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Abstract

In the era of multicore processors, the area and energy efficiency of out-of-order

superscalar processor cores is all the more important. It is because a multicore pro-

cessor with more efficient cores can have a larger number of cores, and consequently

more computational power. However, the region that includes the register file is

one of the hot spots, and limits the computational power of the cores.

The area and energy consumption of the register file is proportional to the square

of the number of ports. Thus, reducing its ports is effective to downscale the

register file, and a number of techniques have been proposed to do so. This thesis

mainly focuses on the two techniques, introducing a register cache, and multi-

banking the register file.

First, the author designed a register cache system in detail. The register cache

is a cache for the main register file. Compared with the original register file, the

register cache is smaller because it has a smaller size1; the main register file is

smaller because it has fewer ports. However, conventional register cache systems

suffer from low IPC (Instructions Per Cycle) due to register cache misses. Shioya,

et al. solved this problem with Non-latency Oriented Register Cache System

(NORCS). Researchers in NVIDIA adopted this idea for their GPUs.

However, they did not show detailed design of NORCS. The original article

evaluated NORCS from the viewpoint of microarchitecture, and used CACTI, a

design space exploration tool for usual instruction/data caches (not for register

caches). In contrast, the authors designed NORCS with FreePDK45, an open

source process design kit for 45 nm technology, for detailed evaluation from the

viewpoint of LSI design.

The results with FreePDK45 are consistent with that of the original article. The

author also performed SPICE simulations with RC parasitics to precisely estimate

1counted in the number of bytes, or the number of entries because the word size can be

considered as 8B (= 64b) in this area.
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the latency of the register cache system.

Second, the author proposes the two architectural techniques for multibank-

ed register files. Multibanking is the ultimate way to reduce the register file

ports. Multibanking divides one n-port register file into n (or more) single-port

banks while maintaining the throughput. Although multibanking achieves the

minimum number of ports (i.e., 1), pipeline disturbance caused by bank conflicts

can considerably degrade the IPC. To reduce the bank conflict probability of

multibanked register files, this thesis shows the two microarchitectural techniques;

one is Bank-Aware Instruction Scheduler (BAIS), and the other is Skewed

Multistaged Multibanked Register File (MStage).

BAIS schedules the instructions so that no bank conflict occurs in the stages

to read/write the register file. The idea of bank-aware scheduling itself is not

new. Prior studies briefly mentioned the possibility of bank-aware scheduling, or

rejected it because it could increase the latency. On the contrary, the author

shows an implementation of BAIS and clarifies that the latency of the logic is not

practically increased. Although bank-aware scheduler uses as many arbiters as the

number of banks, they do not practically prolong the latency because they work

in parallel.

In contrast, MStage is a totally new microarchitecture. MStage has two stages

to read the bank of the multibanked register file, and an instruction that missed

the bank because of a bank conflict still has a second chance to read the same

bank in the second stage. As a result, MStage drastically reduces the pipeline

disturbance caused by bank conflicts. This thesis also shows the analytic solutions

for the pipeline disturbance probabilities of several multibanked register files.

The evaluation results show that, from NORCS, BAIS with 24 banks achieves a

23.6% and 61.8%, and MStage with 18 banks achieves a 40.6% and 68.9% reduction

in area and in energy consumption, while maintaining a relative IPC of 97.2% and

97.3%, respectively. In summary, NORCS, BAIS, andMStage show higher efficiency

in area and energy consumption in ascending order.
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Chapter 1

Introduction

1.1 Background

According to the published results of SPEC CPU [3], in the 1990s, the best scores

had been improved by approximately 40% per year, keeping pace with an increase

in the clock frequency. However, this increase in the clock frequency has been

almost stopped. Nevertheless, since the 2000s, the best scores improved by more

than 20% per year even without the increase in the clock frequency [4]. The

primary factor behind this improvement is an increase in the width of high-end

superscalar cores. Recently, 8-issue cores, such as the IBM POWER8, and Intel

Haswell and Skylake, have come onto the market [5–8]. In the papers only few

years ago, 8-issue cores were called “ultra-wide” [2].

Register File Composed of a Multiport RAM

Such ultra-wide cores, however, suffer from increased area and energy consump-

tion of the register file.

Wide cores require a large number of register entries proportional to the number

of in-flight instructions. In addition, multithreaded cores require a number of

registers proportional to the number of threads.

Besides, the circuit area of a register file composed of a multiported RAM is pro-

portional to the square of the number of its ports [9–11]. An i-issue core generally

requires a 2i-read+i-write (i.e., 3i-port) register file.

1
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INT RF INT RF

FP RF FP RF

L1DCache L1DCache

Figure 1.1: Bulldozer 2-Core Processor Module Die Photo (Cited from Fig. 4.5.7

of [1])

Example of Modern Processor Cores

Figure 1.1 shows a die photograph of the AMD Bulldozer 2-core processor module

processor, which is the most documented in recent processors [1, 12, 13]. The

integer core of the processor is a moderate-sized, non-multithreaded 4-issue one.

Nevertheless, as shown in this figure, the 96-entry integer register file with 8-read+

4-write (i.e., 12-port) is comparable with the 16KB level-1 data cache (L1D) in

area, even though their sizes are different 16K÷ (96×8) ≃ 21.3 times. This means

that the register file cell is approximately 20 times larger than the L1D cell in area.

