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Abstract

The quantum nature of spectra allows them to be approximately reduced to the

sum of unimodal peaks, whose centers are the energy levels. Observed spectra

reflect the degeneracy, a case that two or more different states correspond to the

same energy, as indicated by solutions of the Schrödinger equation. The degeneracy

is removed if the underlying symmetry is broken by some external perturbation.

This causes a peak splitting in the observed spectrum. In some delicate cases, such

that the gap between the splitting peaks is too small, measurement noise crucially

affects the identification of the degeneracy by the observed spectrum. There can-

not seem to be several peaks, but only a peak in the observed spectrum, if the

magnitude of measurement noise is large, even if Ab initio calculation predicts

that there exist the splitting peaks. We state that there surely exist a “degen-

eracy”, caused by measurement, not in the case of degeneracy. In this thesis,

we focus on the informational aspects of spectroscopy as indirect measurements

and clarify the mechanism of “degeneracy”. First, we formulate an inverse prob-

lem, called Bayesian spectral deconvolution, that calculate energy levels from an

observed spectrum. We modify Bayesian spectral deconvolution to be applicable

even in the case that the noise variance of the observed spectrum is unknown as

Bayesian inference originally does so. Second, we take a larger view and focus on

the common mathematical structure between statistical estimation and statistical

physics. We show that the “degeneracy” is a phase transition in statistical estima-

tion as in statistical physics. Finally, we focus on the measurement by dispersive

spectrometers and its essential limit. There is a well-known measurement limit,

called the standard quantum limit, which signal and noise cannot be distinguished.

There is also a limit of estimation by way of Bayesian spectral deconvolution, which

two individual signals cannot be distinguished, i.e. the “degeneracy” or not. We

elucidate these limits are uniformly explained as phase transitions in statistical

estimation.
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Chapter 1

Introduction

1.1 Background

Spectroscopy is at the heart of all sciences concerned with matter and energy,

such as astronomy [1–6], catalyst chemistry [7–11], solid-state physics [12–21],

structural biology [22–30], surface science [31–33], planetary science [34–37], and

plasma physics [38–41]. In each field of science, various spectroscopic methods

have been developed and utilized for identifying and quantifying materials, whose

component atoms and molecules have unique spectra.

Historically, Newton introduced the word spectrum to describe the rainbow

of colors that combine to form white light in 1666 almost concurrently with his

discovery of the universal gravitation in 1665. Fraunhofer invented the origin of

dispersive spectrometers in the early 1800s. Balmer discovered an empirical for-

mula for the visible spectral lines of the hydrogen atom in 1885. His formula and its

extensions revealed the discrete nature of energy and contributed to the establish-

ment of quantum mechanics. Now spectroscopic measurements are explained as

interactions between light and matter in terms of quantum mechanics and provide

an understanding of the physical and chemical properties of the matter.

An electromagnetic spectrum indicates the electronic states and the atomic

kinetics. The quantum nature of spectra allows them to be approximately reduced

to the sum of unimodal peaks (such as Lorentzian peaks, Gaussian peaks, and

their convolutions), whose centers are the energy levels from the semiclassical

viewpoint [42]. The peak intensity is proportional to both the population density

of the atoms or molecules and their transition probabilities. The Lorentzian peak

width indicates the lifetime of the eigenstate due to the time-energy uncertainty

relation. The Gaussian peak width indicates the Doppler effect caused by the
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atomic kinetics and depends on temperature. These pieces of information about

the electronic states or the atomic kinetics are obtained by identifying peaks from

spectra.

Observed spectra reflect the degeneracy, a case that two or more different states

correspond to the same energy, as indicated by solutions of the Schödinger equa-

tion. The degeneracy is removed if the underlying symmetry is broken by some

external perturbation. This causes a peak splitting in the observed spectrum.

There are several types of splits classified by the external perturbation, e.g. the

magnetic field (Zeeman effect), the electric field (Stark effect), the crystal field

or the ligand field (Jahn-Teller effect). Some structural phase transitions, influ-

enced by pressure or temperature, also cause the splitting. Identifying by the

observed spectra whether the energy level is degenerate or not is directly linked to

an understanding what properties are there in the system of interest.

In some delicate cases, such that the gap between the splitting peaks is too

small, measurement noise crucially affects the identification of the degeneracy by

the observed spectrum. There cannot seem to be several peaks, but only a peak

in the observed spectrum, if the magnitude of measurement noise is large, even

if Ab initio calculation predicts that there exist the splitting peaks. We state

that there surely exist a “degeneracy”, caused by measurement, not in the case

of degeneracy. Spectroscopic measurements are based on the interactions between

light and matter and essentially include fluctuations, measurement noise. Ab

initio calculation does not especially emulate the measurement because there is the

interest not in measurement but in the measured object itself. This is a definitive

difference so far between theory and experiment in physics and the related fields.

1.2 Our concepts and preliminaries

In this thesis, we focus on the informational aspects of spectroscopy as indirect

measurements and clarify the mechanism of the “degeneracy”, caused by measure-

ment, in terms of our approach. An indirect measurement is a method to obtain

the quantity of interest not directly by measuring itself but by way of measuring

the other quantities. This needs to solve the inverse problem of estimating the

unmeasurable quantity from the measurable ones based on the relation between

them, e.g. calculating the spring stiffness by way of Hooke’s law. We simulate

the spectroscopic indirect measurement which consists of two steps: (i) obtain

the spectrum according to the forward problem with the control parameters cor-
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Figure 1.1: Schematic picture of our approach.

responding to the measurement conditions and (ii) solve the inverse problem of

estimating the energy levels from the obtained spectrum.

