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Glossary of expressions 

Expression Description 

Generative model A model that generates the external world dynamics 

Internal model A model in the brain that mimics a generative 

model of the external world 

LTP Long-term potentiation 

LTD Long-term depression 

STDP Spike-timing dependent plasticity 

DCM Dynamic causal modeling 

DEM Dynamic expectation maximization 
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1.1 Background 
 

How do people perceive the dynamics of the external world? One hypothesis, the 

so-called internal model hypothesis [Dayan et al, 1995; Friston, 2006, 2008, 2010; 

George, Hawkins, 2009; Bastos et al, 2012], states that people reconstruct a model of 

the external world in their brains through sensory inputs. This internal model helps 

people infer hidden causes and predict future inputs automatically; in other words, this 

process happens unconsciously. For example, a songbird can predict a subsequent note 

in another bird’s song by constructing an internal model that mimics the generative 

model of the bird song [Friston, Kiebel, 2009]. The 19th century physicist/physiologist 

von Helmholtz hypothesized that, in order to achieve perception, humans are constantly 

and unconsciously inferring the generative model of the dynamics of the external world. 

This phenomenon was termed ‘unconscious inference’ [Helmholtz, Southall, 2005]. A 

part of unconscious inference has been mathematically modeled under the internal 

model hypothesis with an existing machine learning model, the Helmholtz machine 

[Dayan et al, 1995]. However, it is not in a form that can be implemented using actual 

neural networks. Thus, how actual neural networks implement unconscious inference is 

not understood. Therefore, the criticism that Helmholtz’s theory lacks an explanation of 

the neural mechanisms (a mechanism theory) is understandable. 

Nevertheless, Helmholtz’s theory appears intuitively correct as a functional theory of 

the brain. Therefore, I would like to start the present study under the assumption that 

brain functions, particularly the higher cognitive functions of the cerebral cortex, can be 

explained through a machine learning algorithm constructing the internal model [Dayan 

et al, 1995; Friston, 2006, 2008, 2010; George, Hawkins, 2009; Bastos et al, 2012]. The 

major goal of the present study is to discover a new machine learning algorithm that is 

physiologically valid and possesses an expression ability equal to or greater than the 

existing Helmholtz machine on the basis of experimental observations using actual 

neural networks. Furthermore, the study must supplement the mechanistic aspects of 

Helmholtz’s theory through that discovery. First, I will introduce a history of the 

unconscious inference theory, and then describe the purposes and approaches of this 

thesis. 
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Learning and memory 

Learning and memory are crucial for survival in animals. Memory is defined as the 

mechanism through which past experiences alter present behavior [Gazzaniga, 2004], 

and this link between past experiences and present behavior is assumed to be reflected 

in the physical and biochemical changes in the brain, i.e., as engrams or memory traces. 

Learning is referred to as the process of obtaining memory. 

Recent studies reported that the stimulation of specific neuronal groups related to 

specific memories could recall and/or rewrite rodent memories in the dentate gyrus [Liu 

et al., 2012; Ramirez et al., 2013]. Extensive research has focused on learning and 

memory in not only mammalian systems, but also simpler organisms such as the sea 

slug Aplysia [Abbott, Kandel, 2012]. 

 

Synaptic plasticity 

Synaptic plasticity is referred to as changes in synaptic strengths. Activity-dependent 

synaptic plasticity governs the dynamics of synaptic connections and is believed to be a 

mechanism mediating learning and memory [Bear et al, 2007]. Donald O. Hebb 

hypothesized that through learning, memories are stored in the brain in the form of 

networks of neurons, called cell assemblies [Hebb, 1949]; furthermore, he believed that 

these networks come to represent specific objects and concepts. Hebb further proposed 

a cellular mechanism of memory formation, known today as Hebbian learning or 

Hebbian plasticity. This mechanism is best captured in the expression “cells that fire 

together, wire together.” 

Spike-timing dependent plasticity (STDP) is an experimentally observed form of 

Hebbian plasticity [Markram et al, 1997; Bi, Poo, 1998], which is reviewed in 

[Markram et al, 2011; Feldman, 2012]. In STDP, when the post-synaptic neuron fires 

immediately after the pre-synaptic neuron firing, the long-term potentiation (LTP) 

[Matsuzaki et al, 2004; Harvey, Svoboda, 2004] occurs at the connection from the pre- 

to post-synaptic neuron. In contrast, when the post-synaptic neuron fires immediately 

before the pre-synaptic neuron does, the long-term depression (LTD) [Zhou et al, 2004] 

occurs at the connection. Both LTP and LTD involve N-methyl-D-aspartic acid 

(NMDA)-receptor activity, in which the depolarization of the post-synaptic neuron 

relieves the NMDA receptors’ magnesium block and enables Ca2+ entry [Nowak et al, 
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1984]. Intracellular Ca2+ concentration is a roll of switching LTP or LTD, which is 

regulated by the timing and order of glutamate release from the pre-synaptic terminals 

and the post-synaptic neuron’s depolarization. As the occurrence of LTP or LTD is 

determined by the order of pre- and post-synaptic neurons’ activity, STDP plays a role 

of increasing the causal relationship between the pre- and post-synaptic neurons. Since 

the first model of STDP was proposed by [Song et al, 2000], STDP has been modeled 

using several different equations [Clopath et al, 2010; Gilson, Fukai, 2011]. 

