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Abstract 

Extraction of knickpoints or knickzones from a Digital Elevation Model (DEM) has gained 

immense significance owing to the increasing implications of knickzones on landform 

development. However, existing methods for knickzone extraction tend to be subjective or 

require time-intensive data processing. This study uses a newly proposed Knickzone Extraction 

Tool (KET) and the Semi-Automatic Knickzone Extraction (SAKE) method for the extraction 

of knickzones. KET, deployed in the form of an ArcGIS toolset, automates the process of 

knickzone extraction and is both fast and more user-friendly. A comparative analysis of KET, 

SAKE and other contemporary knickzone identification techniques was also conducted. The 

results from 10-m and 50-m grid DEMs of two geologically different case study areas 

(mountainous watersheds of the northern Japanese Alps in Gifu and and the Kii Peninsula, 

respectively) were examined to determine the influence of grid resolution and scale on the 

extraction of knickzones. In addition, the geologically different study areas determine the 

transferability of the KET in the extraction of prominent knickzones. Finally, through the results 

of case studies of the mountainous watersheds in central Japan, the relationship between 

knickzone distribution and its morphometric characteristics are also examined. 

Three contemporary tools, the Stream Profiler Tool (SPT), the GIS Knickfinder (GKF) tool and 

the SAKE method were used to identify or extract knickzones from a 10-m DEM (SAKE10) of 

a mountainous watershed in Gifu, resulting in 113, 16 and 141 knickzones, respectively. KET, 

a new tool was conceptualized and applied to the same study area that identified 189 knickzones 

using the threshold value 1.42×10-5 m-1 (KET1) from Hayakawa and Oguchi (2006, 2009). 

Another threshold value of 1.92×10-4 m-1 using the mean and standard deviation of relative river 

steepness (Rd) at the measurement length of d for all the bedrock reaches in the study area, 

following the guideline of Hayakawa and Oguchi (2006, 2009) was also used. This resulted in 

20 knickzones (KET2). The results from the four methods using the 10-m DEM are also 
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compared with the knickzones identified by Hayakawa and Oguchi (2006, 2009) who used the 

SAKE method and a 50-m DEM (SAKE50) since the study contains field validated knickzones. 

The transferability of KET was tested on 10-m and 50-m DEMs of a mountainous watershed of 

thw Kii Peninsula that successfully resulted in 99 and 80 knickzones, respectively using the 

SAKE method, while, 13 and 46 knickzones, respectively using KET. The study also analyzed 

the locational intersection between knickzones. In other words, an analysis of the intersection 

of knickzones within a certain distance was conducted. For the intersection distance, six values 

were used: 15, 30, 45, 60, 75, and 90 m. The degree of intersection is highest for distances of 

90 m, considerably good results are also found at 45 m. The rates of increase of the percentage 

of intersection from 45 to 60 m, 60 to 75 m, and 75 to 90 m distance are approximately 1.15%, 

0.39%, and 0.77%, respectively. 

The results indicate that KET is useful for extracting knickzones by detecting anomalies in the 

stream length gradient. It performs well in detecting prominent knickzones in the upstream 

areas, although it is dependent on the applied threshold values, as is the case for the SAKE 

method. 

Finally, the analysis of the frequency of knickzones computed for each class of elevation, 

distance from the watershed outlet, drainage area and stream gradient for all the rivers reveals 

high frequency in two elevation zones in Gifu: moderate elevations of 1600–2000 m and the 

other at higher elevations of 2200–2400 m. The high elevation region lies within approximately 

10–15 km from the river head and a local maxima at about 50–70 km distance from the 

watershed outlet for all the methods. The frequency of knickzones for most methods reveals an 

abundance of knickzones in the smallest drainage area (10 km2), although SAKE10 gives the 

most abundant knickzones between 10–20 km2, and KET2 does not give a clear trend because 

the number of knickzones is small. Whereas, for Kii the frequency of knickzones computed for 

each class of elevation, normalized distance upstream and drainage area for all the rivers reveals 
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high frequency in elevations between 1000–1600 m that consist of 20% of the upstream areas 

of the rivers. Frequency of knickzones are abundant in small drainage areas of 10–30 km2 with 

higher drainage areas associated with the 50-m DEM. In both study areas knickzones are 

abundant in the upstream reaches which can be attributed to strong hydraulic action in steep 

reaches. Although the average watershed slope and hypsometry are very similar for both the 

areas, the river gradient differs, 0.036 m m-1 for Gifu and 0.011m m-1 for Kii for d = 750 m. 

This suggests that despite the dominance of similar V-shaped valleys, the lower river gradient 

in Kii leads to reduced hydraulic action, resulting in much less knickzones. 

Knickzone characteristics in terms of underlying rock types was also analyzed individually for 

Gifu and Kii. In Gifu, abundance of knickzones in the upper reaches is influenced by irregular 

relief and slope of the dominant volcanic rock. The river gradient d = 750 m, for volcanic, 

accretionary, sedimentary and plutonic rocks are 4.80×10-2, 2.90×10-2, 1.05×10-2 and 1.18×10-

2 m m-1, respectively. The plutonic and sedimentary rocks have high frequency owing to a short 

river stretch of 5 km distance for the former and a longer draining river of ca. 230. 6 km for the 

latter, but with fewer knickzones. In Kii, river action with the combined influence of its coastal 

location and accretionary rock complex contributes to abundance of knickzones in the upstream 

reaches. But river profiles are more complex with abundant knickzones in both the areas. This 

is refelected by the knickzone frequency of 0.2 km-1 in Gifu while that of 0.03 km-1 in Kii. The 

abundance of knickzones are mainly influenced by the irregular relief and slope characteristics 

that correlate well with hydraulic action in upstream reaches in Japan. 
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1. Introduction

Knickzones or knickpoints as conspicuous breaks-in-slope along a river longitudinal profile, 

often characterized by steepening channel gradient (Goudie, 2004; Matthews, 2013) have drawn 

much interest in the study of landform processes. Referred as perturbations or convexities along 

the longitudinal channel profiles, propagation of knickzones as a process of bedrock incision 

deserves geomorphological attention (Seidl and Dietrich, 1992; Seidl, 1993; Howard et al., 

1994; Zaprowski et al., 2001). Knickzones that develop along the stream thalwegs or bedrocks 

influence the shape and trend of the longitudinal channel profiles. The controls of bedrock 

geology such as lithology, stratigraphy and structure on knickzone origin, morphology and 

evolution are the key components in geomorphic research (Pederson and Tresslor, 2012). In 

addition, regional knickzone distribution maps are not only valuable resources for fluvial 

geomorphology (Heimsath et al., 2001; Hayakawa and Matsukura, 2002) but are recently being 

incorporated into mass-wasting inventories for improved detection of debris flow (Lyons et al., 

2014). Besides, knickzones as climatic markers (Zeuner, 1945; Zhang et al., 2011) present new 

opportunities of research in quantifying the morphology of erosional shorelines in Pleistocene 

lakes (Hare et al., 2001; Jewell, 2016). 

Although knickzone research has drawn much interest in the study of landforms, much of the 

studies have been conducted with respect to bedrock/river longitudinal profiles. This is because 

bedrock channels are sensitive to tectonics and act as primary agents that diffuse signals of 

climatic or tectonic changes to the landscape (Merrits and Vincent, 1989, Whipple, 2004). 

Analysis of bedrock river profile acts as an important tool for interpreting landscape signals. A 

number of studies have successfully used profile analysis to determine patterns of active 

tectonic deformation within the underlying region (Hack, 1957, 1973; Seeber and Gornitz, 

http://www.sciencedirect.com/science/article/pii/S0169555X0800038X?np=y#bib32
http://www.sciencedirect.com/science/article/pii/S0169555X0800038X?np=y#bib64
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1983; Keller, 1986; Lavé and Avouac, 2000, 2001). In stream-profile analysis, morphological 

indices such as stream gradient and slope-area analysis have also been applied in landscape 

evolution studies (Tarboten et al., 1989; Sklar and Dietrich, 1998; Snyder et al., 2000; Lin and 

Oguchi, 2004; Wobus et al., 2006a; Kirby and Whipple, 2012). 

In due course, knickzone research has evolved from a rather descriptive study (Gilbert, 1877; 

Penck, 1925; Davis, 1932) corresponding to bedrock channel evolution focusing on longitudinal 

profile analysis, into an independent research discipline contributing not only to geomorphic, 

geologic and hydrological sciences but also to other environmental disciplines (Hare et al., 

2001). This chapter includes the definition of knickzones and its types, the evolving trends in 

knickzone research focusing on their formation, process and rates of evolution, and the current 

progress in computer-based simulations or modeling. Finally, a brief outline about the current 

knickzone research in Japan is followed by the problem statement and objectives of this study. 

1.1. Knickpoint/Knickzone definition and types 

1.1.1. Definitions 

The word knickpunkte or knickpoint originates from Penck’s (1925) treppen concept that 

discusses the origin of knickpoints and its influence on the evolution of the piedmont plain. The 

theory, though debated, defines knickpoints as convex breaks-in-slope that separate the upper 

and the lower graded reaches in a longitudinal profile, draining over homogenous rocks that are 

continuously undergoing accelerated uplift. Macar (1934) defines knickpoint as irregularities 

in the longitudinal profile of a river formed by differences in rock resistance and rejuvenation. 