1.2.1 Forward problem

Assume that the forward problem of the spectroscopic (direct) measurement is

expressed as

y = Y (G(x;w); b), (1.1)

where the functionG(x;w) of the energy x is the ideal spectrum determined only by

the measured system with the physical parameter w. The function Y (G(x;w); b) is

the measured spectrum depending both on G(x;w) and on the measurement con-

dition b in general. If Y works as the additive white Gaussian noise, Y (G(x;w); b)

is reduced into

y := G(x;w) + ε, (1.2)

where ε is the random variable depending on the Gaussian distribution whose

mean and variance are respectively 0 and b−1. From the semiclassical viewpoint,

the effective model of G(x;w) is expressed as

G(x;w) :=
K
∑

k=1

akφk(x;µk, ρk) (1.3)
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in some cases, where

φk(x;µk, ρk) := exp
[

−
ρk
2
(x− µk)

2
]

, (1.4)

and w := {ak, ρk, µk}
K
k=1. µk ∈ R means the energy level, which is the quantity

of interest. ak > 0 and ρk
−1/2 ≥ 0 respectively correspond to the density of

particles and temperature in each energy level. If µk = µk′ = µ∗ and ρk =

ρk′ = ρ∗ for k 6= k′, the modes akφk and ak′φk′ are regarded as degenerate. In

such cases, a∗φk(x;µ
∗, ρ∗) = akφk(x;µk, ρk) + ak′φk′(x;µk′ , ρk′) with a∗ = ak + ak′

holds. Note that our scope is the measurement itself so that we does not consider

what physical situation causes the degeneracy and what materials construct the

measured system.

1.2.2 Inverse problem

To obtain w from the data set D := {Xi, Yi}
n
i=1 based on Eqs. (1.2) and (1.4)

is one of the nonlinear inverse problems, which are typically ill-posed. Consider

the noiseless case for simplicity. If K is known and n ≥ 3K, then the considered

problem is well-posed. Otherwise, this problem is ill-posed. For example, the

solution w of G(x;w) = a1φ1(x;µ1, ρ1) are not unique: ∀w ∈ W given by

W := W (1) ∪W (2), (1.5)

W (1) := {w | ak = 0, ak′ = a∗, µk′ = µ∗, ρk′ = ρ∗}, (1.6)

W (2) := {w | ak + ak′ = a∗, µk = µk′ = µ∗, ρk = ρk′ = ρ∗} (1.7)

are some of the solutions with K = 2. The above considerations show that the

ill-posedness arises from the variable K. Practically, there naturally exist the

measurement noise, which simply makes any problems ill-posed as well. These

two factors are the keys to explaining the mechanism of the “degeneracy”.

Statistical estimation, especially Bayesian inference, is a better way to solve

the ill-posed problem. Bayesian inference is formulated based on Bayes’ theorem,

expressed as

p(B | A) =
p(A | B)p(B)

p(A)
, (1.8)

where

p(A) =

∫

dBp(A | B)p(B) (1.9)
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Figure 1.2: Graphical model of Bayesian spectral deconvolution.

for any continuous random variables A and B. p(B), p(B | A), p(A | B) and

p(A) are respectively called the prior distribution, the posterior distribution, the

likelihood and the marginal likelihood. In Bayesian inference, the solution w of

Eq. (1.2) is derived in the form of the posterior distribution

p(w | D,K, b) =
p(D | w,K, b)p(w,K, b)

p(D,K, b)
(1.10)

=

∏n
i=1 p(Yi | Xi, w, b)p(w | K)

p(Y n | Xn, K, b)
, (1.11)

where p(y | x, w, b) := N(f(x;w), b−1), Xn := {Xi}
n
i=1, Y

n := {Yi}
n
i=1 and

p(Y n | Xn, K, b) =

∫

dw
n
∏

i=1

p(Yi | Xi, w, b)p(w | K). (1.12)

Eq. (1.11) is derived from Eq. (1.10), assuming the dependence between the ran-

dom variables as sketched in Fig. 1.2. p(w | D,K, b) includes all the information

on the mean and standard deviation of the element of w, which are depending on

and appropriate to the D obtained by the (direct) measurement. This property of

Bayesian inference makes the indirect measurement worthy to be called a “mea-

surement”. A considerable point is the modeling of p(w | K), which means the

prior knowledge of w without the observation of D. To express the physical law

that w, which is a physical quantity, obeys as p(w | K) is most desirable from

our point. If such a modeling is difficult, the observers’ subjectivity, which drives

them to measure w, should be explicitly modeled in the form of p(w | K) as a sec-

ond best way. Whether you consider this way to be natural or not as a scientific

method depends on your religion.

In the case that K and b are unknown, they can also be estimated in the form

5



of the joint posterior distribution

p(K, b | D) =
p(Y n | Xn, K, b)p(K)p(b)

p(Y n | Xn)
, (1.13)

where

p(Y n | Xn) =
∑

K

∫

dbp(Y n | Xn, K, b)p(K)p(b). (1.14)

Assuming that p(K) and p(b) are the uniform distributions defined by any inter-

vals, p(K, b | D) is simply proportional to p(Y n | Xn, K, b). In the empirical Bayes

approach [43–45], K and b are estimated as the most likely values that maximize

p(Y n | Xn, K, b). A similar type of approach, called Bayesian spectral deconvolu-

tion, was originally proposed by Nagata et al. [46], then applied by Hong et al. [47]

and Hagino [48], later extended by Kasai et al. [49] and Murata et al. [50] for the

specific situation. However, the formulation of these studies, which b is assumed

to be known, does not enable estimating b. We modify Nagata et al.’s framework

to be applicable even in the case that b is naturally unknown as Bayesian inference

originally does so [51].

The empirical Bayes approach resolves the ill-posedness caused by K and b,

which are estimated depending on D. p(Y n | Xn, K, b) naturally embodies Oc-

cam’s razor: MacKay showed the explicit form for Bayesian linear regression [45].

However, the integration of Eq. (1.12) is generally intractable. Watanabe showed

that the asymptotic form of Fn(K, b) := − log p(Y n | Xn, K, b) is expressed as

Fn(K, b) = nLn(w0; b) + λ log n+Op(log log n) (1.15)

for n → ∞ [52, 53], where

Ln(w; b) := −
1

n

n
∑

i=1

log p(Yi | Xi, w, b). (1.16)

w0 is the parameter that minimizes the Kullback–Leibler divergence of p(y | x, w, b)

from a true distribution, and λ > 0 is a rational number called the real log canon-

ical threshold (RLCT). The values Ln(w0) and λ respectively become larger and

smaller as K increases. This trade-off works as Occam’s razor and ensures that

the estimated K is moderate for the given D. In the special case, Eq. (1.15) is

reduced into

Fn(K, b) = nLn(ŵ; b) +
dim(w)

2
log n+Op(1), (1.17)

6



known as Bayesian information criterion (BIC), proposed by Schwarz [54]. ŵ is

the parameter set that minimizes Ln(w; b). Nagata et al.’s framework of Bayesian

spectral deconvolution utilizes the above Occam’s razor for estimating K in the

case that b is known and fixed. They, therefore, do not consider the Occam’s razor

caused by b.

