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ABSTRA CT. 

We study microhyperbolic operators of the form (D,- 011 x,D.)(D1- 012x1 D n)+lower, 
(Dt - Xt Dn) Dt(Dt - Xt Dn )+lower. When the lower order terms take a certain form, 
we can obtain a very detailed information about the singu larity of a solution. We look 
at this problem from the viewpoint of boundary value problems. General arguments for 
m-th order operators are given. 

INTRODUCTION 
For (rnicro)different ial operators whose characteri stic variety has a non-involutory 

intersection, the propagation and branching of singularities is the most interesting 
problem. [H], [OJ, [Al] and [T-T] are well-known results. The former two are about 
" Fuchsian" operators and the latter two are about second order hyperbolic operators. 

In this paper, we study the branching of singularities for second and third order 
(micro)hyperbolic operators. The principal symbols are (~1 - a 1 x1~n)(~1 - azx! D n), 
(~ 1 - x 1 ~n)~1 (~ 1 + x 1 ~n)· General arguments (heuristic in some parts) about m-th order 
operators are given. 

Our approach is based on the study of boundary value problems. Although this 
viewpoint was already taken in [Al], it is more apparent in the present paper. 

Another feature of our approach is that we use ODEs of Fuchs type, while in [Al] 
and [T-T], ODEs with irregular singularities were used. 

The plan of this paper is as follows. PART 0 gives a. general background about an 
operator of a.rbitray order. PARTS 1 and 2 are about the second and the third order 
cases respectively. The main theorems are . found in PART 1 §1 and PART 2 §1. 

This paper is an application of [Kat 2]. 
The author wishes to express his gratitude to Professor K.Kataoka for guidance, 

encouragem ent and very valuable suggestions. He also thanks Professors K.Iwasaki and 
H.Ochia.i for helpful di scussions. 
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PART 0 GENERAL BACKGROUND 
Let P(x, D) = Dr'+P1 (x, D1)D'('- 1 + · ·+P(x, D1

) be an m-th order microhyperbolic 
microdiferential operator defined in a neighborhood of p E {(x; i() E iT* M; XJ = 0, (n > 
0}, M = !Rn. Assume that its principal symbol is of the form 

where O:j (a ::5: j ::5: m) is real analytic in (x,e) and O:j =I o:k (j =I k). In addition , we 
impose the Levi condition: 

aqP1( I I) q+l( ) ord-
8 

q O,x , D :::; -,-- < l 
x 1 "+ 1 

1 ::5: l ::5: m, 0 ::5: q < ,\l. 

Branching of singularities for this kind of operator has been studied by Alinhac, 
Taniguchi-Tozaki, Amano and others. A typical method is to apply the partial Fourier 
transform and reduce the problem to that of an ordinary differential operator with an 
irregular singular point . Here in the present paper, we choose a different approach. In­
stead of the partial Fourier transform, we use a singular coordinate change and the quan­
tized Legendre transform. Then the problem is reduced to that of an ordinary differen­
tial operator of Fuchs type. In PARTS 1 and 2, we treat the cases of,\ = 1, m = 2, 3. 
In these cases, we encounter Gauss and Jordan-Pochhammer hypergeometric equations 
respectively. 

We rely on the theory of a coordinate change of fractional order in [Kat 2]. Here we 
don't give a technical detail. 

Let bJ C {±x1 > 0} be the half-bicharacteristic strip of ( 1 = x~o:j, issuing from p. 

We say that u E (r{±x,>oJCfr)p is a j-null solution if u = 0 on bJ, where C,fr is the 
kernel sheaf of P: Cfr __, Cfr. Let Null(j, ±) be the totality of j-null solutions, that is, 

We explain how to construct j-null solutions . For convenience, we only consider the case 
of +. If u is a solution in x 1 > 0, it is mild and its canonical extent ion ii is defined. It 
satisfies 

x';'Pii = 0. 

Putt = .X~l x;+1. We denote by r the dual variable oft. Then ( 1 - x~o:j = x~( r- O:j)· 
Since a:j's are mutually distinct (while x~aj's are not), the problem has become easier 
at least from the geometric point of view . . Moreover 

(.A: 1)m x';' P(x, D) 

m-1 j m 00 ->I 1 .til. aqpl I I m-1-J j 

II (tD 1 --)+""(.A+1)W-tJ:fl-(0x D) II (tD 1 --). >. + 1 L L q! axr ' ' ,\ + 1 
j=O 1=1 q=O j=O 



Here assume that there's no contribution by the terms corresponding to 
ffl # 0, 1, 2, 3, .... Now apply the quantized Legendre transform (3"/; with respect to 
(t, x') . (See [Kat 1] for the definition.) Then we obtain the following operator: 

We will see that P is an ordinary differential operator of Fuchs type modulo perturba­
tion. Set 

m-1 
Q =II (-D,(- _}_) 

j=O A+ 1 

m At i..=.l!.. 

+ 2: 2: (.A+ 
1? '+' a a (~q~~ (a, x', n~:*) 

1=1 q=O q I 
m-1-1 . 

X (-iD\)ff+ II (-D,(- - 1-). 
j=O A+ 1 

Proposition 1. 
Q is of Fuchs type in ( if we freeze the parameters ( x', (). I ts regular singular 

points are oo and io:j(O,x ' ,()~;;- 1 (1::; j::; m). The characteristic exponents at oo are 
1, 1 + >.!I, ... , 1 + ';:+f and it is a non-logarithmic singularity. 0, 1, 2, 3, ... , m- 2 are 
characteristic exponents at io:j(O, x' , ()~;;- 1 . If the remaining characteristic exponent is 
a non-integer, then this is a non-logarithmic singularity. 

PROOF. 
The coefficient of D(' is 

= (-1)m { (m + ~ (.A~)! 171 (~:~1 (0 ,x ' ,()) (~i/(m-1}. 
We want to determine its zeroes. Recall that 

C7m (G' + Pl (x,()(~• -l + "· + Pm(x,()) 

=(~I - x;o:l (x, ()) . . . (~ 1 - x; o:m(x, ()). 



Hence 

(xtr)m + O"J (P!)(x, ()(xtr)m-l + · · + O"m(Pm)(x, () 

= (x;r- x;al) ... (x;r- xtam)· 

and cr1(P1)(x,e) is divisible by (xt) 1 (Levi condition). Comparing the coefficients of 
(x;)m in the above equality, we obtain 

m m 1 a>./ I I m-/ 

T + L (AI)! ax>-10"/(P,)(O,x '~ )r 
1=1 1. 

= (r- a1(0,x 1
,()) • • • (r- am(O,x 1

,()). 

Set r =¥(,then 

m a>-1 
(~~om+ L a-:vcr,(P,)(O, X

1
' ()(~~om-/ 

l. 1=1 XI 'l. 

= ((~(- a 1 (0,x 1
,()) .. (~(- am(O,x 1

,()). 

I I 

Multiplication by ( i;- )m yields 

m m 1 a>./ 1 1 i I m-1 
( + ~ (AI)! ax;' cr,(P,)(O, X '~ )( fn") ( 

= ((- _£_a 1 (0, x1
, ()) ... ((- _:_am(O, X

1
, ()). 

(n (n 

Hence we know the location of the singularities of Q. At iaj(;;- 1 , Q has the form 

Q =(nonzero function) x (((- iaj(;; 1 )D( + ... ). 
So the assertion about iai~;; 1 is obvious . 

To study Q at oo, we need the following lemma. 0 

Lemma 2. 
Set 

L=miT-1(-(D _j+A+ 1 )+~ "'a n*miT-1-1(-(D _j+A+1). 
< A+ 1 ~~ lq < < A+ 1 

j=O 1=1 q j=O 

Here Lis taken with respect to q = 0, 1, . .. , AI, q = AI mod A+ 1. Then oo is an regular 
q 

singular point of Q and its characteristic exponents are 1, 1 + >.~J, . . . ,1 + "t;;. 
PROOF. Set em = x, B = xD •. Then C 1 = x>-+l, ( D< = - A~1 B and D< 
- A~l xA+1 B. We have 

m-1 , m m-l-1 . 

L = IT (-1-B_J +A+ 1) '\:""'\:"" a ( __ 1_xA+lo)flt IT (-1-e_J +A+ 1 ). 
. A + 1 A + 1 + ~ ~ lq A + 1 . A + 1 A + 1 

] =0 1=1 q ]=0 



By choosing suitable constants a;q, 

m-1 m-~1 

M :=(.A+ l)m L = II {O- (j +.A+ 1)} + L I: a;q(x>-+ 1 o)"I-n II {O- (j +.A+ 1)}. 
j=O 1=1 q 

Then th is lemma follows from the one below. D 

Le mma 3 . 

x-(>.+1 ) M(x, D )x>.+l 

j=O 

= xm f(x){ D'; + M1(x)D~n-l + · · · + Mm(x)} 

where f, M 1 , . . • , lvlm are holomorphic functions defined in a neighborhood of x = 0 and 
f(O) i' 0. 

PROOF. By using x- 10x = 0 + 1 repeatedly, we obtain 

x-<>-+llox>-+ 1 = 0 + ,\ + 1. 

So we have 

m-1 m m-l-1 

= II (0- j) + L I: a;q{x>-+1(0 + ,\ + 1)} $ II (0- j) 
j=O 1=1 q j=O 

m 

= xm D'; + L L a;q{x>-+1(0 + ,\ + 1)} $xm-ID';- 1
. 

1=1 q 

Obviously, the coefficient of D';' has the form xm + O(xm+ 1). The proof is finished as 
soon as we prove 

We have only to prove t hat 

{x >-+1(0 + ,\ + 1)} fl'l-xm-I D';-1 E xm Dx=O· 

This inclusion follows from the sublemma below. D 

Sublemma 4. {x>-+ 1(0 + ,\ + 1)}"xb E x<>-+ 1)a+bDx=O· 

PROOF. Induct ion on a. T he case a= 0 is obvious. We have 

{x>.+1(0 + ,\ + 1)}x(>.+l)a+b 

= x>.+ 1[x< >.+1)•+b o + {(.A+ 1)a + b + ,\ + 1}x(>.+l)•+b] 

E X(>.+ J)(a+1 )+bDx=O 

and induction proceeds. We have finally proved Proposit ion 1. D 

In PARTS 1 and 2, the following lemma will be convenient. 



Lemma 5. 

L = C 1C{Cxtr}---> c(,+,+l)qcxtr} 

is sUijective. Here IC{ ·} is the set of convergent power series. 

PROOF. We have the following commutative diagram: 

Ox=O 
x-(>..+t) Mx.\+t 

xm0x=O ----> O(exact) 

xA+tll llxA+t 

x-'+1 0,=o 
M xm+i<+lQx=O ----> O(exact) ----> 

0 

We continue the explanation of how to construct a j-null solution. Assume that we 
are given a microdifferential operator Ej( (, x', D') satisfying the following conditions: 

L(Cx'A , D~)Ei(Cx', D') = 0 

and that Ej is defined in {Re( > 0} x (a conic neighborhood C iT* N of p') where p' = 
p(p), p : N x iT* M---> iT* N, N = {x 1 = 0} c M. Ei is regular at ( = iai(O, x', e)~;:;- 1 . 

M 
At ( = oo, Ej has the form 

00 

Ej = L c]- .~, Ejk( x', D'). 
k=O 

Ej((,x',D')f(x') E CO'j" for any f(x') E CN,p'· 
Then according to [Kat 2], Ejf defines a j-null solution. Moreover, there exists a 

nonzero constant C k such that 

So we have a better understanding of j-null solutions from the viewpoint of boundary 
value problems . 

In cer tain cases, this approach is really powerful!. In PARTS 1 and 2, we will present 
a very detailed analysis of some second and third order operators . 

Next, we give a result about a particlular class of m-th order hyperbolic operator. 
Let us consider 

m rl!. 

P(x,D) = D;" + L Lbqlx1D;"- 1 D~+'. 
1= 1 q 

where the second summation is taken with respect to q = 0, 1, 2, ... , >.l, q = >.l mod>-+ 1. 
Then 

a(P) = (;" + L b-'1 , 1x~ 1 ~;"- 1 ~~. 
I= I 



Moreover, in this case Q is an ordinary differential operator of Fuchs type without 
parameter (x',('). That is , Q has the same form as Lin Lemma 2. We assume that 

a(P)(x,() = ((1 - x~a 1 (n) . . . ((1 - x~am(n), aj E IR, aj # ak(j # k). 

