a−⌊u+iY1
/r⌋,0}

2 em−u for indices in Ix1,
• Xu+iXY

a+⌈(u+1)/r⌉
2 em−u for indices in Ix2,

• XuY
ru+iY1
1 em−u for indices in Iy.

In Iy, iY1 is upper bounded by ⌊(1− (r+1)β)u⌋+ ra. The definition follows from the

fact that the shift-polynomials reduce norms of outputs by the LLL algorithm, e.g.,

the diagonals for the shift-polynomials are smaller than em.

We compute a dimension

n = |Ix1 ∪ Ix2 ∪ Iy| =
(
1 + (r + 1)(1− β)

2
+ rη

)
m2 + o(m2),

and a determinant of the lattice det(L(B)) = XsXY
iY1
1 Y

iY2
2 ese where

sX =
∑

(u, iX , iY1
, iY2

)

∈ Ix1 ∪ Ix2 ∪ Iy

(u+ iX) =

(
1 + (r + 1)(1− β)

3
+

r

2
η

)
m3 + o(m3),

sY1 =
∑

(u,iX ,iY1
,iY2

)∈Ix1

max{0, r(u− a) + iY1}+
∑

(u,iX ,iY1
,iY2

)∈Iy

(ru+ iY1)

=
(r + 1)2(1− β)2

6
m3 + o(m3),

sY2 =
∑

(u,iX ,iY1 ,iY2 )∈Ix1

max{a− ⌊u+ iY1/r⌋, 0}+
∑

(u,iX ,iY1 ,iY2 )∈Ix2

(a+ ⌈(u+ 1)/r⌉)

=

(
1

6r
+

1

2
η +

r

2
η2
)
m3 + o(m3),

se =
∑

(u, iX , iY1
, iY2

)

∈ Ix1 ∪ Ix2 ∪ Iy

(m− u) =

(
2r + 3− (r + 1)β

6
+

r

2
η

)
m3 + o(m3).

Ignoring low order terms of m, LLL outputs short lattice vectors that satisfy

Howgrave-Graham’s Lemma when (det(L(B)))1/n < (eM)m that leads to

(α+ β − 1)

(
1 + (r + 1)(1− β)

3
+

r

2
η

)
+

1

r + 1

(
(r + 1)2(1− β)2

6
+

1

6r
+

1

2
η +

r

2
η2
)

+α

(
2r + 3− (r + 1)β

6
+

r

2
η

)
< α

(
1 + (r + 1)(1− β)

2
+ rη

)
that results in

0 <− r(r + 1)2α− 1− 3rη(1 + rη) + r(r + 1)(2 + 3rη)(1− δ) + r(r + 1)2(1− δ)2.
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To maximize the right hand side of the inequality, we set the parameter

η =
r(r + 1)(1− β)− 1

2r

and the condition becomes

β < 1−
−r +

√
4r(r + 1) + 4r2(3r + 4)(r + 1)2α

r(3r + 4)(r + 1)

as required. To satisfy the restriction η ≥ ((r+1)β−1)/r, the condition β < r(r+1)+1
(r+2)(r+1)

should hold. The condition results in 9(r+1)2

(r+2)2(3r+4) −
1

r(r+1)(3r+4) ≤ α.

For smaller α, we propose an alternative lattice construction. We use the same

shift-polynomials gPP.SSE.m(x, y1, y2) with indices in

Ix1 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = 0, 1, . . . , r − 1; iY2 = 0,

Ix2 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = r − 1; iY2 = 1,

I ′
y ⇔ u = 0, 1, . . . ,m; iX = 0; iY1 = 1, 2, . . . , ⌊r(a− ηu)⌋; iY2 = 0.

We replace each occurrence of yr1y2 by N and construct a lattice with coefficients

of gPP.SSE.m(xX, y1Y1, y2Y2) as the bases. Assume 0 ≤ η and the shift-polynomials

generate a triangular basis matrix with the same diagonals as previous ones.

As previous cases, we should define I ′
y such that the shift-polynomials reduce norms

of outputs by the LLL algorithm, e.g., the diagonals for the shift-polynomials are

smaller than em. However, that is not the case and the definition is a suboptimal.

Therefore, we think there may be room for improvements.

