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Abstract

It was important to find the latent structure for understanding the nature of sub-
ject. In this thesis, we studied about the extraction of latent dynamical structure
from the time-series data. Elucidation of the dynamical structure lead us to un-
derstand the subject. Particularly, three kinds of time-series data were studied in
this thesis.

First, the associative memory model with synaptic depression was analyzed by
using dimensionality reduction techniques. Although the dynamics of the model
is known to be difficult to analyze theoretically, we found limit cycle like dynamics
in the model. This result suggested that information processing of the model was
performed through the dynamics.

Second, the coherent phonon signal was analyzed. The signal consists of sum
of the damping oscillation with substance-specific normal mode frequencies. Con-
ventional methods to analyze the coherent phonon are the Fourier transformation
and the Wavelet transformation. We applied the dimensionality reduction method,
instead, and showed that the method could separate the signal and background
noise.

Finally, time-series spectral data was studied. The spectral data has multi-
peak structure and the parameters of the peaks reflect the nature. We adopted
the Bayesian inference frameworks to propose a method to analyze time-series
spectral data.
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Chapter 1

Introduction

These days, the performance of measurement tools is improving significantly and
comes to bring us high-dimensional big data. When we attempt to handle such
data, the curse of dimensionality would appear, and it might prevent us from
comprehending the essential feature lying in the data or might delude us into
drawing the wrong conclusion. How can we tackle those data and find the true
nature? One possible way of solving this question is to detect a few essential
elements to describe the phenomena and to discover a (low-dimensional) latent
structure behind the phenomena. This is called a “sparse modeling” framework
based on the assumption that a combination of a few elements causes a diversity
expressed in the data. Another strategy for those problems is a Bayesian inference
which is a probabilistic framework and make use of a prior knowledge of generation
and observation.

This thesis discusses time-series data through the whole. Especially, we con-
sider the case when the variables of interest cannot be obtained directly, as is often
the case with many fields of science. Hence, it is scarcely avoided to discuss “the
observation process,” or relationships between the latent variables and observable
ones. In measurement science, the process might be known and modeled well. We
can estimate the unobservable data by utilizing the a prior: knowledge of the pro-
cess. In other fields of science, it is more often cases, however, that we do not know
the relationships. In this case, we need some principal, assumption, or strategy to
tackle the problem. It depends on the case, of course, but we expect to compress
the data to be one of the answers. Moreover, other questions we should consider
are left; what is “the latent structure” of time-series and what is suitable for the
building blocks for dynamics.

One simple candidate is the linearization of the system around a fixed point.
However the dynamics express nonlinearity noticeably, linearization of the dy-
namics can be guaranteed around the fixed points. Once we find the linearized
dynamics, the dynamics can be expressed by the eigenvalues and eigenvectors gov-



CHAPTER 1. INTRODUCTION

erning the dynamics. Figure 1.1 shows schematic figures. For the discrete time

a<l1 a>1

Xr41

X Ky

X1

Figure 1.1: Near a fixed point dynamics.

system, when the gradient at the fixed point @ < 1 then the system moves toward
the fixed point, on the other hand, it goes away. There are many attractor in
the nonlinear dynamical system, and hence, it is important to understand such
dynamics locally. Hereby, we mainly focus on (quasi-)equilibria of the system.

1.1 State space modeling

A state space modeling is utilized for time-series data analyses in many scientific
or engineering fields [1, 2]. Figure 1.2 shows a typical example of the modeling. It
is assumed that there are two classes of variables: latent variables and observable
ones, and that two types of relationship are found among the variables: dynamics
and observation.

The latent variables, as the name suggests, cannot be observed directly, and a
dynamical structure is assumed to be existing among them:

= g(zi_1; 0).

Here, parameters 6 are introduced to the process in order to specify the latent
dynamics. The relationship, namely ¢(-), can be linear or nonlinear, and deter-
ministic or stochastic. Note that, while the number of the latent variables is at
least O(T') with respect to the number of time steps 7' the number of the param-
eters is O(1). Thus, 6 itself is the latent dynamical structure which we try to
extract from the data.

For instance, the left side of Fig. 1.3 shows a time-series data generated by a
stochastic process. As you can see, the time-series data might have correlation
with the past data of their own. When the current value, x;, and the value just
before, x;_1, are plotted on the vertical and horizontal axis, respectively, the clear
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Figure 1.3: An example of a dynamical process and its latent structure.
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linear correlation can be found (the right side of Fig. 1.3). This is because that
the stochastic process generating the time-series is a autoregressive process of the
form, z; = 6121 + 65 + noise shown as the red line in Fig. 1.3. In this example,
we can see that the dynamics can be described only by the two parameters; the
gradient #; and the intercept #,. Hence, our goal is to find such parameters from
the data.

Recall that we only obtain the observed variables rather than the latent vari-
ables exhibiting the dynamical properties. In this case, a problem setting becomes
more complicated, that is, we need to consider “an observation process” between
the latent and observable variables:

Yo = f(:ct; w)

Here, w is a parameter related with the observation process. The observation
process can also be linear or nonlinear, and deterministic or stochastic as well
as the dynamical process. Although the observable variables only depends on
the latent variables, the dynamical structure of latent variables causes apparent
dynamical structure among the observable data.

1.2 Related works

Now, we need to find (i) the latent variables x;, (ii) the parameter w related to
observation, (iii) the parameter 6 governing the latent dynamics, and (iv) the
relations f(-) and g(-) from the observation y;. There are many algorithms and
frameworks for time-series analyses. Thus, we will briefly summarize them and
point out what our thesis aims at.

1.2.1 Kalman filter and its variant

The Kalman filter [1] is a widely applied algorithm in the engineering field. Note
that, the Kalman filter assumes that the observation and dynamical process are
already detected, hence, it is intended to estimate the hidden time-series. This
algorithm repeats the prediction of the hidden state and the update the state from
the observation. Under certain conditions, the Kalman filter is a optimal estimator
of the latent time-series.

Since linear dynamics and linear observations are assumed for original Kalman
filter, there are some extensions of the method to nonlinear systems; such as ex-
tended Kalman filter [3], unscented Kalman filter [4] and particle filter [5]. They
approximate nonlinear function itself, mean and covariance, or conditional expec-
tation.
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Although, the Kalman filter and its variants are widely utilized in many fields,
they are not suitable for the extraction of the latent dynamical structure discussed
in this thesis. We focus on the situation in which the model is not perfectly
determined.

1.2.2 Bayesian inference

Bayesian inference is a probabilistic framework for estimating the parameters from
the observed data. The generating and observation processes are modeled stochas-
tically, and a prior knowledge can be naturally introduced to the model. Hence,
this frameworks are very useful in natural science fields, especially in measure-
ment science. For example, Doppler effect of the light brings a Gaussian shape
broadening to the spectral. In such case the observation process can be reduced to
the nonlinear fitting problem. Thus, we can tackle the nonlinearity of observation
process based on the stochastic inference. This stochastic frameworks assumes the
type of dynamic process and observation process but leaves the parameters to be
determined, which is differ from the case discussed above.

The key of Bayesian inference is the Bayes’ theorem, which reverses generating
and observation process and obtains estimation process:

p(y|w)(w)

p(wly) = o)

where p(w|y) is a posterior distribution, p(y|w) corresponds to observation process,
p(w) corresponds to a prior knowledge and p(y) is a normalized constant. The
Bayesian inference can easily “deepen” the modeling as

p(w, 0ly) o< p(ylw)p(w|)p(0).

Here, we can estimate the observation process and the latent dynamical structure
through the posterior distribution.

The main problem of Bayesian framework is to calculate the posterior distri-
bution. One of the difficulty arise from the integration over the parameter in
normalized constant:

p(y) = /p(ylw)p(w)dw.

One can see that the integration is generally intractable. Here, many techniques
to solve the problem are invented: approximation method such as the Laplace
approximation and the variational Bayesian frameworks, and sampling method
such as Markov chain Monte Carlo method and its extensions.

We call the Bayesian inference as frameworks. Unlike the Kalman filter, the
Bayesian inference is not an algorithm but methodology, and one of the important
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part to handle this is to model the phenomena behind the data. Once we can model
the joint probability, we can apply one of the existing method to it. Clearly, a
performance of the Bayesian inference depends on how accurate the probabilistic
model is. Therefore, deep insight into the target phenomena is required.

1.2.3 Sparse modeling

When one scarcely know the dynamical and observation process, sparse modeling
might be helpful. It assumes that the diversity of the data arises from combination
of a few, or sparse, latent elements. For observation y € RY, latent variables
x € RM and bases W € RV*M  we assumes that the observation process is as
follows,

y = Wax + noise.

When N is sufficiently larger than M, we can solve the equation by applying least
squares method or its variant. As is often the case, however, when the N is smaller
than M, the above equation becomes ill-posed and can not be solved unless any
constraint is imposed.

The sparsity is a key concept to find the solution [6]. When @ contains many
zero elements, in other words, non-zero element in @ is sparse, we can resolve the
equation. This fact brings us some idea that if we prepare large enough bases
to represent the observation, the sparse modeling may detect relevant bases to
the data. Obviously, the choice of bases directly affects the performance of the
sparse modeling. Dictionary learning is a method to learn the basis only from the
data set. One of the most impressive study about the sparsity and the dictionary
learning was done by Olshausen and Field [7]. They found the bases which the
natural image could be sparsely reconstructed with and which were alike Gabor-
filter. The Gabor-filter resembles receptive field of simple cells in the visual cortex,
which suggest that brain processes stimulation in a sparse manner. Furthermore,
the filter are adopted for image compressing techniques [8].