Set aj(x, (') = ajx~(n· According to [K-K] and [Kat 1bis], we have the isomorphism 

( 
p m 

b.v. : r{xt>D}CM)p _, ffiCN,p' 

u,...., (D~u(+O,x'))~=~1 • 
Here p' = p(p) and pis the projection N x iT* M _,iT* N, N = {x 1 = 0} C M . Assume 

M 
that for each j, there is a characteristic esponent f/. Z at ( = iaj(;;- 1 = iaj. Our result 
is 

T heorem 6. (i) There is an isomorphism 

m-1 
Nf : fJ) CN,p' _, Null(j , + ). 

(ii) The image of Null(j, +) C (r {x, >OJ Ctr )p under b.v. is characterized by a relation­
ship written in terms of microdifferential operators of fractional order. 

PROOF. There exists a solution v~(() to Qv~ = 0 in the right half plane which is not 
holomorphic if c = m and holomorphic if c· = 1, 3, ... , m- 1. We may assume that vt's 
are linearly independent . According to [Kat 2], vt(()j(x'),J E CN,p' defines an element 
of (r{x,>oJCtr )p . Thus we have constructed 

Nj·c : CN,p' _, (r{x,>o}Ctr)p· 

Since Nf'c f is j-null if 1 ::::; c :S m - 1 , we can define 

N + . 
) . 

m-1 
fJ) CN ,p' _, Null(j, +) 

m-1 

(J,, ... ,fm-1) ,__, "£(N/'cf)(x). 
c=l 

On the other hand, we can define 

Nf: EBCN,p' _, (r{.,>o)C,~)p 

(]J, . . . Jm-lJm) ,__, "£(Nj•cf)(x). 
c;::::l 

Obviously Nf = (Nf, Nf'm). We define Bt with the following commutative diagram 

EBCN,p' 
N/ 

(r {•, >oJCtr )p _____, 

llb.v. 
EBCN,p' 

m _____, ffiCN,p'· 
Bf 



We show that iJj is an isomorphism. Let 

00 

vt(O = L:>~.kcl-xtr. 
k=O 

Then ilj is represented by 

( 

vf,o 

-+ ' ( xtr I *' m-t vf,l B1 = dmg Co, C1Dn , C2D,. , . . , Cm-ID:;+') 

1 
vi,m-1 

v~,o J v~,J 

v;,.,~_ 1 
The second matrix is invertible because it comes from m linearly independent solutions. 
The first one is obviously invertible. So iJj is an isomorphism. 

By using the commutativity of the diagram, we see that .Nf is an isomorphism. Now 

let us prove (i) . Nf is obviously injective. Surjectivity follows because (Nj·m fm)(x) =J 0 

on bj if fm =J 0 and Nf is surjective. Next, let us prove (ii). We denote by Bj the 
. . -+ m-1 m 

restnctwn of B1 on E!) CN,p' = {(h, . . . , fm-1, 0) E E!!CN,p' ). We have 

v~.1 
v?n-1,o J 

v;,._;,m-1 

~, ' rAnk of the second matrix is m - 1. Since the components of the two matrices 
are mmutative, we can use the san1e argument a in the usual linear albebra. 0 

F y, we introduce a notion which will be important in PARTS 1 and 2. 
SeL 

An element of it is called a j-pure solution (in ±x1 > 0) . In other words, a solution is 
j-pure if and only if it is k-null for all k =J j. Obviously, a null solution is a sum of pure 
solutiions. The study of pure solutions is more difficult than that of null solutions. 



PART 1 SECON D ORDER CASE 
§1 statement o f t he theorems 
Let 

finite 

P(x,D) = Di- ~(,81 + .82)x1D1Dn- .B1.82xiD~- ~rDn + L U-i(xi , x' , D')x~Dj 
I I 

1=0 

be a m icrodifferential operator defined in a neighborhood of p E {(x, iO E iT* M; x1 = 
0, (n > 0} such that orda_l :'0 -I - 1 and a_/ is a polynomial in t = ~xi and Xn. 

Here we write x = (x 1, . . . ,xn) = (x 1,x') E IR.n = M. We also assume that ,81 and 
.82 are purely imaginary constants with fit. > ~- The principal symbol of P, denoted 

by e7(P) = (6- flt-xl(n)((1- ~xl(n) · Pis microhyperbolic and doubly characteristic 
over the initial surface N = {x; x 1 = 0} . Char(P), the (purely imaginary) characteristic 
variety, is the union of two hypersurfaces ( 1 = ±tfx1(n (j = 1, 2), which have an 
non-involutory intersection {x 1 = ( 1 = 0} 3 p. Let bj be the bicharacteristic strip of 

{6- tfxl (n = 0} issuing from p, and bf be its intersection with {(x;i(dx);±x1 > 0} . 
Since P has simple characteristics in x 1 f 0, we can apply the propagation theorem 
in [SI\:K]. That is , if a microfunction u satisfies Pu = 0 in ±x1 > 0, bf C suppu or 

bf nsuppu =¢.Moreover, the general theory on microhyperbolic operators due to [KK] 
implies tlmt we have the commutative diagram: 

2 

EBCN,p' 
p' = p(p), I' . !Y . iT" M--+ iT* N, 

1\ 1 

where Cft is the kernel sheaf of P, the horizontal arrow is the restriction, and the vertical 
arrows are the initial and the boundary value morphisms . Set 

Sol(j, ±) = {u E (r{±x,>oJC~)p; u = 0 on bt (k f j)}. 

An element of Sol(j , ±) is called a j-pure solution. Assume 

c= ~,81 - 2,82 + 1 f.~Z={0,±~,±1,±~, ... }. 
del ,81 - ,82 2 2 2 

T hen we have the following three theorems . 

Theore m A. (boundary value problem with purity) 
The map 

Sol(j, ±) --+ CN,p 

u >-> u( +0, x') 

is an isomorp hism . M oreover, if CL 1 = 0 for all I, (*) can be replaced by a weaker 
condition 

( * )' : 3 
c'f.2+NU2-N, N={1,2,3, .. . }. 



Theorem B. (characterization of j-pure solutions by a relationship between their 
boundary values) 

There exists a micro differential operator P/(x', D' ) of order t -N
0 

with the following 

property.(Here N0 is the set of non-negative integers.) : An element u of(r{±x,>•oJC,C )P 
is j-pure if and only if 

D 1u(±O,x') = P/(x',D')[u(±O,x')J. 

Moreover if C:Lf = 0 for alii, then(*) can be replaced by(*)'. 

Theorem C. (branching of singularities) 

Let u(x) be an element ofC,C,p. Ifu is pure and u i= 0 in ±x1 > 0, then b{ U bf is 
contained in suppu. Moreover, if C:Lf = 0 for all l, we can consider the following two 
cases not included in (*). 

(i)c E ~- N 

Ifu is 1-pure and u i= 0 in ±x1 > 0, then b{ Ubf is contained in suppu. Ifu is 2-pure 
in ±x1 > 0, then, it is 2-pure also in 'fx1 > 0. 

(ii)c E 1 + N 

If u is 1-pure in ±x1 > 0, then i t is 1-pure also in 'fx1 > 0. If u is 2-pure and u i= 0 
in ±x 1 > 0, then b{ U bf is contained in suppu. 

We can treat another kind of perturbation. The constant 1 can be replaced by 
a microdifferential operator. Let the coordinate of p' be (:i:2, ... , Xni i~'dx') and i = 
i( x' , D') be a microdifferential operator of order :S: 0 defined near p'. i has an expansion 
of the form 

.:Y(x' , D') = _L lj(x",D')(xn- :i:n)i 
j=O 

x" = (x2, ... , Xn-J) . 

Let i = i(x, D) be defined by 

It is <U perator of order :S: 0 defined in a neighborhood of p. Set IC 3 1 = c:r
0
(i)(p') = 

c:ro(io)(p') = c:r0 (i)(p) and c = %!3p~~~;+-r. Let us consider the operator 

P(x, D) = Di - ~(,81 + fJ2)x1D 1Dn- {31fJ2xi D~ - ~Dni'(x, D). 
t t 

Purity and the related mappings are defined in the usual way. In this situation, we have 
the following results. 

T heorem A'. 
If c satisfies (*) ', then tl1e map 

Sol(j, ±)--+ CN,p 

is an isomorphism. 

10 



Theorem B'. 

If c satisfies (*)', then there exists a micmdifferential operator Pl(x', D') of order 

E ~-No, which has the following property: An element of (r{x,>oJCfr)p is j-pure if 
and only if 

Theorem C'. 

Assume c f. ~z. Then we have: If u is pure and u =I 0 in ±x1 > 0, then b'[ U b'f is 
contained in suppu. 

§2 proof of the unp ert urbed case 
We are going to construct a !(>linear mapping 

EJ : CN,p' ---. Sol(j, ±) 

f(x') >-> (EJ J)(x). 

Here p' = p(p) and p : iT•lvf x N ---. iT• N is the pull-back of the inclusion map 
M 

N '-' M . 
2-1 construction of EJ 
Let us consider 

where ;< a complex constant . In x 1 > 0, we have I\.erP = I\.er~xi. 'vVe perform 
the change of varia '-.les t = ~xi in the latter operator. By using x

1 
D

1 
= 2tD

1 
and 

xi Di = x 1D1 (x 1D 1 -1)," 0btain 

Hence 

{ 

~xiDf = tTJ,(tD,- ~) 

tx?D1Dn = tDn · tD, 

~xfD~ = (tDn) 2 

~xiP = tD, (tD,- ~ ) + i(f3J + f32) tDntDt - f31{32( tDn )2 - 'l w n. 
4 2 t 

Next, we apply the quantized Legendre transform £ with respect to (t, x'). (£is denoted 
by {3"!; in [Kat1]) . £ is a quantized contact transformation defined by 

{ 

£D,£-1 = -i(Dn, [.Dk£ - 1 = Dk (k #1) 

£t£-I = -iD<D -;; 1, l xk£-1 = Xk (k #1, n) 
£ xn£-l = Xn + D<(D-;; 1. 

In particular , we have 

{ 
£tD,£ ~1

1 = - D <( = -((D< + 1) 
£tDn£ = -tD<. 

11 



Here ( is the dual variable of (the complexification of) t. 
Then the Legendre image, denoted by Q((,D() ,is 

-Q is transformed into Gauss hypergeometric operator G = G( f, 1, c; z, D ) if we intro­
duce a new independent variable z by ( = ( -(31 + (3

2
)z + (3

1
, where 

3 ) 2 3 1 3 G=G( 2, 1,c;z,D =z(1-z)D +[c-(
2

+1+1)zD-
2

- 1, 

Its Riemann scheme is 

ffJ1 - 2(3z + 1 
c = fJ1 - f3z 

1 
0 

c-~ 
Lemmal. 

Let u(z) be a solution to Gu = 0. II it io holomorphic both at z = 0, 1, then it 
vanishes identically. 

PROOF. u is analytically continued to the entire complex pla1•2, and its exponent at 
z = oo is 1. Apply Liouville 's theorem. D 

We want to find a solution Vj(z) (j = 1, 2 respectively) in the upper half plane, not 
vanishing identically, such that v1 is holomorphic at z = 1, 0 respectively. (Hence 
singular at z = 0, 1 resp< ·tively) . :\Ivreovc. , .s expansion coefficients at z = oo will 
be necessary in the next '' ction. This is a kind of connection problem. It is solved by 
using well-known formulas. We quote irom [IKSYJ . Assume that 

J 
c 'i 2 + NU2 - N,N = {1 , 2,3, ... }, 

and, in the UJ'", .;r half plane, set 0 < argz < 1r . 

By cho" ,,ng six different paths in the .Euler integral representaion, we obtain six 
solutior, F 1 ( z ), . . . , F6 (z) that have the following properties: 

(2) 

12 



(3) 

( 4) 

(5) F(z)= f(~-c)r(c-1)z-~F(~ ~-C'~·~) 1 
f( ~) 2 , 2 , 2 , z 

(6) Fz(z) is holomorphic at z = 0 

(7) F3 ( z) is holomorphic at z = 1 

(8) F6(z) = 2iE( -~c)F(1, 2- c,; ~; ~ ) , 
2 2 z 

where E(-) = exp(27ri·) and F is the Gauss hypergeometric series . With the notation 
above, we defin ' 

Let us calcul 

and 

Hence 

·,. expansion coefficient.s at z = oo. From (1) , ... , (4) , we obtain 

(1 - c( -c))F1 - 2E( -c)F3 + 2F6 = 0 

v1 (z) = (1- E( -c))F1 (z) + 2F6 (z) 

v2(z) = (1 + E( -c))F1 (z) + 2F6 (z). 