Energy Consumption of Register File

Energy consumption and its resulting heat are two of the most serious bottlenecks

in recent cores [14]. The energy consumption of a RAM is proportional to its circuit

area and accessed frequency [9–11]. While L1D is accessed only once by load/store

instructions, the register file is accessed more than once for read and once for write

by almost all instructions. In addition, multi-threading increases the accessed

frequency in proportion to an increase in throughput. As a result, the register file

with a comparable area with L1D consumes much more energy than L1D. The

region that includes the register file is a hot spot in a core that limits the clock

frequency and the scale of the core.

This hot spot problem is becoming more serious, because downscaling the op-

erating voltage is becoming more difficult. In fact, the voltage range available for

DVFS is shrinking with each new process. In addition, the register file is one of
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the most sensitive modules to low voltage in a core [15]. Therefore, architectural

solution against energy and heat is more important than ever.

1.2 Reducing Register File Ports

Because its area and energy consumption is proportional to the square of the

number of ports, reducing its ports is effective to downscale the register files.

Therefore, some methods are proposed to reduce the ports of the register file.

These methods are categorized into the following three types.

Replicated register file If the register file is divided into some parts, the num-

ber of ports is reduced in exchange for a replication. Replicated register file is

already widely used for recent processors [5, 13,16–19].

Register Cache Register cache is a drastic method of reducing the register file

ports [2, 20–22]. Compared with the original register file, the register cache

is smaller because it has only 4 to 8 entries; the main register file is smaller

because it has only a few ports.

Multibanked Register File Multibanking is the ultimate method of reducing

the register file ports. With multibanking, even a register file composed of

minimum single-port cells has a potential to supply a sufficient throughput

as a register file. However, a considerable IPC degradation caused by bank

conflicts has never been solved.

Replicated Register File

The Bulldozer core shown in Figure 1.1 composes the 8-read+4-write integer

register file of a replicated pair of 4-read+4-write RAMs to reduce the ports

from 12 to 8 though the number of cells is doubled (Section 9.1). To be precise,

not a 8-read+4-write cell, but the pair of 4-read+4-write cells is approximately 20

times larger than a cache cell. Such replication is widely used for recent processors

[5, 13,16–19].

Register Cache

A register cache is a drastic method of reducing the register file ports [2,20–22].

Compared with the original register file, the register cache is smaller because it has

only 4 to 8 entries; the main register file is smaller because it has only a few ports.
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However, conventional register cache systems suffer from low IPC due to register

cache misses. The back-end pipeline is stalled when any of the register accesses

in a cycle cause a register cache miss. If the register cache miss rate per access is

5% and the number of accesses per cycle is 3, the stall probability is as high as

1− (1− 0.05)3 = 1− 0.857 = 14.3%.

To reduce this probability, Shioya, et al. proposed the non-latency-oriented reg-

ister cache system (NORCS) [2], which is the latest proposal on the register file

for area and energy efficiency, and researchers in NVIDIA adopted this idea for

their GPUs [21,22].

The NORCS pipeline is disturbed when register cache misses in a single cycle

exceed the main register file read ports. With the same number of accesses of 3

and register cache miss rate of 5%, the pipeline with 2-read-port main register file

is disturbed if all the 3 accesses miss the register cache, and the stall probability

is reduced from 14.3% to 0.053 = 0.0125%.

Multibanked Register File

Multibanking is the ultimate method of reducing the register file ports. In the

Bulldozer core, the 96-entry register file will be divided, for example, into 16 banks

of 6-entry RAMs composed of small cells such as of L1D. Because the original

(replicated) register file cell is approximately 20 times larger than the L1D cell,

multibanking can reduce the register file to ideally 1/20 in area and in energy

consumption. Then, the hot spot problem will be drastically mitigated.

However, multibanking is a technique typically used for the main memory of

vector processors, and not directly applicable to the register file of superscalar

cores because the IPC will be considerably degraded by bank conflicts. The

pipeline disturbance caused by bank conflicts is much higher than näıve intuition,

because the pipeline is disturbed when any of the banks causes a bank conflict.

The disturbance probability is P = 1 − (1 − p)b, where p is the per-bank conflict

probability and b is the number of banks. Increasing b does not decrease P very

much. In the example in Section 7.4, increasing b to 100 decreases p to 0.0298%,

but dose P only to 1− (1− 0.000298)100 ≃ 2.9%. Although an IPC degradation of

2.9% may be acceptable, b = 100 is unrealistic for the number of banks.

Although some techniques have been proposed to reduce bank conflicts without

increasing the banks [23–27], none of them solved the problem efficiently. Prior

studies cannot achieve feasible register file system composed of the minimum single-
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port cells.

1.3 Contribution of This Thesis

The contribution of this thesis is broadly divided into two parts. The first part is a

design of NORCS. The second part is two proposals on feasible microarchitectures

with multibanked register files. As far as the author knows, these two proposals

are the only feasible register file system composed of the minimum single-port cells.