We compute the dimension of the lattice

n = |Ix1 ∪ Ix2 ∪ Iy| =
(
r + 1

2
+

r

2
η

)
m2 + o(m2),

and its determinant | detB| = XsXY
iY1
1 Y

iY2
2 ese where

sX =
∑

(u, iX , iY1
, iY2

)

∈ Ix1 ∪ Ix2 ∪ Iy

(u+ iX) =

(
r + 1

3
+

r

6
η

)
m3 + o(m3),

sY1 =
∑

(u,iX ,iY1
,iY2

)∈Ix1

max{0, r(u− a) + iY1}+
∑

(u,iX ,iY1
,iY2

)∈Iy

(ru+ iY1)

=
r2(1− η)2

6
m3 + o(m3),
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sY2
=

∑
(u,iX ,iY1 ,iY2 )∈Ix1

max{a− ⌊u+ iY1
/r⌋, 0}+

∑
(u,iX ,iY1 ,iY2 )∈Ix2

(a+ ⌈(u+ 1)/r⌉)

=

(
1

6r
+

1

2
η +

r

2
η2
)
m3 + o(m3),

se =
∑

(u, iX , iY1 , iY2 )

∈ Ix1 ∪ Ix2 ∪ Iy

(m− u) =

(
r + 1

3
+

r

3
η

)
m3 + o(m3).

Ignoring low order terms of m, LLL outputs short lattice vectors that satisfy

Howgrave-Graham’s Lemma when (det(L(B)))1/n < (eM)m that leads to

(α+ β − 1)

(
r + 1

3
+

r

6
η

)
+

1

r + 1

(
r2(1− η)2

6
+

1

6r
+

1

2
η +

r

2
η2
)
+ α

(
r + 1

3
+

r

3
η

)
< α

(
r + 1

2
+

r

2
η

)
that results in

0 < −r(r + 1)2α+ r(1− β)
(
2(r + 1)2 + r(r + 1)η

)
− r3(1− η)2 − 1− 3rη(1 + rη).

To maximize the right hand side of the inequality, we set the parameter

η =
r(r + 1)(1− β) + 2r2 − 3

2r2 + 6r

and the condition becomes

β <
7r2 + 17r + 9−

√
36r4 + 204r3 + 376r2 + 292r + 84 + 4r(r + 1)2(r + 3)α

r(r + 1)

as required. To satisfy α + β > 1, the condition α >
−4r2−8r−3+2

√
(r+1)(4r3+15r2+10r+3)

r(r+1) should hold. The restriction η ≥ 0 always

holds.

6.5.2 Partial Key Exposure Attack

In this section, we propose small secret exponent attacks on the prime power RSA

that satisfy the following property.
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Fig. 6.5. Comparisons of partial key exposure attacks on the prime power RSA

for α = 1 when the least significant bits are exposed. We compare how

much portions of d should be exposed for β between the attack of Lu et

al. [LZPL15] and our Theorem 21. The left figure is for r = 2 and the right

figure is for r = 3.

Theorem 21. Let N = prq be a public modulus and let e ≈ Nα and d ≈ Nβ be public

exponent and secret exponent of prime power RSA, respectively. When (β − δ) logN

bits of the least significant bits are exposed, if

δ < 1−
r(2r + 1) + 2

√
r(r + 1)(r(r + 1)(3r + 4)(α+ β)− 3r3 − 6r2 − 4r + 1)

r(r + 1)(3r + 4)

for
30r3 + 51r2 + 25r − 4

4r(r + 1)(3r + 4)
≤ α+ β

holds, then prime power RSA modulus N can be factorized in polynomial time.

As Theorem 20, the result (only almost) fully generalizes Takayasu and Kunihiro’s

attack. However, the result is better than Theorem 19 with the exposed LSBs.

When the LSBs are exposed, our attack is better than that of Lu et al. when r is

small. Figures 6.5 compare Theorem 21 and Lu et al. for r = 2 and 3. Our attack is

the better for all β, e.g., our attack works with less partial information.

Proof. Recall the key generation for prime power RSA with the exposed LSBs;

e(d1M + d0) = 1 + ℓpr−1(p − 1)(q − 1) with some integer |ℓ| ≈ Nα+β−1. To re-

cover the unknown MSBs of the secret exponent d1, we use the following polynomials

fPP.PKE.m(x, y1, y2) = 1− ed0 + xyr−1
1 (y1 − 1)(y2 − 1)

whose root modulo e is (x, y1, y2) = (ℓ, p, q).
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To solve a modular equation fPP.PKE.m(x, y1, y2) = 0 (mod e), we use the following

shift-polynomials

gPP.PKE.m(x, y1, y2) = xiXy
iY1
1 y

a+iY2
2 fu

PP.SSE.m(x, y1, y2)(eM)m−u

with indices in

Ix1 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = 0, 1, . . . , r − 1; iY2 = 0,

Ix2 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m− u; iY1 = r − 1; iY2 = 1,

Iy ⇔ u = 0, 1, . . . ,m; iX = 0; iY1 = 1, 2, . . . , ⌊((r + 1)(1− δ)− 1)u⌋+ ra; iY2 = 0.