American Geological Institute Glossary (1957) include of two spellings and definitions: a) 

Nickpoint – the point of interruption of a stream profile at the head of a second-cycle valley 

according to the treppen concept; and b) Knickpoint – points of abrupt changes in the 

longitudinal profile of a stream (Brush and Wolman, 1960). According to Schumm et al. (1987), 
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knickpoints represent abrupt topographic breaks in longitudinal channel profiles and are 

generally considered to be non-equilibrium landforms. Howard et al. (1994) defines knickpoint 

as a relatively steep local reach between lower gradient sections produced either by tectonic 

deformation, base level changes, or variable rock resistance. While a knickzone is an extended 

steep reach in a fluvial long profile depending on its length, a knickpoint is a visually distinct 

point on the longitudinal profile (Gardner, 1983; Miller, 1991; Downs and Simons, 2001; 

Hayakawa and Oguchi, 2006, 2009) and in the laboratory knickpoints are often termed as 

headcuts (Bennett, 1999; Rengers and Tucker, 2014). Note that in this study the word knickzone 

is used as a relatively steep gradient along a river that includes knickpoints and associated 

similar features such as rapids, cascades, waterfalls and gorge heads regardless of their scales. 

1.1.2. Knickzone types 

Based on the mode of development that determine the absence or presence of morphological 

features, classification of knickpoint dates back to 1976 when Holland and Pickup (1976) 

identified three major knickpoints in different rock types. The major types with their 

morphological characteristics are: a) stepped knickpoints – structural in origin and resulting as 

a function of the underlying lithology of a river bed to its thickness, often with a characteristic 

vertical face and plunge pool; b) rotating knickpoints – elongated over-steepened reaches 

formed when a knickpoint reaches its extinction; and c) minor erosional knickpoints – that are 

agents of incision formed on the river beds. 

Tinkler (2004) (in the encyclopaedia by Goudie, 2004) classified knickpoints into two: a) 

headward retreating knickpoints synonymous to waterfalls and hanging valleys. In this case, 

the steepened valley walls collapse by mechanical failure and stress release (Philbrick, 1970). 

Or, stepped knickpoints, that retain a vertical face due to enhanced groundwater drainage and/or 

cutting the valley walls by stream erosion; and b) rotating knickpoints that retreat when the 
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headwall in a weak material is unable to maintain the cap-rock and flattens as it migrates 

upstream (Stein and Julien, 1993). 

Another classification of knickpoint (Haviv et al., 2010) distinguishes it into two major types: 

a) break-in-gradient knickpoint – found in both cohesive and non-cohesive substrates and, b)

break-in-elevation knickpoint – only available in cohesive substrates, which is further classified 

into two: i) break-in-elevation knickpoint where the height is less than the flow depth and its 

step-like evolution is governed by hydrodynamics; and ii) vertical knickpoints where the height 

is greater than the flow depth and the processes of weathering and gravitation are dominant. 

Both types are found in homogeneous and resistant cap-rocks. 

It must be noted that a genetic classification of knickpoints or knickzones may not be only 

necessary because several processes may lead to their formation and successive propagation. 

But a morphogenetic classification of knickzones is required (Castillo-Rodríguez, 2011) 

because knickzones can occur in both alluvial and bedrock rivers, and in cohesive and non-

cohesive materials (Holland and Pickup, 1976; Gardner, 1983; Wolman, 1987; Frankel et al., 

2007). 

1.3. Knickzone research in Japan 

In Japan, the heavily dissected steep mountain watersheds that are often influenced by rapid 

tectonic uplift are frequented by storms that are associated with active erosion. Although the 

Japanese Alps are considered to be in a state of dynamic equilibrium (Ohmori, 1978; Katsube 

and Oguchi, 1999), the bedrock rivers are marked by the presence of knickpoints/knickzones, 

often accompanied by waterfalls and poses a contradiction to the dynamic equilibrium state of 

the rivers (Hayakawa and Matsukura, 2003a; Hayakawa, 2007; Hayakawa et al., 2008; 

Hayakawa and Oguchi, 2013). Several researches have mentioned about 

knickpoints/knickzones in relation to Japan (Mino, 1958; Okunishi, 1974; Sakai, 1998) but very 

Section 1.2. Evolving trends in knickzone research and subsections have been removed for 
future publication.
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few researches have actually addressed the problem of detection of knickzones (Hayakawa and 

Oguchi, 2006, 2009), causes of their formation and their distribution (Hayakawa and Oguchi, 

2013). Knickzone research is still evolving with current studies in association with slope 

deformations (Hiraishi et al., 2011) and mass-wasting (Chigira et al., 2015), with more scope 

in future. 

1.4. Existing problems and the aims of this thesis 

Traditionally, knickzones were identified by visual inspection of river longitudinal profiles or 

their slope-area relationships (Whipple and Tucker, 1999; Phillips et al., 2010; Ambili and 

Narayana, 2014; Antón, et al., 2014). Such manual interpretations make the studies subjective. 

Field observations and surveys for morphologically identifying knickzones (Sakai, 1998; 

Zaprowski, et al., 2001; Crosby and Whipple, 2006) are also tedious. Therefore, some studies 

have pursued automated approaches for knickzone extraction. For example, Whipple et al. 

(2007) applied the Stream Profiler Tool (SPT), and Hill and Stewart (2014) used local changes 

in the normalized steepness index (ksn) from upstream to downstream. 

Another method of knickzone extraction based on changes in stream gradient with respect to 

spatial scale was proposed by Hayakawa and Oguchi (2006) that used a DEM and GIS. The 

Semi-Automatic Knickzone Extraction (SAKE) method (Hayakawa and Oguchi, 2006, 2009) 

consisted of a vector-based semi-automated procedure that required somewhat time-intensive 

data processing because of the independent use of GIS and spreadsheet software. 

Owing to the existing challenges in deriving a regional scale knickzone distribution map, 

automating the different methods of knickzone extraction is still an emerging field of research. 

This study uses a newly proposed Knickzone Extraction Tool (KET), the SAKE method and 

some other contemporary tools for the extraction of knickzones. Although applications of 

knickzones has been emerging in various research areas, yet very few studies have considered 
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a comparative analysis of knickzone identification techniques. Keeping this in mind a 

comparative analysis of the KET, SAKE and other contemporary knickzone identification 

techniques was conducted.  In addition, availability of improved high resolution DEMs has led 

to comparative studies with respect to DEM grid resolution and scale as a mandatory subject to 

be explored in the context of knickzones. 

The following specific objectives were defined: 

− Comparative analysis and extraction of knickzones using contemporary knickzone 

identification techniques. 

− Study the effects of DEM grid size and scale on knickzone distribution in both the study 

areas. 

− Analyse the influence of thresholds on knickzone location by different DEM grid 

resolutions. 

− Discuss the influence of rock types on knickzone distribution and properties. 

− Assess the distribution of knickzones in two geologically different watersheds (Gifu and 

Kii) of central Japan. 

1.5. Structure of the thesis 

This research uses different knickzone identification tools and 10-m and a 50-m grid DEMs for 

two case study areas. The relationship between knickzone distribution and its morphometric 

characteristics are also examined. The chapters of the thesis are organized in the best possible 

manner to present the integrated idea. 
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Chapter 1 presents the significance of knickzone as an independent research discipline, provides 

the definition and types of knickzones, and describes the evolving trends in knickzone research, 

states the current research problems that define the research objectives followed by 

summarising the structure of the thesis. Chapter 2 introduces the case study, areas from central 

Japan, selected for this research with details on their geo-environmental conditions. Chapter 3 

describes the contemporary knickzone identification techniques and introduces the newly 

proposed KET tool along with other methods adopted in this study. Chapters 4, and 5 includes 

the results obtained by the use of the methods described in Chapter 3. Chapter 6 discusses the 

results in order to associate the observations with their causes. Chapter 7 summarises and 

synthesizes the results and discussion from Chapters 4 to 6, providing general conclusions, and 

an outlook for the use of KET as an effective tool for identification of prominent knickzones. 

This chapter also provides details of knickzone evolution in two geologically different areas of 

Japan thereby concluding the research with future recommendations. 
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2. Study Area and Data

The study comprises of analyses conducted in two case studies in geological and environmental 

settings. The first case study in Gifu is used for the application of all the methods of knickzone 

extraction and comparison of the results; while the second case study in Kii is used to test the 

transferability of the SAKE method and KET. Both the analyses uses 10-m and 50-m DEMs 

respectively. Both the study areas are also used for comparison of the knickzone formation 

processes. 

2.1. Case studies 

2.1.1. Gifu 

The case study area to compare the new and existing methods is a mountainous region of the 

southwestern side of the northern Japanese Alps, Gifu Prefecture, Japan (Figure 2-1). It consists 

of the southern slopes of Mount Norikura in the north and the north-western slopes of Mount 

Ontake on its west that comprises parts of the Hida mountains (>3000 m), that are the highest 

mountain ranges in Japan  (Ide, 2001). Mount Ontake witnessed a volcanic eruption earlier in 

2014 and its north-western slopes are marked by many mass-wasting events. The watershed is 

a part of the Takayama and Gero areas of Gifu and is drained by the tributaries of the Hida river 

flowing southwards. 

The area consists of various rocks mainly accretionary complex and volcanic up to early 

Pleistocene, and is associated with varying topography (Sohma and Kunugiza, 1993). Data for 

the nearest weather station in Takayama City shows that the region receives precipitation in the 

form of winter snow from December to March (a total of 2860 mm in 108 days, according to 

JMA, 2014) and summer rain, with an annual precipitation of 2097 mm  (JMA, 2014).  In the
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Figure 2-1: Case study area in Gifu. A. Studied watershed b. Gifu Prefecture with the Gero watershed; and c. Map of Japan with the Gifu 

Prefecture. 

a. b. 

c.
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watershed a number of waterfalls such as the Neo-no-taki falls and the Mitsudaki falls also 

occur and human intervention is limited. Therefore, the Gero watershed seems to be suitable 

for knickzone analysis. 