The detailed contribution of this thesis is as follows:

1. LSI design of conventional register file and register cache systems.

Shioya, et al. used CACTI [11, 28, 29] to evaluate the area and energy con-

sumption of register cache systems. CACTI is a design space exploration tool

for caches. For a fast search for an optimal configuration in such a large design

space, CACTI performs a rough estimation unfavorable for LSI design. The

author shows more detailed design of register cache systems with FreePDK45,

an open source process design kit for 45 nm technology.

2. Bank-aware instruction scheduler (BAIS).

BAIS schedules the instructions so that no bank conflict occurs in the stages

to read/write the register file. The idea of bank-aware scheduling itself is not

new. Prior studies briefly mentioned the possibility of bank-aware scheduling,

or rejected it because of the increased latency [23, 30]. However, an imple-

mentation in this study clarifies that the latency of the logic is not practically

increased. However, the bank-aware scheduling is not as efficient as skewed

multistaging described below, the evaluation clarified the performance and the

limitations.

3. Skewed multistaging for a multibanked register file (MStage).

This is the most important contribution of this thesis. In this technique, reg-

ister file accesses that cannot obtain their operands because of bank conflicts

still have second chances in the second stage of the pipeline.

4. Analytic solutions and IPC, Area and Enegy evaluation.

The author presents analytic solutions for the stall probabilities of existing

and proposed techniques.

The author evaluated IPCs of the existing and proposed techniques by the

Onikiri 2 [31] simulator. The author found that the IPC of these models is

primarily determined by the number of register file accesses per cycle of a
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program.

The author also evaluated the area and energy consumption. The author used

the formula of CACTI for memory cell and performed logic synthesis for their

control circuits with the library of FreePDK15, FreePDK for 15 nm technology.

1.4 Organization of This Thesis

This thesis is broadly divided into two parts. The first part is composed of Chap-

ters 3 and 4, and shows design of NORCS. The second part is composed of Chap-

ters 5, 6 and 7, and proposes two techniques on multibanked register files. The

detailed organization is as follows:

A superscalar processor requires a large register file composed of a multiported

RAM. Chapter 2 explains why such a large register file is necessary and describes

other basic structures and behaviors of the register file. These characteristics

are preliminary knowledge for an explanation of register cache and multibanked

register file described in the following chapters.

Chapters 3 and 4 show design of NORCS.

Chapter 3 explains NORCS from the viewpoint of microarchitecture. This chap-

ter basically follow the original article [2].

Chapter 4 shows the design of NORCS (Non-latency-Oriented Register Cache

System).

This chapter also contains design of a conventional register file, and reveals the

basic characteristics of the conventional register files. A heavily multiported RAM

such as a conventional register file, generally needs a hierarchical bitline structure

in order to reduce its latency. This chapter helps to understand hierarchical bitline

structure and its characteristics.

Chapters 5, 6 and 7 propose two techniques on multibanked register files.

There is no standard implementation of a multibanked register file. Chapter 5

shows a possible plain multibanked register file. The author compares the proposed

techniques with the plain multibanked register file. This chapter also reveals the

basic structures and behaviors of the plain multibanked register file.

Chapter 6 describes the proposedBank-Aware Instruction Scheduler (BAIS).

An implementation in this chapter clarifies that the latency of the logic is not prac-

tically increased.

Chapter 7 describes the proposed Skewed Multistaged Multibanked Reg-
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ister File (MStage), which is the most important contribution throughout this

thesis. MStage has two stages to read the banks of the multibanked register file,

and an instruction that missed the bank because of a bank conflict still has a

second chance to read the same bank in the second stage. As a result, MStage

drastically reduces the pipeline disturbance caused by bank conflicts. The analytic

solutions are also presented for quantitative explanation of the drastic reduction

of the pipeline disturbance.

Chapters 8 and 9 describes the evaluations of the conventional and proposed

models. Chapter 8 shows the evaluation of IPC, and Chapter 9 shows the area and

energy consumption.

Chapter 10 finally concludes this thesis.





Chapter 2

Basics of Register File Systems

This chapter describes the basic structure and behavior of the register file in a

conventional superscalar core, which provide preliminary knowledge on a register

file to understand register cache and multibanked register file systems described in

the following chapters.

The register cache and multibanked register file systems reduce the register file

ports in exchange for infrequent pipeline disturbance caused by the port shortage.

Thus, this chapter details the operand bypass network because it has an extra role

to provide operands in place of the expensive ports in these systems. Methods to

resolve the pipeline disturbance is also discussed.

As mentioned in Section 1.1, a conventional register file is large because it is

composed of a multiport RAM. This chapter also explains the reason from the

viewpoint of LSI design.

This chapter is organized as follows: First of all, Section 2.1 explains the role

of the register file in the instruction pipeline of a superscalar core. Among the

stages in the pipeline, Sections 2.2 and 2.3 cover register renaming and instruction

scheduling, because they are important to understand the register file systems.

Then, Sections 2.5 and 2.6 explain the operand bypass network and pipeline dis-

turbance. Section 2.7 shows physical layout of multiport RAM cells for register

files, which provides a simple explanation for the reason why a register file becomes

large. Lastly, Section 2.9 describes related work to reduce register file ports.

9
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2.1 Register File in Pipeline

Figure 2.1 shows a block diagram of the instruction pipelines of a 2-issue out-of-

order superscalar core.

Pipeline Stages

Instructions proceed in each stage of the pipeline as follows:

Fetch First, instructions are fetched from the instruction cache.