All these shift-polynomials modulo (eM)m have roots (x, y1, y2) = (ℓ, p, q) that are the

same as gPP.PKE.m. We replace each occurrence of yr1y2 by N and construct a lattice

with coefficients of gPP.PKE.m(xX, y1Y1, y2Y2) as the bases. The shift-polynomials

generate a triangular basis matrix with diagonals

• Xu+iXY
max{0,r(u−a)+iY1}
1 Y

max{a−⌊u+iY1/r⌋,0}
2 (eM)m−u with indices in Ix1,

• Xu+iXY
a+⌈(u+1)/r⌉
2 (eM)m−u with indices in Ix2,

• XuY
ru+iY1
1 (eM)m−u with indices in Iy.

In Iy, iY1
is upper bounded by ⌊((r+1)(1−δ)−1)u⌋+ra. The definition follows from

the fact that the shift-polynomials reduce norms of outputs by the LLL algorithm,

e.g., the diagonals for the shift-polynomials are smaller than the modulus (eM)m.

We compute the dimension

n = |Ix1 ∪ Ix2 ∪ Iy| =
(
1 + (r + 1)(1− δ)

2
+ rη

)
m2 + o(m2),

and a determinant of the lattice det(L(B)) = XsXY
iY1
1 Y

iY2
2 (eM)seM , where

sX =
∑

(u, iX , iY1
, iY2

)

∈ Ix1 ∪ Ix2 ∪ Iy

(u+ iX) =

(
1 + (r + 1)(1− δ)

3
+

r

2
η

)
m3 + o(m3),

sY1 =
∑

(u,iX ,iY1
,iY2

)∈Ix1

max{0, r(u− a) + iY1}+
∑

(u,iX ,iY1
,iY2

)∈Iy

(ru+ iY1)

=
(r + 1)2(1− δ)2

6
m3 + o(m3),

sY2 =
∑

(u,iX ,iY1 ,iY2 )∈Ix1

max{a− ⌊u+ iY1/r⌋, 0}+
∑

(u,iX ,iY1 ,iY2 )∈Ix2

(a+ ⌈(u+ 1)/r⌉)
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=

(
1

6r
+

1

2
η +

r

2
η2
)
m3 + o(m3),

seM =
∑

(u, iX , iY1 , iY2 )

∈ Ix1 ∪ Ix2 ∪ Iy

(m− u) =

(
2r + 3− (r + 1)δ

6
+

r

2
η

)
m3 + o(m3).

LLL outputs short lattice vectors that satisfy Howgrave-Graham’s Lemma when

(det(L(B)))1/n < (eM)m that leads to

(α+ β − 1)

(
1 + (r + 1)(1− δ)

3
+

r

2
η

)
+

1

r + 1

(
(r + 1)2(1− δ)2

6
+

1

6r
+

1

2
η +

r

2
η2
)

+(α+ β − δ)

(
2r + 3− (r + 1)δ

6
+

r

2
η

)
< (α+ β − δ)

(
1 + (r + 1)(1− δ)

2
+ rη

)
.

Ignoring low order terms of m, the inequality becomes

0 <− r(r + 1)2(α+ β − 1)− 1− 3rη(1 + rη)

− r(r + 1)(r − 1− 3rη)(1− δ) + r(r + 1)2(1− δ)2.

To maximize the right hand side of the inequality, we set the parameter

η =
r(r + 1)(1− δ)− 1

2r

and the condition becomes

δ < 1−
r(2r + 1) + 2

√
r(r + 1)(r(r + 1)(3r + 4)(α+ β)− 3r3 − 6r2 − 4r + 1)

r(r + 1)(3r + 4)

as required. To satisfy the restriction η ≥ 0, δ ≤ 1− 1
r(r+1) should hold. The condition

results in 30r3+51r2+25r−4
4r(r+1)(3r+4) ≤ α+ β.

6.6 Concluding Remarks

In this chapter, we study the security of RSA variants with moduli N = prq; Takagi’s

RSA and the prime power RSA. Analyses for the variants are difficult due to the

complex moduli and key generations. Hence, existing results are hard to follow. To

resolve the problems, we proposed the simple transformations that convert lattices

for the original RSA to the lattices for the variants. Our technique enables us to

understand the attacks on the variants. Furthermore, we obtained better results of

small secret exponent attacks and partial key exposure attacks on the variants.
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Chapter 7

Conclusion

7.1 Summary of the Results

In Chapter 3, we proposed the improved algorithm for solving the (δ, β)-SIP for

0 ≤ β < 1/4. We obtained the result from our better lattice construction that con-

tains lattices for Boneh-Durfee’s two attacks as special cases. Based on our proposed

algorithm, we obtained the improved attack on the Multi-Prime RSA where its prime

factors are similar sizes.

