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Abstract

In security proofs of cryptographic schemes, various kinds of assumptions have been

used. Among those assumptions, the hardness of the factoring problem, called the

factoring assumption, is one of the most reliable assumptions. In this dissertation,

we study constructions of factoring-based cryptographic schemes. First we study a

cryptographic primitive called a self-bilinear map. We define a relaxed version of

a self-bilinear map, which we call a self-bilinear maps with auxiliary information

(AI-SBM). We construct an AI-SBM based on the factoring assumption and the

existence of indistinguishability obfuscation (iO). We also show that AI-SBM can

be used for constructing cryptographic schemes including multiparty key exchange,

broadcast encryption, attribute-based encryption and homomorphic signatures. As a

side result, we construct a somewhat homomorphic encryption for NC1 circuits based

on the Φ-hiding assumption and the existence of iO. Second we study a cryptographic

primitive called lossy trapdoor function (LTDF). We define a relaxed version of an

LTDF which we call an adversary-dependent lossy trapdoor functions (ad-LTDF).

Then we show that in many applications of LTDFs, we can replace LTDFs with

ad-LTDFs. Moreover, we give a construction of ad-LTDFs based on the factoring

assumption w.r.t. semi-smooth RSA subgroup moduli (SS moduli), which is a special

type of RSA moduli introduced by Groth. As a result, we almost automatically obtain

new constructions of a collision resistant hash function, CPA secure PKE scheme

and DPKE scheme based on the same assumption. Especially, our DPKE scheme

is the first scheme that satisfies the security notion called the PRIV security for

block sources proposed by Boldyreva et al. solely based on the factoring assumption.

Besides direct applications of ad-LTDFs, we construct a CCA secure PKE scheme

based on the factoring assumption w.r.t. SS moduli whose ciphertext overhead is the

shortest among schemes based on the same assumption.
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Chapter 1

Introduction

1.1 Background

Cryptography is indispensable to secure information transmissions. While the history

of cryptography dates back to more than hundreds years ago, the concept of public

key encryption (PKE), proposed by Diffie and Hellman [DH76] in 1976, has brought

about a revolution in cryptography. In “classical” cryptography before that, it is

assumed that a sender and a receiver share a common key, which is used both for

encryption and decryption. On the other hand, in a PKE scheme, there are two

types of keys called an encryption key and a decryption key. An important feature

of PKE is that the security is ensured even if an encryption key is made public.

By this feature, anyone can encrypt a massage to generate a ciphertext without any

secret information, while only a party who knows a decryption key can decrypt the

ciphertext to recover the message. This enable us to securely communicate with

many and unspecified parties on the Internet. Moreover, it turns out that the idea

of PKE can be used for constructing many other cryptographic primitives such as

digital signatures, identification, commitments, etc.

Security proof and hardness assumptions. For ensuring security of cryptographic

schemes, a commonly used approach is to give security proofs for those schemes. That

is, we prove that breaking the scheme is as hard as solving a certain mathematical

problem that is known to be hard to solve. As a result, we ensure the security of the

scheme under the assumption that the underlying mathematical problem is really

hard to solve. This approach gives us a strong evidence of security because the

security is proven in a mathematical way as long as the underlying assumption is

true. On the other hand, if the underlying assumption is false (i.e., the underlying

mathematical problem is easy to solve), the security of the scheme is no longer
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ensured. Therefore it is important to reduce the security of a cryptographic scheme

to a reliable assumption.

Nowadays, various kinds of assumptions are used for security proofs including the

factoring [RSA78, Rab79], discrete-logarithm [DH76], paring-based [Jou00, SOK01,

BF01], lattice-based [Ajt96, Reg05] assumptions etc. Among them, the factoring

assumption, which claims the hardness of factorizing large composite number, is one

of the most reliable assumptions because no efficient algorithm to solve the integer

factoring problem is known so far though intensive researches on that topic have been

done over several decades [Pol74, Pol75, Len87, CP05]. Therefore if the security of

a cryptographic scheme is proven under the factoring assumption, then we obtain a

strong evidence on the security of the scheme. Thus in this dissertation, we study

constructions of factoring-based cryptographic schemes.

Here, we remark the definition of the term “factoring-based” used in this disser-

tation. When we say “factoring-based scheme”, we do not always mean that the

security of the scheme is reduced to the factoring assumption, but we mean the

scheme is reduced to any assumption which is related to the factoring assumption.

These “factoring-related assumptions” include the RSA [RSA78], strong RSA [BP97],

quadratic residuosity (QR) [GM82], decision composite residuosity(DCR) [Pai99], Φ-

hiding [CMS99] assumptions etc. Though there is no known algorithm to break these

assumptions without breaking the factoring assumption, there is no rigorous reduction

from any of these assumptions to the factoring assumption. Therefore we distinguish

factoring-based constructions and those reduced to the factoring assumption.

1.2 Cryptographic primitives

Here, we review current status of various cryptographic primitives, mainly focusing

on factoring-based constructions. We note that since the theme of this dissertation is

factoring-based cryptography, we omit some important results that is not related to

factoring.

Public key encryption. The first PKE scheme was proposed by Rivest, Shamir and

Adleman in 1978 [RSA78], which is called the RSA scheme. The description of the

RSA scheme is as follows. A public key consists of a product N = PQ of two primes

P and Q and a public exponent e ∈ Z. A secret key is a secret exponent d, such

that ed ≡ 1 mod (P − 1)(Q − 1). For encrypting a message M ∈ ZN , we compute

C =Me mod N and output C as a ciphertext. The decryption is done as M = Cd.

The correctness of the scheme follows from the fact that Med = M holds for any
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M ∈ ZN , which can be seen by the Fermat’s little theorem. The security is based

on the RSA assumption, which claims that any probabilistic polynomial time (PPT)

algorithm cannot computeM with non-negligible probability given N , e and C =Me.

Though the RSA scheme was a significant breakthrough, there are still two problems

regarding to the security. The first one is that since the RSA assumption is not reduced

to the factoring assumption so far, the security of the scheme cannot be reduced to

the factoring assumption. Hopefully, we want to obtain a PKE scheme whose security

can be reduced to the factoring assumption. The second one is that though any PPT

adversary cannot compute a message M from a ciphertext C, it may be possible that

C reveals a partial information of M . Hopefully we want to ensure that C does not

leak any information of M .

The first problem is solved by Rabin [Rab79] in 1979, who proposed the first PKE

scheme whose security can be reduced to the factoring assumption. The Rabin scheme

is as follows. A public key is N = PQ as in the RSA scheme, and the secret key is

P and Q. The encryption of a message M is done as C = M2 mod N to generate

a ciphertext C, and decryption is done by finding M that satisfies C = M2 mod N
*1. The scheme can be seen as a variant of the RSA scheme for e = 2, but what

is important is that the security of the Rabin scheme is rigorously reduced to the

factoring assumption.

The second problem is solved by Goldwasser and Mical [GM82] in 1982. They

formalize the notion of semantic security for PKE, which means that any information

of message is not leaked from a ciphertext and a public key. Then they construct a

PKE scheme that satisfies the semantic security under the QR assumption.

Blum and Goldwasser [BG84] proposed the first PKE scheme that solves the these

two problems simultaneously: The semantic security of the scheme can be reduced to

the factoring assumption.

All of the above works only consider the security against chosen plaintext attacks

(CPA) where an adversary only observes public keys and ciphertexts. On the other

hand, there is a stronger security notion called the chosen ciphertext attack (CCA)

security where an adversary in addition to observing public keys and ciphertexts

accesses to a decryption oracle that returns decryption of an arbitrary ciphertext ex-

cept the “target ciphertext” that adversary tries to break. Though the CCA security

had been considered only of theoretical interest for a long time, in 1998, Bleichen-

bacher [Ble98] showed that a (partial) chosen ciphertext attack is possible in the real

*1 In fact, there are 4 possible messages M that satisfies M2 = C, therefore additional two bits

should be included in a ciphertext to specify a message.
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world by demonstrating an attack against PKCS #1 which was a widely used PKE

scheme in the real. Therefore nowadays, the CCA security is considered as a desir-

able security of a PKE scheme. Naor and Yung [NY89] and Dolev, Dwork and Naor

[DDN91] proposed a generic conversion from a PKE scheme with the CPA security to

a one with the CCA security by using non-interactive zero-knowledge proof systems

(NIZKs), but their schemes are too inefficient and far from practical. Fujisaki and

Okamoto [FO99] proposed a practical conversion, but their security analysis relies

on the random oracle model, in which a hash function is modeled as a completely

random function. In 2009, Hofheinz and Kiltz [HK09b] proposed the first practical

PKE scheme whose CCA security can be reduced to the factoring assumption in the

standard model. Some variants of the Hofheinz-Kiltz scheme have been proposed

[MLLJ11, LLML11, LLML12, LLL13, YYN+14].

Broadcast encryption. Broadcast encryption (BE) [FN93] is a variant of PKE where

a sender can arbitrary decide a set of receivers, and only designated receivers can

decrypt the ciphertext to obtain a message. Since there is a trivial construction of

a BE scheme whose ciphertext size is proportional to the number of receivers, BE

is meaningful only if a ciphertext size is sublinear to the number of receivers. In

2000, Naor and Pinkas [NP00] proposed a revocation scheme, which can be seen as

a BE scheme whose ciphertext size is proportional to the number of revoked users.

That is, when encrypting a message to n − t receivers out of n potential receivers,

the ciphertext size of the scheme is O(t) instead of O(n). Wee [Wee11] constructed a

factoring-based variant of the Naor-Pinkas scheme. Though these schemes are efficient

when the receiver set is large, when that is small, namely t ≈ n, the ciphertext size

is almost the same as that of the trivial construction. Boneh, Gentry and Waters

[BGW05] constructed a BE scheme whose ciphertext size is O(
√
n) regardless of

the number of revoked users based on a pairing, and Boneh and Silverberg [BS02]

(instantiated by [GGH13a]) proposed a BE scheme whose ciphertext is O(1) based on

a multilinear map. A factoring-based BE scheme with the similar property has been

unknown so far.

Identity-based encryption. Identity-based encryption (IBE) [Sha84] is a variant of

PKE where an arbitrary string can be used as a public key. Though the concept

of IBE was proposed in 1984, the first constructions were proposed in 2000 and 2001

by Sakai, Ohgishi and Kasahara [SOK00] and Boneh and Franklin [BF01] indepen-

dently. Their schemes are based on a pairing, and proven secure in the random oracle

model. Boneh and Boyen [BB04] proposed an IBE scheme proven selectively secure in

the standard model, and Waters [Wat05] proposed an IBE scheme proven adaptively
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secure in the standard model.

As a scheme related to the factoring problem, Cocks [Coc01] proposed an IBE

scheme which is proven secure under the QR assumption in the random oracle model.

Boneh, Gentry and Hamburg [BGH07] proposed an efficient variant of the above

scheme, which is also proven secure under the QR assumption in the random oracle

model. We note that there is no known IBE scheme which is proven secure under

a factoring related assumption in the standard model, or proven secure under the

factoring assumption (even in the random oracle model).

Attribute-based encryption. Attribute-based encryption (ABE) is an extension of

PKE which enable us an arbitrary access control depending on attributes assigned

to each receiver. The concept of ABE was proposed by Sahai and Waters [SW05],

and there are many constructions of an ABE scheme based on bilinear pairings

[BSW07, GPSW06]. Garg et al. [GGH+13c] constructed the first ABE scheme

for general circuits based on multilinear maps. Boneh et al. [BGG+14] proposed

a variant of the scheme with a compact ciphertext. Gorbunov et al. [GVW13]

constructed an ABE scheme for general circuits based on the standard learning with

errors (LWE) assumption. There is no known factoring-based construction of an

ABE scheme.

Functional encryption. Functional encryption is an extension of ABE where a secret

key skf is associated with a function f , and an encryption of a messagem is decrypted

to f(x) by the secret key skf . The concept of FE is proposed by Boneh, Sahai and

Waters [BSW11]. Garg, [GGH+13b] constructed the first (selectively secure) FE

scheme for all circuits based on an indistinguishability obfuscation. Waters [Wat15]

and Ananth et al. [ABSV15] proposed fully secure FE schemes for all circuits. As an

FE scheme for functions of more restricted class, Abdalla et al. [ABCP15] constructed

selectively FE schemes for innner product based on a PKE scheme with a special

structure, which can be constructed based on various kind of assumptions including

DDH and LWE assumptions. Agrawal, Libert and Stehlé [ALS16] constructed fully

secure FE schemes for inner products based on the DDH, LWE and DCR assumptions.

There is no known factoring-based construction of an FE scheme for general circuits,

or an FE scheme for inner products whose security.can be reduced to the factoring

assumption.

Homomorphic encryption. Homomorphic encryption is PKE with the homomorphic

property such that computation over encrypted messages can be done publicly. In

fact, the first PKE, the RSA encryption, is already multiplicative homomorphic. That
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is, given a ciphertexts C1 =Me
1 and C2 =Me

2 for messages M1 and M2 respectively,

we can compute a new ciphertext C1 · C2 = (M1 ·M2)
e, which corresponds to the

message M1 ·M2. The PKE scheme proposed by Goldwasser and Micali [GM82] is

additively homomorphic over a message space Z2, and there has been proposed some

additively homomorphic encryption scheme whose message space is larger based on

factoring-related assumption [Cla94, NS98, Pai99, Gro05, JL13]. However, there is

no known additively homomorphic encryption scheme which can be reduced to the

factoring assumption.

In 2009, Gentry [Gen09] proposed the first fully homomorphic encryption (FHE)

scheme based on an ideal lattice in which arbitrary computation can be done over

encrypted messages. Thereafter, many FHE schemes have been proposed based on

lattice-based [BV11, BGV12, Bra12, GSW13, CGGI16] or integer-based assumptions

[vDGHV10, CMNT11, CNT12, CCK+13, CLT14]. On the other hand, there is still

no known FHE scheme based on a standard factoring-related assumption.

Deterministic public key encryption. Deterministic public key encryption (DPKE) is

PKE whose encryption algorithm is deterministic. Though a DPKE scheme cannot

satisfy the semantic security, Bellare et al. [BBO07] defined the PRIV security as the

best possible security of a DPKE scheme. They constructed a DPKE scheme that

satisfies the PRIV security in the random oracle model. Boldyreva et al. [BFO08]

weakened the PRIV security to define the security notion which they call the PRIV

security for block-sources, and constructed DPKE schemes with this security in the

standard model based on lossy trapdoor functions (LTDFs). Bellare et al. [BFOR08]

constructed DPKE scheme with a further weaker security notion (where messages

are uniformly random) can be constructed from any one-way trapdoor permutation.

There is no known construction of a DPKE scheme that can be proven to satisfy the

PRIV security for block sources under the factoring assumption.

Non-interactive key exchange. Non-interactive key exchange (NIKE) is a crypto-

graphic protocol where many parties share a common key without any interaction

except publishing each user’s public key. Though Diffie and Hellman [DH76]

proposed the first 2-party NIKE scheme in 1976, it was not until 2013 that a formal

definition and security models were given by [FHKP13]. In [FHKP13], they proposed

a NIKE schemes that satisfies the strongest security definition they define under

a pairing-based assumption in the standard model, or the factoring assumption in

the random oracle model. There is no known construction of 2-party NIKE scheme

that satisfies their security requirement under the factoring (or a factoring-related)

assumption in the standard model.
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For the case of more than 2 parties, Joux [Jou00] proposed a 3-party NIKE scheme

based on a pairing, and Boneh and Silverberg [BS02] (instantiated by [GGH13a])

proposed a multi-party NIKE scheme based on a multilinear map. There is no known

NIKE scheme for more than 2 parties based on a factoring-related assumption.

Digital signatures. A digital signature is a digital analogue of a handwrite signature.

The concept of digital signatures was proposed by Diffie and Hellman [DH76], and the

first digital signature scheme was proposed by Rivest, Shamir and Adleman [RSA78]

at the same time as the first PKE scheme was proposed. Actually, their signature

scheme uses the same mechanism as the RSA encryption: The verification key consists

of a multiple N = PQ of two primes P and Q and a public exponent e, and a signing

key is a secret exponent d such that ed ≡ 1 mod (P − 1)(Q− 1). A signature σ for a

message M is generated as σ :=Md mod N , and a signature is verified by checking

whether σe = M mod N holds. Intuitively, the security of the scheme follows from

the assumption that it is hard to find a e-th root modulo N . However, there is a

vulnerability in their scheme that even without a signing key, one can first generate a

signature σ and then generate a message M := σe mod N so that (M,σ) is accepted

by the verification algorithm.

Goldwasser, Micali and Rivest [GMR88] gave a strong security definition called ex-

istential unforgeability against chosen message attack (EUF-CMA). Rompel [Rom90]

constructed EUF-CMA secure digital signatures solely based on a one-way function.

However, their construction is very complicated and not practical. As a more direct

and efficient construction of digital signatures based on factoring-related assump-

tions, There have been proposed some EUF-CMA secure digital signatures based

on the strong RSA assumption, [GHR99, CS00, Fis03, HK08]. Hohenberger and

Waters [HW09] constructed EUF-CMA secure digital signatures based on the RSA

assumption for the first time. Some variants of the scheme have been proposed

[HJK11, YHK12, BHJ+13].

Homomorphic signatures Homomorphic signatures are digital signatures with a ho-

momorphic property that anyone can publicly evaluate a function on signatures to

generate a new signature for the function value on original messages. Gennaro et al.

[GKKR10] constructed a linearly homomorphic signature scheme based on the RSA

assumption. Boneh and Freeman [BF11] were the first to propose homomorphic sig-

natures that can handle a wider class of functions than linear functions. Their scheme

can handle arbitrary polynomial and security is proven in the random oracle based

on the hardness of the short integer solution (SIS) problem. Catalano et al. [CFW14]

proposed such a scheme in the standard model based on a multilinear map. Gor-
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bunov et al. [GVW15] constructed a (leveled) fully homomorphic signature, which

can handle any polynomial size function based on the learning with errors (LWE)

assumption. Xie et al. [XX14] proposed (bounded) fully homomorphic signatures

based on iO. There is no known factoring-based homomorphic signatures that can

handle a wider class of functions than linear functions.

Pseudorandom generator. Pseudorandom generator (PRG) is a cryptographic prim-

itives that is given a random seed to generate a longer pseudorandom string that

cannot be distinguished from a uniformly random string. There is a generic construc-

tion of PRG based on a one-way function [HILL99]. As a direct construction from the

factoring assumption, Blum, Blum and Shub [BBS86] constructed an efficient PRG.

Pseudorandom function. Pseudorandom function (PRF) is a efficiently computable

keyed function which is indistinguishable from a truly random function by a black-box

access. There is a generic construction of PRF based on a PRG [GGM84]. As a direct

construction from the factoring assumption, Naor and Reingold [NR04] constructed

an efficient PRF, and the scheme is further improved by Naor, Reingold and Rosen

[NRR02].

1.3 Limitations of Factoring-based Cryptography.

As summarized in the previous section, there have been wide variety of progresses in

factoring-based cryptography until now. However, there are still many open problems

in this area. Especially, we focus on the following two problems in this dissertation.

1. There is no known construction of cryptographic primitives with high func-

tionality including ABE, FE, FHE etc. though they are constructed based on

other assumptions related to pairings or lattices. It is an important problem

to consider whether it is possible to construct these primitives based on the

factoring or factoring-related assumptions.

2. There are some cryptographic primitives that can be constructed based on a

factoring-related assumption, but cannot be reduced to the factoring assump-

tion including DPKE, additively homomorphic encryption etc. It is an impor-

tant problem to consider whether these primitives can be constructed based on

the factoring assumption.

In this dissertation, we make progresses toward solving these problems.
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1.4 Summary of Contributions

Our contributions can be divided into the following two parts.

1. In the first part, we study a cryptographic primitive called self-bilinear map. A

self-bilinear map is a special type of a bilinear map where target and domain

groups are identical. Cheon and Lee [CL09] showed that a self-bilinear map

implies a multilinear map, which is known to imply various kinds of crypto-

graphic primitives including multiparty non-interactive key exchange (NIKE)

[BS02], broadcast encryption [BS02], attribute-based encryption [GGH+13c],

homomorphic signatures [CFW14] etc. On the other hand, they also showed

that an impossibility result on the existence of a self-bilinear map on known

prime order group. Namely, they showed that if there exists an efficiently

computable self-bilinear map on a group of known prime order, then the com-

putational Diffie-Hellman (CDH) assumption cannot hold on the group. In this

dissertation we consider unknown order group instead of prime order group to

avoid the above impossibility result. We define a weaker variant of self-bilinear

map, which we call self-bilinear map with auxiliary information (AI-SBM). We

construct an AI-SBM based on the factoring assumption and the existence of

indistinguishability obfuscation (iO), which is another cryptographic primitive

that makes a circuit totally unintelligible while keeping its functionality. We

show that we can replace a multilinear map with AI-SBM in many applications

including multiparty NIKE, BE, ABE and homomorphic signatures. More-

over, our construction of multiparty NIKE and broadcast encryption is the

first construction that admits unbounded number of users. As a side result,

we construct a somewhat homomorphic encryption for log-depth arithmetic

circuits based on the Φ-hiding assumption and the existence of iO.

Since we assume the existence of iO in addition to the factoring assumption,

the construction is not fully factoring-based one. However, our result shows

a connection between those advanced cryptographic primitives and factoring-

based cryptography, and we believe that it may be useful for factoring-based

construction of those primitives in the future.

Contents of this part are based on [YYHK14, YHK16, YYHK].

2. In the second part, we study a cryptographic primitive called a lossy trap-

door function (LTDF) introduced by Peikert and Waters [PW08]. It is known

that LTDFs imply various kinds of cryptographic primitives including collision
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resistant hash function, oblivious transfer, CPA/CCA secure PKE [PW08],

DPKE [BFO08], selective opening attack secure PKE [BHY09], universally

composable commitment [NFT09], etc. It is also known that LTDFs can

be constructed based on various kinds of assumptions including decisional

Diffie-Hellman (DDH), learning with errors (LWE), QR, DCR assumptions

etc. Though there are some “factoring-based construction”of LTDFs, there is

no known construction of LTDFs whose security is rigorously reduced to the

factoring assumption. In this part, we first relax the definition of an LTDF

to define an adversary-dependent lossy trapdoor functions (ad-LTDF). Then

we show that in many applications of LTDFs, we can replace LTDFs with

ad-LTDFs. Moreover, we give a construction of an ad-LTDF based on the

factoring assumption w.r.t. semi-smooth RSA subgroup moduli (SS moduli),

which is a special type of RSA moduli introduced by Groth [Gro05]. As a re-

sult, we almost automatically obtain a new constructions of collision resistant

hash function, CPA/CCA secure PKE schemes and DPKE scheme based on

the same assumption. Especially, our DPKE scheme is the first scheme that

satisfies the security notion called the PRIV security for block sources proposed

by Boldyreva et al. [BFO08] solely based on the factoring assumption.

Besides direct applications of ad-LTDFs, we construct a CCA secure PKE

scheme based on the factoring assumption w.r.t. SS moduli whose ciphertext

overhead is the shortest among schemes based on the same assumption.

Contents of this part are based on [YYHK16].

1.5 Organization

In Chapter 2, we review notations and definitions of cryptographic primitives that

are used throughout this dissertation. In Chapter 3, we study constructions and

applications of AI-SBMs. In Chapter 4, we study constructions and applications of

ad-LTDFs. In Chapter 5, we give concluding remarks and open problems.
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Chapter 2

Preliminaries

2.1 Notations

We use N to denote the set of all natural numbers, and [n] to denote the set {1, . . . n}
for n ∈ N. If S is a finite set, then we use x

$← S to denote that x is chosen uniformly

at random from S. If A is an algorithm, we use x← A(y; r) to denote that x is output

by A whose input is y and randomness is r. We often omit r. For a finite set S, |S|
denotes the cardinality of S. For a real number x, ⌈x⌉ denotes the smallest integer not

smaller than x and ⌊x⌋ denotes the largest integer not larger than x. For a bit string

a, ℓa denotes the length of a. For a function f in λ, we often denote f to mean f(λ)

for notational simplicity. We say that a function f(·) : N→ [0, 1] is negligible if for all

positive polynomials p(·) and all sufficiently large λ ∈ N, we have f(λ) < 1/p(λ). We

say f is overwhelming if 1 − f is negligible. We say that a function f(·) : N → [0, 1]

is noticeable if there exists a polynomial p such that for all sufficiently large λ, we

have f(λ) > |1/p(λ)|. We say that an algorithm A is probabilistic polynomial time

(PPT) if there exists a polynomial p such that the running time of A with input

length λ is less than p(λ). We use a|b to mean that a is divisor of b. For a set S and

a random variable x over S, we say that x is almost random on S if the statistical

distance between the distribution of x and the uniform distribution on S is negligible.

For a natural number N , Φ(N) denote the number of natural numbers smaller than

N that are coprime to N . For random variables X and Y , ∆(X,Y ) denote the

statistical distance between them. We use the fact that for any (probabilistic) function

f , ∆(f(X), f(Y )) ≤ ∆(X,Y ) holds, and that ∆((X1, Z), (Y1, Z)) = EZ [∆(X1, Y1)]

where E denotes the expected value. For random variables X and Y , we define min-

entropy of X as H∞(X) := − log(maxx Pr[X = x]) and average min-entropy of X

given Y as H̃∞(X|Y ) := − log(Σy Pr[Y = y]maxx Pr[X = x|Y = y]). When we treat
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a circuit, we use the similar notation as in [BHR12, GGH+13c]. For a circuit f with

input length n which has v wires, We identify the set of wires with [v] and input wires

with [n], and we label the output wire by v. For a wire w which is an output wire of

a gate, we denote the first input incoming wire of the gate by A(w) and the second

incoming wire of the gate by B(w). We use λ to denote the security parameter

2.2 Syntax and Security Notions

Here, we review definitions of cryptographic primitives.

Pairwise independent hash function. We say that a family H of hash functions

from {0, 1}n to {0, 1}m is pairwise independent if for any x1 ̸= x2 ∈ {0, 1}n and

y1, y2 ∈ {0, 1}m, Pr[H(x1) = y1 ∧H(x2) = y2 : H
$← H] = 2−2m holds.

Collision resistant hash function. We formalize a collision resistant hash function

as a pair of PPT algorithms Π = (Gen,Eval).

Gen(1λ) It takes the security parameter 1λ as input and outputs a function descrip-

tion h.

Eval(h, x) It is a deterministic algorithm that takes a function description h and x

as input and outputs h(x).

We require that for any PPT adversary A, AdvCRA,Π(λ) := Pr[h(x) = h(x′), x ̸= x′ :

h← Gen(1λ); (x, x′)← A(h)] is negligible.

Public key encryption. A PKE scheme consists of three algorithms (Gen,Enc,Dec).

Gen(1λ): It takes the security parameter 1λ as input and outputs (PK,SK), where

PK is a public key and SK is a secret key.

Enc(PK.msg): It takes a public key PK and a message msg as input and outputs

a ciphertext C.

Dec(SK,C): It takes a secret key SK and a ciphertext C as input and outputs a

massage msg.

We require that for all (PK,SK) output by Gen, all msg and all C output by

Enc(PK,msg), we have Dec(SK,C) = msg.

For ATK ∈ {CPA,CCA}, a public key encryption scheme PKE = (Gen,Enc,Dec)

is ATK secure if for all PPT adversaries A = (A1,A2), AdvATKA,PKE(λ) := |Pr[b =
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b′ : (PK,SK) ← Gen(1λ); (msg0,msg1, st) ← AO1
1 (PK); b

$← {0, 1};C∗ ←
Enc(PK,msgb); b ← AO2

2 (PK,C∗, st)] − 1/2| is negligible where if ATK=CPA, then

Oi (i = 1, 2) is an oracle that always returns ⊥, and if ATK=CCA, then Oi (i = 1, 2)

is a decryption oracle that is given a ciphertext C and returns Dec(SK,C) if i = 1

or C ̸= C∗ and otherwise ⊥.

Key encapsulation mechanism. Here, we review the definition of key encapsula-

tion mechanism (KEM) and its security. It is shown that a CCA secure PKE scheme

is obtained by combining a constrained CCA (CCCA) secure KEM and a CCA secure

authenticated symmetric key encryption scheme [HK07]. In the following, we recall

the definitions of KEM and its CCCA security.

A KEM consists of three algorithms (Gen,Enc,Dec).

Gen(1λ): It takes a security parameter 1λ as input and outputs (PK,SK), where

PK is a public key and SK is a secret key.

Enc(PK): It takes a public key PK as input and outputs (C,K), where C is a

ciphertext and K is a symmetric key.

Dec(SK,C): takes a secret key SK and a ciphertext C as input and outputs a key

K with length ℓK or ⊥.