Learning basis for the sparse representation can be written as matrix decom-
position of the form,

Y=WX,

where, Y is the observed data set, W is the bases, and X is the sparse represen-
tation of Y with W. Note that, since the variables in the right hand side of the
equation are both undetermined, some criteria for decomposing are required. Typi-
cal examples are the sparse dictionary learning [9], low-rank approximation such as
truncated singular value decomposition, non-negative matrix factorization [10, 11],
and so on.

For the time-series data, not only the sparseness but also dynamical structure
is required. The singular value decomposition, for instance, does not change its
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essential properties such as singular values, left and right singular vector, with
exchanging between the columns or rows of the data matrix. Time-series data,
however, the order of data has critical structure, and hence, exchange between
the data causes a significant change in the latent structure behind the data. Re-
cently, dimension reduction techniques introduced time-series structure are pro-
posed: multivariate autoregressive (MAR) model with structured prior [12], ma-
trix factorization method using MAR structure, and so on. One of those methods,
called dynamic mode decomposition (DMD) [13, 14], rapidly becomes to attract
the attention as it can be applied to nonlinear dynamics. This method has a con-
nection with Koopman operator theory [15, 16] in the area of dynamical systems.
The operator K acts on the observation “function” as

(K fl(zi) = (f o g) ()
= f(g(x))
= f($t+1>~

Thus, it can be said that the operator make latent variables one step forward and
observe. The operator has particular observation such that

(Kol(z:) = Mp(w),

where, ¢ and X is a pair of eigenfunction and eigenvalue. Note that, we can
transform finite and nonlinear dynamics to (possibly) infinite and linear dynamics
with the Koopman operator. In the vector-valued observation case, we can write
the dynamics as

Fze) = Zvi%(l’t),
Kf](x:) = Z’Ui)\i%(%);

where, v; denote the i-th Koopman mode. DMD is said to be able to approximate
the Koopman eigenvalue and mode, and to find the dynamical structure only
through the data and without any models.

1.2.4 Owur aim

In the last of this section, we briefly summarize related works and address what
we aim at. As discussed above, there are many frameworks to analyze time-series
data. Table 1.1 shows a pair of what situation the model is and what strategy
may works well. In this thesis, we mainly tackle the two situation at the bottom
of Table 1.1.
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Situation Strategy
Model is known (including the parameters) Kalman filter and its variants
Model is known (except the parameters) | (Non)linear fitting, Bayesian inference
Model is not known Sparse modeling; data-driven method

Table 1.1: Related works

1.3 Summary of contributions

The works studied in this thesis have been already published as journal papers
or are planned to be submitted to journals. All of the works studies about the
time-series data. Here, we review them and discuss our main contributions.

e Principal component analysis of the associative memory model. We
analyzed the associative memory model with synaptic depression through
the principal component analysis. The model discusses the memory retrieval
process. Some of the important properties such as memory capacity and
basin of attraction, have been analyzed by using the statistical mechani-
cal method. However, analyzing spurious state corresponding to the non-
retrieval state was known to be difficult to solve. Moreover, memory state
and spurious state were seemed to be identical in the point of dynamical
property view, although their properties of information process differ from
each other. By applying PCA, we showed that the synaptic depression,
which has been experimentally found mechanism of synapse, did not affect
the memory state but mainly destabilized spurious state and induced the
oscillations(Chapter 2).

Original content can be found in Ref. [17]

¢ Dynamic mode decomposition to analyze the neural networks. From
the PCA study, the limit cycle formation in the spurious state was suggested.
PCA, however, does not take the time structure into account, although it
found clear structure. In this work, we focused on the dynamic mode de-
composition (DMD), which is originally developed in the field of fluid dy-
namics. It decomposes the data into the spatio-temporal modes. Moreover,
dimensionality reduction can be carried out by applying the sparse-modeling
based method, sparsity-promoting dynamic mode decomposition. This works
found the clear difference among the memory state, spurious state and os-
cillations in spurious state. Fach neurons have the “phase” in the case of
oscillation. This phase and synaptic depression possibly cause the oscillation
in the model (Chapter 3).

This work is planned to submit to a journal.



CHAPTER 1. INTRODUCTION

e Dynamic mode decomposition for the coherent phonon signals. We
now recognize that DMD is a efficient tools to analyze time-series data.
Ultrashort laser pulse can excite the lattice vibration in a substance. Coher-
ent phonon (CP) signals contain the substance-specific normal mode oscilla-
tions. The initial phase of the oscillations is important to reveal a dynamics
of a photoinduced structural phase transition. Conventionally, the Fourier
transformation and the Wavelet transformation are applied to the CP sig-
nals. These method utilize the quasi-continuous bases in the frequency space.
Thus, the uncertainty width appears and it is difficult to detect the initial
phase of the modes. On the other hand, DMD can decompose the signal into
a few damping oscillation modes. Moreover, the experimental artificial noise
(background noise) is usually superposed to the signal. DMD can decompose
such noise from the signal. Note that, this work suggests that DMD can be
powerful method for signal processing when the signal consists of (damping)
oscillations and background noises (Chapter 4).

This work is also planned to submit to a journal.

e Bayesian spectral deconvolution for the time-series data. Spectral
data is observed in the wide range of natural sciences, especially, in the
case using spectroscopic measurement. The spectral data has multi-peak
structure, and thus, it can be decomposed into the sum of single-peak basis
functions. The parameters of basis functions are reflected the nature of
subject. Bayesian spectral deconvolution is a method based on the Bayesian
inference. It can also estimate the number of basis functions. Time-series
spectral data reflects the dynamics of the subject. Thus, we extend the
Bayesian spectral deconvolution to the form including dynamical structure.
Our proposal method is reduced into the original method if the “dynamics ”
is like a random noise. Thanks to the introducing dynamical structure, we
can estimate the parameters more accurately (Chapter 5).

Original content is found in Ref. [18]

1.4 Overview of this thesis

This thesis is constructed as follows (as shown in Fig. 1.4). First, Chapters 2 and 3
study about dynamics of a neural network model through dimensionality reduction
techniques. Effect of the experimental phenomena on the information process is
revealed. Second, Experimental data is analyzed in Chapter 4 with the mode
decomposition method appeared in Chapter 3. Third, Chapter 5 proposes the
frameworks for analyzing time-series spectral data based on the Bayesian method.
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Finally, we summarize our thesis, discuss about the works, and describe the future
tasks in Chapter 6.

Based on Dimensionality Reduction

[Ch. 4]
DMD study on coherent
phonon signal

[Ch. 2]
PCA study on associative
memory model

[Ch. 3]
DMD study on associative
memory model

Introducing
time-structure

Based on Probabilistic Inference

[Previous studies]
Bayesian spectral
deconvolution

[Ch. 5]
Spectral deconvolution for
time-series data

Introducing
time-structure

Figure 1.4: Structure of this thesis.
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Chapter 2

Principal Component Analysis on
the Associative Memory Model

In this chapter and the following chapter, we discuss data-driven approaches to
the dynamics of a neural network model. A neural network consists of many
simple elements interacting each other, and it can perform information processing
through the interaction. Since Hopfield had drawn an analogy between neurons
and Ising spin systems [19], statistical mechanical method became to be applied
to analyzing properties of neural networks [20, 21, 22]. For instance, Amit et al.
revealed the loading ratio of the associative memory model, that is, how many
memory patterns a neural network can store [21]. However, not all properties of
neural networks can be studied analytically. Dynamics of the network can be a
one of the such property.

Although analytical study of neural networks is hard to be conducted, we can
simulate the model behavior on computer, which may brings us large amount of
neural network data to analyze. Hereby, we think that the data-driven approach
is a key technology to study neural networks. In addition, the approach described
below may also be useful for experimental data.

2.1 Introduction

We will study the associative memory model, which is a typical neural network
model and deals with memory retrieval processes. Applying the Hebbian rule en-
ables us to design “energy landscape” on the neural network state. In other words,
the network has discretely distributed fixed-point attractors which correspond to
memory patterns [19, 23, 24]. Given an initial state near a memory pattern, the
network state generally converges on the memory pattern. However, undesirable
meta-stable states would appear when the number of memory patterns is on the

11
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order of the number of neurons, in other words, the extensive loading case. These
attractors besides memory pattern are called spurious memory. When one consid-
ers the associative memory model as an information processing model, the memory
states and spurious states play completely different roles. The memory state and
spurious state correspond to the success and failure of memory retrieval, respec-
tively. However, it is difficult to distinguish spurious states from memory states,
because their dynamical properties are the same. This indistinguishability is a se-
rious problem in using the associative memory model as an information processing
model.