2.1.2. Kii 

The second case study (Figure 2-2) located in the Kii Peninsula is surrounded by the Mie, Nara 

and Wakayama Prefectures to the east, north, and south-western parts respectively. The Omine 

Mountain ranges with the highest peak of about 1912 m forms the north and central parts, while 

Mount Obako and Mount Odaigaharazan bordering the eastern and the western parts of the 

study area comprises the Kii Mountain Ranges. The central part of the Kii Mountains is drained 

by the Kumano River and its tributaries flowing from north to south. It consists of three sections: 

the Tenno-gawa, the Totsu-kawa and the Kumano-gawa, but in this research the entire river is 

referred as the Kumano River (Chigira et al., 2013) and the watershed, as the Kumano watershed. 

Hiraishi and Chigira (2011) found paleosurface remnants at higher elevations forming inner 

gorges, namely the Doryokyo gorge, along the Kumano River. 

The area is underlain by the Cretaceous to Neogene Shimanto accretionary complex rocks with 

minor occurrences of Miocene granite and sedimentary rocks. (Yonekura, 1968; Chigira et al., 

2015). Heavy rainfalls are caused by typhoons and polar fronts during the summer monsoon 

(Saito and Matsuyama, 2012). Data for the nearest weather stations at Tenkawa, Mount 

Gomudan and Miyagawa shows the annual precipitation of 2184.0, 3015.5 and 3371.5 mm 

(JMA, 2014), respectively. 

The distinctly different topography and geological setting of the Kumano watershed in the Kii 

Peninsula and the Gero watershed in Gifu seems to be suitable for a comparative investigation 

of knickzones. 
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Figure 2-2: Case study area in the Kii Peninsula. a. Studied watershed; b. Prefectures with the Kumano watershed; and c. Map of Japan 

with the Prefectures. 

a. b. 

c.
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2.2. Data used 

A 10-m DEM from the Hokkaido Chizu Corporation, Asahikawa, Japan with a UTM Projection 

(zones 53N and 54N) was used to run all the contemporary knickzone identification methods. 

While a 50-m DEM from the Geospatial Information Authority (GSI) of Japan was also used 

for the Kumano watershed to run the KET and check the transferability of the tool. Both the 10-

m and 50-m DEMs were filled, and water flow direction, drainage area and stream networks 

were identified from the filled DEMs. Slope angles and hypsometric integrals were also 

calculated from both the DEMs for both the study areas. 

A vector map of all the bedrock rivers in Japan (National Institute of Industrial Science and 

Technology, 2012) was used to identify bedrocks in the respective study areas and identify 

knickzones along them using all the methods. Curvature values were also calculated for each 

of the bedrock rivers. The total length of the bedrock rivers studied in Gifu is 742 km, while the 

total length of the bedrock rivers analysed in Kii is 3167 km. A digital vector map of dam 

locations in Japan (National Land Numerical Information, the 2009 version) was used to avoid 

mis-identification of dams as knickzones. In addition, database of knickzone distribution using 

a 50-m DEM from Hayakawa and Oguchi (2006, 2009) was also used to extract knickzones for 

validating the knickzones in the study areas as some the database consisted of some field-

verified knickzones. 

The geological information of the study areas is based on the seamless digital geological maps 

(scale: 1: 200,000; 2013) provided by the Geological Survey Institute (GSI) of Japan. The 

complex geological units in the map were classified into four major rock types: sedimentary, 

accretionary complex, volcanic and plutonic. Grid data for mean annual precipitation for 1953–

1982 with a 1-km cell size was used from the Digital National Land Information (Ministry of 

Land, Infrastructure and Transport, 1988) as the climatic database. 



SPATIAL DISTRIBUTION AND FORMATION OF FLUVIAL KNICKZONES IN CENTRAL JAPAN USING DEMS AND GIS-BASED TOOLS 

13 

Finally, the topographic, climatic and geologic data were summarized for both the case studies. 

The topographic variables include mean river trend gradient (values for d = 750), mean 

elevation and standard deviation of elevation for local relief and the mean slope angle as they 

are often related to denudation rates (Ahnert, 1970; Ohmori, 1978; Wakamatsu et al., 2005). 

The percentage of knickzones for four rock types, along the riverbed were also calculated to 

represent the influence of lithology. 

Figure 2-3: Basic data for the Gero watershed in Gifu; Layers from top to bottom: 

sink-filled DEM, flow direction, flow accumulation, bedrock rivers, knickzones 

from Hayakawa and Oguchi (2006). 
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Figure 2-4: Basic data for the Kumano watershed in Kii; Layers from top to bottom: sink-filled 

DEM, flow direction, flow accumulation, bedrock rivers, knickzones from Hayakawa and 

Oguchi (2006). 
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3. Methods of Automated Knickzone Extraction and

Analyses

This section briefly explains the existing tools or methods for knickzone extraction and 

comprises of two parts, Section 3.1 and 3.2. The former explains the existing methods of 

knickzone extraction that are popularly used and/or are in use, while the latter introduces KET. 

Application of the different knickzone extraction methods to the case study areas are detailed 

in Section 3.3 that exemplify the criteria used for identifying knickzones and their general and 

form properties. Section 3.4 depicts the steps for identifying knickzones from different DEM 

grid resolution and the multi-scale stream gradients. Besides, in order to examine the formation 

of identified knickzones, their abundance and form are analysed in relation to the different rock 

types. The final section (Section 3.5) includes the vector- and raster-based methods applied in 

an attempt to quantify the locational accuracy of knickzones in both the study areas, respectively. 

3.1. Existing methods 

The existing methods include: the SPT (Kirby and Whipple, 2001; Whipple et al., 2007) the 

GIS-Knickfinder (GKF; Rengers, 2012), and SAKE (Hayakawa and Oguchi, 2006). They are 

based on three distinct geomorphic properties: slope-area, slope-curvature, and stream gradient, 

respectively. 

3.1.1. Stream Profiler Tool (SPT) 

Based on the slope-area approach, SPT uses ArcGIS (9x and 10x) and MATLAB (R2012a and 

later versions) to analyze the steepness index and concavity of river profiles (Whipple et al., 
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2007). The knickzones are thereby determined from an evaluation of the steepness index. The 

basic equation underlying the tool is: 

S = ksA
−θ Equation (1) 

where S is the local channel slope, A the upstream drainage area, ks the steepness index, and θ 

is the dimensionless concavity index of the curve. This relationship is known as the Flint’s 

(1974) Law. ks is used to identify knickzones as anomalies (deviations) from the trend of the 

river longitudinal profile. Although SPT is widely applied to study the effects of tectonics, it is 

time intensive. SPT uses the built-in hydrology and surface tools of ArcGIS (9x and 10x) for 

extracting the drainage components of flow direction, flow accumulation, catchment area, and 

other attributes such as channel slope, followed by visually interpreting plots of channel 

parameters to demarcate knickzones. 

3.1.2. GIS-Knickfinder (GKF) 

Based on ArcGIS (10x) and Python libraries, GKF uses the slope-curvature approach applied 

to the entire raster layer instead of analyzing stream profiles individually (Rengers, 2012). The 

tool contains a set of algorithms related to drainage area and plan curvature. Knickzones 

(referred to as head-cuts in the tool) are identified as pixels with a curvature less than a certain 

threshold and a drainage area greater than a certain threshold. 

The curvature threshold is the key to identifying knickzones based on terrain shape, whereas 

the drainage area threshold is used to exclude knickzones that are not along the main channel. 

The curvature values for a hilly area with moderate relief vary between −0.5 and 0.5, whereas 

for steep, rugged mountains (extreme relief), the values vary between −4 and 4 (Whipple, 2004; 

Francis Rengers, personal communication). Curvature values may exceed these ranges for 
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different areas depending on the topographical characteristics. The knickzones for each bedrock 

river can then be extracted by overlaying the vector line data showing bedrock rivers. 

3.1.3. Semi-Automatic Knickzone Extraction (SAKE) method 

The SAKE method (Hayakawa and Oguchi, 2006) is based on the assumption that the slope 

gradient along a river changes with measurement length, and a locally steep segment of the 

riverbed is considered a knickzone. The gradient of a river reach is: 

Gd = △z / △d = e1 - e2 / △d Equation (2) 

 where e1 is the riverbed elevation d/2 upstream of a measuring point along a stream, e2 is the 

riverbed elevation d/2 downstream, Gd (m m-1) is the stream gradient at the measuring point, 

Figure 3-1: Illustrated explanation highlighting the difference between SAKE and KET 

methods. SAKE considers both the upstream (e1) and the downstream (e2) elevations that are 

d/2 apart, whereas KET uses the elevation at the point e0 and d downstream at point e3 
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and d (m) is the variable measurement distance (Figure 3-1a). SAKE calculates the scale-

dependent change in Gd (m m-1) by solving a linear regression equation: 

Gd = ad + b Equation (3) 

where d is the multi-scale measurement length, a is the regression coefficient, and b is the 

intercept. The relative steepness index Rd is then defined as: 

Rd = −a             Equation (4), 

which represents the rate of gradient decrease with increasing d. Rd shows how steep the point 

is locally compared to the trend of the stream gradient averaged over a longer d, and a threshold 

of Rd can be defined for identification of knickzones. An average of the standard deviations of 

Rd for all the rivers in a region is then used as the threshold (Hayakawa and Oguchi, 2006). 