We require that for all (PK,SK) output by Gen and all (C,K) output by Enc(PK),

we have Dec(SK,C) = K.

To define the CCCA security of KEM = (Gen,Enc,Dec), we consider the following

game between an adversary A and a challenger C. First, C generates (PK,SK) ←
Gen(1λ) and (C∗,K)← Enc(PK), chooses a random bit b

$← {0, 1}, and setsK∗ := K

if b = 1 and otherwise K∗
$← {0, 1}ℓK . Then (PK,C∗,K∗) is given to the adversary

A. In the game, A can query pairs of ciphertexts and predicates any number of

times. When A queries (C, pred), C computes K ← Dec(SK,C) and returns K to A
if C ̸= C∗ and pred(K) = 1, and otherwise ⊥. Finally, A outputs a bit b′. We define

the CCCA advantage of A as AdvCCCAA,KEM(λ) := |Pr[b = b′] − 1/2|. We say that KEM

is CCCA secure if AdvCCCAA,KEM(λ) is negligible for any PPT valid adversary A, where
“valid” is defined below.

Before defining “valid” , we prepare two definitions. We say that a predicate pred is

non-trivial if Pr[pred(K) = 1 : K
$← {0, 1}ℓK ] is negligible. We say that an algorithm

C′ is an alternative challenger if it has the same syntax as the real challenger C. We

say that an adversary A is valid if for any PPT alternative challenger C′, all predicates
pred queried by A in the game between A and C′ are non-trivial.
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Though the above definition of the CCCA security slightly differs from the original

definition given in [HK07], we can easily prove that our definition still yields the

“hybrid encryption theorem” that a CCA secure PKE scheme can be obtained by a

CCCA secure KEM and authenticated symmetric key encryption.

Deterministic public key encryption. Here, we define deterministic public key

encryption (DPKE). A DPKE scheme consists of three algorithms (Gen,Enc,Dec).

Gen(1λ) It takes a security parameter 1λ as input and outputs (PK,SK), where

PK is a public key and SK is a secret key.

Enc(PK,msg): It is a deterministic algorithm that takes a public key PK and a

message msg as input and outputs a ciphertext C.

Dec(SK,C): It takes a secret key SK and a ciphertext C as input and outputs a

message msg or ⊥.

For correctness, we require that for allmsg, (PK,SK) output by Gen and C output

by Enc(PK,msg), we have Dec(SK,C) = msg.

We recall security notions for deterministic encryption following [BFO08]. In

[BFO08], the authors considered three security notions called PRIV, PRIV1 and

PRIV1-IND, and proved all of them are equivalent. Therefore we consider only the

simplest security definition PRIV1-IND in this dissertation. A random variable X

over {0, 1}n is called a (u, n)-source if H∞(X) ≥ u. For ATK ∈ {CPA,CCA}, a

deterministic encryption scheme DE = (Gen,Enc,Dec) for ℓ-bit message is PRIV1-

IND-ATK secure for (t, n)-sources if for any (t, n)-sources M0 and M1 and all PPT

adversaries A, AdvPRIV1−IND−ATKA,M0,M1,DE (λ) := |Pr[b = b′ : (PK,SK) ← Gen(1λ); b
$←

{0, 1};msg∗ $← Mb;C
∗ ← Enc(PK,msg∗); b′ ← AO(PK,C∗)] − 1/2| is negligible

where if ATK=CPA, then O is an oracle that always returns ⊥, and if ATK=CCA,

then O is an decryption oracle that is given a ciphertext C and returns Dec(SK,C)

if C ̸= C∗ and otherwise ⊥.

Distributed broadcast encryption. Here, we define distributed broadcast en-

cryption following [BZ14]. A distributed broadcast encryption scheme consists of

four algorithms (Setup, Join,Enc,Dec).

Setup(1λ): It takes the security parameter 1λ as input and outputs public parameters

PP .

Join(PP ): It takes public parameters PP as input and outputs a public key pk and

a secret key sk.
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Enc(PP, pk1, . . . , pkn,msg): It takes public parameters PP , a message msg, and a

public keys pk1, . . . , pkn of designated receivers and outputs a ciphertext CT .

Dec(PP, sk, pk1, . . . , pkn, CT ): It takes public parameters PP , a secret key sk, public

keys of designated receivers and a ciphertext CT and outputs a message msg.

As correctness, we require that for any security parameter λ, an integer n and a

message msg, we have Dec(PP, sk, pk1, . . . , pkn, CT ) = msg, where PP ← Setup(1λ),

(pk1, sk1), . . . , (pkn, skn)← Join(PP ), CT ← Enc(PP, pk1, . . . , pkn,msg).

We define the security notion. We consider the following experiment. A challenger

runs Setup(1λ) to generate public parameters PP and runs Join(PP ) n times to

generate (pk1, sk1), . . . , (pkn, skn). It gives (PP, pk1, . . . , pkn) to A. A chooses two

messages msg0 and msg1 to submit them to C. C uniformly choose b
$← {0, 1} and

runs Enc(PP, pk1, . . . , pkn,msgb) to generate CT , and gives CT to A. Finally A
outputs b′. We say that A wins if b = b′ holds.

We say that a distributed broadcast encryption scheme is statically secure if for

any n (polynomially bounded in λ) and any PPT adversary A, |Pr[A wins]− 1/2| is
negligible.

Remark 1. At first glance, the above security notion seems weaker than the usual

static security of broadcast encryption because we do not allow an adversary to corrupt

receivers who are out of the target set. However, in distributed setting, secret and

public keys of such receivers can be simulated efficiently by using the public parameters.

Therefore we still capture the setting where the adversary may corrupt some receivers

(as long as the set of corrupted users is determined at the beginning of the experiment).

Remark 2. There is stronger security notion for broadcast encryption called adaptive

security, where an adversary can determine which receiver to corrupt adaptively. In

this dissertation we only consider the static security and does not consider the adaptive

security.

Attribute-based encryption for circuits. Here, we define attribute-based

encryption (ABE) and its security. An ABE scheme consists of four algorithms

(Setup,Enc,KeyGen,Dec).

Setup(1λ): It takes the security parameter 1λ, the length n of the index as input and

upper bound d of circuit depth, and outputs the public parameters PP and a

master secret key MSK.

Enc(PP, x,M): It takes the public parameters PP , an index x ∈ {0, 1}n and a

message M as input, and outputs a ciphertext CT .



16 Chapter 2 Preliminaries

KeyGen(MSK, f): It takes a master secret key MSK and a circuit f with a single

output gate, and outputs a secret key SK.

Dec(SK,CT ): It takes a secret key SK and a ciphertext CT as input, and outputs

a message M or ⊥.

For correctness, we require that for all M , x ∈ {0, 1}n and f with depth lower

than d such that f(x) = 1, Dec(SK,CT ) = M always holds, where (PP,MSK) ←
Setup(1λ, n, d), SK = KeyGen(MSK, f) and CT = Enc(PP, x,M).

Next, we define the security of ABE. Here, we only define the selective security since

we only consider it in this dissertation. For an adversary A, we consider the following
game between A and a challenger. A first declares the target index x∗. Then the

challenger computes (PP,MSK)← Setup(1λ) and gives PP to A. Then A declares

M0 andM1. The challenger chooses b
$← {0, 1} and computes CT ← Enc(PP, x∗,Mb).

Then it gives CT to A. In the game, A can query a circuit f such that f(x∗) = 0

for key generation oracle, and the oracle returns KeyGen(MSK, f) to A. Finally, A
outputs b′. We say that A wins if b′ = b. We say that an ABE scheme is selectively

secure if for any efficient adversary A, tha probability that A wins is negligibly close

to 1/2.

It is known that any general Boolean circuit can be converted to an equivalent

monotone layered Boolean circuit [GGH+13c]. Therefore we only consider ABE for

monotone layered circuits. Here, monotone circuit is a circuit where all gates are

either AND or OR gates of two inputs, and layered circuit is a circuit where a gate

at depth j receive both of its inputs from wires at depth j − 1.

Homomorphic encryption Here, we recall some definitions for homomorphic en-

cryption. A homomorphic encryption scheme HE consists of the four algorithms

(KeyGen,Enc,Eval,Dec).

KeyGen(1λ): It takes the security parameter 1λ as input and outputs a public key

pk and a secret key sk.

Enc(pk,m) It takes a public key pk and a massage m ∈ {0, 1} as input, and outputs

a ciphertext c.

Eval(pk, f, ℓ, c1, . . . , cℓ) It takes a public key pk, a circuit f with input length ℓ and

a set of ℓ ciphertexts c1, . . . , cℓ as input, and outputs a ciphertext cf .

Dec(sk, c): IT takes a secret key sk and a ciphertext c as input, and outputs a

message m.

For correctness of the scheme, we require that for all security parameters λ, all
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(pk, sk) ← KeyGen(1λ) and all m ∈ {0, 1}, we have Dec(sk,Enc(pk,m)) = m with

overwhelming probability.

Next, we define some properties of homomorphic encryption such as the CPA se-

curity, C-homomorphism, and compactness.

Definition 1. (CPA security) We say that a scheme HE is CPA secure if for any

efficient adversary A,

|Pr[1← A(pk,Enc(pk, 0))]− Pr[1← A(pk,Enc(pk, 1))]|

is negligible, where (pk, sk)← KeyGen(1λ).

Definition 2. (C-homomorphism) Let C = {Cλ}λ∈N be a class of circuits. A scheme

HE is C-homomorphic if for any family of circuits {fλ}λ∈N such that fλ ∈ C whose

input length is ℓ and any messages m1, . . . ,mℓ ∈ {0, 1},

Pr[Dec(sk,Eval(pk, C, c1, . . . , cℓ)) ̸= C(m1, . . . ,mℓ)]

is negligible, where (pk, sk)← KeyGen(1λ) and ci ← Enc(pk,mi).

Remark 3. We can also consider the additional property that an output of Eval

can be used as input of another homomorphic evaluation. This is called “multi-hop”

homomorphism, and many fully homomorphic encryption schemes have this property.

However, our scheme does not.

Definition 3. (Compactness) A homomorphic encryption scheme HE is compact if

there exists a polynomial poly such that the output length of Eval is at most poly(λ)-bit.

Multiparty non-interactive key exchange. First, we formally define multiparty

non-interactive key exchange (NIKE) and its security following [BZ14]. A multiparty

NIKE scheme consists of three algorithms (Setup,Publish,KeyGen).

Setup(1λ): This algorithm takes a security parameter 1λ as input *1. It outputs

public parameters params.

Publish(params): This algorithm takes public parameters params as input. It outputs

a public key pk and a secret key sk.

KeyGen(params, sk, pk1, . . . , pkn−1): This algorithm takes public parameter params,

a secret key sk and public keys pk1, . . . , pkn−1. It outputs a shared key k.

*1 In our definition, the setup algorithm does not take the number of maximum users as input.

This means that our scheme admits unbounded number of users.
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As correctness, we require that for any n, params ← Setup(1λ), (pki, ski) ←
Publish(params) for i ∈ [n], for any i1, i2 ∈ [n], we have

KeyGen(params, ski1 , pk1, . . . , pki1−1, pki1+1, . . . pkn)

= KeyGen(params, ski2 , pk1, . . . , pki2−1, pki2+1, . . . pkn).

We define the security notion for NIKE. In this dissertation, we consider the mini-

mum security notion against a passive adversary.

We say that a multiparty NIKE scheme is statically secure if for any in-

teger n which is polynomial in the security parameter, for any efficient ad-

versary A, |Pr[b $← A(params, pk1, . . . , pkn,Kb)] − 1/2| is negligible, where

params ← Setup(1λ), (pki, ski) ← Publish(params) for i = 1, . . . , n, K1 :=

KeyGen(params, sk1, pk2, . . . , pkn), K0
$← {0, 1}ℓK and b

$← {0, 1}.

Remark 4. In some existing works [BZ14, KRS15], they consider stronger security

notion that considers adversaries actively generate malformed public keys. In this

dissertation, we do not consider such an adversary, and we assume that an adversary

only observe honestly generated public keys.

Homomorphic signature. Here, we give the definition of a homomorphic signature.

In this dissertation, we only consider a selectively secure single data homomorphic

signature for simplicity. A single data homomorphic signature for a function class C
consists of PPT algorithms (KeyGen,Sign,Verify,Eval).

KeyGen(1λ, 1n)→ (vk, sk): This algorithm takes the security parameter 1λ and a

data size 1n, and outputs a pair (vk.sk) of a verification key and a signing key.

Sign(sk, i,m)→ σ: This algorithm takes a signing key sk, an index i ∈ [n] and a

message m ∈M, and outpus a signature σ.

Eval(f, (m1, σ1), . . . , (mn, σn))→ σ∗: This algorithm takes a function f ∈ C and

pairs (m1, σ1), . . . , (mn, σn) of a message and a signature, and outputs a signa-

ture σ∗ for the message f(m1, . . . ,mn).

Verify(vk, f,m, σ)→ 1/0: This algorithm takes a verification key vk, a function f , a

message m and a signature σ, and outputs 1 if accepts and 0 else

Remark 5. In ordinary homomorphic signature schemes, signatures generated by

Eval can be input to Eval again to evaluate another function. On the other hand, in

our formulation, only signatures generated by Sign can be evaluated by Eval.

We require a homomorphic signature to satisfy the following properties.
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Correctness For any (vk, sk) ← KeyGen(1λ, 1n)，(m1, . . . ,mn) ∈ MN，

f ∈ C, if we let σi ← Sign(sk, i,mi), m∗ := f(m1, . . . ,mn)， and σ∗ :=

Eval(f, (m1, σ1), . . . , (mn, σn)), then we always have Verify(vk, f,m∗, σ∗) = 1.

Remark 6. In the above, we only require the correctness for signatures generated

by Eval, but if C includes the identity function, then this implies the correctness for

signatures generated by Sign.

Indistinguishability obfuscator. Here, we recall the definition of an indistin-

guishability obfuscator [GGH+13b, SW14].

Let Cλ be the class of circuits of size at most λ. An efficient randomized algorithm

iO is called an indistinguishability obfuscator for P/poly if the following conditions

are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, we have that

Pr[∀x C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

• For any (not necessarily uniform) efficient algorithm A = (A1,A2), there exists

a negligible function α such that the following holds: if A1(1
λ) always outputs

(C0, C1, σ) such that we have C0, C1 ∈ Cλ and ∀x C0(x) = C1(x), then we have

|Pr[A2(σ, iO(λ,C0)) = 1 : (C0, C1, σ)← A1(1
λ)]

−Pr[A2(σ, iO(λ,C1)) = 1 : (C0, C1, σ)← A1(1
λ)]| ≤ α(λ)

2.2.1 RSA Modulus and Factoring Assumption

An integer N = PQ is called a RSA modulus if P and Q are distinct primes with the

same length. We define the group of quadratic residues as QRN := {u2 : u ∈ ZN ∗}
and the group of signed quadratic resides as QR+

N := {|x| : x ∈ QRN}. where |x| is the
absolute value of x when it is represented as an element of {−(N−1)/2, . . . , (N−1)/2}.
This is a group with multiplication defined as x ◦ y := |(xy mod N)| for x, y ∈ QR+

N .

Let RSAGen be an efficient algorithm that is given the security parameter 1λ and

outputs an ℓN -bit RSA modulus N = PQ with its factorization (P,Q). We say

that the factoring assumption holds w.r.t. RSAGen if for any PPT algorithm A,
Pr[A(N) ∈ {P,Q} : (N,P,Q)← RSAGen(1λ)] is negligible.
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Since we consider different type of RSA moduli in each chapter, we refer more

detailed structure of N to each chapter.
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Chapter 3

Self-bilinear map

3.1 Introduction

In this chapter, we study a cryptographic primitive called a self-bilinear map. Though

a self-bilinear map is a very useful primitive, there is a negative result on the existence

of a self-bilinear map on known prime order group. We consider unknown order group

instead of prime order group to avoid the above impossibility result. We define a

weaker variant of self-bilinear map, which we call self-bilinear map with auxiliary

information (AI-SBM). We construct an AI-SBM based on the factoring assumption

and the existence of indistinguishability obfuscation (iO). We show that we can replace

a multilinear map with AI-SBM in many applications including multiparty NIKE, BE,

ABE and homomorphic signatures. Moreover, our construction of multiparty NIKE

and broadcast encryption is the first construction that admits unbounded number

of users. As a side result, we construct a somewhat homomorphic encryption for

log-depth arithmetic circuits based on the Φ-hiding assumption and the existence of

iO.

3.1.1 Background

A bilinear map is an important tool in constructions of various cryptographic primi-

tives, such as identity-based encryption (IBE)[BF01, BB04, Wat05], attribute-based

encryption (ABE) [SW05, BSW07, GPSW06], non-interactive zero-knowledge (NIZK)

proof systems [GOS06, GS08] etc. Bilinear maps which are mainly used in cryptogra-

phy, are constructed on elliptic curve groups. In these constructions, the target group

is different from the domain groups.

This leads to the natural question: is it possible to construct a bilinear map where
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the domain and target groups are identical? Such a bilinear map is called a self-bilinear

map, and has previously been studied by Cheon and Lee [CL09]. They showed that

a self-bilinear map is useful to construct cryptographic primitives by highlighting

that it can be used for constructing a multilinear map [BS02]. However, in contrast

to this useful property, they also proved an impossibility result: the computational

Diffie-Hellman (CDH) assumption cannot hold in a group G of known prime order if

there exists an efficiently computable self-bilinear map on G. This is undesirable for

cryptographic applications. The overview of the proof is as follows. Let e : G×G→ G

be a self-bilinear map and g be a generator of G, then we have e(gx, gy) = e(g, g)xy =

gcxy where c is an integer such that e(g, g) = gc. Then we can compute gxy by

computing c-th root of e(gx, gy) sinceG is a prime and known order group.*1 However,

their impossibility result cannot be applied for the case that G is a unknown order

group. This is the setting we focus on in this chapter.

3.1.2 Our Contribution

We first introduce a new cryptographic primitive which we call a self-bilinear map with

auxiliary information (AI-SBM) which can be seen as a weaker variant of an ideal

self-bilinear map. Then we construct an AI-SBM by using indistinguishability obfus-

cation (iO) [GGH+13b]. Though our self-bilinear map with auxiliary information has

a limited functionality compared with an ideal self-bilinear map, we show that it is

still useful to construct various cryptographic primitives. Especially, it is sufficient to

instantiate some multilinear-map-based cryptographic primitives such as multiparty

non-interactive key exchange (NIKE), broadcast encryption, attribute-based encryp-

tion for circuits and homomorphic signatures. Our multiparty NIKE and distributed

broadcast encryption schemes are the first schemes where the number of users is not

fixed in the setup phase. We also show that our technique can be used for construct-

ing a somewhat homomorphic encryption scheme for NC1 circuits.

Self-bilinear map with auxiliary information. For ideal self-bilinear map, we

require that we can publicly compute e(gx, gy) efficiently given gx and gy (and a

description of the map e). We relax the notion of self-bilinear map to define AI-SBM

so that e(gx, gy) can be computed efficiently given an auxiliary information τx or τgy

corresponding to gx or gy in addition to gx and gy. An auxiliary information τx can

*1 Here, we consider only the case in which c is known. However, [CL09] proved that the CDH

assumption does not hold even if c is unknown as long as G is a group of known prime order.



3.1 Introduction 23

be generated efficiently from x . Though this seems a significant relaxation, AI-SBMs

are still useful for instantiating many multilinear-map based constructions.

We introduce various hardness assumptions w.r.t. AI-SBMs which we call Multilin-

ear Computational Diffie-Hellman with Auxiliary Information (AI-MCDH), Multilin-

ear Hashed Diffie-Hellman with Auxiliary information (AI-MHDH) and Augmented

Power Multilinear Diffie-Hellman with Auxiliary Information (AI-APMDH) assump-

tion as a counter part of assumptions w.r.t. multilinear maps. Moreover, we introduce

the Mulitilinear Generalized Diffie-Hellman with Auxiliary Information (AI-GMDH)

assumption which can be seen as an “uber assumption” [Boy08] w.r.t. AI-SBMs.

We give two constructions of AI-SBM based on indistinguishability obfuscation

(iO), which we call basic and extended constructions. We prove that the AI-MCDH

assumption and AI-MHDH assumption for one-bit output hash function hold w.r.t.

the basic construction. For extended construction, we prove that the AI-MHDH

assumption for multiple-bit output hash functions. Moreover, we give a sufficient

condition such that the AI-GMDH assumption holds. As a result, we prove that the

AI-APMDH assumption holds.

Applications of AI-SBM. As applications of AI-SBMs, we construct a multiparty

NIKE, distributed broadcast encryption, ABE for circuits and homomorphic signa-

tures. The details follow.

• Multiparty NIKE. Multiparty NIKE is a cryptographic primitive which en-

able multiple users to share a common key without any interaction. We con-

struct a multiparty NIKE scheme where the maximum number of users is not

fixed in the setup phase. In particular, the size of both the public parameters

and a public key generated by a user are independent of the number of users.

The construction is a natural extension of the Diffie-Hellman key exchange by

using our multilinear map [DH76, BS02].

• Distributed broadcast encryption. Broadcast encryption is PKE where a

sender can arbitrary decide a set of receivers, and only designated receivers can

decrypt the ciphertext to obtain a message. Distributed broadcast encryption

is broadcast encryption with an additional property that a user can join the

system by himself without the assistance of a trusted third party holding a

master key. We construct a distributed broadcast encryption scheme where

the maximum number of users is not fixed in the setup phase based on our

multiparty NIKE scheme. In particular, the size of both the public parameters

and a ciphertext overhead are independent of the number of users. We apply the

generic conversion from multiparty NIKE to distributed broadcast encryption
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given in [BZ14].

• ABE for circuits. ABE is an extension of PKE which enable us an arbitrary

access control depending on attributes assigned to each receiver. We construct

an ABE scheme for general circuits by using our multilinear map. The con-

struction is a simple analogue of the scheme in [GGH+13c], which constructs

an ABE scheme based on multilinear maps.

• Homomorphic signatures. Homomorphic signatures is digital signatures

with a homomorphic property that anyone can publicly evaluate a function on

signatures to generate a new signature for the function value on original mes-

sages. We construct a homomorphic signatures for polynomial-degree poly-

nomials. The construction is a simple analogue of the scheme in [CFW14],

which constructs homomorphic signatures based on multilinear maps. We only

consider selective security for single data set for simplicity.

The above results can be interpreted as an evidence that AI-SBMs can replace

existing multilinear maps in some applications since all of the above constructions are

simple analogues of known multilinear-map-based constructions.

Somewhat homomorphic encryption. Besides direct applications of our self-

bilinear map with auxiliary information, we construct a somewhat homomorphic en-

cryption scheme by using a similar technique. Our somewhat homomorphic encryp-

tion scheme is chosen plaintext (CPA) secure, NC1 circuit homomorphic and compact

under the Φ-hiding assumption and the existence of iO.

Note that all known candidate constructions of indistinguishability obfuscation are

far from practical, and hence, the above constructions are mostly of theoretical inter-

est.

3.1.3 Technical Overview

Here, we give a technical overview of our result. Our basic idea is to avoid the

impossibility result of self-bilinear maps which is explained above by considering a

group of unknown order. Note that even if we consider such a group, many decisional

assumptions such as the decisional Diffie-Hellman (DDH) assumption cannot hold if

there exists an efficiently computable self-bilinear map on the group. Therefore we

consider only computational assumptions such as the CDH assumption. For a Blum

integer N , we consider the group QR+
N of signed quadratic residues [HK09a]. On this
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group, we consider a self-bilinear map e : QR+
N × QR+

N → QR+
N which is defined as

e(gx, gy) := g2xy. The reason why we define it in this manner is that we want to

ensure that the CDH assumption holds in QR+
N , even if e is efficiently computable.

That is, even if we can compute e(gx, gy) = g2xy, it is difficult to compute gxy from it

since the Rabin function is hard to invert under the factoring assumption. However,

given only the group elements gx and gy, we do not know how to compute e(gx, gy)

efficiently. To address this, we introduce auxiliary information τy for each element

gy ∈ QR+
N which enables us to compute a map e(·, gy) efficiently. This leads to

the notion of self-bilinear map with auxiliary information which we introduce in this

chapter.

The problem is how to define auxiliary information τy which enables us to compute

e(·, gy) efficiently. The most direct approach is to define τy as a circuit that computes

the 2y-th power. However, if we define τy as a “natural” circuit that computes the

2y-th power, then we can extract 2y from τy, and thus we can compute y. This clearly

enables us to compute gxy, which breaks the CDH assumption.

A cleverer way is to define τy as a circuit that computes the ty-th power where

ty = 2y ± ord(QR+
N ).*2 In this way, it seems that τy does not reveal y since ty is

a “masked” value of 2y by ord(QR+
N ) which is an unknown odd number. This idea

is already used by Seurin [Seu13] to construct a trapdoor DDH group. Actually, he

proved that even if ty is given in addition to gx and gy, it is still difficult to compute

gxy. In this way, it seems that we can construct a self-bilinear map with auxiliary

information. However, this creates a problem: we do not have an efficient algorithm

to compute ty from y without knowing the factorization of N . If such an algorithm

does not exist, then we cannot instantiate many bilinear map-based primitives using

the resulting map such as the 3-party Diffie-Hellman key exchange [Jou00].

To overcome the above difficulty, we use indistinguishability obfuscation. An in-

distinguishability obfuscator (iO) is an efficient randomized algorithm that makes

circuits C0 and C1 computationally indistinguishable if they have exactly the same

functionality.

We observe that a circuit that computes the 2y-th power and a circuit that computes

the ty-th power for an element of QR+
N have exactly the same functionality since we

have ty = 2y ± ord(QR+
N ). Therefore if we obfuscate these circuits by iO, then the

resulting circuits are computationally indistinguishable. Then we define auxiliary

information τy as an obfuscation of a circuit that computes the 2y-th power. With

this definition, it is clear that τy can be computed from y efficiently, and the above

*2 In the definition of ty , whether + or − is used depends on y. See [Seu13] for more details.
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mentioned problem is solved. Moreover, τy is computationally indistinguishable from

an obfuscation of a circuit that computes the ty-th power. Therefore it must still be

difficult to compute gxy even if τy is given in addition to gx and gy.

Thus we obtain a self-bilinear map with auxiliary information on QR+
N while ensur-

ing that the auxiliary information does not allow the CDH assumption to be broken.

By extending the above, we prove that the AI-MCDH assumption holds w.r.t. our

AI-SBM under the security of iO and the factoring assumption. Moreover, we slightly

modify the construction as e(gx, gy) = g2
kxy for some integer k, and give a sufficient

condition such that the AI-GMDH assumption holds.

3.1.4 Related Work

Bilinear maps. In cryptography, bilinear maps on elliptic curves were first used for

breaking the discrete logarithm problem on certain curves [MOV93]. The first con-

structive cryptographic applications of a bilinear map are given in [Jou00, SOK00,

BF01]. Since then, many constructions of cryptographic primitives based on a bilinear

map have been proposed.

Multilinear maps Boneh and Silverberg [BS02] considered a multilinear map which

is an extension of a bilinear map, and showed its usefulness for constructing cryp-

tographic primitives though they did not give a concrete construction of multilinear

maps. Garg et al. [GGH13a] proposed a candidate construction of multilinear maps

based on ideal lattices for the first time, and then some other constructions have been

proposed [CLT13, CLT15, GGH15] *3. We note that some cryptanalysis on these

schemes have been discussed [CHL+15, HJ16, CFL+16, CLLT16].

Indistinguishability Obfuscation The notion of indistinguishability obfuscation was

first proposed by Barak et al. [BGI+01]. The first candidate construction of indistin-

guishability obfuscation was proposed by Garg et al. [GGH+13b], followed by many

works [PST14, BR14, BGK+14, AGIS14, GLSW15, GMM+16]. Since then, many

applications of indistinguishability obfuscation have been proposed [SW14, BZ14,

HSW14, GGG+14, GGHR14, Hof14, PPS15]. Although some constructions are bro-

ken [MSZ16], there are some constructions that remain unbroken so far.

Multilinar map from iO. There are some works that shows the relation between multi-

linear maps and iO. Paneth and Sahai [PS15] constructed a polynomial jigsaw puzzle,

*3 More precisely, they construct graded encoding systems which can be seen as an approximate

version of multilinear maps.
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which is a variant of a multilinear map, solely based on iO. However, they does not

provide any application of polynomial jigsaw puzzles and thus it is unclear how that

is useful in constructions of cryptographic primitives. Albrecht et al. [AFH+16] con-

structed a multilinear map based on iO, non-interactive zero-knowledge proof system,

and additive homomorphic encryption. Since the assumptions they rely on is incom-

parable to ours, their result is incomparable to ours. Moreover, their multilinear map

does not provide a graded encoding system [GGH13a] and thus some applications of

multilinear maps such as attribute based encryption [GGH+13c] and homomorphic

signatures [CFW14] cannot be instantiated.