Rename The operands of the instructions are renamed from the logical to the

physical register numbers. Section 2.2 gives a detailed explanation of this

register renaming.

Dispatch The renamed instructions are dispatched into the instruction window.

Sched The instructions dispatched in the instruction window are scheduled to be

issued. Section 2.3 gives a detailed explanation on this instruction scheduling.

Issue The scheduled instructions are read from the instruction window to be

issued for execution.

Read The issued instructions read their source operands from the physical reg-

ister file.

Exec The instructions are executed using the source operand values read from

the physical register file.

Exec
Units

D
eco

d
er 

D
ata A

rray

Read Exec WriteIssue

Bypass Network

Register File

Instruction
Window

Rename
Logic

Instruction
Cache

SchedRenameFetch

frontend backend

Dispatch

Figure 2.1: Frontend and Backend Pipeline of Superscalar Core
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Write The results of the executed instructions are written back to the physical

register file.

In recent cores, several cycles are allocated to the stages other than the execution

stage.

Frontend and Backend Pipelines

In modern out-of-order cores, the instruction pipeline is decoupled into the

frontend and backend pipelines by the instruction scheduling window. The

stages from fetch to dispatch and ones from schedule to writeback belong to the

frontend and backend pipelines, respectively.

Instructions flow through the frontend pipeline in order; are scheduled in the

instruction window; then, flow through the backend pipeline out of order. The

order of instructions is changed from in-order to out-of-order only once in the

sched stage. As detailed in Section 2.6, the positional relationship among all the

instructions in the backend pipeline must be preserved as issued because everything

has been arranged so that the issued instructions flow through the backend pipeline

in the issued order.

2.2 Register Renaming

Out-of-order cores resolve dependencies among instructions through the registers

in the rename stage.

Basics of Register Renaming

The operands of an instruction are renamed from logical to physical register

numbers as follows:

Allocation to Destination Operand A free physical register is allocated to

the logical register of the destination operand. This mapping is stored to the

register map table.

Resolution for Source Operands By reading the register map table, the phys-

ical registers currently allocated to the logical registers of the source operands

are resolved.

After this renaming, the instruction can proceed using the physical registers only.
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Allocation and Free of Physical Registers

The allocation of physical registers is simpler. The renaming logic picks up a

physical register from the free list of the physical registers, and allocates it to the

destination of each instruction in order.

In contrast, the free of physical registers is more complex, because the renaming

logic needs to know the timing when a physical register will never be read.

Suppose a preceding and a succeeding instructions Ipred and Isucc have the same

logical register as their destinations. That is, Isucc is to overwrite the result of Ipred.

The physical register allocated to the destination of Ipred can be freed when Isucc is

committed [32] for the following reason: When overwriting Isucc is committed, this

overwrite becomes irreversible, and succeeding instructions that have the same

logical register as their source operands will definitely read the result of Isucc.

Otherwise, that is, before the commitment of Isucc, there remains a possibility that

Isucc is cancelled (and not re-executed) because of a branch misprediction. In this

case, succeeding instructions in the correct path can read the result of Ipred.

Figure 2.2 shows two instruction flows of the same program which contains a

conditional branch (Ibcc). The left part shows the flow when Ibcc is untaken, and

the right part shows the flow when Ibcc is taken. In the figure, L1(P8) denotes a

physical register 8 is allocated to a logical register 1. On the left part, Iq overwrites

the result of Ip, and it is never referred after the branch. On the right part, Iq is

not executed, and the result of Ip is referred by Id.

When Ibcc is predicted as untaken by a branch predictor, L1(P8) is overwritten

Ibcc is predicted untaken Ibcc is actually taken

Ip L1(P8) = ...

Ibcc

Iq L1(P9)

=Ic …

= ...

L1(P9)

Ip L1(P8) = ...

Ibcc

=Id … L1(P8)

overwrite

Figure 2.2: Instruction Flows when a Conditional Branch (Ibcc) is Untaken (left)

and Taken (right).
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by Iq and P8 is needless as shown in the left part. However, specularively executed

instructions can be cancelled before their commit stage. In the case of a branch

misprediction, Iq is cancelled, and Id is to read the result of Ip as shown in the

right part. Therefore, P8 cannot be freed until the commit stage of Iq.

In-Order Allocation and Out-of-Order Free of Physical Registers

If the physical register allocated to Ipred were freed when Ipred is committed, the

physical register would be allocated and freed in order, because the commitment

is also performed in order.

However, in reality, it is freed when not Ipred but Isucc is committed; and thus,

it is freed out of order. It is because the commitment of Isucc can be after the

commitment of Ipred by an arbitrary number of instructions. An extreme case

when there is no overwriting instruction helps to understand the fact that the

physical register is freed out of order. In this case, the physical register allocated

to Ipred will never be freed.

In summary, physical registers are allocated in order and freed out of order.

Physical Register Number Randomization

As a result of this asymmetry between the allocation and free, the sequence of

register numbers in the free list is randomly shuffled after sufficient cycles have

passed since initialization.

The sequence of the addresses to the main memory by load/store instructions

has some regularity. In contrast, the sequences of the register numbers to the

physical register file can be considered as random.

This randomness of physical register numbers is essential for the bank conflict

probability in multibanked register files described in Section 7.4.