We explicitly express the Occam’s razor caused by b in the form of

Fn(K, b) = bF̃n(K, b)−
n

2
(log b− log 2π), (1.18)

where

F̃n(K, b) = nEn(w0) +
λ

b
log n+

1

b
Op(log log n), (1.19)

En(w) :=
1

2n

n
∑

i=1

(Yi −G(Xi;w))
2. (1.20)

Note that we used the relation

Ln(w; b) = bEn(w)−
1

2
(log b− log 2π). (1.21)

The dependence of Fn(K, b) on K is summarized as F̃n(K, b). The values En(w0)

and λ respectively become larger and smaller as K increases. This trade-off, whose

balancing factor is b, works as Occam’s razor. The term nEn(w0) dominantly works

for large b so that K that minimize F̃n(K, b) becomes large, and vice versa. The

K appropriate to D is therefore estimated under the b appropriate to D. Such a

pair of K and b minimize Fn(K, b), i.e., maximize p(Y n | Xn, K, b).

1.2.3 Effects of measurement noise

We consider the effects of measurement noise on statistical estimation, especially on

Bayesian spectral deconvolution. It has been pointed out that Bayesian inference

and statistical physics have the common mathematical structure. The generalized

formulation of Bayesian inference, which is equivalent to statistical physics’ one,

was proposed byWatanabe [55]. He also mentioned that there are phase transitions

in statistical estimation as in statistical physics. We show that the “degeneracy”

is a phase transition in statistical estimation as in statistical physics.

We focus on the measurement by dispersive spectrometers and its essential

limit. A dispersive spectrum has the integer-valued intensity, corresponding to the

number of photons, with the Poisson noise due to the discrete nature of photon.

There is a measurement limit, called the standard quantum limit, which signal and
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Figure 1.3: Phase transitions in statistical estimation.

noise cannot be distinguished. There is a limit of estimation by way of Bayesian

spectral deconvolution, which two individual signals cannot be distinguished, i.e.

the “degeneracy” or not. We elucidate these limits are uniformly explained as

phase transitions in statistical estimation by reformulating Bayesian spectral de-

convolution.

1.3 Structure of this thesis

This thesis consists of five chapters. In Chapter 2, we formulate the inverse problem

that calculate energy levels from an observed spectrum, a modification of Bayesian

spectral deconvolution, and show a demonstration. In Chapter 3, we develop a

mathematical foundation of phase transitions in statistical estimation based on

Watanabe’s formulation and show that the “degeneracy” is a phase transition in

statistical estimation. In Chapter 4, we clarify the measurement limit of dispersive

spectrometers with respect to the measurement time interval. In Chapter 5, we

conclude this thesis.
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Chapter 2

Modification of Bayesian spectral

deconvolution

2.1 Introduction

It is generally a difficult problem to distinguish each peak from noisy spectra with

overlapping peaks. The simplest solution is least-squares fitting by a gradient

method [56]. This type of method has a drawback in that fitting parameters are

often trapped at a local minimum or a saddle whenever there is another global min-

imum in the parameter space. Moreover, the number of peaks is not always known

in practice. Bayesian inference, by using a Markov chain Monte Carlo (MCMC)

method, provides a superior solution [46–50,57–60]. Although the Bayesian frame-

work enables us to estimate the number of peaks, MCMC methods generally have

the limitation of local minima and saddles. Nagata et al. reported [46] that the

exchange Monte Carlo method [61] (or parallel tempering [62]) can prevent local

minima or saddles efficiently and provide a more accurate estimation than the

reversible jump MCMC method [63] and its extension [64].

We constructed a Bayesian framework for estimating both the noise variance

and the number of peaks from spectra with white Gaussian noise by expanding

the previous framework by Nagata et al. [46]. The noise variance and the number

of peaks are respectively estimated by hyperparameter optimization and model

selection. These estimations are carried out by maximizing a function called the

marginal likelihood [43–45], which is a conditional probability of observed data

given the noise variance and the number of peaks in our framework. We provide

a straightforward and efficient scheme that calculates this bivariate function by

using the exchange Monte Carlo method and the multiple histogram method [65,
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66]. We also demonstrated our framework through simulation. We show that

estimating both the noise variance and the number of peaks prevents overfitting,

overpenalizing, and misunderstanding the precision of parameter estimation.

2.2 Framework

2.2.1 Models

An observed spectrum y ∈ R is represented by the sum f(x;w) of single peaks

φk(x;µk, ρk) and additive noise ε as

y = f(x;w) + ε, (2.1)

f(x;w) :=
K
∑

k=1

akφk(x;µk, ρk), (2.2)

φk(x;µk, ρk) := exp
[

−
ρk
2
(x− µk)

2
]

, (2.3)

where x ∈ R denotes energy, frequency, or wave number depending on the case.