SAKE has been applied for a regional scale analysis, and it has also been used to provide data 

on knickzone properties such as height, length, and gradient. These properties have been studied 

in relation to the altitude, upstream distance, drainage area, and geology to understand factors 

controlling knickzone formation (Hayakawa and Oguchi, 2006; Yunus, 2015; Yunus, 2016; 

Yunus et al., 2016). However, wider application of SAKE requires technical improvement, 

because it requires time-intensive data processing resulting from the separate use of ArcGIS 

(10x) and spreadsheet software. 

3.2. New method: Knickzone Extraction Tool (KET) 

KET, a new raster-based Python script deployed in the form of an ArcGIS toolset, is proposed 

in this study. It intends to automate the process of SAKE for faster and more user-friendly 

knickzone extraction, but there are some differences from SAKE for technical reasons. For 

example, KET calculates Gd using the following equation: 

Gd = △z / △d = e0 - e3 / △d Equation (5). 
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SAKE considers both the upstream and downstream elevations d/2 apart (Figure 3-1a, Equation 

2), whereas KET uses the elevation at the point e0 and d downstream at point e3 (Figure 3-1b). 

The method of SAKE considers both the upstream and downstream elevations for detecting a 

locally steep segment; this method, however, is inapplicable to the uppermost section of the 

river. KET is applicable from the top of the river, so it requires a simple algorithm that follows 

the flow direction and is free from the ambiguity of determining the uppermost point of the 

river. 

This program, available as an ArcGIS toolset, utilizes the built-in spatial analyst functions in 

ArcGIS (ESRI, 2011) for creating a hydrologically corrected (sink-filled) DEM and extracting 

the flow direction. Terrain analysis using a DEM (TauDEM; Tarboton, 2003), is used for 

computing slope averaged over a selected distance (SLPD) along the direction of flow. Figure 

3-2 shows the flow chart of the KET algorithm that calculates SLPD for different d values from 

Figure 3-2: Flow chart of the algorithm used for Knickzone Extraction Tool (KET). The 

mathematical expression of Rd is explained in Equation 6. 
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dmin to dmax (the range of the gradient analysis) and represents the data as raster layers. The 

SLPD raster layers are used in the following equation for the calculation of Rd as a negative 

product of the regression coefficient signifying the decrease in gradient. 

Rd = − {n ∑ xi SLPDi -∑ xi ∑ SLPDi / n ∑ xi
2- (∑ xi)

2} Equation (6), 

where n  =  ( dmax - dmin) / f(d), xi = i × f(d) n,  and SLPDi is the i-th SLPD with f(d) being a 

function of d that expresses the change in the multi-scale measurement distance from xi to xi+1. 

While Equation 4 provides numerical values of Rd for the downstream river gradient over a 

larger distance using elevation values, Equation 6 represents this value by averaging slope over 

marginal distances, resulting in raster layers. This raster-based approach that provides a regional 

raster layer of Rd values is advantageous compared to the manual calculation of Rd within 

individual river profiles.  Using a threshold of Rd for extracting knickzones, KET identifies 

knickzones along with their height, length, distance from the stream top, and distance from the 

river mouth like SAKE. 

3.3. Application of the knickzone extraction methods 

The four knickzone extraction methods described in Section 3.1 and 3.2 were applied to the 

case study areas (c.f. Chapter 2) to obtain knickzone distribution maps. Knickzones with a 

length > 30 m and height ≥ 15 m were identified as well-defined knickzones. The range of 

stream length for gradient analysis using SAKE and KET (dmin to dmax) is 30 to 1500 m based 

on the spatial resolution of the DEM and varies with a step of 30 m. The height threshold of ≥ 

15 m reflects the vertical accuracy of the DEM (originally prepared using topo-map contours 

with 10 m intervals) and the existence of small check dams that are not included in the dam 

data. 
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To extract knickzones with the SPT method, a concavity index (θ) for all the bedrock reaches 

is required (Equation 1). The calculated concavity index of 0.5 is used. Similarly, for GKF a 

mean curvature value is required and was calculated to be −0.49. A curvature threshold of −4 

was used for this study because a threshold of −5 led to under-extraction of knickzones. This is 

because the calculated value of channel curvature (θ) from the head to the watershed outlet, 

along its longitudinal profile is −4 or −5 for the entire length of the channel. But a difference in 

gradient produces very different channel forms that influence the local curvature values. 

Underestimates of knickzones might occur because the same curvature values (here −5) can 

exist for bedrock rivers having different gradients. 

The general properties of knickzones, such as their frequency (the total number of knickzones 

divided by the total length of bedrock reaches), density (the total length of knickzones divided 

by the total length of bedrock reaches), and forms including the average height, length and 

gradient (height divided by length) were calculated for knickzones using the four methods. 

Although the original version of GKF only provides concavity values of knickzones, we also 

extracted the height, length, and gradient properties. 

Note that knickpoints from SPT are point data (knickpoints) along the river profile. As such, 

knickzone form characteristics like height, length, and gradient are not available. 

Characteristics like distance of the knickpoints from the river head and the watershed outlet 

were calculated from vector data of bedrock rivers because SPT does not provide them 

automatically. Alternatively, ks  from SPT indicates the scaling between drainage area and 

channel slope and the parameters of the Flint’s Law (Equation 1) morphological characteristics 

of the river profiles. Similarly, morphological indices like mean concavity from GKF and Rd 

values from SAKE and KET were obtained for each knickzone. Trial runs were conducted with 

SAKE and KET (using a 64-bit operating system with a processing speed of 3.40 GHz and a 
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16 Gb RAM) to compare the time required for extracting knickzones using each method (details 

of which are mentioned in Section 4.1). 

Sections 3.4 and 3.5 have been removed for future publication.
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4. Analyses of Knickzones – Distribution,

Properties and Form

The results from the comparative analyses of the new and existing methods of knickzone 

extraction (Chapter 3, Section 3.1 and 3.2) in the case study area of Gifu, and those from Kii 

have been grouped into three sub-sections: the distribution and basic properties of identified 

knickzones (Section 4.1), their abundance and morphometric properties (Section 4.2), and 

knickzone properties for different rock types (Section 4.3). The results of knickzones are 

identified using the SAKE method and KET, in the case study area of Kii has also been included 

in Sections 4.1.3 and 4.1.4. The properties of knickzones with morphometric characteristics and 

abundance (Section 4.2) consist of results from the different methods and they are compared 

using different DEM grid resolutions (Section 4.3), specifically for SAKE and KET, in Gifu 

and Kii respectively. The final section (Section 4.4) includes results concerning the formation 

of knickzones in two geologically different study areas of Gifu and Kii that are influenced by 

the environmental factors. 

4.1. Distribution and basic properties 

Distribution maps of the knickzones extracted based on the aforementioned methods depict high 

knickzone concentrations in the mountainous areas and southwestern slopes of Mount Ontake 

in the Gero watershed of Gifu (Figure 4-1). Whereas, in the Kumano watershed of Kii (Figures 

4-2 and 4-3), the knickzones are concentrated in the central Yoshino highlands, along the 

upstream areas of the Kumano river to the east, and others scattered in the western highlands. 
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4.1.1. Knickzones from SPT 

Using SPT, a total of 113 knickzones were extracted (Figure 4-1a). The frequency of the 

knickzones was 0.15 km-1, with a mean upstream drainage area of 284.49 km2 and a mean ks 

value of 148.57. Individual extraction of 15 bedrock river longitudinal profiles and their 

knickzone extraction using the interactive profile and slope-area graphs in MATLAB and 

ArcGIS requires approximately one day. This time requirement, however, is dependent on the 

study area and the number of longitudinal profiles observed. 

4.1.2. Knickzones from GKF 

With the GKF tool, a total of 16 knickzones were extracted (Figure 4-1b). The mean concavity 

of all the bedrock streams was −0.49. The frequency of the knickzones was 0.02 km-1, with a 

mean concavity of −7.93 indicating a high overall concavity. The percentage of knickzones in 

terms of length, i.e., density of knickzones, was very low (0.33%). The time required  to run the 

GKF tool on a 10-m DEM was approximately one day.to run the GKF tool on a 10-m DEM 

was approximately one day. 

4.1.3. Knickzones from the SAKE method 

In Gifu, SAKE10 resulted in 141 knickzones (Figure 4-1c) with a frequency of 0.2 km-1. The 

density of knickzones was 1.3%. The mean height of the knickzones was 27.47 m, the mean 

length was 69.68 m, the average gradient was 0.38 m m-1, and mean Rd was 5.8×10-4 m-1. 

SAKE50 extracted 58 knickzones (Figure 4-1d) for this study area with a frequency of 0.08 km-

1. The density of knickzones was 2.4% while the mean height, length, and gradient were 68.51

m, 311.72 m, and 1.73 m m-1, respectively. The mean Rd was 3.58×10-5 m-1. SAKE took less 

than 2 h to calculate Rd values for each longitudinal profile, but extracting the knickzones and 

their properties using spreadsheets took more than one day. 
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Figure 4-1: Distribution maps of knickzones in Gifu, extracted using the methods 

described in Section 3. a. STP; b. GKF; c. SAKE10; d. SAKE50; e. KET1; f. KET2, and 

g. KET50 (c.f. Section 4.1)
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Whereas in Kii, SAKE10 resulted in 99 knickzones (Figure 4-2a) with a frequency of 0.03 km-

1. The density of knickzones was 0.37%. The mean height and length of the knickzones were

21.34 and 119.24 m respectively. While, the average gradient was 0.21 m m-1 and the mean Rd 

value was 5.18×10-4 m-1. SAKE50 extracted 80 knickzones (Figure 4-2b) with a frequency of 

0.03 km-1. The density of knickzones was 1.22% while the mean height, length, and gradient 

were 53.59 m, 332 m, and 0.15 m m-1, respectively. The mean Rd value was 6.08×10-2 m-1. 