2.3 Instruction Scheduling

Assume that a preceding and a succeeding instructions Ip and Ic are dependent,

that is, a single source operand of Ic is the same as the destination operand of Ip. As

described in Section 2.2, the same physical register is allocated to the destination

operand of Ip and the source operand of Ic.

While maintaining this dependency, these instructions are scheduled in the in-

struction window through the wakeup and select phases as follows:
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read

read

C1 C2 C3 C4 C5 C6 C7 C8

w sIp
Ic

cycle

issue

issue exec

exec

write

write

readsIp
Ic

issue exec

exec

write

writew s readissue

w s

Figure 2.3: Wakeup and Select in one cycle (upper) and two cycles (lower), where

the stages are W: wakeup, S: select, issue: issue, exec: execution, and read/write:

register read/write.

The wakeup phase When Ip is selected to be issued and executed, the physical

register allocated to its destination will be ready to be used in fixed cycles.

The number of this fixed cycles is called issue latency, and given by the

number of cycles in the issue, read, and exec stages. Because the physical

register will be ready in this fixed cycles, the wakeup logic sets the ready flag

of the source operand of Ic which has the same physical register.

If all the source operands of an instruction are set ready, the instruction is

ready to be issued. In this case, the single source operand of Ic becomes ready

to be used (in the issue latency), and Ic becomes ready to be issued.

The select phase The select logic selects instructions to be issued from ready

instructions. The number of instructions to select is given by the amount of

execution resources, such as the number of execution units.

Wakeup and Select Loop

The wakeup and select form a loop, that is, the wakeup and select kick off each

other. In the above-described example, the select of Ip, wakeup of Ic, and select of

Ic occur in series.

This loop of wakeup and select should turn round in one cycle for back-to-back

execution of dependent instructions, as described below.

Figure 2.3 compares the pipelined behavior of Ip and Ic with the wakeup and

select loops of one cycle (upper) and in two cycles (lower). In the lower half of the

figure, the issue of Ic is delayed by two cycles because two cycles are taken for the

wakeup and select of Ic after the select of Ip. In contrast, in the upper half of the



2.4. INSTRUCTION PIPELINE DEPTH 15

figure, the issue of Ic is delayed only by one cycle, and Ip and Ic can be executed

back-to-back.

2.4 Instruction Pipeline Depth

Some techniques of register cache and multibanked register file systems described

in the following chapters reduce the pipeline disturbance probability in exchange

for the deeper instruction pipeline.

This section describes the side effect of the instruction pipeline depth of the su-

perscalar core. The instruction pipeline depth does not directly increase execution

cycles.

Figure 2.4 shows pipelined behavior of seven instructions with two mispredic-

tions. The register file read latencies are one and two cycles in the upper and lower

pipelines, respectively, and the lower pipeline is one cycle deeper than the upper.

A misprediction causes a pipeline flush, that is, the pipeline restarts from the

fetch stage after the detection of the misprediction. Comparing the two pipelines

in the figure, the lower pipeline delays by one cycle per misprediction.

Thus, the increase in execution cycles is given by the product of the difference

in the pipeline depths (one cycle in the figure) and the occurrence probability of

misprediction. Thus, if the occurrence probability of misprediction is sufficiently

fetch renm disp sched issue read

RF Read: 1 cycle

: misprediction detected

exec
fetch renm disp sched issue read exec

fetch renm disp sched issue read exec
fetch renm disp sched issue read exec

fetch renm disp sched issue read exec
fetch renm disp sched issue read exec

fetch renm disp sched issue read exec

fetch renm disp sched issue read read exec
fetch renm disp sched issue read read exec

fetch renm disp sched issue read read exec
fetch renm disp sched issue read read exec

fetch renm disp sched issue read read exec
fetch renm disp sched issue read read exec

fetch renm disp sched issue read read exec

RF Read: 2 cycles

Figure 2.4: Effect of Pipeline Depths on Execution Cycles.

The register file latencies are one cycle (upper) and two cycles (lower).
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low, the increase in execution cycles is also sufficiently low.

In the evaluation in Chapter 8, one-cycle increase in pipeline depth decreases

IPC by 1.4% on average.

The Deeper Pipeline Outperforms The Short Pipeline

In a certain condition, the deeper pipeline with a less disturbance probability

outperforms the short pipeline with a high disturbance probability. This paragraph

clarifies the condition that the deeper pipeline outperforms the short pipeline.

The total penalty cycles are the total of the penalty of the prediction miss

(penaltypred×βpred) and the penalty of the pipeline disturbance (penaltydistb×βdistb).

βpred and βdistb are the effective miss rate of a prediction and disturbance of the

pipeline, respectively. Note that the effective miss rate given by the probability of

the miss or the disturbance in each cycle.

Therefore, the total penalty cycles of the pipeline are:

penaltypred × βpred + penaltydistb × βdistb, (2.1)

To simplify the problem, the author compares the base pipeline with a high

disturbance probability (βdistb-base) and the one cycle deeper pipeline with a less

disturbance probability (βdistb-deep). penaltydistb is one cycle for both the pipelines.