Multiparty non-interactive key exchange and broadcast encryption. Boneh et al. [BS02]

observed that if there exists a cryptographic multilinear map, then we can construct a

multiparty NIKE scheme and very efficient broadcast encryption scheme. Garg et al.

[GGH13a] gave the first instantiation for the construction by proposing a multilinear

map.

Boneh and Zhandry [BZ14] constructed a multiparty NIKE based on iO and a

one-way function. Their scheme achieve stronger security than ours, in which they

consider an active adversary who generates public keys maliciously. On the other

hand, in their construction, the maximum number of users is bounded at the setup

phase unlike ours.

Subsequent to our work, Khurana et al. [KRS15] also constructed a multiparty

NIKE scheme for unbounded parties. Their scheme also achieve stronger security

than ours like [BZ14]. On the other hand, they assume a cryptographic primitive

called somewhere statistically binding commitment in addition to iO and a one-way

function.

3.2 RSA modulus and Group of Signed Quadratic Residues

Here we state structures of RSA moduli considered in this chapter. In this chapter,

for an RSA modulus N = PQ output by RSAGen, we assume that P ≡ Q ≡ 3 mod 4

holds and all prime factors of Φ(N)/4 = (P−1)(Q−1) are pairwise distinct and larger

than 2δℓN for some positive constant δ like in [HK09a]*4. In this case, QR+
N is a cyclic

group of order (P−1)(Q−1)/4, and a uniformly random element ofQRN is a generator

of the group with overwhelming probability. A remarkable property of QR+
N is that

the group is efficiently recognizable. That is, there exists an efficient algorithm that

*4 For example, these conditions are satisfied if N is a strong RSA modulus, i.e., P = 2p+1 and

Q = 2q + 1 for some primes p and q
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determines whether a given string is an element of QR+
N or not [HK09a]. Throughout

this chapter, we assume that the factoring assumption holds w.r.t. RSAGen that

satisfies the above properties.

3.3 Self-bilinear Maps

In this section, we recall the definition of a self-bilinear map [CL09]. Next, we intro-

duce the notion of self-bilinear map with auxiliary information (AI-SBM) which is a

weaker variant of a self-bilinear map. Finally we define hardness assumptions with

respect to a multilinear map which is constructed from a self-bilinear map.

3.3.1 Definition of a Self-bilinear Map

First, we recall the definition of a self-bilinear map. A self-bilinear map is a bilinear

map where the domain and target groups are identical. The formal definition is as

follows.

Definition 4. (Self-bilinear Map [CL09]) For a cyclic group G, a self-bilinear map

e : G×G→ G has the following properties.

• For all g1, g2 ∈ G and α ∈ Z, it holds that

e(gα1 , g2) = e(g1, g
α
2 ) = e(g1, g2)

α.

• The map e is non-degenerate, i.e, if g1, g2 ∈ G are generators of G, then

e(g1, g2) is a generator of G.

As shown in [CL09], we can construct an n-multilinear map for any integer n ≥ 2

from a self-bilinear map e. We denote this n-multilinear map by en. This can be seen

by easy induction: suppose that an n-multilinear map en can be constructed from a

self-bilinear map e, then we can construct an (n+1)-multilinear map en+1 by defining

en+1(g1, . . . , gn, gn+1) := e(en(g1, . . . , gn), gn+1).

3.3.2 Self-bilinear Map with Auxiliary Information

We usually expect a self-bilinear map to be efficiently computable for cryptographic

applications. However, here we relax this requirement so that the map is efficiently

computable if “auxiliary information” is given. That is, when we compute e(gx, gy),



3.3 Self-bilinear Maps 29

we require auxiliary information τx or τy corresponding to gx or gy, respectively. We

call this relaxed notion a self-bilinear map with auxiliary information (AI-SBM). We

formalize it as a set of algorithms SBP = (InstGen,AIGen,Map,AIMult).

InstGen(1λ)→ params = (G, e, g) : InstGen takes the security parameter 1λ as in-

put and outputs the public parameters params which consists of descriptions

of an efficiently recognizable cyclic group G on which the group operation is

efficiently computable, a self-bilinear map e on G and an element g of G. We

require that g is a generator of G with overwhelming probability and that an

approximation Approx(G) of ord(G) can be computed efficiently from params,

which is negligibly close to ord(G). By using g and Approx(G), we can generate

an almost uniform element h of G by taking x
$← [Approx(G)] and outputting

h := gx. With a slight abuse of notation, we often simply write h
$← G to

mean the above procedure. Additionally, params specifies sets TX of auxiliary

information for all X ∈ G. Since params is input for all algorithms below, we

omit it for simplicity.

AIGen(x)→ τx : AIGen takes an integer x as input, and outputs an auxiliary infor-

mation τx ∈ Tgx that corresponds to gx.

Map(gx, τy)→ e(gx, gy) : Map takes gx ∈ G and τy ∈ Tgy as input and

outputs e(gx, gy). By using this algorithm iteratively, we can compute

en(g
x1 , gx2 , . . . , gxn) if we are given gx1 , gx2 , . . . , gxn*5.

AIMult(τx, τy)→ τMult : AIMult takes τx ∈ Tgx , τy ∈ Tgy as input and outputs

τMult ∈ Tgx+y . We require that |τmult| ≤ |τx|+ |τy|+ poly(λ) holds.

AIMap(τx, τy)→ τMap : AIMap takes τx ∈ Tgx , τy ∈ Tgy as input and outputs τMap ∈
Te(gx,gy). We require that |τMap| ≤ |τx|+ |τy|+ poly(λ) holds.

AIExp(τx, α)→ τExp : AIMap takes τx ∈ Tgx and a integer α as input and outputs

τExp ∈ Tgαx . We require that |τExp| ≤ |τx|+ poly(λ, logα) holds.

AIRand(S, τx)→ τ ′x : AIRand takes a natural number S and τx ∈ Tgx such that

|τx| ≤ S as input and outputs τ ′x ∈ Tgx such that |τ ′x| ≤ poly(S, λ) .

We require for AIRand to satisfy the following property.

• Indistinguishability of auxiliary information. Intuitively, two aux-

iliary information corresponding to the same group element output by

*5 Actually, en can be computable even if one of τgx1 , . . . , τgxn is not given.
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AIRand are computationally indistinguishable. More formally, for any

params ← InstGen(1λ), gx ∈ G, if τx,i ∈ Tgx and |τx,i| ≤ S hold and we

set τ ′x,i ← AIRand(S, τx,i) (i = 0, 1), then τ ′x,0 and τ ′x,1 are computationally

indistinguishable.

Remark 7. As pointed out in [AFH+16], AI-SBMs have a significant drawback com-

pared with ideal self-bilinear maps that the size of auxiliary information grows almost

double in each computation of AIMult and AIMap. Thus if we apply these computations

recursively, then the size grows exponentially in the number of computations. Thus

we cannot compute polynomial depth circuit on auxiliary information. We remark,

however, that we can compute logarithmic depth circuits on auxiliary information. (If

randomization is required after each gate evaluation, then we can handle only constant

depth circuits.)

3.3.3 Definition of Hardness Assumptions

Here, we introduce some hardness assumptions with respect to AI-SBM. We first de-

fine Auxiliary Information Multilinear Computational Diffie-Hellman (AI-MCDH) as-

sumption, Auxiliary Information Multilinear Hashed Diffie-Hellman (AI-MHDH) as-

sumption and the Auxiliary Information Augmented Power Multilinear Diffie-Hellman

(AI-APMDH) assumptions, which are counterparts of the similar assumptions defined

for multi-linear maps respectively. Finally, we define the Auxiliary Information Gen-

eralized Multilinear Diffie-Hellman (AI-GMDH) assumption, which can be seen as

a general class of Diffie-Hellman type search assumptions with respect to AI-SBMs

including the AI-MCDH and AI-APMDH assumptions.

First, we define the AI-MCDH assumption, which is an analogue of the multilinear

computational Diffie-Hellman (MCDH) assumption defined for multilinear maps.

Definition 5. (n-AI-MCDH assumption) We say that the n-Auxiliary Information

Multilinear Computational Diffie-Hellman (n-MCDHAI assumption) holds if there

exists a polynomial S(λ) such that for any efficient algorithm A,

Pr[en(g, . . . , g)
∏n

i=1 xi ← A(params, {gxi}i∈[n+1], {τxi}i∈[n+1])]

is negligible, where params
$← InstGen(1λ), x1, . . . , xn+1

$← [Approx(G)] and τxi
←

AIRand(S,AIGen(xi)) for i ∈ [n+ 1].

Next, we define the AI-MHDH assumption which is the“hashed version” of the

AI-MCDH assumption.
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Definition 6. (n-AI-MHDH assumption) We say that the n-Auxiliary Information

Multilinear Hashed Diffie-Hellman (n-AI-MHDH assumption) holds with respect to a

family H = {H : G → {0, 1}k} of hash functions if there exists a polynomial S(λ)

such that for any efficient algorithm A,

Pr[1← A(params, {gxi}i∈[n], {τxi
}i∈[n+1],H, T )|β = 1]

−Pr[1← A(params, {gxi}i∈[n], {τxi
}i∈[n+1],H, T )|β = 0]

is negligible, where params
$← InstGen(1λ), x1, . . . , xn+1

$← [Approx(G)], τxi ←
AIRand(S,AIGen(xi)) for i ∈ [n + 1], H

$← H, and T := H(en(g, . . . , g)
∏n+1

i=1 xi) if

β = 1, and otherwise T
$← {0, 1}k.

Definition 7. ((ℓ,M)-AI-APMDH assumption) We say that the (ℓ,M)-auxiliary in-

formation augmented power multilinear Diffie-Hellman((ℓ,M)-AI-APMDH) holds if

there exists a polynomial S(λ) such that for any PPT adversary A,

Pr[(c∗, F ∗c
∗
)← A(params, {Fi}i∈[4], {τfi}i∈[4]), c∗ ̸= 0, |c∗| ≤M ]

is negligible where params
$← InstGen(1λ), x1, x2, x3

$← [Approx(G)], F1 := gx2 ,

F2 := gx3 , F3 := gx1x2 , F4 := gx1x2x3 , F ∗ := eℓ(g, . . . , g)
xℓ−1
1 (x2x3)

ℓ

, τf1 ←
AIRand(S,AIGen(x2)), τf2 ← AIRand(S,AIGen(x3)), τf3 ← AIRand(S,AIGen(x1x2)),

and τf4 ← AIRand(S,AIGen(x1x2x3))．

Remark 8. In the original definition of the APMDH assumption, an adversary is

also given gx1 and gx1x3 additionally. In our application in Sec. 3.5.4, they are not

needed and thus we omit them.

Remark 9. If G is a group of known prime order, then it is the same if we only

consider the case of c∗ = 1. However, since we consider a group of unknown order,

we formulate the assumption as the above.

Next, we define the AI-GMDH assumption which generalizes the above assump-

tions.

Definition 8. (({fi}i∈[m], f
∗, ℓ∗,M)-AI-GMDH assumption) Let f1, . . . , fm, f∗ be

n-variable polynomials and ℓ∗ and M be natural numbers. Then we say that the Aux-

iliary Information Generalized Multilinear Diffie-Hellman (AI-GMDH) assumption

holds if the following holds. There exists a polynomial S(λ) such that for any PPT

adversary A,

Pr[(c∗, F ∗c
∗
)← A(params, {Fi}i∈[m], {τfi}i∈[m]), c

∗ ̸= 0, |c∗| ≤M ]
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is negligible, where params
$← InstGen(1λ), x1, . . . , xm

$← [Approx(G)], Fi :=

gfi(x1,...,xn), τfi ← AIRand(S,AIGen(fi(x1, . . . , xn))) (for i ∈ [m]), and F ∗ :=

eℓ∗(g, . . . , g)
f∗(x1,...,xn).

Example 1. If we define fi(x1, . . . , xn+1) := xi for i ∈ [n+1], and f∗(x1, . . . , xn+1) :=∏n+1
i=1 xi, then the n-AI-MCDH assumption is equivalent to ({fi}i∈[n], f∗, n, 1)-AI-

GMDH assumption.

Example 2. If we define f1(x1, x2, x3) := x2, f2(x1, x2, x3) := x3, f3(x1, x2, x3) :=

x1x2, f4(x1, x2, x3) := x1x2x3, and f
∗(x1, x2, x3) := xℓ−11 (x2x3)

ℓ, then the (ℓ,M)-AI-

APMDH assumption is equivalent to the ({fi}i∈[4], f∗, ℓ,M)-AI-GMDH assumption.

3.4 Constructions of AI-SBM

In this section, we give two constructions of AI-SBM. We call the first one the basic

construction and the second one the extended construction. For the basic construc-

tion, we prove that the AI-MCDH assumption and the AI-MHDH assumption for a

one-bit output hash function hold under the security of iO and the factoring assump-

tion. For the extended construction, we show that the AI-MHDH assumption for a

multiple-bit output hash function holds under the same assumption, and give a easily

checkable sufficient condition for parameters such that the (({fi}i∈[m], f
∗, ℓ∗,M)-AI-

GMDH assumption holds.

3.4.1 Basic Construction

First we prepare some notations for circuits on QR+
N .

Notation for circuits on QR+
N . In the following, for an ℓN -bit RSA modulus

N and an integer x ∈ Z, CN,x denotes a set of circuits CN,x that computes x-th

power on the group QR+
N . If an input is not an element of QR+

N , CN,x outputs 0ℓN

(that is interpreted as ⊥). We define the canonical circuit C̃N,x in CN,x in a natural

way *6. For circuits C1, C2 whose output can be interpreted as elements of QR+
N ,

Mult(C1, C2) denotes a circuit that takes a as input and outputs C1(a) ·C2(a) where

· denotes the multiplication on QR+
N . C1 ◦C2 denotes a circuit that takes a as input

and outputs C1(C2(a)). The sizes of Mult(C1, C2) and C1 ◦ C2 can be bounded by

*6 There is flexibility for the definition of the canonical circuit. However, any definition works if

the size of C̃N,x is polynomially bounded in λ and |x|.
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|C1|+ |C2|+ poly(logN).

Now we are ready to describe the construction. Let k be an arbitrary natural

number. The construction is as follows.

InstGen(1λ)→ params = (N, e, g) : Run RSAGen(1λ) to obtain (N,P,Q), chooses

g
$← QR+

N and outputs params = (N, g). params defines the underlying group

G := QR+
N , the self bilinear map e(gx, gy) := g2xy and Approx(G) := (N−1)/4.

For any element X = gx ∈ G, the set TX is defined as the set of all circuits

that computes 2x-th power on QR+
N (and outputs ⊥ for input out of QR+

N ).

AIGen(x)→ τx : Take the canonical circuit C̃N,2x ∈ CN,2x, set τx := C̃N,2x and

output τx.

Map(gx, τy)→ e(gx, gy) : Compute τy(g
x) and output it. (Recall that τy is a circuit

that computes the 2y-th power for an element of QR+
N .)

AIMult(τx, τy)→ τMult : Compute τMult ← Mult(τx, τy) and output it.

AIMap(τx, τy)→ τMap : Compute τMap ← τx ◦ τy and output it.

AIExp(τx, α)→ τExp : Take the canonical circuit C̃N,α ∈ CN,α, compute τx ◦ C̃N,α
and output it.

AIRand(S, τx)→ τ ′x : Compute τ ′x ← iO(S, τx) and output it.

The indistinguishability of auxiliary information easily follows from the definition of

indistinguishability obfuscation.

Hardness Assumptions In this paragraph, we show that various hardness assumptions

hold w.r.t. our construction of AI-SBM.We first prove that the AI-MCDH assumption

holds with respect to our AI-SBM if iO is a secure indistinguishability obfuscator for

P/poly and the factoring assumption holds. Then we observe that if we use the

Goldreich-Levin hardcore bit function [GL89] as H, the AI-MHDH assumption also

holds. Finally, by extending the above proof technique, we show that more general

class of assumptions also holds with respect to our AI-SBM. In particular, we give a

sufficient condition such that the AI-GMDH assumption holds. As a corollary of the

theorem, we prove that the AI-APMDH assumption holds w.r.t. the AI-SBM.

First, we prove that the AI-MCDH assumption holds if iO is a secure indistin-

guishability obfuscator for P/poly and the factoring assumption holds. We note that

similar idea to our proof can be found in [HK09a], where it is proven that Strong

Diffie-Hellman (SDH) assumption on QR+
N holds under the factoring assumption,

and in [Seu13], where trapdoor DDH group is constructed on QR+
N .
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Theorem 1. For any integer n (polynomially bounded by the security parameter), the

n-AI-MCDH assumption holds w.r.t. the above AI-SBM if the factoring assumption

holds w.r.t. RSAGen and iO is an indistinguishability obfuscator for P/poly.

Proof. For an algorithm A and an integer n (which is polynomially bounded by the

security parameter), we consider the following games.

Game 1. This game is the original n-MCDHAI game. More precisely, it is as follows.

(N,P,Q)← RSAGen(1λ)

g
$← QR+

N

x1, . . . , xn+1
$← [(N − 1)/4]

τxi
← iO(S, C̃N,2xi

) for i ∈ [n+ 1]

U ← A(N, g, {gxi}i∈[n+1], {τxi
}i∈[n+1])

Game 1′ This game is the same as Game 1 except that x1, . . . , xn+1 are uniformly

chosen from [ord(QR+
N )].

Game 2′ This game is the same as Game 1′ except that g, x1, . . . , xn+1, τx1
, . . . , τxn+1

are set differently. More precisely, they are set as follows.

(N,P,Q)← RSAGen(1λ)

h
$← QR+

N

g := h2

x′0, . . . , x
′
n

$← [ord(QR+
N )]

gxi := gx
′
ih for i ∈ [n+ 1]

(This implicitly defines xi ≡ x′i + 1/2 mod ord(QR+
N )).

τxi
← iO(S, C̃N,2x′

i+1) for i ∈ [n+ 1]

U ← A(N, g, {gxi}i∈[n+1], {τxi}i∈[n+1])

Game 2 This game is the same as Game 2′ except that x′0, . . . , x
′
n+1 are uniformly

chosen from [(N − 1)/4].

We say that A wins if it outputs U = en(g, . . . , g)
Πn+1

i=1 xi . For i = 1, 2, we let Ti and

T ′i be the events that A wins in Game i and Game i′, respectively. What we want to

prove is that Pr[T1] is negligible. We prove it by the following lemmas.

Lemma 1. |Pr[Ti]− Pr[T ′i ]| is negligible for i = 1, 2
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Proof. This follows since the statistical distance of uniform distributions on [(N−1)/4]
and [ord(QR+

N )] are negligible.

Lemma 2. |Pr[T ′1] − Pr[T ′2]| is negligible if iO is an indistinguishability obfuscator

for P/poly.

Proof. We consider hybrid games H0, . . . Hn+1. A hybrid game Hi is the same as

Game 1′ except that the first i auxiliary information (i.e, τx1 , . . . , τxi) are generated

as in Game 2′. It is clear that H0 is identical to Game 1′ and Hn is identical to

Game 2′. Let Si be the event that A wins in Game Hi. It suffices to show that

|Pr[Si]−Pr[Si−1]| is negligible. We construct an algorithm B = (B1,B2) that breaks
the security of iO by using A that distinguishes Hi and Hi−1.

B1(1λ): B1 runs (N,P,Q) ← RSAGen(1λ), chooses h
$← QR+

N and x1, . . . , xn+1
$←

[ord(QR+
N )] and sets g := h2. B1 computes x′0, . . . , x

′
n+1 ∈ ord(QR+

N ) such that

xj ≡ x′j + 1/2 mod ord(QR+
N ) for j ∈ [n+ 1]. (This can be computed since B1

knows the factorization of N .) Then B1 sets C0 := C̃N,2xi
, C1 := C̃N,2x′

i+1 and

σ := (N,P,Q, h, g, x1, . . . , xn, x
′
1, . . . , x

′
n) and outputs (C0, C1, σ).

B2(σ,C∗): B2 sets

τxj
←


iO(S, C̃N,2x′

j+1) if j = 0, . . . , i− 1

C∗ if j = i

iO(S, C̃N,2xj ) if j = i+ 1, . . . , n+ 1.

Then B2 runs A(N, g, {gxi}i∈[n+1], {τxi}i∈[n+1]) to obtain U . If we have U =

en(g, . . . , g)
Πn+1

i=0 xi , then B2 outputs 1, and otherwise outputs 0.

The above completes the description of B. First, we show C0 and C1 output by B1 has
completely the same functionality. Since we have xj ≡ x′j + 1/2 mod ord(QR+

N ), we

have 2xj ≡ 2x′j + 1 mod ord(QR+
N ). Therefore 2xj-th power and (2x′j + 1)-th power

return exactly the same value on the group QR+
N and thus C0 and C1 have exactly

the same functionality. We note that each of gxj (j = 0, . . . , n) is distributed in QR+
N

independently of each other in all hybrid games Hi for i = 0, . . . , n. Therefore B
generates them in exactly the same way as those are generated in the hybrids Hi−1

and Hi. Then we can see that B perfectly simulates Hi−1 if C∗ ← iO(S,C0) and

Hi if C
∗ ← iO(S,C1) from the view of A. If the difference between the probability

that A wins in Hi−1 and that in Hi is non-negligible, then B succeeds in distinguish

whether C∗ is computed as C∗ ← iO(S,C0) or C
∗ ← iO(S,C1), with non-negligible

advantage, and thus breaks the security of iO.
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Lemma 3. Pr[T2] is negligible if the factoring assumption holds.

Proof. Assuming that A wins in Game 2 with non-negligible probability, we construct

an algorithm B that factorizes N . This part is very similar to techniques used in

[HK09a, Seu13]. The construction of B is as follows.

B(N) : B chooses h′
$← Z∗N \ QR+

N , sets h := |h′2 mod N | ∈ QR+
N and

g := h2 and chooses x′1, . . . , x
′
n

$← [(N − 1)/4]. Then B sets gxi :=

gx
′
ih and τxi

← iO(M1, C̃N,2x′
i+1) for all i ∈ [n + 1]. Then B runs

A(N, g, {gxi}i∈[n+1], {τxi}i∈[n+1]). Let U be the output of A. Then B
computes X := Πn+1

i=1 (2x
′
i + 1) and v = Ug−(x

′
0X+(X−1)/2). (Note that X is

odd and therefore (X − 1)/2 is an integer.) Then it outputs gcd(h′, V ).

Since B perfectly simulates Game 2 from the view of A, A outputs en(g, . . . , g)
Πn+1

i=1 xi

with non-negligible probability. If it occurs, then we have

U = en(g, . . . , g)
Πn+1

i=1 xi = g2
n−1Πn+1

i=1 xi = h2
nΠn+1

i=1 xi = hx1Π
n+1
i=2 2xi

= h(x
′
1+1/2)Πn+1

i=1 (2x′
i+1) = hx

′
1X+X/2 = hx

′
1X+(X−1)/2+1/2

where we used that xi ≡ x′i + 1 mod ord(QRN ) holds for i ∈ [n + 1]. Therefore we

have V = h1/2. Since V ∈ QR+
N , h′ and V are distinct square roots of h in QR+

N .

Therefore gcd(h′, V ) is a non-trivial factor of N .

Theorem 1 is proven by the above lemmas.

The following is immediate from Theorem 1 and the Goldreich-Levin theorem

[GL89].

Theorem 2. The AI-MHDH assumption holds w.r.t. the above AI-SBM and the

Goldreich-Levin hardcore bit function if the factoring assumption holds with respect

to RSAGen and iO is an indistinguishability obfuscator for P/poly.

3.4.2 Extended Construction

In this section, we construct a variant of the previous construction, for which various

kinds of assumptions holds. Specifically, we first prove that the AI-MHDH assumption

holds for a hash function with multi-bit output. We also show a sufficient condition

such that the AI-GMDH assumption holds. As a corollary, we show that the AI-

APMDH assumption holds w.r.t. the construction.
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The construction is actually very similar to the basic construction. The difference

from the previous construction is that we define e(gx, gy) = g2
kxy for some integer k

instead of e(gx, gy) = g2xy.

Let k be an arbitrary natural number. The construction is as follows.

InstGen(1λ)→ params = (N, e, g) : Run RSAGen(1λ) to obtain (N,P,Q), chooses

g
$← QR+

N and outputs params = (N, g). params defines the underlying group

G := QR+
N , the self bilinear map e(gx, gy) := g2

kxy and Approx(G) := (N −
1)/4. For any element X = gx ∈ G, the set TX is defined as the set of all

circuits that computes 2kx-th power on QR+
N (and outputs ⊥ for input out of

QR+
N ).

AIGen(x)→ τx : Take the canonical circuit C̃N,2kx ∈ CN,2kx, set τx := C̃N,2kx and

output τx.

Map(gx, τy)→ e(gx, gy) : Compute τy(g
x) and output it. (Recall that τy is a circuit

that computes the 2ky-th power for an element of QR+
N .)

AIMult(τx, τy)→ τMult : Compute τMult ← Mult(τx, τy) and output it.

AIMap(τx, τy)→ τMap : Compute τMap ← τx ◦ τy and output it.

AIExp(τx, α)→ τExp : Take the canonical circuit C̃N,α ∈ CN,α, compute τExp ←
τx ◦ C̃N,α and output it.

AIRand(S, τx)→ τ ′x : Compute τ ′x ← iO(S, τx) and output it.

The indistinguishability of auxiliary information easily follows from the definition of

indistinguishability obfuscation.

Hardness assumptions We prove that the AI-MHDH assumption holds w.r.t. the

construction.

We first define the BBS generator which we will use as a hardcore function.

Definition 9. For ℓN -bit Blum integer N , g ∈ QR+
N and r ∈ {0, 1}ℓN , we define the

BBS generator as

BBSr(g) := (GLr(g), . . . ,GLr(g
k−1))

where GL denote the Goldreich-Levin hardcore bit function [GL89]. That is, GLr(x) :=⊕ℓN
i=1 rixi where ri and xi are i-th bit of r and x which is represented as an integer in

{1, . . . , (N−1)/2}. We write BBS to denote the family of functions {BBSr}r∈{0,1}ℓN .

Then we show the following theorem.

Theorem 3. The AI-MHDH assumption holds w.r.t. the above AI-SBM and BBS if
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the factoring assumption holds for RSAGen and iO is an indistinguishability obfuscator

for P/poly.

Proof. For an algorithm A, we consider the following games.

Game 1. This game is the original n-MHDH game. More precisely, it is as follows.

(N,P,Q)← RSAGen(1λ)

g
$← QR+

N

r
$← {0, 1}ℓN

x1, . . . , xn+1
$← [(N − 1)/4]

τxi
← iO(Mℓi , C̃N,2kxi

) for i ∈ [n+ 1]

T := BBSr(g
2k(n−1)Πn+1

i=1 xi)

b← A(N, g, gx1 , . . . , gxn+1 , τx1
. . . , τxn+1

, r, T )

Game 1′ This game is the same as Game 1 except that x1, . . . , xn are chosen from

[ord(QR+
N )].

Game 2′. This game is the same as Game 1 except that g, x1, . . . , xn+1, τx1
, . . . , τxn+1

are set differently. More precisely, it is as follows.

(N,P,Q)← RSAGen(1λ)

h
$← QR+

N

g := h2
k

x′1, . . . , x
′
n+1

$← [ord(QR+
N )]

gxi := gx
′
ih for i ∈ [n+ 1]

(This implicitly defines xi ≡ x′i + 1/2k mod ord(QR+
N ))

τxi ← iO(Mℓi , C̃N,2kx′
i+1) for i ∈ [n+ 1]

T := BBSr(g
2k(n−1)Πn+1

i=1 xi)

b← A(N, g, gx1 , . . . , gxn+1 , τx1 . . . , τxn+1 , r, T )

Game 2 This game is the same as Game 2′ except that x′1, . . . , x
′
n+1 are chosen from

[(N − 1)/4].

Game 3. This game is the same as Game 2 except that T is set as a random k-bit

string.

Let Ti be the event that A outputs 1 in Game i and T ′i be the event that A outputs

1 in Game i′. What we want to prove is |Pr[T1]−Pr[T3]| is negligible. We prove this

by the following lemmas.
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Lemma 4. |Pr[Ti]− Pr[T ′i ]| is negligible for i = 1, 2

Proof. This follows since the statistical distance between the uniform distributions of

[(N − 1)/4] and [ord(QR+
N )] are negligible.

Lemma 5. |Pr[T ′1] − Pr[T ′2]| is negligible if iO is an indistinguishability obfuscator

for P/poly.

