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Abstract 

DNA methylation, an addition of methyl group on fifth carbon at cytosine, is one of the most 

important epigenetic modifications. In mammalian cells, the methylation preferentially occurs at CpG 

dinucleotides, regulating cell development and maintenance. Recently, however, methylated 

non-CpGs (mCpHs; H means A, C, and T) are spotlighted as a key epigenetic mark regardless of the 

small amount of it. Those are especially abundant in pluripotent stem cells (PSCs) and non-dividing 

cells (i.e. neuron), and associated to cell type specific progresses such as embryonic stem cell 

differentiation and brain maturation.  

The research of mCpHs, however, is limited by lack of the detection techniques, since existing 

experiments mostly focuses on CpG sites. Although the whole genome bisulfite sequencing (WGBS), 

the advanced sequencing technique combined with bisulfite treatment, could capture genome-wide 

methylation pattern with single nucleotide resolution, the low accuracy hinders it from being widely 

used. Many computer programs have been developed to overcome the shortcomings. However, those 

merely succeeded in improving either quantity or quality of WGBS data. 

The other limitation is the correlation between methylated CpGs (mCpGs) and mCpHs. Since those 

are mediated by common enzymes, DNA methyltransferase 3a and 3b (DNMT3a and DNMT3b, 

respectively), the genome wide distribution of those are closely correlated, resulting in difficulty on 

finding the role of mCpHs that independent to mCpGs. Based on the correlation and higher affinity of 

DNMTs on CpG sites, some researchers insist that the mCpHs are merely a by-product from 

hyper-activity of DNMTs that originally targets CpGs. However, substantial evidences support that the 

mCpHs have independent role on cell functions. In this way, the role of mCpH over biological 

processes is controversial because of their spatial correlation with mCpGs. 

In this study, we attempted to uncover the independent role of mCpHs by resolving the two 

difficulties. First, we developed an integrative approach for methylation detection. The integrative 

method effectively increased both accuracy and amount of methylome. In addition, it facilitated 

combining of public WGBS data by reducing experimental bias (Section 1). Second, through 

comprehensive analysis on the high-quality methylome, we found that the CpHs ±100 base pair (bp) 

from CpGs are methylated in highly correlated way to CpGs. Remarkably, the CpH methylation pattern 

at those CpHs is highly distinct between ESCs and neurons because of the differential activity of 

DNMT3a and DNMT3b (Section 2). Lastly, by extracting mCpG-independent mCpHs, we found that the 

CpH methylation pattern across sample ages is closely related to brain specific progresses such as 

“mental retardation” and “zinc finger protein activity”. Collectively, our results uncovered cell type 

specific formation and function of mCpHs in mammalian cells by integrating and analyzing public 

WGBS data. The study shed light on the methylation research by improving quality and quantity of 

methylome and suggesting cell type specific methylation mechanism via functional analysis in silico. 
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General background 

DNA methylation, an addition of methyl groups on 5th carbon at cytosine, is one of the most 

important epigenetic marks. It regulates gene expression by hindering (or accelerating) interaction 

between DNA strand and transcription factors (TFs). Unlike genome strand, mostly common among 

cells in an organism, the DNA methylation pattern over genome is highly distinguishable among cell 

types. The distinct methylation pattern results in cell type specific processes such as morphogenesis, 

by regulating the amount of transcriptomes. In addition, irregular methylation patterns lead to 

generation of abnormal cells such as cancer cells. Thus, the DNA methylation is regarded as an 

identification of cells governing cell development and maintenance. 

In mammalian, the DNA methylation mainly occurs at CpG (Cytosine followed by Guanine) 

dinucleotides. The average methylation level at CpGs is up to 85% [1], whereas that in non-CpG sites 

is mostly under 1% [2]. Thus, for decades, researchers have focused on methylated CpGs (mCpGs) 

and found that those regulate cell differentiation, maintenance, and retardation [3-5]. Recently, 

however, the methylated non-CpG sites (mCpHs; H means adenine, cytosine, and thymine) are being 

emerged as key epigenetic regulator of cell type specific functions. The mCpHs are highly abundant in 

pluripotent stem cells (PSCs) and non-dividing cells (i.e. neuron) [2], and regulates cell type specific 

functions such as synaptogenesis [6], or embryonic stem cell differentiation [7]. In this way, the 

mCpHs, as well as mCpGs, are important epigenetic mark on cell processes in mammalian. 

The methylation is induced by DNA methyltransferases (DNMTs) in mammalian. Those 

methyltransferases approach to cytosines on DNA strand and attach methyl-groups donated by 

S-adenosyl methyionine (SAM) [8]. The DNMTs are largely classified into two types by their 

functions; maintenance methyltransferase (i.e. DNMT1) and de novo methyltransferase (i.e. DNMT3).  

The DNMT1 attaches to hemi-methylated strand (meaning only one strand is methylated) and 

transfers the methyl-groups to the cytosine at the other strand. Thus, the DNMT1 contributes on 

maintaining methylation pattern across cell division by methylating the newly synthesized DNA 

strands. The DNA strands interacting with DNMT1 should be symmetric, so that only CpG sites (the 

opposite side is also CpG) are possible to be methylated by DNMT1. On the other hand, the DNMT3 is 

mainly responsible for de novo methylation. The known members of the DNMT3 family are DNMT3a, 

DNMT3b, and DNMT3l. The DNMT3a and DNMT3b (DNMT3a/b) directly interact with DNA strands, 

whereas DNMT3l is known as an allosteric enzyme that co-operate with the DNMT3a/b. Those are 

able to interact with CpHs, even though the affinity is ten times higher to CpGs than CpHs. Thus, it is 

known that CpGs are methylated by DNMT1 and DNMT3a/b, whereas CpHs are methylated by 

DNMT3a/b. 

Since both CpGs and CpHs are de novo-methylated by DNMT3a/b, the genome-wide distribution of 

mCpGs and mCpHs is highly analogous to each other [9, 10]. Since the average methylation level is 

much higher at CpGs, some researchers insist that mCpHs are merely non-targeted by-products of 

hyper-activity of DNMT3a/b that originally targets CpGs. The fact that mCpH-existing cells show 
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generally higher expression level of DNMT3a/b also supports the opinion [11]. 

However, the mCpHs show functional independence to mCpGs in several researches. In brain, for 

example, the mCpHs are gradually increased as aged, in a same pattern with the progress of 

synaptogenesis [6]; whereas mCpGs are remained as stable. In addition, the methyl-CpG binding 

protein 2 (MeCP2), mutation of which causes Rett syndrome, binds to not only mCpGs but also 

mCpHs. Considering that postnatal onset of Rett syndrome coincides with the emergence of mCpH in 

brain tissues, there is a possibility that MeCP2-related neuro-diseases are governed not by mCpGs, 

but by mCpHs [12]. Also, there are mega-base mCpH deserts in induced pluripotent stem cells (iPSCs), 

in which genes are less transcribed compared to those in ESCs [13]. The CpG methylation level in 

those regions is not distinguishable between iPSCs and ESCs, implying that the failure of epigenetic 

reprogramming at CpHs leads to genetic aberration in iPSCs. Altogether, even though the mCpHs are 

spatially correlated to mCpGs, there is functional independence over mCpGs, especially on regulating 

cell type specific phenomena. 

One of the underlying mechanisms that mCpHs regulate cell type specific progresses is differential 

distribution over genome among cell types. Remarkably, the distributions of mCpHs in PSCs and 

neuron, in which mCpHs are mostly abundant, are hugely distinguishable. For example, in PSCs, The 

mCpHs prefer to be at intragenic regions, whereas those at intergenic regions in neurons [6, 7]. 

Especially, the mCpHs tend to be abundant at actively expressed gene-bodies in PSCs, whereas those 

are at poised gene-bodies in neurons, resulting in positive and negative correlation between 

mCpH-abundance and gene expression level in PSCs and neurons, respectively. In general, the 

methylation in genic regions tends to repress gene expression, so that the positive correlation 

between mCpH abundance and gene expression in PSCs has been mysterious among researchers. 

Meanwhile, the DNA motif that abundant nearby mCpHs is also distinct between PSCs and neurons; 

that is “CAG” in PSCs, whereas “CAC” in neurons [5, 10]. It implies that the methylation could be 

induced by at least two mechanisms that function in cell type specific way [2]. Since the abundant 

DNA motif in other somatic cells is also “CAC”, the motif CAG is considered as PSC-specific mCpH 

mark. Also, those appears in mixed way in oocyte [14]. In this way, the mCpH shows cell type specific 

formational and functional mechanisms, and specifics of it are waiting to be uncovered. 

However, the research of CpH methylation is largely limited by its detection experiments. Since 

most of the experiments for detecting methylation is concentrating on CpG sites, large portion of 

mCpHs are not able to be detected by existing experiments. For example, the bisulfite treated 

microarrays, such as Infinium Human Methylome 450K, covers only 3000 CpH sites, whereas it detect 

450,000 CpG sites [15]. In addition, the Chip-seq based methylation detection methods such as 

Methylated DNA immunoprecipitation (MeDIP) contains bias toward CpG sites because of the 

preference of anti-bodies on hyper-methylated cytosines [16]. The reduced representation bisulfite 

sequencing (RRBS) [17], utilizing enzyme bindings to specific sites to detect information-rich regions, 

is also not allowed for detecting mCpHs, since the CpHs are widely distributed over whole genome, 

unlike mCpGs that tend to exist as cluster called CpG Island (CGI),  
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Thus, for now, whole genome bisulfite sequencing (WGBS) is considered as the only way to detect 

mCpHs. It detects genome-wide CpH methylation status with single base resolution by utilizing next 

generation sequencing (NGS) combined with bisulfite treatment. The bisulfite treatment converts 

un-methylated cytosine into uracil which eventually becomes thymine by Polymerase Chain Reaction 

(PCR) [18]. Then, the DNA fragments are read by NGS technique and aligned into reference genome. 

However, problem happens on the aligning step. Since the thymines on fragments have to be aligned 

into both cytosine and thymine loci, aligning complexity increases, resulting in low accuracy of the 

methylation detection. 

A number of aligning tools have been developed to improve the accuracy. Largely, there are two 

types of bisulfite-read mappers, wild-card type and three-letter type [19]. The wild-card type 

mappers employ a new latter, Y, for read aligning. It converts all the cytosines (Cs) in reference 

genome to Y, and aligns both Cs and thymines (Ts) in sequenced read to the Y. Since both Cs and Ts 

are aligned to a single latter Y, the mapping accuracy is not greatly improved, but relatively large 

number of sequenced reads is aligned to reference genome. The representative of wild-card type 

mapper is BSMAP [20]. It has been used for many epigenetic researches, including the research about 

mCpHs. However, the low mapping accuracy remains as the weakness of it. On the other hand, the 

three-letter type mappers convert all Cs to Ts and uses only three letters (A, G and T) for read aligning. 

Since it uses only three letters, the sequenced reads are frequently aligned to multiple loci. By 

applying strict policy on multi-aligned reads, the mappers could achieve great mapping accuracy, 

however, lose large portion of reads (low mapping rate). The representative of three-letter type 

bisulfite read mapper is Bismark [21]. It has been used most widely in epigenetic research field, but 

small-size bisulfite read data is not affordable for being analyzed by it because of the low mapping 

rate. BS-seeker2 was developed to recover the low mapping rate, flaw of Bismark, by applying local 

alignment on read aligning [22]. However, there was trade-off of the mapping rate against mapping 

accuracy, resulting in lower mapping accuracy compared to that by Bismark. In this way, even though 

large number of bisulfite read mappers has been developed (or evolved), they barely succeeded in 

improving either amount or accuracy of methylation detection.  