The total penalty cycles of these two pipelines are:

penaltypred × βpred + 1× βdistb-base (base) (2.2)

(penaltypred + 1) × βpred + 1× βdistb-deep (one cycle deeper) (2.3)

Therefore, (2.2) > (2.3) is the condition that the deeper pipeline outperforms

the base pipeline.

This can be deformed as:

penaltypred × βpred + 1× βdistb-base > (penaltypred + 1)× βpred + 1× βdistb-deep

βdistb-base > βpred + βdistb-deep (2.4)

In the evaluation in Chapter 8, the total βpred of the branch and latency prediction

is sufficiently low, around 0.0022 per instruction.

Thus, if βdistb-base > βdistb-deep, the deeper pipeline outperforms the base pipeline.
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2.5 Operand Bypass

In Figure 2.1, the bottom red lines denote the operand bypass network. The results

can be passed through the operand bypass network from any output to any input

of the execution units.

Role of Bypass for Conventional Register File

In conventional systems, the operand bypass network is needed for back-to-back

execution. Figure 2.5 shows the pipelined behavior of two instructions Ip and Ic

with and without the operand bypass. Ic depends on Ip; that is, Ic reads the same

physical register as Ip writes. In the lower half of the figure, the issue of Ic is

delayed for two cycles to wait until the result can be obtained through the register

file. In contrast, if the value is passed through the operand bypass, Ip and Ic are

executed back-to-back, as shown in the upper half of the figure.

The operand bypass network has to provide results that has produced in the

number of cycles given by the sum of the write and read latencies of the register

file. In the figure, the network has to provide results produce in 1 + 1 cycles for

the write and read. In recent cores, the latencies of the register file are longer, and

the size of the bypass network is also problematic.

Role of Bypass for Register File Systems with Reduced Ports

It is needless to regard the ports of a conventional register file as resources,

because a conventional register file is full-port, that is, there are always free ports

to use.

read

read

C1 C2 C3 C4 C5 C6 C7 C8

w sIp
Ic

cycle

issue

issue exec

exec

write

write

readw sIp
Ic

issue exec

exec

write

writew

w s

s readissue

Figure 2.5: Scheduling w/(upper) and w/o (lower) operand bypass, where the

stages are W: wakeup, S: select, exec: execution, and read/write: register read/

write.
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In contrast, the register file ports become expensive resources in the register

cache and multibanked register file systems described in the following chapters.

These systems reduce the ports in exchange for infrequent pipeline disturbance

caused by the port shortage.

Accordingly, the operand bypass network has an extra role to provide operands in

place of the expensive ports in these systems. The evaluation results in Section 8.2

show that almost half of the source operands are provided by the bypass network.

That is, the operand bypass network reduces the effective number of register file

accesses by half, to drastically reduce pipeline disturbance caused by the port

shortage.

2.6 Pipeline Disturbance

A register cache miss in register cache systems or a bank conflict in the multibank-

ed register files can cause pipeline disturbance. This situation is similar to but

different from a Level-1 Data Cache (L1D) miss.

Selective Delay Problem

The author is sometimes asked if selective delay of the instructions that caused

disturbance is possible without disturbing the entire pipeline. However, this is

unrealistic even for L1D misses, as detailed below.

Positional relationship among all the instructions in the backend pipeline must

be preserved as issued, because everything has been arranged so that the issued

instructions can flow through the backend pipeline as issued. To implement selec-

tive delay, a kind of post-scheduler is required to rearrange the instructions flowing

through the backend pipeline [2].

Rescheduling and Stalling

It is known that there are the following two ways to resolve disturbance in the

backend pipeline while preserving positional relationship among instructions:

Rescheduling (also known as scheduler replay) The responsible instruction and

its dependent instructions are canceled and rescheduled.

Stalling During the cycles when the entire backend pipeline is stalled, the missed

data is obtained. Then, the pipeline can be restarted as if there had not been

a miss.
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In particular, the stalling of the backend pipeline must be total for the same

reason why the selective delay is unrealistic. In a scalar or an in-order superscalar

processor, stalling of the single instruction pipeline is partial, that is, the down-

stream stages go on while the upper stream stages are stalled until the hazard

is resolved. In contrast, the stalling of the backend pipeline of an out-of-order

superscalar processor must be total, i.e., all of the stages in the backend pipeline

must be simultaneously stalled. Otherwise, the positional relationship among the

instructions is broken.

L1D Miss

Most cores adopt rescheduling for L1D misses. Edmondson et al. also adopted

rescheduling for the Alpha 21164 core at an early date after a detailed discussion

on the trade-off between rescheduling and stalling [33].

They pointed out that stall logic could create critical paths because the write

enable terminal of all the pipeline registers must be immediately turned off.

Register Cache Miss and Bank Conflict

However, almost all the studies on register caches and multibanked register files

have adopted stalling [2, 20,26,27].

This difference primarily depends on the length of the miss latencies compared

with the issue latency which gives the rescheduling penalty. The latency on an L1D

miss is comparable to the issue latency, whereas that on a register cache miss is

usually one cycle, much shorter than the issue latency. Shioya et al. evaluated both

rescheduling and stalling, and concluded that stalling is advantageous for register

cache misses [2].

Stalling is more advantageous for multibanked systems because the latency on

a bank conflict is equal to or shorter than that on a register cache miss [26, 27].