When we expand v1(z) into the form 

00 

(9) Vj(z) = L Vj,-J-F-1-% at z = oo, Imz > 0 
n=O 

(0<argz<7r) 

we see easily that 

(10) 
(

v1,_1 v2,_1 ) = (4iE(-H 0 ) ( 1 1 ) 
r( ~-c)r(c-1) 1 _ (- ) 1 ( ) v1 ,-~ v2 ,-~ 0 r(~) E c + E -c 

13 



Now we come back to the (-plane. Since there is a correspondence 

( = fJ1, fJ2, oo <---> z = 0, 1, oo 

R.e(>O<--->Imz>O (O<argz<rr), 

Vj(z) (j = 1, 2) defines a solution to Q in the right half plane C IC( which is singular 
at {Jj and holomorphic at /33-j. We denote it by Vj((). Let us calculate its expansion 
coefficients a t ( = oo, Re( > 0. z = -}~!p, leads to 

and 

-~ ( {J {J )~(-~ ( 1 3 fJ1 Q((-2)) z ' = - 1 + 2 ' ' + 2( + . 

Here 
7r 7r 

-2<arg(<2 , arg(-/31 +{32 )=-rr/2. 

When we expand Vj (() into the form 

Vj(() = L vj,-1-'}C 1-'} at(= oo, Re( > 0 (-~ < arg( < ~), 
n=O 

we have 

( V;,-1 ) = ( -fJJ + fJ2 
~d 0 

0 ) ( Vj,-1) 
(-fJJ+/32)~ vj , -~ 

Combining this and (10), we obtain 

(11) 

= ( 4ie( -~)( -
0 

fJ1 + fJ2) 0 ) ( 1 
r<t-;mc-tJ(-fJJ+fJ2 )~ 1- e(-c) 

Let us define Ej. According to [Kat2], v,(()J(x') E CO~ gives an element of Sol 
(j,+ ), which we denote by (Et J)(x ). To define Ej, we change the sign of the time 
variable by introducing '£ 1 = -x1 . Since D 1 = - Dx,, we have 

P(x,D) = P(-x1 , x',-Dx" D' ) = P( x1 ,x' , Dx" D' ) 

That is, P does not change its form. We can apply the same argument as above and 
the definition of Ej is obvious. Note that (I - /3jx1~n = -((J - /3jXJ~n), where (1 is 
the dual of '£1 . 
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2-2 boundary values of EJ 
Let J(x'),g(x') E CN,p'· According to [Kat2], we have 

( 
(Ej f)( +0, x') ) _ ( 21l"VJ,-d(x') ) . _ 

(
12

) (D!Ejf)(+O,x ' ) - 2~(~)hi,-¥f(x') (J- 1' 2) 

Denote by£+ the morphism 

(!) ( (Eif+E:[g)(+O,x') ) 
g .__, Dl(Etf+E:[g)(+O, x') . 

Combination of (11) and (12) yield 

A- ( 27!" - 0 rc%-c)r(c-t)
0
(_(./ + (./ )~ ). 

f(t) 1-'1 1-'2 ' 

We may forget the explicit form of A. All we'll need is the fact that A = diag( A
1

, A
2
D,t) 

where A1 and A2 are nonzero constants. In particular, £+ is an isomorphism. Next , 
denote by L - the morphism 

2 2 
L-: ffiCN,p'--> ffiCN,p' · 

(
f) ( (Ej f + E2g)(-O,x') ) 
g .__, D!(Ejf+E2g)(-O,x') . 

Obviously, 

( 
El-J + E:; g ) 

D,, (E1-f + E;g)(xJ, x')!x,-+o 

is represented by the same matrix as£+ Since D,, = -D1 , L-hasa slightly different 
representat ion: 

L - is an isomorphism , of course. 
2-3 end of the proofs (of the unperturbed case) 
We have the following commutative diagram: 

(CD1) 

(r{±x,>o}C~)P = ffiJ= 1Sol(j,±) 

b.v.ll 
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where the horizontal arrow is the map 

E± = EBJ=1EJ: '(J (x ') ,g(x')) ,_. (Etf)(x) + (Efg )(x) . 

The first vertical arrow is 

u(x) ,_. ' (u(±O,x'), D1u(±O,x')) , 

and it is known to be an isomorphism.([K-K] , [Katl]) . Therefore E± is an isomorphism. 
Since E± = EBJ=I Ef, each Ef is an isomorphism. In t his way, we have arrived at the 
important identification: 

E~ : CN, p' Ef) 0..:::; So/(1, ±) 

Ef : 0 Ef) CN,p' ..:::; So/(2, ±). 

From (CD1), we obtain the following corru:nutative diagram: 

So/(1, ±) <---- CN,p' 

1 1 

where the first horizontal arrow is the identification above, the left vertical arrow is 

u ,_. u(±O, x'), 

and the second vertical arrow is f (x ' ) ,_. A 1 f (x ' ). This implies the latter part of Theo­
rem A. 

Next , we prove Theorem B. We want to characterize the image of Sol(j , ±) under 
b .v. Because of (CDl), it is L ±(CN,p' Ef) 0) if j = 1 and L±(o Ef) CN,p') if j = 2. Here 

L±(!o) =(o1 o)A( 1 )! 
±1 1- E( -c) 

and 

Theorem B follows immediately. 
Finally, let us prove Theorem C. We have the isomorphisms below: 

b.v ....... 2 b.v."' 
EBJ=1 Sol(j,+) EBJ=I Sol(j ,-) ----; EBCN,p' <----

nJ It£+ 

2 £-- 2 £+- 2 
EBCN,p' ----; Ef)CN,p' <---- Ef)CN,p' 
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where £± is the direct sum of the identification maps EJ, j 
(L -)- 1 L+and call it the branching matrix. It is easy to see that 

B - ( 1 
- 1 - c( -c) 

1 ) -I ( 1 0 ) ( 1 
1+<(-c) 0 -1 1-<(-c) 

_ ( c(c) 
- 1- c(c) 

1 +<(c)) 
<(c) · 

1,2. We set B 

The identification above enables us to reduce the problem of branching to the study of 
the branching matrix B. We have only to know when a certain component of B is (not) 
zero. The proof of Theorem C is now complete. 

A nonzero constant is an elliptic microdifferential operator of order 0. Even if it 
is perturbed in the lower order terms , it remains elliptic. This observation will be 
important in the following section. 

§3 proof of the perturbed case 
In this section we assume that 

We only explain the construction of E:{. The remaining three maps are constructed in 
the same way. 

3-1 right inverse 

We make some preparation for the symbol calculus in the next subsection. G(z, Dz) 
is an ordinary differential operator of Fuchs type with three regular singular points 
( = 0, 1, oo. Its Riemann scheme is 

1 
0 

c-~ 

00 

3 
2 

and no logarithmic term appears. The exponent of the Wronskian is -c at ( = 0 and 
c- ~ at ( = 1. Let l1 c Cz be a domain as in the figure. 

0 1 
Figure 1 
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G(z,D) induces a linear mapping: 

G: O(l1)--> O(l1) 

We are going to construct a right inverse c-1 by using the method of variation of 
parameters. Let F1 , F 2 be the series solutions of exponent 0, 1 - c respectively defined 
near z = 0. Let W be their Wronskian. 

It is easy to see that 

gives a right inverse of G. Here the integrals are taken in the sense of Riemann-Liouville. 
We want to obtain some estimate on the integral operator c-1 . We say that a function 
f has exponent (p, q) at z = a iff has the form 

where !J and hare holomorphic at z =a and !J(a),h(a) 'I 0. Set , for ii, 0 < ii « 1, 

K 0 = {z E l1; dist(z, 8!1) :S ii} 

Prop osition 2. 

There exist positive constants c and C, not depending on ii, such that for all f E 0(!1), 
we have 

sup[G- 1 !I :S Cii-csup[f[ 
K; K, 

In the proof, we see that c = [[Rec- ~[] + 1, where [a] is the smallest integer not 
exceeding a. 

PR OOF. We consider the second term in the definition of G- 1 . (The first term is easier 
to deal with.) Let us introduce the following notation: 

(' F1(y) 
(JJ)(z) = F2(z) Jo ·y(l- y)W(y)f(y)dy. 

We will deduce an estimate on J in several steps. 
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Lemma 3. Fix a sufficiently small constant R > 0. Then, there exists a constant 
C1 > 0, independent of 8, such that 

for all g(z) E 0(!1). 

PROOF. We may assume that {JzJ::; 2R}·c int/{6 for any 8, 0 < 8 « 1. So g(z) has a 
Taylor expansion 

g(z) == L gnzn in {jzJ < 2R} 
n=O 

Since Riemann-Liouville integral can be carried out term by term ([IKSY]), we have 

1. 
00 1 

Yc-Jg(y)dy == Zc L --gnzn, 
0 n=O c + n 

(13) 

By the way, the assumption c ~ ~z implies that there exists a constant Cc such that 

1
-

1-j::::cc forall n==0,1,2,. 
c+n 

Moreover, Cauchy's estimate shows that 

1 
JgnJ :'0 Rn sup Jg(y)J . 

IYI=R 

Therefore, in view of (13), we obtain, in JzJ < R, 

This leads to the lemma because we have 

JzJ sup-- ==R. 
1·1~~1- w 

0 
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Lemma 4. 
There exists a constant C2 > 0, independent of 5, such that 

for all g(z) E 0(!1). 

PROOF. What remains is the estimate for z E {fzl > ~} n K 6. We write the function 
in question as the sum of two terms. 

We can apply Lemma 3 to the first term. In fact , 

where the first factor is bounded inn n {fzl > R/2} and the second factor is estimated 
by using Lemma 1. Let us consider the second term. We may assume that the length 
of the path of integration C K; from 2j;1 to z is estimated by a constant Ck,n > 0 

independent of 5. Additionally, in {lzl > ~} n K 6 , z 1-c is estimated by a constant 
Ch,n > 0, independent of 5. Therefore we have 

in{lzl>~}nK,. 

Lemma 5. Put c' =fRee-~~ 2: 0. Ther~ exists a constant CJ > 0, independent of 5, 
such that for all f E 0(!1), we have 

supfJfl ~ cJ,s- - c'supf/1 . 
1<6 K6 

PROOF. 
We have 

where G(y) is holomorphic inn, or more precisely, in the universal covering space of 
IC\ {1}, and has exponent ( -c + ~, 0) at y = 1. Obviously, 
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and we consider G f as g in Lemma 2. Since 

sup iGJI :5 supiGisuplfl :5 C'aomin(-Rec+~,o)supiJI, 
K, I<, K 6 K

6 

Lemma 4 implies that 

(14) 

On the other hand , F 2 ( z) / zl-c is holomorphic in D. and has exponent ( 0, c- ~) at z = 1. 
So, there exists a constant C'3 > 0 independent of o such that 

(15) 

Combination of (14) and (15) yields the lemma, because 

min(- Rec+ ~,0) +rnin(Rec- ~,0 ) = min(±(Rec- ~)) = -c' . 
2 2 2 

0 

PROOF OF PROPOSITION 2 CONTINED. The first term in the definition of G- 1 

satisfies the same estimate as Lemma 5, with a larger C, if necessary. Then the propo­
sition follows immediately, because 0 2: -c' > -c. 0 

3-2 successive approximation 
Let us consider 

finite 

+ L "'-l(xi,x' ,D' )x: Df. 
1=0 

As in §2 , we put t = &xi in txi P(:c, D) and use the quantized Legendre transform £. 
Let us calculate the contribution of the perturbation term 

finite 

P'(:c, D) = L <>-l(xi,x',D')x:n;. 
1=0 

First, we consider xi · x\ Di . It is easy to see that 

xi· x:n; = 2t · 2tD,(2tD, -1) . . . (2tD, -I+ 1). 
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Lemma 6. Let W(C) be the Weyl alge·bra of variable t and V be the subalgebra 
generated by t and{) = tD, . Then we have tiV C Vti C W(C)ti (j = 0, 1, 2, .... ) 

PROOF. Obviously [t, rJ] = -t, so t{) E Vt. Hence the case j = 1 is proved. The 
remaining cases are proved by induction. D 

This lemma (j = 1) implies that 

1 2 I I 4x 1 · x 1D 1 E 'Dt ,wd. 

Therefore :J-xiP'(x,D) belongs to E, ,,d n Et,x•(-1) and is a polynomial in t and -<n 
by the assumption on a-1 · Its image under£, denoted by Q'((, x', D,, D') belongs to 
Ecx'D( n Ecx•( - 1) and is a polynomial in D, and( . More precisely, it has the form 

finite m-1 

Q'((,x',D,,D') = L L O:m,j(x',D')(iD'(' E E(-1). 
m=l j=O 

where ordi5:m,j ::; -m- 1. If we write it in terms of the other complex variable z, Q' is 
transformed into 

m m-1 

G'( z,x' , D, D') = L L am,j(x', D' )zi D';' E E(-1). 
m=1 j=O 

Here m is a positive integer and am,j is a microdifferential operator defined in a neigh­
borhood of p' = (x';i('dx') = p(p) E iT*N, N = !Rn- 1 . Thus -txiP is transformed 
into G - G', where G is the Gauss hypergeometric operator in §2. vVe will construct a 
micro differential operator E( z, x', D') of order 0 that satisfies 

(G- G')(z, x', a, D' )E = 0, a,= [D,, ·]. 