Proof. We define hybrid games H1,0, . . .H1,n+1. A hybrid game H1,i is the same as

Game 1′ except that the first i auxiliary information (i.e, τx1
, . . . , τxi

) are generated

as in Game 2′. Let T1,i be the event that A outputs 1 in the hybrid H1,i. It is

clear that H1,0 is Game 1′ and H1,n is Game 2′. Let T1,i be the event that A wins

in Game H1,i. Since we have xi ≡ x′i + 1/2k mod ord(QR+
N ), CN,2kx′

i+1 computes

exactly the same as CN,2kxi
for any input for i = 1, . . . n + 1. (Recall that these

circuits computes the exponentiation only for an element of QR+
N .) Then we can see

that |Pr[T1,i] − Pr[T1,i−1] is negligible for i ∈ [n + 1] from the security of iO. (Note

that a reduction algorithm knows the factorization of N .)

Lemma 6. |Pr[T2]−Pr[T3]| is negligible if the factoring assumption holds for RSAGen

and iO is an indistinguishability obfuscator for P/poly.

Proof. We define hybrid games H2,0, . . .H2,k. For i = 0, 1, . . . , k, a hybrid game H2,i

is the same as Game 2 except that the first i-bit of T are set as in Game 2 and other bits

are set as in Game 3, i.e, T := U1|| . . . ||Ui||GLr(g2
k(n−1)+iΠn+1

j=1 xj )|| . . . ||GLr(g2
kn−1Πn+1

j=1 xj ),

where U1 . . . Ui
$← {0, 1}. In the following, we write GL(r, i) to denote

GLr(g
2k(n−1)+iΠn+1

j=1 xj ) for notational simplicity. It is clear that H2,0 is the same as

Game 2 and H2,k is the same as Game 3. Let T2,i be the event that A outputs 1 in

the hybrid H2,i. We prove that |Pr[T2,i−1] − Pr[T2,i]| is negligible for all i ∈ [k]. To

do so, we assume that there exists an algorithm A that distinguishes H2,i and H2,i−1,

and construct a factoring algorithm by using A. Without loss of generality, we can

assume that there exists a negligible function ϵ such that Pr[T2,i−1] − Pr[T2,i] > ϵ.

This is because given A, the sign of Pr[T2,i−1] − Pr[T2,i] can be checked efficiently,

and if Pr[T2,i−1]−Pr[T2,i] < 0 then we can modify A to output inverse of the original

output so that Pr[T2,i−1]− Pr[T2,i] > 0. In the following, we use a similar argument

as in [MLLJ11].

Hardcore Predictor P. First, we construct an algorithm P that predicts

GL(r, i − 1) with non-negligible advantage when it is given (r,N, g, gx1 , . . . , gxn+1 ,
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τx1
. . . , τxn+1

, g2
k(n−1)+iΠn+1

j=1 xj ) where r, N , g, x1, . . . , xn+1 and τx1
. . . , τxn+1

are

defined as in Game 2. The construction of P is as follows.

P(N, g, gx1 , . . . , gxn+1, τx1 . . . , τxn+1 , g
2k(n−1)+iΠn+1

j=1 xj , r): D′ picks b $← {0, 1}, sets

T := U1|| . . . ||Ui−1||b||GL(r, i)|| . . . ||GL(r, k − 1) and runs A(N, g, gx1 , . . . ,

gxn+1 , τx1
. . . , τxn+1

, r, T ). Note that D’ can generate GL(r, i), . . . ,GL(r, k − 1)

since it knows g2
k(n−1)+iΠn+1

j=1 xj . If A outputs 1, then P outputs b, and otherwise

it picks an independently random bit b′
$← {0, 1} and outputs it.

We define Y ′ := (N, g, gx1 , . . . , gxn+1 , τx1 . . . , τxn+1 , g
2k(n−1)+iΠn+1

i=1 xi), i.e., Y ′ denotes

input of P except r and define Y := (N, g, gx1 , . . . , gxn+1 , τx1 . . . , τxn+1), i.e., Y de-

notes input of P except r and T . We prove that with the probability at least ϵ/2

over the choice of Y ′, P predicts GL(r, i − 1) with advantage ϵ/4. By the standard

averaging argument, with at least ϵ/2 fraction of the choice of Y , we have

Pr[1← A(Y, r, U1|| . . . ||Ui−1||GL(r, i− 1)|| . . . ||GL(r, k − 1))]

−Pr[1← A(Y, r, U1|| . . . ||Ui||GL(r, i)|| . . . ||GL(r, k − 1))] > ϵ/2.

over the choice of r and randomness of A. Conditioned on such Y is fixed, we have

Pr [GL(r, i− 1)← P(Y ′, r)]

= Pr[GL(r, i− 1)← P(Y ′, r)|b = GL(r, i− 1)] Pr[b = GL(r, i− 1)]

+Pr[GL(r, i− 1)← P(Y ′, r)|b ̸= GL(r, i− 1)] Pr[b ̸= GL(r, i− 1)]

= 1/2 + 1/2 · (Pr[1← A(Y, r, U1|| . . . ||Ui−1||GL(r, i− 1)|| . . . ||GL(r, k − 1)]

−Pr[1← A(Y, r, U1|| . . . ||Ui−1||1− GL(r, i− 1)||GL(r, i)|| . . . ||GL(r, k − 1))])

> 1/2 + ϵ/4

Reconstruction Algorithm. We obtained an algorithm P that distinguishes

GL(r, i − 1) = GLr(g
2k(n−1)+i−1Πn+1

j=1 xj ) from a random bit with the advantage larger

than ϵ when it is given Y ′, r for at least ϵ/2 fraction of Y ′. Here, we use the

Goldreich-Levin theorem.

Theorem 4. (Goldreich-Levin Theorem [GL89]) Let x be an n-bit string. If there

exists a PPT algorithm P such that

|Pr[GLr(x)← P(r, z)]− 1/2|

is non-negligible where r
$← {0, 1}n, then there exists a PPT algorithm R such that

Pr[x←R(z)]
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is non-negligible.

By using this theorem, we obtain an algorithm R that computes g2
k(n−1)+i−1Πn+1

j=1 xj

when it is given (N, g, gx1 , . . . , gxn+1 , τx1 . . . , τxn+1 , g
2k(n−1)+iΠn+1

j=1 xj ) with non-

negligible probability for non-negligible fraction of its input.

Factoring Algorithm Then we construct an algorithm B that factorizes an RSA

modulus N . The construction of B is as follows.

B(N): B chooses h′
$← Z∗N \QR+

N sets h := |h′2 mod N | ∈ QR+
N , g := h2

k

, chooses

x′1, . . . , x
′
n+1

$← [(N − 1)/4], sets gx1 := gx
′
1h2

k−i

, τx1 ← iO(M ′1, CN,2kx′
1+2k−i),

gxi := gx
′
ih, τxi

← iO(M ′1, CN,2kx′
i+1) for i = 2, · · · , n + 1. Then B

can compute g2
k(n−1)+iΠn+1

j=1 xj = h2
kn+iΠn+1

j=1 xj = h(2
ix′

1+1)Πn+1
j=2 (2kx′

j+1). B
runs R(N, g, gx1 , . . . , gxn+1 , τx1 , . . . , τxn+1 , g

2k(n−1)+iΠn+1
j=1 xj ))). Let U be

the output of R. Then B computes X := Πn+1
j=2 (2

kx′j + 1) and computes

V = Uh−(2
i−1x′

1X+(X−1)/2). (Note that X is odd and therefore (X − 1)/2 is

an integer.) Then it outputs gcd(h′, V ).

First, we consider the distribution of input for R. Clearly, all components except

gx1 and τx1 are distributed as in Game 2. In the above algorithm, gx1 is distributed

almost uniformly on QR+
N as in Game 2 and therefore this difference causes a neg-

ligible difference on the behavior of R. τx1
is set as an obfuscation of a circuit that

computes 2kx1-th power both in the above algorithm and in Game 2, and this causes a

negligible difference by the property of indistinguishability obfuscation. Therefore R
outputs g2

k(n−1)+i−1Πn+1
j=1 xj with non-negligible probability for non-negligible fraction

of its input. In this case, we have

U = g2
k(n−1)+i−1Πn

j=1xj = h2
kn+i−1(x′

1+1/2i)Πn+1
j=2 (x′

j+1/2k)

= h(2
i−1x′

1+1/2)Πn+1
j=2 (2kx′

j+1) = h2
i−1x′

1X+(X−1)/2+1/2.

Therefore we have V = h1/2. Thus h′ and V are distinct square roots of h in Z∗N and

therefore gcd(h′, V ) is a non-trivial factor of N .

Theorem 3 is proven by the above lemmas.

Next, we show a sufficient condition such that the AI-GMDH assumption holds.

Before stating our result, we prepare a notation.

Definition 10. For a monic monomial f defined by f(x1, . . . , xn) =
∏n
i=1 x

ti
i , we

define its corresponding polynomial f̄ by f̄(x1, . . . , xn) :=
∑n
i=1 tixi.
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Then our result is the following.

Theorem 5. Let f1, . . . , fm and f∗ be functions of the form as in Def. 10. If

there exists (a1, . . . , an) ∈ Zn such that f̄i(a1, . . . , an) ≥ −1 for all i ∈ [m] and

ℓ∗ + f̄∗(a1, . . . , an) ≤ −1 hold. Then if iO is an indistinguishability obfuscation

and the factoring assumption holds w.r.t. RSAGen, then ({fi}i∈[m], f
∗, ℓ∗, 2k−1)-AI-

GMDH assumption holds w.r.t. the above AI-SBM.

Proof. Assume that there exists a PPT adversary A that breaks the ({fi}i∈[m], f
∗,

ℓ∗, 2k−1)-AI-GMDH assumption. We construct a PPT algorithm B that computes

the square root of a random element of QR+
N with non-negligible probability. (such

an algorithm yields a PPT algorithm that breaks the factoring assumption.) The

description of B is as follows.

B(N,h): Let g := h2
k

and params := (N, g). Pick x′i
$← [(N − 1)/4] and implicitly

define xi := 2kai(2x′i + 1) mod ord(QR+
N ). (Since B do not know ord(QR+

N ),

it cannot compute xi. It defines as above only in mind.) Then for all i ∈ [m],

we have

fi(x1, . . . , xn) ≡ 2kf̄i(a1,...,an)oddi mod ord(QR+
N)

f∗(x1, . . . , xn) ≡ 2kf̄
∗(a1,...,an)odd∗ mod ord(QR+

N)

where oddi and odd∗ are odd numbers efficiently computable from {x′i}i∈[n].
Here, we let Ai := 2k(f̄i(a1,...,an)+1)oddi, Fi := hAi , and τfi := iO(S, C̃N,Ai

)

where C̃N,Ai
is the canonical circuit that computes Ai-th power on QR+

N . Then

B runs (c∗, T ) ← A(params, {Fi}i∈[m], {τfi}i∈[m]). We can express c∗ as c∗ =

2voddc∗ where oddc∗ is the odd part of c∗. Then we have v ≤ k − 1 since we

have |c∗| ≤M ≤ 2k−1. If A succeeds, then we have

T = eℓ∗(g, . . . , g)
c∗f∗(x1,...,xn)

= g2
k(ℓ∗−1)c∗f∗(x1,...,xn)

= h2
kℓ∗c∗2kf̄∗(a1,...,an)odd∗

= h2
k(ℓ∗+f̄∗(a1,...,an))+vodd′

where we define odd′ := odd∗ ·oddc∗ . Here, since we have ℓ∗+ f̄∗(a1, . . . , an) ≤
−1 by the assumption and v ≤ k− 1, we have k(ℓ∗+ f̄∗(a1, . . . , an))+ v ≤ −1．
. Then if we define a natural number α by α := −(k(ℓ∗ + f̄∗(a1, . . . , an)) + v),

then we have T = h2
−αodd′

. Therefore we have Tα−1 = h2
−1odd′

. Then if we let
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odd′ := 2even′+1 , then we have Tα−1 = heven
′+1/2. Therefore B can compute

h1/2 by computing Tα−1h−even
′
.

This completes the description of B. In the above description, we already show that

if A succeeds, then B also succeeds. What is left is to prove the distribution of

A’s input in the above algorithm is computationally indistinguishable from that in

the AI-GMDH assumption. N is generated in the same way as in the AI-GMDH

assumption (it is generated as N ← RSAGen(1λ)). g is uniformly distributed on QR+
N

as in the AI-GMDH assumption since h is uniformly distributed on QR+
N and 2k is

coprime to ord(QR+
N ). Since {x′i}i∈[n] are almost uniformly distributed on [ord(QR+

N )]

and 2 is coprime to ord(QR+
N ), {xi}i∈[n] are also almost uniformly distributed on

[ord(QR+
N )]. Since we have Fi = hAi and Ai ≡ 2kfi(x1, . . . , xn) mod ord(QR+

N ), we

have hAi = h2
kfi(x1,...,xn) = gfi(x1,...,xn) for i ∈ [m]. Thus we can see that gfi(x1,...,xn)

is simulated correctly. What is left is to prove that the distribution of τfi (i ∈ [m])

simulated by B is computationally indistinguishable from the real distribution in the

AI-GMDH assumption conditioned on any fixed params, {Fi}i∈[m]. τfi is generated as

τfi := iO(S, C̃N,Ai
) in the simulation by B, and τfi := iO(S, C̃N,2kfi(x1,...,xn)) in the

AI-GMDH assumption. Here, since we have Ai ≡ 2kfi(x1, . . . , xn) mod ord(QR+
N ),

C̃N,2kfi(x1,...,xn) and C̃N,Ai have the completely the same functionality. Therefore if

S is larger than the sizes od these circuits, then the above two are computationally

indistinguishable by the property of the indistinguishability obfuscation.

3.5 Applications of AI-SBM

In Sec. 3.4, we constructed an AI-SBM. In this section, we construct multiparty

NIKE, distributed broadcast encryption, ABE for circuits and homomorphic signa-

tures schemes by using an AI-SBM.

3.5.1 Multiparty NIKE.

Here, we construct a multiparty NIKE scheme. The idea of our construction is to use

our multilinear map (with auxiliary information) for the“multiparty” Diffie-Hellman

key exchange [DH76, BS02].

Construction. Our construction of multiparty NIKE scheme is as follows. Let H
be a family of hash functions.
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SetupNIKE(1
λ) : SetupNIKE runs params = (G, e, g) ← InstGen(1λ) and chooses H

$←
H. It outputs PP = (params,H) as the public parameter.

PublishNIKE(PP): It chooses x← [Approx(G)] and sets τx ← AIRand(S,AIGen(x)). It

sets pk := (gx, τx) and sk := x, and outputs (pk, sk).

KeyGenNIKE(PP, sk, {pkj}j=1,...,n−1) : Let pkj = (gxj , τgxj ) for j ∈ [n − 1]. It first

sets k1 := gx1 . For j = 2, . . . , n − 1, it computes kj = Map(params, kj−1, τxj ).

Finally, it computes kn = kskn−1 and K = h(kn), and output K. Finally, it

outputs K := H(kn) as its derived key.

We show the correctness. Let PP ← SetupNIKE(1
λ) and (gxj , τgxj ) ←

PublishNIKE(PP ) for j ∈ [n]. Then for all j∗ ∈ [n], it is easy to show that

K = h(en−1(g, . . . , g)
Πn

j=1xj ). Therefore the correctness holds.

The security of our NIKE scheme can be stated as follows.

Theorem 6. This multiparty NIKE scheme is statically secure if the AI-MHDH

assumption holds with respect to the underlying AI-SBM and H.

This is immediate from the definition of the security of NIKE and the AI-MHDH

assumption.

3.5.2 Distributed broadcast encryption.

Here, we give a construction of distributed broadcast encryption scheme based on a

multiparty NIKE scheme. This is based on the conversion proposed in [BZ14]. Let

(SetupNIKE,PublishNIKE,KeyGenNIKE) be a multiparty NIKE scheme. Then we construct

a distributed broadcast encryption scheme (SetupBE,JoinBE,EncBE,DecBE) as follows.

SetupBE(1
λ): It runs SetupNIKE(1

λ) to obtain public parameters PP and outputs PP

as its own public parameters.

JoinBE(PP ): It runs PublishNIKE(PP ) to obtain a public key pk and a secret key sk,

and outputs (pk, sk).

Enc(PP, pk1, . . . , pkn,msg): It runs PublishNIKE(PP ) to obtain (pk∗, sk∗). Then it

runs KeyGenNIKE(PP, sk, {pkj}j=1,...,n) to obtain K. It computes Ψ := K ⊕M
and outputs a ciphertext CT = (pk∗,Ψ).

Dec(PP, sk, pk1, . . . , pkn, CT ): It parses CT as pk∗,Ψ. It finds i such that sk is a cor-

responding secret key of pki. Then it runsK ← KeyGenNIKE(PP, sk, pk
∗, pk1, . . . ,

pki−1, pki+1, . . . , pkn) and outputs msg := K ⊕Ψ.
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The security of the above scheme is immediate from the security of the underlying

multiparty NIKE scheme.

Theorem 7. If the multiparty NIKE scheme (SetupNIKE,PublishNIKE is statically se-

cure, then the distributed broadcast encryption scheme (SetupBE,JoinBE,EncBE,DecBE)

is statically secure.

3.5.3 Attribute Based Encryption for Circuits

Here, we construct an attribute based encryption scheme for general circuits. Our

construction is an analogue of [GGH+13c].

Construction. Then we give our construction of an ABE scheme. Let H be a family

of hash functions H : G→ {0, 1}ℓH and S and S1 be sufficiently large integers.

Setup(1λ, n, d): It runs params = (G, e, g) ← InstGen(1λ) and chooses

α ← [Approx(G)], h1, . . . , hn
$← G and H

$← H. Then it outputs

PP := (params,H, ed+1(g, . . . , g)
α, h1, . . . , hn) and MSK := (α, PP ).

Enc(PP, x ∈ {0, 1}n,M ∈ {0, 1}ℓH ): It chooses s ← [Approx(G)], sets τs ←
AIRand(S,AIGen(s)) and

CT := (M ⊕H((ed+1(g, . . . , g)
α)s), τs, {hsi}i∈X)

where X is the set of all i ∈ [n] such that xi = 1. It outputs CT .

KeyGen(MSK, f): It chooses r1, . . . , rv
$← [Approx(G)] and sets

KH := ed(g, . . . , g)
α−rv

where v is the number of wires of f . Next, it generates key component for each

wire of f as follows.

• Input Wire: If w is an input wire (i.e., depth is 1), then it chooses zw
$←

[Approx(G)] and sets

Kw:= grwh−zww

τzw← AIRand(S1,AIGen(zw)).

We let (Kw, τzw) be the key component for wire w.
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• OR Gate: If w is an output wire of an OR gate with depth j, then it

chooses aw, bw
$← [Approx(G)] and sets

Kw,1:= ej(g, . . . , g)
rw−awrA(w)

Kw,2:= ej(g, . . . , g)
rw−bwrB(w)

τaw ← AIRand(S1,AIGen(aw))

τbw ← AIRand(S1,AIGen(bw)).

We let (Kw,1,Kw,2, τaw , τbw) be the key component for the wire w.

• AND Gate: If w is an output wire of an AND gate with depth j, then it

chooses aw, bw
$← [Approx(G)] and sets

Kw:= ej(g, . . . , g)
rw−awrA(w)−bwrB(w)

τaw← AIRand(S1,AIGen(aw))

τbw← AIRand(S1,AIGen(bw)).

We let (Kw, τaw , τbw) be the key component for wire w.

It outputs SK which consists of description of f , KH and key components for

each wire.

Dec(PP, SK,CT ): Let SK be a secret key corresponding to f and CT be a

ciphertext corresponding to x. We can correctly decrypt it if f(x) = 1. First,

it computes E′ := e(gs,KH) = ed+1(g, . . . , g)
s(α−rv) by using τs. Then it

computes as follows for all wires from wires with lower depth.

• Input Wire: Let w be an input wire. If xw=1 holds, then it computes

Ew := e(gs,Kw)e(g
zw , hsw)

= e(gs, grwh−zww )e(gzw , hsw)

= e(g, g)srw

by using τs and τzw .

• OR gate: Let w be an output wire of an OR gate with depth j. If fw(x) = 1

holds, then it works as follows. In this case we have fA(w) = 1 or fB(w) = 1.

If we have fA(w) = 1, then it computes

Ew := e(gaw , EA(w))e(g
s,Kw,1)

= e(gaw , ej(g, . . . , g)
srA(w))e(gs, ej(g, . . . , g)

rw−awrA(w))

= ej+1(g, . . . , g)
srw
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by using τaw and τs. If we have fA(w) ̸= 1, (in this case, we have fB(w) = 1,)

then it computes

Ew := e(gbw , EB(w))e(g
s,Kw,2)

= e(gbw , ej(g, . . . , g)
srB(w))e(gs, ej(g, . . . , g)

rw−bwrB(w))

= ej+1(g, . . . , g)
srw

by using τbw and τs.

• AND gate: Let w be an output gate of an AND gate with depth j. If

fw(x) = 1 holds, i.e, we have fA(w) = 1 and fB(w) = 1, then it works as

follows. It computes

Ew := e(EA(w), g
aw)e(EB(w), g

bw)e(gs,Kw)

= e(ej(g, . . . , g)
srA(w) , gaw)e(ej(g, . . . , g)

srB(w) , gbw)

e(gs, ej(g, . . . , g)
rw−awrA(w)−bwrB(w))

= ej+1(g, . . . , g)
srw

by using τaw , τbw and τs.

If f(x) = 1 holds, then for output wire v with depth d, it can compute

Ev = ed+1(g, . . . , g)
srv .

Next, it computes

E′′ := E′Ev

= ed+1(g, . . . , g)
s(α−rv)ed+1(g, . . . , g)

srv

= ed+1(g, . . . , g)
sα.

Finally, it outputs M := CM ⊕H(E′′).

The correctness of the scheme is already checked in the above description. The

security of the scheme is as follows.

Theorem 8. Our ABE scheme is selectively secure if the AI-MHDH assumption

holds with respect to the underlying multilinear map and H.

Proof. We construct an algorithm D that breaks the (d + 1)-AI-MHDH assumption

by using A that breaks the ABE scheme. The construction of D is as follows. We

note that the label of an instance of the AI-MHDH problem is different from that in

the definition for notational convenience.
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D(params, gs, gc1 , . . . , gcd+1 , τs, τc1 , . . . , τcd+1
,H, T ):

Setup. Let x∗ = (x∗1, . . . , x
∗
n) be a target input declared by A. D sets α :=

Πd+1
i=1 ci. Then it can computes ed+1(g, . . . , g)

α by iterated usage of Map by

using τc1 , . . . , τcd+1
. It chooses yi

$← [Approx(G)] for i = 1, . . . , n, and sets

hi :=

{
gyi if x∗i = 1

gyi+c1 if x∗i = 0

and PP := (params,H, ed+1(g, . . . , g)
α, h1, . . . , hn). Then it gives PP to A.

Challenge Ciphertext. For messages M0,M1 which are declared by A, D
chooses b

$← {0, 1}, and sets CT := (Mb ⊕ T, τs, {(gs)yi}i∈X∗) where X∗ is the

set of all i ∈ [n] such that x∗i = 1. It gives CT to A as a challenge ciphertext.

Key Generation. For A’s key query f such that f(x∗) = 0, D computes as

follows for all wires from wires with lower depth.

• Input Wire： Let w be an input wire. If x∗w = 1, then D chooses zw, rw
$←

[Approx(G)], and computes

Kw := grwh−zww

τzw ← AIRand(S1,AIGen(zw)).

If x∗w = 0, then it chooses ηw, νw
$← [Approx(G)], generates τνw ←

AIGen(νw) sets zw := c2 + νw and rw := c1c2 + ηw, and computes

Kw := g−c2yw+ηw−(yw+c1)νw

τzw := AIRand(S1,AIMult(τc2 , τνw)).

• OR Gate: Let w be an output wire of an OR gate with depth j. If fw(x
∗) =

1, then D chooses aw, bw
$← [Approx(G)] and computes

Kw,1 := ej(g, . . . , g)
rw−awrA(w)

Kw,2 := ej(g, . . . , g)
rw−bwrB(w)

τaw := AIRand(S′,AIGen(aw))

τbw := AIRand(S′,AIGen(bw)).

If fw(x
∗) = 0, then it chooses ψw, ϕw, ηw

$← [Approx(G)], generates τψw ←
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AIGen(ψw) and τϕw ← AIGen(ϕw), sets aw := cj+1 + ψw, bw := cj+1 + ϕw

and rw := Πj+1
i=1 ci + ηw, and computes

Kw,1:= ej(g, . . . , g)
ηw−ψwηA(w)−cj+1ηA(w)−ψwΠj

i=1ci

Kw,2:= ej(g, . . . , g)
ηw−ϕwηB(w)−cj+1ηB(w)−ϕwΠj

i=1ci

τaw := AIRand(S′,AIMult(τcj+1
, τψw

))

τbw := AIRand(S′,AIMult(τcj+1
, τϕw)).

• AND Gate: Let w be an output wire of an AND gate with depth j. If

fw(x
∗) = 1, then D chooses aw, bw

$← [Approx(G)], computes

Kw := ej(g, . . . , g)
rw−awrA(w)−bwrB(w)

τaw ← AIRand(S′,AIGen(aw))

τbw ← AIRand(S′,AIGen(bw)).

If fw(x
∗) = 0, then it works as follows. If fA(w)(x

∗) = 0, then it

chooses ψw, ϕw, ηw
$← [Approx(G)], generates τψw

← AIGen(ψw) and

τϕw ← AIGen(ϕw), sets aw := cj+1 +ψw, bw := ϕw and rw := Πj+1
i=1 ci + ηw,

and computes

Kw:= ej(g, . . . , g)
ηw−ψwηA(w)−ϕwrB(w)−cj+1ηA(w)−ψwΠj

i=1ci

τaw := AIRand(S′,AIMult(τcj+1
, τψw

))

τbw := AIRand(S′, τϕw
).

If fA(w)(x
∗) = 1 and fB(w)(x

∗) = 0, it works symmetric to what is above,

with the roles of aw and bw reversed.

Remark 10. D can actually simulate the key generation oracle as the above

since ej(g, . . . , g)
Πj

i=1ci can be computed by iterated usage of Map by using

τc1 , . . . , τcj . Note that it need not compute ej(g, . . . , g)
Πj+1

i=1ci thanks to the can-

cellation technique.

Since we have f(x∗) = 0, for the output wire v, rv is defined as Πd+1
i=1 ci + ηv.

Therefore it can generate

KH = ed(g, . . . , g)
α−rv = ed(g, . . . , g)

−ηv .

Thus, it can simulate the key generation oracle.

Guess. Finally, when A outputs b′, D outputs 1 if b = b′, and otherwise 0.
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The above completes the description of D. We can easily see that if β = 1, then

the CPA game and the simulated environment are computationally indistinguishable

from the view of A by the indistinguishablity of auxiliary information. (Recall that

β is a random coin that determines T is random or not.) On the other hand, if

β = 0, then information of b is completely hidden and therefore the probability that

A predicts b is equal to 1/2. Therefore |Pr[1 ← D|β = 1] − Pr[1 ← D|β = 0]| is
non-negligible if A breaks the CPA security of the scheme.

3.5.4 Homomorphic Signature

Here, we construct a selectively secure single data homomorphic signature scheme for

the class of all polynomials. Our scheme is based on the idea of [CFW14]. Namely, our

scheme is almost automatically obtained by replacing multilinear maps by AI-SBP in

the scheme of [CFW14].

Notation. In the following, we abuse the notation so that τX denotes an auxiliary

information corresponding to X, τX · τY denotes AIMult(τX , τY ), e(τX , τY ) denotes

AIMap(τX , τY ) and τ
α
X denotes AIExp(τX , α).

Our construction is as follows. We let [M ] be the message space.

KeyGen(1λ, 1n)→ (vk, sk): 　 Generate (G, e, g) = params← ParamGen(1λ), choose

ri
$← [Approx(G)] (i = 1, . . . , n) and x1, x2, x3

$← [Approx(G)], and set

Ri := gri (for i = 1, . . . , n), A := gx2 , B := gx3 , C := gx1x2 , U := gx1x2x3 ,

τRi
:= AIRand(S′,AIGen(ri)) (for i = 1, . . . , n),

τA := AIRand(S,AIGen(x2)), τB := AIRand(S,AIGen(x3)),

τC := AIRand(S,AIGen(x1x2)), τU := AIRand(S,AIGen(x1x2x3)),

where S′ can be set as an arbitrary integer larger than the maximal size of

auxiliary information that is used as a second input of AIRand when generating

Ri through the real scheme and the security proof. Then set

vk := (params, {Ri}i∈[n], A,B,C,U, {τRi
}i∈[n], τA, τB , τC , τU ), sk := (x1, x2, vk)

and output (vk.sk).