2.7 Multiport RAM for Register File

An i-issue core generally requires a 2i-read+i-write, i.e., 3i-port register file directly

connected to the input and output of i execution units, to execute any i instructions

in each cycle without restriction. In Figure 2.1, the register file for the 2-issue core

has four read and two write ports
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In a conventional core, such a full-port register file is composed of a single mul-

tiport RAM.

Multiport RAM Circuit

Figure 2.6 shows a block diagram of a 64-bit× 128-entriy 4-read+2-write RAM

of a register file with two execution units, and Figure 2.7 shows a circuit diagram

of its 4-read+2-write RAM cell.

In this diagram, the vertical wires from the decoders to the RAM cells are the

wordlines, and the horizontal wires between the execution unit and RAM cells

are the bitlines. Each of the decoders asserts one wordline out of 128 to select the

entry to which the wordline is connected, and the bitlines transmits 64-bit data

between the selected entry and the execution units.

This RAM has four read and two write ports each of which is composed of a

register number input (reg# *[6:0] in the figure), a decoder, 128 wordlines, and 64

bitlines (, and read/write enable signals not shown in this figure).

This register file is full-port, that is, the four read and two write ports are directly

connected to the four input and two output of the two execution units. Thus, each

input and output of the execution units can access any of the entries independently

via these dedicated ports.

Multiport RAM Cell

A multiport RAM cell is composed of a pair of cross-coupled inverters to store

1-bit data, and groups of transistors to access that data. The pair of cross-coupled

inverters is also known as a 4T-cell.

In Figure 2.7, the following types of access transistors are used:

Read A stack of two transistors is provided for a single-end bitline.

Write A group of three transistors is provided for a single-end bitline.

As described below, a single-end bitline is especially advantageous for heavily mul-

tiported RAMs.

A group of access transistors connects a wordline (vertical line in the figures)

and a bitline (horizontal) to the 4T-cell in a cell. When the wordline is asserted,

the transistors are turned on, the 4T-cell is electrically connected to the bitline,

and the 4T-cell is read or written through the bitline.

As shown in Figure 2.7, a multiport RAM cell can basically be realized by simply
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Figure 2.6: 128-entries 64-bits 4-read+2-write register file for a 2-issue core.
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adding multiple ports to the 4T-cell in parallel. In this figure, a decoupling inverter

is added to reduce the load capacitance of the 4T-cell node.

Physical Layout of Multiport RAM Cell

Figure 2.8 shows physical layout of 2-read+2-write and 8-read+4-write RAM

cells, which are part of the design of NORCS detailed in Chapter 4.

As shown in the figure, both the numbers of bitlines and wordlines are propor-

tional to the number of ports, thus illustrating that the area of a multiport RAM

is proportional to the square of the number of its ports [9–11].

In contrast, the number of access transistors is proportional to the number of its

ports. Therefore, the area of transistors is not a bottleneck for heavily multiported

RAMs.

Thus, single-end read/write is advantageous especially for heavily multiported

RAMs to reduce their areas, and widely used for recent superscalar cores [12].

Practically, word- and bit-lines can be distributed to multiple wiring layers to

mitigate their effect on the area. However, it is not very simple because a line in a
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Figure 2.8: 2-read+2-write (left) and 8-read+4-write (right) RAM cells
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Figure 2.9: Three types of 1-bit× 4-entry, 4-read+2-write register files.

higher layer needs a via through each of the lower layers to the transistor layer.

2.8 Replicated and Multibanked Register Files

Because the area and energy consumption of a register file is proportional to the

square of the number of its ports, several techniques try to decompose a register

file to reduce the number of register file ports.

Figure 2.9 shows 1-bit× 4-entry, 4-read+2-write register files for two 1-bit exe-

cution units to illustrate the difference of the three types of implementation.

Replicated Pair

Many recent cores use a replicated pair of two w-read+w-write RAMs to imple-

ment 2w-read+w-write register file [5, 13, 16–19].
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In Figure 2.9, a full-port, i.e., 4-read+2-write register file shown in the upper

part is decomposed into a replicated pair of two 2-read+2-write RAMs shown in

the middle. As the entry numbers of the cells show, two cells vertically arranged

have the same contents. To this end, the two write ports are directly connected

to the output of the two execution units, and the same result is simultaneously

written to pairs of two cells.

As a result, while the read ports of the cells are reduced by half, the write ports

cannot be reduced. In the figure, the expressions 6 × 6 and 4 × 4 × 2 denote the

cell areas counted in the number of word- and bit-lines.

However, detailed evaluation in Section 9.1 shows, though this replication has a

positive effect on the latency, but a slight negative effect on the area and energy

consumption.

Multibanking

In Figure 2.9, a full-port, i.e., 4-read+2-write register file shown in the upper part

is decomposed into two banks of 1-read/write RAMs shown in the lower. A read

and a write switch are needed for any-to-any connection between the execution

units and the banks.

Unlike replication described above, the contents are not replicated. In this figure,

the register numbers are interleaved among the banks as with the address for usual

multibanked main memory. However, the interleaving has no effect because the

register numbers are randomized as described in Section 2.2.

The example in Figure 2.9 uses 1-read/write cells, which are the minimum with

respect to the number of word- and bit-lines. Though the switches seem relatively

bigger in this figure, they are smaller for realistic register files with more than

hundred entries.