Physiological experiments have shown that the efficacy of synaptic transmission
changes in a short period of time. For example, dynamic synapses can decrease
their transmission efficacy to postsynaptic neurons according to the activities of
presynaptic neurons [25, 26, 27, 28]. This phenomenon is called synaptic depres-
sion and is a type of short-term synaptic plasticity. Previous studies have revealed
that synaptic depression destabilizes attractors and induces switching phenomena
among them when the number of memory patterns is much smaller than the num-
ber of neurons, i.e., in finite loading cases [29, 30]. However, the network has many
attractors including spurious memories in extensive loading cases. The effects of
synaptic depression on these attractors have not been analyzed well. Synaptic
depression may induce a difference between memory states and spurious states.

In this study, we apply a machine learning method to simulation data to reveal
the effects of synaptic depression on attractors including spurious memories. As a
result, we find that synaptic depression does not affect memory states but mainly
destabilizes spurious states and induces periodic oscillations. This result suggests
that incorporating synaptic depression would improve the performance of the as-
sociative memory model as an information processing model. It is also suggested
that the data-driven approach can be a useful method to analyze neural networks.

2.2 Model

In this section, we introduce an associative memory model with synaptic depres-
sion, consisting of N fully connected McCulloch-Pitts neurons. If the i-th neuron
fires at discrete time ¢, its state is represented by s;(t) = 1; otherwise, s;(t) = 0.
The network state at time ¢ is denoted by a variable s(t) = [s1(t), s2(t), -+ , sn(t)].
Each neuron is updated with the following probability:

Prob[s; (t+1)=1] =1—Prob[s; (t + 1) = 0] = F'[h; (t)], (2.1)
hi (t) = 272 Jij (t) s (t). (2.2)

12
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Here, h;(t) represents an internal potential in the i-th neuron at time ¢, and F’ [h;(t)]
is a function taking continuous values on [0, 1]. We consider an inverse temperature
B =1/T and then we define the function F [h;(t)] as

FMﬂﬂ:;{LHmme@H. (2.3)

The strength of a synaptic connection between the i-th and j-th neurons is denoted
by J;; (t) and given by

Jij (1) = Jijz;(t), (2.4)

1250 G )s,(0), (25)

where x;(t) corresponds to the efficacy of synaptic transmission [28, 29] and takes
continuous values in the range 0 < z;(t) < 1. Here, Usg represents the fraction of
released neurotransmitter in the absence of depression, and 7 is a time constant
for the recovery process. The associative memory model with synaptic depression
is a type of nonlinear second-order time-delay system due to Eq. (5). The model
could oscillate according to parameters.
The absolute strength of synaptic connection, jij, is given by the following
Hebbian rule: L
To= e (26)
p=1
Here, p corresponds to the number of memory patterns stored in the network.
The ratio of the number of neurons, N, to p is called the loading ratio «, i.e.,
a = p/N. Previous studies theoretically show that synaptic depression induces
switching phenomena among memory patterns when p is of constant order with
respect to N [29, 30]. However, analyzing the spurious states by a statistical
mechanical method is very difficult [24], and thus numerical experiments were
performed instead.
The stored memory pattern &€* = (&', &5, -+, &R) is stochastically provided by

Pmmg:iu:; (2.7)

When the state of the i-th element in the u-th memory pattern is in a firing state,
# =1, otherwise, &' = —1.

2.3 Results

In this section, we show the results obtained from Monte Carlo simulation with
the model defined in Sect. 2. To describe the macroscopic state of a network, we

13
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define an overlap between the p-th memory pattern £ and the network state s(t)
as

1 N
Nz [2s;(t) —1]. (2.8)

The overlap M*(t) corresponds to the direction cosine between the p-th memory
pattern and the state of the network. First, when the state s(¢) completely matches
the memory pattern &, the overlap M*(t) takes a value of 1. Second, when s(t)
is orthogonal to &, then M*(t) takes a value of 0. Finally, when s(t) matches
the sign inversion memory pattern —&", M*(t) takes a value of —1. The initial
network state s(0) is given by the probability

1+ Mpyer

Prob [s;(0) = 1] = 1 — Prob[s;(0) = 0] = 5

(2.9)
The expectation of the overlap M*(0) provided in this way becomes M{' in the
limit of N — oco. Therefore, M} corresponds to the initial overlap.

2.3.1 Dependence of overlap on step

In this subsection, we show how synaptic depression affects the dependence of the
overlap M1 (t) on step t. Figure 2.1 shows the dependence obtained from Monte
Carlo simulation with N = 5000, 7' = 0.1, and a loading ratio a = 0.03, i.e.,
p = 150. Initial states are provided with the initial overlap M] by varying the
value from 0.1 to 1.0 at intervals of 0.1. The parameters of synaptic depression
are 7 = 40 and Ugg = 0.0125.

Figure 1(a) shows the case without synaptic depression from ¢ = 0 to 20. When
Mj is greater than 0.4, M'(t) converges to 1 at a large ¢, meaning that memory
retrieval is successful. This final state corresponds to a memory state. On the
other hand, when M{ is less than or equal to 0.3, M'(t) is in equilibrium such
that the overlaps M*(¢) do not reach 1. This equilibrium is called a spurious state.
Figure 1(c) shows the case with synaptic depression. When M, is greater than
0.4, the network succeeds in memory retrieval; otherwise, when M{ is less than or
equal to 0.3, the network fails in memory retrieval and falls into a spurious state.

From Figs. 1(a) and 1(c), we can see that there is little difference between the
dynamics of M'(¢) from ¢ = 0 to 20 with and without synaptic depression, which
means that synaptic depression does not affect memory retrieval.

Figure 1(b) shows the case over a long time span from ¢ = 0 to 1000, in
Fig. 1(a). In the memory state, the overlap M'(¢) takes a value of 1.0 and then
converges. In spurious state, it takes a value of 0.1 and then converges. Figure
1(d) shows the case with synaptic depression over a long time span from ¢ = 0 to
1000. In the memory state, M (t) takes a value of 1.0 and converges, the same

14
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without STD, short term without STD, long term
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Figure 2.1: Dependence of overlap M (t) on step t. The initial overlap M_} takes
values of 0.1, 0.2, ..., 1.0. (a) Case without synaptic depression. (b) Conditions
in case (a) over a long period. (c¢) Case with synaptic depression, where 7 = 40
and Uggp = 0.0125. (d) Conditions in case (b) over a long period. Reprinted from
Ref. [17]. © 2014 The Physical Society of Japan.
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as the case without synaptic depression shown in Fig. 1(b). On the other hand,
M*(t) does not converge, but oscillates in spurious states.

The results shown in Figs. 1(b) and 1(d) suggest that synaptic depression
does not affect memory states, but rather mainly destabilizes spurious states and
induces oscillations in overlaps.

2.3.2 Autocorrelation functions and period of network dy-
namics

The results shown in the previous subsection suggest that synaptic depression
does not affect memory states but mainly destabilizes spurious states and induces
oscillations. In this subsection, we determine whether or not synaptic depression
destabilizes spurious states and induces oscillations. For that purpose, we calculate
the autocorrelation function R(k) of the network state s(¢). This function is a
measure of the dependence of s(t) on previous data and is defined as

1

0 =Ra—n

L—k

S [s(t) — 3" [s(t+ k) — 3]. (2.10)
t=1

Here, L is the number of steps in the network state s(¢). Because we can see
that R(k) is a type of correlation function between s(t) and k-delayed s(t + k),
k represents the time lag between data. The sample mean of s(t), 8, and the
normalization constant Ry are given by

S s(t), (2.11)

w>
Il

Ry = =3 [s(t)— 3" [s(t) - 5]. (2.12)

Figure 2.2 shows the dependence of the autocorrelation function R(k) on the
lag k. The dashed lines represent R(k) in a memory state, while the solid lines
represent R(k) in a spurious state. Note that M] has values of 1.0 and 0.2 in the
cases of a memory state and a spurious state, respectively.

Figure 2.2(a) shows the case without synaptic depression. In both the memory
state and the spurious state, R(k) rapidly decays to 0 with increasing k. This
means that s(t) is not affected by previous data; rather, its dynamics fluctuates
randomly because of the probabilistic update given by Eq. (2.1).

Figure 2.2(b) shows the case with synaptic depression, where 7 = 40.0 and
Usg = 0.0125. In the memory state, R(k) decays to 0 as in the case without
synaptic depression. On the other hand, in the spurious state, R(k) has a high
positive amplitude at £ = 108 and 215, meaning that s(t) oscillates with a period
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Figure 2.2: Autocorrelation functions, where the dashed lines correspond to mem-
ory states and the solid lines correspond to spurious states. (a) Case without
synaptic depression. (b) Case with synaptic depression, where 7 = 40 and
Usg = 0.0125. The orthogonal dotted lines indicate time lags of £ = 108 and
215. Reprinted from Ref. [17]. © 2014 The Physical Society of Japan.

of approximately 108 in terms of the time lag. From the results shown in Fig. 2,
we find that synaptic depression mainly destabilizes spurious states and induces
periodic oscillations.

Next, we investigate how the period depends on the strength of synaptic de-
pression. Figure 2.3 shows the dependence of the period on Ugg. Here, Ugg varies
from 0.05 to 0.50 at intervals of 0.05, while 7 is fixed at either 5.0, 10, or 15. Each
line in the graph represents the mean period obtained from five simulations, and
each error bar indicates three standard deviations.

We find that as Ugg increases, the period monotonically decreases. We also
see that when 7 is large, it barely affects the dependence of the period on Ugg.
Finally, we find that the period decreases as the strength of the synaptic depression
increases.