Since the total number of longitudinal profiles of bedrock rivers at Kii (34) was more than that 

in Gifu (15), calculating Rd values for each longitudinal profile took around 2 h, but extracting 

the knickzones and their properties using spreadsheets took more than two days. 

Figure 4-2: Distribution maps of knickzones in Kii, extracted using the SAKE method (a: 10-

m DEM, b: 50-m DEM) 

4.1.4. Knickzones from KET 

In Gifu, KET1 resulted in a total of 189 knickzones (Figure 4-1e). The knickzone frequency is 

0.25 km-1. The density of knickzones was very high (8.14%) because each knickzone was long. 
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The mean height, length, and gradient of the knickzones were 33.83 m, 319.68 m, and 0.14 m 

m-1 respectively. The mean Rd was 6.8×10-4 m-1. KET2 extracted 20 knickzones (Figure 4-1f). 

The knickzone frequency was 0.02 km-1 and the knickzone density was 0.32%. The mean value 

of knickzone length, height, and gradient were 48.43 m, 120 m, and 0.47 m m-1 respectively. 

The mean Rd was 2.71×10-4 m-1. KET50 resulted in 111 knickzones (Figure 4-1g), with the 

knickzone frequency of 0.15 km-1. The knickzone density is high (7.5%). The mean height, 

length, and gradient of the knickzones were 97.92 m, 501.22 m, and 0.16 m m-1, respectively. 

Table 1: General statistical properties of knickzone forms in Gifu 

Statistics of form properties 

Methods Properties Units Mean Standard Deviation Minimum Maximum 

GKF 

Height m 31.37 20.49 16.36 96.85 

Length m 81.62 53.68 22.60 200.36 

Gradient m m-1 0.50 0.30 0.10 1.28 

Concavity -7.93 1.44 -10.71 -5.99 

SAKE10 

Height m 27.47 13.92 15.05 89.12 

Length m 69.68 19.52 45.00 165.00 

Gradient m m-1 0.38 0.15 0.14 0.99 

Mean Rd ×10-4 m-1 5.82 2.58 2.42 2.21×10-3 

KET1 

Height m 33.83 20.73 15.00 97.00 

Length m 319.68 258.16 50.00 1770.00 

Gradient m m-1 0.14 0.08 0.02 0.5 

Mean Rd ×10-5 m-1 -6.82 3.02 1.97×10-4 -2.5 

KET2 

Height m 48.43 21.94 20.13 106.51 

Length m 120 59.03 40 240 

Gradient m m-1 0.47 0.26 0.2 1.15 

Mean Rd ×10-4 m-1 -2.71 5.82 -4.28 -2.02 

KET50 

Height m 97.92 130.43 5.54 952.56 

Length m 501.22 450.69 60 2985 

Gradient m m-1 0.16 0.08 0.03 0.36 

Mean Rd ×10-5 m-1 -2.78 9.61×10-6 -6.22 -1.65 

SAKE50 

Height m 68.51 64.61 11.10 355.10 

Length m 311.72 137.91 160.00 880.00 

Gradient m m-1 1.73 1.29 0.92 7.86 

Mean Rd ×10-5 m-1 3.58 2.00 1.63 10.81 

NOTE: Knickpoints from STP are point data only, therefore form properties are not available. 
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The mean Rd value was 5.6×10-3 m-1. The average time required for trial runs of KET using a 

50-m DEM in this study area was 15–20 minutes, while that for a 10-m DEM was 45–50 

minutes. For comparison, the basic statistical values from the four methods with the results 

from different grid resolution DEMs and SAKE50 are shown in Table 1. 

Figure 4-3: Distribution maps of knickzones in Kii, extracted using the KET (c: 10-m DEM, d: 50-m 

DEM) 

In Kii, the KET10 resulted in 13 knickzones (Figure 4-3c) with a knickzone frequency of 0.004 

km-1. The density of knickzones was very low (0.14%) because the length of knickzone was 

low. The mean height, length, and gradient of the knickzones were 27.15 m, 334.62 m, and 0.20 

m m-1 respectively. The mean Rd was 5.32×10-5 m-1. KET50 resulted in 46 knickzones (Figure 

4-3d), with the knickzone frequency of 0.01 km-1. The knickzone density is 0.33%. The mean 

height, length, and gradient of the knickzones were 34.33 m, 227.50 m, and 0.39 m m-1, 

respectively. The mean Rd was 1.83×10-6 m-1. For comparison the basic statistical values from 

different grid resolution DEMs are shown in Table 2.
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Table 2: General statistical properties of knickzone forms in Kii 

Statistics of form properties 

Methods Properties Units Mean Standard Deviation Minimum Maximum 

SAKE10 

Height m 21.34 6.33 15.11 54.81 

Length m 119.24 52.02 45.00 270.00 

Gradient m m-1 0.21 0.10 0.07 0.59 

Mean Rd ×10-4 m-1 5.18 2.92 7.70×10-5 1.3×10-3 

SAKE50

Height m 53.59 42.52 15.10 216.60 

Length m 332.00 132.95 80.00 720.00 

Gradient m m-1 0.15 0.09 0.05 0.43 

Mean Rd ×10-2 m-1 6.08 4.17 9.7010-3 1.97×10-1 

KET10 

Height m 27.15 13.20 15.23 59.68 

Length m 334.62 257.59 60.00 930.00 

Gradient m m-1 0.20 0.14 0.04 0.48 

Mean Rd ×10-5 m-1 5.32 2.24 1.8 1.06 

KET50 

Height m 34.33 14.35 16.40 68.31 

Length m 227.50 219.52 60.00 990.00 

Gradient m m-1 0.39 0.31 0.03 1.45 

Mean Rd ×10-4 m-1 1.83×10-6 3.98×10-5 -1.12 1.02 

4.2. Knickzone morphometric properties and abundance 

Analysis of the frequency of knickzones computed for each class of elevation, distance from 

the watershed outlet, drainage area and stream gradient for all the rivers (Figure 4-4) in Gifu 

reveals high frequency in two elevation zones: moderate elevations of 1600–2000 m and the 

other at higher elevations of 2200–2400 m (Figure 4-4a). The high elevation region lies within 

approximately 10–15 km of the river head. Knickzone frequency also shows local maxima at 

about 50–70 km distance from the watershed outlet (Figure 4-4b) for all the methods. 

The frequency of knickzones for most methods reveals an abundance of knickzones in the 

smallest drainage area (10 km2; Figure 4-4c), although SAKE10 gives the most abundant 

knickzones between 10–20 km2, and KET2 does not give a clear trend because the number of 

knickzones is small. With an increase in stream gradient (Figure 4-4d), the SAKE10 result 



SPATIAL DISTRIBUTION AND FORMATION OF FLUVIAL KNICKZONES IN CENTRAL JAPAN USING DEMS AND GIS-BASED TOOLS 

30 

shows increasing knickzone frequency until 0.24 m m-1 but a distinct decreasing trend in reaches 

steeper than 0.34 m m-1. This trend is closely followed by KET2, with the highest frequency at 

0.34 m m-1. 

Similarly analysis of frequency in Kii for each class of elevation, distance from the watershed 

outlet, drainage area and stream gradient for all the rivers (Figure 4-5) reveals high frequency 

of knickzones in two elevation zones: high elevations of 1200–1600 m and the other at low 

elevations of  >1200 m (Figure 4-5a). The high elevation zones lie about 50–100 km of the river 

head with a local maxima at 120–150 km of the watershed outlet (Figure 4-5b). The frequency 

of knickzone reveals an abundance of knickzones in the smallest drainage areas (Figure 4-5c) 

mostly lying upstream in high elevation zones. 

Figure 4-4: Knickzone frequency for different classes of a) altitude, b) distance from watershed 

outlet, c) drainage area, and d) stream gradient at d = 750 m for all bedrock rivers analyzed in 

Gifu. 
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Figure 4-5: Knickzone frequency for different classes of a) altitude, b) distance from watershed 

outlet, c) drainage area, and d) stream gradient at d = 750 m for all bedrock rivers in Kii. 

To further demonstrate the abundance of knickzones in each class of a locational parameter, 

knickzone frequency for altitude, distance to the river head, drainage area, and trend gradient 

of streams (Figure 4-6) were examined for different classes of height in Gifu to represent the 

form factor. Knickzones from KET1 reveal the frequency of occurrence with respect to form 

properties (Figure 4-4) more explicitly than the knickzones from KET2 as such the abundance 

of knickzones were determined using knickzones from KET1 (4-6, bottom), whereas 

knickzones from SAKE10 (4-6, top) were also used. Knickzone abundance information from 

SAKE50, KET2 and KET50 are available in Appendix I. 

The height classes were determined using the knickzones at 25th, 50th and 70th percentiles 

(Figure 4-6, line graphs). The figures reveal that small knickzones (<18 m tall) are abundant in 
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Figure 4-6: Knickzone frequency and locational factors for different height class for SAKE10 

(top) and KET1 (bottom) in Gifu. a. altitude; b. distance to river head; c. drainage area; and d. 

trend gradient at d = 750 m. Lines show the frequency of knickzones for different height classes: 

25th, 50th and 75th percentiles. 
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elevations of 2600–2800 m (Figure 4-6a, SAKE10) and also frequent between 2000–2400 m 

(Figure 4-6a, KET1). Extremely large knickzones (>31.5) are frequent in 2200–2400 m and 

2400–2600 m, but above 2800 m, no large knickzones exist (Figure 4-6a, SAKE and KET1). 