In addition, we require that E should be defined in (a neighborhood C IC, of {z; lmz ~ 
0, z oJ 1}) x (a conic neighborhood C iT* N of p' = p(p)) and that 

E E z- 1 E(O) + z-3
/

2 E(O) at z = oo 

where E(O) is regarded as a sheaf on T*(IP'1 x cn- 1 ) . There is another requirement to 
be explained in 3-3. Put 

{ 
E0(z) = v2(z) where v2 is defined in 2- 1, 

Ek+ 1(z,x',D') = G-1 [Q'(z,x',a,D')Ek(z,x',D')J 

Here c- 1 and G' are mappings on 0, ®c [,,, to which Ek belongs. We want to show 
that E = Lk>o Ek converges in [,,CJ,. We have only to prove it when z belongs to a 
fixed n, where!l is as in 3-1. Obviously 

Ek(z,x',D' ) = (G- 1G')kEo(z) 

L L (G- 1am,,j,z1•a:;•) ... (G- 1 am,,itzita';'')E0 (z) . 
(mk, ... ,ml) (j~;, ... ,jt) 
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where (mk, .. . , m1) runs through the set {1, ... , m} x ... {1, . . . , m} (k times) and 
(jk,···,]J) through {0, ... ,mk -1} x · ·· x {O, . . . ,m1 -1}. Therefore 

Ek(z,x',D')= L L am,,j,.,.am,,it0(G- 1 zi'8;"') . .. (G- 1zit8;"')E0 
(m, , ... ,m,) (j, , ... ,it) 

E Ex•( -(mk + · · · + m1)- k) 0c Oz C Ez,x•(O). 

We will show the convergence of I: Ek for z E !J in three steps . They are: 
STEP 1 estimate of (G- 1 zi• 8;"') . .. (G- 1 zit 8~• )Eo(z) 
STEP 2 estimate of D<m, ,j, .. . D<m, ,it 
STEP 3 convergence of L Ek 
ISTEP11 

Proposition 7. With the notation of 3-1, there exists a constant C' independent of 5, 
such that 

sup I( c-l zi' a;n·) ... ( c-1 zi' a;n· )Eo(z) I 
I<, 

:::; C'k+1 {c + (mk + ... + m!)}!5-(k+1)c-(m.+ .. +m,) 

for all k 2 0 and all 8, 0 < 8 « 1, where c is the one in Proposition 2. We refer to this 
inequaJi ty as ( * ko. 
PROOF. It is true fork = 0. We proceed by induction on k. Assume that ( * )k,0 is true 
for all sufficiently small 8. Take 8' = (1 + ~+(m,~ .. m,) )- 1 < 8. ( * ko•, which is true by 
assumption, states that 

sup I ( c-1 zi• a~n·) ... ( c-l zit a;n• )Eo( z) I 
K6' 

:'::: C'k+l {c + (m k + ... + mJ)}!8-(k+l)c-(m>+ ·+m,) 

x (1 + _ 1 )(k+l)c+(md ··+m,) 
c+(mk+ . . . ml) 

Here 

the last factor < (1 + ( 1 )c+(md .. m,)(1 + 1 )kc 
- c+ mk+ ... m1) c+(mk+ ... m!) 

1 k -
:':::e{(1+y;)')< 

:::; eC+I 

because mk, . .. , m 1 2 1. Next, we emply Cauchy's estimate. A circle with center in /{
0 

and radius 8/ { c + ( mk + · · · + m1) + 1} is contained in K 0•. Therefore 

sup 18;"'+1 
( c - l zi• a;n•) ... ( c-l zi' 8;"' )Eo(z) I 

I<, 
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:5: m k+1 !{c + (mk + · · · + m 1) + l}m'+'6-m'+' 

X C''k+1 {c + (mk + ... + m1)}!6-(k+1)c-(m,+ ·+m,) X ec+1 

:::; mk+1 !e<+1 C''k+
1 
{c + (mk+1 + mk + · · · + m1)}! 

X 6-(k+J)c-(m'+ 1 +m, + .. ·+m,) 

Here remark that mk+l! :::; ih (independent of k). By the way Jzi>+'J is bounded 
by a positive constant C" independent ~f k. Then we finish the proof by choosing 
C' > C · C" · m !e<+1, where C is the constant in Proposition 2. 0 

Propositon 8. 
There is a constant C'0 such that 

sup [(G-
1 zi•a:n•) ... (G-1 zi' 8;'' )E0 (z)[ :::; (mk + · · · + m 1 )!c;+1. 

I<, 

PROOF. First, we have 

Secondly, since there is a constant C'c > 1 such that 

(c +I)! 1 · 1 · z f d ---
1
!- = a po ynom1a m o egree c 

:::; ci+1 

for any positive integer l, we have 

Thus the present proposition follows from the preceding one. 0 

A holomorphic function f( z ) inn can be regarded as a microdifferential operator in 
(z, x' ), and its formal norm Nt' (!; T) is defined. Here Tis an indeterminate. 

Proposit ion 9 . 

PROOF. Use Cauchy's est imate. The path of integration should by centered in ]{
6 

and 
with radius 6/2. 0 

i]TEP21 
First, we prepare some generalities. 
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Le mma 10. Let P(x, D ) be a microdifferentiaJ operator of order:::::; -m < 0 defined 
in a neighborhood of a compact set w C T*IC~, where m is a positive integer. Then we 
have 

PROOF. By definition, 

N w( . ) _ ~ 2(2n)- kk! I "' D/i ( )I 2k+l<>+/il 
o P ,T - .L (lal+k)!(I.BI+k)!s~p Dx ,P-k x,~ T 

k ,o,{J 

where P = I.;k>O P- k and P-k is the h~mogeneous part of degree -k. There's no 
contribut ion by t he term s corresponding to k = 0, 1, 2, ... , m - 1. Hence, if we put 
l=k-m, 

2(2n)-(l+ml(l + m)! 
Nw(P'T)- ~ 0 ' - L (lal + l + m)!(I.BI + l + m)! 1?_0,<>/i 

X s~p I n~ n:P-(l+m)(x, ol T 2(1+ml+l<>+/il 

We have only to p rove that 

2(2n)-( l+ml(l + m)l (2n)-m 2(2n)-111 
""( 1-a 1,--+'--1;-'+-,-n"')! ("'1.8~1--,--+--;-1 --:'-+_m"7.")1 :::::; -m-! - (I a I + I)! ( 1.8 I + I) 1 • 

T his inequal ity is obtained by the calculation below. 

0 

2(2n)-(l+m)(l + m)! (Ia I+ 1)!(1.81 +I)! 
(Ia I+ I+ m)!(I.BI +I +m)! x 2(2n) 11! 

<(2n)-mx 1 X (l+m) .. . (l+1) 
- (lal+l+m) .. . (lal+1+1) (I.BI+I+m) ... (I.BI+1+1) 

1 
:::::; (2n)-m X m! X 1. 

Lemma 11. Let P1(x, D ), ... ,Pk(x, D ) be microdifferentiaJ operators of order 
:::::; -m1 , . .. , -mk respectively, where m 1 , . . . , mk are positive integers. T hen we have 

NQ'( Pk .. . PI; T ) 

(2 ) -(m.+ .. ·+m,) 
~ n T 2(m,+ .. +mt)N_m.(Pk;T) . . . N_m,( P!;T) 

(m k + ·· · +m1)! 
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PROOF. Since ord(h ... P1) ~ -(mk + · · · + m 1 ), the preceding lemma implies that 

No( h . . . P1;T) 

(2 )-(m,+··+mt) 
A-" n y2(m,+··+mt) N (P p T) 
""(mk+···+ mJ)! -(md··+m1 ) k··· 1; · 

Moreover, according to (Bou-Kr), we have 

N-<m•+ ···+mt)(Pk .. . P1; T) ~ N_m,(Pk ; T) ... N-m, (PI; T) 
0 

In the lemma above, let P1, .. . Pk be our am, ,j, , . .. , am, ,j, respectively. Regard 
them as operators of n variables (z,x'). Then we have 

No(amkd.k · · · O'mt,il iT) 

ISTEP3I 

Combining Proposition 9 and the estimate immediately above, we obtain 

Nt<· Xw(am.,j, (x ' , D' ) ... am,,j, (x', D' )(G-l zi• a;>•) ... (c-l zit o;'' )Eo(z); T) 

2 1 k+I 
~ ---rr-k,c"/2 1- T . 

X {( ~~ )m•+l N-m,-l(am,,j,; T)} ... {( ~~ )mt+l N-m
1
-l (am,,J

1
; T)} . 

Here w 3 p' is a compact set of T•cn-l in a neighborhood of which am, ,j,, .. . , am,,j, 
are defined. Since 

Ek(z,x ' , D') = (t ~ G- 1 am,i(x',D')ziu;>)k Eo(z) 
m=l ;=0 

we have 

L L am..J, .. . am,,j,(G-Izi>a;>•) ... (G- 1zito;'')E0 (z) 
(mk , ... ,mt) (jk, .. ,jl) 

E E(O), 
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Now the convergence of E = L:k>o Ek is ~lear. Here remark that its principal part is 
E0(z) = v2(z). -

Next, we have to study the behaviour of E near z = oo. 

Lemma 12. Let f( z ), g( z) be holomorphic functions in the upper half plane such that 
G(z,Bz)g(z) = f(z). Assume that in a neighborhood of z = oo, f is a finite sum of 
functions of exponent 2, ~. 3, ~ • . . . . Then g is a finite sum of functions of exponent 
1, ~,2, ~,3, .... 

PROOF. This is a consequence of PART 0 Lemma 2. An alternative proof is the use 
of the variation of parameters method. Let F1 , F2 be two linearly independent homoge­

neous solutions and W be their Wronskian. y(t FSQ'(y) f(y) is a sum of terms of exponent 

~. 2, ~. 3, ... . So r y(l Fy\~(y) J(y)dy is a sum of terms of exponent 0, 1/2, 1, 3/2, 2, ... 
at z = oo . Note that no logarighmic term appears. Since F3 _j is of exponent (1, 3/2), 
the lemma follows immediately. 0 

Lemm a 13. Let f(z) be of exponent a at z = oo . Then zia;> f(z) is of exponent 
a+ m- j, or larger by a positive integer. 

PROOF. Easy. 0 

We will use this lemma in the case m <:: 1, 0 ~ j ~ m - 1. Then the expo­
nent increases because m - j <:: 1. Combining Lemmas 12 and 13, we conclude that 
(G- 'zi•a;>•) .. . (G- 1zi'o';'')E0 (z) is a finite sum of functions of exponent 
1, 3/2, 2, 5/2, 3, ... at z = oo. Therefore E(z, x', D' ) can be written 

E(z, x', D' ) = z- 1 E'(z, x', D' ) + z- 312 E"(z, x', D' ), 

where E' and E" are formal microdifferential operators in a neighborhood of z = oo. In 
fact, we have 

Lemma 14. E'(z ,x',D') and E"( z,x',D') are microdifferential operators. (That is, 
they satisty a suitable growth condition.) 

PROOF. E satisfies the growth condition of microdifferential operators in the universal 
covering space of {1 «: JzJ < oo}. We can derive the lemma by using the sublemma 
below (with A= 1/2) and the lemma of Schwarz. 0 

Sublemma. Let D = {z E IC;O < JzJ < 1·} be a punctured disk, iJ its universal 
covering and A a non-integer. Then the sum O(D) + z>-O(D) C O(D) is a direct sum. 
Moreover, if]( is a compact set in D and k is the closure of U e'0 ]( C iJ, then, 

0<8<21T 

there exists a constant C = C>.,K such that: for f(z) = g(z) + ;>-h(z), g,h E O(D), 
we have 

supJgJ ~ CsupJJJ, supJhJ ~ CsupJJJ 
[{ j( K j( 

PROOF. Consider the variation off, 

Varf(z) = f(e 2"'z)- f(z) 

= (1 - 211"iA)z>.h(z) 
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Note that 1 - e2
"'"' =I 0 by the assumption on .A. Obviously we have 

supiVarf(z)l ~ 2suplfl 
K {< 

0 

3-3 construction of Ef 
We are interested in the behaviour of E(z,x',D') at z = 1. 