 

Unsupervised learning 

Sensory perception constitutes complex responses of the brain to sensory input 

signals. For example, the visual cortex can distinguish objects from their background 

[DiCarlo et al, 2012], while the auditory cortex can recognize a certain sound in a noisy 

place with high sensitivity, a phenomenon known as the cocktail party effect 

[Bronkhorst, 2000; Brown et al, 2001; Mesgarani, Chang, 2012]. Animals have 

acquired these perceptual abilities without supervision, which is referred to as 

unsupervised learning [Dayan, Abbott, 2001; Kistler, Gerstner, 2002; Bishop, 2006]. 

Unsupervised learning is defined as the learning that happens in the absence of a teacher 

or supervisor; it is achieved through adaptation to experienced environments, which is 

necessary for cognitive functions. An understanding of the physiological mechanisms 

that mediate unsupervised learning, or implicit learning, is fundamental to augmenting 

our knowledge of information processing in the brain. Many researchers have focused 

their attention on the study of unsupervised learning. However, the human brain has 

more than one hundred billion neurons, with countless complex connections between 

them; thus, the physiological mechanisms of unsupervised remain largely unknown. 

 

Theoretical studies in neuroscience 

Theoreticians have proposed various models of learning and memory, including 

models for associative memory, infomax-based learning in the sensory cortex, motor 

learning in the cerebellum, and reinforcement learning in the striatum [Dayan, Abbott, 

2001; Kistler, Gerstner, 2002]. Principal component analysis (PCA) [Oja, 1982] and 

independent component analysis (ICA) [Bell, Sejnowski, 1995, 1997] are represented 

using firing rate neuron models and can separate inputs into their individual components. 

Spiking neuron models show partial learning ability [Clopath et al, 2010; Gilson, Fukai, 
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2011; Gilson et al, 2012]. 

Large-scale simulations of neural networks have been achieved using computational 

approaches to reproduce the dynamics and functions of the brain [Markram, 2006; 

Izhikevich et al., 2004; Izhikevich, Edelman, 2008; Eliasmith et al, 2012] and to create 

artificial intelligence capable of performing cognitive tasks. Impressively, one such 

simulation using the large-scale neural network performed several types of cognitive 

tasks, including image recognition, reinforcement learning, and working memory 

[Eliasmith et al, 2012]. Recent progress in deep learning is also remarkable in 

considering how the brain exhibits higher cognitive functions [Hinton, Salakhutdinov, 

2006; Baccouche et al, 2011; Le et al, 2012; LeCun et al, 2015; Lotter et al, 2016]. 

 

The brain as an inference machine 

Inference means to guess unknown matters based on known facts or certain 

observations. In other words, inference is a process to draw conclusions through 

reasoning and estimation. In the ordinary sense of the word, inference is an act of the 

conscious mind, where consciousness is often considered as a state of self-awareness. 

Although the importance of consciousness for human cognition is obvious, however, it 

is widely known that most cognitive processes occur under the unconscious mind. 

Hermann von Helmholtz, a 19th century physicist/physiologist, coined the word 

‘unconscious inference.’ In his textbook, he described that 

“The psychic activities that lead us to infer that there in front of us at a certain 

place there is a certain object of a certain character, are generally not conscious 

activities, but unconscious ones. In their result they are equivalent to a conclusion, 

to the extent that the observed action on our senses enables us to form an idea as 

to the possible cause of this action.” [Helmholtz, Southall, 2005] 

Note that a word ‘conclusion’ is used as the meaning of inference. In this manner, 

Helmholtz noticed that the perception often requires inference by the unconscious mind. 

According to him, an important difference between conscious inference and 

unconscious inference is whether a conscious knowledge is involved in the process. For 

example, when an astronomer computes the positions of the stars in space or their 

distances based on the perspective images he has had at various times and from 

different parts of the orbit of the earth, he performs conscious inference, which is 
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“based on a conscious knowledge of the laws of optics. In contrast, in the ordinary acts 

of vision, this knowledge of optics is lacking” [Helmholtz, Southall, 2005]. Thus, the 

letter process is performed by the unconscious mind. In spite of such a difference, there 

is no doubt in the similarity between the results of conscious inference and unconscious 

inference. Therefore, similar to conscious inference, unconscious inference is crucial for 

cognitive processes under the unconscious mind to estimate the overall picture from 

partial observations. 

 

History of unconscious inference theory 

As described above, the word ‘unconscious inference’ was coined by Hermann von 

Helmholtz (Fig 1-1). He realized that human sensation is not precise; therefore, detailed 

information should be inferred by the unconscious mind to obtain a precise sensation 

[Helmholtz, Southall, 2005]. Helmholtz hypothesized that the brain continuously 

estimates and predicts the dynamics of the external world. Law of prägnanz in Gestalt 

psychology also indicates that people perceive objects that are close (or similar) to each 

other as forming a group, which is a kind of inference by the unconscious mind. 