Sign(sk, i,m)→ σ:
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Compute

Λ := (RiB
−m)x2 ,Γ := Λx1 ,

τΛ := AIRand(S′′, (τRiτ
−m
B )x2), τΓ := AIRand(S′′, (τRiτ

−m
B )x1x2)

and output σ := (Λ,Γ, τΛ, τΓ), where S
′ can be set as an arbitrary integer larger

than the maximal size of auxiliary information that is used as a second input

of AIRand when generating τΓ through the real scheme and the security proof.

Eval(f, (m1, σ1), . . . , (mn, σn))→ σ∗: Let f be a polynomial of degree d. Then

f can be seen as an arithmetic circuit of depth O(log(d)). We let

σi = (Λi,Γi, τΛi
, τΓi

). We label the i-th input wire of f by (1,mi, σi).

For all i ∈ [d], compute

Ui := ei(U, . . . , U), τUi
:= ei(τU , . . . , τU ).

For each gate of f , compute the following.

Addition: Assume that the input wires for this gate is labeled by

(i,m(1), (Λ(1),Γ(1), τΛ(1) , τΓ(1))), (j,m(2), (Λ(2),Γ(2), τΛ(2) , τΓ(2))).

Without loss of generality, we assume that i ≥ j. First, adjust the “degree”
of each value. That is, set

Λ′(2) := ei−j+1(Λ
(2), g, . . . , g),Γ′(2) := ei−j+1(Γ

(2), g, . . . , g),

τΛ′(2) := ei−j+1(τΛ(2) , τg, . . . , τg), τΓ′(2) := ei−j+1(τΓ(2) , τg, . . . , τg).

Then set

m∗ := m1 +m2,Λ
∗ := Λ(1) · Λ′(2),Γ∗ := Γ(1) · Γ′(2),

τΛ∗ := τΛ(1) · τΛ′(2) , τΓ∗ := τΓ(1) · τΓ′(2) ,

and assign (i,m∗, (Λ∗,Γ∗, τΛ∗ , τΓ∗)) to the output wire of this gate.

Multiplication by constant c: Let (i,m, (Λ,Γ, τΛ, τΓ)) be the value labeled to

the input wire of this gate. Then compute

m∗ := c ·m, Λ∗ := Λc, Γ∗ := Γc, τΛ := τ cΛ, τΓ := τ cΓ

and assign (i,m∗, (Λ∗,Γ∗, τΛ∗ , τΓ∗)) to the output wire of this gate.

Multiplication: Assume that the input wires for this gate is labeled by

(i,m(1), (Λ(1),Γ(1), τΛ(1) , τΓ(1))), (j,m(2), (Λ(2),Γ(2), τΛ(2) , τΓ(2))). Then
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compute

m∗ := mA ·mB ,

Λ∗ := e(Λ(1),Γ(2)) · e(Λ(1), Um2
j ) · e(Umi

i ,Λ(2)),

Γ∗ := e(Γ(1),Γ(2)) · e(Γ(1), Um2
j ) · e(Umi

i ,Γ(2)),

τΛ∗ := e(τΛ(1) , τΓ(2)) · e(τΛ(1) , τm2

Uj
) · e(τm1

Ui
, τΛ(2)),

τΓ∗ := e(τΓ(1) , τΓ(2)) · e(τΓ(1) , τm2

Uj
) · e(τm1

Ui
, τΓ(2)),

and assign (i+ j,m∗, (Λ∗,Γ∗, τΛ∗ , τΓ∗)) to the output wire of this gate.

We can see that the output wire of f is labeled by (d, f(m1, . . . ,mn), (Λout,Γout,

τΛout , τΓout)) for some (Λout,Γout, τΛout , τΓout). Then Eval outputs Λout.

Verify(vk, f,m, σ = Λ)→ 1/0: Set gd := ed(g, . . . , g) and compute R = g
f(r1,...,rN )
d

and its corresponding auxiliary information τR. This can be computed by

evaluating f on the values R1, . . . , Rn. Namely, replace an addition in f by

a multiplication in G and a multiplication by an evaluation of e. Let Bd :=

ed(B, . . . , B) and verify e(R ·B−md , g
xd−1
1 xd

2

d ) = e(Λd, gd). If this equation holds,

then output 1, and otherwise output 0. Here, required values for the verification

can be computed as

τR·B−m
d

:= τR · e(τB , . . . , τB)−m,

g
xd−1
1 xd

2

d := ed(A,C, . . . , C),

τgd := ed(τg, . . . , τg).

Security

Theorem 9. If the (dM)-AI-APMDH assumption hold for all polynomially bounded

d then the above scheme is selectively secure.

Proof. We construct a PPT adversary B that breaks the (ℓ,M)-AI-APMDH assump-

tion by using a PPT adversary A that breaks the above homomorphic signature

scheme. Here, if f∗ output by A as a part of forgery is d, thenwe let ℓ := d. The

construction of B is as follows.

B(params, {Fi}i∈[4], {τFi}i∈F4): First, runsA to obtain a signing query (m1, . . . ,mn).

Set A := F1, B := F2, C := F3, U := F4, τA := τF1
, τB := τF2

, τC := τF3

and τU := τF4
. Choose yi

$← [Approx[G]] for i ∈ [n] and set Ri := gyiBmi ,

τRi := AIRand(S′,AIGen(yi) · τmi

B ) and vk :=

(
params, {Ri}i∈[N ], A,B,C,U,

{τRi
}i∈[N ], τA, τB , τC , τU

)
.
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Set Λi := Ayi , Γi := Cyi , τΛi := AIRand(S′′, τyiA ), τΓi := AIRand(S′′, τyiC )

and σi := (Λi,Γi, τΛi
, τΓi

) for i ∈ [n]. Give (vk, {σi}i∈[n]) to A. Let

(f∗,m∗, σ∗) be a forgery output by A. Set Λ∗ := σ∗ and compute

Λ′∗ ← Eval(vk, f∗, {(mi, σi)}i∈[n]). Set c∗ := f∗(m1, . . . ,mn)−m∗ and output

(c∗,Λ∗ · Λ′∗−1).

We show that the above algorithm works well. First, we show that the distribu-

tion of vk and σi for i ∈ [n] given to A in the B’s simulation is computationally

indistinguishable from that in the game of the selective security. Each component of

vk except Ri and τRi
is generated in exactly the same way as in the real scheme.It

is easy to see that Ri is distributed almost uniformly on G both in B’s simulation

and the real scheme. τRi
is generated by inputting an element of TRi

to AIRand

in both the simulation and the real scheme, thus they are computationally indistin-

guishable due to the indistinguishability of auxiliary information. We can see that

Λi and Γi are simulated correctly since we have (RiB
−mi)x2 = (gyi)x2 = Ayi and

(RiB
−mi)x1x2 = (gyi)x1x2 = Cyi . Moreover, the distribution of τΛi

and τΓi
generated

by B is computationally indistinguishable from the real one since they are generated

by inputting an element of TΛi
and TΓi

to AIRand, respectively. Therefore, the distri-

bution of A’s input simulated by B is computationally indistinguishable from the real

one and thus A succeeds to output a forgery with non-negligible probability in B’s
simulation. If A succeeds to output a forgery, then we have f∗(m1, . . . ,mn) ̸= m∗ and

e(R ·B−m
∗

d , g
xd−1
1 xd

2

d ) = e(Λ∗, gd). Therefore we have Λ∗ = (R ·B−m
∗

d )x
d−1
1 xd

2 . On the

other hand, by the correctness of the scheme, we have e(R ·B−f
∗(m1,...,mn)

d , g
xd−1
1 xd

2

d ) =

e(Λ′∗, gd). That is, we have Λ′∗ = (R · B−f
∗(m1,...,mn)

d )x
d−1
1 xd

2 . Therefore we have

Λ∗ ·Λ′∗−1 = B
f∗(m1,...,mn)−m∗)xd−1

1 xd
2

d = gc
∗xd−1

1 xd
2x

d
3 , where f∗(m1, . . . ,mn) ̸= m∗ and

thus we have c∗ ̸= 0 and |c∗| = |(f∗(m1, . . . ,mn) −m∗| < M . Therefore B succeeds

to break the (d,M)-AI-GMDH assumption.

3.6 Homomorphic Encryption

In this section, we construct a somewhat homomorphic encryption scheme by using

an indistinguishability obfuscator. This is not a direct application of our self-bilinear

map. However, the idea behind the construction is similar.
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3.6.1 Φ-hiding Assumption

Here, we give the definition of the Φ-hiding assumption [KOS10] as follows. Let

RSA[p ≡ 1 mod e] be an efficient algorithm which takes the security parameter 1λ

as input and outputs (N,P,Q) where N = PQ is an ℓN -bit Blum integer such that

P ≡ 1 mod e and QR+
N is cyclic. Let Pℓ be the set of all ℓ-bit primes.

Definition 11. For a constant c, we consider the following distributions.

R = {(e,N) : e, e′
R← PcℓN ;N ← RSA[p ≡ 1 mod e′](1λ)}

L = {(e,N) : e
R← PcℓN ;N ← RSA[p ≡ 1 mod e](1λ)}

We say that the Φ-hiding assumption holds with respect to RSA if for any efficient

adversary A, |Pr[1← A(L)]− Pr[1← A(R)]| is negligible.

Parameters. According to [KOS10], N can be factorized in time O(N ϵ) where

e
R← PcℓN ;N ← RSA[p ≡ 1 mod e](1k) and c = 1/4 − ϵ. In our scheme, we set c to

be the value such that cℓN = λ. This setting avoids the above mentioned attack in a

usual parameter setting (e.g., ℓN = 1024 for 80-bit security).

3.6.2 Our Construction

Here, we construct a somewhat homomorphic encryption scheme by using indistin-

guishability obfuscation. We use the notation for circuits on QR+
N which is given in

Sec. 3.4. In addition to that, here, we use the following notation. For circuits C1

and C2 such that an output of C1 can be interpreted as input for C2, C1 ◦C2 denotes

the composition of C1 and C2, i.e, C1 ◦ C2 is a circuit that computes C2(C1(x)) for

input x. The construction of our homomorphic encryption HEOurs = (KeyGen,Enc,

Eval,Dec) is as follows.

KeyGen(1λ): Choose e
$← Pλ and (N,P,Q) ← RSA[p ≡ 1 mod e](1λ). Choose g

$←
QR+

N and compute an integer ρ such that ρ ≡ 0 mod ord(QR+
N )/e and ρ ≡

1 mod e. It outputs a public key pk = (N, e, g) and a secret key sk = (ρ, pk).

Enc(pk,m ∈ {0, 1}): Choose r
$← [(N −1)/4], set c← iO(Max, C̃N,m+re) and output

c, whereMax is defined as an integer larger than maxm∈{0,1},r∈[(N−1)/4]{|C̃N,m+re|}.
Eval(pk, f, c1, . . . , cℓ): Work only if c1, . . . , cℓ are circuits (i.e., generated by Enc).

Convert f into an arithmetic circuit f ′ on Ze. (That is, each gate of f ′ is
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addition, multiplication or negation on Ze.)*7 Compute as follows for all wires

of f ′ from wires with lower depth.

• Input: Let w be the i-th input wire. Then ci is assigned to this wire.

• Addition: Let w be an output wire of an addition gate. Set

cw := Mult(cA(w), cB(w)).

• Multiplication: Let w be an output wire of a multiplication gate. Set

cw := cA(w) ◦ cB(w).

• Negation: Let w be an output wire of a negation gate. Set cw := CN,inv ◦
cA(w) where CN,inv is a circuit that computes an inverse on QR+

N .

Let v be the output wire. Compute ceval = cv(g) and output it. Note that it is

a group element and not a circuit. Therefore we cannot evaluate it again.

Dec(sk, c): Work differently depending on whether c is an output of Enc or Eval. If

c is an output of Enc, then compute M = c(g). If Mρ = 1, then output 0,

and otherwise output 1. If c is an output of Eval, then output 0 if cρ = 1, and

otherwise output 1.

First, we prove the correctness of the scheme. We have e|ord(QR+
N ) by the choice of

N . Therefore, there exists a subgroup G+
e of order e of QR+

N . We can see that for

any element h ∈ QR+
N , hρ is the G+

e component of h. In the decryption, we have

M = iO(Max, CN,m+re)(g) = gm+re. Therefore Mρ is the G+
e component of gm. We

can see that G+
e component of g is not 1 with overwhelming probability since e is a

λ-bit prime. Therefore Mρ = 1 is equivalent to m = 0 and Mρ ̸= 1 is equivalent to

m = 1 with overwhelming probability. Thus the correctness follows.

The security of HEOurs relies on the Φ-hiding assumption. Specifically, it satisfies

the following property.

Theorem 10. HEOurs is NC
1-homomorphic, compact and CPA secure if the Φ-hiding

assumption holds with respect to RSA and iO is an indistinguishability obfuscator for

P/poly.

Proof.

NC1-homomorphism. We show that HEOurs is NC
1-homomorphic. Here, NC1 is the

class of circuits with depth O(log(λ)). Note that if f is in NC1, then the depth of the

corresponding arithmetic circuit f ′ is also O(log(λ)). First, we show the correctness

of Eval. We can see that output ceval of Eval satisfies ceval = gm by an easy induction

where m is a corresponding message. Therefore we can prove that ceval is correctly

*7 This can be done since we have a∧ b = a · b mod e and a∨ b = a+ b−a · b mod e if a, b ∈ {0, 1}.
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decrypted similarly as the above. Next, we show that Eval is computed efficiently

if the depth of f ′ is O(log(λ)). We can easily see that Eval is computed efficiently

if |cv| is polynomially bounded in the security parameter. Let Mj be the maximum

value of |cw| for a wire w with depth j. M1 is constant in |f ′|. For j ≥ 2, we have

Mj ≤ 2Mj−1+max{|CN,mult|, |CN,inv|}. Therefore if the depth of f ′ is O(log λ), then

|cv| is polynomially bounded by |f ′| (and therefore λ). Therefore Eval is efficiently

computable.

Compactness. HEOurs is compact since output of Eval is always an element of QR+
N .

Security. To prove the security, we consider the following sequence of games.

Game 1: This game is the original CPA game. More formally, it is as follows.

e
$← Pλ

(N,P,Q)← RSA[p ≡ 1 mod e](1λ)

g
$← Z∗N

b
$← {0, 1}

r
$← [(N − 1)/4]

c← iO(Max, C̃N,b+re)

b′
$← A(N, e, g, c)

Game 2: This is the same game as Game 1 except that N and e are set differently as

follows.

e, e′
$← Pλ

(N,P,Q)← RSA[p ≡ 1 mod e′](1λ)

Game 3: This is the same game as Game 2 except that c is set differently as follows.

c← iO(Max, C̃N,(b+re mod ord(QR+
N )))

Game 4: This is the same game as Game 3 except that c is set differently as follows.

r′
$← [ord(QR+

N )]

c← iO(Max, CN,r′)

Let Ti be the event that b′ = b in Game i. What we want to prove is |Pr[T1]−
1/2| is negligible. We prove it by the following lemmas.

Lemma 7. Pr[T1]− Pr[T2] is negligible if the Φ-hiding assumption holds.

Proof. It is easy to see that an adversary that distinguishes Game 1 and Game
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2 is reduced to an adversary that breaks the Φ-hiding assumption.

Lemma 8. Pr[T2]−Pr[T3] is negligible if iO is an indistinguishability obfuscator

for P/poly.

Proof. C̃N,b+re and C̃N,(b+re mod ord(QR+
N )) compute identically for all input.

Therefore the lemma follows from the property of iO.

Lemma 9. Pr[T3]− Pr[T4] is negligible.

Proof. In Game 3, ord(QR+
N ) is coprime to e with overwhelming probability.

Therefore the distribution of r mod ord(QR+
N ) where r

$← [(N−1)/4] is negligi-
bly close to the uniform distribution on Zord(QR+

N ) since (N − 1)/4 is negligibly

close to ord(QR+
N ).

Lemma 10. Pr[T4] = 1/2

Proof. In Game 4, A obtain no information of b, therefore the probability that

A predicts b is 1/2.
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Chapter 4

Adversary-dependent Lossy Trapdoor

Function

4.1 Introduction

In this chapter, we study a cryptographic primitive called a lossy trapdoor function

(LTDF). Though there are some “factoring-based construction”of LTDFs, there is

no known construction of LTDFs whose security is rigorously reduced to the factor-

ing assumption. In this part, we first relax the definition of an LTDF to define an

adversary-dependent lossy trapdoor functions (ad-LTDF). Then we show that in many

applications of LTDFs, we can replace LTDFs with ad-LTDFs. Moreover, we give a

construction of an ad-LTDF based on the factoring assumption w.r.t. semi-smooth

RSA subgroup moduli (SS moduli), which is a special type of RSA moduli introduced

by Groth [Gro05]. As a result, we almost automatically obtain a new constructions of

collision resistant hash function, CPA/CCA secure PKE schemes and DPKE scheme

based on the same assumption. Especially, our DPKE scheme is the first scheme that

satisfies the security notion called the PRIV security for block sources proposed by

Boldyreva et al. [BFO08] solely based on the factoring assumption. Besides direct

applications of ad-LTDFs, we construct a CCA secure PKE scheme based on the fac-

toring assumption w.r.t. SS moduli whose ciphertext overhead is the shortest among

schemes based on the same assumption.

4.1.1 Background

In modern cryptography, constructing provably secure cryptographic primitives is an

important research topic. In this line of researches, Peikert and Waters [PW08] pro-
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posed lossy trapdoor functions (LTDFs) and constructed a number of cryptographic

primitives such as a collision resistant hash function, a chosen plaintext (CPA) and

chosen ciphertext (CCA) secure public key encryption (PKE) schemes and an oblivi-

ous transfer scheme based on LTDFs. Following the work, it is also shown that LTDFs

can be used for constructing a deterministic encryption (DE) scheme [BFO08], a se-

lective opening attack (SOA) secure PKE scheme [BHY09], universally composable

commitment [NFT09] etc. As seen above, LTDFs have many applications, and there-

fore it is important to research concrete constructions of LTDFs.

As concrete constructions of LTDFs, Peikert and Waters [PW08] constructed

schemes based on the decisional Diffie-Hellman (DDH) and learning with errors

(LWE) assumptions. After that, many constructions of LTDFs have been proposed

thus far. Among them, LTDFs related to the factoring are based on the quadratic

residuosity (QR) [FGK+10], decisional composite residuosity (DCR) [FGK+10],

Φ-hiding [KOS10], or general class of subgroup decision assumptions [XLL+13], all of

which are decision assumptions. On the other hand, there is no known construction of

an LTDF based on the factoring assumption or a factoring-related search assumption.

In general, search assumptions are rather weaker than decision assumptions. Thus

it is important to research the possibility of constructing LTDFs based on a search

assumption.

4.1.2 Our Result

In this chapter, though we do not construct LTDFs based on the factoring assump-

tion, we construct an adversary dependent lossy trapdoor function (ad-LTDF), which

is a new notion we introduce, based on the factoring assumption w.r.t. semi-smooth

RSA subgroup (SS) moduli, which are RSA moduli of a special form [Gro05]. Then

we show that ad-LTDFs can replace LTDFs in many applications. As a result, we im-

mediately obtain factoring-based cryptographic primitives including a hash function,

PKE scheme and DPKE scheme. Besides direct applications of ad-LTDFs, by using

similar technique, we construct CCA secure PKE scheme with compact ciphertext

based on the factoring assumption w.r.t. SS moduli. More details are given in the

following.

Adversary-dependent lossy trapdoor function. We first reconsider the defini-

tion of LTDFs, and introduce a notion of an ad-LTDF, which is a weaker variant

of an LTDF. Intuitively, an LTDF is a computationally indistinguishable pair of an

injective and lossy functions. Here, the description of lossy functions should be fixed
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by the scheme. On the other hand, for ad-LTDFs, we allow a description of lossy

function to depend on an adversary. That is, we only require that for any efficient

adversary A there exists a lossy function that A cannot distinguish from an injective

function. We observe that this significant relaxation does not harm the security of

many LTDF-based cryptographic constructions. This is because in many LTDF-based

schemes, lossy functions are used only in security proofs and they do not appear in

the real scheme. This means that even if lossy functions depend on an adversary,

we can still prove the security of the scheme. By this observation, we can see that

ad-LTDFs can replace LTDFs in many applications.

Moreover, we construct an ad-LTDF based on the factoring assumption w.r.t. SS

moduli, which is introduced by Groth [Gro05]. As a result, we can instantiate many

LTDF-based constructions based on the factoring assumption w.r.t. SS moduli. The

intuition of the construction of the ad-LTDF is given in Sec. 4.1.3.

Applications of ad-LTDFs. As stated above, ad-LTDFs can replace LTDFs in

many applications, and we give a construction of an ad-LTDF under the factoring

assumption w.r.t. SS moduli. Thus we immediately obtain new factoring-based con-

structions of many cryptographic primitives such as a collision resistant hash function,

CPA/CCA secure PKE scheme and a DPKE scheme. Among them, the DPKE scheme

obtained by this way is the first factoring-based scheme that satisfies the PRIV secu-

rity for block-sources, which is defined in [BFO08], without relying on any decision

assumption.

Table 4.1. Comparison among CCA secure PKE schemes based on the factoring

assumption: ℓN is the bit-length of an underlying composite number

N , ℓMAC denotes the bit-length of a message authentication code, Fac-

toring SS denotes the factoring assumption w.r.t. SS moduli, and we

assume that an exponentiation with an exponent of length ℓ can be

computed by 1.5ℓ multiplications.

Schemes Ciphertext Public Computational cost for Assumption

overhead key size encryption decryption

(bit) (bit) (mult) (mult)

[HK09b] 2ℓN 3ℓN 3ℓN + 3.5λ 1.5ℓN + 10.5λ Factoring

[MLLJ11] 2ℓN 3ℓN 18.5λ 18λ Factoring SS

Ours ℓN + ℓMAC O(λ2ℓN/ log λ) O(λℓ2N/ log λ) O(λℓ2N/ log λ) Factoring SS
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CCA secure PKE with short ciphertext. Besides direct applications of ad-

LTDFs, we construct a CCA secure PKE scheme whose ciphertext overhead is the

shortest among schemes based on the factoring assumption w.r.t. SS moduli. Table

4.1 shows the efficiency of CCA secure PKE schemes based on the factoring assump-

tion. Among existing schemes, the scheme proposed by Hofheinz and Kiltz [HK09b]

is one of the best in regard to the ciphertext overhead, which consists of 2 elements

of Z∗N . Mei et al. [MLLJ11] improved the efficiency of the Hofheinz-Kiltz scheme

[HK09b] in regard to encryption and decryption costs by using SS moduli. However,

they did not improve the ciphertext overhead. In contrast, the ciphertext overhead

of our scheme consists of only 1 element of Z∗N and a message authentication code

(MAC), whose bit-length can be much smaller than that of N . By giving a con-

crete parameter, the ciphertext overhead of our scheme is 1360-bit for 80-bit security

whereas that of [HK09b] is 2048-bit. On the other hand, the public key size of our

scheme is much larger than that of [HK09b], and an encryption and decryption are

much less efficient than those in [HK09b]. We note that the reduction from the CCA

security of our scheme to the factoring assumption w.r.t. SS moduli is quite loose,

but all known CCA secure PKE scheme based on the factoring assumption (including

[HK09b, MLLJ11]) also require loose reductions because they require Blum-Blum-

Shub pseudo-random number generator [BBS86].

We note that there is a strong negative result for a CCA secure PKE scheme

whose ciphertext overhead is less than 2 group elements in a prime order setting

[HMS12]. Even in a composite order setting, there are only a few CCA secure PKE

schemes whose ciphetext overhead is less than 2 group elements, all of which rely on a

subgroup decision assumption [HK07, KPSY09, HK09a] or an interactive assumption

[KMO10] stronger than the factoring assumption. Ours is the first scheme to overcome

this bound based solely on the factoring assumption (though our assumption is the

factoring assumption w.r.t. SS moduli, which may not be considered standard).

4.1.3 Our Technique

Difficulty of constructiing LTDFs based on a search assumption. Before

explaining our technique, we first explain why it is difficult to construct LTDFs based

on a search assumption. Recall that an LTDF is a computationally indistinguishable

pair of injective and lossy functions. Apparently, the definition of LTDFs itself re-

quires the hardness of a decision problem. Thus for constructing LTDFs based on

a search assumption, we have to rely on some “search-to-decision” reduction. As a
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general technique for such a reduction, there is the Goldreich-Levin hardcore theo-

rem [GL89], which enables us to extract “pseudorandomness” from hardness of any

search problem. However, the Goldreich-Levin hardcore bit destroys algebraic struc-

tures of original problems. On the other hand, considering existing constructions

of LTDFs, algebraic structures of underlying problems are crucial for constructing

LTDFs. Thus, for constructing LTDFs based on search assumptions, we have to

establish another “search-to-decision” reduction technique that does not hurt under-

lying algebraic structures. In the context of lattice problems, this has been already

done. Namely, it is shown that search-LWE and decision-LWE assumptions are equiv-

alent [Reg05]. Thus LTDFs can be constructed based on the search-LWE assumption.

However, there is no known such a reduction in the context of the factoring problem.

Namely, we have no reduction from decision assumptions such as QR, DCR, or more

general subgroup decision assumptions to the factoring assumption.

New search-to-decision reduction technique. The core of this work is to give

a new search-to-decision reduction technique in the context of factoring w.r.t. SS

moduli. Namely, we introduce a new decision assumption that we call the adversary-

dependent decisional RSA subgroup (ad-DRSA) assumption, and reduce the ad-

DRSA assumption to the factoring assumption w.r.t. SS moduli. In the following, we

explain the technique in more detail.

We say that a composite number N is an SS modulus if it can be written as

N = PQ = (2pp′ + 1)(2qq′ + 1), where P and Q are primes with the same length, p

and q are “smooth” numbers (i.e., products of distinct small primes) and p′ and q′ are

relatively large primes. Then the group of quadratic residues QRN is a cyclic group of

order pqp′q′, and has many subgroups since pq is smooth. With respect to SS moduli,

Groth [Gro05] proposed the decisional RSA subgroup (DRSA) assumption , which

claims that any PPT adversary cannot distinguish a random element of G from that

of QRN where G is the unique subgroup of QRN of order p′q′.

Our first observation is that if there exists an algorithm that breaks the DRSA

assumption, then one can find at least one small prime that divides Φ(N). This

can be seen by the following argument: Assume that all prime factors of pq are

of ℓB-bit length. (Since pq is smooth, ℓB is relatively small. Especially, we set

ℓB = O(log λ).) Recall that the DRSA assumption claims that any PPT algorithm

cannot distinguish a random element of G from that of QRN . This is equivalent to

that the distributions of gp1...pM and g are indistinguishable where g
$← QRN and

p1, . . . , pM are the all ℓB-bit primes (and thus M is the number of the all ℓB-bit
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primes). If there exists an algorithm A that breaks the DRSA assumption, then it

distinguishes these two distributions. Thus, by the hybrid argument, there exists

j ∈ [M ] such that A distinguishes the distribution of gp1...pj−1 from gp1,...pj . By using

A, one can find this pj by the exhaustive search since M is polynomial in the security

parameter in our parameter setting. (See Sec. 4.3 for more detail.) For this pj , we

have pj |Φ(N) (with overwhelming probability) since otherwise pj-th power on QRN
is a permutation on the group and thus distributions of gp1...pj−1 and gp1,...pj are

completely identical. The above argument proves that if there exists an algorithm

that breaks the DRSA assumption, then one can find at least one small prime that

divides Φ(N). However, this fact states nothing about the reduction from the DRSA

assumption to the factoring assumption since even if one can find one small prime p

that divides Φ(N), we do not know how to factorize N .

Here, we relax the DRSA assumption to define the adversary-dependent decisional

RSA subgroup (ad-DRSA) assumption. Intuitively, the ad-DRSA assumption claims

that for any PPT adversary A, there exists a subgroup SA of QRN such that A
does not distinguish a random element of SA from that of QRN . More precisely,

the ad-DRSA assumption is parametrized by an integer m ≤ M , and m-ad-DRSA

assumption claims that for any PPT algorithm A, there exists at least one choice

of p1, . . . pm out of all ℓB-bit primes such that A cannot distinguish gp1...pm from g

where g
$← QRN . By this definition, if there exists a PPT algorithm A that breaks

the m-ad-DRSA assumption, then A distinguishes gp1...pm from g for all choices of

p1, . . . , pm. If m is sufficiently smaller than M , then there exists “many” choices of

p1, . . . , pm and thus one can find “many” primes that divides Φ(N): One can find at

least one such prime for each choice of p1, . . . , pm by the similar method as in the

case of the DRSA assumption. Then the product of these primes is a large divisor

of Φ(N) and thus one can factorize N by using the Coppersmith theorem [Cop96],

which claims that if one is given a “large” divisor of Φ(N), then one can factorize N

efficiently. Thus, the m-ad-DRSA assumption is reduced to the factoring assumption.