In this study, we attempted to find cell type specific mCpH distribution by improving both quality 

and quantity of methylome from WGBS data. To improve the methylation detection, we developed an 

integrative method that combines the outputs from three most widely used bisulfite read mappers, 

Bismark, BSMAP, and BS-seeker2. By scoring read depth against artifacts, we succeeded in improving 

both amount and accuracy of methylation detection. In addition, the integrative method facilitated 

combining of WGBS samples generated from various experiments by reducing experimental bias 

caused different read conditions among experiments. In consideration of the difficulties on 

generating WGBS samples such as costly and time-consuming steps, our integrative approach 

contributes to methylation research by facilitating re-use of public WGBS data. The specifics about 

the integrative approach are described in Section 1, with some results of bisulfite read mapper 

analysis.  
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Applying the integrative approach, we analyzed the cell type specific mCpH patterns in ESC and 

neuron. We confirmed that the mCpH are spatially correlated with mCpGs, especially when those are 

within ±100bp distance. Remarkably, we found that the methylation at CpHpH and CpHpG contexts 

are preferentially methylated by DNMT3a and DNMT3b, respectively, resulting in distinct 

characteristics of mCpHs in embryonic stem cells (ESCs) and neuron. In addition, we proved that the 

positive correlation between mCpH and gene expression level in ESCs is caused by the active 

interaction between DNMT3b and histone mark, H3k36me3, abundant at highly expressed gene 

bodies. The specifics of the analysis are written in Section 2. 

Lastly, we found that the mCpHs independently formed to mCpGs are highly functional on brain 

maturation. The genes related to “mental retardation” and “zinc finger activity” are clustered by 

mCpG-independent mCpH pattern across sample ages. The specifics of the analysis are written in 

Section 3. 

Altogether, the results contribute to DNA methylation research by developing method for accurate 

methylation detection and uncovering the roles of mCpHs that independent to mCpGs. This research 

shed light on the mechanism of epigenetic regulation on cell type specific processes.  
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Section1: An integrative approach for efficient analysis of 

whole genome bisulfite sequencing data 

 

Abstract 
 

Whole genome bisulfite sequencing (WGBS) is a high-throughput technique for profiling 

genome-wide DNA methylation at single nucleotide resolution. Especially, it is specified for detecting 

methylation at non-CpG context (CpH; H means A, C, and T) by scanning whole genome with little 

bias to CpGs. However, the WGBS is limited by low accuracy that caused by bisulfite-induced damage 

on DNA fragments. Although many computer programs have been developed for accurate detection, 

most of the programs have barely succeeded in improving either quantity or quality of the 

methylation results.  

To improve both, we developed an integration method that combines methylomes from most 

widely used bisulfite-read mappers, Bismark, BSMAP, and BS-seeker2. A comprehensive analysis of 

the three mappers revealed that the mapping results of the mappers were mutually complementary 

under diverse read conditions. Therefore, we sought to integrate the characteristics of the mappers 

by scoring them to gain robustness against artifacts. As a result, the integration significantly 

increased detection accuracy compared with the individual mappers. In addition, the amount of 

detected cytosine was higher than that by Bismark. Furthermore, the integration successfully 

reduced the experimental bias of detection accuracy that induced by read heterogeneity. We applied 

the integration to real WGBS samples and succeeded in classifying the samples according to the 

originated tissues by both CpG and CpH methylation patterns. 

  In this study, we improved both quality and quantity of methylation results from WGBS data by 

integrating the methylomes of the three bisulfite-read mappers. Also, we facilitated the re-analyzing 

of public WGBS data by reducing the effects of read heterogeneity on methylation detection. This 

study contributes to DNA methylation researches by improving efficiency of methylation detection 

from WGBS data and facilitating the comprehensive analysis of public WGBS data. 
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Introduction 
 

DNA methylation, defined as an addition of methyl group on 5-carbon in cytosine, is an epigenetic 

mark on cell processes. The DNA methylation pattern can serve to identify cells and guides cell 

development and tissue maintenance [4]. For decades, researchers have focused on methylation at 

CpG sites (mCpG) and found that those are regulating cell-specific functions, aging and deceases [3, 

23-25]. Recently, however, methylation at CpH (mCpH; where H can be A, C, or T) sites is being 

confirmed to be a key regulator of cell-type specific functions. Those are known to be involved with 

brain development and embryonic stem cell (ESC) differentiation [6, 7, 11, 12]. Therefore, profiling 

both mCpG and mCpH in a genome scale is crucial for understanding various biological processes. 

To analyze the methylation modifications, high-throughput methods coupled with microarray and 

next-generation sequencing have been widely used. Bisulfite microarray is a specially designed 

genotyping microarray combined with bisulfite treatment. Although this method is a useful strategy 

for targeted DNA methylation analyses, it is not suitable for genome-scale studies due to low genome 

coverage; only 0.8% of CpGs and 0.02% of CpHs have been covered in the newest version [15]. 

Another experimental method, reduced representation bisulfite sequencing (RRBS) [17], utilizes 

enzyme bindings to “CCGG” sites to detect information-rich regions. However, the enzyme binding 

leads experimental bias and limits the detection of mCpH [19]. Alternatively, as the widely-accepted 

gold standard method, whole genome bisulfite sequencing (WGBS) can detect both mCpG and mCpH 

at single nucleotide resolution in a genome scale [19]. 

For efficiently detecting the methylated sites with WGBS data, many computer programs have been 

developed. In particular, Bismark [21], BSMAP [20], and BS-seeker2 [22] are the most widely used 

bisulfite-read mappers that employ distinct strategies. BSMAP is a wild-card type mapper that 

converts all cytosine bases (Cs) of a reference genome to a letter Y and then aligns sequenced Cs and 

thymine bases (Ts) to the Ys [19] by using SOAP [26]. Bismark and BS-seeker2 are three-letter type 

mappers that convert all Cs to Ts in both sequenced reads and a reference genome. However, different 

with Bismark, employing Bowtie2 [27] with global alignment mode, BS-seeker2 employs Bowtie2 

with local alignment mode to increase mapping rate (percentage of reads being aligned). It has been 

reported that wild-card type mapper (i.e. BSMAP) tend to show better mapping rate but struggle with 

mapping accuracy (percentage of reads mapped at correct positions) [19], whereas the three-letter 

type mappers (i.e. Bismark and BS-seeker2) show exactly opposite tendency [19]. In this way, even 

though many bisulfite-read mappers have been developed for better methylation detection, those 

have succeeded in improving either quantity or quality of it, not both of it.  

In this study, we attempted to improve both quantity and quality of methylation detection from 

WGBS data by developing a novel integrative method. First, we investigated the performances of the 

three mappers on virtual WGBS dataset that has been simulated under various conditions. Through 

gathering detailed information, we confirmed that the mappers exhibit (dis)similar behaviors 

depending on the properties of simulated reads, which is consistent with results from previous 
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studies [19, 22]. Since the results showed that the behaviors of the three mappers were 

complementary to each other, we sought to integrate the characteristics of the mappers by scoring 

them to gain robustness against artifacts (e.g. sequencing errors and aligning errors). As a result, our 

integrative approach improved both quality (i.e. the accuracy of the methylation detection at each C) 

and quantity (i.e. the number of detected Cs) of the methylation data with less dependency on the 

read properties (Figure 1.1). We also applied our approach to public WGBS datasets of 13 tissues, and 

successfully grouped them according to their originated tissues by the patterns of mCpG and mCpH. 

Altogether, this study contributes to DNA methylation research by efficiently analyzing the WGBS 

data and facilitating comprehensive analyses of methylation patterns under the public WGBS data. In 

addition, this study gives a clue to algorithmic improvement of bisulfite-read mappers. 
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Results 

 
1. Overview of integrative approach 

We integrated the methylation results from three bisulfite-read mappers: Bismark, BSMAP, and 

BS-seeker2. Bismark and BSMAP are the most widely used three-letter type and wild-card type 

mappers, respectively [28-30], and BS-seeker2 is the newest three-letter type mapper, which has 

shown a higher mapping rate than Bismark [22]. 

The evaluation and integration of Bismark, BSMAP, and BS-seeker2 were conducted as described 

below (Figure 1.2-a). First, bisulfite-read sets were generated by Sherman [31], with randomly 

designated methylation levels for every block of 500 base pairs (bps) in human chromosome 19. 

Then we mapped the reads by Bismark, BSMAP, and BS-seeker2 and evaluated the performances of 

the three mappers with respect to mapping rate and accuracy; the mapping rate is the portion of 

mapped read number over total read number, whereas the mapping accuracy is the portion of 

correctly mapped read number over mapped read number. Lastly, we integrated the methylation 

results from the mappers with three strategies and evaluated the performances in terms of detection 

accuracy (d-accuracy) and amount of detected Cs (d-amount). The d-accuracy was determined by the 

similarity between generated and detected methylation levels at each block (Figure 1.2-b). 
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2. Read-dependent performances of the three mappers 

To investigate the performances of the three mappers under diverse read conditions, we analyzed 

the mapping results of the three mappers in the context of varied read quality, read length, and 

methylation levels. 

  For all three mappers, the mapping rate and mapping accuracy fluctuated with changes in read 

quality (Figure 1.3-a, b). When reads contained little errors (<4%), BSMAP showed a higher mapping 

rate and lower mapping accuracy compared with others, consistent with previous studies [19, 22]. As 

the read error rate increased (6-8%), however, the mapping rate of the BSMAP decreased 

dramatically, to lower than that of Bismark, implying that the mapping rate of wild card-type 

mappers could be lower than that of three letter type mappers when the read quality is extremely 

bed. Interestingly, for BS-seeker2, both mapping rate and mapping accuracy did not decreased 

substantially, implying that BS-seeker2 shows robustness upon the fluctuation of read quality. 

  The read length also affected the performances of the three mappers (Supplementary figure 1.1). 

We compared mapping results of 50bp-long reads (short reads) with those of 100bp-long reads (long 

reads). When read error rate was low (2%), both mapping rate and mapping accuracy were higher 

within long reads, which is coincident with previous results [28]. When read error rate was high 

(8%), however, mapping rate of Bismark and BSMAP were higher within short reads than within long 

reads implying that the read length and quality is jointly affecting the mapping rate. Remarkably, both 

mapping rate and mapping accuracy of Bismark was higher in short reads when read quality is bed 

(8%), implying that Bismark performs great for short read mapping. 

  In addition, we found that the performances of the three mappers varied greatly within repeat 

regions. In particular, the reads generated from short interspersed nuclear elements (SINEs) tended 

to be unmapped by Bismark and BS-seeker2 (Figure 1.3-c) and incorrectly mapped by BSMAP (Figure 

1.2-d), which clearly showed the difference in performances between wild-card type and three-letter 

type mappers. 

Lastly, we found that hypo-methylated reads tended to be incorrectly mapped by BSMAP and 

BS-seeker2 (Figure 1.3-e, f). This tendency was not found in the mapping results of Bismark. This 

may be explained in part by that the increased number of Ts, induced by the bisulfite conversion of 

unmethylated Cs, hindered the correct mapping of BSMAP and BS-seeker2. To confirm that, we 

measured the percentage of Ts in reads that correctly and incorrectly mapped by the three mappers. 

For BSMAP and BS-seeker2, the incorrectly mapped reads contained higher amount of Ts than the 

correctly mapped ones (Figure 1.3-g). 

In summary, Bismark, BSMAP, and BS-seeker2 performed differently in different read conditions. 

Bismark mapped reads with great accuracy and was not affected by the density of Ts in reads. 

However, Bismark tended to lose both mapping rate and accuracy when read error rate was higher in 

longer reads. BSMAP generally mapped a large number of reads to incorrect positions. Additionally, 

the mapping accuracy of BSMAP was affected by the density of Ts in reads. Both the mapping rate and 

mapping accuracy of BS-seeker2 were only slightly affected by the read error rate, whereas the 
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mapping accuracy was affected by the density of Ts in reads (Table 1.1). 

 

 

 Mapping 

rate 

Mapping 

accuracy 

Read error 

dependency 

Bisulfite-conversion 

dependency 

Bismark Low High Yes No 

BSMAP High Low Yes Yes 

BS-seeker2 Middle Middle No Yes 

Table1.1: Summary of the performances of the tree mappers in varied read conditions 
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3. Integrative approach improved both the accuracy and amount of methylation detection 

Based on the different performances of Bismark, BSMAP, and BS-seeker2 in varying read 

conditions, we integrated the mapping results of the three mappers using three strategies: Ave - 

average of the methylation levels from the three mappers, wAve - weighting by read depths, and 

pwAve – weighting by probabilistic method (See Method). 