Proposition 15. E(z, x', D' )f(x') belongs to (the inverse image under ( = ( -{31 + 
(h)z + fJ1 of) CO+ C Cx'O<. 

PROOF. We construct a defining function which is holomorphic in {Imz > O}x (an 
infinitesimal wedge w in c;,-I ). We employ the action of Bony-Schapira. We may 
assume that p' = (0'; idxn) and choose Zn = iu as the initial surface of the action. Let 
F(z') be a defining function of J(x'), which is holomorphic in a flat domain w c cn-I 
as in [B-S] p .l07. By virtue of the flabbiness of C and the remark in [B-S]p.99,1. 7-9, 
we may work in a domain where F is bounded, thus satisfying the assumption of [B-SJ 
Proposition 2.4.3. By Lemma 11, we have 

Because there are only a finite number of e<m/s, there is a constant B > 0 such that 

Therefore, there is a constant A > 0 such that 

for any choice of ( mk, jk), . . . , ( m 1 , j 1 ). Let us derive an estimate like the one in [B-S] 
p.94. We see easily that there is a constant M 0 such that the homogeneous part of degree 

(-I) of C<m.,j • ... C<mt.J1 is estimated by (k+m~~~~+mt)! M6+
1 1!. Then [BS] Proposition 

2.4.3 implies that there is constant C such that 

in w. Combining this with Proposition 8, we obtain 

sup i(G- 1 zi•a;n•) .. . (G- 1 zita;'')E0 (z) x (am.,j • ... am,,)t)EF(z')l 
zEK6 
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Set 
m m-1 

Sk(z,z') d~r(L L c- 1 am,j(z',D')~ ziB;:')kEo (z)F(z'). 
m=1 J:;;;O 

Since the summation above consists of m(m- 1)/2 ~ m2 terms, 

sup [Sk(z, z')[ ~ L L c (AC~(+I di(z')-"dJ(z')-{i 
zEI<, (m,, ... ,mt) (j,, .. . ,}l ) 

< CAC' d-"d-/3 2_(m2 AC' )k - o I J J.:l o · 

This proves that I;k Sk converges in {Imz > 0} x w locally uniformly. This completes 
the proof. 

Again according to [Kat 2], Ej, or rather its counterpart in (-variable, defines a 
2-pure solution. We denote it by (Ei J)(x) , x E JR.". All the other Ef 's are defined 
similarly. A special emphasis is laid on the fact that the principal part of E is Eo. 
There's no contribution of the perturbation terms in this respect . 

3-4 e nd o f the proofs 
In this subsection, we prove the remaining parts of Theorems A, B and C. The 

mappings L±, E± and B are defined and calculated in the same way as before. Because 
of the remark at the end of the preceding subsection . the principal part ( = the 0-th 
order part) remains the same as the unperturbed case. This preserves the ellipticity of 
the components of the above mappings. 

§4 p roo f o f t he case 1 is an op erator 
4-1 s u bst i t u t io n of op e rato r s into a co nvergent p ower series 

Propos it io n 16. Let S (w1 , w2 ) = I:j,k ~o a1k(w 1 - w1 )i( w2 - w2 )k be a convergent 
power series, and P = P (z, D ) E £cn(O) be a microdifferential operator of order~ 0 
defined in a neighborhood of p E T*IC". If cr0 (P )(p) = w1 , then 

S(P,w2)= L ajk(P- w1)i(w2-w2)kE £c•+•(O) 
j,k~O 

is a well-defined microdifferentiaJ operator. !vforeover we have 

PROOF. We use the formal norm No(·,t), which we denote by[[·[[ for brevity. We 
have 

D 

liS[[ «: L [ajk[[[P- WJ[[i[[w2- w2[[k < 00. 

j,k 
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Remark 17. The last expression in the above proposition justifies analytic continua­tion in the w2 -direction. 

Example 18. 

The hypergeometric function F(a , b;c;w) is a holomorphic function in {( c,w);c =J 
0,-1,-2, ... ,/w/ < 1}. We can define F(a , b;P(z,D);w) for P E £(0) ifO"o (P ) avoids 0, -1, -2, ... . 

Example 19. ( microdifferen tial connection formula) 

The classical connection formula for hypergeometric functions asserts that 

3 
F( 2, 1; c; w) 

c- 1 3 7 
=--F(- 1 --c-1-w) 
c-~ 2''2' 

r(c)r(~ - c) c-~ 3 3 
+ rm (1 - w) ' F( c - 2, c - 1; c -

2
; 1 - w) 

If O"o(P) 'f. ~;z, we can replace c by P( z, D). We obtain 

3 
F( 2, 1; P; w) 

p -1 3 7 
= --F(- 1 -- P·l - w) 
P- ~ 2''2' 

+ r(P)r(~- P )(l- w)P-~F(P - ~ P -l· P- ~-1- w) rm 2' , 2' 

In the example above, we encountered an operator of the form wP(z,D), which is 
defined by using Proposition 16. On the other hand, in [Tah] and [OJ, this kind of operator is defined by 

wP(z,D) = exp(P (z ,D)logw) 

""""' 1 I = ~If {P(z, D)logw) . 
1?_0 

Proposition 20. Our definition coincides with that of [Tahj and {OJ. 
PROOF. Let wP be defined by 

WP(z,D) = L ajk(P(z, D ) - wl)i ( w- w2)k 
j,k 

where W~
1 

= Lj,k aik (w1 - w1 )i (w2 - w2)k is a convergent power series (in the classi­cal sense). Set 

Wj = (wl- wJ) + wl, logw2 = L bm(w- w2)m, 
m;:::o 
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then 

L ~ [{ (wJ - WJ) + wJ} L bm(w- w2)m] I = w:f' 
I~ m 

Moreover we have 

N 0 (L ~(Plogw ) 1) 
1 ~0 

~ L ~ [{No( P - WJ) + No(wJ)} L lbmiNo(w- w2)m] I 
1 ~0 m~O 

< 00 . 

Therefore we may rearrange the order of the sum in the same way as in the classical 
case and obtain 

L ~(Plogw) 1 = L ajk(P - WJ)i(w- wd. 
1~0 j,k 

0 

Lemma 21. Let U be a conic open set of iT*IR~ and P(x, D ) be a 0-th order microd­
ifferentiaJ operator defined there. wP(x,D) is defined in {Rew > 0} x U. Then, for any 
microfunction f(x) in U, wP(x,D) f(x) is an element ofCOf( {Rew = 0} xU) . 

PROOF. Although tllis fact is well-known to specialists, there seems to be no published 
proof. Here we give a sketch of a proof based on the action of Bony-Schapira. vVe borrow 
some notat ion from them. We construct a defining funct ion which is holomorphic in 
{Rew > O}x (an infinitesimal wedge in IC~) . We may assume that U is a neighborhood 
of (0, idxn) and we choose Zn = iO" as the init ial surface of the action. Let F (z) be a 
defining function of f (x ). We have only to_ prove the convergence of 

p "'1 1 I (w )r;F = 0 /T (log w) (P(z, D)r;) F(z). 
1;,:o 

We may assume that F satisfies the assumption of [B-S] Proposition 2.4.3 without loss 
of generality by virtue of the flabbiness of the sheaf of microfunctions and the remark 
in (B-S] p.99 1.7-9. We have 

Then the convergence follows. Here the factor 1/1! is essential. 
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Example 22. 

Put ( = ( -/31 + /32)z + /31, for complex variables ( and x. Here /31 and /32 are 
purely imaginary and /31/i > /32/i. Let x' E !Rn-l be a real coordinate and f(x') be a 
microfunction. We see easily that F(3/2, 1; c(x', D'); z)f(x') belongs to CO'f C Cx' 0( . 

In fact, COf is an £-Module and we know that (1- z)c-%J(x') belongs to COf. 
4-2 end of the proofs 
We calculate in the same way as in the beggining of 2-1. Then G should be replaced 

by 

G(3/2, 1; c(x' , D' ); z, D )= z(1- z)D 2 + {c(x', D' )- (~ + 1 + 1)z }D- ~. 1. 

Here we have used the fact that 

"'t(x, D) = L ''!j(X 11
, D')( ~XI D1 D;; 1 + Xn- Xn)j 

. 2 
J 

= L /j(X 11
, D' )(tD, D;;1 + Xn- Xn)j 

is transformed under £ into 

Obviously we have 

G(3/2, 1; i; z, 8,)F(3/2, 1; i; z) = 0, etc. 

Therefore we may replace /, c in §2 by -y, c. L± and B (in the present context) are 
calculated easily. For example, we have 

B= ( f(c(x',D')) 1 +f(c(x', D' ))) 
1 - f(c(x',D')) f(c(x',D')) · 

To prove Theorem C', we have to prove the ellipticity of all the components. We have 

O'o(f(c(x',D'))) = f(O'o(c(x',D'))) 

O'o(c)(p') =c. 

Hence O'o(f(c(x',D')))(p') = f(c) f' 0. The other components are dealt with in the 
same way. Theorems A' and B ' are proved similarly. 
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PART 2 THIRD ORDER CASE 
§1 the statement of the theorems 
Let 

finite 

+ "' ( 2 I D') l+!Dl L o:_l xl,x' x1 l 

1=0 

be a microdifferential operator defined in a neighborhood of p E {(x, i~dx) E iT* M; x 1 = 
0,~,. > 0}, such that orda_1 ~ -1- 1 and that a_1 is a polynomial in t = ~xi and 
Xn · Here we write x = (x 1 , ... ,xn) = (x 1 ,x' ) E !Rn = M. The principal symbol of 
P , denoted by a(P)(x,() is factorized in the form a(P) = (~1 - x 1 ~n)6(~1 - x 1 ~n)· 
P is microhyperbolic and triply characteristic over the initial surface N = {x 1 = 0}. 
Char( P ), the (purely imaginary) characteristic variety, is the union of three hypersur­
faces ~ 1 = 0, ±x 1 ~n, which have a non-involutory intersection {x 1 = ~1 = 0} 3 p. Let 
bj be the bicharacteristic strip of {~ 1 = x 1 ~n}, {~ 1 = 0}, {~ 1 = -x 1 ~n} for j = 1, 2, 3 
respectively, issuing from p, and bj be its intersection with {(x;i~dx);±x 1 > 0}. We 
set, as in the second order case, 

An element of Sol (j, ±)is called aj-pure solution in ±x1 > 0. First we give the following 
three theorems, assuming 

m : ();_( = 0 for alii 

Set 

Z ={(a, b) E IC2
; a= 0, -1, -2,.. or 

b=0,-1,-2,. or a+b=3/2,5/2,7/2, ... }. 

Let p' = p(p), where pis the projection N x iT*M-> iT*N,N = {x 1 = 0} C M. 
M 

Theorem D. (boundary value problem with purity) 
If (a, b) rf. Z, the the map 

is an isomorphism. 

Remark . 

Sol(j, ±)-> CN,p' 

u >-+ D1 u(+O,x') 

There is an open dense subset of C2 \Z such that if (a, b) belongs to it , then the 
mappings 

are isomorphisms. 

Sol(j, ::!;) -> CN,p 

u >-+ u(+O,x') 

u >-+ Diu( +0, x') 
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Theorem E. (characterization of j-pure solutions by a relationship between their 
bounda1y values) 

If (a,b) rf_ Z, then there exist microdifferential operators P1±(o\x',D') and 

p±(Z) ( x', D' ) of half integer order that have the following property: an element of 
1 

(r 1±x, >o) C.(:1 )p is j -pure if and only if 

{ 

u(±O, x' ) = P1±(o)(:i:' , D' ){ Diu(±O, x')} 

D fu(±O,x') = Pr(z)(x', D' ){ Di u(±O, x')} 

Theorem F. (branching of singulm-ities) 
(1) There is an open dense subset ofC2 \Z such that if(a , b) belongs to i t, we have: 

Let u(x) be an element ofc,rt,p· If u is pure and u ;l 0 in ±x1 > 0, then b{ U bf U b'f 
is contained in suppu. 