The parameter set is w := {ak, µk, ρk}
K
k=1, where ak ≥ 0, µk ∈ R, and ρ

−1/2
k (ρk ≥ 0)

for each k are respectively the intensity, energy level, and peak width. The Gaus-

sian function φk(x) for each k should be replaced with other parametric functions,

such as the Lorentzian or Voigt function, depending on the case [42, 67]. If the

peaks φk(x) are symmetric functions for all k (i.e., their values depend only on the

distance from each center), the function f(x;w) is called a radial basis function

network in neural networks and related fields [46, 68]. This is the junction of the

spectral data analysis and singular learning theory [69]. If the additive noise ε is

assumed to be a zero-mean Gaussian with variance b−1 ≥ 0, the statistical model

of the observed spectrum is represented by a conditional probability as

p(y | x, w, b) :=

√

b

2π
exp

{

−
b

2
[y − f(x;w)]2

}

, (2.4)

where y is taken as a random variable. This Gaussian distribution p(y | x, w, b)

is valid if the thermal noise is dominant. The parameter set w is also regarded as

a random variable from the Bayesian viewpoint. The probability density function

of w, called the prior density, is heuristically modeled as

ϕ(w | K) :=
K
∏

k=1

ϕ (ak)ϕ (µk)ϕ (ρk) , (2.5)
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ϕ (ak) := κ exp(−κak), (2.6)

ϕ (µk) :=

√

α

2π
exp

[

−
α

2
(µk − µ0)

2
]

(2.7)

ϕ (ρk) := ν exp (−νρk) , (2.8)

where κ > 0, µ0 ∈ R, α > 0, and ν > 0 are hyperparameters. This prior density

modeling is a special case of that by Nagata et al. [46]. Equation (2.6) promotes

the sparsity of ak. Equation (2.7) is regarded as an almost flat prior density if α

is sufficiently small. These prior density models can be replaced with any other

model without loss of generality in our framework.

2.2.2 Bayesian formulation

The conditional probability density function of w given samples D := {Xi, Yi}
n
i=1,

set as X1 < X2 < · · · < Xn for the sake of convenience, is represented by Bayes’

theorem as

p(w | D,K, b) =
1

Zn(K, b)

n
∏

i=1

p(Yi | Xi, w, b)ϕ(w | K) (2.9)

=
1

Z̃n(K, b)
exp [−nbEn(w)]ϕ(w | K), (2.10)

Zn(K, b) :=

∫

dw
n
∏

i=1

p(Yi | Xi, w, b)ϕ(w | K) (2.11)

=

(

b

2π

)
n

2

Z̃n(K, b), (2.12)

Z̃n(K, b) :=

∫

dw exp [−nbEn(w)]ϕ(w | K), (2.13)

En(w) :=
1

2n

n
∑

i=1

[Yi − f(Xi;w)]
2 , (2.14)

where the functions p(w | D,K, b) and Zn(K, b) are respectively called the posterior

density and marginal likelihood. Note that the function Zn(K, b) = p({Yi}
n
i=1 |

{Xi}
n
i=1K, b) is a probability density but Z̃n(K, b) is not. Bayes free energy Fn(K, b)

is defined as

Fn(K, b) := − logZn(K, b) (2.15)

= bF̃n(K, b)−
n

2
(log b− log 2π), (2.16)

F̃n(K, b) := −
1

b
log Z̃n(K, b). (2.17)

11



Note that Nagata et al. regarded bF̃n(K, b) as Bayes free energy for the sake of

convenience [46] since the noise variance is treated as a known constant. We also

assume the case in which there are no peaks as K = 0 (see Appendix A). In

terms of the empirical Bayes (or type II maximum likelihood) approach [43–45],

empirical Bayes estimators of K and b are given by

(K̂, b̂) := arg max
K,b

Zn(K, b) (2.18)

= arg min
K,b

Fn(K, b). (2.19)

The hierarchical Bayes approach [70] is also tractable in our framework (see Ap-

pendix B). The partial derivative of Fn(K, b) with respect to the variable b is

obtained as

∂Fn

∂b
= n

[

〈En(w)〉b −
1

2b

]

, (2.20)

where 〈Q〉b denotes the posterior mean of an arbitrary quantity Q ∈ R over p(w |

D,K, b). If b = b̂ is a stationary point of Fn(K, b), then the following equation is

satisfied:

〈En(w)〉b̂ =
1

2b̂
. (2.21)

The Bayes estimator of w is given by ŵ := {〈ak〉b̂, 〈µk〉b̂, 〈ρk〉b̂}
K̂
k=1

with the stan-

dard deviation
√

〈Q′2〉b̂ − 〈Q′〉b̂
2 for each parameter Q′ ∈ w if K̂ > 0. However,

(K̂, b̂) cannot be derived in this case since Fn(K, b) and 〈En(w)〉b are analytically

intractable for our model.

2.3 Algorithm

2.3.1 Exchange Monte Carlo method

In practice, we calculate Fn(K, b) and 〈En(w)〉b by using the exchange Monte

Carlo method, which efficiently enables sampling from p(w | D,K, b) at b ∈ {bl}
L
l=1

without knowing Zn(K, b) or Fn(K, b). The target density is a joint probability

density as

p
(

{wl}
L
l=1 | D,K, {bl}

L
l=1

)

:=
L
∏

l=1

p(wl | D,K, bl), (2.22)

where wl is the parameter set at bl. Each density p(wl | D,K, bl) is called a replica.

Sequence {bl}
L
l=1 is set as 0 = b1 < b2 < · · · < bL for the sake of convenience. Note
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that the variable b is replaced with the inverse temperature β of Nagata et al.’s

formulation [46]. The variable b works as quasi-inverse temperature and varies the

substantial support of the posterior density p(w | D,K, b). The state exchange

between high- and low-temperature replicas enables the escape from local minima

or saddles in the parameter space. The sampling procedure includes the two

following steps.

• State update in each replica

Simultaneously and independently update state wl subject to p(wl | D,K, bl)

using the Metropolis algorithm [71].

• State exchange between neighboring replicas

Exchange states wl and wl+1 at every step subject to the probability u(wl+1, wl, bl+1, bl)

as

u(wl+1, wl, bl+1, bl) := min [1, v(wl+1, wl, bl+1, bl)] , (2.23)

v(wl+1, wl, bl+1, bl) :=
p(wl+1 | D,K, bl)p(wl | D,K, bl+1)

p(wl | D,K, bl)p(wl+1 | D,K, bl+1)
(2.24)

= exp {n(bl+1 − bl)[En(wl+1)− En(wl)]} , (2.25)

where Eq. (2.23) ensures a detailed balance condition.