2.3.3 Effects on basin of attraction

It turns out that the success of memory retrieval depends on the initial overlap
Mj from Figs. 2.1(a) and 2.1(c). There exists a minimum initial overlap M,
such that the network succeeds in memory retrieval, and this minimum value is
called the critical overlap Mc. The region where M > M is called the basin of
attraction, since the network converges on the memory pattern. In this subsection,
we investigate the effects of synaptic depression on the basin of attraction. Figure
2.4 shows basins of attraction obtained from 12 simulations. Each cell represents
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Figure 2.3: Dependence of period on Ugg with 7 = 5.0,10, and 15. Each line
represents the mean period obtained from five simulations, and each error bar
denotes three standard deviations. Reprinted from Ref. [17]. (©) 2014 The Physical
Society of Japan.

the number of successful memory retrievals. In each trial run, « varies from 0.001
to 0.06 at intervals of 0.001, and M; varies from 0.01 to 1.0 at intervals of 0.01.
We define the condition that M!(t) is greater than or equal to 0.8 at ¢t = 50 as a
successful memory retrieval. The boundary between the white and black regions
corresponds to the critical overlap M.

Figure 2.4(a) shows the case without synaptic depression. It turns out that the
critical overlap M¢ increases with «. Furthermore, M- markedly increases to 1 at
approximately a = 0.06. This « is called the memory storage capacity [31, 32, 33].
When « is larger than the memory storage capacity, the network cannot retrieve
memory patterns even though it starts from a memory pattern. Figure 2.4(b)
shows the case with synaptic depression, where 7 = 40 and Uggp = 0.0125. As
in the previous case, we see that Mg increases with «, but in this case, M¢
markedly increases to 1 at approximately a = 0.04. This decrease in memory stor-
age capacity at finite temperature as a result of synaptic depression was revealed
previously [33]. Note that when « is less than 0.04, the dependence of M¢ on «
shows little difference between the cases with and without synaptic depression, as
seen by comparing Figs. 2.4(a) and 2.4(b). This means that when « is less than
0.04, synaptic depression barely affects the basin of attraction.
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Figure 2.4: Basins of attraction obtained over 12 simulations with 7" = 0.1 and
N = 5000. Each cell represents the number of successful memory retrievals. (a)
Case without synaptic depression. (b) Case with synaptic depression, where 7 = 40
and Usp = 0.0125. Reprinted from Ref. [17]. (© 2014 The Physical Society of
Japan.

2.3.4 Trajectories of network dynamics

We found that synaptic depression destabilizes stable spurious states and induces
periodic oscillations by calculating R(k) in Sect. 3.2. Next, we carry out prin-
cipal component analysis (PCA) to reveal the dimensionality of the subspace in
which the network state s(t) mainly oscillates. We can extract new axes along
which the variance in the projected space is maximized by applying PCA, which
is a widely used technique for dimensionality reduction. Here, the contribution
ratio of each principal component is defined as the ratio of the variance along
the principal component to the sum of variances of all principal components. We
can find the dimensionality of subspace in which the network mainly oscillates by
calculating the contribution ratio. To investigate the dynamical properties of the
oscillation induced by synaptic depression, we also project s(t) to the first and
second principal components.

We change the initial pattern g and the initial overlap M}, and then carry out
750 simulations, i.e., i varying from 1 to 150 at intervals of 1, and M}’ varying from
—0.2 to 0.2 at intervals of 0.1. We perform 15000-step simulations, and then count
out the first 10000 steps as the initial relaxation. Furthermore, in the case without
synaptic depression, the network state in two simulations converges on memory
patterns. Thus, we count out these data. We show the result of PCA on the data
set obtained from these simulations in Fig. 2.5. Figures 2.5(a) and 2.5(b) show
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Figure 2.5: Results obtained from PCA on 750 data with different initial con-
ditions, in the cases without (a, b) and with (c, d) synaptic depression, where
7 =40.0 and Ugg = 0.0125 in the latter case. (a, ¢) Typical trajectories in a space
spanned by the first and second principal components. (b, d) Contribution ratio
and cumulative contribution up to the 20th principal component. Gray bars and
open circles denote median of the contribution ratio and cumulative contribution,
respectively. Error bars represent the 5th-95th percentile range. Reprinted from
Ref. [17]. (© 2014 The Physical Society of Japan.
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the case without synaptic depression. Figure 2.5(a) shows network trajectories
on a plane spanned by the first and second principal components. We show the
six typical results from 748 trials. Bars and open circles in Fig. 2.5(b) represent
the median of the contribution ratio and cumulative contribution, respectively.
Error bars represent the 5th—-95th percentile range. We find that the networks
fluctuate randomly in a high-dimensional subspace, because almost all contribution
ratios are less than 0.05. Figures 2.5(c) and 2.5(d) show the case with synaptic
depression, where 7 = 40.0 and Ugg = 0.0125. Figure 2.5(c) shows the network
trajectories on the plane consisting of the first and second principal components.
We show the six typical results from 750 trials. Bars and open circles in Fig.
2.5(d) represent the median of the contribution ratio and cumulative contribution,
respectively. Error bars represent the 5th—-95th percentile range. We find that
the network in spurious states predominantly oscillates on the plane spanned by
the first and second principal components, because the contribution ratios of the
first and second principal components are higher than those of the other principal
components.

From the results shown in Fig. 2.5, we find that synaptic depression changes a
stable spurious state into a limit cycle in a low-dimensional subspace.

Next, to investigate the relationship among trajectories, we combine all net-
work state data s(t) obtained from 750 different initial conditions, and then carry
out PCA on the data. Figures 2.6(a) and 2.6(b) show the result obtained from
PCA in the case without synaptic depression. Figure 2.6(a) shows the distribution
of spurious states on the plane spanned by the first and second principal compo-
nents as a histogram. The distribution is shown as a gray scale image, with black
and white corresponding to the smallest and largest numbers of spurious states,
respectively. Figure 2.6(b) shows the contribution ratio and cumulative contribu-
tion. Bars denote the contribution ratio, and open circles denote the cumulative
contribution. We can see that the contribution ratio of the first principal compo-
nent is higher in this combined data case than in a separate data case. From these
results, spurious states in the case without synaptic depression are separated on
the plane spanned by the first and second principal components. This result is
similar to the behavior of the spin-glass state data of the Sherrington-Kirkpatrick
model obtained from PCA [34]. Figures 2.6(c) and 2.6(d) show the result obtained
from PCA in the case with synaptic depression, where 7 = 40.0 and Uggr = 0.0125.
Figure 2.6(c) shows the distribution of spurious states on the plane spanned by
the first and second principal components as a histogram. The distribution is
shown as a gray scale image, with black and white corresponding to the smallest
and largest numbers of spurious states, respectively. Figure 2.6(d) shows the con-
tribution ratio and cumulative contribution. Bars denote the contribution ratio,
and open circles denote the cumulative contribution. The contribution ratio is
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Figure 2.6: Result of PCA on combined data set consisting of 750 different initial
conditions, in the cases without (a, b) and with (¢, d) synaptic depression, where
7 =40.0 and Usp = 0.0125 in the latter case. (a, ¢) Histogram of plane spanned
by the first and second principal components. Brightness represents the number of
spurious states. (b, d) Gray bars and open circles correspond to the contribution
ratio and cumulative contribution, respectively. Reprinted from Ref. [17]. (© 2014
The Physical Society of Japan.
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higher up to the third principal component than other principal components. We
see that the network in spurious states oscillates in low-dimensional subspace, i.e.,
approximately three dimensions, in the case with synaptic depression.

2.3.5 Eigenvectors of synaptic weight matrix

From the above discussion, we see that the network in spurious states fluctuates
in high-dimensional subspace in the case without synaptic depression, whereas the
network oscillates in low-dimensional subspace in the case with synaptic depres-
sion. In the former case, the dynamics of memory recall in the associative memory
model was discussed qualitatively using eigenvectors of a synaptic weight matrix.
Kindo and Kakeya claimed that the linear transformation of a synaptic weight
matrix is important for analyzing dynamical properties [35]. Thus, in this subsec-
tion, we investigate the relationship between the subspace in which the oscillation
induced by synaptic depression occurs and the subspace spanned by eigenvectors
of the synaptic weight matrix.

We consider the synaptic weight matrix J whose (7, j) entry is the static weight
jij. The eigenvector v,, of J corresponds to the n-th largest eigenvalue A,. Here,
J has p positive eigenvalues and (N — p) zero eigenvalues. Considering the com-
ponent of J, we see that the subspace spanned by eigenvectors corresponding to
positive eigenvalues is composed of memory patterns, and the subspace spanned
by eigenvectors corresponding to zero eigenvalues is orthogonal to the subspace
spanned by memory patterns.