Smaller and larger knickzones are abundant within 20–30 km from the riverhead (Figure 4-6b, 

SAKE10 and KET1) but the majority of them show peaks at <10 km from the river head. A 

similar trend exists with respect to drainage area (Figure 4-6c SAKE10 and KET1) where 

smaller drainages correspond to abundance of both the smaller and larger knickzones. High 

river gradients (0.34 m m-1) tend to result in larger knickzones (>31.5 m) (Figure 4-6d). 

The abundance of knickzones in each class of a locational parameter, knickzone frequency for 

altitude, distance to the river head, drainage area, and trend gradient of streams (Figure 4-7) 

were also examined for different classes of height in Kii to represent the form factor. Unlike 

Gifu, the abundance of small knickzones (15–18 m) in Kii are within 400–1000 m elevations. 

Large knickzones (>18 m) peak at 1200–1400 m and 1400–1600 m respectively (Figure 4-7a, 

SAKE10). KET10 values reveal a similar trend where large knickzones peak at 1000–1200 m 

and 1200–1400 m respectively (Figure 4-7a, KET10). Within 20–30 km distance to the river 

head (Figure 4-7c, SAKE10 and KET10) and at small drainage areas (about 20 km2), both small 

and large knickzones are found in abundance. It must be noted here that very large knickzones 

(>31.5 m tall) are found in lower elevation zones of 1000–1200 m with the highest trend 

gradient of 0.34 m m-1 (Figure 4-7d, SAKE10), and this trend of stream gradient is more 

explicitly captured in KET10 (Figure 4-7d, KET10) with peaks at 0.24 m m-1. 
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Figure 4-7: Knickzone frequency and locational factors for different height class for SAKE10 

(top) and KET1 (bottom) in Kii. a. altitude; b. distance to river head; c. drainage area; and d. 

trend gradient at d = 750 m. Lines show the frequency of knickzones for different height classes: 

25th, 50th and 75th percentiles. 
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4.3. Influence of DEM resolution and multi-scale gradients 

The influence of DEM resolution and different scale range for stream gradients are also 

noticeable in Figures 4-4 and 4-5 for both Gifu and Kii respectively. In Gifu (Figure 4-4), the 

frequency of knickzones computed for elevation class (Figure 4-4a), distance from the 

watershed outlet (Figure 4-4b) and drainage area (Figure 4-4c) from the 50-m DEM show a 

similar trend to that from the 10-m DEM, except that the values are higher than those from a 

10-m DEM. Knickzones from SAKE50 (Figure 4-4d) depict an increasing trend gradient at 

0.14, 0.19, and 0.29 m m-1, respectively. The results from KET1 are similar to those from 

SAKE10 and SAKE50. The same is true for KET50, which follows the same trend as KET1 

and uses the same scale range for the stream gradient calculation despite different DEM 

resolutions. In Figure 4-4d, KET50 follows the same trend as SAKE50 at 0.19 and at 0.34 m 

m-1, respectively, but both the results use a different scale ranges for the stream gradient 

calculation despite using the same DEM resolution. 

In Kii (Figure 4-5), the influence of DEM grid resolution are very well captured in the frequency 

of knickzones computed for elevation class (Figure 4-5a), drainage area (Figure 4-5c) and the 

trend gradient of streams (Figure 4-5d). The frequency of knickzones from the 10-m DEM 

follow the trend as the 50-m DEM of elevation except that the values of elevation and drainage 

area are considerably higher. A similar trend is noticed in Figure 4-5d. A more detailed 

comparison of the influence of grid resolution on knickzone distribution and properties in Gifu 

and Kii are well depicted in Figure 4-8. A close observation reveals that in both the areas the 

frequency of knickzones with respect to altitude follows the same trend for different DEM grid 

resolutions (Figure 4-8a and b) but differs considerably with respect to drainage area (Figure 4-

8g and h). Knickzone frequency at normalized upstream distance and the distance to the river 

head are high for SAKE10 in both Gifu and Kii. This could have been the case for KET10 too 
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if the number of knickzones identified for Kii were higher, though KET10 shows high values 

in Figure 4-8c. 

Figure 4-8: Comparison of the influence of 10-m and 50-m DEM grid resolutions on knickzone 

distribution and properties in Gifu and Kii using the SAKE method and KET 
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To further check the influence of DEM resolution, the gradient for d = 750 m derived from the 

SAKE method and KET were compared using knickzones along the longest river profile in 

the Gero watershed in Gifu (Figure 4-9). 

Figure 4-9: Comparison of results from SAKE and KET. a. Knickzone locations from 

the 50-m DEM (KET50 and SAKE50) and the 10-m DEM (KET1, KET2 and 

SAKE10) along a selected bedrock river. b. The gradient for d = 750 m derived from 

KET is almost the same for all grid resolutions. c. Selected profile along the study area. 

Note: Gradient information for SAKE50 was not available for d = 750 m because the 

scale range for trend gradient analysis used by Hayakawa and Oguchi (2009) is 

different from that used in this study. 
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Similarly, to check the influence of different input range scale on the Rd values using KET, 

knickzones were selected along a river profile with average Rd values for different input range 

scale (Figure 4-10) starting from 60 to 300 m and 60 to 540 m, respectively (Figure 4-10, top). 

The input scale range of 60 to 300 m was used to calculate the local threshold values for the 

SAKE method in both Gifu and in Kii. The input scale range of 30 to 1500 was used to calculate 

Equation 6 (c.f. Section 3.2), thereby generating the Rd raster map for both the study areas. This 

reveals that for different input range scales, their selection influences the average Rd values that 

are required to create thresholds for knickzone extraction, although the trend gradient values 

are similar (Figure 4-10, bottom). 

Figure 4-10: Top: Different input range scales 60 to 540 m, 60 to 300 m and 30 to 1500 m  for 

calculating the  average Rd. Bottom: Knickzones identified using KET and SAKE along a 

selected profile of a bedrock river in Kii.

Section 4.4 has been removed for future publication.
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5. Quantitative Determination of Locational

Accuracies of Knickzones

In an attempt to provide a quantitative locational accuracy of knickzones, results from the 

locational intersection of knickzones reveal the degree of intersection or overlap with respect 

to knickzones identified using each method in Gifu. In Kii, the probability of pixels provide 

quantitative estimates of locations identified as knickzones using different thresholds. 

5.1. Intersection of knickzones in Gifu 

Regarding the intersection of knickzones (Table 3), 36.28% of knickzones from KET1 were 

found within 90 m of knickzones extracted using the SAKE10 method. Interestingly, 76.25% 

of knickzones from SAKE10 were within 90 m of SPT knickzones, which was closely followed 

by 74.65% within 90 m of GKF knickzones; 59.32% of knickzones from SPT also intersected 

with KET1 at a distance of 90 m and the highest rate of intersection was 84.51% with respect 

to SAKE50. In contrast, the degree of intersection between KET1 and SAKE50 accounts for 

only 35.02% of knickzones. Intersection of knickzones of KET1 and GKF was 10.50%, while 

Table 3: Proximity of knickzones from KET1, SAKE, GKF, and SPT 

Degree of intersection in % 

AAA_BBB shows the percentage of 'BBB' knickzones 

within the buffer distance of 'AAA' knickzones 

Distance 
SAKE10 

_ KET1 

KET1 

_SAKE50 

KET1 

_SAKE10 

KET1 

_GKF 

KET1 

_SPT 

SAKE50 

_ KET1 

15 15.84 72.18 67.63 40.13 41.53 10.93 

30 20.26 75.00 71.88 66.91 53.39 22.55 

45 24.75 78.52 73.75 72.74 54.24 30.32 

60 29.04 80.63 74.38 73.42 55.08 31.83 

75 33.02 82.04 75.38 74.04 57.63 33.51 

90 36.28 84.51 76.25 74.65 59.32 35.02 
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those for SPT was 18.60%. At a distance of 45 m, 30.32 and 24.75% of knickzones from KET1 

intersect with SAKE50 and SAKE10, respectively. In comparison, 80.00% and 86.54% of 

knickzones from KET2 intersect with knickzones from SAKE50 and SAKE10 at 45 m, 

respectively (Table 4). 

At a distance of 90 m, 97.69% of knickzones from KET2 intersect knickzones from SAKE10, 

and 51.41% of knickzones from SAKE50 are within 90 m of the SAKE10 knickzones. Of the 

total knickzones extracted using SAKE10, 16.88% of the knickzones intersect with knickzones 

from KET2. Although the degree of intersection is highest for a distance of 90 m, considerably 

good results are also found at 45 m. The rates of increase of the percentage of intersection from 

45 to 60 m, 60 to 75 m, and 75 to 90 m distance are approximately 1.15%, 0.39%, and 0.77%, 

respectively (Table 4, Column: SAKE50_KET2). 