(2) Assume that bE N = {1 , 2, 3, ... } and a+ b = 1/2,-1/2,-3/2,-5/2, . .. , then 
we have; 

(2- 1) If u is 1-pure and u ;l 0 in ±xi > 0, then u is 1-pure in 'fxi > 0. 
(2-2) If u is 2-pure and u ;l 0 in ±xi > 0, then b'f U bf C suppu and u = 0 on b'f. 
(2-3) If u is 3-pur e and u ;l 0 in ±xi > 0, then b'f U b'f C suppu and u = 0 on bf. 
(3) Assume that (a, b) EN x N, then we have; 
(3-1 ) If u is 1-pure and u ;l 0 in ±xi > 0, then b'f U bf C suppu and u = 0 on b'f. 
(3-2) If u is 2-pure and u ;l 0 in ±xi > 0, then u is 2-pure in ±x1 > 0. 
(3- 3) If u is 3-pure and u ;l 0 in ±x1 > 0, then bf U b'f C suppu and u = 0 on b'f. 
(4) Assume that a EN and a+ b = 1/2,- 1/ 2,-3/ 2,-5/2 .... , then we have; 
(4- 1) Ifu is 1-pure and u ;l 0 in ±x1 >.0, then b{ U b'f C suppu and u = 0 on bf. 
(4-2) If u is 2-pure and u ;l 0 in ±xi > 0, then bf U b'f C suppu and u = 0 on b'f. 
(4-3) If u is 3-pure and u ;l 0 in ±xi > 0, then u is 3-pure in ±xi > 0. 

Next, we remove the condition 0) and consider the case a_ 1 is not necessarily 0. We 
have the following three results. Set 

Theoren1 D'. 
There is an op en dense subset of C2 \Z such that if (a, b) belongs to it, then, the 

mappings 

are isomorphisms. 

Sol(j , ±)--> CN,p' 

u>--tu(+O,x') 

u ,.._. Di u(+O,x') 

u ,.._. Dfu( +0, x') 
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Theorem E'. There is an open dense subset of C2\Z such that if (a, b) belongs to it, 
then the same conclusion as Theorem E holds. 

Theorem F'. There is an open dense subset of C2 \Z such that if (a, b) belongs to it, 
then the same conclusion as Theorem F(l) holds. 

Remark. It is a generic condition that (a, b) belongs to an open dense subset. So in 
the following proofs, we sometimes say "for a generic (a, b)", or "generically" instead 
of mentioning an open dense subset. Those generic conditions will be the avoidance by 
(a, b) of the zeroes of holomorphic functions =ft 0. 

Finally we state some results about the case a and b are replaced by 0-th order 
microdifferential operators. Let the coordinate of p' be (:i:2,·· · ,in;i~'dx') and ii = 
ii( x', D') , b = b( x', D') be microdifferential operators of order ::; 0 defined near p' which 
are commutative: [ii, b] = 0. They have an expansion of the form 

1 
~(x',D') = 2:~0 aj(x",D')(xn- in)1 

b(x' , D') = 2:~0 bj(x",D')(xn- in)1 

x"=(x2, ... ,Xn-1) · 

Let a= a(x,D) and b = b(x,D) be defined by 

h(x,D)= ~bj(x" , D')(~x1D1D;;- 1 +xn-in)i 

They are operators of order :':: 0 defined in a neighborhood of p. Set 

a= <7o(ii)(p') = O"~(ao)(p') = <7o(a)(p) 

b = <7o(b)(p') = <7o(bo)(p') = <7o(h)(p). 

Let us consider the operator 

P(x , D ) = D: - xiD;D1 

+ 2DnDl {ii(x, D)- b(x, D)} 

+ x1 D;{2a(x,D) + 2h(x,D)- 3}. 

Purity and the related mappings are defined in the usual way. In this situation , we have 
the following theorems D", E" and F". 

Theorem D" . The same statement as Theorem D is true. 

Remark. The same statement as the Remark following Theorem D is true. We can 
take the same open dense subset. 
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Theorem E" o The same statement as Theorem E is true. 

Theorem F" o The same statement as Theorem F (1) is true. (We may take the same 
open dense subset. ) 

§2 Jordan-Pochhammer operator and Euler integral representation 
Let us consider the following ordinary differential equation of Fuchs type. 

J[y] =(x- Pl)(x- P2)(x- P3)Y 111 

- {(>q- 3)(x- P2)(x- P3) + (>.2- 3)(x- P3)(x- PI) 

+ (.\3 - 3)(x- pl)(x- P2)}y" 

- 2{(.\2 + .\3- 3)(x- PI)+ (.\3 + .\1 - 3)(x- P2) 

- 2(.\1 + .\2 + .\3- 3)y = 0 

We refer to this equation as ( JP). 
Later, we will set 

+(.XI+ .\2- 3)(x- P3)}y' 

3 
.\1 =a, .\2 = 2- (a+ b), .\3 = b 

PI = i, P2 = 0, P3 = -i 

Lemma 1. If Aj =f 0, -1, -2, -3, ... , (for j = 1, 2, 3), .\ 1 + .\2 + .\3 - 4 =/1, 2, 3, ... , 
then 

Yi(x) = ('"(u- pJ).I'- 1(u- P2).1'- 1(u- P3).13 -
1(u- x)- 1 du 

}Pi 
is a solution to (JP). Here the integral is taken in the sense of finite part, if necessary. 

PROOF. Although several textbooks (e.g. (Huk], (IKSY]) treat Jordan-Pochhammer 
equations, ours does not belong to the class solved in them. Therefore, we give an 
independent proof. See (M] and (I] . Since the finite part is holomorphic in .\ 1 , .\ 2 , .\3 , 

we may assume that Re.Xj > O(j = 1,2,3) and that Re(.\ 1 + .\2 + .\3)- 4 < 0 without 
loss of generality. We set y = Yi( x) in the left hand side of ( JP) and write it in terms 
of powers of u- x by using x = u- (u- x). We have 

(x- Pl)(x- P2)(x- P3) 

= {(u- PI)- (u- x)){(u- P2)- (u- x)){(u- P3)- (u- x)} 

= (u- Pl)(u- P2)(u- P3) 

- {(u- Pl)(u- P2) + (u- P2)(u- P3) + (u- P3)(u- P2)}(u- x) 

+ (3u- PI- P2- PJ)(u- x)2 - (u- x)3 

(.XI - 3)(x- P2)(x- P3) + · · · 

=(.XI - 3){(u- P2)- (u- x)}{(u- P3)- (u- x)} + . . 

=(.XI- 3)(u- P2)(u- P3) + (.\2- 3)(u- PJ)(u- PI)+ (.\3- 3)(u- Pl)(u- P2) 

-{(.XI- 3)(2u- P2- P3) + (.\2- 3)(2u- P3- PI)+ (.\3- 3)(2u- PI- P2)}(u- x) 

+(.XI+ .\2 + .\3- 9)(u- x) 2 
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(A2+AJ-3)(x-pt)+ ... 

= (A2 + AJ- 3){(u- Pt)- (u- x)} + .. 

= {(A2 + AJ- 3)(u- Pt) + (A3 +At- 3)(u- P2) +(At+ A2- 3)(u- PJ)} 

- (2A t + 2A2 + 2AJ- 9)(u- x) 

Moreover 

D;yj(x) = n! { oo(u- Pt)>.,-t(u- P2)"'- 1(u- PJ)>., -t (u- x)-t-ndu. 
}Pi 

From the equalit ies above, we have 

J [yj] = i~(u- Pt)"'-t(u- P2)>.,- t(u- PJ)>.,-t(u- x)- 4 

x {co+ Ct(u- x) + c2(u- x)2 + c3(u- x) 3 }du 

where 

co= 6(u- Pt )(u- P2)(u- PJ) 

Ct = -6 {(u- pt)( u - P2) + . . . } - 2{(At- 3)(u- pz)(u- PJ) + . . . } 

= -2{AI (u- P2)(u- PJ) + A2(u- PJ)(u- Pt) + A3(u- Pt )(u- P2)} 

c2 = 6(3u- Pt - P2 - PJ) 

+ 2{(A t - 3)(2u- P2- PJ) + (A2- 3)(2u- PJ- Pt) + (AJ- 3)(2u- Pt- P2)} 

- 2{ (),2 + AJ- 3)(u- Pt ) + (AJ +A t - 3)(u- P2) +(At+ A2- 3)(u- PJ) } 
= 0 

CJ = - 6- 2(At + A2 + AJ - 9) 

+ 2(2At + 2A2 + 2A3 - 9) 

- 2(A1 + A2 + AJ - 3) 

= 0 
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Therefore, 

J[yj] 

= {
00

(u- Pl)>"-1(u- P2)"''- 1(u- PJ)>-a- 1(u- x)- 4 

}Pi 
x [6(u- pJ)(u- P2)(u- PJ) 

- 2{AI(u- P2)(u- PJ) + .A2(u- PJ)(u- pi)+ A3(u- Pl)(u- P2)}(u- x)]du 

- 2{AI(u- P2)(u- PJ) + ... }(u- Pl)>.'- 1(u- P2)>.'- 1(u- P3)>.3 - 1(u- x)-3Jdu 

= [-2(u- pi)>-' (u- P2)>.'(u- p3)>.3 (u- x)-3 ]~ 

+ 2 {oo ~ {(u- p1 )>.'(u- P2)>.'(u- PJ)>.'}(u- x)-3du 
}Pi uu 

- 2 l oo P1 ( u- P2)(u- P3) + .. . }(u- PI )>.,-I (u- P2)>.'- 1(u- P3)>.3 - 1 (u- x )-3du 

=0 

Here we have used integration by parts. 0 

If .A 1 + A2 + .A 3 = ~'it is easy to see that the fuemann scheme of (JP) is 

P2 PJ 
0 0 

and that oo is a non-logarithmic singularity. Moreover, if Aj !f. Z, then Pi is non­
logarithmic. 

Lemma 2 . An entire solution to (JP) vanishes identically. 

PROOF. The characterist ic exponents at oo are larger than 1. Use Liouville's theo­
rem. 0 

Hereafter, we consider the case 

3 
.A 1 =a, .A2 = --(a+ b), A3 = b 

2 

PI = i, P2 = 0, P3 = -i 
3 5 7 (a, b) !f. Z d=:'r {(a, b) E IC2; a= 0, -1, -2, . . ·.orb= 0, -1, -2, .. . or a+ b = 2, 2, 

2
, ... 

Then, our operator is 

Q(x,D) 

= (x
3 + x)D3 + { 

1

2

5 
x

2
- i(a- b)x +a+ b + ~ }D2 + {12x- 2i(a- b)}D + 3 
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Proposition 3. Take the path of integration from Pi to oo in Reu :::; 0. Then Yi is 
holomorphic in Rex > 0. Moreover, it is holomorphically extended to x = ak (k # j), 
but not to aj. 

PROOF. Yi is obviously holomorphic in the right half plane and at x = ak . If it is 
holomorphic at aj, then it is entire. The preceding lemma implies that it vanishes 
identically. But this is not the case as will be seen when we calculate the expansion 
coefficients of y j at x = oo. 0 

Let us calculate the expansion coefficients of Yi (j = 1, 2, 3) at x = oo, Rex > 0. 
We will need the coefficients of x- 1 , x-~, x- 2 in the next sect ion. For convenience, set 
r = ijx . Obviously, 

Rex> 0, x = oo 
7r 7r 

(-2<argx<2){o}Imr>O,r=0 (0<argr<7r). 

7 3/2 = eJ~if4x-3/2, 7 2 = _1/x2 

We consider the expansion coefficients at 

r = 0, Imr > 0. 

In the following three propositions, we give the coefficients of r, r ~, r 2 . 

Let C be the path in the figure below. Here thew-plane has a cut in { w; w 2': 1 or w :::; 

-1} . c 

1+i0 
Re w 

0 -1 
1-iO 

In the following three propositions, the integrands are continuous on C and 

0:::; argw:::; 2rr, -rr:::; arg(1 + w):::; rr, -rr:::; arg(1- w):::; 1r. 

Proposition 4. 

Figure 2 

There exists a nonzero constant C1 such that V1 ( x) = C1 y 1 ( x) has expansion coein­
def 

cients 

p = _2_, r (1 - w)a-IW-I/2(1 + w)b-Idw 
def 2rrl fc 

1 

q = _2_, r (1-w)•_-Iw-Jf2(1+w)b-Jdw 
def 2rrl fc 

Remark that p and q are holomorphic in {(a, b); a# 0, -1, -2, ... } 
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Proposition 5. 
There exists a nonzero constant C2 such that V2 (x) = C2 y2 (x) has expansion coefli­

del 
cients 

7' = _2._ { w-t(l- w)-(a+b)+~(l- 2w)b- 1dw 
del 27r Jc 

1 

- -1 1 -~(1 )-(a+b)+~(1 2 )b-Id s-- w 2 -w 2 - w w 
del 27r C 

Remark that 7' and s are holomorphic in { (a, b); a + b f. 3/2, 5/2, 7/2, ... } 

Proposit ion 6. 
There exists a nonzero constant C3 such that V3 (x) = C3 y3 (x) has expansion coefli­

del 
cients 

t = _2._ { (1 + w )"- 1w- 112(1- w )b- 1 dw 
del 27r Jc 

1 

u = _ _2._ j (1 + w)•-lw- 312(1- w)b- 1 dw 
del 27r C · 

Remark that t and u are holomorphic in {(a, b); b f. 0, -1, -2, . . . } 

PROOF OF PROPOSITION 4. 

y1(x) = j 00

(u- i)"- 1 u~-(a+b)(u + i)b- 1(u- x)- 1 du. 