The network state s(t) is expressed by {v,} as

s(t) = an(t)v,, (2.13)

=1

a,(t) = vzs(t). (2.14)
The contribution ratio r,, of each v,, is defined as

o var(a, (t)]
" varfan(t)]

Figure 2.7 shows the contribution ratio r, and cumulative contribution up to n =
150, since J has 150 positive eigenvalues and 4850 zero eigenvalues in this study.
Bars and open circles denote the contribution ratio and cumulative contribution,
respectively. Figure 2.7(a) shows the case without synaptic depression, and Fig.
2.7(b) shows the case with synaptic depression, where 7 = 40.0 and Usg = 0.0125.
In the case without synaptic depression, we see that spurious states mainly exist in
the subspace orthogonal to memory patterns, since the cumulative contribution is
approximately 0.14 at n = 150. In the case with synaptic depression, however, we

(2.15)
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see that spurious states mainly exist in the subspace spanned by memory patterns,
since the cumulative contribution is approximately 0.57 at n = 150. From the
results shown in Fig. 2.7, we see that the oscillation of the network induced by
synaptic depression mainly occurs in the subspace spanned by memory patterns.
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Figure 2.7: Contribution ratio and cumulative contribution when the network
state is expressed by eigenvector v,, of the static weight matrix J. Bars and open
circles represent the contribution ratio and the cumulative contribution of v,, up
to n = 150, respectively. (a) Case without synaptic depression. (b) Case with
synaptic depression, when 7 = 40.0 and Ugp = 0.0125. Reprinted from Ref. [17].
(© 2014 The Physical Society of Japan.

2.3.6 Model selection

Here, we apply probabilistic principal component analysis [36]. The network states
are assumed to be generated from the following:

St:WZt+IJI+€t

Matrix W = (wy,...,wys) denotes basis of the M dimensional subspace, z;
denotes the latent variables, and g corresponds to the mean value of observations.
Noise term ¢, is assumed to be drawn from N (O, O'QIN>, and z; is assumed to be
drawn from N(0,I,;). Then, the log-likelihood of the parameters is determined
as

L% m W) =~ {(N@n) +mic| + T(C'S)} (210)

where C = oIy + WW T and S = cov[{s}].
In order to find the dimension M maximizing Eq. (2.16), 5 hold cross validation
is performed. Figure 2.8 shows mean of the log-likelihood. Solid line and dotted
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line correspond to the log-likelihood of test data and training data, respectively.
Marks denote the maximum of log-likelihood for the test data. Without synap-
tic depression, the log-likelihood takes its maximum at M = 1996 as shown in
Fig. 2.8(a). On the other hand, the log-likelihood takes it maximum at M = 144
in the case with synaptic depression as shown in Fig. 2.8(b). This result suggests
that synaptic depression reduce the dimension of subspace of spurious state.
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(a) The case without synaptic depression. (b) The case with synaptic depression.

Figure 2.8: Dependency of log-likelihood on dimension M.

Now, we discuss the similarity between the subspace selected from PPCA and
the subspace spanned by memory patterns.

We consider a matrix consisting of static synaptic weight vb x J = jij . An-
other matrix V', contains the first M eigenvectors of J in the descent order of
the eigenvalues. Note that, p eigenvectors are related to the memory patterns,
and other (N — p) eigenvectors are orthogonal to all the memory patterns. Matrix
V%WML denotes the projection from the subspace spanned by Wy, to the sub-
space spanned by V ;. Now, normalized similarity between the subspaces defined
as det (V}/[WML)UM Figure 2.9 shows the similarities. The similarity of one
thousand pair of subspace generated randomly is also shown. We can see that the
similarity between the PPCA subspace and the memory space is significantly high
with comparison to those of random subspaces.

2.3.7 Phase diagram

In this subsection, we investigate how the network trajectory depends on the
strength of synaptic depression. Figure 2.10(a) shows a phase diagram for this
dependence. The horizontal axis corresponds to Usg, and the vertical axis corre-
sponds to 7. Ugg varies from 0.05 to 0.5 at intervals of 0.05, and 7 varies from

25



CHAPTER 2. PCA ON ASSOCIATIVE MEMORY MODEL

03| ——
0.25 |
2
©
S o2
£
n
0.15 |
01+t e

random ppca vs eigenvector

Figure 2.9: Similarity between subspaces.

5.0 to 50 at intervals of 5.0. Each cell represents the network trajectory on the
plane spanned by the first and second principal components. The solid and dashed
lines correspond to v = 0.5 and 9.0, respectively, where v represents the strength
of synaptic depression in equilibrium and is defined as v = 7Ugp [29, 33]. The
trajectories have circular motion when ~ is more than 0.5 and less than or equal
to 9.0.

We now consider the overlap C(t,,,t,) between the network states s(t,,) and
s(t,), given by

Ctm,tn) =

! f 255(t) — 1] [25:(tn) — 1]. (2.17)

N
When the network state s(t,,) at step t,, completely matches the state s(t,) at
step t,, the overlap C(t,,,t,) takes a value of 1. When the network state s(t,,) is
orthogonal to s(t,), C(t,,t,) takes a value of 0. Lastly, C(t,,,t,) takes a value of
—1 when the state s(t,,) at step t,, is the reverse of the state s(t,) at step t,, i.e.,
when Vi € {1,2,...,N},2s;(tm) — 1 = —[2s;(t,) — 1].

Figures 2.10(b)-2.10(d) show C(t,,,t,) as heat maps representing the results
for different parameter combinations. Note that orthogonal elements take a value
of 1 since they denote C(t,,t,). Figure 2.10(b) shows the case with 7 = 5 and
Usg = 0.05, where no circular motion is observed. Because the values of C(t,,,t,)
are almost 1, the network converges. Figure 2.10(c) shows the case with 7 = 20
and Ugg = 0.1, where the circular motion is observed. In this case, periodic
behavior occurs. Finally, Fig. 2.10(d) shows the case with 7 = 50 and Ugg = 0.5,
where no circular motion is observed. Here, the overlaps C(t,,t,) take values of
approximately 0 except for orthogonal elements, meaning that the network moves
randomly.

26



CHAPTER 2. PCA ON ASSOCIATIVE MEMORY MODEL

10000y : : : : -
5000k [ - [~ |- =Y
QOO[=[g ] - |- | -] =3 gggo
40 OO[c%- - T- 1111 0.5
OOO ole, /' N N ) 9960t
L 3000000 - |- .
OOOO Ol= g'.: i 9940/
20000 OO0 e o,
10N\ O OOIOIOIOIOO|O] 9920
N 2 [9010000
01 02 Us%3 04 05 9920 9940 9960 9980 10000 -
(a) (b)
1 1
05 05
0 0
05 -05
9920 9940 9960 9980 10000 - 9920 9940 9960 9980 10000 -

(©) (d)

Figure 2.10: (a) Phase diagram for network dynamics in spurious states. (b-d)
Overlaps between network states, in the cases of (b) 7 = 5.0 and Ugg = 0.05, (c)
7 =20 and Usg = 0.1, and (d) 7 = 50 and Usg = 0.5. Reprinted from Ref. [17].
(© 2014 The Physical Society of Japan.
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Here, we summarize the observed results. First, spurious states in a region
where the synaptic depression is weak remain in equilibrium. Second, circular
motion begins when the synaptic depression becomes stronger. Third, the network
moves randomly in a region of very strong synaptic depression.

2.4 Discussion and Conclusion

In this chapter, we investigated how synaptic depression affects network behavior
in memory states and spurious states through the machine learning method. Since
both states are in equilibrium, there is little difference between their dynamics.
The associative memory model is defective as an information processing model
because of this indistinguishability.

We first investigated the dependence of overlaps between the memory pattern
and network state in steps, in the cases with and without synaptic depression.
As a result, we found that synaptic depression does not affect memory states
but destabilizes spurious states and induces periodic oscillations. The oscillation
period decreases as the degree of synaptic depression strengthens. These results
show that synaptic depression causes the difference in dynamics between memory
states and spurious states.

Note that, the overlaps can be calculated only when the memory patters are
given. Next, we attempted to analyze the network dynamics by using PCA, which
is a widely applied dimensionality reduction method. We found that synaptic
depression induces limit cycle like behavior in the spurious state with synaptic de-
pression. Furthermore, we found that the oscillation mainly occurs in the subspace
spanned by eigenvectors of a synaptic weight matrix. Through the PCA, we show
that the synaptic depression reduces the dimensionality of the network dynamics.
In other words, with the help of synaptic depression, the model might search in the
subspace it already knows, i.e. subspace spanned by the memory patterns, even
though it cannot retrieve the memory patterns.

While PCA can reveal the subspace in which data mainly lies, it does not
assume the dynamics in the data. In the next chapter, we will discuss about the
dynamics extracted from the data through a machine learning techniques.
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Chapter 3

Analyzing Neural Networks
through Dynamic Mode
Decomposition

The content of this chapter has been temporally unavailable for a future publica-
tion. It will be published before March 2022.

29






Chapter 4

Coherent Phonon Analysis by
Using Dynamic Mode
Decomposition

The content of this chapter has been temporally unavailable for a future publica-
tion. It will be published before March 2022.
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Chapter 5

Time-series Spectral
Deconvolution

In the previous chapters, we discussed about methods to extract latent dynami-
cal structure based on the sparse modeling frameworks. In this chapter, we will
study about a method using Bayesian framework. The framework is based on the
probabilistic modeling of the observed data. Hence, it is necessary to model its
generating and observing process. When one does not have sufficient prior knowl-
edge to make a model, it might be useful to apply rather dimensionality reduction
techniques discussed the previous chapters than the probabilistic methods.