In Chapter 4, we proposed the improved partial key exposure attacks on CRT-RSA

with the most/least significant bits of dp or/and dq. For the single partial key exposure

situations, which utilized the partial bits of dp or dq, we apply Coppersmith’s method

for solving integer equations and obtained better attacks. If the most significant bits

are exposed, our attack is the first result that works for larger public exponent e such

that N1/4 < e ≤ N3/8. If the least significant bits are exposed, our attack works for

e < N3/8 as a previous attack, however, our attack works with less partial information.

For the double partial key exposure situations, which utilized the partial bits of dp

and dq, we obtained the first attack that works for dp, dq ≈ N1/2. Furthermore, the

attack works for e < N . Furthermore, by solving the modular equations, we proposed

the improved attack with the least significant bits of dp or dq. The attack is better

than previous ones for all e < N3/8.

In Chapter 5, we defined general partial key exposure scenarios that contain several

existing problems as special cases. For the general scenarios, we proposed attacks

that contain all the currently known best attacks as special cases. Then, we improved

the attacks for two scenarios; partial key exposure attacks on RSA with the most

significant bits of prime factors and partial key exposure attacks on the multi-prime

RSA.
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In Chapter 6, we proposed the generic transformation that convert the lattice for at-

tacking the standard RSA to lattices for attacking Takagi’s RSA and the prime power

RSA whose public modulus has the form N = prq. Based on the transformation, we

obtained better small secret exponent attacks and partial key exposure attacks with

simple lattice constructions. Technically, we obtained the results by solving integer

equations and constructing better lattices for solving modular equations.

7.2 Open Problems

Since the RSA cryptosystems are practically used, the security evaluation of RSA is

one of the most important research topic in the cryptographic community. Therefore,

further evaluations have to be developed. Some results proposed in this paper may

contribute to revealing new RSA vulnerabilities that are still not known.

Technically, the most fascinating open problem is if there exist integer equations

solving algorithms that are better than ones based on the Jochemsz-May strategy.

In Chapters 4 and 6, the method is used to construct improved attacks on RSA,

however, in some sense the constructions are simple since we follow the Jochemsz-

May strategy. Hence, if improved algorithms can be constructed, they have to be

impressive results. The other open problem is clarifying general strategies for optimal

lattice constructions for Coppersmith’s method. If such strategies can be summarized,

the security evaluation of RSA will further be developed.
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[CCK+13] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee,
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over the integers revisited. In Elisabeth Oswald and Marc Fischlin, ed-

itors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual In-

ternational Conference on the Theory and Applications of Cryptographic

Techniques, volume 9056 of Lecture Notes in Computer Science, pages

513–536. Springer, 2015.

[CW13] Jie Chen and Hoeteck Wee. Fully, (almost) tightly secure IBE and dual

system groups. In Ran Canetti and Juan A. Garay, editors, Advances

in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,

volume 8043 of Lecture Notes in Computer Science, pages 435–460.



146 Bibliography

Springer, 2013.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.

IEEE Trans. Information Theory, 22(6):644–654, 1976.

[DN00] Glenn Durfee and Phong Q. Nguyen. Cryptanalysis of the RSA schemes

with short secret exponent from asiacrypt ’99. In Tatsuaki Okamoto,

editor, Advances in Cryptology - ASIACRYPT 2000, 6th International

Conference on the Theory and Application of Cryptology and Informa-

tion Security, volume 1976 of Lecture Notes in Computer Science, pages

14–29. Springer, 2000.

[dW02] Benne de Weger. Cryptanalysis of rsa with small prime difference. Appli-

cable Algebra in Engineering, Communication and Computing, 13(1):17–

28, 2002.

[EJMdW05] Matthias Ernst, Ellen Jochemsz, Alexander May, and Benne de Weger.

Partial key exposure attacks on RSA up to full size exponents. In Ronald

Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, 24th An-

nual International Conference on the Theory and Applications of Crypto-

graphic Techniques, volume 3494 of Lecture Notes in Computer Science,

pages 371–386. Springer, 2005.

[FGL+13] Pierre-Alain Fouque, Nicolas Guillermin, Delphine Leresteux, Mehdi Ti-

bouchi, and Jean-Christophe Zapalowicz. Attacking RSA-CRT signa-

tures with faults on montgomery multiplication. J. Cryptographic Engi-

neering, 3(1):59–72, 2013.

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and

Christoph Striecks. Programmable hash functions in the multilinear

setting. In Ran Canetti and Juan A. Garay, editors, Advances in Cryp-

tology - CRYPTO 2013 - 33rd Annual Cryptology Conference, volume

8042 of Lecture Notes in Computer Science, pages 513–530. Springer,

2013.

[FK15] Masaharu Fukase and Kenji Kashiwabara. An accelerated algorithm for

solving SVP based on statistical analysis. JIP, 23(1):67–80, 2015.
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