First, we examined the overlap of correctly mapped reads by the mappers. We found that 88.6% of 

high-quality 100-bps reads (2% read error rate) were correctly mapped by all the mappers, but this 

dramatically decreased to 6.7% in the case of low-quality reads (8% read error rate, Supplementary 

figure 1.2). It implies the reads that successfully mapped to the same position by three mappers could 

have high quality and high chance for being mapped to the right position. Indeed, as the number of 

covering mappers (i.e. ni in Methods) increased, wAve improved the d-accuracy (Figure 1.4-a). 

However, taking reads that only mapped by all three mappers made the d-amount dramatically 

decrease, even becoming far lower than the average of the three mappers. Taking account of this 

tradeoff, we choose ni ≥2 that yields constantly higher d-amount than Bismark, and higher d-amount 

than BS-seeker2 or BSMAP in some cases (Figure 1.4-b). 

As shown in Table 1.2, among the three integration methods, wAve marked the highest d-accuracy 

in most read conditions, whereas pwAve showed the best d-accuracy in limited cases that short reads 

contain few errors (≤4%). The wAve remarkably improved d-accuracy compared with the individual 

mappers (Figure 1.4-c, right). The Wilcoxon single-rank test over 500 bps blocks revealed 

significantly low P value (≤5.0E-2) in most of read conditions (Supplementary table 1). Especially, the 

wAve increased d-accuracy within SINEs in which the mappers showed low mapping rate or accuracy 

(Figure 1.4-c, left). Taken together, the wAve successfully improved the methylation detection 

compared with using individual mappers. 

It is noteworthy that the d-accuracy of wAve exhibited the reduced dependency on read conditions 

(i.e. read length and quality, Figure 1.4-d). We checked the distribution of d-accuracies of the three 

mappers and wAve, gathered from mapping results of 100 read sets (see Method).The wAve shows 

relatively less variance of d-accuracies among varied read conditions. Especially, the wAve decreased 

the difference of d-accuracy between high and low read error cases (Figure 1.4-c). This implies that 

the wAve successfully reduces the effects of heterogeneous read conditions on methylation detection, 

facilitating comprehensive analyses of methylation patterns among public WGBS samples from 

various experiments. 
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 Long reads (100bps) Short read (50bps) 

Read error (%) 0 2 4 6 8 0 2 4 6 8 

Ave 96.04 95.67 95.12 94.22 93.19 95.78 94.88 93.80 92.33 90.90 

wAve 96.05 95.72 95.24 94.74 94.43 95.76 94.85 93.81 92.55 91.50 

pwAve 96.05 95.69 95.14 94.32 93.43 95.80 94.91 93.82 92.38 91.02 

Table 1.2: d-accuracy of the integration methods  
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4. The integrative approach facilitated the comprehensive analysis of public WGBS data 

Next, we re-analyzed 13 WGBS samples that were generated from various experiments with 

different read length and quality. In particular, we included six brain samples and four pluripotent 

stem cells, in which significant amount of CpH methylation has been observed [6, 7, 11, 12].  

The mapping rate of WGBS samples was consistent with the mapping results of artificial 

bisulfite-reads (Supplementary figure 1.3). BSMAP showed the highest mapping rate within nine 

samples, whereas BS-seeker2 showed the highest mapping rate within the left four samples. Bismark 

showed the lowest mapping rate in most of the samples. In accordance with mapping rate, the 

d-amount by BSMAP was the highest among the three mappers within 12 samples, whereas the 

BS-seeker2 showed the highest d-amount within only one sample. The d-amount by wAve was higher 

than Bismark within all samples (Figure 1.5-a). Also, it showed higher d-amount than BS-seeker2 

within six samples.  

We also examined the correlation between samples in terms of CpG and CpH methylation levels 

detected by the wAve. We found that both methylation levels clearly grouped samples according to 

their originated tissues (Figure 1.5-b). In particular, while brain samples were produced from three 

different experiments, they were closely positioned in the dendrogram. Moreover, an unknown-brain 

sample, a WGBS data from brain of which age was not known, and a sample from liver were produced 

from the same experiment but were successfully grouped according to each tissue type. These trends 

were not observed for BS-seeker2 (Supplementary figure 1.4). We could confirm that the wAve 

clearly reduced false correlation between brain and liver from the same experiment (Figure 1.5-c). 

We also found that the wAve results in significantly higher correlation of CpG methylation levels in 

gene-body regions within brain samples compared with that observed by Bismark (Supplementary 

figure 1.5). Especially, the correlation among brain samples from different experiments were 

relatively more increased than that from same experiment. Thus, the wAve succeeded in decreasing 

the false correlation between samples from the same experiment and increasing the correlation 

among samples from the same tissue. 
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Methods 
 

Generating artificial sequenced reads 

The sequenced reads were generated by Sherman [21]. The Sherman generates virtually 

bisulfite-treated reads with specific read number, length, error rate, and methylation level. We 

designated methylation level of CpG and CpH randomly and separately, on every 500bps block of 

human genome (hg 19) chromosome 19. The human chromosome 19 is short but reveals the highest 

repeat rate among all chromosomes [32]. Therefore, we could effectively observe the diverse 

mapping results of the three bisulfite-read mappers with special focus on repeat regions. From the 

randomly methylated reference genome, we generated long (100bps) and short (50bps) reads 

separately. The numbers of generated reads were 50 for 100bps reads and 100 for 50bps reads in a 

block to adjust the average coverage depth equals to 10. Also, we generated reads with designating 

error rate to 0%, 2%, 4%, 6%, and 8%, in order to determine the dependency of mapping results on 

read error. We repeatedly generated all the cases of read sets 10 times. In total, we generated 100 

read sets (2 read length cases×5 read error cases×10 repeat) for which the read number was 5.4 

million and 10.8 million for long and short reads, respectively. 

 

Parameters for read generation 

- For short reads 

/Sherman -l 50 -n 100 -e [ERROR] --genome_folder [DIR] -CG [mCG] -CH [mCH] 

- For long reads 

/Sherman -l 100 -n 50 -e [ERROR] --genome_folder [DIR] -CG [mCG] -CH [mCH] 

[DIR]: Directory to fasta file that include 500bp-long sequences. Before running Sherman, human 

chromosome divided into 500bps sequences and saved in separate directories.  

[ERROR]: repeatedly set to 0, 2, 4, 6, and 8 

[mCG] and [mCH]: randomly and independently set from 0 to 100. After the read generation completed, 

Sherman reported exact value of the bisulfite-treated rates on CpG and CpH positions. We used the 

reported values as designated methylation level at each block. 

 

Read mapping and extracting methylation level 

We mapped both artificial reads and real WGBS reads with Bismark, BSMAP, and BS-seeker2. In 

mapping, we unified the maximum mismatch threshold to 4% of the read length, to determine the 

distinct performances of the three mappers in unified parameters. The command lines for each 

mapper were as below; 

 

Bismark; we used bowtie2 as an aligner for better performance [21]. 

perl ./bismark -o [ouput] --bowtie2 [reference genome] [input fastq] --score_min L,0,-0.24 

BSMAP; we set the maximum number of equal best hits to one [20].  
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./bsmap -a fastq file -d [reference genome] -o [output] –w 1 –v 0.04  

BS-seeker2; we used bowtie2 as an aligner for better performance. [22]  

python ./bs_seeker2-align.py -i [input fastq] -o [output] -g [reference genome] --aligner=bowtie2 –m 

0.04 

 

After mapping, we removed duplicates possibly induced by PCR amplification. The duplicated 

reads from Bismark, BSMAP, and BS-seeker2 were removed by picard [33], samtool rmdup [34], and 

a program of BS-seeker2 [22], respectively. After removing duplicates, methylation levels of each C 

were extracted by programs of each mapper. In results with simulated reads, we considered 

methylation levels at Cs that covered by more than one read. In results with real WGBS data, however, 

we considered methylation levels at Cs that covered by more than five reads in order to increase the 

confidence of methylation level at each C [35]. The methylation level at each C was calculated as the 

ratio of unconverted Cs over the total mapped read number. 

 

Integration of mapping results  

The integration of three mappers was conducted at single base resolution. We extracted the 

number of both converted and un-converted Cs at each cytosine position. The methylation level 𝑀𝑖𝑗 

at the ith C position detected by a mapper j (=Bismark, BSMAP, BS-seeker2) was calculated as below; 

𝑀𝑖𝑗 =
𝑁𝑐

𝑖𝑗

𝑁𝑐
𝑖𝑗 + 𝑁𝑡

𝑖𝑗
,  

where Nc and Nt are the number of Cs and Ts, respectively. If there is no mapped read by the mapper j, 

𝑀𝑖𝑗 is set to zero. We integrated 𝑀𝑖𝑗 using three methods; Ave (average), wAve (weighted average) 

and pwAve (probabilistic weighted average). Ave was given by 

𝐴𝑣𝑒𝑖 =
∑𝑗𝑀𝑖𝑗 

𝑛𝑖
, 

where n is the number of mappers with constrain 𝑀𝑖𝑗 > 0. wAve weights 𝑀𝑖𝑗 by the read depth of 

mapper j with assuming that the methylation level detected by many reads is more confident. This is 

based on the observation that read-mapping rate and detection accuracy of methylation levels are 

correlated (Supplementary figure 1.2). The wAve was given by 

𝑤𝐴𝑣𝑒𝑖 =
∑𝑗𝑊𝑖𝑗𝑀𝑖𝑗 

𝑛𝑖
, 

𝑊𝑖𝑗 =
𝑁𝑖𝑗

𝑑

∑ 𝑁𝑖𝑗
𝑑

𝑗

 , 

where W and Nd is the weight and the read depth, respectively. pwAve uses Poisson distribution for 

weighting 𝑀𝑖𝑗. Based on the observations of the performances of the three mappers, we assumed 

that if a mapper mapped more reads than other mappers, the probability of existing incorrectly 

mapped reads at each position is also higher than that by other mappers. The pwAve was given by 
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𝑝𝑤𝐴𝑣𝑒𝑖 =
∑𝑗𝑊𝑖𝑗

𝑝
𝑀𝑖𝑗

𝑛𝑖
, 

𝑊𝑝
𝑖𝑗 =

𝑓(𝑁𝑑
𝑖𝑗; 𝜆𝑗)

∑𝑗𝑓(𝑁𝑑
𝑖𝑗; 𝜆𝑗)

,   

where 𝑊𝑝 is the weight by the probability function 𝑓 of Poisson distribution with parameter 𝜆 

that is the average read depth of a mapper over whole genome. 

 

WGBS data preparation 

We collected 13 WGBS samples from 5 experiments (Table 1.3). For evaluating the CpH 

methylation level, seven of human brains and four of pluripotent stem cells, known to have specific 

CpH methylation patterns [6, 7, 36], were included to the dataset. All the samples were 

quality-trimmed by fastx toolkit [37], with setting that minimum phred quality score equals to 20 and 

minimum read length equals to half of the original read length. We mapped all WGBS sample in single 

mode for the greatest generalization [30]. 

- Parameters for quality-trimming 

fastq_quality_trimmer -t 20 -l [half of read length] -i sample.fastq -o [output directory] -Q [phred 

score scale] 

 

 

 

 

 

Tissue Age Read # Length Type Experiment 
Replica 

# 

frontal cortex fetal(20-week) 788M 100 Single 

GSE47966[6] 

9 

middle frontal gyrus 35-day 669M 100 Single 12 

middle frontal gyrus 2-year 900M 100 Single 12 

middle frontal gyrus 12-year 594M 100 Single 12 

middle frontal gyrus 25-year 903M 100 Single 12 

prefrontal cortex 42-year 706M 100 Paired GSE46710[38] 2 

brain Unknown 549M 90 Paired 
GSE46698[39] 

4 

liver Unknown 336M 100 Paired 7 

ESC1 

 

2655M 45 Single 
GSE40832[40] 

1 

Blood 1240M 45 Single 1 

ESC2 460M 87 Single 

GSE16256[41] 

5 

iPSC1 667M 87 Single 13 

iPSC2 837M 87 Single 20 

Table 1.3: Description of public WGBS data used in Section 1 
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Conclusion 
 

To efficiently detect DNA methylation from WGBS data, we analyzed and integrated the three most 

widely used bisulfite-read mappers, Bismark, BSMAP, and BS-seeker2. The procedure consisted of 

three steps: mapper analysis, analysis with simulated reads, and analysis with real WGBS dataset.  