5.1 Introduction

Revealing the properties of an object from observed data is important in natural
sciences. Spectral data are a form of observed data used in a wide range of fields.
In general, they have a multiple-peak structure. The properties of an object are
reflected in the center position, width, and height of each peak. The number of
peaks is also an important feature that describes the structure of the data. For
instance, the center of a peak corresponds to the binding energy of an object,
and the number of peaks corresponds to the number of energy levels in X-ray
photoelectron spectroscopy. Therefore, we can reveal the properties of an object by
estimating the parameters of peaks and the number of peaks from an observation.

Spectral deconvolution fits spectrum data with a sum of unimodal basis func-
tions, such as Gaussians [37]. On the basis of Bayesian inference, we can estimate
the parameters of peaks and their accuracy by applying a probabilistic formulation.
The posterior probability distribution is estimated in Bayesian inference. However,
the posterior distribution is difficult to calculate in the case of Bayesian spectral
deconvolution. Note that the model nature of Bayesian spectral deconvolution pre-

33



CHAPTER 5. TIME-SERIES SPECTRAL DECONVOLUTION

vents us from deriving an effective algorithm for computing the parameters [38]
by applying a variational Bayesian method. Thus, sampling methods such as the
Markov chain Monte Carlo (MCMC) method are generally applied to calculate
the posterior distribution in Bayesian spectral deconvolution. Nagata et al. pro-
posed a framework to efficiently estimate the parameters by applying a replica
exchange Monte Carlo method [39]. It has also been shown that the number of
basis functions can be estimated objectively from the observed data [40, 41].

In this chapter, we propose an extension of Bayesian spectral deconvolution to
time-series data [42, 43, 44, 45]. Time-series spectral data have conventionally been
analyzed in two steps [46, 47, 39]. First, spectral deconvolution is independently
carried out for each set of time-step data. Second, time-series analysis is applied to
the results. However, it is not easy to validate the accuracy of the whole estimation
in such multistep analysis, although we can validate the accuracy of each step
estimation. Thus, we propose an integrative framework to analyze time-series
spectral data by introducing a time-series structure into the ordinary probabilistic
formulation of spectral deconvolution and by using a replica exchange method.
In this paper, we consider a time-series structure called an autoregressive model
with the center positions of peaks [48, 49]. By applying our proposed method to
synthetic data, we show that we can estimate the parameters more accurately than
by the original Bayesian spectral deconvolution.

5.2 Stochastic Formulation

5.2.1 Time-series spectral decomposition

In this research, we propose a hybrid method to treat time-series spectral data as
shown in Fig. 5.1(a). Spectral data have multiple peaks. The center, height, and
width of each peak reflect the properties of the subject. Conventionally, spectral
decomposition [39] is independently applied to spectral data at each time to es-
timate parameters. In our research, assuming that there is dynamics behind the
spectral data, we propose a method to estimate the dynamical structure behind
the time-series spectral data.

In this research, we assume that time-series spectral data are generated with the
structure shown in Fig. 5.1(b). First, the parameters of the latent dynamics, W
and m, are generated. Second, the number of peaks K is given and is assumed not
to change with time. Third, the parameters of the peaks, 6, = {ay., trt, bt oy,
are generated at each time in accordance with the dynamics. Finally, spectral data
y; are observed. Bayes’ theorem allows us to invert the generation and observation
as described above. We apply the Bayesian inference and estimate the parameter
set © = {0;}1_,, and the latent dynamics parameters W and m from the observed
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Figure 5.1: Hierarchical structure used in this study. Latent dynamics generates
time series of parameters. Spectral data are observed in accordance with the
parameters. Reprinted from Ref. [18]. (©) 2016 The Physical Society of Japan.
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spectral data as shown in Fig. 5.1(a).

There have been some previous studies focusing on the movement of spectral
peak centers [46, 47]. For the simplest model of such observations, we consider a
situation in which the peak centers are time-varying but the peak amplitudes and
widths are constant in time. The peak centers ji;, are assumed to be generated
in accordance with the autoregressive model (AR model):

d
Pt = Z Wi e t—7 + Mg + €y (5.1)

T=1
Here, wy 1, - , w,q are coefficients, my, is constant, and ey, is a noise drawn from
N(0,0%z) [48]. The peak amplitudes a;, and standard deviations oy, are time-
invariant constants, that is, axy = -+ = arr = ap and o1 = - -+ = O = 0.
The parameters of the latent dynamics W = {wy,,} and m = {my} are inde-
pendently generated as follows:

p(W,m) = )p(m) (5:2)

p(W
= 1:[ pimy 1:[ 1:[ w;” . (53)

From Eq. (5.1), the conditional probability distribution of the k-th peak at time
t, tgs, given the last d steps of data, firs = (fgs—1, ", fes—a) ", the coefficients

of the AR model, wy = (wy 1 -+, wg.q), and the constant of the AR model, my, is
d
p(,uk,t \ ﬂk,tawk7mk) =N <Z Wi, bk t—r T mk70,243> . (5.4)
T=1

From the above, the conditional probability distribution of the time series of peak
centers, {fu.}, given the parameters of the AR model, W and m, is

K
p ({/‘Lk,t} ’ Wa m) = H Hp(/’bk,t ’ ﬂk,tawkamk> (55>
k=1t=1
1
x exp{ 52 Ear ({pe}; W m)] (5.6)
OAR
K T d 2
Ear({pe s W,om) = > > Nk,t_(z wk,T,uk,t—T-i-mk) ; (5.7)
k=1t=1 =1
where ppo = -+ = pri1—a = 0. We can see that the conditional probability

distribution of the parameter set © = (61,---,07) given W and m is described
as follows:

p(© | W,m) = par)p(ow)p({pne} | W,m). (5.8)
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Spectral data, y; = (yi, -+ ,yne)’, at each time t = 1,--- T, are observed
along with the parameters 6, = {ay, pr.s, ok}, as shown in Fig. 5.1(b):

Yie = f(Iz; 0r) + e, (5.9)
f(z:0,) = Zam T3 Ok, Mot (5.10)
1
(w4 0p, fleg) = exp [—2013 (@ — ,uk,t)g} . (5.11)

To quantify the difference between the observed data and the fitting curve at each
time, the mean squared error (MSE) is defined as

915 - QNZ’th :L‘z;et)‘Z’(t = 17"‘ ,T), (5.12)

and the MSE averaged over time is defined as
1 T
T

These definitions are derived when the noise e;; in Eq. (5.9) is drawn from A/(0, 02).
The conditional probability distribution of y;; given 6, is described as

1

p(Yit | 04) meXp[ 2% Q‘yt f(z t)|} (5.14)

The conditional probability distribution of y; given 6, is described as

pye[6) = TLp(y | 6) (5.15)
- 1:[ ! o2 exp {_222 Yir— f (i 91&)’2} (5.16)
x { f,i } : (5.17)

Here, the MSE E;(6,) is derived. When spectral data Y = (y1,--- ,yr) are inde-
pendently observed, the likelihood of the parameters © is described as

p(Y[©) = l:Ip(yt | ), (5.18)
x l_Ilexp {—]\gEt (Ht)} =exp [—]ZTE(G))} (5.19)
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Here, the time-averaged MSE E(O) is derived. Note that the parameter set ©
minimizing the MSE F(©) matches that maximizing the likelihood p(Y | ©).

From the above formulation, we can see that the joint probability distribution
of the observed spectral data, Y, the parameter set, ©, and the parameters of the
latent dynamics, W and m, is defined as

p(Y,0,W,m) = p(Y |O)p(©|W,m)p(W)p(m) (5.20)
x exp HTE <e>] PO | W m)p(W)p(m).  (5.21)

o

When spectral deconvolution [39] is independently applied T" times, the joint prob-
ability distribution is defined as p(Y,©) = [I, p(y:, 0:). Note that W and m do
not exist, that is, no dynamics is considered.

The posterior distribution of ©, W, and m given spectral data Y is derived
as follows by using Bayes’ theorem:

p(Y [O)p(©|W,m)p(W)p(m)
p(Y)

X exp [—]Z?E (@)] p(© | W, m)p(W)p(m). (5.23)

o

p(OW m|Y) = (5.22)

We estimate parameters ©, W, and m by calculating the posterior distribution.

5.2.2 Model selection of number of peaks and order of AR
model

The number K of Gaussian functions fitting the spectral data and the order d of
the AR model are important parameters and are called models. When the model
(K,d) changes, the dimensions of parameters {6}, W, and m change. (K,d)
must be objectively determined from the data.

The marginalized posterior of the model (K, d) given data Y is derived as
follows:

p(K,d|Y) = //'p(@,w,m,K,de)d@dem (5.24)
B p(Y 0, K)p(©, W, m, K,d)
— // e d0dWdm (5.25)
x p(K,d) // exp [—]ZQTE(G)] p(O|W,m, K, d)
xp(W | K, d)p(m | K)AOdW dm. (5.26)
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The integral in Eq. (5.26) corresponds to the normalization constant of the prob-
ability distribution in Eq. (5.23). The free energy is defined as the negative loga-
rithm of the normalization constant,

FK,d) = —log /// exp {—Z?E(@)] p(O|W, m, K, d)
<p(W | K. d)p(m | K)dOdW dm. (5.27)

When the prior distribution p(K, d) of the model is drawn from a uniform distri-
bution, the maximization of the marginalized posterior distribution matches the
minimization of the free energy. In our research, the model is selected by mini-
mizing the free energy.