Put u = i/w, x = i/r. Then 

z 
du =- w 2 dw . 

The path of integration was taken in Reu :S 0, which corresponds to Imw :S 0. We have 

-1 

Y!(x) 

_ t t ( 1 1)a-1 a+b-l( 1 + 1)b-1( 1 1 )-l dw 
- cons Jo ; - w 2 ; -:;;; - -;. w 2 

= const x T 11 

wt(1 - w)"-1 (1 + w)b-J(r- w)-1 dw 

• -r ( Im -r>O) 

Rew 

Figure 3 
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In the last expression, the path is the left one in the following figure. Here remark that 
r is outside the path. 

• 1: 

-1 l+iO 
Re w 

1-iO 

-1 0 

0 
c 

1+i0 
Re w 

1-iO 
Figure 4 

The left path is homologous to the right one. The integration around r is calculated 
by means of Cauchy's formula. (Take care of the orientation.) 

YI(x) = r[- 27rir1 /2(1- r)"-1(1 + r)b-1 
canst 

+ L w112(1- w)"-1(1 + w)6- 1(r- w)- 1 dw]. 

Let us calculate 

by deforming C. If frl ~ 1, then on the path of integration, 

Hence 

I = I (r,a) =-L w- 1
/

2(1- w)"- 1 (1 + w/-1 ~ (;r dw. 

We can change the order of the integration and the infinite sum at least if Rea > 0. 
The proposition follows in this case. 

On the other hand, I = I( r, a) is holomorphic in r and a # 0, -1, -2, . .. . Here we 
take finite part at w = 1. Taylor coefficients with respect to r is calculated by 

f ~I(r,a)dr. rm 

This is holomorphic in a# 0, - 1, -2, . . .. Therefore the proposition is proved for a# 
0, -1, -2, . . . by analytic continuation with respect to a. 0 
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PROOF OF PROPOSITION 5. 

Set x = i/r as before. Moreover, set u = i- w first, and then w = ifw. The paths of 
integration is in Rew 2': 0 and Imw 2': 0 respectively. We have 

( ) -1=( -)a-1(· -)-(a+b)+l(2 . -)b-1(· -)-1( d-) Y2 x - -w z - w 2 z - w z - x - w - w 
i 

l l +I 1 ( b) I 1 b l 1 - T 1 l dw = const w-a (1- -)-a+ +2(2- -)- (-- + -)- -
0 w w r w w 2 

= const-T- ( w!(l- w)-(a+b)+t(1- 2w) 6- 1(w + _r_)-1 

1- T lo 1- T 

Set B = l.::r, lrl ~ 1, Imr > 0 and defmm the path of integration as below. Here -C 
is the path obtained by reversing the orientation of C. 

Ql+iO c ~ ~ Re w +-------..... -~ Re w 
' :'1-iO 

We have 
Figure 5 G ---<----

• -8 

y2 (x) = B[21ri( -B)t(1 + B)-(a+bl+t(l + 2B)6- 1 

const 

-c 

-fc w!(l- w)-(aH)+t(l- 2w) 6- 1(w + B)- 1dw] 

( 1r < arg( -B) < 27r ). 

Here (-B) t = iBt, 0 < arg B < 1r. We expand the right hand side in powers of B. Then 
the coefficients of B, B ~ , B2 are 

-fc w-t(l- w)-(aH)+t(l- 2w) 6- 1dw = : ! 1 

27r 

fc w-~(1- w)-(a+b)+t(l- 2w)6- 1dw =: h 
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Since B = l.::T = T + r 2 + r 3 + ... ' et = rt(l + ~T + ... ), the coefficients ofT, T~ are 
I 1 , -271'. On the other hand, because 

I1 B + IzB 2 
= I 1 ( r + r 2 + r 3 + ... ) + I 2 ( r 2 + 2r 3 + .. . ), 

the coefficient of r 2 is 

I1 + Iz = fc(-w+1)w-~(1-w)-(a+b)+!(l-2w)b-ldw 

= fc w-~(1- w)-(a+b)+~(l- 2w)b- 1 dw. 

0 

PROOF OF PROPOSITION 6. 

YJ(x) = l~(u- i)"- 1ut-(a+b)(u + i)b- 1(u- x)- 1du. 

Set x = i/r as usual. In addition, we perform a change of variables u = -i/w. Then 
the path of integration would be in Imw ~ 0. We have 

YJ(x) = const j o ( 2_ + 1)"-Iw{a+b)-!( 2.- 1)b-I( 2. + _!:.)-I dw 
1 w w w r w2 

= const X r 11 

wt(l- w)b-!(1 + w)"- 1(w + r)- 1dw . 

We deform the path in the following way. 

-1 -1 0 1+i0 Oo 1+i0 
--~----_. _____________ ._~>~ Re w 

\ J 1- iO 
--~-,~-.----~._~ Re w 

Then we have 
Figure 6 

YJ(x) = r (27ri( -r)t(1 + r)b-!(1- r)•-l 
const 

1-iO 

-c 

- fc wt(1 - w)b-1 (1 + w)"-1(w + r)- 1 dw] 

We expand it into a power series in r. Since ( -r)t = irt, the coefficient of r~ is -271'. 
Next, by using 

(w+r)-J =w-' f (-;f, 
n=O 
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- ------------------------------------
we see that the coefficient of r is 

-L w-1(1- w)b- 1(1 + w)"- 1dw 

and that the coefficient of r 2 is 

L w-~(1- w)b- 1 (1 + w)"-1 dw 

0 
In the following section, we use the complex variable ( = x . ( is to be the dual 

variable of t. 

§3 proof of the unpe rt urbe d case 
Let us consider 

Set t = txf and apply the quantized Legendre transform £. Since 

we have 

1 3 3 1 - 8x 1D 1 = - 8x1D1(x1Dl- 1)(x 1D1 - 2) 
1 . 

= -8. 2tD,(2tD,- 1)(2tD,- 2) 

1 = -tD,(tD,- :z)(tD, -1) 

3 
>--> ((D( + 1)((D( + :z)((D( + 2) 

3 3 15 2 2 = ( D( + "2( D( + 12(D( + 3 

1 5 2 1 2 21 2 
Sxi D nD I = (:z:z: 1D n) 2x1D1 = (tDn) tD , 

>--> -D~( -1)((D( + 1) = D~((D( + 1) 

=(D~+3D~ 

1 3 1 2 1 
-4(a- b)x1D nDI =-(a - b) · :zx1D n · 2x1 D 1 

=-(a- b)tDn · tD , 

>-->-(a- b)( -iDd( - 1)((D ( + 1) 

= -i(a- b)D((( D( + 1) 

= -i(a- b)((D~ + 2Dd 
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-

13 2 1 }12 2 -Sx1 {2(a +b)- 3}x1Dn = -:z{2(a +b)- 3 (:zx 1Dn) 

1 = --{2(a +b)- 3}(tDn)2 

2 

>--+ -~{2(a +b)- 3}( -iDd 

1 
= :z{2(a +b)- 3}D~ 

Summing up, we obtain from - kx? P 

Q(a,b,(,Dd = (( 3 +()D~+{~(2 -i(a-b)(+a+b+~}D~ 
def 2 2 

+ {12(- 2i(a- b)}D, + 3. 

We encountered this operator in the previous sect ion. Vj( () is a solution to it. 
In the same way as in the second order case, we can construct Ef from Vj( (). £± 

and Bare defined accordingly. Let the expansion of Vj(() (j= 1,2,3) at ( = oo, Re( > 0 
be 

Then, the matrix V, defined by 

is 

£± is expressed by 

Moreover, we have 

n=O 

V2,-1 

v2 -~ 
v2·, -~ 

0 
exp(~11'i) 

0 
~ ) (f r ~ ) . 

- 1 q s u 

0 
±2y'i; (If-)~ 

0 
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--

where 

dl = I r t I, d2 = I p r I, d3 = I t pI· s u q s u q 

This is checked easily by using the observation that 

Proposition 7. 
d1, d2 and d3 are holomorphic functions in 

2 } { } 357 IC\Z={a-i'0,-1,-2, ... n b-i'0,-1,-2, ... n{a+b'l-,;;,-
2

, . .. }. 
2 -

Moreover, they don't vanish identically. (Hence generically d1, d2, d3 'I 0.) 

PROOF. They are obviously holomorphic in IC2 \Z. The latter part of the proposition 
follows from Propositions 10, 14 and 15 below. 0 

Proposition 8. 
±d1 ± d2 ± d3 do esn 't vanish identically. 

PROOF. This proposition follows immediately from Proposition 10 below. 0 

Remark 9. 

d1 + d2 + d3 = -If ~ ~ 1 
q s u 

never vanishes, because the components of the matrix are expansion coefficients of three 
linearly independent solutions. 

Proposition 10. 
If(a,b) EN x N, N = {1,2,3, ... }, then,. 

d3 = dl + d2 + d3 'I 0.) 

PROOF. Let h be 1/2 or 3/2. Then 

0. (Hence d1 0 and 

-~ 1 w-h(l- w)-(a+b)+h(1- 2w)b- 1dw = t w-h(l- w)-(a+b)+h(l- 2w)b- 1 dw. 
2 c Jo 

Since (1- 2w )b-l is a polynomial of degree b- 1, it suffices to prove 

11 

wc-h(1- w )-(a+b)+hdw = 0 for c = 0, 1, 2, .. . , b- 1. 

The left hand side is equal to 

( -h _ -b h )_r(c-h+1)f(-a-b+h+1) 
B c + 1, a + + 1 - f( b 2) . -a- + c+ 

Here the numerator is finite. The denominator is infinite because -a - b + c + 2 is a 
nonpositive integer. 0 
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Propos ition 11. 
Under the condition of the proposition above, we have 

Proposition 12. 
If bEN and a+ b = t, -t, -~, -~, ... , then p = q = 0. 

PROOF. Let h be 1/2 or 3/2. Since (1 +w )b-J is a polynomial of degree b-1, it suffices 
to prove 

11

(1-w)•-lw-hwcdw=O for c=0,1,2, ... , b-l. 

The left hand side is equal to 

B( -h 1 )- f(c-h+1)f(a) 
c + ,a - ) . 

f(a+c-h+1 

Here a + c - h + 1 is an integer such that 

1 1 
a+ c- h + 1 :S: ( 2 - b)+ (b - 1)- h + 1 = 2 - h :S: 0 

0 

Proposition 13. 
If a EN and a+b = !,-t,-~,-~ , ... , then t = u = 0. 

PROOF. As functions of (a, b), p, q, t, u satisfies 

p(b,a) = t(a,b) , q(b,a) = -u(a,b). 

0 

Proposition 14. 
Under the condition of Proposition 12, we have d2 = d3 = 0. Hence d1 = d1 +d2 +d3 of 

0 and 

Proposition 15. 
Under the condition of Proposition 13, we have d1 = d3 = 0. Hence d2 = d1 +dz +d3 of 

0 and 
0 

~)-(~ ~ ~)· 
dz -2 -2 -1 
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PROOF OF THEOREM F. 
(1) follows from Proposition 7. (2) (3) .and ( 4) follow from Propositions 14, 11 and 

15 respectively. 0 

PROOF OF THEOREM D. 
Recall that 

0 
±2J2;(¥)t 

0 

0 ) (i 
27r~ ~ 

' 

~ ) (f r ~) 
-1 q s u 

We have the following commutative diagram: 

(r{±x,>o}C~)p = EB};1Sol(j,±) 

b.v.ll 
3 

EBCN,p' 

where E± = EB}; 1 Ef and the first vertical arrow is 

u(x) >--+ (u(±O,x'),D1.u(±O,x'),Di u(±O,x' )). 

By E± we identify Sol (j, ±) with CN,p' EB 0 EB 0 , 0 EB CN,p' EB 0 , 0 EB 0 EB CN,p' (j=1, 2, 
3). So, in order to prove Theorem D, we have only to prove that the following maps 
E End(CN,p') induced by L± are automorphisms. 

j = 1 J >--+ the second component of L± (f) 
j = 2 J >--+ the second component of L± ( 1) 

j = 3 f >--+ the second component of L± ( ~) . 

For all j, these maps coincide with 

f >--+ ±2~ ( ~n) t · exp(~1ri) · 1. 