In the 1990s, Peter Dayan developed the first machine learning model of unconscious 

inference, called the Helmholtz machine [Dayan et al, 1995]. He noticed that if animals 

have a model of the external world in their brain and they continuously optimized its 

parameters, they can infer the external world. This is termed as the internal model 

hypothesis. Thus, “perception is equated with the optimisation or inversion of this 

internal model, to explain sensory input” [Friston, Kiebel, 2009]. Let us consider an 

example of an internal model in the songbird brain, in which a listener bird listens to a 

singer bird’s song, and the singer bird generates the song using several brain regions 

and produces an output song using the vocal cords. It is known that a generative model 

of the songbird is given by a two-layered Lorentz attractor [Laje, Mindlin, 2002]. If the 

listener bird has an internal model of birdsong generation and optimizes its states and 

parameters, the bird can infer the dynamics of the song and predict what the next note 

will be [Friston, Kiebel, 2009]. 

In the 2000s, Karl J. Friston proposed a mathematical foundation of unconscious 

inference based on the Helmholtz machine, called the free-energy principle [Friston, 

2006, 2008, 2010], which is a strong candidate for a unified theory of higher brain 

functions. He believes that the principle will provide a unified framework of higher 
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brain functions including perceptual learning [Friston, 2008], reinforcement learning 

[Reynolds et al, 2001], motor learning [Kilner et al, 2007; Friston et al, 2011], 

communication [Friston, Frith, 2015a, 2015b], emotion, mental disorders [Fletcher, 

Frith, 2009; Friston et al, 2014], and evolution. Here, a surprise of input is considered as 

the criterion of unpredictability. 

 

 

 

 

 
Figure 1-1. History of unconscious inference. The photograph of Helmholtz is reprinted 

from Wikipedia. Input surprise –log p(y(t)| m) is defined by the rarity of inputs, e.g., 

when you see a chicken flying in the sky, the surprise of the visual input is very high. 

The goal of the free-energy principle is to minimize the input surprise. 
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1.2 The free-energy principle 
 

Information theory 

Information is defined as the negative log of probability. If I suppose that p(s) is the 

probability of a given sensory input, the information in the sensory input is given by 

–log p(s) [nat], where nat is a unit of information (1 nat = 1.4427 bits). Here, –log p(s) 

is termed as the ‘surprise’ of the sensory input. For example, a visual input such as that 

of a chicken flying across the sky has a high surprise value since we have never seen 

such a scene. The expectation of surprise over p(s) gives the Shannon entropy H[p(s)] = 
〈–log p(s)〉p(s) [nat] [Bishop, 2006]. Note that 〈●〉p(s) refers to as the expectation over p(s), 

〈●〉p(s) = ∫ ● p(s)ds. In the 20th century, Schrödinger assumed that living things minimize 

the entropy in their body in order to survive [Schrödinger, 1992]. In other words, living 

things minimize the amount of entropy received from the external world, which is 

consistent with the minimization of H[p(s)]. Indeed, from the viewpoint of 

self-organization, the entropy reduction for maintenance of life and that for perception 

and recognition can be considered in a unified manner [Friston, 2013]. 

The change from a system where s could take two states with the same probability to 

a system where s could take only one state deterministically decreases 1 bit of entropy. 

Thus, the brain memorizes the 1-bit information. In other words, the brain state 

corresponds to 1 bit of the external world state. For the continuous system, I assume a 

constraint to avoid divergence; I will refer to this constraint as energy. Energy should 

have a unit of information; the information loss increases if a state goes away from the 

energy landscape. 

Mathematically, the mutual information between the brain and the external world 

states is defined by I[φ, ϑ] = H[pφ(φ)] + H[pϑ(ϑ)] – H[p(φ, ϑ)], where φ is the brain state 

and ϑ is the external world state [Bishop, 2006]. Note that p(φ, ϑ) is the joint probability 

of φ and ϑ, and pφ(φ) and pϑ(ϑ) are their marginal distributions. If the brain state is 

completely independent of the external world state, I[φ, ϑ] = 0 holds. In contrast, if the 

brain state represents only the external state, H[p(φ, ϑ)] = H[pϑ(ϑ)] ≥ H[pφ(φ)] and 

consequently I[φ, ϑ] = H[pφ(φ)] holds. In this manner, the information about the 

external world stored in the brain is described using I[φ, ϑ]. However, the following 
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requirement becomes obvious: 

Requirement 1 (unsupervised): 

Information that the brain can access consists only of the sensory input. 

Thus, animals have to increase I[φ, ϑ] without the knowledge of ϑ since animals often 

have difficulty to observe ϑ directly; thus, I will refer to ϑ as hidden states. Accordingly, 

animals might use DKL[pφ(ϑ)|| pϑ(ϑ)] and –log p(s), where s is the sensory input, instead 

of using I[φ, ϑ] directly to recognize the external world. Indeed, if I assume κ is the 

inverse of the signal-noise ratio, I originally find that the relationship of I[φ, ϑ] ≈ 

κ–2(κN/2 – DKL[pφ(ϑ)|| pϑ(ϑ)]) [nat] holds. See Supplementary Information S1.1 for 

derivation details. In this equation, pφ(ϑ) is referred to as the recognition density (or the 

posterior) which expresses the internal model, while pϑ(ϑ) is the prior which expresses 

the prior knowledge regarding the hidden states of the world. Both pφ(ϑ) and pϑ(ϑ) are 

stored in the brain, and ϑ are updated through sensory inputs s. Thus, the equation 

describes that mutual information between the brain and world states can be 

approximated through sensory inputs. Moreover, a pair containing an agent and an 

environment can be considered as a kind of thermal bath from a viewpoint of physics. 