5.2.3 Replica exchange Monte Carlo method

There are two difficulties in carrying out the estimation described above. One is
estimating the parameters ©, W, and m. Equation (5.22) is difficult to solve
analytically. It is also difficult to solve numerically because of its local minima.
The other is that the integration in Eq. (5.27) is analytically intractable.

In this research, we solve these two difficulties by using a replica exchange
Monte Carlo (REMC) method [50, 51, 39]. This method has two procedures, sam-
pling of the posterior distribution with an MCMC method, such as the Metropolis
algorithm, and exchange between different distributions called replicas.

We introduce the inverse temperature J; to the distribution,

NT
p(©,W;,m | Y,) o exp [—@02 E(@l)}

o

xp (O | Wi, my) p(W))p(my). (5.28)

Note that Eq. (5.28) matches the prior distribution with 5; = 0.0 and the posterior
distribution shown in Eq. (5.23) with 5, = 1.0. We prepare L inverse temperatures
and consider the following probability distributions,

L

p({@l}?{vvl}?{ml} ‘ Y> {Bl}) = Hp(@lvvvl?ml ’ Yvﬁl)' (5'29)

=1

Then, we attempt to sample the parameters from the above joint probability dis-
tribution.

First, we sample parameters drawn from the distribution in Eq. (5.28) by using
the Metropolis algorithm at each inverse temperature. The parameters at step k
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are denoted as @l(k), VVl(k), and ml(k). We choose ©; = @5’“)+A@, W, = VVl(k)+AW,
and m; = ml(k) + A,,. The acceptance ratio r is calculated as follows:
. p(élaﬁfhml | Y?/Bl)
r =min< 1, 0 0 0 .
p(®l ,VVZ , Ty |Y7ﬁl)

The parameters at step k 4+ 1 are chosen in accordance with the acceptance ratio
r.

(5.30)

Next, the parameters are exchanged between different inverse temperatures [,
and 3, after the Metropolis part. In the exchange part, the acceptance ratio is
calculated as follows:

re = min{l, exp [—]g (B, — Br,) AE} } , (5.31)

o

AE = E(©,)— E(0,). (5.32)

The REMC method can avoid the initial-value dependencies of sampling because
it allows parameters to be exchanged between different probability distributions.

It also enables us to efficiently calculate the free energy F/(K,d) in Eq. (5.27).
We consider the integral value f3,

fs=—log /// exp {—5 i\ZTE (@)] p(©,W,m | K,d)dOdWdm. (5.33)

Note that fs—; matches the free energy F(K,d),

19
fo=1 = /0 a";ﬁdﬁ (5.34)
1 1 NT BNT
- - /Odﬁ // dedwdm’ E(@)exp[— : E(@)}
xp(O© | W, m, K, d)p(W | K,d)p(m | K) (5.35)
- /1 d5<N2TE(@)> : (5.36)
0 %o P(©,W,m|Y,8)

where Z is a normalization constant given by

Z7 = M d@demeXp[—ﬂ (JTVZTE(@)}

o

xp(© | W, m,K,d)p(W | K,d)p(m | K). (5.37)

Equation (5.35) shows that the free energy F'(K, d) can be calculated by integrating
the expected value of the MSE E(©) in the distribution given by Eq. (5.28) with
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(a) Heat map of spectral data. (b) Spectral data at t = 1.

Figure 5.2: Synthetic data of time-series spectral data.

respect to the inverse temperature 8 from 0.0 to 1.0. The expected value of
E(©) in Eq. (5.28) is obtained from the REMC method, and thus, the free energy
F(K,d) can be numerically calculated by using quadrature algorithms with respect
to the inverse temperature. As described above, the REMC method estimates the
parameters and the selects model.

5.3 Results

In this section, we show the results of applying our proposed method to synthetic
data to verify its effectiveness.

5.3.1 Conditions of numerical experiment

We set the true model as (K, d) = (2,1). One hundred time series {yy .} of a peak
center are generated by the AR model shown in Eq. (5.1) with the parameters
(wy1,we1) = (—0.6,0.7) and (my, ms) = (2.0, —0.2), and o4p = 0.3.

Spectral data y; are generated from Eq. (5.9) at each time ¢. The parameters of
the Gaussians ¢y, are (a;,as) = (1.0,2.0) and (072, 052) = (1.5,1.0). The standard
deviation of the noise e;; is 0, = 0.1. The number of data is N = 100. The inputs
of the fitted function are varied in the range —7.0 < z; < 6.86 at regular intervals.
Synthetic data generated as described above is shown in Fig. 5.2. Figure 5.2(a)
shows the heat map of the data. Solid lines corresponds to the movement of the
peak centers generated by Eq. (5.1). Figure 5.2(b) shows the spectral data at
t=1.
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Figure 5.3: Estimation results of peak centers. Solid and dashed lines denote the
results obtained from the proposed and conventional methods, respectively. Marks
denote true peak centers. Reprinted from Ref. [18]. (©) 2016 The Physical Society
of Japan.

We applied the proposed method to the synthetic data and carried out param-
eter estimation and model selection. Here, we assumed a continuous uniform prior
on the parameters, that is, p(ay) € [0.00,2.962336], p(o}; ) € [0.187403, 18.74028],
and p(ur) € [~7.0,6.86]. Note that we sampled 0,2 instead of oy itself, the
maximum of a; corresponds to max({y;}), and the minimum of o, corresponds
to {[max({z;}) — min({z;})]/6} 2. We assumed a continuous uniform prior on
the AR coefficient {wy .} such that the time series of the peak center {ju:} re-
mains stationary, i.e., when d = 1, |wy1| < 1 and when d = 2, wys + w1 < 1,
wg2 — w1 < 1, and |wg2| < 1. We assumed a discrete uniform prior on the
models, i.e., K =1,2,3 and d = 0,1,2. The number L of inverse temperatures is
L = 360, and each inverse temperature 3 is set as #; = 0.0 and ; = 1.045/360
(I =2,---,360). Note that O350 = 1.0. It is known that the average exchange ratio
in a low-temperature limit becomes constant when the inverse temperatures are a
geometric progression [52]. We discarded the first 30000 Monte Carlo steps (MCS)
as the burn-in period and used the other 50000 MCS to estimate the parameters
and select the model.

5.3.2 Results of numerical experiment

First, we estimated parameters with (K, d) = (2,1). Figure 5.3 shows the estima-
tion results of the peak centers {fix;}. We compared the proposed method with
the conventional method, in which we estimated the peak centers independently.
Marks denote true values of {j+}. Solid and dashed lines denote values estimated
by the proposed and conventional methods, respectively. We can estimate the true
time series of {4} by applying the proposed method. To quantify the difference
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Proposed method | Conventional method
k=1 0.001036 0.763886
k=2 0.000297 0.034816

Table 5.1: Mean squared error between true time series of peak centers {ju}
and estimated time series {fi;+}. Reprinted from Ref. [18]. (© 2016 The Physical
Society of Japan.

between the true and estimated peak centers, we define the mean squared error,

1 T
E,=— (i — 2, 5.38
k QT;’MM Mk,t| ( )

Table 5.1 shows Ej obtained from the proposed and conventional methods. From
Table 5.1, we can see that the mean squared errors obtained from the proposed
method are less than those obtained from the conventional method.

Figure 5.4 shows the marginal posteriors of {a;} and {0, ?}. The horizontal
axis corresponds to the value of each parameter and the vertical axis corresponds
to the logarithm of the probability. In each figure, solid, bold dashed, and dashed
lines denote marginal posterior distributions, true values, and maximum a pos-
teriori (MAP) estimators, respectively. We can see that each marginal posterior
distribution has a sharp peak around a true value and that the MAP estimator
also matches the true value. From the above results, the proposed method can
accurately estimate the parameters of the amplitude and width of a Gaussian.

Figure 5.5 shows the marginal posteriors of {wy, .} and {m;}. The horizontal
axis corresponds to the value of each parameter and the vertical axis corresponds
to the logarithm of the probability. In each figure, solid, bold dashed, and dashed
lines denote marginal posterior distributions, true values, and MAP estimators,
respectively. Figures 5.5(a) and 5.5(b) show the results for m; and my. We can
see that each marginal posterior distribution has a sharp peak around a true value
and that the MAP estimator also matches the true value. The estimation accuracy
of {my} is less than that of {a;} and {0} since the marginal posterior of {my} is
broader than that of {a)} and {o}}. Figures 5.5(c) and 5.5(d) show the results for
wyy and ws ;. We can see that the sampled data are around the true value since
the posterior distribution is narrower than the prior distribution.