A straightforward way of computing F̃n(K, bl) via the exchange Monte Carlo

method is bridge sampling [72, 73], in which F̃n(K, bl) is expressed as

F̃n(K, bl) = −
1

bl
log

l−1
∏

l′=1

Z̃(K, bl′+1)

Z̃(K, bl′)
(2.26)

= −
1

bl

l−1
∑

l′=1

log〈exp[−n(bl′+1 − bl′)En(wl′)]〉b
l′
, (2.27)

where 〈Ql〉bl for the arbitrary quantity Ql ∈ R at the lth replica is approximated

by the mean of an MCMC sample {Ql,m}
Ml

m=1 as

〈Ql〉bl =
1

Ml

Ml
∑

m=1

Ql,m. (2.28)

However, b̂ is not easy to accurately calculate using only the above scheme since

{bl}
L
l=1 is a discrete set, whereas b is a continuous variable.
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2.3.2 Multiple histogram method

We interpolate {Fn(K, bl)}
L
l=1 or {〈En(w)〉bl}

L
l=1 with respect to b = b′ ∈ (bl, bl+1)

for any l via the multiple histogram method. The density of states is defined and

estimated by

g(E;K) :=

∫

dwδ[E − En(w)]ϕ(w | K) (2.29)

=

∑L
l=1 Nl(E)

∑L
l′=1 Ml′Z̃n(K, bl′)−1 exp(−nbl′E)

, (2.30)

then we obtain

Z̃n(K, b) =

∫

dEg(E;K) exp(−nbE) (2.31)

=
L
∑

l=1

Ml
∑

m=1

1
∑L

l′=1 Ml′Z̃n(K, bl′)−1 exp [n(b− bl′)El,m]
, (2.32)

where Nl(E)dE and El,m are respectively the histogram of E ≥ 0 at the lth

replica and the value of E at the mth snapshot of the lth replica in an MCMC

simulation, i.e.,
∫

dENl(E) = Ml. The values of {Z̃n(K, bl)}
L
l=1 are determined

self-consistently by iterating Eq. (2.32) with b = bl. We take exp[−blF̃n(K, bl)]

computed via Eq. (2.27) as the initial values for the sake of convenience. Given

{Z̃n(K, bl)}
L
l=1, we then calculate Z̃n(K, b) as b = b′ via Eq. (2.32) again. The

above procedure can be appropriately generalized to treat multidimensional his-

tograms such as Nl(E,Q)dEdQ [74]. Then, the posterior mean of an arbitrary

quantity is calculated as

〈Q〉b =
1

Z̃n(K, b)

L
∑

l=1

Ml
∑

m=1

Ql,m
∑L

l′=1 Ml′Z̃n(K, bl′)−1 exp [n(b− bl′)El,m]
, (2.33)

where Ql,m is the value of Q at the mth snapshot of the lth replica in an MCMC

simulation. We calculate 〈En(w)〉b via Eq. (2.33) and solve Eq. (2.21) numerically

by the bisection method. Then, ŵ with the standard deviation of each parameter

is also calculated via Eq. (2.33). The posterior density of arbitrary quantities can

also be interpolated with respect to b = b′ in the same way (see Appendix C).

2.4 Simulation

We demonstrated how efficient our framework is through simulation in which the

same synthetic data as used by Nagata et al. [46] were used. The synthetic data
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Figure 2.1: Synthetic data. The horizontal and vertical axes respectively represent

the input x and output y. The black dots show synthetic data D = {Xi, Yi}
n
i=1.

The red solid line and blue dotted ones respectively show the true curve y =

f(x;w0) and the Gaussian peaks y = φk(x;µk
∗, ρk

∗).

D = {Xi, Yi}
n
i=1 shown in Fig. 2.1 were generated from the true probability density

as

q(y | x, w0, b0) :=

√

b0
2π

exp

{

−
b0
2
[y − f(x;w0)]

2

}

, (2.34)

where b0 > 0 and w0 := {ak
∗, µk

∗, ρk
∗}K0

k=1 are respectively the true inverse noise

variance and true parameter set, as in Tables 2.1 and 2.2. The inputs {Xi}
n
i=1

were linearly spaced in the interval [X1, Xn] = [0, 3] with spectral resolution ∆x =

0.01, where the number of samples was n = 301. The sequence {bl}
L
l=2 were

logarithmically spaced in the interval [nb2, nbL] = [10−4, 108], where the number

of replicas was L = 400. The model size K was set as integers from 0 to 5. The

hyperparameters were κ = 1.7, µ0 = 1.5, α = 0.4, and ν = 0.01 in the heuristics.

The total number of MCMC sweeps was 100,000 including 50,000 burn-in sweeps:

an MCMC sample {wl,m}
Ml

m=1 of size Ml = 50, 000 for every bl was obtained. The

estimators are listed in Tables 2.1 and 2.2, where ρk was converted into an inverse

square-root scale for comparison.

First, we discuss how to estimate both the noise variance and the number of

peaks. (A) Bayes free energy and (B) the posterior mean of the mean square

error are shown in Fig. 2.2. The horizontal axes represent b on a log scale. The

colored solid lines show Fn(K, bl) calculated via Eq. (2.27) for each K in (A) and

〈En(w)〉bl calculated via Eq. (2.28) for each K on a log scale in (B). The three

lines of K ≥ 3 almost overlap in (A-1) and (B-1), whose enlarged views around
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Table 2.1: Number of peaks and inverse noise variance.

K b

Estimated 3 1.02941× 102

True 3 1.0000× 102

Table 2.2: Parameters of each Gaussian peak.

ak µk ρk
−1/2

Mode 1 Estimated 0.579± 0.054 1.257± 0.040 0.14413± 0.02571

(k = 1) True 0.587 1.210 0.10223

Mode 2 Estimated 1.351± 0.152 1.461± 0.004 0.0760612± 0.0060438

(k = 2) True 1.522 1.455 0.0825244

Mode 3 Estimated 1.160± 0.048 1.703± 0.004 0.0817504± 0.0040759

(k = 3) True 1.183 1.703 0.0779755

the black circles are respectively shown in (A-2) and (B-2). The colored markers

in (A-2) and (B-2) respectively indicate Fn(K, bl) as in (A-1) and 〈En(w)〉bl as

in (B-1). The colored dotted lines in (A-2) and (B-2) respectively indicate the

interpolated values calculated via Eqs. (2.32) and (2.33). The gray solid lines in

(B) show the function 1/2b. The vertical black dashed lines and vertical black

dash-dotted ones respectively show the true value b = b0 and the estimated value

b = b̂. There is a minimum point of Fn(K, b) depending on each value of K, i.e.,

the probability density p(K, b | D) has a maximum at this point (see Appendix

B). In this case, Eq. (2.21) holds at the intersection of the purple dotted line and

the gray solid line shown in (B-2).