Firstly, we confirmed that the performances of the three mappers were consistent with the results 

of former studies of wild-card type (e.g. BSMAP) and three-letter type (e.g. Bismark and BS-seeker2) 

[19]. In particular, the two types of mappers performed distinctly in SINEs, in which the wild-card 

type mappers falsely mapped reads, whereas the three-letter type mappers failed to map large 

number of reads. It should be further investigated what distinction in algorithm induces the 

difference in mapping results in SINEs. In addition, the performances of Bismark and BSMAP 

dramatically decreased in case of bed read quality, whereas BS-seeker2 did not affected much by the 

fluctuation of read error rate. Lastly, the mapping accuracies of BSMAP and BS-seeker2 were found to 

be dependent on the methylation level, whereas Bismark were not. Based on the complementary 

performances of the three mappers across varying read conditions, we integrated the mapping 

results of the three mappers with three methods: average (Ave), read depth-weighted average (wAve), 

and probabilistically weighted average by Poisson distribution (pwAve). 

With the simulated reads, the wAve method resulted in significantly higher detection accuracy than 

that obtained with individual mappers and other integration methods. On the other hand, pwAve 

showed decreased accuracy compared with wAve. The superior performance of wAve could be 

explained by the correlation between d-accuracy and mapping rate. Using read depth as weight, the 

wAve considered mapping rate as a first element on determining the certainty of the methylation 

levels from each mapper. On the other hand, pwAve indirectly employed mapping accuracy on 

weighting by considering the characteristics of the mappers; a mapper that maps larger number of 

reads compared with other mappers tended to maps reads at incorrect positions. The tendency was 

clearly revealed within short reads containing low error, so the d-accuracy of pwAve was the highest 

among the integration methods in those read conditions. Generally, however, d-accuracy was more 

strongly correlated with mapping rate (Pearson correlation coefficient equals to 0.83) than mapping 

accuracy (Pearson correlation coefficient equals to 0.64, Supplementary figure 1.6), resulting in the 

higher d-accuracy of wAve than that of pwAve in most read conditions. It should be further studied 

what probabilistic methods could improve the detection accuracy compared with read-depth 

weighting. 

In addition, the wAve exhibited higher detection of Cs than Bismark. Indeed, existing bisulfite 

mappers exhibit smaller increases in either quality or quantity of the methylation results compared 

with former systems. It is remarkable that the integration improved both the accuracy and amount of 

methylation detection. Furthermore, the integration reduced the dependency of detection accuracy 

on read conditions (i.e. error rate and length), proving that our method can facilitate the 

comprehensive analyses of multiple WGBS samples of which read conditions are heterogeneous.  
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With real WGBS samples, the wAve reduced the false correlation between WGBS samples 

generated from same experiments and increased the true correlation between those originated from 

same tissues. Thus, our method succeeded in facilitating comprehensive analyses of multiple WGBS 

datasets from various experiments by reducing the dependency of methylation results on read 

conditions. 

In summary, our integrative approach improved both quality and quantity of methylation results 

from WGBS data, and facilitated the comprehensive analyses of DNA methylation among various read 

conditions. This study may contribute to researches about methylation patterns among samples in 

different conditions (e.g. tissue, age, or some diseases) by combining a massive public WGBS data. In 

addition, this study may give a new clue to algorithmic improvement of bisulfite-read mappers to 

enhance epigenetic researches. 
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Section2: Differential activity of DNMT3a and DNMT3b causes 

distinct distribution and function of non-CpG methylation in 

embryonic stem cell and neuron 

 

Abstract 
 

DNA methylation is an important epigenetic mark that regulates cellular processing such as cell 

differentiation, development, and retardation. Although most of the methylation occurs at CpG 

dinucleotides in mammalian cells, recent studies have reported that considerable amount of 

methylated non-CpGs (mCpHs; H means A, C, and T) exit in embryonic stem cell (ESC) and neuron. 

Interestingly, distribution and function of the mCpHs in those two cell types are highly distinct. For 

example, the methylation preferentially occurs at CAG motif in ESC, whereas it occurs at CAC in 

neuron. In addition, the CpH methylation level and expression level of genes are positively correlated 

in ESC but negatively correlated in neuron. These opposite tendencies of mCpHs in the two cell types 

have been mystery among researchers for years. 

In this study, to understand the differential mechanisms of CpH methylation in those two cell types, 

we conducted a comprehensive computational analysis with public whole genome bisulfite 

sequencing data of 14 ESCs and neurons incorporated with transcriptome and DNA 

methyltransferase (DNMT) knockout data. We confirmed that CpHs are methylated by DNMT3a and 

DNMT3b, dependently to the methylation at flanking CpGs. Remarkably, the DNMT3a and DNMT3b 

are preferentially methylate CpHpH and CpHpG context, respectively. These DNMTs are differentially 

expressed in ESCs and brain tissues, resulting in distinct mCpH motifs in those two cell types. In 

addition, the preferential binding of DNMT3b on H3K36me3 histone marks induces positive 

correlation between gene expression and CpH methylation in ESCs.  

Collectively, our study revealed that DNMT3a and DNMT3b are responsible for the methylation at 

CpHpH and CpHpG contexts nearby CpGs, respectively, causing distinct distribution and function of 

mCpH in ESCs and neuron. This result shed light on the importance of cell type specific establishment 

of both mCpG and mCpH in mammalian cells. 
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Introduction 
 

DNA methylation, an addition of methyl group on fifth carbon at cytosine, is one of the most 

important epigenetic modifications. For decades, epigenetic studies have focused on methylated CpG 

dinucleotides (mCpGs) that govern cell type specific functions and cause diseases by regulating 

transcription [23, 25, 42]. In contrast, the methylated non-CpG dinucleotides (mCpH; H includes A, C 

and T) had shown mostly ignorable level in mammalian somatic cells, even though it had been 

frequently observed in plant [43]. Recently, however, several research groups have uncovered that 

significant amount of mCpHs are observed in mammalian pluripotent stem cells and non-dividing 

cells such as neuron, regulating cell type specific regulation such as cell differentiation and 

neurodevelopment [6, 7, 11-13, 44]. In this way, the mCpH, as well as mCpG, emerged as a key 

epigenetic factor, especially in pluripotent stem cells and non-dividing cells. 

In those cell types, the distribution of mCpHs is depended to that of mCpGs. In contrast to the 

methylation in plant, where CpG, CpHpH, and CpHpG contexts are methylated by methyltransferases, 

MET1, DRMs, and CMT3, respectively [45-47], both CpG and CpHpN (N means all kinds of nucleotide) 

contexts are de-novo methylated by DNMT3a and DNMT3b in mammalian cells. It results in spatial 

correlation between mCpG and mCpH [12]. Since those methyltransferases showed 10 times higher 

affinity at CpG than CpH, the mCpHs have been considered as by-products from the hyperactivity of 

DNMTs that originally target CpGs. [2, 11, 12, 48-50].  

Despite the spatial dependency of mCpH on mCpG, there are some evidences that mCpHs regulate 

cell type specific functions that independent to mCpGs. In brain, the mCpHs are gradually increased 

as aged, in a same pattern with the progress of synaptogenesis [6]; whereas mCpGs are not. In 

addition, the methyl-CpG binding protein 2 (MeCP2), mutation of which causes Rett syndrome, binds 

to not only mCpGs but also mCpHs. Considering that postnatal onset of Rett syndrome coincides with 

the emergence of mCpH, there is a possibility that MeCP2-related neuro-diseases are governed not by 

mCpG, but by mCpH [12]. Also, there are mega-base mCpH deserts in induced pluripotent stem cells 

(iPSCs), in which genes are less transcribed compared to those in ESCs. This implies that the failure of 

epigenetic reprogramming at CpHs leads to genetic aberration in iPSCs. Altogether, even though the 

mCpHs are spatially correlated to mCpGs, those play important roles on cell type specific processes 

independently to mCpGs. 

One of the underlying mechanisms that mCpHs govern cell type specific phenomena is distinct 

characteristics of mCpHs across cell types. For example, the abundant DNA motif at mCpHs is “CAG” 

in ESC [5, 7]; whereas it is “CAC” in neuron [6, 10]. Also, the mCpHs tend to be abundant at intragenic 

regions in ESC, whereas those are abundant at intergenic regions in neuron [6, 10]. Especially, the 

CpHs are hyper-methylated at actively expressed gene bodies in ESC, whereas those in neuron are 

hypo-methylated [6, 7]. Since DNA methylation is generally negatively correlated to gene expression 

in most somatic cells [9], the positive correlation between mCpH and gene expression in ESC has 

been mysterious for years. In this way, the mCpH shows distinct distribution and potential function to 
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gene expression in ESC and neuron. However, it is still unknown what causes the distributional and 

functional difference among cell types. 

In this study, to uncover the mechanism of cell type specific CpH methylation, we analyzed the 

whole genome bisulfite sequencing (WGBS) data of human ESCs, neurons, and brain tissues. In 

addition, we included WGBS data of DNMT knock out ESCs to trace the role of DNMTs on cell type 

specific methylation [6, 35, 38, 49, 51-54]. Through comprehensive analysis, we confirmed that 

DNMT3a and DNMT3b are responsible for both mCpG and mCpH, resulting in spatial dependency of 

mCpHs on mCpGs. Interestingly, the two DNMTs differentially methylate cytosines at CpHpH and 

CpHpG contexts, resulting in distinct pattern of mCpHs in ESCs and neurons. In addition, we found 

that in ESC, the preferential affinity of DNMT3b on histone mark H3k36me3 causes positive 

correlation between mCpH level in gene bodies and gene expression level. Based on the results, we 

suggested a differential CpH methylation model that can explain the mystery of distinct mCpH 

characteristics in ESC and neuron. Altogether, our results give an insight for understanding cell type 

specific formation, distribution and function of mCpHs in mammalian cells. 
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Results 
 

1. The integrative approach for WGBS read aligning successfully reproduced known 

characteristics of mCpH in ESC and neuron. 

To analyze methylation at both CpG and CpH contexts, we re-aligned WGBS reads that generated 

from various experiments (Table 2.1). Three bisulfite read mappers, Bismark [21], BSMAP [20], and 

BS-seeker2 [22] were used for read aligning, and the outputs were integrated by previously 

introduced strategy (Method section) [55]. Also, we adjusted the methylation level by subtracting 

bisulfite non-conversion rate based on a statistical model [6].  

Statistic features of the regenerated data were coincident with those in previous studies (Figure 

2.1-a) [2, 6, 7, 11-13]. In human samples, although most of the CpGs were hyper-methylated 

(75~85%), the average methylation levels at CpH (mCpH level) were distinct across cell types. It was 

mostly abundant in neurons (>5%), abundant in ESCs derived from male (H1) and matured brain 

tissues (>1%), detectable in ESCs derived from female (H9), early-passage ESCs (HUES64), and 

immature brain tissues (0 to 5 year-old; ~1%), and mostly ignorable in other tissues (Heart, Spleen, 

and Lung; <0.5%). Also, we observed the increase of mCpH level along with brain aging [6], and lower 

mCpH level in H9 than in H1 [5, 7, 56]. Remarkably, the WGBS samples were clearly clustered into 

their originated tissues (or cell types) by both mCpG and mCpH patterns (Figure 2.1-b). With the 

methylation patterns that extracted from each bisulfite read mapper, however, it was not clearly 

grouped into their originated tissues (Supplementary Figure 2.1). Lastly, we confirmed the motif 

abundancy at hyper-methylated CpHs (beta value>50%). It was “CAG” in all ESC samples, whereas it 

was “CAC” in all neuron and brain samples (Supplementary Figure 2.2) [5-7, 10, 12]. Altogether, our 

integrated methylome successfully reproduced the known characteristics of CpH methylation in 

mammalian cells. Since the mCpH levels in early brains and somatic cells are extremely low, we 

excluded those cells from further analysis, and focused on methylation in ESCs, neurons, and adult 

brains.