Remark 11. We remark that if m is so small that there exists a choice of p1, . . . , pm,

all of which are coprime to Φ(N), then the m-ad-DRSA assumption is trivial since

in that case g and gp1...pm are distributed identically. We show that there exists

a parameter choice such that m-ad-DRSA assumption is non-trivial and it can be

reduced to the factoring assumption simultaneously.

How to use the ad-DRSA assumption. As explained above, we show a reduction

from the ad-DRSA assumption, which is a certain type of a subgroup assumption,

to the factoring assumption. However, the ad-DRSA assumption is not an ordinary
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subgroup decision assumption: Roughly speaking, it only claims that for any PPT

adversary A, there exists a subgroup SA ∈ QRN such that A cannot distinguish

random elements of SA from QRN . Therefore, it cannot be used for constructions

where elements of a subgroup are used in the real descriptions of the scheme. On

the other hand, if elements of a subgroup are used only in the security proof, the

ad-DRSA assumption suffices. We give two examples of such cases.

One is ad-LTDFs. As explained in Sec. 4.1.2, ad-LTDFs is a relaxation of LTDFs

such that descriptions of lossy functions can depend on an adversary. For constructing

ad-LTDFs based on the ad-DRSA assumption, we simply imitate the construction

by Xue et al. [XLL+13], who constructed LTDFs based on the (standard) DRSA

assumption. We observe that in their construction, the descriptions of injective func-

tions consist only of elements of QRN , and elements of its subgroup are used only in

the descriptions of lossy functions. Therefore even if we replace the DRSA assumption

with the ad-DRSA assumption, only lossy functions depend on an adversary. This

meets the definition of the ad-LTDFs.

The other is the hash-proof system-based CCA secure public key encryption. Hofh-

eniz and Kiltz [HK07] introduced the concept of constraind CCA (CCCA) security,

and showed efficient constructions of CCA secure public key encryption schemes based

on a hash proof system, which can be constructed from any subgroup decision as-

sumption [CS02]. Though elements of a subgroup are used in the real protocol of

their original construction, it is easy to see that even if elements of a subgroup are

replaced with those of a larger group, the scheme is still secure because they are in-

distinguishable by the assumption. Thus that scheme can be instantiated based on

the ad-DRSA assumption.

4.1.4 Discussion

Plausibility of the factoring assumption w.r.t. SS moduli. Here, we discuss

the plausibility of the assumption we used. SS moduli was first introduced by Groth

[Gro05] in 2005 and they have been used in some works [MLLJ11, XLL+13, YYN+14].

All of these works assume the factoring assumption w.r.t. SS moduli (or more stronger

assumptions). On the other hand, in 2011, Coron et.al. [CJM+11] gave a cryptanaly-

sis against the Groth’s work [Gro05]. However, they did not improve attacks against

SS moduli. Thus, we can say that SS moduli has attracted a certain amount of atten-

tion in the sense of both constructions and cryptanalysis, but no fatal attack is found

thus far. Therefore we believe that the hardness of factoring SS moduli is rather

reliable.
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Interpretation of our result. In this chapter, we constructed a weaker variant

of LTDF (ad-LTDF) based on the factoring assumption w.r.t. SS moduli. One may

wonder how meaningful our result is since an SS modulus is not an RSA modulus

of a standard form. We believe that our result is meaningful in terms of that we

constructed an “LTDF-like primitive” (ad-LTDF), which can replace LTDFs in many

applications, based on a search assumption (factoring w.r.t. SS moduli) rather than

a decision assumption. Although the application given in this chapter is limited to

the case of SS moduli, we hope that our new search-to-decision reduction technique

can be extended to other general settings.

Limitation of ad-LTDFs. Though ad-LTDFs can replace LTDFs in many cases,

there exist some LTDF-based primitives that cannot be obtained from ad-LTDFs. A

typical example is the oblivious transfer protocol proposed by Peikert and Waters

[PW08]. The reason why we cannot construct the scheme based on ad-LTDFs is

that in the scheme, a lossy function is explicitly required. Specifically, a receiver

sends a pair of injective and lossy functions to a sender. Since we cannot specify a

lossy function before fixing an adversary, we cannot instantiate this scheme based on

ad-LTDFs.

4.1.5 Related Work

Factoring based CCA secure PKE schemes. In 2009, Hofheinz and Kiltz

[HK09b] proposed the first practical CCA secure PKE scheme under the factoring

assumption in the standard model. After that, many variants of the scheme are pro-

posed thus far [MLLJ11, LLML12, LLL13, YYN+14]. However, none of them improve

the ciphertext overhead of the scheme. On the other hand, the ciphretext overhead

of our proposed scheme is shorter than those of them.

4.2 Preliminaries

4.2.1 Known Lemmas

Here, we review known lemmas used in this chapter. First, we review a simple variant

of the Hoeffding inequality [Hoe63].

Lemma 11. (Hoeffding inequality) Let D1 and D2 be probability distributions over
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{0, 1}. Let X1, . . . , XK be K independent random variables with the distribution D1

and Y1, . . . , YK be K independent random variables with the distribution D2. If we

define ϵ := |Pr[X = 1 : X
$← D1]− Pr[Y = 1 : Y

$← D2]|, then Pr[| |Σ
K
k=1Xk−ΣK

i=kYk|
K −

ϵ| ≥ δ] ≤ 4e−δ
2K/2 holds.

The following is the generalized leftover hash lemma [DORS08].

Lemma 12. (Generalized leftover hash lemma) Let X ∈ {0, 1}n1 and Y be random

variables. Let H be a family of pairwise independent hash function from {0, 1}n1 to

{0, 1}n2 . Then we have ∆((H(X),H, Y ), (U,H, Y )) ≤ δ where H
$← H as long as

H̃∞(X|Y ) ≥ n2 + 2 log(1/δ).

The following is the “crooked version” of the above lemma proven by Boldyreva et

al. [BFO08].

Lemma 13. (Generalized crooked leftover hash lemma [BFO08, Lemma7.1]) Let X ∈
{0, 1}n and Y be random variables. Let H be a family of pairwise independent hash

function from {0, 1}n to R and f be a function from R to S. Then for H
$← H, we have

∆((f(H(X)),H, Y ), (f(U),H, Y )) ≤ δ as long as H̃∞(X|Y ) ≥ log |S|+2 log(1/δ)−2.

Finally, we review the Coppersmith theorem about bivariate integer equations. The

following lemma is a special case of [Cop96, Theorem 3].

Lemma 14. Let p(x, y) = a+ bx+ cy be a polynomial over Z. For positive integers

X,Y and W = max{a, bX, cY }, if XY < 2−8 ·W holds, then one can find all solutions

(x0, y0) such that p(x0, y0) = 0, |x0| < X and |y0| < Y in time polynomial in log2W .

4.3 Semi-smooth RSA subgroup modulus

Here, we define a semi-smooth RSA subgroup modulus (SS modulus) and state its

properties. For integers ℓB , tp and tq, We say that N = PQ = (2pp′ + 1)(2qq′ + 1)

is an (ℓB , tp, tq)-semi-smooth RSA subgroup ((ℓB , tp, tq)-SS) modulus if the following

conditions hold.

• P and Q are distinct prime numbers with the same length that satisfy gcd(P −
1, Q− 1) = 2.

• p′ and q′ are distinct primes larger than 2ℓB .

• p and q are products of tp and tq distinct ℓB-bit primes. Here, an ℓB-bit

prime means a prime number between 2ℓB−1 and 2ℓB . We note that we have

gcd(p, q) = 1 since we have gcd(P − 1, Q− 1) = 2.
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We define t := tp+tq. Let PℓB be the set of all ℓB-bit primes, andMℓB := |PℓB |. We

define the group of quadratic residues as QRN := {u2 : u ∈ Z∗N}. This is a subgroup

of Z∗N , and a cyclic group of order pqp′q′. Then there exists unique subgroups of

order p′q′ and pq, and we denote them by G and G⊥ respectively. Then we have

QRN = G × G⊥. That is, for any element g ∈ QRN , we can uniquely represent

g = g(G)g(G⊥) by using g(G) ∈ G and g(G⊥) ∈ G⊥. Moreover, if the factorization

of N is given, then we can compute g(G) and g(G⊥) from g efficiently.

When N is an SS modulus, we cannot say that a random element g of QRN is

a generator (i.e., ord(g) = pqp′q′) with overwhelming probability. However, we can

prove that g has an order larger than a certain value with overwhelming probability.

Lemma 15. ([Gro05, Lemma2]) Let N be an (ℓB , tp, tq)-SS modulus. For any integer

d < t if (t21−ℓB )d+1

(1−t21−ℓB )(d+1)!
is negligible, then Pr[ord(g) ≥ p′q′2(t−d)(ℓB−1) : g $← QRN ] is

overwhelming. Especially, Pr[ord(g(G⊥)) ≥ 2(t−d)(ℓB−1) : g
$← QRN ] is overwhelm-

ing.

When ℓB is small, ord(G⊥) is smooth, and therefore the discrete logarithm on the

group can be solved efficiently by the Pohlig-Hellman algorithm [PH78].

Lemma 16. ([Gro05]) If ℓB = O(log λ), then the discrete logarithm problem on G⊥

can be solved efficiently. More precisely, there exists a PPT algorithm that, given an

(ℓB , tp, tq)-SS modulus N , g ∈ G⊥ and gx, outputs x mod ord(g).

By combining the above lemmas, we obtain the following lemma.

Lemma 17. Let N be an (ℓB , tp, tq)-SS modulus and we assume ℓB = O(log(λ)).

If (t21−ℓB )d+1

(1−t21−ℓB )(d+1)!
is negligible and x ≤ 2(t−d)(ℓB−1) holds, then there exists a PPT

algorithm PLog that, given P ,Q, g, gx, outputs x with overwhelming probability where

g
$← QRN .

Hardness assumptions. Here, we give definitions of two hardness assumptions.

Let IGen be an algorithm that is given the security parameter 1λ and outputs an

(ℓB , tp, tq)-SS modulus with its factorization. We first define the factoring assumption.

Definition 12. We say that the factoring assumption holds with respect to IGen if

for any PPT algorithm A, Pr[A(N) ∈ {P,Q} : (N,P,Q)← IGen(1λ)] is negligible.

Next, we define the decisional RSA subgroup (DRSA) assumption proposed by

Groth [Gro05]. This assumption claims that any PPT algorithm cannot distinguish

a random element of G from that of QRN . We note that actually we do not use

this assumption in this dissertation. We include this only for the information of the
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reader.

Definition 13. We say that the decisional RSA subgroup (DRSA) assumption holds

with respect to IGen if for any PPT algorithm A, |Pr[1 ← A(N, g) : (N,P,Q) ←
IGen(1λ); g

$← QRN ]− Pr[1← A(N, g) : (N,P,Q)← IGen(1λ); g
$← G]| is negligible.

Attacks. We review factoring attacks against SS moduli as discussed in [Gro05].

As shown in [Gro05], by using Pollard’s ρ-method [Pol75], we can factorize an SS

modulus in time Õ(min(
√
p′,
√
q′)). As another method, by using Naccache et al.’s

algorithm [NS98], if a divisor of P − 1 or Q − 1 larger than N1/4 is given, then N

can be factorized efficiently. Thus ℓB should be large enough so that it is difficult

to guess a significant portion of factors of p or q. In 2011, Coron et al. [CJM+11]

proposed a new factoring algorithm for a certain class of RSA moduli that includes SS

moduli. For the case of SS moduli, their algorithm work in time Õ(min(
√
p′,
√
q′)),

which matches the time complexity of Pollard’s ρ-method. As observed in [Gro05],

other methods such as the baby-step giant-step algorithm [Sha71], Pollard’s λ-method

[Pol78] or Pollard’s p− 1 method [Pol74] require O(min(p′, q′)) time.

The above attacks use the structure of SS moduli. On the other hand, there are

algorithms such as the elliptic curve method [Len87] or the general number field

sieve [CP05], which can be applied to general RSA moduli. Among these algorithms,

general number field sieve is asymptotically the most efficient and its heuristic running

time is exp((1.92 + o(1)) ln(N)1/3 ln ln(N)2/3).

Parameter settings. Here, we discuss parameter settings of SS moduli. We have

to set parameters to avoid the above attacks. We first give an asymptotic parameter

setting. We set ℓp′ = ℓq′ = O(λ), ℓB = ⌊4 log λ⌋ and tp = tq = O(λ3/ log λ) (then

we have ℓN ≈ ℓp′ + ℓq′ + tℓB = O(λ3)). In this setting, we have MℓB = O(λ4/ log λ)

by the prime number theorem and thus there exists exponentially many choices of p

and q. If we set d := ⌊t/4⌋, then (t21−ℓB )d+1

(1−t21−ℓB )(d+1)!
is negligible*1. We use the fact that

in this parameter setting, given N , g ∈ QRN and p1, . . . , pm for m ≤ MℓB , g
p1...pm

can be computed in polynomial time in λ. This is because we have m ≤ MℓB =

O(λ4/ log(λ)) and p1 . . . pm ≤ 2ℓBMℓB = 2O(λ4), and thus p1 . . . pm-th power can

be computed by O(λ4) multiplications. We use this asymptotic parameter setting

throughout the chapter. As a concrete parameter, Groth [Gro05] proposed to set

ℓ′p = ℓ′q = 160, ℓB = 15, tp = tq = 32 and d = 7 for 80-bit security (then we

have ℓN = 160 · 2 + 15 · 2 · 32 = 1280). We use this parameter for the construction

*1 In fact, d can be set as d := ⌊ct⌋ for any small enough constant c.
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of CCA secure PKE scheme with compact ciphertext (Section 4.8). However, this

parameter does not give us enough lossiness in the construction of ad-LTDFs. Thus

we propose to set ℓ′p = ℓ′q = 160, ℓB = 15, tp = tq = 70 and d = 8 (then we have

ℓN = 160 · 2+ 15 · 2 · 70 = 2420) for 80-bit security for other applications (Sec. 4.5 to

4.7). We note that the number of ℓB = 15-bit primes is 1612. Therefore the possible

choice of t = 64 or 140 primes out of them is much larger than 280 and thus it is hard

to guess the significant portion of their factors.

4.4 Adversary-dependent Decisional RSA Subgroup

Assumption

In this section, we generalize the DRSA assumption. Specifically, we define the m-

adversary-dependent decisional RSA subgroup (m-ad-DRSA) assumption for any in-

teger m ≤ MℓB with respect to (ℓB , tp, tq)-SS moduli. Intuitively, this assumption

claims that for any PPT algorithm A, there exist distinct ℓB-bit primes p1, . . . , pm

such that A does not distinguish g from gp1...pm where g is a random element of QRN .

We prove that under a certain condition, the m-ad-DRSA assumption holds under

the factoring assumption.

First we give the precise definition of the m-ad-DRSA assumption.

Definition 14. Let IGen be a PPT algorithm that generates an (ℓB , tp, tq)-SS RSA

modulus. We say that for any integer m ≤ MℓB , the m-adversary-dependent deci-

sional RSA subgroup (m-ad-DRSA) assumption holds with respect to IGen if for any

noticeable function ϵ and PPT algorithm A, there exists a PPT algorithm SA,ϵ that

is given (ℓB , tp, tq)-SS RSA modulus N and outputs distinct ℓB-bit primes p1, . . . , pm,

such that the following is satisfied. If we let

P0 := Pr

[
1← A(N, g) : (N,P,Q)← IGen(1λ)

g
$← QRN

]

P1 := Pr

1← A(N, gp1...pm) :

(N,P,Q)← IGen(1λ)

g
$← QRN

{p1, . . . , pm} ← SA,ϵ(N)


then we have |P0 − P1| ≤ ϵ(λ) for sufficiently large λ.

Remark 12. One may think that the assumption defined above cannot be used for

proving security of any cryptographic scheme since ϵ is noticeable. However, an im-

portant remark here is that ϵ can be an arbitrary noticeable function. Thus, in security
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proofs, we can set ϵ depending on an adversary A’s advantage against the scheme that

we want to prove secure, such that ϵ is smaller than the advantage of A (for infinitely

many security parameters). This can be done if A breaks the security of the scheme

since in these cases, the advantage of A should be non-negligible. See security proofs

in Sec. 4.7 and 4.8 to see this argument indeed works.

Remark 13. In the above definition, if m is so small that there exists a choice of

p1, . . . , pm, all of which are coprime to Φ(N), then gp1...pm is distributed uniformly on

QRN . In this case, m-ad-DRSA assumption is trivial. This occurs if and only if we

have MℓB−m ≥ t. In this chapter, we set m to be relatively large so that m-ad-DRSA

assumption is non-trivial. (See Remark 14.)

The following theorem claims that the m-ad-DRSA assumption holds under the

factoring assumption if m is small enough.

Theorem 11. Let IGen be a PPT algorithm that generates an (ℓB , tp, tq)-SS RSA

modulus where ℓB = O(log λ). If the factoring assumption holds with respect to IGen

and there exists a constant c such that (MℓB −m + 1)(ℓB − 1) ≥ (1/2 + c)ℓN holds,

then the m-ad-DRSA assumption holds with respect to IGen.

Remark 14. If we set m := ⌊MℓB + 1 − (1/2 + c)ℓN/(ℓB − 1)⌋ for sufficiently

small c, then by the above theorem, the m-ad-DRSA assumption holds under the

factoring assumption. Moreover, by setting the parameter as given in 4.3, we have

MℓB −m ≈ (1/2 + c)ℓN/(ℓB − 1) ≈ (1/2 + c)(ℓp′ + ℓq′ + tℓB)/ℓB ≤ t for sufficiently

large λ if c < 1/2 since t = O(λ3/ log λ) and ℓp′ = ℓq′ = O(λ). Thus the m-ad-DRSA

assumption is non-trivial.

Before proving the theorem, we prepare a lemma related to the Coppersmith attack.

Though a heuristic proof appeared in [NS98], to the best of our knowledge, this has

not been proven rigorously in the literature.

Lemma 18. Let P and Q be primes with the same length and N = PQ. Let e be

a divisor of Φ(N) = (P − 1)(Q − 1). If there exists a positive constant c such that

e > N1/2+c holds, then there exists a polynomial time algorithm that is given N and

e, and factorizes N .

Proof. We define e1 and e2 such that e = e1e2, e1|P − 1 and e2|Q − 1. (Note that

we cannot always compute e1 and e2 from e.) Then we can write P = e1k1 + 1 and

Q = e2k2+1 by using integers k1 and k2. Then we have N = PQ = (e1k1+1)(e2k2+

1) = ek1k2 + e1k1 + e2k2 + 1. Therefore if we define p(x, y) = N + ex + y, then
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p(x, y) = 0 has a solution (x0, y0) = (−k1k2,−(e1k1 + e2k2 + 1)). Let X := N1/2−c,

Y := 3N1/2 and W := max(N, eX, Y ). One can see that |x0| < X, |y0| < Y and

XY = 3N1−c < 2−8 ·N ≤ 2−8 ·W hold (for sufficiently large N). Therefore one can

compute the solution (x0, y0) = (−k1k2,−(e1k1 + e2k2 + 1)) in polynomial time in

logN by Lemma 14. Then one can compute P +Q = e1k1 + e2k2 + 2 = −y0 + 1 and

factorize N .

Intuition for the proof of Theorem 11. Here, we give an intuition for the proof

of Theorem 11. We remark that the following argument is not a rigorous one. What

we have to do is to construct a PPT algorithm SA,ϵ that is given N and outputs

{p1, . . . , pm} such that A’s advantage to distinguish g from gp1...pm is smaller than

ϵ where g
$← QRN . Let list L := PℓB , which is the set of all ℓB-bit primes. First,

SA,ϵ randomly chooses m distinct primes {p1, . . . , pm} from L and test whether A’s
advantage to distinguish g from gp1...pm is smaller than ϵ or not. More precisely,

SA,ϵ approximates A’s advantage by iterating the execution of A(g) and A(gp1...pm)

for independently random g
$← QRN a number of times and counting the number

that each of them outputs 1. We denote the approximated advantage by ϵ′. Due to

the Hoeffding inequality [Hoe63], the approximation error can be made smaller than

ϵ/4 by polynomial times iterations since ϵ is noticeable. If ϵ′ < ϵ/2, then A’s real

advantage is smaller than 3ϵ/4 < ϵ and thus SA,ϵ outputs {p1, . . . , pm} and halts.

Otherwise, A’s advantage to distinguish g from gp1...pm is larger than ϵ/4. Then

there exists pj such that A’s advantage to distinguish gp1...pj−1 from gp1...pj is larger

than ϵ/(4m) by the hybrid argument. SA,ϵ can find this pj in polynomial time since

ϵ/(4m) is noticeable. We remark that we have pj |Φ(N). This is because, otherwise

A’s advantage to distinguish gp1...pj−1 from gp1...pj is 0 since their distributions are

completely identical and thus ϵ′ should be smaller than ϵ/2. Then SA,ϵ removes pj

from L. Then it randomly chooses m distinct primes {p1, . . . , pm} from L again, and

do the same as the above. Then it outputs {p1, . . . , pm} and halts if approximated

A’s advantage to distinguish g from gp1...pm is smaller than ϵ/2, or otherwise removes

some pj′ |Φ(N) from L. SA,ϵ repeat this procedure many times. Assume that SA,ϵ
does not halts by the time it cannot choose m distinct primes from L. By that time,

MℓB −m+ 1 distinct ℓB-bit primes that divide Φ(N) are removed from L. Let e be

the product of them. Then we have e|Φ(N) and e ≥ 2(ℓB−1)(MℓB
−m+1) ≥ N1/2+c.

Therefore if e is given, then we can factorize N efficiently by Lemma 18. Thus under

the factoring assumption, SA,ϵ must output some {p1, . . . , pm} before |L| becomes

smaller than m with overwhelming probability, and A’s advantage to distinguish g

from gp1...pm is smaller than 3ϵ/4 < ϵ.



4.4 Adversary-dependent Decisional RSA Subgroup Assumption 73

Now we give the full proof of Theorem 11

Proof. (of Theorem 11) First, we prove the following two claims.

Claim 1. For any PPT algorithm A and a noticeable function δ, there exists a PPT

algorithm ApproxA,δ that satisfies the following. Let D1 and D2 be descriptions of

distributions that are samplable in polynomial time in λ, and ϵ := |Pr[1 ← A(X) :

X
$← D1] − Pr[1 ← A(X) : X

$← D2]|. Then ApproxA,δ(1
λ,D1,D2) outputs ϵ′ such

that |ϵ′ − ϵ| ≤ δ(λ) with overwhelming probability. (We say that ApproxA,δ succeeds

if it outputs such ϵ′.)

Proof. The construction of ApproxA,δ is as follows.

ApproxA,δ(1
λ,D1,D2) : For i = 1 to K where K := λ/δ(λ)2, choose Xi and Yi

according to D1 and D2, respectively, and run A(Xi) and A(Yi) for each i. Let
k1 be the number of the event that A(Xi) outputs 1 and k2 be the number of

the event that A(Yi) outputs 1. Output |k1 − k2|/K.

Since δ is noticeable, K is polynomial in λ and therefore ApproxA,δ is a PPT algo-

rithm. It can be seen by Lemma 11 that ApproxA,δ satisfies the desired property.

Claim 2. For any PPT algorithm A and a noticeable function ϵ, there exists a PPT

algorithm FindA,ϵ that satisfies the following. For any (ℓB , tp, tq)-SS RSA modulus

N and a set I = {p1, . . . , pm} of distinct ℓB-bit primes, if |Pr[1 ← A(N, g) : g
$←

QRN ]− Pr[1 ← A(N, gp1...pm) : g
$← QRN ]| > ϵ(λ) holds, then FindA,ϵ(N, I) outputs

pj ∈ I that divides Φ(N) with overwhelming probability. (We say that FindA,ϵ succeeds

if it outputs such pj or the inequality assumed is false.)

Proof. The construction of FindA,ϵ is as follows.

FindA,ϵ(N, I = {p1, . . . , pm}): Define distributions D0 := {(N, g) : g
$← QRN} and

Dj := {(N, gp1...pj ) : g $← QRN} (j = 1, . . . ,m). For j := 1 to m, repeat the

following.

Compute ϵ′ ← ApproxA,ϵ/(2m)(1
λ,Dj−1,Dj).

If ϵ′ > ϵ/(2m), then output pj and halt.

If it does not halt by the time the above loop is finished, then output ⊥.

First, we show FindA,ϵ is a PPT algorithm. Since m ≤ MℓB is polynomial in λ and

thus ϵ/(2m) is noticeable, ApproxA,ϵ/(2m) is a PPT algorithm. Therefore FindA,ϵ

is a PPT algorithm. We prove that FindA,ϵ satisfies the desired property. First,
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we assume that all executions of ApproxA,ϵ/(2m) called by FindA,ϵ succeed. The

probability that this assumption is satisfied is overwhelming since the number of

executions of ApproxA,ϵ/(2m) is polynomial in λ and each execution succeeds with

overwhelming probability. First, we prove that FindA,ϵ outputs any prime pj ∈ I if we

have |Pr[1← A(N, g) : g $← QRN ]− Pr[1← A(N, gp1...pm) : g
$← QRN ]| > ϵ. By the

hybrid argument, there exists j ∈ [m] such that |Pr[1← A(X) : X
$← Dj−1]−Pr[1←

A(X) : X
$← Dj ]| > ϵ/m holds. For such j, if we let ϵ′ := ApproxA,ϵ/(2m)(Dj−1,Dj),

then we have ϵ′ > ϵ/m − ϵ/(2m) = ϵ/(2m) and thus pj is output. Then we prove

that if pj is output by FindA,ϵ, then pj |Φ(N) holds. If pj does not divide Φ(N),

then pj is coprime to ord(QRN ), and especially pj-th power is a permutation on the

group {gp1...pj−1 : g ∈ QRN}. Therefore Dj−1 and Dj are completely the identical

distributions. Therefore we have |Pr[1← A(X) : X
$← Dj−1]− Pr[1← A(X) : X

$←
Dj ]| = 0. Thus if we let ϵ′ := ApproxA,ϵ/(2m)(Dj−1,Dj), then we have ϵ′ < ϵ/(2m),

and thus such pj cannot be output.

Then we go back to the proof of Theorem 11. For any PPT algorithm A and a

noticeable function ϵ, we construct a PPT algorithm SA,ϵ such that Pr[1← A(N, g) :
(N,P,Q)← IGen(1λ); g

$← QRN ]−Pr[1← A(N, gp1...pm) : (N,P,Q)← IGen(1λ); g
$←

QRN ; {p1, . . . , pm} ← SA,ϵ(N)] ≤ ϵ(λ) holds for sufficiently large λ. The construction

of SA,ϵ is as follows.

SA,ϵ(N) : Let L := PℓB . (Recall that PℓB is the set of all ℓB-bit primes.)

While |L| ≥ m, repeat the following.

Choose distinct ℓB-bit primes p1, . . . , pm from L randomly, and let I :=

{p1, p2, . . . , pm}, D0 := {(N, g) : g
$← QRN} and Dm := {(N, gp1...pm) :

g
$← QRN}. Compute ϵ′ ← ApproxA,ϵ/4(1

λ,D0,Dm). If ϵ′ < ϵ/2, then

output I and halts. Otherwise run p̃ ← FindA,ϵ/4(N, I). If p̃ ∈ L then

remove p̃ from L, otherwise remove a random element from L.

If it does not halt by the time the above loop finishes, then it outputs ⊥.

First, we prove that SA,ϵ(N) is a PPT algorithm. Since ϵ is noticeable, ApproxA,ϵ/4
and FindA,ϵ/4 are PPT algorithms. Moreover the number of repeat is at most MℓB −
m+ 1 ≤MℓB , which is polynomial in λ. Therefore SA,ϵ(N) is a PPT algorithm.

Then we prove that SA,ϵ(N) satisfies the desired property. In the following, we

assume that all executions of ApproxA,ϵ/4 and FindA,ϵ/4 called by SA,ϵ(N) succeed.

The probability that the above assumption holds is overwhelming since the number of

executions is polynomial and each execution succeeds with overwhelming probability.