Second, we discuss the validity of our framework. The dependence on b in

the model selection is shown in Fig. 2.3. The horizontal axis represents b on a

log scale. The colored markers show the estimated model size K̂b that minimizes

Fn(K, bl) for each bl as

K̂b := arg min
K

Fn(K, bl) (2.35)

= arg min
K

F̃n(K, bl). (2.36)

Note that K̂b0 = arg minKF̃n(K, b0) is regarded as the optimal number of peaks

in Nagata et al.’s framework [46]. The vertical black dashed line and the vertical

black dash-dotted one respectively show the true value b = b0 and the estimated
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Figure 2.2: (A) Bayes free energy and (B) posterior mean of mean square er-

ror. The horizontal axes represent b on a log scale. The colored solid lines show

Fn(K, bl) for each K in (A) and 〈En(w)〉bl for each K on a log scale in (B). The

three lines of K ≥ 3 almost overlap in (A-1) and (B-1) whose enlarged views

around black circles are respectively shown in (A-2) and (B-2). The colored mark-

ers in (A-2) and (B-2) respectively indicate Fn(K, bl) as in (A-1) and 〈En(w)〉bl
as in (B-1). The colored dotted lines in (A-2) and (B-2) indicate the interpolated

values. The gray solid lines in (B) show the function 1/2b. The vertical black

dashed lines and vertical black dash-dotted ones respectively show the true value

b = b0 and the estimated value b = b̂.

value b = b̂. Although K̂b for each value of b depends on the noise realization, as

Nagata et al. showed in the case of b = b0 [46], K̂b also changes depending on the

value of b. There is a rough trend, explained by the asymptotic form of F̃n(K, b),

in which K̂b becomes larger as b increases. If the sample size n is sufficiently large,
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Figure 2.3: Dependence of model selection on b. The horizontal axis represents b

on a log scale. The estimated model size K̂b that minimizes Fn(K, b) for each b is

plotted as colored marker. The vertical black dashed line and the vertical black

dash-dotted one respectively show the true value b = b0 and the estimated value

b = b̂.

F̃n(K, b) is expressed as

F̃n(K, b) = nEn(w0) +
λ

b
log n+

1

b
Op(log log n), (2.37)

where w0 is the parameter set that minimizes the Kullback–Leibler divergence of

a statistical model from a true distribution, and λ > 0 is a rational number called

the real log canonical threshold (RLCT) [52,53]. The RLCT is determined by the

pair of a statistical model and true distribution, and the ones determined by Eqs.

(2.4) and (2.34) are clarified for several cases of (K,K0) with b = b0 [69]. The

values En(w0) and λ respectively become larger and smaller as K increases. The

term nEn(w0) dominantly works for model selection for large b: overfitting occurs.

The term λ log n dominantly works for small b: overpenalizing occurs. A moderate

model is estimated under the moderate value of b. Estimating the optimal value

of b is indispensable, and this result shows the validity of our framework.

Finally, we discuss the validity of our framework from another viewpoint. (A)

The posterior mean of µk, (B) the posterior standard deviation of µk, and (a-d)

the marginal posterior distribution of µk when K = K0 = 3 are shown in Fig. 2.4.

The horizontal axes in (A-B) represent b on a log scale. The colored solid lines

show 〈µk〉bl for each k in (A) and 2
√

〈µk
2〉bl − 〈µk〉bl

2 for each k in log scale in

(B). These values were calculated via Eq. (2.28). The identification of mode k was

reassigned by sorting the MCMC sample {µk,l,m}
3
k=1 into µ1,l,m < µ2,l,m < µ3,l,m

for each l and m in light of the exchange symmetry. The vertical black dashed
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Figure 2.4: (A) Posterior mean of µk, (B) posterior standard deviation of µk, and

(a-d) marginal posterior distribution of µk when K = K0 = 3. The horizontal

axes in (A-B) represent b on a log scale. The colored solid lines show 〈µk〉bl for

each k in (A) and 2
√

〈µk
2〉bl − 〈µk〉bl

2 for each k on a log scale in (B). The vertical

black dashed lines and the vertical black dash-dotted ones respectively show the

true value b = b0 and the estimated value b = b̂. The horizontal black dotted lines

in (A) show the true value µk
∗ for each k and the horizontal gray dashed line in

(B) shows ∆x. The vertical black solid lines in (A-B) correspond to each value of

b in (a-d). The histograms (a-d) of µk show the marginal posterior distribution of

µk for each b, where the coloring for each µk follows that in (A-B). The horizontal

axes in (a-d) represent µk, and the vertical ones represent relative frequency on a

log scale. The vertical black dotted lines also show the true value µk
∗ for each k,

as in (A).

lines and the vertical black dash-dotted ones respectively show the true value b = b0

and the estimated value b = b̂. The horizontal black dotted lines in (A) show the

true value µ∗

k for each k and the horizontal gray dashed line in (B) shows the

spectral resolution ∆x. The vertical black solid lines in (A-B) correspond to each

value of b in (a-d). The relative frequency histograms (a-d) show the marginal

19



posterior probability of µk for each bin [Xi, Xi+1] and b as follows:

P (Xi ≤ µk ≤ Xi+1 | D,K, b) =

∫ Xi+1

Xi

dµkp(µk | D,K, b), (2.38)

p(µk | D,K, b) =

∫

dw′p(w | D,K, b) (2.39)

=
z̃n(K, b, µk)ϕ(µk)

Z̃n(K, b)
, (2.40)

z̃n(K, b, µk) :=

∫

dw′ exp [−nbEn(w
′;µk)]ϕ(w

′ | K), (2.41)

where w′ := w\{µk} and ϕ(w′ | K) := ϕ(w | K)/ϕ(µk). En(w
′;µk) indicates

the function En(w) given the value µk. The histograms (a), (b), and (d) were

respectively constructed using the MCMC sample {µk,l,m}
Ml

m=1 as b = 2.925210 ×

10−2, 1.758132× 100, 6.350977× 103 for each k. Histogram (c) was calculated via

Eq. (A.17) for each k (see Appendix C). The coloring of the histogram for each k

follows that in (A-B). The horizontal axes in (a-d) represent µk, and the vertical

ones represent relative frequency on a log scale. The vertical black dotted lines in

(a-d) show the true value µ∗

k for each k, as in (A). 〈µk〉bl and 2
√

〈µk
2〉bl − 〈µk〉bl

2

respectively change depending on b, where the changes in the support of the pos-

terior density correspond. These changes are considerable around b = 101, where

〈µk〉b for each k asymptotically approaches the true value µk
∗ from this region

and 2
√

〈µk
2〉b − 〈µk〉b

2 for each k monotonically decreases from the same region.