25 

 

 

2. There are cell-type specific CpH methylation pattern around mCpGs (±100bp). 

With the WGBS dataset, we analyzed the correlation between CpG and CpH methylation. The 

methylation levels of CpG and CpH across 1k-bp blocks were positively correlated to each other, 

which coincident with results from previous studies [10-12, 48] (Supplementary Figure 2.3; Pearson 

Corr. ~0.44). In further analysis, we found that among blocks where CpGs are hemi-methylated 

(difference of mCpG level between strands > 0.5), the mCpH levels are significantly higher at the same 

strand with highly methylated CpG, compared to those at opposite strand. In addition, the mCpH 

levels were significantly highly correlated to the mCpG levels in same strand than those in opposite 

strand, implying that the CpG and CpH methylations are correlated in strand-specific way 

(Supplementary Figure 2.4-a, b). Also, the correlation between mCpG and mCpH level was 

significantly higher at exon and promoter regions (Supplementary Figure 2.4-c). 

Next, we checked the spatial correlation between mCpG and mCpH by measuring the probability 

that mCpHs exist at a distance from CpGs. Interestingly, the probability was greatly high within 

±100bp distance from mCpG (Figure2.2-a). In addition, the correlation between mCpG and mCpH 

levels was greatly high when those are within ±100bp, supporting that methylations at CpGs and 

CpHs are highly correlated especially when those are within ±100bp distance (Supplementary Figure 

2.5). The correlation pattern has been observed in all of ESCs, neurons and brain samples. Based on 

the spatial correlation, we grouped CpHs within 100-bp from mCpGs (beta value > 0.8) as 

mCpG-correlated CpHs and analyzed the methylation pattern at those CpHs. The mCpG-correlated 

CpHs showed conserved methylation pattern among same cell types (Supplementary Figure 2.6). In 

ESCs, a clear CpH methylation peak was observed at -4bp from mCpG that had reported in previous 

study [14]. Also, in neurons and brains, the 8-10bp periodicity among CpH methylation peaks was 
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observed, which has been suggested as a potential mark for methylation by DNMT3a-DNMT3l 

enzyme complex [57]. Remarkably, the mCpG-correlated CpH methylation patterns were clearly 

distinguishable between ESC and neuron (Figure 2.2-b), implying the differential mechanisms of 

mCpG-correlated CpH methylation between the two cell types exist. Altogether, the methylation 

pattern at mCpG-correlated CpHs is highly conserved in same cell types but distinguishable between 

ESCs and neurons. 

 

 

 

 

3. The DNMT3a and DNMT3b preferentially methylate CpHpH and CpHpG contexts, 

respectively. 

To uncover the differential mechanism of mCpG-correlated CpH methylation in ESC and neuron, we 

analyzed DNMT knock out human and mouse ESCs (mESCs). 

As a first step, we analyzed mouse ESCs in which DNMT1, and both DNMT3a and 3b are knocked 

out (DNMT1-KO mESC and DNMT3-DKO mESC, respectively) [52]. The mCpH level was little 

decreased in DNMT1-KO mESC compared to wild type, whereas it was dramatically decreased in 

DNMT3-DKO mESC, implying that DNMT3a and DNMT3b are mainly responsible for CpH methylation 

(Supplementary Figure 2.7-a). In addition, the correlation between CpG and CpH methylation levels 

was higher in DNMT1-KO mESC and lower in DNMT3-DKO mESC, comparing to wild type 

(Supplementary Figure 2.7-b; Pearson correlation coefficient= 0.4, 0.07, and 0.2, respectively). 

Furthermore, we observed that mCpH level is greatly high nearby mCpGs in DNMT1-KO sample 
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(Figure 2.3-a). A clear periodicity of ~180bp between mCpH level peaks was also observed in 

DNMT1KO mESC, implying that CpG and CpH could be simultaneously methylated by DNA walking of 

methyl-transferases. Altogether, the mCpG-correlated CpH methylation is introduced not by DNMT1, 

but by DNMT3a and DNMT3b. 

Next, we analyzed the contribution of DNMT3a and DNMT3b on CpH methylation in human ESC 

(HUES64 cell line). Interestingly, in DNMT3a knock out sample, the methylation level at CpHpH 

contexts decreased more than that at CpHpG contexts, whereas it was opposite in DNMT3b knock out 

sample (Figure 2.3-b). Also, in H9 cells [51], the methylation level at CpHpG contexts was more 

decreased than that at CpHpH contexts as DNMT3b knocked out (Supplementary Figure 2.7-c). We 

observed the same tendency in mouse ESC WGBS data that generated by Dr. Tuncay Baubec’s group 

[53]. They knocked out all of DNMT1, DNMT3a and DNMT3b from mouse ESC, then induced DNMT3a 

and DNMT3b, respectively, for measuring de novo methylation by each methyltransferase. With this 

sample set, we found that de novo CpH methylation is greatly focused at CpG-correlated CpHs (Figure 

2.3-c). Remarkably, among the CpHs, the CpHpH context is more methylated by DNMT3a than by 

DNMT3b, whereas the CpHpG context is mostly methylated by DNMT3b. In summary, we found that 

both DNMT3a and DNMT3b are key factors of mCpG-correlated CpH methylation, but, DNMT3a is 

more responsible for the methylation at CpHpH contexts, whereas DNMT3b is at CpHpG contexts. 
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4. Distinct characteristics of mCpH between ESC and neuron are resulted from differential 

activity of DNMT3a and DNMT3b. 

Through comprehensive analysis of WGBS data and RNA-seq data, we found some evidences that 

the distinct mCpH patterns in ESC and neuron are resulted from differential activity of DNMT3a and 

DNMT3b on CpHpH and CpHpG methylation. 

First, the DNMT3a is highly expressed in neuron, whereas DNMT3b is highly expressed in ESC 

(Figure 2.4-a). Through analyzing an expression dataset that contains 143 human adult brains and 36 

human ESCs (Table 2.2), we confirmed that DNMT3a is significantly highly expressed in brains, 

whereas DNMT3b is in ESCs. Following that, in all the human ESC WGBSs, the methylation level at 

CpHpG context (mCpHpG level) was higher than that at CpHpH context (mCpHpH level), whereas it 

was opposite in all the neuron and brain samples (Figure 4-b). Remarkably, the abundant motif at 

mCpH in DNMT3b knock out ESC was not “CAG”, but “CAC” which is the abundant mCpH motif in 

neurons (Supplementary Figure 2.2). It implies that the abundant mCpH motif, “CAG”, is induced by 

hyperactivity of DNMT3b in ESC. 

Meanwhile, the cell type specific mCpG-correlated mCpH patterns are also caused by differential 

activity of DNMT3a and DNMT3b. The methylation pattern at mCpG-correlated CpHs in 

DNMT3b-knock out ESC (HUES64) was more similar to that in brains, than that in wild type ESCs, 

implying that the DNMT3b contributes to the distinct mCpG-correlated CpH methylation pattern in 

ESC (Figure 2.4-c).  

Lastly, we found that the hyper-methylation at highly expressed gene-body regions in ESC is 

selectively occurs at CpHpG context (Supplementary Figure 2.8). Considering the preferential affinity 

of DNMT3b on H3k36me3 histone marks that positioned at highly expressed gene-body regions [25], 

it could be inferred that the hyper-activity of DNMT3b, by preferentially methylating CpHpGs in 

highly expressed gene-bodies, causes the positive correlation between mCpH level and gene 

expression in ESC.  

To prove that, we confirmed the relationship between mCpHpGs and histone mark H3K36me3s. 

Among 13 histone marks, the H3K36me3 showed significantly highly positive correlation with 

mCpHpG in both H1 and H9 cell lines. Also, it is known that the H3K36me3 is highly abundant at 

highly expressed gene-body regions [53]. Therefore, we compared the mCpH level in gene body 

regions between wild type and DNMT-3b knock out HUES64 cell lines. Remarkably, the difference of 

mCpH levels in highly/lowly expressed gene-body regions almost disappeared when DNMT3b is 

knocked out, whereas it was maintained when DNMT3a is knocked out (Supplementary Figure 2.8). 

Lastly, we analyzed the mCpH levels at gene-body regions in a DNMTs and SETD2 knocked out mouse 

ESC [53]. In that sample, the three DNMTs (DNMT1, DNMT3a, and DNMT3b) were knocked out and 

DNMT3b was re-induced. In addition, the SETD2 enzyme, known as catalyzer of H3K36me3 marks, 

was knocked out, resulting in absent of h3k36me3 marks [53]. Interestingly, the positive correlation 

between mCpHpG and gene expression level disappeared in the Setd2 knock out sample (Figure 4-e), 

implying that the positive correlation between mCpH and gene expression is resulted from the 
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interaction between H3K36me3 and DNMT3b that responsible for methylation at CpHpG. 
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Method 

 

WGBS data analysis 

  The sra type WGBS data (Table 2.1) were downloaded from Gene Expression Omnibus (GEO) 

database and converted into fastq type by using fatq-dump, a part of SRA Toolkit provided by NCBI. 

Then, the fastq files were quality-controlled by fastqx-toolkit tools. 

  The high-quality bisulfite sequenced reads were mapped into refseq reference genome (hg19 for 

human samples and mm10 for mouse samples) by three bisulfite-read aligners, Bismark, BSMAP, and 

BS-seeker2. Then, we removed possible duplicated reads by using picard (for the output from 

Bismark and BS-seeker2) and samtools (for the output of BSMAP). Then, we extracted cytosine 

positions covered by more than 5 reads in outputs of more than 2 bisulfite-read aligners. Methylation 

levels at the cytosines were calculated as read-depth weighted average of those from individual 

aligner, and the bisulfite non-conversion rate was subtracted from the value, based on the statistical 

model suggested in previous study [6]. The scripts for used software tools and calculation for 

methylation is below. 

Preprocessing 

> fastq-dump --split-3 INPUT FILE –O OUTPUT DIR 

>fastq_quality_trimmer -t 20 -l [half of original read length] -i input.fastq -o OUTPUT 

>fastq_quality_filter -q 20 -p 50 -i input.fastq -o OUTPUT 

Read aligning (Single type read case) 

>perl bismark --bowtie2 pre_built_bismark_reference -o OUTDIR input.fastq 

>bsmap -a input.fastq –d reference_fasta_file -o OUTDIR -w 1 

>python bs_seeker2-align.py -i input.fastq -o OUTFILE -g BS-seeker2_reference --aligner=bowtie2 

Methylation detection 

𝑀𝑒𝑖 =
∑𝑗𝑀𝑖𝑗

∑𝑗𝑡𝑖𝑗
− 𝑛𝑜𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒   

 

Where 𝑀𝑒𝑖  is methylation level at cytosine 𝑖 , 𝑡𝑖𝑗  is aligned read number at cytosine 𝑖  by 

bisulfite-read aligner j, and 𝑀𝑖𝑗 is unconverted read number at cytosine 𝑖 by bisulfite-read aligner 

j. In case the 𝑀𝑒𝑖 is under 0, we set 𝑀𝑒𝑖 = 0. 

 

Identification of methylated cytosines 

 Although average methylation level was used for most of the analysis, the identification of mCpH 

was necessary for measuring probability of mCpH existing around CpGs (Result2). We used binomial 

distribution to detect the methylated cytosine loci. At every detected cytosine loci(i), we calculated 

the probability that methylated reads (𝑘𝑖) occurs out of total read number (𝑛𝑖) with set the success 

probability (p) as bisulfite non-conversion rate. If the probability is under certain threshold, we 

identified the cytosine loci as methylated. 
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𝑓(𝑘𝑖; 𝑛𝑖 , 𝑝) = 𝑃𝑟(𝑋𝑖 = 𝑘𝑖) = (
𝑛𝑖

𝑘𝑖
) 𝑝𝑘𝑖(1 − 𝑝)𝑛𝑖−𝑘𝑖 

To set the probability threshold, we made artificial methylome for every WGBS sample, in which 

methylated read number is randomly generated following binomial distribution with setting the trial 

number as real read depth at each location, and the success probability as bisulfite non-conversion 

rate. Then, we calculated FDR by measuring how much of the false methylation loci occur by certain 

probability threshold. Finally we changed the threshold as 0.00001, by which the FDR was under 0.01 

within all of the WGBS samples. This method was used in previous study [12]. 