Thus, it is the physical nature of the agent due to which it minimizes the Helmholtz free 

energy. 

 

The free-energy principle 

In the beginning of the 21st century, Friston developed a mathematical foundation of 

unconscious inference, called the free-energy principle [Friston, 2006, 2008, 2010]. He 

proposed that the principle will be a unified theory of higher brain functions including 

perception [Friston, 2008], motor control [Kilner et al, 2007; Friston et al, 2011], 

reward related learning (conditioning) [Reynolds et al, 2001], social interaction [Friston, 

Frith, 2015a, 2015b], and even evolution. Each of these functions is fully described by 

the unified rule, namely the input surprise minimization. First, the goal is the 

minimization of surprise in the sensory input s, given model m, –log p(s| m), where 

model m refers to as the prior knowledge of the external world dynamical model 

[Friston, 2006]. Thus, the principle hypothesizes that animals minimize the input 
surprise to optimize their perception and behavior. Note that 〈–log p(s| m)〉p(s) is always 

larger than or equal to 〈–log p(s)〉p(s) because of the non-negativity of the 
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Kullback-Leibler divergence DKL[p(s)|| p(s| m)] ≥ 0 [Bishop, 2006], where p(s) is the 

true probability density of the sensory input (Fig 1-2). 

Since s is generated by the external world generative model, it is better to consider 

p(s, ϑ| m) for better inference, where ϑ is the external world invisible (hidden) state 

(including hidden variables, parameters, and hyper-parameters). To deal with the hidden 

state ϑ, one strategy could be to develop the internal model in the brain [Dayan et al, 

1995; Friston, 2006, 2008, 2010; George, Hawkins, 2009; Bastos et al, 2012], where the 

internal model is defined as an estimation model of the generation of input signals 

established through unsupervised learning. Unfortunately, –log p(s| m) = –log ∫p(s, ϑ| 

m)dϑ, which is the cost function of restricted Boltzmann machine (RBM) [Smolensky, 

1986; Hinton, 2002], is intractable for animals, since they have to deal with the integral 

of p(s, ϑ| m) placed in the logarithm function. 

The principle hypothesizes that animals calculate an upper bound of –log p(s| m) 

instead, that is tractable for animals. In this manner, the free energy F is defined by 

F(s, q(ϑ); t) = –log p(s| m) + DKL[q(ϑ) || p(ϑ |s, m)],     (1.1) 

where q(ϑ) is the recognition density––the probability density of the internal model in 

the brain [Friston, 2008, 2010]. Formally speaking, q(ϑ) is obtained by substituting φ = 

ϑ into the probability density of the brain state given input s, q(ϑ) = pφ(φ| s)|φ=ϑ = pφ(ϑ| s). 

Due to the non-negativity of the Kullback-Leibler divergence DKL[q(ϑ) || p(ϑ |s, m)] ≥ 0, 

F provides an upper bound of –log p(s| m) (Fig 1-2). Thus, DKL[q(ϑ) || p(ϑ |s, m)] 

indicates the difference between actual probabilities of hidden states p(ϑ |s, m) and their 

expected probabilities q(ϑ). 

Based on the definition of the Kullback-Leibler divergence (DKL[q(ϑ) || p(ϑ |s, m)] = 
〈log q(ϑ) – log p(ϑ| s, m)〉q(ϑ)), the free energy is transformed to F(s, q(ϑ); t) = 〈–log p(s, 

ϑ| m) + log q(ϑ)〉q(ϑ). Here, I define the first term as Gibbs energy (or the internal energy) 

G(s, ϑ; t) = –log p(s, ϑ| m), which refers to as the amplitude of the prediction error at a 

given moment [Friston, 2008, 2010]. The second term is the Shannon entropy, H[q(ϑ)] 
= 〈–log q(ϑ)〉q(ϑ). Therefore, I obtain 

F(s, q(ϑ); t) = 〈G(s, ϑ; t)〉q(ϑ) – H[q(ϑ)].      (1.2) 

The first term of Eq. (1.2), the expectation of G over q(ϑ), represents the error of 
estimation. Optimization of 〈G(s, ϑ; t)〉q(ϑ) is the same as the maximum a posteriori 
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(MAP) estimation (or the maximum likelihood estimation in the case that a prior has a 

uniform distribution) [Bishop, 2006]. Thus, the first term represents the homeostasis of 

a biological system allowing it to adapt to its environment, while the second term 

represents the diversity (or exploration) of the inner states. To minimize the free energy 

with a condition of low background noise, it is necessary to maximize H[q(ϑ)], and thus 

maximize the independence of the inner state. As indicated by Jaynes, the maximization 

of entropy H[q(ϑ)] is crucial to biological systems [Jaynes, 1957a, 1957b]. Specifically, 

the maximization of H[q(ϑ)] is essential for blind source separation (the inference of 

hidden causes) because the optimal parameters that minimize the prediction error are 

not always determined identically, and the MAP estimation is not always found with 

parameters that separate the sensory inputs into independent hidden sources. Therefore, 

free-energy minimization is the rule to simultaneously minimize the prediction error and 

maximize the independence of the inner states. 
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Figure 1-2. A schematic image of energy level. Because of the non-negativity of the 
Kullback-Leibler divergence, 〈–log p(s| m)〉p(s) is always larger than or equal to 〈–log 

p(s)〉p(s) and F provides an upper bound of –log p(s| m). € 

− log p s(t)( )
p(s(t ))