The marginal posterior densities of µ1, µ2, and µ3 overlap and are unidentifiable

if b is smaller than around 101. Otherwise, they are separated and identifiable.

2
√

〈µ2
2〉b − 〈µ2〉b

2 is smaller than ∆x as (c) b = b̂: a kind of super-resolution.

This effect is based on the same principle as super-resolution microscopy tech-

niques [75,76]. 2
√

〈µk
2〉b − 〈µk〉b

2 for each k is also smaller than ∆x as (d) b > b̂,

whereas the support of µ1 does not cover the true value µ
∗

1: outside the confidence

interval. An appropriate setting of b provides an appropriate precision of parame-

ter estimation. Estimating the optimal value of b is indispensable even if the true

model size K0 is known; thus, this result also shows the validity of our framework.

2.5 Discussion

We constructed a framework that enables the dual estimation of the noise vari-

ance and the number of peaks and demonstrated the effectiveness of our framework
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through simulation. We also warned that there are the risks of overfitting, over-

penalizing, and misunderstanding the precision of parameter estimation without

the estimation of the noise variance. Our framework is an extension of Nagata et

al.’s framework and is versatile and applicable to not only spectral deconvolution

but also any other nonlinear regression with hierarchical statistical models.

Our framework is also considered as a learning scheme in radial basis function

networks. However, the goal of spectral deconvolution is not to predict any future

data, which is the goal of most other learning tasks, but to identify the true model

since spectral deconvolution is an inverse problem of physics. This is the rea-

son why we do not adopt the Bayes generalization error but adopt the Bayes free

energy for hyperparameter optimization and model selection. The Akaike informa-

tion criterion (AIC) [77] and Bayesian information criterion (BIC) [54], which are

respectively approximations of the generalization error and Bayes free energy, do

not hold for hierarchical models such as radial basis function networks: the widely

applicable information criterion (WAIC) [78] and widely applicable Bayesian in-

formation criterion (WBIC) [79] generally hold for any statistical model. If the

noise variance is unknown, these criteria do not lead to computational reduction

since the value of the noise variance needs to be estimated, as discussed in Sect.

2.4. The example we gave is classified as an unrealizable and singular (or regular)

case [80], which is a difficult problem. On the other hand, the example Nagata et

al. gave [46] is classified as a realizable and singular (or regular) case, which is a

relatively easy problem. Statistical hypothesis testing does not hold for a singular

case. Our scheme is also valid and sophisticated from the viewpoint of statistics.
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Chapter 3

Phase transitions in statistical

estimation
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Chapter 4

Measurement limit of dispersive

spectrometers
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Chapter 5

Conclusions

We have focused on the problem of identifying by the observed spectrum whether

the energy level is degenerate or not and studied effects of measurement noise on

Bayesian spectral deconvolution. The contributions of this thesis are as follows:

1. We have modified the conventional Bayesian spectral deconvolution to enable

estimating the noise variance as Bayesian inference originally does so, and

shown the significance of estimating the noise variance and the number of

peaks simultaneously.

2. We have developed a mathematical foundation of phase transitions in sta-

tistical estimation by introducing Bayes specific heat and its scaling law.

3. We have found a phenomenon that, in Bayesian spectral deconvolution, the

estimated values of the energy levels are “degenerate”, affected by the mea-

surement noise, and clarified that this phenomenon is a first-order phase

transition in statistical estimation.

4. We have derived the extrapolation formula of Bayes specific heat on the

dispersive spectroscopic measurement, and clarified the phase transitions,

which indicate the measurement limit, with respect to the measurement time

interval.

5. We have made a proposition that the degeneracy in the measured system

and the “degeneracy” of the estimated value affected by measurement noise

are essentially nonidentifiable.

These contributions possibly give an impact not just on physics but also on statis-

tics and the related research field, such as artificial intelligence, neural networks,

and machine learning.
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Our findings also could contribute to the design of experiment by way of two

types of strategy. One way is to replace only the forward problem with ab initio

or model calculations. By integrating these calculations into the simulation of the

indirect measurement, we can predict the measurement limit before the experi-

ment. The other way is to carry out a pre-experiment as noiseless as possible. By

using a noiseless spectrum for an indirect measurement, we can get the informa-

tion of the measurement limit as the transition point. Of course, there is no way

to know whether what we observe is “degenerate” or not in cases of actual mea-

surements. But what is observed by the best measurement is surely our scientific

truth. At least the corresponding value of Bayes specific heat indicate the state of

measurement. It is no exaggeration to say that this means a “measurement” of a

measurement.
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Appendix A

Appendix in Chapter 2

A.1 Bayes free energy for no-peaks model

We define the function f(x;w = φ) = 0 as K = 0, where φ is the empty set. The

statistical model of the no-peaks spectrum and marginal likelihood are expressed

as

p(y | x, w = φ, b) =

√

b

2π
exp

(

−
b

2
y2
)

, (A.1)

Zn(K = 0, b) =
n
∏

i=1

p(Yi | Xi, w = φ, b) (A.2)

=

(

b

2π

)
n

2

Z̃n(K = 0, b), (A.3)

Z̃n(K = 0, b) = exp[−nbEn(w = φ)], (A.4)

En(w = φ) =
1

2n

n
∑

i=1

Yi
2. (A.5)

The main term of Bayes free energy and the posterior mean of the mean square

error are also respectively expressed as

F̃n(K = 0, b) = nEn(w = φ), (A.6)

〈En(w = φ)〉b = En(w = φ), (A.7)

where they can be calculated without any MCMC method.