 

Correlation analysis 

  We divided whole-genome into 1 kilo base-pair blocks to compare the methylation pattern at CpG 

and CpH. Then, we extracted blocks that contain more than 10 points of CpG and CpH to secure 

accurate methylation level at each block. Also, to compare the mCpHs in Cis/Trans-strand to mCpG, 

we extracted blocks of which the difference of mCpG level is over 0.3. Lastly, to measure the 

correlation between mCpG and mCpH in genic regions, we extracted blocks that more than 500bp in 

the block is covered to genic regions. As meaning of genic regions, promoter defined as transcription 

start site ±5000bp, intragenic as all the regions of transcription start site (TSS) to transcription 

termination site (TTS; the strand of each gene bodies were considered), and intergenic as regions 

that uncovered by intragenic. The position information of TSS, TTS, and exon regions is from refseq 

data. 

 

Gene expression 

The sra type RNA-seq data were downloaded from GEO database, and preprocess had been 

conducted in same process with WGBS data processing. The high-quality sequenced reads were 

aligned by Tophat2 [58], and the fpkms were extracted by Cufflink [59]. Follows are command line for 

running Tophat2 and Cufflink 

 

>tophat2 -g 1 --b2-sensitive -o OUT_DIR -G refseq_annotation.gtf --no-novel-juncs bowtie2_reference 

input.fastq 

>cufflinks -G refseqannotation.gtf -o OUT_DIR tophat_output.bam 

 

In addition, we used the processed data of gene expression levels in brains [60] and ESCs [61]. 

Specifics for the data are described in Supplementary Table 2.2. 

  

Histone marks 

The processed Chip-seq data for histone marks were downloaded from as bed files. The bed file 

included loci that more than one read mapped into hg19. Specifics for the data are described in 
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Supplementary Table 3. 

 

Species Sample name Cell type sex age experiment 
Bisulfite 

conv. rate 

Human 

H1.1 H1 cell line M Passage:30 

GSE16256[41] 

0.996 

H1.2 H1 cell line M passasge:25 0.996 

H9.1 H9 cell line F passage:42 0.995 

H9.2 H9 cell line F passage:40 0.995 

H9.3bko 
DNMT3b knocked 

out H9 
F 

 
GSE32268[51] 0.995 

HUES64.1 HUES64 cell line M passage:27 
GSE17312[39] 

0.995 

HUES64.2 HUES64 cell line M passage:23 0.995 

HUES64_3ako 
DNMT3a knocked 

out HUES64 
M passage:24+22 

GSE63278[49] 

0.996 

HUES64_3bko 
DNMT3b knocked 

out HUES64 
M passage:24+22 0.998 

HUES64_dko 

DNMT3a,b 

knocked out 

HUES64 

M passage:24+5+7 0.999 

Br-35d 
tissue (middle 

frontal gyrus) 
M 35-day 

GSE47966[6] 

0.9962 

Br-2y 
tissue (middle 

frontal gyrus) 
M 2-year 0.9963 

Br-16y 
tissue (middle 

frontal gyrus) 
M 16-year 0.9966 

Br-25y 
tissue (middle 

frontal gyrus) 
M 25-year 0.9963 

Br-42y 
tissue (frontal 

cortex) 
F 42-year GSE46710[38] 0.9961 

Br-81y 
tissue (frontal 

cortex) 
F 81-year GSE46644[35] 0.9732 

NEUR.1 neuron F 53-year 
GSE47966[6] 

0.9933 

NEUR.2 neuron M 55-year 0.996 

heart heart M 34-year 

GSE16256[41] 

0.9914 

lung lung F 30-year 0.992 

spleen spleen M 34-year 0.9921 

Mouse mESC_wt mouse ESC 
  

GSE61457[52] 0.99 



33 

 

mESC_1ko 
DNMT1 knocked 

out mouse ESC   
0.99 

mESC_dko 

DNMT3a,3b 

knocked out mouse 

ESC 
  

0.99 

mESC_tko 

DNMT1,3a,3b 

knocked out mouse 

ESC 
  

0.99 

mESC.tko.3a 

DNMT1,3a,3b 

knocked out and 

3a induced mouse 

ESC 

  

GSE57413[53] 

0.995 

mESC.tko.3b 

DNMT1,3a,3b 

knocked out and 

3b induced mouse 

ESC 

  
0.995 

mESC.tko.3b.setd2 
mESC.tko.3b + 

setd2 knock out   
0.995 

Table 2.1: Description of public WGBS data used in Section 2 

 

 

 

 

Type Specifics Number Source Analyzer 

ESCs H1 and H9 

8 GSE30567 [61] 
Illumina Genome Analyzer II 

6 GSE24399 [62] 

22 GSE75748 [63] Illumina HiSeq 2500 

brain 
Brain tissues  

from 13 to 40year-old 
144 Brainspan [60] Illumina Genome Analyzer II 

Table 2.2: Description of public RNA-seq data  
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Conclusion  
 

Through comprehensive analysis of WGBS data, we uncovered the differential mechanism of CpH 

methylation in ESC and neuron. 

The WGBS has been considered as the only way for extracting reliable information about mCpH, 

since other experiments, such as microarray data [15] or RRBS [17], are mainly targeting CpG 

dinucleotide [19]. It, however, is financially and timely consuming so that researchers had to deduce 

results from insufficient number of samples. The integrative read aligning strategy solved this 

problem by facilitating re-using of public data with improved accuracy and reduced experimental 

bias. Through the integrative approach, we employed 16 of ESCs, 2 of neurons into dataset. In 

addition, we added 6 brain tissues for detecting characteristics of mCpH in neuron, since most of 

mCpH are positioned in neuron among the cells included in brain tissue. The quality for the dataset 

has been verified by reproducing known characteristics of mCpH in each cell type, and clustering 

samples into their originated cell types by methylation pattern. The enlarged sample set with great 

quality contributed to the robustness of the following results. 

  Through analyzing the methylation pattern on both CpG and CpH dinucleotides, we confirmed the 

positive spatial correlation between CpG and CpH methylation. Especially, the correlation greatly 

increased when CpG and CpH are in same strand, and those are in promoter or exon region. It implies 

that the CpG and CpH could be methylated in correlated way by accessing of methyltransferases on 

open chromosome structure. In addition, we found the correlation between CpG and CpH methylation 

is significantly high in CpG-proximal regions (CpG±100bp). It supports the insistence that mCpH is a 

by-product from the hyperactivity of DNA methyltransferases that originally targets CpGs [11]. 

Remarkably, however, the mCpHs in CpG-proximal region (±100bp) showed differential distribution 

in ESC and neuron. In addition, even though the mCpG and mCpH in genic regions showed high 

correlation (Pearson correlation coefficient ~0.6), the relation with gene expression showed exactly 

opposite tendency in ESC; the mCpG is negatively correlated to gene expression, whereas the mCpH is 

positively correlated to that [7]. Furthermore, sufficient evidence exist that mCpHs play roles on cell 

type specific biological processes such as cell differentiation or synaptogenesis [6, 13]. Collectively, 

even though the mCpH is spatially correlated to mCpG, it plays roles on cell type specific biological 

processes, driven by cell type specific distribution. 

  The differential genome-wide distribution of mCpHs in ESC and neuron was explained by 

differential activity of DNMT3a and 3b. By comparing genome-wide mCpH level in wild type and 

DNMTs knock out mouse ESCs, we found that the mCpH is formed not by DNMT1 but by DNMT3a and 

3b. Remarkably, we found that DNMT3a preferentially methylates CpHpH context, whereas DNMT3b 

methylates CpHpG context. The differential targeting of DNMT3a and 3b combined with differential 

expression of those in ESC and brain, emerged as the main reason of distinct mCpH distribution in the 

two cell types. In ESC, the hyperactivity of DNMT3b results in preferential methylation at CpHpGs. 

Considering the affinity of DNMT3-series enzymes on CpA among CpH contexts [64], it is reasonable 
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that the motif at mCpH is “CAG”. On the other hand, since DNMT3b is almost not expressed in neuron, 

the DNMT3a is responsible for most of mCpH that results in higher methylation at CAC than CAG. 

Decisively, the motif abundant at mCpH was not CAG but CAC in DNMT3b knock out ESC. 

Furthermore, the mCpG-proximal CpH methylation pattern in DNMT3b knocked out HUES64 was 

more similar to that in brain tissues or neurons, than wild type ESCs. It implies the distinct mCpH 

pattern in ESC is induced by the hyperactivity of DNMT3b. 

  Finally, the positive correlation between CpH methylation level on gene body and expression level 

in ESC was explained by the activity of DNMT3b. In recent study [53], DNMT3b showed preferential 

interaction with histone mark H3k36me3 in highly expressed gene bodies. In our analysis, the 

preferential methylation on highly expressed gene bodies were greatly focused on CpHpG contexts, 

and it disappeared as DNMT3b knocked out. In addition, the positive correlation between mCpHs and 

gene expression disappeared in either DNMT3b or SETD2 (enzyme for catalyzing histone mark, 

H3k36me3) is knocked out. Collectively, the DNMT3b, by selectively methylates CpHpGs upon histone 

mark H3k36me3, causes positive correlation between CpH methylation and gene expression level in 

ESC. 

Based on the results above, we suggest distinct CpH methylation mechanism by DNMT3a and 

DNMT3b in ESCs and neurons (Figure2.5). Still, the specifics for the differential methylation ability of 

DNMT3a and DNMT3b are remained as further research subject. Altogether, this study uncovered the 

reason of differential distributions and functions of mCpH in ESCs and neuron, and gives a crucial 

hint for uncovering the cell-type specific CpH methylation mechanism.  
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Section3: Role of mCpH on brain maturation 

 

Abstract 
 

  The methylated non-CpGs (CpH; H means A, C, and T) are emerged as a key epigenetic mark in 

mammalian cell. Despite of the small quantity, those regulate cell type specific functions such as 

embryonic cell differentiation, or synaptogenesis. Especially, those are gradually accumulated in 

brain tissues as mammalian aged, and show negative correlation with gene expression level, implying 

possible epigenetic regulation on brain maturation. However, the specifics of it, such as what kinds of 

genes or functions are regulated by mCpH are still unclear. 

  In this study, we attempted to uncover the role of mCpHs on brain maturation. To do that, we 

analyzed whole genome bisulfite sequencing (WGBS) data of 10 brain tissues with diverse age, 

combined with that of other tissues and hundreds of microarray data. First, we found that the mCpHs 

within ±100bp from CpGs are highly depended to the methylation at CpG. Interestingly, in brain, the 

mCpH is much abundant outside of the regions, implying large portion of mCpHs are independently 

induced to mCpGs. With the mCpG-independent CpHs, we succeeded in clustering genes sharing gene 

ontology (GO) terms related to brain specific functions such as “mental retardation”. Altogether, this 

research shed light on the connection between mCpHs with brain maturation. 
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Introduction 
 

DNA methylation, an addition of methyl groups on 5th carbon of cytosine, is one of the most 

well-known epigenetic marks. Since the DNA methylation pattern over genome is highly distinct 

among cell types, those are considered as identification of cells governing cell development and 

maintenance [3]. In mammalian cells, the DNA methylation mainly occurs at CpG sites. The 

methylated CpGs (mCpG) affects cell processes such as genomic imprinting or X-chromosome 

inactivation [65], and causes disease such as cancer by regulating transcription of genes [66]. 

However, recent studies have found that significant amount of methylated non-CpGs (CpHs; H means 

A, C, and T) exist in several cell types. Those are related to cell type specific functions such as cell 

differentiation [7] and synaptogenesis [6]. In this way, both mCpHs, as well as mCpGs are emerged as 

important epigenetic mark. 

One of the tissues that contains significant amount of mCpHs is brain [2]. Remarkably, the mCpHs 

are gradually increased as brain aged [6]; whereas mCpGs are remained as stable. Since the 

increasing pattern is analogous with synaptogenesis, it is assumed that the mCpHs may have roles on 

brain development. In addition, the average methylation level at CpHs in gene-body regions is 

negatively correlated with gene expression levels [6, 12]. The negative correlation is more obvious 

that that between mCpGs and gene expression, even though the quantity of mCpHs is much smaller 

than that of mCpGs. It implies that the mCpHs, rather than mCpGs, are effectively repressing gene 

expression in brain. Since the mCpHs exist as mostly ignorable level in other somatic tissues, it is 

expected that mCpHs are responsible for brain specific cell processes. 