If SA,ϵ outputs some I = {p1, . . . , pm}, then we have Pr[1 ← A(N, g) : g $← QRN ] −
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Pr[1 ← A(N, gp1...pm) : g
$← QRN ]| < ϵ′ + ϵ/4 < ϵ/2 + ϵ/4 = 3ϵ/4. Next, we prove

that for overwhelming fraction of N generated by IGen, the probability that SA,ϵ(N)

outputs ⊥ is negligible. First, we prove that in each repeat, p̃ that is removed from

L divides Φ(N). We let ϵ′ ← ApproxA,ϵ/4(1
λ,D0,Dm). If ϵ′ ≥ ϵ/2, then we have

|Pr[1 ← A(N, g) : g
$← QRN ] − Pr[1 ← A(N, gp1...pm) : g

$← QRN ]| > ϵ′ − ϵ/4 ≥
ϵ/2 − ϵ/4 = ϵ/4. Therefore FindA,ϵ/4(N, I) outputs pj ∈ I that divides Φ(N) since

it succeeds. Thus if SA,ϵ(N) outputs ⊥, then one ℓB-bit prime factor of Φ(N) is

removed from L in each repeat, and the repeat is done MℓB −m+1 times. Therefore

throughout the execution of SA,ϵ(N), MℓB −m + 1 distinct ℓB-bit prime factors of

Φ(N) are removed from L. If we let e be the product of these primes, then we have e >

(2ℓB−1)MℓB
−m+1 ≥ 2(1/2+c)ℓN > N1/2+c and e|Φ(N). By Lemma 18, we can factorize

N efficiently by using e. Therefore for overwhelming fraction of N generated by IGen,

the probability that SA,ϵ(N) outputs ⊥ is negligible under the factoring assumption.

Therefore for overwhelming fraction ofN generated by IGen, we have Pr[1← A(N, g) :
g

$← QRN ] − Pr[1 ← A(N, gp1...pm) : {p1, . . . , pm} ← SA,ϵ(N); g
$← QRN ]| < 3ϵ/4

with overwhelming probability over the randomness of SA,ϵ. Since ϵ is noticeable, by
the averaging argument, Pr[1← A(N, g) : (N,P,Q)← IGen(1λ); g

$← QRN ]−Pr[1←
A(N, gp1...pm) : (N,P,Q) ← IGen(1λ); g

$← QRN ; {p1, . . . , pm} ← SA,ϵ(N)] ≤ ϵ(λ)

holds for sufficiently large λ.

4.5 Adversary-dependent Lossy Trapdoor Function

In this section, we define ad-LTDFs. Then we give a construction of an ad-LTDF

based on the m-ad-DRSA assumption, which can be reduced to the factoring as-

sumption by Theorem 11.

4.5.1 Definition

Here we define ad-LTDFs. Intuitively, ad-LTDFs are defined by weakening LTDFs so

that descriptions of lossy functions that cannot be distinguished from those of injective

functions may depend on a specific distinguisher. Namely, the algorithm that gener-

ates lossy functions takes a “lossy function index” I as well as a public parameter as in-

put, and we require that for any PPT algorithm A, there exists at least one I such that

A does not distinguish lossy functions generated with index I from injective functions.

Moreover, we require that such I can be efficiently computed given A. The precise def-
inition is as follows. For integers n and k such that 0 < k < n, an (n, k)-ad LTDF con-
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sists of 5 algorithms (ParamsGen,SampleInj,SampleLossy,Evaluation, Inversion) with a

family {I(λ)}λ∈N of lossy function index sets.

ParamsGen(1λ)→ (PP, SP ) : It takes a security parameter 1λ as input, and outputs

a public parameter PP and a secret parameter SP .

SampleInj(PP )→ σ : It takes a public parameter PP as input, and outputs a func-

tion description σ, which specifies an injective function fσ over the domain

{0, 1}n.
SampleLossy(PP, I)→ σ: It takes a public parameter PP and a lossy function index

I ∈ I(λ) as input, and outputs a function index σ, which specifies a “lossy”

function fσ over the domain {0, 1}n.
Evaluation(PP, σ, x)→ fσ(x): It takes a public parameter PP , function description

σ and x ∈ {0, 1}n as input, and outputs fσ(x)

Inversion(SP, σ, y)→ f−1σ (y): It takes a secret parameter SP , a function description

σ and y and outputs f−1σ (y).

We require ad-LTDFs to satisfy the following three properties.

Correctness: For all x ∈ {0, 1}n, we have Inversion(SP, σ,Evaluation(PP, σ, x)) = x

with overwhelming probability where (PP, SP ) ← ParamsGen(1λ) and σ ←
SampleInj(PP ).

Lossiness: For all λ ∈ N, (PP, SP ) ← ParamsGen(1λ), I ∈ I(λ) and

σ ← SampleLossy(PP, I), the image of fσ has size at most 2n−k.

Indistinguishability between injective and lossy functions. Intuitively, we

require that for any PPT adversary A, there exists at least one lossy function index

I ∈ I(λ) such that A cannot distinguish an injective function from a lossy function

with the lossy function index I.

The more precise definition is as follows. For any PPT adversary A and noticeable

function ϵ(λ), there exists a PPT algorithm SA,ϵ that takes a public parameter PP

as input and outputs I ∈ I(λ) such that the following is satisfied. If we let
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Pinj := Pr

[
1← A(PP, σ) : (PP, SP )← ParamsGen(1λ)

σ ← SampleInj(PP )

]

Plossy := Pr

1← A(PP, σ) : (PP, SP )← ParamsGen(1λ)

I ← SA,ϵ(PP )
σ ← SampleLossy(PP, I)


then we have |Pinj − Plossy| ≤ ϵ(λ) for sufficiently large λ.

As mentioned in Remark 12, though ϵ must be noticeable in the above definition,

ad-LTDFs can be used for many cryptographic applications. This is because ϵ can be

set depending on the advantage of an adversary in security reductions.

Remark 15. Besides what is explained above, there is a minor difference between the

definition of ad-LTDFs and that of LTDFs. In the definition of ad-LTDFs, ParamsGen

is explicitly separated from SampleInj or SampleLossy, whereas there is no separation

between them in the definition of LTDFs [PW08]. This is only for simplifying the

presentation, and there is no significant difference here.

4.5.2 Construction

We construct an ad-LTDF based on the m-ad-DRSA assumption. Let IGen be an

algorithm that generates an ℓN -bit (ℓB , tp, tq)-SS RSA modulus with the parameter

given in Sec. 4.3 and n := (t− d)(ℓB − 1).

Definition of I(λ): I(λ) is defined as the set of allm-tuple of distinct primes of length

ℓB . That is, we define I(λ) := {{p1, . . . , pm} : p1, . . . , pm are distinct

ℓB bit primes}.
ParamsGen(1λ)→ (PP, SP ): Generate (N,P,Q) ← IGen(1λ), set PP := N and

SP := (P,Q), and output (PP, SP ).

SampleInj(PP = N)→ σ: Choose g
$← QRN and output σ := g.

SampleLossy(PP = N, I = {p1, . . . , pm})→ σ: Choose g
$← QRN and output σ :=

gp1...pm .

Evaluation(PP = N, σ = g, x ∈ {0, 1}n)→ fσ(x): Interpret x as an element of [2n]

and output gx.

Inversion(SP = (P,Q), σ = g, y)→ f−1σ (y): Compute x = PLog(P,Q, g, y) and out-

put x where PLog is the algorithm given in Lemma 17.
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Theorem 12. If the m-ad-DRSA assumption holds with respect to IGen, then the

above scheme is an (n, n− (ℓp′ + ℓq′ + (MℓB −m)ℓB))-ad-LTDF.

Then the following corollary follows by combining the above theorem and Theorem

11.

Corollary 1. If the factoring assumption holds with respect to IGen for the parameter

setting given in Sec. 4.3, then there exists an ad-LTDF.

Proof. (of Corollary 1.) Recall that we set ℓp′ = ℓq′ = O(λ), ℓB = ⌊4 log λ⌋, tp =

tq = O(λ3/ log λ) (then we have ℓN ≈ ℓp′ + ℓq′ + tℓB = O(λ3)) and d := t/4. We let

m := ⌊MℓB + 1 − (1/2 + c) ℓN
(ℓB−1)⌋ for a constant c < 1/4. Then we have (MℓB −

m+1)(ℓB − 1) ≥ (1/2+ c)ℓN and therefore the m-ad-DRSA assumption holds under

the factoring assumption by Theorem 11. Then we prove that the above ad-LTDF

for this m is non-trivial, i.e., we have n − (ℓp′ + ℓq′ + (MℓB − m)ℓB) > 0. Since

we have m ≈ MℓB − (1/2 + c) ℓN
(ℓB−1) , we have n − (ℓp′ + ℓq′ + (MℓB − m)ℓB) ≈

(t − d)ℓB − (ℓp′ + ℓq′ + (1/2 + c) ℓN ℓB
(ℓB−1) ) ≈ (1/4 − c)tℓB − (3/2 + c)(ℓp′ + ℓq′) > 0

for sufficiently large λ since tℓB = O(λ3) and ℓp′ + ℓq′ = O(λ). Thus the obtained

ad-LTDF for this m is non-trivial.

Remark 16. If we set ℓp′ = ℓq′ = 160, ℓB = 15, t = 64, d = 7 and ℓN = 2420 as

given in Sec. 4.3, and c = 1/20 then by setting m := ⌊MℓB + 1 − (1/2 + c) ℓN
(ℓB−1)⌋,

the obtained scheme is a (1848, 103)-ad-LTDF. If better lossiness is required, then one

may set t larger (as long as factorizing N is hard).

Then we prove Theorem 12.

Proof. (of Theorem 12)

Correctness. If g is generated by SampleInj, then it is a random element of QRN .

Thus Inversion((P,Q), g,Evaluation(N, σ, x)) = Inversion((P,Q), g, gx) = x holds by

the correctness of PLog given in Lemma 17.

Lossiness. Next, we prove that the above construction satisfies (n, n − (ℓp′ +

ℓq′ + (MℓB − m)ℓB))-lossiness. Let σ be a function description generated by

SampleLossy(N, I = {p1, . . . , pm}). What we should prove is that the image size of

fσ is at most 2ℓp′+ℓq′+(MℓB
−m)ℓB . There exists g ∈ QRN such that σ = gp1...pm , and

thus any output of fσ is an element of the group S := {hp1...pm : h ∈ QRN}. We

consider the order of S. S is a subgroup of QRN = G×G⊥ and p1 . . . pm is coprime

to ord(G) = p′q′. Therefore there exists a subgroup S⊥ of G⊥ such that S = G×S⊥.
We can see that ord(S⊥) is the product of some distinct ℓB-bit primes and coprime
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to p1 . . . pm by the definition. Therefore that is the product of at most MℓB −m such

primes, and can be bounded by 2(MℓB
−m)ℓB . Therefore the order of S is at most

2ℓp′+ℓq′+(MℓB
−m)ℓB .

Indistinguishability between injective and lossy functions. This immediately

follows from the m-ad-DRSA assumption. Indeed, clearly we have Pinj = P0 and

Plossy = P1 where P0 and P1 are defined in Def. 14, and the m-ad-DRSA assumption

requires |P0 − P1| < ϵ(λ) for sufficiently large λ.

4.6 Adversary-dependent All-but-one Lossy Trapdoor

Function.

In this section, we define adversary-dependent all-but-one lossy trapdoor functions

(ad-ABO) and construct it based on ad-LTDFs. Moreover we give more efficient

construction of ad-ABO based on the ad-DRSA assumption.

4.6.1 Definition

For integers n and k such that 0 < k < n, an (n, k)-adversary-dependent all-but-

one lossy trapdoor function (ad-ABO) consists of 5 algorithms (ParamsGen,SampleInj,

SampleABO,Evaluation, Inversion) and a family {I(λ)}λ∈N of lossy function index sets.

ParamsGen(1λ)→ (PP, SP ) : It takes a security parameter 1λ as input, and outputs

a public parameter PP and a secret parameter SP .

SampleInj(PP )→ σ : It takes a public parameter PP as input, and outputs a func-

tion description σ, which specifies an injective function fσ over the domain

{0, 1}n × {0, 1}ℓb .
SampleABO(PP, b∗, I)→ σ: It takes a public parameter PP , a lossy branch b ∈

{0, 1}ℓb and an all-but-one function index I ∈ I(λ) as input, and outputs a

function index σ, which specifies a “all-but-one” function fσ over the domain

{0, 1}n × {0, 1}ℓb .
Evaluation(PP, σ, b, x)→ fσ(x, b): It takes a public parameter PP , function descrip-

tion σ, a branch b and x ∈ {0, 1}n as input, and outputs fσ(x, b)

Inversion(SP, σ, b∗, b, y)→ x: It takes a secret parameter SP , a function description

σ,, b∗ ∈ {0, 1}ℓb ∪ ⊥, b and y and outputs the “inversion” x.
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We require ad-LTDFs to satisfy the following three properties.

Correctness:

1. For all x ∈ {0, 1}n and b ∈ {0, 1}ℓb , we have Inversion(SP, σ,⊥, b,Evaluation(PP,
σ, b, x)) = x with overwhelming probability where (PP, SP )← ParamsGen(1λ)

and σ ← SampleInj(PP ).

2. For all x ∈ {0, 1}n, b∗, b ∈ {0, 1}ℓb with b ̸= b∗ and I ∈ I(λ), we have

Inversion(SP, σ, b∗, b,Evaluation(PP, σ, b, x)) = x with overwhelming probabil-

ity where (PP, SP )← ParamsGen(1λ) and σ ← SampleABO(PP, b∗, I).

All-but-one lossiness: For all λ ∈ N, (PP, SP ) ← ParamsGen(1λ), b∗ ∈ B(λ),

I ∈ I(λ) and σ ← SampleABO(PP, b∗, I), the image of fσ(·, b∗) has size at most

2n−k.

Indistinguishability between injective and ABO functions. Intuitively, we

require that for any PPT adversary A, there exists at least one lossy function index

I ∈ I(λ) such that for all b∗ ∈ B(λ), A cannot distinguish an injective function from

an ABO function with the lossy branch b∗ and the lossy function index I.

The more precise definition is as follows. For any PPT adversary A and noticeable

function ϵ(λ), there exists a PPT algorithm SaboA,ϵ that takes a public parameter PP

and a lossy branch b∗ as input and outputs I ∈ I(λ) such that the following is satisfied.

For all b∗ ∈ B(λ), if we let

Pinj := Pr

[
1← A(PP, σ) : (PP, SP )← ParamsGen(1λ)

σ ← SampleInj(PP )

]

Pabo,b∗ := Pr

1← A(PP, σ) : (PP, SP )← ParamsGen(1λ)

I ← SA,ϵ,b∗(PP )
σ ← SampleLossy(PP, b∗, I)


then we have |Pinj − Pabo,b∗ | ≤ ϵ(λ) for sufficiently large λ.

4.6.2 Generic Construction

Here, We construct an ad-ABO based on an ad-LTDF. Let (ParamsGengltdf ,SampleInjgltdf ,

SampleLossygltdf ,Evaluationgltdf , Inversiongltdf) be an (n, k)- ad-LTDF

Definition of I(λ): I(λ) is the same as that of the underlying ad-LTDF.

ParamsGengabo(1
λ)→ (PP, SP ): Run (PP, SP ) ← ParamsGengltdf(1

λ) and output
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(PP, SP ).

SampleInjgabo(PP )→ σ: For all i ∈ [ℓb], generate σi,0, σi,1 ← SampleInjgltdf(PP ), and

output σ := {σi,j}i∈[ℓb],j∈{0,1}.
SampleABOgabo(PP, b

∗, I)→ σ: For all i ∈ [ℓb], generate σi,b∗i ← SampleLossygltdf
(PP, I) and σi,1−b∗i ← SampleInjgltdf(PP ), and output σ := {σi,j}i∈[ℓb],j∈{0,1}.

Evaluationgabo(PP, σ, b, x)→ fσ(x, b): For all i ∈ [ℓb], compute yi := Evaluationgltdf

(PP, σi,bi , x), and output y := {yi}i∈[ℓb].
Inversiongabo(SP, σ, b

∗, b, y)→ f−1σ (y): Find i ∈ [ℓb] such that b∗i ̸= bi, compute x :=

Inversionltdf(SP, σi,bi , yi) and output x.

Theorem 13. If the underlying scheme is an (n, n − r)-ad-LTDF, then the above

scheme is an (n, n− rℓB)-ad-ABO.

The proof is almost the same as the proof of generic construction of all-but-one lossy

trapdoor function from a lossy trapdoor function in [PW08]. Therefore we omit it.

4.6.3 Direct Construction

Here, we construct an ad-ABO based on the m-ad-DRSA assumption directly. Let

IGen be an algorithm that generates an ℓN -bit (ℓB , tp, tq)-SS RSA modulus with the

parameter given in Sec. 4.3 and n := (t−d)(ℓB−1)−ℓb
2 .

Definition of I(λ): I(λ) is defined as the set of allm-tuple of distinct primes of length

ℓB . That is, we define I(λ) := {{p1, . . . , pm} : p1, . . . , pm are distinct

ℓB bit primes}.
ParamsGen(1λ)→ (PP, SP ): Generate (N,P,Q) ← IGen(1λ), set PP := N and

SP := (P,Q), and output (PP, SP ).

SampleInj(PP = N)→ σ: Choose g, h
$← QRN and output σ := (g, h).

SampleABO(PP = N, b∗, I = {p1, . . . , pm})→ σ: Choose g, g′
$← QRN , set

h := g−b
∗
g′p1...pm and output σ := (g, h).

Evaluation(PP = N, σ = (g, h), b, x ∈ {0, 1}n)→ fσ(x): Interpret x as an element of

[2n] and output (gbh)x.

Inversion(SP = (P,Q), σ = (g, h), b∗, by)→ f−1σ (y): Compute x = PLog(P,Q, gbh, y)

and output x where PLog is the algorithm given in Lemma 17.

Theorem 14. If the m-ad-DRSA assumption holds with respect to IGen, then the

above scheme is an (n, n− (ℓp′ + ℓq′ + (MℓB −m)ℓB))-ad-ABO.

Proof.
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Correctness.

1. If σ = (g, h) is generated by SampleInj, then they are independently uni-

form elements of QRN . In particular, for any b ∈ {0, 1}ℓb , gbh is a uniform

element of QRN . Thus Inversion((P,Q), (g, h),⊥, b,Evaluation(N, σ, b, x)) =

Inversion((P,Q), gbh, (gbh)x) = x holds by the correctness of PLog given in

Lemma 17.

2. Let (N, (P,Q)) ← ParamsGen and σ = (g, h) ← SampleABO(N, b∗, I =

{p1, . . . , pm}) for some b∗ ∈ {0, 1}ℓb . Then g is a uniform element of QRN
and h = g−b

∗
g′p1...pm for g′

$← QRN . Then for any b ̸= b∗, we have

gbh = gb−b
∗
g′p1...pm . By Lemma 15, ord(g) has at least t − d distinct ℓb-bit

prime divisors. The number of these prime divisors that are not coprime

to b − b∗ is at most log2ℓB−1(b − b∗) ≤ ℓb/(ℓB − 1). We write p′1, . . . , p
′
s to

denote the all ℓb-bit divisors of ord(g) that are coprime to b − b∗. Then we

have s ≥ t − d − ℓb/(ℓB − 1). For each p′i, the probability that ord(gbh) is

comprime to p′i is 1/p
′
i ≤ 2−ℓB+1 and they are all independent. Then one can

see that there exists more than s/2 p′i such that p′i|ord(gbh) by similar analysis

as in [Gro05, Lemma3]. Therefore one can recover x from (gbh)x as long as

x ≤ 2
(t−d)(ℓB−1)−ℓb

2 ≤ (2ℓB−1)s/2.

All-but-one lossiness. Next, we prove that the above construction satisfies the

all-but-one lossiness property. Let σ = (g, h) be a function description generated

by SampleLossy(N, I = {p1, . . . , pm}). Then there exists g′ ∈ QRN such that h =

g−b
∗
g′p1...pm . In particular, we have gb

∗
h = g′p1...pm . Then any output of fσ(·, b∗) is

an element of the group S := {h′p1...pm : h′ ∈ QRN}. We consider the order of S. S

is a subgroup of QRN = G×G⊥ and p1 . . . pm is coprime to ord(G) = p′q′. Therefore

there exists a subgroup S⊥ of G⊥ such that S = G×S⊥. We can see that ord(S⊥) is

the product of some distinct ℓB-bit primes and coprime to p1 . . . pm by the definition.

Therefore that is the product of at most MℓB −m such primes, and can be bounded

by 2(MℓB
−m)ℓB . Therefore the order of S is at most 2(ℓp′+ℓq′ )(MℓB

−m)ℓB .

Indistinguishability between injective and all-but-one lossy functions. This

follows from the m-ad-DRSA assumption. Actually, for any PPT adversary A′ that
tries to distinguish these functions and any b∗ ∈ {0, 1}ℓb , we consider the following

adversary A′b∗ against the ad-DRSA assumption.

A′b∗(N, ḡ): Generate g
$← QRN , set h := gb

∗
ḡ, run A(N, (g, h)) and output as A
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outputs.

For any noticeable ϵ, let SgdrsaAb∗ ,ϵ
be the algorithm that is assumed to exist in Definition

14. If we let

P0 := Pr

[
1← A(N, g) : (N,P,Q)← IGen(1λ)

g
$← QRN

]

P1 := Pr

1← A(N, gp1...pm) :

(N,P,Q)← IGen(1λ)

g
$← QRN

{p1, . . . , pm} ← SgdrsaAb∗ ,ϵ
(N)


then we have |P0−P1| ≤ ϵ(λ) for sufficiently large λ by the definition of the ad-DRSA

assumption.

We let SaboA,ϵ,b∗ := SgdrsaA∗
b ,ϵ

. In the following, we show that it works well. If ḡ is a

uniform element of QRN , then h is a uniform on QRN and independent of g. Thus in

this case, A′b∗ simulates the environment for A where it is given an injective function.

On the other hand, if ḡ is generated as ḡ := ḡ′p1...pm where {p1, . . . , pm} ← SgdrsaA∗
b ,ϵ

,

then A′b∗ simulates the environment for A where it is given an all-but-one function

with lossy branch b∗ and index I := {p1, . . . , pm}.
Therefore if we let

Pinj := Pr

[
1← A(PP, σ) : (PP, SP )← ParamsGen(1λ)

σ ← SampleInj(PP )

]

Pabo,b∗ := Pr

1← A(PP, σ) : (PP, SP )← ParamsGen(1λ)

I ← SA,ϵ,b∗(PP )
σ ← SampleLossy(PP, b∗, I)


then we have Pinj = P0 and Pabo,b∗ = P1. Therefore we have |Pinj −Pabo,b∗ | ≤ ϵ(λ) for
sufficiently large λ as required.

4.7 Applications

Here we discuss applications of ad-LTDFs. As mentioned before, ad-LTDFs can

replace LTDFs in many applications. Informally, ad-LTDFs can replace LTDFs if a

lossy function is used only in the security proof and not used in the real protocol. In

such cases, a lossy function may depend on an adversary that tries to distinguish it

from an injective function since an adversary is firstly fixed in security proofs. As a
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result, we can immediately obtain a collision resistant hash function [PW08], a CPA

secure PKE scheme [PW08] and a DPKE scheme [BFO08] based on ad-LTDFs by

simply replacing LTDFs by ad-LTDFs. Among them, by using our ad-LTDF based

on the factoring assumption given in Sec. 4.5, we obtain the first DPKE scheme that

satisfies the PRIV security for block-sources defined in [BFO08] under the factoring

assumption.

4.7.1 Collision Resistant Hash Function

Here, we give an analogue of the collision resistant hash function in [PW08] based

on ad-LTDFs. In fact, our scheme is obtained by simply replacing LTDFs in the

scheme in [PW08] by ad-LTDFs. The concrete construction is as follows. Let

(ParamsGen,SampleInj,SampleLossy,Evaluation, Inversion) be an (n, k)-ad-LTDF and

H be a family of pairwise independent hash functions from {0, 1}k to {0, 1}κn where

κ := 2ρ+ δ, ρ < 1/2 is a constant that satisfies n− k ≤ ρn and δ is some constant in

(0, 1− 2ρ),

Gencrh(1
λ): Run (PP, SP ) ← ParamsGen(1λ) and σ ← SampleInj(PP ), and choose

H
$← H. Output a function description h := (H,PP, σ).

Evalcrh((H,PP, σ), x): Compute H(Evaluation(PP, σ, x)) and output it.

Theorem 15. The above hash function is collision resistant.

We omit the proof since this can be proven by modifying the proof in [PW08] in a

similar way as in Sec. 4.7.3.

4.7.2 CPA Secure Public Key Encryption

Here, we give an analogue of the CPA secure PKE scheme in [PW08] based on ad-

LTDFs. In fact, our scheme is obtained by simply replacing LTDFs in the scheme in

[PW08] by LTDFs. The concrete construction is as follows.

Let (ParamsGen,SampleInj,SampleLossy,Evaluation, Inversion) be an (n, k)-ad-LTDF

and H be a family of pairwise independent hash functions from {0, 1}n to {0, 1}ℓ,
where ℓ ≤ k − 2 log(1/δ) for some negligible δ. The construction of our scheme

PKE = (Gen,Enc,Dec) is as follows.

Key generation : Gen(1λ) generates (PP, SP ) ← ParamsGen(1λ) and σ ←
SampleInj(PP ). It also chooses a hash function H

$← H. It outputs a public

key PK = (PP, σ,H) and a secret key SK = (SP,H).
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Encryption : Enc takes as input a public key PK = (PP, σ,H) and a message msg ∈
{0, 1}ℓ. It chooses x

$← {0, 1}n, sets C1 := Evaluation(PP, σ, x) and C2 :=

msg ⊕H(x) and outputs C = (C1, C2)

Decryption : Dec takes as input a secret key SK = (SP,H) and a ciphertext

C = (C1, C2), computes x := Inversion(SP, σ,C1) and msg := C2 ⊕ H(x),

and outputs msg.

Theorem 16. The above scheme is CPA secure.

Proof. Assume that the scheme is not CPA secure. Then there exists a PPT adversary

A = (A1,A2) such that AdvCPAA,PKE(λ) is non-negligible. Then there exists a polynomial

poly such that for infinitely many λ, AdvCPAA,PKE(λ) > 1/poly(λ) holds. We consider the

following sequence of games.

Game 1 This is the original CPA game between A and the challenger C. That

is, C generates (PP, SP ) ← ParamsGen(1λ) and σ ← SampleInj(PP ),

and chooses H
$← H. Then C gives PK := (PP, σ,H), and A1 outputs

(msg0,msg1, st). Then C chooses b
$← {0, 1} and x

$← {0, 1}n, computes

C1 ← Evaluation(PP, σ, x) and C2 := msgb ⊕H(x) and gives C := (C1, C2) to

A2. Then A2(C, st) outputs b
′.

Game 2 This game is the same as the previous game except that σ is generated by

SampleLossy(PP, I), where intuitively, I is an index such that “it is difficult to

distinguish an injective function from a lossy function with index I for A”. To
describe this precisely, we consider the following PPT algorithm B.
B(PP, σ): Choose H

$← H, run (msg0,msg1, st)← A1(PP, σ,H), choose b
$←

{0, 1} and x
$← {0, 1}n, compute C1 ← Evaluation(PP, σ, x) and C2 :=

msgb ⊕ H(x), run b′ ← A2((C1, C2), st). If b = b′, then output 1, and

otherwise 0.

Let SB,1/(2poly) be the algorithm that is assumed to exist in the definition of

ad-LTDFs. (Note that B is a PPT algorithm and 1/(2poly) is noticeable.) In

this game, we let I ← SB,1/(2poly)(PP ) and σ ← SampleLossy(PP, I).

Game 3 This game is the same as the previous game except that C2 is set as C2 ←
msgb ⊕ U where U

$← {0, 1}ℓ.
Game 4 This game is the same as the previous game except that C2 is set as C2

$←
{0, 1}ℓ.

Let Ti be the event that b = b′ holds in Game i. By the definition, we have |Pr[T1]−
1/2| = AdvCPAA,PKE(λ). Then we prove the following lemmas.
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Lemma 19. For sufficiently large any λ, we have |Pr[T2]− Pr[T1]| ≤ 1/(2poly(λ)).

Proof. By the definition of ad-LTDFs, if we let

Pinj := Pr

[
1← B(PP, σ) : (PP, SP )← ParamsGen(1λ)

σ ← SampleInj(PP )

]

Plossy := Pr

1← B(PP, σ) : (PP, SP )← ParamsGen(1λ)

I ← SB,1/(2poly)(PP )
σ ← SampleLossy(PP, I)


then we have |Pinj − Plossy| ≤ 1/(2poly(λ)) for sufficiently large λ. It is clear that

Pinj = Pr[T1] and Plossy = Pr[T2] hold. Therefore the lemma follows.

Lemma 20. We have |Pr[T3]− Pr[T2]| ≤ δ.

In Lemma 12, we let X := x and Y := (PP, σ, fσ(X)). Then we have H̃∞(X|Y ) ≥
H̃∞(X|PP, σ) − (n − k) = k ≥ ℓ + 2 log(1/δ) since the size of the image of fσ is

at most 2n−k. Then by Lemma 12, we have ∆((H(X),H, Y ), (U,H, Y )) ≤ δ where

U
$← {0, 1}ℓ. Thus the lemma follows.

Lemma 21. We have Pr[T4] = Pr[T3].