Next, we select model (K, d) from the data Y on the basis of Bayesian inference.
Table 5.2 shows the values of the free energy F'(K, d). We used the results obtained
from the REMC method and numerically integrated Eq. (5.35). Here, the model
candidates are the combinations of K = 1,2,3 and d = 0,1,2. Since model
(K,d) = (2,1) takes the minimum value of the free energy, we can select the
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Figure 5.4: Results of parameter estimation. The horizontal axis denotes the
value of each variable and the vertical axis denotes the logarithm of the poste-
rior distribution. Solid, bold dashed, and dashed lines denote marginal posterior
distributions, true values, and maximum a posteriori (MAP) estimators, respec-
tively. (a)(b) Peak height of each Gaussian. (c)(d) Peak width of each Gaussian.
Reprinted from Ref. [18]. (© 2016 The Physical Society of Japan.
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Figure 5.5: Results of parameter estimation. The horizontal axis denotes the
value of each variable and the vertical axis denotes the logarithm of the posterior
distribution. Solid, bold dashed, and dashed lines denote marginal posterior dis-
tributions, true values, and maximum a posteriori (MAP) estimators, respectively.
(a)(b) Constant term of AR model. (c)(d) Coefficient of AR model. Reprinted
from Ref. [18]. © 2016 The Physical Society of Japan.
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d=0 d=1 d=2
18628.87973 | 18580.81851 | 18582.3365
5555.286151 | 5472.375017 | 5476.252856
5558.356469 | 5476.065437 | 5479.551809

=R
wl—),_.

Table 5.2: Dependencies of free energy F(K,d) on the number of peaks K and the
order of the AR model d. Reprinted from Ref. [18]. (©) 2016 The Physical Society
of Japan.

d=0|d=1|d=2
0.0% | 0.0% | 0.0%
0.0% | 95.6% | 2.0%
0.0% | 2.4% | 0.0%

=R
CQ[!DH

Table 5.3: Dependencies of posterior distribution p(K,d | Y) on the number of
peaks K and the order of the AR model d. Reprinted from Ref. [18]. (© 2016 The
Physical Society of Japan.

true model correctly through the proposed method. Table 5.3 shows the posterior
distribution p(K,d | Y') calculated on the basis of the free energy. The model is
correctly selected.

From the above results, the proposed method can estimate the parameters of
the Gaussian and latent dynamics and can select a suitable model.

5.4 Conclusion and Discussion

In this chapter, we proposed a method to analyze time-series spectral data through
Bayesian inference. In order to apply the probabilistic method to the observed
data, it is necessary to model the generating and observation process based on the
prior knowledge. Thus, the framework differs from the dimensionality reduction
techniques discussed in the previous chapters, and it is other useful method to
analyze the latent dynamical structures.

In the broad range of sciences, it is natural to fit the spectral data by the
mixture of basis functions, e.g. Gaussian. Therefore, the estimation problem from
the observed data is reduced to the fitting problem. When one consider the obser-
vation noise is draw from white Gaussian noise, we can formulate the observation
process as a probabilistic model.

Although the previous study proposed the Bayesian estimation method to the
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spectral data, the time-series structure were not taken into account. In this chap-
ter, we introduced the dynamical structure derived from the AR process to the
generating process of the data, and then, proposed the estimation method for the
time-series spectral data.

By using synthetic data, the efficacy of the proposed method was validated.
The REMC method was used in order to derive the posterior distribution of the
parameters and calculate the free energy to select the model. The proposed method
accurately estimated the parameters of the basis functions and the AR process.
Moreover, the number of peaks fitting spectral data and the order of the AR model
were objectively selected by minimizing the free energy.

In this study, we assumed that only the peak centers have latent dynamics and
that other parameters are constant. One possible and important extension of our
method is to introduce latent dynamics into other parameters, such as the peak
width and peak height.

We suggest several future works. First, we need to introduce a suitable time-
series structure into the probabilistic formulation for the time-series data of an
object. For instance, Mazet et al. introduced a Markov random field model into
the peak-center time series as a prior distribution [53]. We can also introduce a
time-series structure into the heights or widths of the peaks. Second, the compu-
tational cost of the REMC method is high when the number of parameters to be
estimated is large. Thus, developing a method with a lower computational cost
is another future work. Finally, we need to estimate the levels of AR noise and
observation noise. We consider that the estimation can be performed through a
hyperparameter estimation framework [54, 55].

47






Chapter 6

Discussion and Conclusion

In recent years, we have come to be faced with high-dimensional big data. Since
the high dimensionality prevents us from understanding the nature of the object,
it is important to extract latent (low-dimensional) structure. This is also the case
for both static and dynamic data. With comparison to the static data, dynamic
data shows the time-correlation among them. This thesis was aimed at extracting
the latent dynamics from time-series data, and at helping us to understand the
subject.

The associative memory model was studied in Chapters 2 and 3. The model
considered the networks consisting of neurons taking the firing or resting state.
Memory patterns were corresponded to the firing patterns of the networks and were
stored in the network as the strength of connection between the neurons. Recent
studies have revealed that the synaptic strength changes in the short period of time
according to the presynaptic neuron firing ratio. The steady state of the model
with synaptic depression has been analyzed by applying the statistical mechanical
method. However, the dynamics is known to be hard to analyze theoretically.

Chapter 2 showed the result of PCA study on the associative memory model
with synaptic depression. It was revealed that synaptic depression induced limit
cycle attractor in the spurious state which corresponded to the non-retrieval state.
Without synaptic depression, the memory and spurious states were indistinguish-
able since they were both steady state. Formation of the limit cycle only in the
spurious state suggested that synaptic depression separate the dynamics of mem-
ory state and spurious state from the point of view of information processing.

Dynamic Mode Decomposition (DMD) was applied to the associative memory
model in Chapter 3, as the method explicitly took time structure into account.
DMD was originally developed in the field of the fluid mechanics. We could de-
compose the data into the sum of spatio-temporal modes by utilizing DMD. The
DMD eigenvalues and the DMD modes were discussed in the chapter. The eigenval-
ues expressed the time evolution of the mode, and The DMD modes corresponded
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the amplitude and the phase of each neurons for each modes. First, we showed
that DMD could extract the groups in which the neurons act identically. This
result matched the theoretical aspects. Second, the structure of the eigenvalues
was found to vary over the memory state, spurious state and the oscillation. This
suggested that the DMD was efficient tool to analyze the neural network dynamics.
Finally, it was shown that fire patterns were propagated from the neuron to the
near neurons when the oscillations occurred.

These result gave us an idea that DMD could be used in the real data which
showed oscillating behavior and whose phase information was important to re-
veal the nature. One suitable data was coherent phonon (CP) signal. The lattice
vibration could be induced by ultrashort laser pulse in a substance. Oscillatory
changes of the optical constant were observed by using a delayed probe pulse.
The CP signal consisted of the finite number of damping oscillations with normal
mode frequencies. Initial phases of the damping oscillations were thought to be
effective to reveal a dynamics of photoinduced structural phase transition. The
CP signal was conventionally analyzed through the Fourier transformation or the
Wavelet transformation. These method expanded the signal with quasi-continuous
basis in the phase space, such as trigonometric functions and wavelet functions.
Hence, the uncertainty width appeared. Moreover, real data contained the exper-
imental artifact noise and fast decaying component near the time-origin. These
components deformed the Fourier spectral. Therefore, the estimation of the initial
phase became difficult. With comparison to that, we showed that DMD could
decompose the signal into a few damping oscillation modes, fast decaying mode
and undulation component corresponding to the artificial noise.

Chapters 2 to 4 studied the extraction of latent dynamics based on the dimen-
sionality reduction method. Now, Chapter 5 showed the probabilistic inference
based method. One of the advantage of the Bayesian inference was that we could
explicitly model the generating and observation process. Thus, the method was
vary useful for the measurement sciences. Spectral data was observed over wide
range of scientific fields. The width, height and position of the peak were implicitly
linked the nature of the object.

Bayesian spectral deconvolution utilized the probabilistic inference framework,
it could estimate the parameters with accuracy, and it could determine the num-
ber of the basis functions. We expanded the method for the time-series spectral
data. The movement of the peak centers were focused on this study. Introducing
dynamical structure to the method increased the complexity of the model selec-
tion. We also proposed the model selection based on the previous studies. For the
synthetic data, the proposed method correctly estimated the parameters and the
model.

This thesis focused on the extraction of latent dynamical structure from the
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time-series data. We adopted three types of dynamics. First, the associative
memory model was picked up as the high-dimensional data, and was analyzed by
using the dimensionality reduction methods. Second, CP signals was analyzed in
order to tackle the real data, namely, containing the background noise. Finally, as
the example of the nonlinear observation, time-series spectral decomposition was
proposed.

We think that it is important to refer the applicable range of our study. The
equilibrium state and/or the relaxation process are our main issues. Thus, through
the whole, we mainly focused on the autoregressive process. Even though it con-
tains the stationary process and random walks, there are other dynamics. One
possible and important future work is extension to the transient dynamics among
the stationary process. For the nonlinear dynamics, the transient dynamics among
the attractors is not uncommon phenomena. Thus, the extension is challenging
and useful future task.
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Appendix A

Validation for Time-Series
Spectral Deconvolution

In Chapter 5, we compare the proposed method and the conventional method for
Bayesian spectral deconvolution. As the result shows, the peak center estimated
by the conventional method has some irregular values.

In this appendix, we remove those values by hand, and then calculate the
mean squared error again. We adopt the criteria pu; < 0 for the peak 1 in Fig. 5.3.
Table A.1 shows the mean squared error for the peak 1. Though the MSE value
decrease significantly by removing the irregular value, it is still larger than the
MSE of proposed method. Here, we can see that the proposed method is effective
to analyze time-series spectral data.

(Proposed method) | Conventional method
With irregular value (0.001036) 0.763886
Without irregular value (0.001036) 0.029022

Table A.1: Mean square error between the estimated and true value of peak center.
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