= H p s(t)( )[ ]
��������������

€ 

1
T

−log p s(t) |m( )dt
0

T
∫

�����������������
���

������������

€ 

1
T

F q ϑ( ),s;t( )dt
0

T
∫

€ 

1
T

DKL q ϑ( ) || p ϑ | s(t)( )[ ]dt
0

T
∫ ≥ 0

€ 

DKL p s(t)( ) || p s(t) |m( )[ ] ≥ 0

�
��
��
�
	
�
��
�
��
�
�
�
��

�
��
�
�
�
��
��
��
��
�

�
��
��
��
��
��
�

�
��
�



 14 

 

Hypothesized generative and internal models 

Under the free-energy principle, perception and learning indicate the optimization of 

the internal model that mimics the generative model of the external world dynamics. I 

suppose the external world generative model to be described as 

x
�
 = f(x, v; θ) + w, 

s = g(x, v; θ) + z, 

vi ~i.i.d.~ pv(vi), 
w ~ N[w; 0, Σw(λ)] where 〈w(t)w(t’)T〉 = Σwδ(t–t’), 

z ~ N[z; 0, Σz(λ)] where 〈z(t)z(t’)T〉 = Σzδ(t–t’),     (1.3) 

where s is the sensory input, x is the hidden state, v is the source, w and z are the noises, 

θ is a set of parameters, λ is a set of hyperparameters, and f and g are nonlinear 

functions. Sources v and noises w and z are supposed to be random variables that follow 

pv(v) = ∏i, pv(vi), pw(w) = N[w; 0, Σw(λ)], and pv(v) = N[v; 0, Σv(λ)], respectively. Such 

an approach considering the generative and internal models is referred to as dynamic 

causal modeling (DCM) [Friston, 2008]. I define errors by εx = Dx – f and εv = s – g. A 

set of x and v will be referred to as u = (x, v). Under the assumption of such a generative 
model, the first and second terms of free energy 〈G(s, ϑ)〉q(ϑ) and H[q(ϑ)] can be 

explicitly calculated (see S1.2 for details), where ϑ is a set of hidden states ϑ = {u, θ, λ}. 

Moreover, I hypothesize that recognition densities are represented as q(ϑ) = q(u) q(θ) 

q(λ) (the mean field approximation) and they respectively follow q(u) = N[u; µ, Cu], 

q(θ) = N[θ; θ, Cθ], and q(λ) = N[λ; λ, Cλ] (Laplace approximation). Note that µ, θ, and λ 
are the expectations of u, θ, and λ, respectively, and Cu, Cθ, and Cλ are their covariance 

matrices. This is a mathematical representation of the internal model. 

The free-energy principle predicts that µ, θ, and λ are established in a manner to 

minimize the free energy, such that µ = arg min F(µ, θ, λ), θ = arg min F(µ, θ, λ), and λ 

= arg min F(µ, θ, λ). According to the gradient descent scheme, I obtain update rules for 

µ, θ, and λ as the following: 

µ
�
 ∝ Dµ – Vu(u)u|µ=u ≈ Dµ – F(µ, θ, λ)µ, 

θ
�
 ∝ –Vθ(θ)θ|θ=θ ≈ –F(µ, θ, λ)θ, 
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λ
�
 ∝ –Vλ(λ)λ|λ=λ ≈ –F(µ, θ, λ)λ,       (1.4) 

where Vu(u) = 〈U(s, ϑ)〉q(θ,λ), Vθ(θ) = 〈U(s, ϑ)〉q(u,λ), and Vλ(λ) = 〈U(s, ϑ)〉q(u,θ) are the 

variational energies and are approximately equal to F(µ, θ, λ) except the constant term. 

Dµ indicates the original trajectory without perturbation, while µ is the change in µ’s 

trajectory after the perturbation by Vu(u)u|µ=u. This procedure for updating states, 

parameters, and hyper-parameters is referred to as dynamic expectation maximization 

(DEM) [Friston, 2008]. 

 

The free-energy principle, the internal model hypothesis, and neurophysiology 

The relationship between cortical microcircuits and predictive coding model has been 

investigated [Bastos et al, 2012]. The predictive coding model is consistent with 

previous biological knowledge and proposes the function of these microcircuits. 

Moreover, it is known that spontaneous prior activity of a visual area learns the 

properties of natural pictures [Berkes et al, 2011]. A recent study showed that cortical 

neurons in rodents code hidden states in accordance with the Bayesian brain hypothesis 

[Funamizu et al, 2016]. These results suggest that the free-energy principle is plausible 

as the theory of higher brain functions. 
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1.3 Problems of the free-energy principle 
 

The free-energy principle is deterministically a good theory from a psychological 

point of view (or information, theoretical, and engineering points of view). From the 

free-energy principle, it is hypothesized that (Hypothesis 1) all the learning rules in the 

brain can be defined as a derivative of a common cost function, which is referred to as 

the free energy F [Friston, 2008, 2010]. Accordingly, the free-energy principle can 

unify learning mechanisms of various cognitive functions including pattern 

memorization, probability learning (Pavlovian learning), and dynamics (sequence) 

learning. However, in order for the free-energy principle to be a physiologically 

plausible theory in the brain, the principle needs to satisfy certain physiological 

requirements and verify the applicability to complicated and realistic situations. I will 

point out three major problems in the free-energy principle as the followings: 

 

[1] Problems of Fristonian neurophysiology: a lack of physiological evidence 

Although the free-energy principle is a simple and plausible rule from an information 

theory perspective, there are several problems with it from a biological point of view. 