Table 4: Proximity of knickzones from KET2 and SAKE 

Degree of intersection in % 

AAA_BBB shows the percentage of 'BBB' knickzones 

within the buffer distance of 'AAA' knickzones 

Distance 
SAKE10

_ KET2 

SAKE10 

_SAKE50 

KET2 

_SAKE10 

KET2 

_SAKE50 

SAKE50 

_SAKE10 

SAKE50 

_ KET2 

15 53.46 21.83 11.13 9.51 12.38 32.69 

30 68.46 29.58 13.38 11.97 26.13 66.15 

45 80.00 34.15 15.38 13.38 35.63 86.54 

60 90.00 39.08 16.50 15.85 36.63 87.69 

75 94.62 45.07 16.75 17.61 38.00 88.08 

90 97.69 51.41 16.88 18.66 38.88 88.85 

The degree of intersection between SPT and SAKE10 (Table 5) at 90 m distance is 33.05%, 

which is much lower than that for GKF (85.47%). This signifies that some knickzones from 

GKF, SAKE10, KET1, and KET2 intersect one another and also overlap knickzones from 

SAKE50 at different degrees of intersection. At a 15 m distance, SPT has very low values of 

intersection with all other methods, because the knickpoints are available as point data (refer to 
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Figure 4a), which reduces the possibility of intersection with knickzones extracted using other 

methods. 

Table 5: Proximity of knickzones from GKF, SPT, and SAKE 

Degree of intersection in % 

AAA_BBB shows the percentage of 'BBB' knickzones 

within the buffer distance of 'AAA' knickzones 

Distance 
GKF_ 

SAKE10 

GKF_ 

SAKE50 

SAKE10 

_GKF 

SAKE50 

_GKF 

SPT_ 

SAKE10 

SPT_ 

SAKE50 

SAKE10 

_SPT 

SAKE50 

_SPT 

15 5.75 4.93 20.14 7.94 1.50 2.11 6.78 5.08 

30 13.00 10.56 47.94 39.15 7.50 8.10 18.64 19.49 

45 17.00 17.25 61.76 67.86 12.50 13.38 22.88 27.12 

60 19.00 19.72 70.23 71.59 15.50 15.14 24.58 28.81 

75 20.50 21.13 78.88 72.81 18.13 20.77 27.97 29.66 

90 21.88 21.83 85.47 74.26 21.13 25.70 33.05 29.66 

At a 15 m distance, the degree of intersection between KET50 and KET2 was 100%, whereas 

the degree of intersection between KET50 and KET1 was only 67.23%. This is because the 

knickzones from KET50 are longer than the well-defined knickzones with shorter lengths from 

KET1 and KET2. This is also the reason why the degree of intersection was highest with KET50 

at a distance of 15 m for knickzones from all the methods (Table 6). Another reason is the small 

number of knickzones from KET2. 

Table 6: Proximity of knickzones from KET50 

Degree of intersection in % 

AAA_BBB shows the percentage of 'BBB' knickzones 

within the buffer distance of 'AAA' knickzones 

Distance 
KET50 

_SPT 

KET50 

_GKF 

KET50 

_SAKE10 

KET50 

_SAKE50 

SAKE50 

_KET50 

KET1 

_KET50 

SAKE10 

_KET50 

15 31.86 48.20 64.50 72.18 10.32 63.51 15.53 

30 19.47 36.88 3.50 3.17 10.45 3.77 5.32 

45 2.65 2.88 2.82 8.25 3.09 5.13 

60 0.88 1.88 1.41 1.70 2.72 5.68 

75 2.65 1.63 3.17 1.83 2.36 5.00 

90 3.54 1.13 1.41 1.81 1.94 4.14 
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However, the degree of intersection between SAKE50 and KET50 (10.32%) is much lower than 

that between SAKE10 and KET50 (15.53%). In the former case, the same threshold was used 

for the 50-m DEM, whereas the latter was used for the 10-m DEM with a different threshold 

for knickzone extraction. The intersection of knickzones KET50 and those from SPT and GKF 

was limited to distances of 15 and 30 m, and very few or no intersection was found at larger 

distances. This is because knickpoints from SPT are point data, whereas knickzones from GKF 

are small in number and located in the upstream areas. 

Section 5.2 has been removed for future publication.
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6. Discussion

The analytical results described in the previous chapters are discussed focussing on three 

distinct sections: 1) the use of the different methods of knickzone identification resulting in a 

regional scale distribution map emphasizing the need for a fast and automated approach; 2) the 

influence of DEM resolution and multi-scale stream gradients; and 3)  the implication of the 

results with respect to the formation and development of knickzones at the Gero watershed in 

Gifu and the Kumano watershed in Kii. Additionally the locational accuracy of DEMs has also 

been assessed aiding the transferability of the KET in identifying knickzones. 

6.1. Regional knickzone distribution with respect to different 

methods 

The knickzone distribution maps and their morphological properties with respect to bedrock 

rivers, such as the normalized steepness index, curvature, and the relative steepness index, are 

not only useful for landscape evolution studies but are also important to studies that (1) rely 

upon tectonic and climatic signals stored in stream longitudinal profiles, (2) evaluate the 

parameters of stream incision, and (3) examine the effects of natural barriers upon aquatic biota. 

Though the SPT method is time-intensive, the resulting knickzones are used in tectonic uplift 

studies because the exponent of drainage-area and slope relationship includes parameters that 

represent uplift and erosion processes (Kirby and Whipple, 2001; Wobus et al., 2006a). The 

channel steepness (ks), useful for tectonic geomorphic studies (Hoke et al., 2015; Sembroni et 

al., 2016) has been found to correlate with rates of rock uplift, exhumation, and stream incision 

(Andreani et al., 2014a,b). However, SPT is not particular useful for knickzone studies not 

directly related to tectonics. The GKF tool is still under development. Although it can be used 
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for analyzing and modeling gully head cut dynamics (Rengers and Tucker, 2014), it has not 

been fully implemented for extracting knickzones on a regional scale (Rengers, personal 

communication). Though SAKE calculates knickzone form parameters semi-automatically and 

has been used in applied studies (Yunus, 2015; Vatne et al., 2016; Yunus et al., 2016), using 

SAKE over large datasets will increase computational time because of its dependence on 

spreadsheet software for data analysis. Moreover, increasing use of high-resolution DEMs for 

geomorphological studies leads to increasing calculation times and computational bottlenecks 

(Liu et al., 2015). Thus, the development of a fast and automated process for regional knickzone 

mapping is therefore significant. KET is advantageous over all other methods because it is faster 

and more automated, as shown by the time required for runs using both the 50-m and 10-m 

DEMs to process large datasets as well as datasets of varying grid sizes and resolutions (Zahra, 

et al., in press). In recent years, increased availability of high-resolution airborne LiDAR DEMs 

may increase the possibilities of false detection of knickzones, regardless of the tool used. In 

this study KET actually yielded high Rd values for false knickzones especially at dam locations 

along the bedrock profile, which were manually eliminated. Although KET is more automated, 

careful consideration is needed in using it. 

One of the drawbacks of KET is that, similar to the SAKE method, its initial input parameters, 

the range of the stream gradient calculation and the threshold of Rd, used for the determination 

of the knickzones are defined separately with a certain criteria. Because different thresholds for 

knickzone extraction result in different numbers of well-defined knickzones (Figures 4-1, 4-2 

and 4-3), they influence the knickzone frequency values which are essential for comparison 

with morphometric characteristics. For example, in Figure 4-4, knickzones from KET1 reveal 

the frequency of occurrence with respect to form properties more explicitly than the knickzones 

from KET2 in Gifu. However, knickzones from SAKE10 and KET10 in Kii reveal the form 

properties more explicitly although the number of knickzones identified using KET10 are less 
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in number. Options for objective determination of thresholds will increase the usability of the 

KET for knickzones extraction and applied studies. The latest version of the KET with a tutorial 

and sample data are available at http://topography.csis.u-

tokyo.ac.jp/resources/tools_ket/index.html. Any future updates of the tool and references to its 

applications in future studies will also be available at the above address. 

6.2. Influence of DEM resolution and scale 

The scale of the initial input parameters plays a significant role in determining the accurate 

location of knickzones along the bedrock rivers. The minimum distance for the calculation of 

Gd and Rd was 30 m for the 10-m DEM but 80 m for the 50-m DEM (Tables 1 and 2). If the 

threshold of Rd is within the input scale range for stream gradient calculation, the results are 

similar, even if different grid resolution DEMs are used (Figure 4-4d). Grid resolution, however, 

influences DEM derivative products such as slope and flow direction on a cell-by-cell basis 

(Hengl, 2006). In the case of knickzones extracted using the 50-m grid resolution, the 

aggregation of flow accumulation values have led to differences in the derivation of 

geomorphological properties; for example, concentrations of flow accumulation at each pixel 

(= drainage area) increases compared to knickzones for the 10-m grid resolution (Figure 4-4c). 

Advancements in mapping spatial patterns of streams, their morphometric parameters and 

related uncertainties (Lea and Legleitar, 2016; Tantasirin, et al., 2016) highlight the need to 

measure and analyse channel forms at different grid resolutions. In this study, the ability of the 

grid resolutions to capture the variability in the stream gradient (Figure 4-4d), an important 

aspect that varies spatially along the river, represents the influence of multi-resolution DEMs 

on knickzone extraction. Moreover, the Rd values derived from stream gradients that are used 

for thresholding and determining knickzones are also affected. This is because the suitability of 

the grid size for each type of terrain and the size of the area of interest influence the lengths of 

http://topography.csis.u-tokyo.ac.jp/resources/tools_ket/index.html
http://topography.csis.u-tokyo.ac.jp/resources/tools_ket/index.html
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the streamlines and channel slopes (Gallen et al., 2011; Buakhao and Kangrang, 2016), which 

subsequently alter not only the locations of knickzones but also their properties (Figures 4-6 

and 4-8). This leads to uncertainty in the location of knickzones and their resulting distribution 

maps. This fact is illustrated in Figure 4-9, where knickzones extracted using all methods occur 

at similar locations in Gifu, along a selected bedrock river profile, exemplifying the importance 

of studying the influence of multi-resolution DEMs and the locational uncertainty of knickzone 

distribution in the future. Similarly, Figure 4-10 reveals how selection of different input scales 

for calculation of Rd has little implication on the identification of knickzones at locations along 

the bedrock rivers. The calculated threshold values differ with the change in the input scale 

range used for the calculation of Rd but the prominent knickzones extracted are along similar 

locations. 