However, there is a limitation on discovering the cellular function of mCpHs. Since both mCpGs and 

mCpHs are induced by common enzymes, DNA methyltransferase 3a and 3b (DNMT3a and DNMT3b), 

those are spatially correlated to each other [12]. In addition, the average methylation level is greatly 

higher at CpGs than CpHs, so that it is hard to uncover the independent role of mCpHs. In fact, some 

researchers insist that mCpHs are stochastic results of mis-matching of DNMTs because of the spatial 

correlation and great difference of amount between mCpGs and mCpHs [2, 11, 48]. However, 

substantial evidences, such as the similar increasing pattern with synaptogenesis, points the possible 

independent role of mCpHs over brain specific cell processes. In this way, the role of mCpH over brain 

functions is rather controversial, and the specifics of it, such as what kind of genes are affected by 

mCpHs, is still unclear. 

Thus, in this study, we attempted to discover the role of mCpHs over brain functions by extracting 

mCpG-independent mCpHs. To do that, we collected whole genome bisulfite sequencing data (WGBS) 

of 10 brain samples and 9 other cells. Through comprehensive analysis, we found that the 

methylation at CpHs that proximal (±100bp) to CpGs are highly affected by that at CpGs. Therefore, 

we focused on the CpHs that outside of the regions, named CpG-distal CpHs. Interestingly, the 

methylation occurs more preferentially at CpG-distal CpHs, whereas it was opposite in control 

samples such as PSCs, implying that large portion of mCpHs are accumulated independently to 
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mCpGs in brain. Further analysis found that genes sharing common CpH methylation pattern over 

ages are related to brain specific functions. The enriched Gene ontology terms (GO terms) of genes 

clustered by the CpH methylation levels at their gene bodies included brain-function related terms 

such as “zinc-finger protein activity” or “mental retardation”; whereas the clustering results by CpG 

methylation pattern did not contain any brain specific terms. It implies that the mCpH affects to brain 

development or degeneration by regulating genes related zinc-finger proteins or mental retardation. 

Altogether, our results discovered that mCpHs affects brain functions independently to mCpGs. The 

study give an insight on discovering mechanisms that CpH methylation regulate cell type specific 

functions.  
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Results 
 

1. Large portion of mCpHs are distal from CpGs in brain tissues 

To understand the brain specific mCpH pattern, we compared the characteristics of mCpHs in 

brains with that of other tissues. Since PSCs are another cell type in which mCpHs are abundant , and 

the average CpH methylation level in PSCs are relatively comparable with that in brains 

(Supplementary Figure 3.1-a), we collected WGBS of 4 embryonic stem cells (ESCs) and 2 induced 

pluripotent stem cells (iPSCs) for control sample set. The WGBS reads of 10 brain tissues and 8 PSCs 

were aligned to human reference genome (hg19) by the integrative approach (Section 1), and the 

sample clustering result showed high reproducibility of the known characteristics of mCpH 

(Supplementary Figure 3.1-b). 

With the sample set, we confirmed spatial correlation between mCpGs and mCpHs. Similar with 

the results in Section2, the methylation at CpG and CpH are highly correlated to each other when 

those are in ±100bp distance (Figure 3.1-a). Also, it was clearly shown that ~180bp nucleosome 

positioning pattern exist around CpG, implying that CpG and CpH could be simultaneously formed by 

DNA walking of enzymes such as DNA methyltransferases. Since the significantly high correlation 

around ±100bp from CpG was common in both brains and PSCs, We divided CpHs into two groups, 

CpG-proximal and CpG-distal CpHs, based on the threshold of ±100bp from CpG, representing 

CpG-dependently and CpG-independently formed CpHs, respectively. 

Next, we tried to measure the rate of CpG-dependently and independently induced mCpHs. Since 

the methylation level at CpHs in CpG-proximal regions showed high correlation with that at CpGs, we 

assumed that the mCpHs in mCpG-proximal regions (beta value of mCpG > 0.8) are induced 

dependently to the centered mCpGs. Thus, we compared the mCpH level in mCpG-proximal regions 

with that in CpG-distal regions. Since the mCpHs proximal to un-methylated CpGs are hard to 

distinguish whether CpG-dependent or independent, we counted those into neither of the two groups 

(Figure 3.1-b).  

Interestingly, the mCpH level on CpG-distal region is higher than that on mCpG-proximal region in 

brain, whereas it was opposite in PSCs (Supplementary Figure 3.2). We confirmed the tendency with 

microarray data of 177 brains with 161 PSCs, and found that the brain showed significant abundance 

of mCpHs at CpG-distal region, whereas PSCs showed at mCpG-proximal region. The mCpH pattern 

around mCpGs in WGBS data set also showed that mCpHs are concentrated on CpG-proximal region 

in PSCs, whereas it is reduced in brains (Figure 3.1-d), implying that large portion of CpHs is spatially 

independent to mCpGs in brain.  
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2. Genes related to brain specific functions is clustered by the CpG-distal mCpH pattern. 

We attempted to discover the function of mCpG-distal mCpHs in brain. Since the methylation at 

CpH is gradually accumulated as brain aged, and the mCpH level at gene-body region is negatively 

correlated to the gene expression level, we tried to cluster genes by the pattern of mCpH level in gene 

bodies across ages. We divided the brain samples into five stages, fetal (Br-fetal), infant (Br-35d), 

child (Br-2y and 5y), adolescent (Br-12y, 16y, and 25y), and adult (Br-42y, 81y.1, and 81y.2), and 

analyzed the mCpH pattern across the stages (Method section). Coincident with the genome-wide 

mCpH levels, most of genes show increasing pattern as brain aged. However, some genes showed 

partially decreasing pattern, such as decreasing from fetal to infant stages, or from adolescent to 

adult (Figure 3.2). Remarkably, the genes sharing partial decreasing stages were highly related to 
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brain specific functions. For example, the GO terms of the genes having decreasing mCpH level from 

fetal to infant were enriched in “Zinc finger” and “Neuron projection”. In addition, the GO terms of the 

genes having decreasing mCpH pattern from adolescent to adult were highly enriched with “mental 

retardation”. However, the gene clusters generated by mCpG pattern were not shown any enriched GO 

terms related to brain specific functions (Supplementary Figure 3.3). 

For removing artifacts on analysis, we did the gene clustering by automated dynamic three cut 

after hierarchical clustering, then did hierarchical clustering again with GO-terms enriched in any of 

the cluster (Method section). Although not much of the GO-terms were shared by multiple clusters, 

there were some GO-terms that enriched in clusters in similar pattern. For example, The GO terms 

related to embryonic development were enriched in the gene clusters showing gradually increasing 

pattern of mCpGs (Supplementary Figure 3.4). It is reasonable that the genes related to embryonic 

development shows low methylation level at their gene bodies in early stage since the methylation 

normally works as inhibitor of gene expression. It implies that the GO term analysis results well 

represents overall role of methylation over cell processes. However, there were no enriched GO-terms 

related to brain specific functions on the genes clustered by mCpG pattern. Meanwhile, the GO term 

analysis by mCpH showed some enriched terms related to brain specific functions (Figure 3.3). For 

example, the GO-term of “mental retardation” was enriched in two clusters, and both cluster showed 

decreasing pattern of mCpH from adolescent to adult stage. In addition, the GO terms related to “zinc 

finger“, were shared in two clusters, and both reveals decreasing pattern of mCpHs from fetal to 

infant stage. The zinc finger activity is known to be crucial for brain development [67, 68]. The results 

imply that the mCpHs, rather than mCpGs, are more responsible for the brain specific functions, 

especially on brain development and retardation. Altogether, our results revealed that the 

mCpG-distal mCpHs are related to zinc finger activity and mental retardation. 
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Method 
 

WGBS data analysis 

  The WGBS data of 10 brains and 6 PSCs were analyzed in same way with the previous sections 

(Section1, and Section2). The public WGBS data used in this section is described in Table 3.1. Also, the 

identification of the methylated CpH was done in the same way with Section 2. In addition, we used 

Infinium 450K bisulfite-microarray data for confirming the findings in WGBS dataset (Table 3.2) 

 

Correlation analysis 

  The spatial correlation between mCpG and mCpH were analyzed as following. First, we re-aligned 

detected CpHs based on the distance from flanking CpGs. Then, we calculated Pearson correlation 

coefficient between methylation levels at CpGs with the representative methylation level at CpHs 

against all the CpGs. Since the CpHs are not always exist at the specified distance from CpG, we 

calculated the representative methylation level of the CpH as the average methylation level of CpHs 

within ±100bp from the specified distance to CpG. For example, the Pearson correlation coefficient 

between methylation levels of CpGs and of CpHs at -4bp from the CpGs was calculated as the 

correlation between methylation levels at CpGs with average CpH methylation level between -104bp 

to 96bp from the CpGs. 

 

Gene clustering by methylation pattern 

The gene clustering by methylation pattern was conducted as following. First, we calculated the 

average methylation level at each gene body. The information about the genes such as in which strand 

the gene exist or the position information about transcript start site (TSS) and transcript termination 

site (TTS) were from NCBI Reference Sequence Database (Refseq) [69]. In addition, to reduce falsely 

detected methylation level, we counted genes in which more than 10% of cytosines are detected. 

Then, we collected age-specifically methylated genes using ANOVA. Through the processes, we 

extracted 2408 genes for CpG methylation and 14684 for CpH methylation. Then, the genes were 

hierarchically clustered by z-normalized average methylation values. The Pearson correlation 

coefficient was used for measuring distance between pairs. Then, the clusters were defined 

automatically by dynamic cut tree with setting the minimum cluster size as 30, and values for scatter 

and gab as defaults in R package [70].  

 

Gene ontology clustering 

  The gene ontology term (GO term) analysis was done by DAVID [71]. Following databases were 

used for the analysis. 

SP: SP_PIR_KEYWORDS 

CC: GOTERM_CC_FAT 

MF: GOTERM_MF_FAT 
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BP: GOTERM_BP_FAT 

SMART 

INTER: INTERPRO 

  First, we collected all of the enriched terms with setting threshold as Benjamin–Hochberg FDR < 

0.05. Then, the hierarchical clustering for the gene sets have conducted against the enriched term list, 

scored by the Benjamin-Hochberg FDR for each GO term against gene set. Last, we checked whether 

gene sets sharing similar methylation pattern are properly clustered by the GO terms. 

 

Sample name Cell type sex age experiment 
Bisulfite 

conv. rate 

H1.1 H1 cell line M Passage:30 

GSE16256[41] 

0.996 

H1.2 H1 cell line M passasge:25 0.996 

H9.1 H9 cell line F passage:42 0.995 

H9.2 H9 cell line F passage:40 0.995 

iPSC.1 iPSC 19.11 M passage:32 0.995 

iPSC.2 iPSC 06.09 M passage:33 0.995 

Br-35d middle frontal gyrus M 35-day 

GSE47966[6] 

0.9962 

Br-2y middle frontal gyrus M 2-year 0.9963 

Br-5y middle frontal gyrus M 5-year 0.9961 

Br-12y middle frontal gyrus M 12-year 0.9965 

Br-16y middle frontal gyrus M 16-year 0.9966 

Br-25y middle frontal gyrus M 25-year 0.9963 

Br-42y tissue (frontal cortex) F 42-year GSE46710[38] 0.9961 

Br-81y.1 tissue (frontal cortex) F 81-year 
GSE46644[35] 

0.9732 

Br-81y.2 tissue (frontal cortex) F 81-year 0.9742 

heart heart M 34-year 

GSE16256[41] 

0.9914 

lung lung F 30-year 0.992 

spleen spleen M 34-year 0.9921 

Table 3.1: Description of public WGBS data used in Section3 
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Cell-type Experiment Derived cell # of samples 

iPS 

GSE59091[72] 

dermal fibroblast 109 

erythroblast 22 

endothelial progenitor 12 

foreskin fibroblast 6 

ESC 

male 3 

female 5 

H9 5 

Brain Brainspan [60] various age, sex, and structure 177 

Table 3.2: Description of public Infinium 450K data 
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Conclusion 

 
In this paper, we uncovered the function of mCpHs on brain maturation. The process was 

conducted with largely two steps.  