First, electrophysiological data that elucidate the neural and synaptic bases of this 

theory are lacking. 

Fiorillo criticized the free-energy principle for the paucity of electrophysiological 

evidence at the levels of microcircuits, neurons, and synapses [Fiorillo, 2010]. The 

free-energy principle can explain the functional aspects of higher brain functions. 

Although some laminar-specific structures in the cortex are consistent with predictive 

coding based on the free-energy principle [Bastos et al, 2012], there is little 

physiological evidence given the difficulty of recording neuron-neuron interactions in 

vivo. Therefore, it is necessary to directly observe the learning (or self-organizing) 

processes of unconscious inference using actual neural networks. 

Ambiguity in the structures of the internal model (the recognition model) is an 

additional problem. It is unclear how neural networks encode sensory information when 

they obtain new recognition models. The older unsupervised learning models (PCA and 

ICA) employ the inverse recognition model that learns the inverse of a matrix in the 
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generative model [Oja, 1982; Bell, Sejnowski, 1995, 1997]. On the other hand, newer 

models (the sparse coding model, RBM, and the predictive coding model) use the 

feed-forward recognition model that learns the mixing matrix itself [Olshausen, 1996; 

Olshausen, Field, 1997; Hinton, Salakhutdinov, 2006; Friston, 2008, 2010]. It is 

possible that neural networks use both the models for learning, although Friston and 

colleagues only discussed the feed-forward model [Friston, 2008, 2010; Bastos et al, 

2012]. For instance, the activity of actual neural networks does not always converge 

into an equilibrium state with the input stimulation, since actual neural networks tend to 

generate spikes synchronously, while the feed-forward models require equilibrium of 

the inner states. Therefore, the feed-forward model may not be appropriate in the 

synchronous-input case. It will be necessary to find biologically plausible structures or 

models of networks that can explain the free-energy principle in actual neural networks. 

Moreover, the learning rule hypothesized by the free-energy principle is not plausible 

either. The learning rule should be explained using the biologically plausible Hebbian 

plasticity [Hebb, 1949], such as STDP [Markram et al, 1997; Bi, Poo, 1998]. Although 

the free-energy principle appears to be consistent with various behaviors (at the systems 

or macro levels) and cortical microcircuits structures (at the circuit or mesoscopic 

levels), it is debatable whether the free-energy principle can explain the dynamics of 

neurons and synapses (at the cellular or micro levels). The free-energy principle 

hypothesizes that the parameters in the internal model are represented by synaptic 

strengths, which are established through a Hebbian-like update rule [Friston, 2008]. 

Recent studies report an essential role of GABAergic transmission in modulating 

Hebbian plasticity to an anti-Hebbian (or STDP to anti-STDP) manner [Hayama et al, 

2013; Paille et al, 2013]. Such modulation may be important while considering a 

biologically plausible learning rule for unconscious inference. 

 

[2] Local learning rule: a physiological constraint on update rules 

As described above, the internal model hypothesis explains a functional aspect 

alone––conventional models have problems that can be implemented by actual neural 

networks. The neuronal mechanisms by which the neural network implements the 

internal model are largely unclear. Importantly, neurons communicate through firing 

(spiking) activity. Therefore, the information that neurons can access only comprises the 

activities of other neurons connected to them via synapses (local information): 
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Requirement 2 (locality): 

The only information that neurons can access is local information. Here, local 

information is defined as the firing information of the connected neurons, which the 

neurons can access through synaptic connections. Therefore, any learning rule 

employed by neurons must be a local learning rule using only local information. 

Unfortunately, the DCM (mainstream kind of modeling based on the free energy 

principle [Friston, 2008]; see also the previous section) uses a non-local learning rule. 

However, given this requirement, I newly hypothesize that (Hypothesis 2) any learning 

rule derived from the free energy must be a three-factor learning rule [Frémaux, 

Gerstner, 2016], which is a biologically popular local learning rule in the literature of 

reinforcement learning [Reynolds et al, 2001], and be physiologically implemented by 

neuromodulated Hebbian plasticity [Pawlak et al, 2010]. 

 

[3] Reliability in establishing internal models under complicated environments 

Considering that generative models in the real world have nonlinear and hierarchical 

structures, the theory of unconscious inference has to address them. However, it remains 

unclear whether and how the internal model can stably identify the nonlinear and 

hierarchical dynamical systems. Although dynamic causal modeling (DCM) under the 

free-energy principle [Friston, 2008] has addresses these issues, theoretical studies that 

guarantee the stability and reliability of solutions are lacking. Indeed, when the cost 

function has many local minima, an efficient global search is required to avoid local 

minima and reach a global minimum, while the current studies use a simple gradient 

descent approach that is weak to local minima [Friston, 2008]. 