A.2 Hierarchical Bayes approach

In Sect. 2.4, we adopted the empirical Bayes (or type II maximum likelihood)

approach, in which K and b are estimated by the minimization of Fn(K, b) (or
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Figure A.1: (A) Joint probability of (K, b) and marginal probability of b, (B)

marginal probability of K, and (C) marginal probability density of b. The hori-

zontal axes represent b on a log scale. The colored stairstep graphs and the black

one in (A) respectively show the joint probability P (K, bl ≤ b ≤ bl+1 | D) for each

K and the marginal probability P (bl ≤ b ≤ bl+1 | D). The three colored graphs of

K < 3 almost overlap in contrast to Fig. 2.2(A-1). The black bars in (B) show the

marginal probability P (K | D). The black markers and black dotted line in (C)

respectively show the marginal probability density p(bl | D) and the interpolated

values. The vertical black dashed lines and the vertical black dash-dotted ones

respectively show the true value b = b0 and the estimated value b = b̂, as in Fig.

2.2.

the maximization of Zn(K, b)). The hierarchical Bayes approach, which takes into

account the posterior density of K and b, is also suitable for our framework. The

prior density of K and b is set as ϕ(K, b) = ϕ(K)ϕ(b), where ϕ(K) is a discrete

uniform distribution on the natural numbers {0, 1, 2, 3, 4, 5} and ϕ(b) is a contin-

uous uniform distribution on the interval [b1, bL]. The joint posterior probability

and marginal ones are expressed as

P (K, bl ≤ b ≤ bl+1 | D) =

∫ bl+1

bl

dbp(K, b | D), (A.8)

p(K, bl | D) =
exp[−Fn(K, bl)]

∑5
K=0

∫ bL
b1

db exp[−Fn(K, b)]
, (A.9)

P (K | D) =
L−1
∑

l=1

P (K, bl ≤ b ≤ bl+1 | D), (A.10)

P (bl ≤ b ≤ bl+1 | D) =

∫ bl+1

bl

dbp(b | D), (A.11)
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p(bl | D) =
5

∑

K=0

p(K, bl | D), (A.12)

where the integration along the b-axis is calculated using the trapezoidal rule. Note

that exp[−Fn(K, b1)] = Zn(K, b1) = 0. The (A) joint probability of (K, b) and the

marginal probability of b, (B) the marginal probability of K, and (C) the marginal

probability density of b are shown in Fig. A.1. The horizontal axes represent b

on a log scale. The colored stairstep graphs and the black one in (A) respectively

show the joint probability P (K, bl ≤ b ≤ bl+1 | D) for each K and the marginal

probability P (bl ≤ b ≤ bl+1 | D). The three colored graphs ofK < 3 almost overlap

in contrast to Fig. 2.2(A-1). The black bar in (B) shows the marginal probability

P (K | D). The black markers and black dotted line in (C) respectively show the

marginal probability density p(bl | D) and the interpolated values. The vertical

black dashed lines and vertical black dash-dotted ones respectively show the true

value b = b0 and the estimated value b = b̂, as in Fig. 2.2. Both b0 and b̂ are within

the same interval of b, which maximize the probabilities P (K, bl ≤ b ≤ bl+1 | D)

and P (bl ≤ b ≤ bl+1 | D) in this case. Although the value of K that maximizes

P (K | D) is the same as K̂ in this case, the value of b that maximizes p(b | D) is

slightly different from b̂ in the strict sense. These values are not always consistent

in practice, and there is a continuous discussion: which is better, to optimize or

to integrate out? [81] The users of our framework can choose a better way in light

of their perspective.

A.3 Interpolation of posterior distribution

The density of states in the ith bin, which is the function g(E;K) given the value

of µk in the interval [Xi, Xi+1], is defined and estimated as

g(E;K,Xi ≤ µk ≤ Xi+1) :=

∫

dw′δ[E − En(w
′;Xi ≤ µk ≤ Xi+1)]ϕ(w

′ | K)

(A.13)

=

∑L
l=1 Nl(E;Xi ≤ µk ≤ Xi+1)

∑L
l′=1 M

(i)
l′ Z̃n(K, bl′)−1 exp(−nbl′E)

, (A.14)

then we obtain

z̃n(K, b,Xi ≤ µk ≤ Xi+1) =

∫

dEg(E;K,Xi ≤ µk ≤ Xi+1) exp(−nbE) (A.15)
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=
L
∑

l=1

M
(i)
l

∑

m=1

1
∑L

l′=1 M
(i)
l′ z̃n(K, bl′ , Xi ≤ µk ≤ Xi+1)−1 exp

[

n(b− bl′)E
(i)
l,m

] , (A.16)

where En(w
′;Xi ≤ µk ≤ Xi+1), Nl(E;Xi ≤ µk ≤ Xi+1), and E

(i)
l,m respectively

indicate En(w), Nl(E), and El,m in the ith bin. M
(i)
l is defined as M

(i)
l :=

∫

dENl(E;Xi ≤ µk ≤ Xi+1), whereMl =
∑n−1

i=1 M
(i)
l . The values of {z̃n(K, bl, Xi ≤

µk ≤ Xi+1)}
L
l=1 for each i are determined self-consistently by iterating Eq. (A.16)

with b = bl. Given {z̃n(K, bl, Xi ≤ µk ≤ Xi+1)}
L
l=1 for each i, we calculate

z̃n(K, b,Xi ≤ µk ≤ Xi+1) for each i with b = b′ via Eq. (A.16) again. If ∆x

is sufficiently small (or ϕ(µk) is almost flat), P (Xi ≤ µk ≤ Xi+1 | D,K, b) is

expressed as

P (Xi ≤ µk ≤ Xi+1 | D,K, b) =
z̃n(K, b,Xi ≤ µk ≤ Xi+1)ϕ(µk = Xi)

∑n
i=1 z̃n(K, b,Xi ≤ µk ≤ Xi+1)ϕ(µk = Xi)

.

(A.17)
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