  First, we attempted to extract mCpHs that independently induced to mCpGs. The comprehensive 

analysis about the spatial correlation between mCpGs and mCpHs found that the methylation at CpHs 

is highly correlated to that at flanking CpGs, especially when those are within ±100bp distance. 

Although there were positive correlation between mCpGs and mCpHs positioned out of ±100bp, the 

Pearson coefficient value was ignorable compared to that between in ±100bp. Based on the observed 

correlation, we divided the whole genome into two regions, CpG-proximal and CpG-distal regions, in 

which the methylation at CpHs occurs (in)dependently to that at flanking CpGs.  

Interestingly, mCpHs were abundant at CpG-distal regions in brains, whereas those in PSCs were 

abundant at mCpG-proximal regions, implying that the mCpHs in brain may play roles on cell 

functions independently to mCpGs. This results supports against the insistence of some researchers 

that the mCpHs are merely stochastic by-product of DNMT’s activity that originally targets CpGs. In 

fact, most of their evidences were from PSCs, such as distributional correlation between mCpGs and 

mCpHs over whole genome, or higher DNMT3 activities compared to other somatic cells[11, 48]. In 

this study, however, we weighted on functional independence of mCpHs by uncovering the 

distributional independency of mCpHs on mCpGs in brain. 

Next, we tried to uncover the functional relationship between brain specific cell process and mCpH 

pattern across varied age. The hierarchical clustering of genes by mCpH pattern among age groups 

showed that decreasing of mCpH is associated to brain specific functions on that age. For example, 

the genes showing decreasing mCpH pattern on fetal-to-infant stages were highly related to 

zinc-finger protein activity, known as key factor of neurogenesis[67, 68]. In addition, the genes 

sharing decreasing pattern on adolescent-to-adult stages showed high GO term enrichment on 

“mental retardation”. These results implies that the mCpHs in gene-bodies regulates (or are regulated 

by) the transcription of genes related to brain development or maturation. Meanwhile, the mCpG 

pattern could not cluster any brain specifically functional genes, implying that the role of mCpHs on 

brain development is independent to mCpGs.  

In summary, we uncovered the functional relationship between mCpHs and brain specific cell 

process by hierarchical clustering of genes by mCpG-distal mCpHs. The study shed light on research 

about distribution and function of CpH methylation in brain. 
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General conclusion 

  In this study, we attempted to uncover the distribution and function of CpH methylation in 

mammalian cells via functional analysis in silico. The progress consists of three steps. First, we 

developed a tool for analyzing WGBS data. Second, we discovered the reasons of cell type specific 

mCpH features in neuron and ESC. Third, we uncovered the role of mCpHs on brain maturation.  

  In Section 1, we described the limitation of WGBS data analysis and how we improved it. To get the 

high quality and quantity of methylome from WGBS data, we developed a methylation detection tool. 

It successfully improved both accuracy of detected methylation level at each cytosine and amount of 

detected cytosine by integrating outputs of three most widely used bisulfite-read mappers; Bismark2, 

BSMAP, and BS-seeker2. Through comprehensive analysis of bisulfite read mappers, we found that 

the three mappers could be mutually complementary against false detection. In addition, the 

weighting by read depth greatly improved the accuracy of the methylation detection. We confirmed 

the improvement with both simulated data and real WGBS data. 

Through the results, we contributed to methylation study by improving both quantity and quality 

of methylome from WGBS data, and facilitate reusing of public WGBS data by reducing experimental 

bias. Especially, the second part, reusing of the public data, is crucial for analyzing CpH methylation. 

Since WGBS is almost the only way for detecting genome-wide CpH methylation pattern, generating 

WGBS data is essential step for CpH methylation study. The generation of WGBS data, however, 

consumes great amount of resources so that many of the previous researches used little number of 

WGBS samples for deducing their conclusions [6, 13, 38]. We facilitated integration of public WGBS 

data into one’s dataset by reducing experimental bias generated by read heterogeneity. As a result, 

the following results in Section2 and Section3 were statistically validated by more number of samples 

than those used in previous studies. Altogether, the study in section 1 sheds light on CpH methylation 

study by improving the quality and quantity of methylome from WGBS data. 

 In section 2, we attempted to uncover the reason of distinct characteristics of mCpHs in neuron and 

ESC. The two cell types are representatives among mammalian cells having significant amount of 

mCpHs. However, the distribution of mCpHs and potential function of those to transcription are 

highly distinct in those cells. Through comprehensive analysis, we found that DNMT3a and DNMT3b 

preferentially methylate CpHpH and CpHpG contexts, respectively, resulting in distinct characteristics 

of mCpHs in ESCs and neurons. For example, the abundant motif at mCpHs in brain is “CAC”, whereas 

that is “CAG” in ESCs, because of the differential activity of DNMT3a and DNMT3b in those two cell 

types. It may give hints for understanding cell type specific mCpH regulation. For example, the MeCP2 

is known to interact with CpAs, as well as CpGs, and damaging on MeCP2 induces brain diseases such 

as Rett syndrome [12]. The fact that DNMT3a preferentially targets CpHpHs may give any hints for 

researching MeCP2 binding or related diseases. In addition, we found cell type specific mCpH 

patterns around CpGs by focusing on CpG-proximal regions. In addition, we deduced significant 

difference of methylation level at CpHpH and CpHpG contexts in DNMT3a- and DNMT3b-reinduced 
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mouse by focusing on the CpG-proximal regions. The results were not reported in the paper [53] 

produced the WGBS data since the difference is not shown as significant if measuring over whole 

genome rather than focusing on CpG-proximal regions. In addition, the main focus of the previous 

study was not CpH methylation, but CpG methylation. In summary, we succeeded in capturing 

significant difference of CpH methylation in ESCs and neurons by applying the integrative approach, 

introduced in section 1, and by focusing on CpG-proximal regions. 

Another important found was the mechanism of the positive correlation between mCpHs with gene 

expression level in ESCs. Since the mCpHs shows negative correlation with gene expression in general, 

the positive correlation was mysterious among researchers. By analyzing wild type, 

DNMT1/3a/3b-knocked out (DNMT-TKO), that with DNMT3b-reinduced (DNMT-TKO-3b), and that 

with SETD2 knock out (DNMT-TKO-3b-SETD2KO) mouse ESCs, we found that the DNMT3b and 

H3k36me3 histone mark, induced by SETD2, is crucial for the positive correlation between mCpHs 

and gene expression. Altogether, we concluded that the preferential interaction between DNMT3b 

with H3k36me3 histone mark in highly expressed gene bodies, by methylating CpHpGs on those, 

causes the positive correlation between CpH methylation level and gene expression level. The results 

in section 2 contributed to CpH methylation study by uncovering the mechanism of cell type specific 

CpH methylation and potential function to gene expression. 

Lastly, in section 3, we unearthed the role of mCpHs on brain maturation. To do that, we firstly 

attempted to extract CpHs that methylated independently to the methylation at CpGs. Through 

comprehensive analysis, we found that the methylation at CpHs was highly correlated to that at CpGs 

when those are within ±100bp-distance. Interestingly, the methylation occurs at CpHs positioned out 

of the ±100bp from CpGs in brain, implying that large portion of CpHs is independently methylated to 

CpGs.  

With the CpG-distal mCpHs in gene bodies, we succeeded in clustering genes related to brain 

specific processes. The genes sharing common decreasing pattern across ages showed highly 

enriched GO terms of “zinc finger protein activity” and “mental retardation”. Especially, the zinc-finger 

protein activity is known as crucial for neurogenesis in early brains. The result implies that the 

mCpHs are affecting (or being affected by) the brain development and retardation. Meanwhile, the 

clustering results by mCpGs did not contain any brain-specific GO terms, implying that the mCpHs are 

solely affecting (or being affected by) brain specific functions. In fact, the role of CpH methylation 

over cell functions has been suspicious because of the spatial correlation between mCpGs and mCpHs. 

Since the mCpHs are abundant at nearby mCpGs, some researchers insisted that the CpH methylation 

is merely stochastic event of mis-capturing by DNMTs. However, in this study, we weighed on the role 

of mCpHs over cell functions by extracting CpG-distal mCpHs and uncovering the brain specific GO 

terms enriched in genes clustered by the CpG-distal mCpH pattern across ages. Altogether, the results 

in section 3 shed light on the roles of CpH methylation level over cell type specific functions.  

In summary, this study attempted to understand the function of CpH methylation over cell type 

specific processes by improving quantity and quality of methylome, uncovering the mechanism of cell 



50 

 

type specific mCpH characteristics, and revealing role of mCpHs over brain maturation. The analytic 

methods and results will greatly contribute to understand the mechanism of mCpHs governing cell 

processes. 
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Cell-type.histone_mark source passage/age sex 

H1.h3k27me3 GSM605308 20-40 

 

H9.h3k27me3 GSM706066 30-50 

H1.h3k36me3 GSM605309 20-40 

H9.h3k36me3 GSM605310 30-50 

H9.h3k4me1 GSM667626 30-50 

H1.h3k4me1 GSM605312 27 

H9.h3k4me3 GSM616128 30-50 

H1.h3k4me3 GSM605315 20-40 

H9.h3k9ac GSM616129 30-50 

H1.h3k9ac GSM605323 20-40 

H9.h3k9me3 GSM667633 30-50 

H1.h3k9me3 GSM605328 20-40 

H9.h3k27ac GSM665037 30-50 

H1.h3k27ac GSM466732 25-45 

H1.h2ak5ac GSM602257 20-40 

H9.h2ak5ac GSM667609 30-50 

H1.h2bk120ac GSM789281 32 

H9.h2bk120ac GSM752962 42 

H1.h2bk12ac GSM605297 54 

H9.h2bk12ac GSM667610 30-50 

H1.h2bk15ac GSM605298 51 

H9.h2bk15ac GSM864034 30-50 

H9.h2bk20ac GSM752963 42 

H1.h2bk20ac GSM605300 51 

H9.h3k18ac GSM667616 30-50 

H1.h3k18ac GSM605304 25-45 

H1.h3k23ac GSM667618 26 

H9.h3k23ac GSM667620 30-50 

H1.h3k4ac GSM667624 32 

H9.h3k4ac GSM667625 30-50 

H1.h3k4me2 GSM602260 25-45 

H9.h3k4me2 GSM616127 30-50 

H1.h3k56ac GSM667627 32 

H9.h3k56ac GSM706076 30-50 

H1.h3k79me1 GSM605319 20-40 

H9.h3k79me1 GSM667629 30-50 
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H1.h3k79me2 GSM605321 20-40 

 

H9.h3k79me2 GSM706078 30-50 

H1.h4k20me1 GSM789284 32 

H9.h4k20me1 GSM667634 30-50 

H1.h4k5ac GSM752990 32 

H9.h4k5ac GSM667636 30-50 

H1.h4k8ac GSM908966 32 

H9.h4k8ac GSM667638 30-50 

H1.h4k91ac GSM752991 32 

H9.h4k91ac GSM667640 30-50 

H9.h3k23me2 GSM667621 30-50 

H1.h3k23me2 GSM605305 52 

H1.h2bk5ac GSM605302 20-40 

H1.h2bk5ac GSM667613 30-50 

brain.1.h3k36me3 GSM669982 75y 

Female 

 

brain.1.h3k27ac GSM1112810 75y 

brain.1.h3k4me1 GSM670015 75y 

brain.1.h3k4me3 GSM670016 75y 

brain.1.h3k9ac GSM670021 75y 

brain.1.h3k9me3 GSM669965 75y 

brain.2.h3k27ac GSM773015 81y 

Male 

 

brain.2.h3k27me3 GSM772833 81y 

brain.2.h3k36me3 GSM7730113 81y 

brain.2.h3k4me1 GSM773014 81y 

brain.2.h3k4me3 GSM773012 81y 

brain.2.h3k9me3 GSM772834 81y 

Supplementary Table 3: Source for histone marks 
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