Moreover, in the real world, there are often more than two agents existing 

simultaneously. However, the free-energy principle has not been successful in 

addressing the multi-agent problems yet, while it typically consider interactions 

between an agent and the external world [Kilner et al, 2007; Friston et al, 2011], or 

between two agents [Friston, Frith, 2015a, 2015b]. 

 

Taken all together, I have pointed out three major problems in the free-energy 

principle; [1] physiological evidence that shows the existence of learning or 

self-organizing processes under the free-energy principle is lacking; [2] the update rule 
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must be a biologically plausible local learning rule, while the current rule is non-local; 

and [3] the unconscious inference theory must be applicable to complicated 

environments including nonlinear and hierarchical dynamics and interactions between 

multiple agents. 

Accordingly, it is necessary to investigate how actual neural networks infer the 

dynamical system or the generative model behind the sensory input, and to develop a 

biologically plausible mathematical algorithm (learning rule) through which the actual 

neural network might implement the internal model in a manner consistent with the 

physiological experimental observations. 
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1.4 Purpose 
 

As described above, theoreticians hypothesize that the brain develops an internal 

model that mimics the external world generative model to perform unconscious 

inference according to the input surprise (free energy) minimization. Thus, the 

hypothesis will provide a unified theory of higher brain functions including perceptual, 

reinforcement, and motor learning. However, the hypothesis only explains the 

functional aspects, and the mechanism through which the neural network implements 

the internal model in a physiologically plausible manner is not understood. Therefore, 

the neuronal mechanism mediating the implementation of unconscious inference 

through the modification of synaptic strengths is largely unclear. Therefore, the 

purposes of this thesis are as follows: 

Purpose 1: 

To test the hypothesis that “even simple neural networks can perform unconscious 

inference by developing the internal model through neuromodulated Hebbian 

plasticity”. 

Purpose 2: 

To develop a local learning algorithm through which neural networks can develop 

the internal model for the stochastic dynamical system. 

Purpose 3: 

To demonstrate the usefulness of the multiple internal model for efficient global 

search and inference of complicated environments. 

To examine these hypotheses, I will conduct the following in vitro experiments in 

addition to developing mathematical models. 

 



 21 

 

1.5 Approach 
 

This thesis is divided into 5 chapters. In Chapter 1, I summarized the history of 

studies of unconscious inference and identify the problems and gaps in the current 

knowledge. Next, I mentioned the purposes of this thesis. 

 

In Chapter 2, I will examine whether cultural neural networks satisfy the 

requirements stated earlier. This is a so-called constructive approach, which is 

bottom-up approach to develop a system in order to understand the mechanism and 

requirements of the system. Using the constructive approach, it is possible to 

reconstruct a part of the functions, which I term as ‘cognitive-like functions,’ within 

cultured neural networks. Many studies have identified the properties of learning and 

memory in cultured neural networks. For example, cultured neural networks 

demonstrate pathway-specific synaptic plasticity induced by local tetanic stimulation 

[Jimbo et al, 1999], supervised learning and adaptation in response to input signals 

[Shahaf, Marom, 2001; Eytan et al, 2003], pattern recognition and associative memory 

[Ruaro et al, 2005], and behaving as logistic gate devices and diodes [Feinerman, Moses, 

2006; Feinerman et al, 2008]. Dissociated networks of cultured neurons do not maintain 

their natural biological structure; however, these previous studies suggest that cultured 

neurons are capable of learning and memory processes. 

In this chapter, I will explore biologically plausible models and rules that establish 

the internal model using dissociated cultures of the rat cerebral cortex. I will investigate 

the changes in the evoked responses of neurons to electrical stimulation, particularly 

focusing on tasks of blind source separation and MAP estimation, both of which are 

requirements of system identification and generative model inference. 

First, I will reproduce the system identification ability in cultured neural networks. 

Next, I will determine the learning model that is employed, and calculate the free 

energy values for the system, using the estimated connection strengths from the evoked 

responses. Finally, I will determine the learning rules and pharmacologically examine 

how GABAergic input influences the learning processes to investigate the physiological 

mechanism. 
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In Chapter 3, I will discuss the learning theory for neural networks. Computational 

modeling is also an example of a constructive approach. In order to fully understand the 

nature of the inference, a theory that can explain and predict neural dynamics and 

behavior is required. 

In Section 3.2, I will summarize a local learning rule for ICA that I developed. In 

Section 3.3, I will develop a novel local learning rule for PCA and ICA. In Section 3.4, 

I will apply the rule to temporally decompose, memorize, and predict the input sequence. 

In Sections 3.5 and 3.6, I will apply the learning rule to multi-context processing and 

nonlinear blind source separation. Finally, I will discuss the relationship between the 

proposed models and the free-energy principle. 

 

In Chapter 4, I will study the approaches to tackle nonlinear system identification. 

First, I will calculate the cost for global search using random and local searches. Next, I 

will calculate the cost while using the crossover search algorithm. Finally, I will 

propose a multiple internal model to infer the mind of another individual. 