Proof. This is clear since U is independently random string.

Lemma 22. We have Pr[T4] = 1/2.

Proof. In Game 3, A is given any information about b. Therefore the probability that

A can correctly guess b is 1/2.

By combining these lemmas, for all sufficiently large λ, we have |Pr[T1] − 1/2| ≤
1/(2poly(λ)) + δ. That is, we have AdvCPAA,PKE(λ) ≤ 1/(2poly(λ)) + δ. Since we as-

sumed for infinitely many λ, AdvCPAA,PKE(λ) > 1/poly(λ), for infinitely many λ, we have

1/(2poly(λ)) < δ. This contradicts to that δ is negligible. Therefore there does not

exist a PPT adversary that breaks the scheme.

Remark 17. If we use ad-ABO, we can construct CCA secure PKE scheme similarly

as in [PW08].
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4.7.3 Deterministic Public Key Encryption

Here, we construct a DPKE scheme based on ad-LTDFs. Construction.

The construction is a simple analogue of the scheme in [BFO08] based on

LTDFs. Indeed, our scheme is obtained by simply replacing LTDFs by

ad-LTDFs in their scheme. The concrete construction is as follows. Let

(ParamsGen,SampleInj,SampleLossy,Evaluation, Inversion) be an (n, k)-ad-LTDF

and H be a family of pairwise independent permutations on {0, 1}n, where

u ≥ n−k+2 log(1/δ)−2 holds for some negligible δ. The construction of our scheme

DE = (Gen,Enc,Dec) is as follows.

Gen(1λ): Generate (PP, SP )← ParamsGen(1λ) and σ ← SampleInj(PP ) and choose

H
$← H. Output a public key PK = (PP, σ,H) and a secret key SK = (SP, σ).

Enc(PK = (PP, σ,H),msg): Compute C ← Evaluation(PP, σ,H(msg)) and output

C.

Dec(SK,C): Compute msg′ ← Inversion(SP, σ,C) and msg := H−1(msg′) and out-

put msg.

Theorem 17. The above scheme is PRIV1-IND-CPA secure deterministic encryption

for (u, n)-sources.

Proof. Assume that the above scheme is not PRIV1-IND-CPA secure. There ex-

ists (u, n)-sources M0,M1 and a PPT adversary A such that AdvPRIV−IND−CPA
A,DE (λ) is

non-negligible. Then there exist a polynomial poly such that for infinitely many λ,

AdvPRIV−IND−CPAA,DE (λ) > 1/poly(λ) holds. We consider the following sequence of games.

Game 1 : This game is the original PRIV1-IND-CPA game with respect to M0, M1

and A. That is, a challenger computes (PP, SP ) ← ParamsGen(1λ) and σ ←
SampleInj(PP ), chooses H ← H, sets PK := (PP, σ,H), chooses b

$← {0, 1},
msg∗

$← Mb and computes C∗ ← Evaluation(PP, σ,H(msg∗)). A is given

(PK,C∗) and outputs b′.

Game 2 : This game is the same as the previous game except that σ is generated by

SampleLossy(PP, I), where intuitively, I is an index such that “it is difficult to

distinguish an injective function from a lossy function with index I for A”. To
describe this precisely, we consider the following PPT algorithm B.
B(PP, σ) : Choose H

$← H, b $← {0, 1}, msg∗ $← Mb, set PK := (PP, σ,H),

compute C∗ ← Evaluation(PP, σ,H(msg∗)), run b′ ← A(PK,C∗) and out-

put 1 if b = b′, and otherwise 0.



88 Chapter 4 Adversary-dependent Lossy Trapdoor Function

Let SB,1/(2poly) be the algorithm that is assumed to exists in the definition of

ad-LTDFs. (Note that B is a PPT algorithm and 1/(2poly) is noticeable.) In

this game, we let I ← SB,1/(2poly)(PP ) and σ ← SampleLossy(PP, I).

Game 3 : This game is the same as the previous game except that a challenge

ciphertext is set as C∗ ← Evaluation(PP, σ,H(U)) where U ∈ {0, 1}n is a

uniformly random string.

Let Ti be the event that b = b′ in Game i. Clearly we have |Pr[T1] − 1/2| =
AdvPRIV−IND−CPAA,DE (λ). Then we prove the following lemmas.

Lemma 23. For sufficiently large any λ, we have |Pr[T2]− Pr[T1]| ≤ 1/(2poly(λ)).

Proof. By the definition of an adversary-dependent lossy trapdoor function, if we let

Pinj := Pr

[
1← B(PP, σ) : (PP, SP )← ParamsGen(1λ)

σ ← SampleInj(PP )

]

Plossy := Pr

1← B(PP, σ) : (PP, SP )← ParamsGen(1λ)

I ← SB,1/(2poly)(PP )
σ ← SampleLossy(PP, I)


then we have |Pinj − Plossy| ≤ 1/(2poly) for sufficiently large λ. It is clear that Pinj =

Pr[T1] and Plossy = Pr[T2] holds. Therefore the lemma follows.

Lemma 24. We have |Pr[T3]− Pr[T2]| ≤ δ.

In Lemma 13, we let f := Evaluation(PP, σ, ·), X := msg∗ and Y := (PP, σ). Then

by the lossiness, |S| ≤ 2n−k holds where S is the range of f . By the definition of (u, n)-

sources, we have H̃∞(X|Y ) ≥ u and u ≥ n− k+2 log(1/δ)− 2 ≥ |S|+2 log(1/δ)− 2.

By Lemma 13, the statistical distance between (C∗,H, (PP, σ)) in Game 2 and that

in Game 3 is at most δ. Thus the lemma follows.

Lemma 25. We have Pr[T3] = 1/2.

Proof. In Game 3, A is given no information about b. Therefore the probability that

A can correctly guess b is 1/2.

By combining these lemmas, for all sufficiently large λ, we have |Pr[T1] − 1/2| ≤
1/(2poly(λ)) + δ, equivalently, AdvPRIV−IND−CPAA,DE (λ) ≤ 1/(2poly(λ)) + δ. On the other

hand, we assumed, AdvPRIV−IND−CPAA,DE (λ) > 1/poly(λ) for infinitely many λ. Combining

these two inequalities, we have 1/(2poly(λ)) < δ for infinitely many λ, which contra-

dicts to that δ is negligible. Therefore there does not exist a PPT adversary that

breaks the scheme.
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Remark 18. If we use ad-ABO given in Sec. 4.6, we can construct PRIV1-IND-CCA

secure DPKE scheme similarly as in [BFO08].

4.8 CCA Secure PKE with Short Ciphertext

In this section, we construct a CCCA secure KEM under them-ad-DRSA assumption.

By Theorem 11, under certain condition, this scheme is CCCA secure under the fac-

toring assumption w.r.t. SS moduli. By setting a parameter appropriately, we obtain

a PKE scheme whose ciphertext overhead is minimum among schemes that are CCA

secure under the factoring assumption by combining our KEM and an authenticated

symmetric key encryption scheme.

4.8.1 Construction

Idea of our construction. Since the m-ad-DRSA assumption is a type of subgroup

decision assumptions, we can consider an “adversary-dependent version” of hash proof

systems as in [CS02], where it is shown that a hash proof system can be constructed

based on any subgroup decision assumption. Then we construct a KEM similarly

as in [HK07], where the authors constructed a CCCA secure KEM based on a hash

proof system. Though our construction is based on the above idea, for clarity, we

give a direct construction of our KEM rather than defining the “adversary-dependent

version” of hash proof systems.

The construction of our scheme KEMCCCA is as follows. Let IGen be a PPT algorithm

that generates (ℓB , tp, tq)-SS RSA modulus, H be a family of pairwise independent

hash functions from (Z∗N )n to {0, 1}λ where n := ⌈ (2ℓN+1)λ
ℓB−1 ⌉, and h : G→ {0, 1}λ be

a target collision resistant hash function. For simplicity, we assume that the KEM

key length is equal to the security parameter λ.

Gen(1λ) : Generate (N,P,Q) ← IGen(1λ). Choose H
$← H, g $← QRN and

x
(k)
i,j

$← [(N − 1)/4] and set X
(k)
i,j := gx

(k)
i,j for i = 1, . . . , λ, j = 1, . . . , n

and k = 0, 1. Output PK := (N,h,H, {X(k)
i,j }i∈[λ],j∈[n],k∈{0,1}) and SK :=

({x(k)i,j }i∈[λ],j∈[n],k∈{0,1}, PK).

Enc(PK) : Choose r
$← [(N − 1)/4], compute C := gr, t := h(C) and K :=

H((
∏λ
i=1X

(ti)
i,1 )r, . . . , (

∏λ
i=1X

(ti)
i,n )r) where ti denotes the i-th bit of t. Output

(C,K).
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Dec(SK,C) : Compute t := h(C) and K := H(C
∑λ

i=1 x
(ti)

i,1 , . . . , C
∑λ

i=1 x
(ti)

i,n ) where ti

denotes the i-th bit of t, and output K.

4.8.2 Security

Theorem 18. If m-ad-DRSA assumption holds with respect to IGen and (ℓB−1)(tp+
tq +m−MℓB ) ≥ λ holds, then KEMCCCA is CCCA secure.

Corollary 2. If the factoring assumption holds with respect to IGen for the parameter

setting given in 4.3, then KEMCCCA is CCCA secure for n = O(λ4/ log(λ)).

Proof. (of Corollary 2) Let m := ⌊MℓB +1− (1/2+ c) ℓN
(ℓB−1)⌋ for a constant c < 1/4.

Then we have (MℓB −m + 1)(ℓB − 1) ≥ (1/2 + c)ℓN and therefore the m-ad-DRSA

assumption holds under the factoring assumption by Theorem 11. Moreover, we have

(ℓB − 1)(tp + tq +m −MℓB ) = O(λ3) if we use the parameter setting given in Sec.

4.3. Thus the obtained scheme is CCCA secure under the factoring assumption.

Theorem 18 can be proven almost similarly as the security of the CCCA secure

KEM based on a hash proof system in [HK07]. However, for a technical reason, we

need the following variant of the leftover hash lemma unlike in [HK07]. Specifically,

in the leftover hash lemma (Lemma 12), a random variable X should be independent

fromH. On the other hand, in our proof, we need a variant in which a random variable

X may depend on H. The following lemma states that this is possible with the loss of

the number of possible random variables X. We note that this idea is already used in

some existing works [TV00, RSV13]. This lemma is necessary because in our proof,

we set X to be a decryption query, which is chosen by an adversary after seeing a

public key which includes a pairwise independent hash function H.

Lemma 26. Let X be a set of random variables X on {0, 1}n1 such that

H∞(X) ≥ n2 + 2 log(1/δ), and H be a family of pairwise independent hash functions

from {0, 1}n1 to {0, 1}n2 . Then for any computationally unbounded algorithm F ,
which is given H ∈ H and outputs a description of a distribution X ∈ X , we have

∆((H(X),H), (U,H)) ≤ |X |δ where H
$← H and X ← F(H).
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Proof. We have

∆
H

$←H,X←F(H)
((H(X),H), (U,H))

= E
H

$←H
[∆X←F(H)(H(X), U)]

≤ E
H

$←H
[
∑
X∈X

∆(H(X), U)]

=
∑
X∈X

E
H

$←H
[∆(H(X), U)]

=
∑
X∈X

∆
H

$←H
((H(X),H), (U,H)) ≤ |X |δ

where the last inequality follows from Lemma 12.

Then we give the proof of Theorem 18.

Proof. (of Theorem 18) Assume that there exists a valid PPT adversary A that breaks

the CCCA security of the above scheme. Then there exists a polynomial poly such

that AdvCCCAA,KEMCCCA
(λ) > 1/poly(λ) for infinitely many λ. We consider the following

sequence of games.

Game 1 : This game is the original CCCA game of KEMCCCA for A. That is, a

challenger C generates (N,P,Q) ← IGen(1λ), chooses H
$← H, g $← QRN and

x
(k)
i,j

$← [(N − 1)/4] and sets X
(k)
i,j := gx

(k)
i,j for i = 1, . . . , λ, j = 1, . . . , n and

k = 0, 1 and sets PK := (N,h,H, {X(k)
i,j }i∈[λ],j∈[n],k∈{0,1}). Then it chooses

b
$← {0, 1} and r∗

$← [(N − 1)/4], and computes C∗ := gr
∗
, t∗ := h(C∗) and

K∗ := H((
∏λ
i=1X

(t∗i )
i,1 )r

∗
, . . . , (

∏λ
i=1X

(t∗i )
i,n )r

∗
) where t∗i denotes the i-th bit of

t∗ if b = 1 and K∗
$← {0, 1}λ otherwise. Then it gives (PK,C∗,K∗) to A. In

the game, A can query pairs of ciphertexts and predicates to an oracle ODec.

When A queries (C, pred), ODec computes K ← Dec(SK,C) and returns K to

A if C ̸= C∗ and pred(K) = 1, and otherwise ⊥. Finally, A outputs a bit b′.

Game 2 : This game is the same as the previous game except that K∗ is set differ-

ently if b = 1. Specifically, it is set as K∗ := H(C∗
∑λ

i=1 x
(t∗i )

i,1 , . . . , C∗
∑λ

i=1 x
(t∗i )

i,n )

if b = 1.

Game 3 : This game is the same as the previous game except that C∗ is set differ-

ently. Specifically, it is uniformly chosen from QRN .

Game 4 : This game is the same as the previous game except that g is uniformly

chosen from a subgroup S of QRN , which is defined as follows. First, we define

a PPT algorithm B as follows.
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B(N, g): Choose H
$← H, x(k)i,j

$← [(N − 1)/4] and set X
(k)
i,j := gx

(k)
i,j for

i ∈ [λ], j ∈ [n] and k = 0, 1 and PK := (N,h,H, {X(k)
i,j }i∈[λ],j∈[n],k∈{0,1}),

choose C∗
$← QRN and b

$← {0, 1}, and set K∗ := H(C∗
∑λ

i=1 x
(t∗i )

i,1 ,

. . . , C∗
∑λ

i=1 x
(t∗i )

i,n ) where t∗ := h(C∗) and t∗i is the i-th bit of t∗ if

b = 1, and K∗
$← {0, 1}ℓ otherwise. Run b′ ← AODec(PK,C∗,K∗) and

output b′. We note that B can simulate ODec for A since it knows

SK = ({x(k)i,j }i∈[λ],j∈[n],k∈{0,1}, PK).

Let SB,poly/2 be the algorithm that is assumed to exist in the definition of m-ad-

DRSA assumption. Note that this algorithm actually exists since B is a PPT

algorithm and poly/2 is noticeable. Then we define the subgroup S as follows:

We run {p1, . . . , pm} ← SB,poly/2 and define S := {hp1,...,pm : h ∈ QRN}.
Game 5 : This game is the same as the previous game except that the decryption

oracle ODec is replaced with an alternative decryption oracle ODec′ that works

as follows: ODec′ , given C and pred, computes t := h(C) and returns ⊥ if t = t∗.

Otherwise it computes K := H(C
∑λ

i=1 x
(ti)

i,1 , . . . , C
∑λ

i=1 x
(ti)

i,n ) and outputs K if

pred(K) = 1, and otherwise ⊥.
Game 6 : This game is the same as the previous game except that x

(k)
i,j is set

differently. Specifically, it is uniformly chosen from ord(QRN ) instead of from

[(N − 1)/4] for i = 1, . . . , λ, j = 1, . . . , n and k = 0, 1.

Game 7 : This game is the same as the previous game except that the decryption

oracle ODec′ is replaced with an alternative decryption oracle ODec′′ that works

as follows: ODec′′ , given C and pred, computes t := h(C) and returns ⊥ if

t = t∗ or C /∈ S, where S is the group defined in Game 4. Otherwise it

computes K := H(C
∑λ

i=1 x
(ti)

i,1 , . . . , C
∑λ

i=1 x
(ti)

i,n )and outputs K if pred(K) = 1,

and otherwise ⊥.
Game 8 : This game is the same as the previous game except that K∗ is always an

independently random string.

Let Ti be the event that b = b∗ holds in Game i. Then clearly we have AdvCCCAA,PKECCCA
=

|Pr[T1]−1/2|. First, we prove that the group S defined in Game 4 is a proper subgroup

of QRN . Moreover, we prove that ord(S)/ord(QRN ) ≤ 2−λ holds. By the definition of

SS moduli, ord(QRN ) has tp+ tq distinct prime factors p′1, . . . , p
′
tp+tq of ℓB-bit. Since

the number of the all ℓB-bit primes is MℓB , there exist at least tp + tq +m −MℓB

distinct primes contained in both {p′1, . . . , p′tp+tq} and {p1, . . . , pm}. We denote those

primes by p′′1 , . . . p
′′
tp+tq+m−MℓB

. Those primes cannot be a factor of ord(S) since

S = {hp1...pm : h ∈ QRN} by the definition whereas they are a factor of ord(QRN ).
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Thus ord(S)/ord(QRN ) ≤ 1
p′′1 ...p

′′
tp+tq+m−MℓB

≤ 2−(tp+tq+m−MℓB
)(ℓB−1) ≤ 2−λ. Then we prove the following lemmas.

Lemma 27. Pr[T2] = Pr[T1] holds.

Proof. The modification between Game 1 and 2 is only conceptual.

Lemma 28. |Pr[T3]− Pr[T2]| is negligible.

Proof. This follows from the fact that the statistical distance between the uniform

distributions on [(N − 1/4)] and [ord(QRN )] are negligible.

Lemma 29. We have |Pr[T4]− Pr[T3]| ≤ 1/(2poly) for sufficiently large λ.

Proof. This follows immediately from the definition of m-ad-DRSA assumption.

Lemma 30. If h is collision resistant, then |Pr[T5]− Pr[T4]| is negligible.

Proof. From the view of A, Game 4 and 5 may differ only if A makes a query (C, pred)

such that h(C) = t∗. If A makes such a query, then this means that it finds a collision

of h.

Lemma 31. |Pr[T6]− Pr[T5]| is negligible.

Proof. This follows from the fact that the statistical distance between the uniform

distributions on [(N − 1/4)] and [ord(QRN )] are negligible.

Lemma 32. |Pr[T7]− Pr[T6]| is negligible.

Proof. Let q be an upper bound of the number of decryption queries A makes. We

consider hybrids H0, . . . ,Hq that are defined as follows. A hybrid Hℓ is the same as

Game 6 except that the oracle to whichA accesses works similarly as ODec′′ for the first

ℓ queries, and similarly as ODec′ for the rest of queries. Let T6,ℓ be the event that b = b′

holds in the hybrid Hℓ. Clearly, We have Pr[T6,0] = Pr[T6] and Pr[T6,ℓ] = Pr[T7]. Let

Fℓ be the event that ODec′′ returns ⊥ for A’s ℓ-th query (Cℓ, predℓ) but ODec′ does not

return ⊥ for it. That is, Fℓ is the event that Cℓ ∈ QRN \ S, t ̸= t∗ and pred(Kℓ) = 1

hold where Kℓ := H(C
∑λ

i=1 x
(ti)

i,1

ℓ , . . . , C
∑λ

i=1 x
(ti)

i,n

ℓ ), t := h(Cℓ) and ti denotes the i-th

bit of t. Unless Fℓ occurs, hybrids Hℓ and Hℓ−1 are exactly the same from the view

of A. Therefore we have |Pr[T6,ℓ]− Pr[T6,ℓ−1]| ≤ Pr[Fℓ]. Let viewℓ be the view from

A before it is given the response for its ℓ-th query. That is, viewℓ consists of PK,

C∗, K∗, Cℓ and decryption queries and responses for them before the ℓ-th query. We

prove the following claim.
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Claim 3. If Cℓ ∈ QRN \ S and t ̸= t∗, then Kℓ is distributed almost uniformly

on {0, 1}λ from the view of A in the hybrids Hℓ−1 and Hℓ. More precisely, we have

∆((Kℓ, viewℓ), (U, viewℓ)) ≤ 2−λ where U
$← {0, 1}λ.

Assume this claim is true. Then we prove that Pr[Fℓ] is negligible for any ℓ ∈
[q]. Since A is valid, pred is non-trivial. That is, for independently uniform U ,

Pr[predi(U) = 1] is negligible. By Claim 3, if Cℓ ∈ QRN \ S and t ̸= t∗, then we

have ∆((Kℓ, view), (U, view)) ≤ 2−λ where U
$← {0, 1}λ. Therefore Pr[pred(Kℓ) = 1]

is negligible and thus Pr[Fℓ] is negligible. Thus |Pr[T7]− Pr[T6]| is negligible by the

hybrid argument. What is left is to prove Claim 3.

Proof. (of Claim 3) Since we assumed t ̸= t∗, there exists i ∈ [λ] such that ti ̸=
t∗i . We denote minimum such i by i∗. Since C ∈ QRN \ S and S is a proper

subgroup of QRN , there exists an ℓB-bit prime p̄ that divides ord(C) but does

not divide ord(S). Here, we claim that the decryption oracle before ℓ-th query

can be simulated by using {x(k)i,j mod ord(S)}i∈[λ],j∈[n],k∈{0,1} and PK. This can

be seen by that the oracle immediately returns ⊥ for a query (C, pred) such that

C /∈ S. If we define view′ℓ := (PK,C∗,K∗, Cℓ, {x(k)i,j mod ord(S)}i∈[λ],j∈[n],k∈{0,1})
where PK denotes a public key except H, then we have ∆((Kℓ, viewℓ), (U, viewℓ)) ≤
∆((Kℓ,H, view

′
ℓ), (U,H, view

′
ℓ)). Thus it suffices to show that conditioned on any

fixed value of view′ℓ, ∆((Kℓ,H), (Uℓ,H)) ≤ 2−λ holds. One can see that view′ℓ
does not depend on (x

(ti∗ )
i∗,j mod p̄) at all for j ∈ [n]: PK does not depend on

(x
(ti∗ )
i∗,j mod p̄) since g ∈ S by the modification from Game 3 to 4. (C∗,K∗) does

not depend on (x
(ti∗ )
i∗,j mod p̄) since we assumed ti∗ ̸= t∗i∗ and thus x

(ti∗ )
i∗,j is not

used for generating K∗. {x(k)i,j mod ord(S)}i∈[λ],j∈[n],k∈{0,1} does not depend on

(x
(ti∗ )
i∗,j mod p̄) since ord(S) is coprime to p̄. Thus conditioned on any value of

view′ℓ, (x
(ti∗ )
i∗,j mod p̄) is distributed uniformly for all j ∈ [n]. Therefore we have

H∞(C
∑λ

i=1 x
(ti)

i,1

ℓ , . . . , C
∑λ

i=1 x
(ti)

i,n

ℓ |view′ℓ) ≥ n log p̄ ≥ n(ℓB − 1) ≥ λ + 2ℓNλ. Here, we

use Lemma 26: We set X := {XC}C∈QRN\S where XC denotes a random variable that

is distributed as (C
∑λ

i=1 x
(ti)

i,1 , . . . , C
∑λ

i=1 x
(ti)

i,n ) conditioned on view′ℓ, δ := 2−ℓNλ, and

F as an algorithm that simulates the game between A and the challenger and out-

puts XCℓ
where Cℓ is A’s ℓ-th decryption query. Then we have ∆((Kℓ,H), (U,H)) ≤

|QRN \ S|2−ℓNλ ≤ 2−λ where U
$← {0, 1}λ, conditioned on any fixed value of view′ℓ.

Thus the proof of Claim 3 is completed.

This concludes the proof of Lemma 32.
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Lemma 33. |Pr[T8]− Pr[T7]| is negligible.

Proof. Since we have Pr[C∗ ∈ S : C∗
$← QRN ] ≤ 2−λ, in the following, we assume

C∗ /∈ S. Then there exists p̄ that divides ord(C∗) but does not divide ord(S). Let

view be the view from A in Game 8 except K∗, and view′ := {PK,C∗, {x(k)i,j

mod ord(S)}i∈[λ],j∈[n],k∈{0,1}}. By a similar argument as in the proof of

Claim 3, we have ∆((K∗, view), (U, view)) ≤ ∆((K∗,H, view′), (U,H, view′)) and

H̃∞(C∗
∑λ

i=1 x
(ti)

i,1 , . . . , C∗
∑λ

i=1 x
(ti)

i,n |view′) ≥ n log p̄ ≥ n(ℓB − 1) ≥ (2ℓN + 1)λ.

If we let X := (C∗
∑λ

i=1 x
(ti)

i,1 , . . . , C∗
∑λ

i=1 x
(ti)

i,n ), Y := view and δ := 2−ℓNλ

in Lemma 12, then we have ∆((K∗,H, view′), (U,H, view′)) ≤ 2−ℓNλ where

K∗ = H(C∗x1+t
∗y1 , . . . , C∗xn+t

∗yn) and U
$← {0, 1}k. Thus the lemma follows.

By the above lemmas, we have AdvCCCAA,KEMCCCA
(λ) = |Pr[T1] − Pr[T8]| ≤ negl(λ) +

1/(2poly(λ)) for sufficiently large λ where negl is some negligible function. On the

other hand, we assumed that there are infinitely many λ such that AdvCCCAA,KEMCCCA
(λ)

> 1/poly(λ). Therefore for infinitely many λ, we have 1/(2poly(λ)) < negl(λ), which

contradicts to that negl(λ) is negligible. Thus there does not exist a valid PPT

adversary that breaks the CCCA security of the scheme.

Discussion. Here, we discuss the efficiency of the CCA secure PKE scheme that

is obtained by combining the above KEM and an authenticated symmetric key en-

cryption scheme. Table 4.1 shows the efficiency and hardness assumption of CCA

secure PKE schemes based on the factoring in the standard model. Among existing

schemes, the scheme proposed by Hofheinz and Kiltz [HK09b] is one of the best in

regard to the ciphertext overhead, which consists of 2 elements of Z∗N . In contrast, the

ciphertext overhead of our scheme consists of only 1 element of Z∗N plus a MAC. By

giving a concrete parameter (ℓ′p = ℓ′q = 160, ℓB = 15, tp = tq = 32 and ℓN = 1280),

the ciphertext overhead of our scheme is 1360-bit for 80-bit security whereas that of

[HK09b] is 2048-bit. On the other hand, the public key size of our scheme is much

larger than that of [HK09b], and an encryption and decryption are much less efficient

than those in [HK09b].
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Chapter 5

Concluding Remarks and Open

Problems

In the first part of this dissertation, we define a self-bilinear map with auxiliary

information (AI-SBM) and construct it based on the factoring assumption and the

existence of indistinguishability obfuscation (iO). There are following open problems

regarding to this part.

• The first and most important open problem is to remove iO from our construc-

tion. Though we rely on the existence of iO, there is no known construction

of iO based on the factoring assumption. Moreover, known constructions of

iO are too inefficient and far from practical. It is necessary to remove iO for

obtaining practical and solely factoring-based construction of AI-SBMs.

• The second problem is about constructing AI-SBMs with more useful proper-

ties. Though we show that an AI-SBM is useful in many applications, there

are still some limitations. The most significant drawback is that the size ex-

pansion of auxiliary information. That is, given two auxiliary information τx

and τy which correspond to gx and gy respectively, if we compute τx+y which

corresponds to gx+y, then the size of τx+y expands to be polynomial in the

sizes of τx and τy. This unable us to apply group operations recursively more

than constant times. It is an interesting open problem to construct an AI-SBM

where there is no size expansion of auxiliary information, that would be much

more useful than our scheme.

• The third problem is to construct an AI-SBM on a different group from QR+
N .

It seems that the only property we use in the proof is that it is computation-

ally hard to compute c-th root on an underlying group G where c is coprime
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to ord(G). It would be interesting future work to prove the above intuition

formally and find new instantiations.

In the second part of this dissertation, we define an adversary dependent lossy

trapdoor function (ad-LTDF) and construct it based on the factoring assumption

w.r.t. semi-smooth subgroup RSA moduli (SS moduli). There are following open

problems regarding to this part.

• The first problem is to extend our technique to more general RSA moduli. In

our result, we focus only on SS moduli, which have a special structure. We do

not know if it is possible to obtain a similar result w.r.t. another type of RSA

moduli. Since SS moduli is not a very standard form of RSA moduli, it would

be better if we could construct an ad-LTDF based on the factoring assumption

w.r.t. more general type of RSA moduli.

• The second problem is to analyze the hardness of factorizing an SS modulus.

Though SS moduli have been considered for more than 10 years, study of

efficient algorithm to factorize this type of RSA moduli is still not enough.

Since we show the usefulness of the factoring assumption w.r.t. SS moduli, it

would be important to analyze if factorizing SS moduli is really hard or not.
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[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi

Tibouchi. Fully homomorphic encryption over the integers with shorter

public keys. In CRYPTO, pages 487–504, 2011.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally

private information retrieval with polylogarithmic communication. In



104 Bibliography

EUROCRYPT, pages 402–414, 1999.
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