They are obviously isomorphisms. The key is that 1 is an elliptic operator. 0 

PROOF OF THE REMARK AFTER THEOREM D. 
We follow nearly the same argument as above. The main difference is that we need 

the non-vanishing of p, 1· and tin the Dirichlet case, and that of q, s and u in the case 
of Diu(±O, x') for a generic (a, b). They follow from the lemma below. 
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Lemma 16. 
p, q, r, s, t and u are holomorphic functions in (a, b) E C2 \ Z which don't vanish iden­

tically. 

PROOF. 
p, q, t, u =J 0 at (a, b)= (1, 1) . ,., s =J 0 if b = 1 and a is a half-integer. (Use formulas 

about the Beta and the Gamma functions ). 0 

PROOF OF THEOREM E. 
Use the same identification as in the proof of Theorem D. 0 

§4 proof of the perturbed case 
4-1 the method of the variation of parameters 
Let us consider 

Q(x, D )= (x 3 + x)D 3 + { 1~ x2
- i(a- b)x +a+ b + ~ }D 2 + {12x- 2i(a- b)}D + 3, 

1 
a, b rf. Z and a + b rf. 2 + Z. 

Its Riemann scheme is 

0 _, 

0 0 
1 

~-(a+b) b-1 

and all the singularities are non-logarithmic. Let p = i, 0, -i and <p 1 , <p2 and <p 3 be 
solutions in a neighborhood of p. We assume that <p 1 and <p2 are of exponent 0, 1 and 
that tp 3 is of exponent a- 1, t- (a+ b), b- 1 if p = i, 0, -i respectively. Set 

By using t he classical method of the variation of parameters, we see easily that for any 
v(x), holomorphic near p, 

1• W23(y) ( ) 
Ip (v) = tp 1(x) ( 3 )W( )v y dy 

def p y + y y 

(' W31(y) 
+ 'P2(x) }P (y3 + y)W(y) v(y)dy 

( r W12( y) ( ) 
+ <p3 x) }P (y 3 + y)W(y) v y dy 

is a holomorphic function near p such that 

Q[Ip (v)(x)] = v(x). 
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Moreover, we see that 

Iv(v)(p) = {Ip(v)}'(p) = 0, 

that is, Ip(v) is of exponent E 2 + N0 , N0 = {0, 1,2, .. . }. 

4-2 a right inve r se o f Q in a do m a in containing two r egular s ing ula r p o ints 
Let i1 be a domain c Cx as in the figure below. 

1 0 - 1 
• 

Figure 7 

Obviously Q defines a linear mapping 

Q : O(D) --> 0(11) . 

We want to construct a right inverse of this. Let v(x) be an element of 0(11). Although 
I;v is holomorphic near i, there's no guarantee that it should be holomorphic near 0. 
We have a similar trouble with Iov. In order to overcome this difficulty, we use the 
following trick . 

Let 
1 . n, = {x En; Imx > -} 3 I, 

de[ 3 
2 

Do={xED; Imx<-}30. 
def 3 

Obviously, these two domains constitute a-covering of nand 

where O Q is t he kernel sheaf of Q E Endc(O). 
If {F1 , F2, F3} is a fundamental system of solutions to Q in it; n 110, then there exists 

a unique triple of constants (a,/3,/) E IC3 such that 

Then obviously 

Therefore 

(*) 

(I;v- Iov )' = aF{ + (JF~ + 1F~ 

(I;v- Iov)" = aF{' + (JF~' + 1F~ ' . 
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Since the right hand side of(*) become constants, it can be evaluated and estimated at 
any x. This observation will be useful later. We define functionals 

a, (3, 1 : 0(!1) --> IC 

V>-+CY.,(J,/ 

by means of(*). They mean obstructions. We have to kill them. 

Lemma 17. 
For a generic (a, b), 

is invertible. 

(

a(Q[l]) a(Q[x]) a(Q[x 2]) ) 
M = (J(Q[l]) (J(Q[x]) (J(Q[x2]) 

clef I(Q[l]) I(Q[x]) I(Q[x2]) 

PROOF. We prove that M'(>., fJ-, v) = 0 implies '(>., fJ-, v) = 0. the assumption is that 

This means that I ;(Q[>. + fJ-X + vx 2
]) and I0 (Q[>. + fJ-X + vx 2 ]) are patched together and 

define 1/.>( x) E 0( !1). We have Q..P = Q[ >. + fJ-X + vx 2 ). By the way, we proved before that 
OQ(!1) is a one-dimensional space generated by y3 (x). So there is a constant c such 
that 

Later we' ll prove that c is generically 0. Once we have obtained this, it is clear that 

). + fJ-X + vx 2 E Image!; n lmagelo. 

Therefore it has a zero of order 2: 2 at x = i, 0. Such a polynomial of degree::; 2 must 
vanish identically. Hence ). = 11- = v = 0. . 

Now what remains to prove that cis 0 for a generic (a, b). First we prove that if 

(#) 

then c = 0. In fact, if c f. 0, 

-J\__:_+_c_J.L_X ...:.._+_vx_·
2 

( ) ( 1·'·( )) + Y3 X =-'!'X 
c c 

has a zero of order 2: 2 at x = i, 0. Set >.' = ->.jc, J.L 1 = -J.L/c, v' = -vjc. Then 

>.' = YJ(O) 

J.L ' = y;(o) 

>.' +iJ.L1
- v' = YJ(i) 

J.L 1 + 2iv' = y;(i) 
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From these we obtain 

which constradicts ( # ). 
Finally, we prove that ( #) holds for a generic (a, b). Since the left hand side of ( #) 

is holomorphic in (a, b), we have only to prove that it is different from 0 for some (a, b). 
Recall that 

Hence , ( ) j ""c ·)a-1 -(a+b)+l( + ·)b-1( )-zd Y3 X = u - z u 2 u z u - X u. 
-i 

Let us prove that if (a, b) = (3, -~ ), we have 

YJ(O) = YJ(i) = y;(i ) = 0, y;(o) "# 0. 

Set 

Then at (a, b)= (3,-~) 

1 
y3(0) = B3(a- 1, -(a+ b)- "2) = B3(2, 0) 

y;(o) = B3(a -1, -(a +b)-~)= B3 (2, -1) 
2 

y3 (i) = B 3 (a - 2, -(a +b)+~)= B3 (1, 1) 
2 

y;(i) = B3(a- 3, -(a+ b)+~)= B3(0, 1) 
2 

By using a change of variables u = -i/w, we have 

t(w+ 1)P (1-w)b-
1

dw B3 (p , q) = const Jo -----;;-- w-q -tv- wZ 

= const t (1 + w)Pw-p-q-b-1(1- w)b-1dw 
Jo · 

Hence at (a, b)= (3, - ~), 

y 3 (0) = const 11 

(1 + w)2wt(1- w )-t dw = 0. 

y;(o) = const 11 

(1 + w)2w~(l- w)-! dw "# 0. 

y3(i) = const 11 

(1 +w)wl(l- w)-!dw = 0. 

y;(i) = const 11 

w~(l- w)-%dw = 0. 
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This concludes the proof of the lemma. [J 

We can define functionals A, f.l., v: 0(!1) --+ C by 

It is easy to check that 

Here the left hand side means 

Now set 

Then (Q) implies that 

We can define 

(

a(Q[.X(v) + f.J.(v)x + v(v)x 2
]) ) 

v ~ ,8(Q[.X(v)+f.1.(v)x+v(v)x 2
]) . 

"Y(Q[.X(v) + f.J.(v)x + v(v)x 2
]) 

1r(v) = v- Q[.X(v) + f.J.(v)x + v(v)x 2
] 

= v- .X(v)Q[l]- f.J.(v) Q[x]- v(v)Q[x 2
]. 

l ;1r(v)- l 01r(v) = 0. 

I -- { l; 1r(v) 
,,o - l o1r(v) 

onl1; 

on l1o. 

i ;,o : 0 (!1) --+ 0 (!1) is a well-defined linear mapping. Next we define l ;,o : 0 (!1) --+ 0 (!1) 
by 

l ;,o = l ,o(v) + .X(v) + f.J.(v)x + v(v)x 2 

Lemma 18. 
QI ;,o(v ) = v. That is, 1;,0 is a right inverse ofQ. 

PROOF. We have 

Ql ;,o(v) = 1r(v) + Q[.X(v) + f.l. (v)x + v(v)x 2
] 

=v 

0 

4-3 an es timate on the right inverse 1; ,0 
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First, let us obtain an estimate on cr, (3 and -y. Fix compact subsets 1(; 3 i, 1(0 3 0 
of n such that int(K; n K 0 ) # ¢>. Choose an arbitrary point :i: in int (K ; n K 0 ). Then 

(

cr(v) ) 1 · ( (I;v- Iov)(:i:) ) 
(J(v) = w(') (I;v - 10 v)'(:i:). 
1(v) F x (I;v- Iov)"(:i:) 

By the way, as in the second order case, we can prove that there exists a constant C > 0 
such that 

supl l ;vl ~ Csuplvl, supllovl ~ Csup lvl. 
~ ~ ~ ~ 

Hence, for a larger C, we have 

lcr(v)l, lf3(v)l, h(v)l ~ C sup lvl. 
K;UKo 

Therefore, again for a larger C, we have 

I.A(v)l, lp(v)l, lv(v)l ~ C sup lvl. 
K;UK 0 

Set 1{6 = {x E Sl;dist(x, 8l1) 2': 8}(0 < 8 ~ 1). Then there exists a constant C' 
independent of 8 such that 

suplrr(v)l ~ C'suplvl. 
!(6 /(6 

Finally let us obtain an estimate on 1;, 0 . Set 

We derive an estimate on I<~p) (p = 0, i) from the expression 

l ;,o = l prr(v) + .A(v) + p(v)x + v(v)x 2 

(p = 0, i) 

There exist constants .A, Co > 0, independent of 8, such that 

supll;,o(v)l ~ Cn8-,\suplvl. 
K, K6 

(.J. is determined by the characteristic exponents at x = -i, hence by b). This has the 
same form as the est imate on G- 1 in the second order case. 

8-4 the end of the proof 
Let us construct Ei. Let us consider 

P(x, D )= D~ - x~D~Dl+ 2(a- b)DnD1 + {2(a +b)- 3} x lD~ + P' (x, D ) 
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finite 

P'(x,D) = L a_ 1 (x~,x',D ' )x~+ 1 D~. 
/;Q 

Set t = txi and apply the quantized Legendre transform .C. From x~ P, we obtain 
Q + Q', where 

Q=Q((,D<) 

= ((3 + ()D~ + { 1
2
5 

( 2
- i(a- b)(+ a +b + ~}D~ + {12(- 2i(a- b)}D, + 3 

finite m-2 

Q' = Q'((,x',D,,D') = L L am,j(x',D')(iD( 
m=2 j=O 

ordam ,j::; -m- 1 

Here we have used Part 1 Lemma 4. 
With 1; ,0 instead of c-1

, we can calculate in the same way as in the second order 
case. (We don't change ( by another complex variable). 

The other Ef 's are constructed similarly. 
§5 proof of the case a and b are replaced by operators 
In this case, when we perform the process as in the begining of §3, we obtain the 

operator 

((
3 + ()D~ + { 15 

( 2
- ia(x', D' )( + ib(x', D' )( + a(x', D' ) + b(x', D' ) + ~}D~ 

2 2 
+ {12(- 2ia(x',D') + 2ib(x',D')}D< + 3 

which we denote by Q (a(x',D'),b(x', D' ),(, D,). Recall that we have 

Q( a, b, (, 8<) Vj( a, b, () = 0. 

Here we write Vj( a, b, () instead of Vj( () to specify a, b. Remark that Vj is holomorphic 
not only in (but also in (a, b). So we can substitute the commutative pair of operators 
(ii(x',D'),b(x',D')) into (a, b) and obtain Vj(ii(x',D'),b(x',D'),() E £ (0) . Obviously, 
for all f( x' ) E CN,p', we have 

Q(a ,b,(,B<)[Vi(a(x' ,D'),b(x',D'),Of(x')] = 0. 

We can easily construct Ef, L± and Bin this context. For example, we have 

0 

±2~(~)t 
0 

0 ) (i . 0 0 
2.,.Q,.. o 

' 
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where 

(

jj(x',D') 
X 1 

ij(x',D') 

,~(x', D') 
1 

s(x',D') 

i(x', D')) 
1 , 

u(x',D') 

jj(x', D') = p(a(x', D'), b(x', D')) 

etc. It is obvious that 

ao(z3(x' , D' )) = p(a0 (a(x', D')), a0(b(x', D'))), etc . 

This observation is used to prove the ellipticity of the components of L± and B. The 
remaining part of the proof of Theorems D", E" and F" is easy. 
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