 

In Chapter 5, I will describe the highlights of this thesis. 
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Chapter 2 

Neuronal system identification 
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Because the contents of Chapter 2 will be published from a scientific journal soon, 

they will not be published on the internet for five years. 
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Chapter 3 

Local learning rule for unconscious 

inference 
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Because the contents of Chapter 3 will be published from a scientific journal soon, 

they will not be published on the internet for five years. 
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Chapter 4 

Multiple internal model 
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Because the contents of Chapter 4 will be published from a scientific journal soon, 

they will not be published on the internet for five years. 
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Chapter 5 

Discussion and conclusion 
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5.1 Discussion 
 

The free-energy principle is a candidate unified theory of unconscious inference 

[Friston, 2010]. However, as I pointed out in Section 1.3, three major problems exist, 

which I repeat in Table 5-1 left. To solve them, I conducted electrophysiological 

experiments and theoretical studies in Chapters 2–4 (Table 5-1 middle column). 

In Chapter 2, I observed that cultured neural networks could perform blind source 

separation, predictive coding, and stochastic dynamical system identification (Table 5-1 

top). I explicitly showed that these learning processes were followed by the free energy 

reductions as predicted by the free-energy principle. These results provide the first 

formal evidence of neuronal self-organization under the free-energy principle. 

Moreover, these learning processes were possibly mediated by GABA-modulated 

Hebbian plasticity. 

In Chapter 3, on the basis of observations in Chapter 2, I developed a local 

three-factor learning rule, error-gated Hebbian rule (EGHR), which is consistent with 

GABA-modulated Hebbian plasticity [Nishiyama et al, 2010; Hayama et al, 2013; Paille 

et al, 2013; Müllner et al, 2015] and heuristically derived from the free-energy principle 

through an approximation to meet the requirement of the locality (see Section 3.7). I 

demonstrated that the EGHR can perform PCA, ICA and MAP estimation while a 

generative has recurrent dynamics, nonlinear transformations, and hierarchical 

structures, and even when several generative models switch from time to time (Table 

5-1 middle row). Taken together, the EGHR can be a biologically more plausible 

alternative of a currently mainstream non-local update rule under the free-energy 

principle [Friston, 2008]. 

In Chapter 4, I showed that the multiple internal model is useful for the efficient 

global search and the inference of complicated environments (Table 5-1 bottom). In 

Section 4.1, I estimated the expectation of calculation costs of optimization problems 

when cost functions can be expanded into a Fourier series and proposed an optimal 

searching algorithm based on multiple internal models, which enables to enhance the 

global search efficacy of optimal hidden states and parameters under the free-energy 

principle. In Section 4.2, I proposed an application of the multiple internal model to 
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infer multiple generative models or another’s mind and solve a self-other distinction 

problem. 

Taken all together, I succeeded to solve these problems and enhance the biological 

plausibility and the reliability of the free-energy principle. 

 

 

 

Table 5-1. Summary of results. 

 Problem Purpose Result 

 

 

[1] 

Ch 2 

Physiological evidence 

that shows the existence 

of learning or self- 

organizing processes 

under the free-energy 

principle is lacking. 

To examine whether 

simple neural networks 

perform unconscious 

inference by developing 

the internal model 

through neuromodulated 

Hebbian plasticity”. 

Cultured neural 

networks could perform 

inference of dynamical 

systems, which reduced 

free energy and might 

be mediated by GABA- 

modulated Hebbian rule. 

 

 

[2] 

Ch 3 

The update rule must be 

a biologically plausible 

local learning rule, 

while the current rule is 

non-local. 

To develop a local 

learning algorithm 

through which neural 

networks can develop 

the internal model for 

the stochastic dynamical 

system. 

The proposed local 

three-factor learning 

rule, or the EHGR, can 

perform inference over a 

wide range of generative 

models. 

 

 

[3] 

Ch 4 

The theory must be 

applicable to complex 

environments including 

many local minima and 

interactions between 

multiple agents. 

 

To demonstrate the 

usefulness of the 

multiple internal model 

for efficient global 

search and inference of 

complex environments. 

The multiple internal 

model can accelerate a 

speed of a global search, 

separately infer multiple 

generative model, and 

solve a self-other 

distinction problem. 
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5.2 Conclusion 
 

Unconscious inference and the free-energy principle are well-established theories in 

psychology and theoretical neuroscience; however, there has been little physiological 

evidence that neuronal microcircuits perform them. Main discoveries of this thesis are 

as follows: 

Conclusion 1: 

Cultured neural networks can develop the internal model and perform unconscious 

inference of stochastic dynamical system, including blind source separation, 

predictive coding, and stochastic dynamical system identification, which reduces free 

energy as predicted by the free-energy principle. It is suggested that the 

state-dependent Hebbian plasticity mediated by GABAergic input underlies this 

learning process. 

Conclusion 2: 

The proposed local three-factor learning rule, or the EGHR, is heuristically derived 

from the free-energy principle and can perform unconscious inference of a wide 

range of stochastic dynamical systems in a biologically plausible manner, which is 

consistent with my observations as well as recent physiological findings. 

Conclusion 3: 

The multiple internal model enables to enhance the global search efficacy of 

optimization problems and to infer multiple generative models. The latter is useful for 

inferring another’s mind and solving a self-other distinction problem. 

My results indicate that biological neural circuits perform unconscious inference similar 

to how machine learning proceeds in computers. These results will not only lead to a 

better understanding of the nature of learning in the brain, but also suggest that 

intelligence can emerge with properties common to the biological nervous system and 

computers. In the future, I plan to further explore the nature of intelligence by using 

both biological systems and machine learning approaches. 
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