6.3. Influence of environmental factors on knickzone formation 

process 

With respect to previous studies (Hayakawa and Oguchi, 2006, 2009), knickzones are found in 

upstream higher elevation zones of Japanese rivers suggesting the influence of fluvial 

hydraulics in the formation of knickzones. This is particularly true for Gifu where the 

abundance of knickzones in the upper reaches (Figure 4) is influenced by irregular relief and 

slope of the dominant volcanic rock. The Gero watershed in Gifu is part of the highest mountain 

ranges of the northern Japanese Alps and as such the bedrock rivers are very steep with high 

stream gradients in the upper reaches (Figure 4-4d). Studies in bedrock river profile suggest 

that hydraulic energy has the ability to shape bedrock morphologies when the rivers are 

sufficiently steep (Wohl, 1992; Baker and Kale, 1998). A wide range of stream gradients 0.19 

to 0.39 m m-1 and more (Figure 4-4d) with knickzone frequency of 0.04 km-1 is characteristic 

of the highly erosive conditions. Abundance of knickzones in the bedrock rivers in Gifu can be 

attributed to this fact. However, the presence of deep seated gorges and canyons along with 
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knickzones with waterfalls in the dominant volcanic rocks in the Gero watershed can also be 

explained by the gradient irregularity (Figure 4-11 and 4-12) that is promoted by long-term 

exposure of steep channel slopes and coarse bedrock rivers (Wohl, 1992) to hydraulic action. 

The river gradient at d = 750 m, for volcanic, accretionary, sedimentary and plutonic rocks are 

4.80×10-2, 2.90×10-2, 1.05×10-2 and 1.18×10-2 m m-1, respectively. The plutonic and 

sedimentary rocks have high frequency owing to a short river stretch of 5 km in the former and 

a longer draining river of 230 km in the latter, but with fewer knickzones, indicating the effect 

of bedrock at least to some extent. 

Some studies have stated that in steep reaches, hydraulic anomalies such as occurrence of 

supercritical flow along the reach can contribute to the formation of knickzones (Hayakawa, 

2007). The positive correlation of precipitation to knickzone abundance also supports the fact 

that hydraulic forces are influenced by stream discharge though higher elevations together with 

steep slopes play a role in increased down-cutting of the channels. The large discharge in steep, 

bedrock channels might be non-uniform leading to hydraulic action where large amounts of 

energy are quickly dissipated (Kale et al., 1996). The positive correlation between relief and 

slope (Table 7) suggests that steep areas correspond to active denudation due to hydrological 

processes. 

The presence of large knickzones (ca. 30 m) are restricted to upstream steep reaches, and 

smaller knickzones between 18 and 31 m and those <18 m are found in more gentle slopes 

(Figure 4-6). This suggests that the bedrock river profiles are not smooth graded profiles 

regardless of steepness and are suggestive of the non-equilibrium transient state of the river 

(Hayakawa and Oguchi, 2009) or the long profile disequilibria (Goldrick and Bishop, 2007). 

In the Kii Peninsula, frequent typhoons and very highest frequencies of heavy rainfall (Saito 

and Matsuyama, 2012) contribute to abundance of knickzones in the upstream reaches. High 

stream gradients are found in the upstream high elevation reaches (Figure 4.13) underlain 
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mostly by accretionary rock complex that form the active denudation reaches in the Kumano 

basin. This is supported by the fact that the Cretaceous to Paleogene–lower Miocene Shimanto 

accretionary rock complex in the Kumano region is frequented by catastrophic landslides 

(Chigira, et al., 2013) and occurrence of knickzones (Hiraishi, et al., 2011). The high frequency 

of knickzones (0.01 to 0.045 km-1) in high stream gradients ranging between 0.34 and 0.39 m 

m-1 in the accretionary rock complex (Figure 4.13d and 4.14 top d) explain the active action of 

the rivers. 

Interestingly, knickzones frequency and density in Kii are high in plutonic rocks with the 

average river trend gradient of 0.085 m m-1. Some studies in this region (Chigira, et al., 2013, 

2015) have discussed river erosion with respect to deep-seated gravitational slope deformations 

and catastrophic landslides to conclude that the accretionary rock complex has paleosurface 

remnants at higher elevations (Figure 4.13 Inset) in the form of plutonic rocks. These 

paleosurface remnants have newly incised rivers in the central part of the Kii Mountains 

(Chigira, et al., 2015). These rivers with increased rates of river incision have widely developed 

knickzones. This explains the high knickzone frequency (Figure 4.15) in the plutonic rocks of 

the Kumano basin. The knickzones here are associated with canyons, waterfalls and often steep 

cliffs or gorges along the course of the river (Figures 5.3 and 5.4). In addition, the high 

frequency of knickzones in the volcanic rocks can also be associated with hydraulic action 

leading to the formation knickzones associated with steep canyons and gorges (Wohl et al., 

1999) along the course of the river. This is evident by the presence of the Doryo-kyo (Kyo 

meaning Gorge in Japanese) that are distinct along the lower parts of the Kumano river. 

As such, the Kumano basin consists of two sets of knickzone processes in the upstream and the 

downstream areas. The upstream areas are influenced by hydraulic action, while the 

downstream coastal area is more influenced by volcanic rocks similar as in the case with the 

Gero watershed in Gifu. It is difficult to make definitive, quantitative statements about the 
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processes by which rivers erode the bedrocks forming knickzone within a watershed. Even 

though both the watersheds are similar in average slope and shape, the trend gradients vary 

considerably (Figure 6.1). While river profiles are more complex with abundant knickzones in 

both the regions, evidences from the knickzone frequency of 0.2 km-1 in Gifu while that of 0.03 

km-1 in Kii. This observation suggests that watersheds and river profiles should be analyzed 

independently to understand the nature of the fluvial landforms. 

6.4. Accuracy of knickzone locations 

This study attempts to quantify the accuracy of knickzone locations using the two different 

vector and raster based methods for both the study areas. The results look satisfactory and 

provide an idea of the degree of intersection of knickzones. Although they do not assure the 

correspondence to actual field locations of knickzones, the results can still be used as supporting 

information before field validation of knickzones. Knickzones with a degree of intersection 

higher than 80% at 90 m intersection distance in Gifu such as SAKE10 and KET2 (97.69%), 

KET1 and SAKE50 (84.51%), SAKE50 and KET2 (88.85%), and SAKE10 with GKF (85.47%) 

seem to provide approximate locations of well-defined knickzones. Note that SAKE10 suffers 

from over-extraction of knickzones it might influence the results. Moreover the extraction of 

only prominent knickzones in using KET might also influence the results. More detailed 

assessment is needed in future research. 

The pixel based approach used in Kii is not free from ambiguity because the validated Google 

Earth images do not contain the information of the time when the photos were taken. Also most 

of the images are of waterfalls that might have been taken at or near tourist locations. In spite 

of these limitations, the probable locations of knickzones coinciding with SAKE50 (from 

Hayakaya and Oguchi, 2009) reveal approximate locations irrespective of DEM grid-resolution 

and the thresholds used. 
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7. Conclusion

This study applied the newly developed KET to central Japan and compared the results with 

other existing methods of knickzone extraction like STP, GKF and SAKE. The results indicate 

that KET is useful for extracting knickzones by detecting anomalies in the stream length 

gradient. KET performs well in detecting prominent knickzones in the upstream areas, although 

it is dependent on the applied threshold values, as is the case for the SAKE method. It is more 

automated and requires less time to run than the previous methods. Our analysis suggests that 

DEM resolutions do not significantly affect the detection of prominent knickzones, although 

they affect the values of some morphometric parameters. 

Abundance of knickzones are mainly influenced by the irregular relief and slope characteristics 

that correlate well with hydraulic action in upstream reaches in Japan. Both in Gifu and in Kii, 

the formation of knickzones on the resistant volcanic rocks resistant represent typical examples 

of prolonged exposure (covering large timescales) of bedrocks to river incision and hydraulic 

actions. 

This study also attempted to provide a quantitative assessment of accuracy of knickzones that 

supported the results from Hayakawa and Oguchi (2009) used for validation in the study. The 

method clarifies that knickzones coincide with similar locations though they might be identified 

using different resolution DEMs. They may not be at the exact location but along the same zone. 

Considering the complex formation of knickzones in the study areas the knickzones might not 

have migrated or changed positions. 

Future research should include accuracy assessments based on field validated knickzone 

locations. Identification of knickzones using multi-scale values for generating streams 
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including the topographic base scale used for automatic generation of drainage networks should 

also be considered, to increase the applicability of the KET irrespective of scale of the drainage 

network. Additionally, considering the complex processes of knickzone formation in the Kii 

peninsula it is recommended to study sub-watersheds in accretionary rock complexes and 

volcanic rocks separately to understand the phenomena of knickzone formations.
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Appendix 

Abundance information for SAKE50, KET2 and KET50 for the Gero watershed in Gifu. a. 

altitude; b. distance from the river head; c. drainage area; d. trend gradient at d = 750 m. 
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