While the multibanking can use the minimum cells, it can be regarded as a

pseudo implementation of a multiport RAM. Unlike full-port or replicated register

files, it cannot perform accesses to arbitrary entries. A 1-read/write bank can

perform only one access in a single cycle. In other words, if multiple accesses are

to the same bank, they cannot be performed in the cycle. This situation is called

a bank conflict. The example in Figure 2.9 will cause frequent bank conflicts

because of too few banks for two execution units.

The two techniques proposed in Chapters 5, 6 and 7 try to solve this problem

while using the minimum 1-read/write cells.
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2.9 Related Work

This section reviews related work for area and energy efficiency of register files not

detailed in the other chapters.

Utilization of Bypass

Tseng et al. proposed using the bypass to reduce bank conflicts [23, 24]. The

register file ports are not accessed when the operands are provided by the bypass.

Tseng et al. divided the register file into eight 2-read+2-write banks using this

technique. The author also adopted this technique (see Section 8.2).

Number of Operands

Instructions that have two source operands are rare (see Section 8.2). Utilizing

this fact, Kim et al. reduced the ports of the wakeup logic and register file [34],

and Sangireddy did those of the register map table [35].

Distributed Register Files

Clustered or tile architectures have distributed register files [36–43]. If a register

file is distributed to a group of i′ execution units, the number of its ports is reduced

to 3i′+α, where α is the number of additional ports for communication. Typically,

i′ ≥ 2, while aggressive distribution of which i′ = 1 incurs a certain level of IPC

degradation depending on the accuracy of instruction steering.

In particular, clustered architectures can be regarded as an architectural rein-

forcement of replicated register files [5, 13,16–19].

Clustered execution units and multibanked register file are contrasting. An

execution result is located to the cluster where the instruction is steered in the

former, to the bank in the latter.





Chapter 3

NORCS

This chapter explains NORCS from the viewpoint of microarchitecture before the

design of NORCS in Chapter 4. Thus, the contents of this chapter basically follow

the original article of Shioya, et al. [2]. The main difference from the original article

is in the description of the main register file, which is pipelined and has 2-cycle

latency in this study.

First, Section 3.1 summarizes conventional register cache systems and NORCS.

A register cache can reduce the area and energy consumption of a register file.

Compared with the original register file, the register cache is smaller because it

has a smaller size; the main register file is smaller because it has fewer ports.

The earlier register cache systems suffered from IPC degradation caused by reg-

ister cache misses, because their pipelines are stalled on a register cache miss. On

the contrary, the NORCS pipeline has stages for reading the main register file. As

a result, the NORCS pipeline is stalled not when a single register cache miss occurs

but when the main register file read ports fall short.

Section 3.2 shows the difference of a register cache from a usual data cache,

that significantly affects the design of NORCS. The difference is mainly because

of register renaming. The cache entry of NORCS is smaller than that of a usual

data cache, because spatial locality cannot be exploited because physical registers

are randomly allocated by register renaming. Register renaming also avoids any

overwrite on the same physical register. Therefore, NORCS adopted write-through

policy.

Lastly, Section 3.3 shows the structure and pipelined behavior of NORCS in

detail.

27
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3.1 Register Cache System

A register cache can reduce the area and energy consumption of a register file.

As the name suggests, a register cache is a cache for a register file. The register

cache provides more than 90% of the source operands to the execution units taking

the place of the main register file. Compared with the original register file, the

register cache is smaller because it has a smaller size; the main register file is

smaller because it has fewer ports.

However, the earlier register cache systems suffered from IPC degradation caused

by register cache misses, because their pipeline is stalled on a register cache miss.

Then, Shioya, et al. proposedNon-Latency-Oriented Register Cache System

(NORCS) to solve this problem [2]. Researchers in NVIDIA adopted the idea of

NORCS for their GPUs [21,22].

A conventional pipeline has a stage for reading the register cache but not the

main register file. As a result, the pipeline is stalled on a register cache miss in

order to produce extra cycles to read the main register file. On the contrary, the

NORCS pipeline has stages for reading the main register file. As a result, the

NORCS pipeline is stalled not when a single register cache miss occurs but when

the main register file read ports fall short, that is, the number of register cache

misses in a single cycle exceeds the number of read ports of the main register file.

The difference of stall probabilities can be confirmed using following simple cal-

culations. When the number of accesses per cycles is 3, a conventional pipeline is

stalled when any of the 3 accesses miss the register cache. In contrast, if the number

of read ports of the main register file is 2, the NORCS pipeline is stalled only when

all of the 3 accesses miss the register cache. When the register cache miss rate per

access is 5%, the stall probability of a conventional system is 1−(1−0.05)3 = 14.3%,

and that of NORCS is 0.053 = 0.0125%.

3.2 Difference from Usual Cache

A register cache caches registers in roughly the same manner as a usual data cache.

However, they have some differences that affect design.
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3.2.1 Difference in Basic Feature

Register Renaming

Out-of-order processors resolve dependency among registers using register re-

naming. Register renaming is one of the main factors in the differences described

below.

A new physical register is randomly picked from the free list, and is allocated to

the destination of each instruction.

A physical register repeats the following cycle: first, it is allocated and written

once; then, it is read more than 0 times; and, finally, it is freed.

Entry Size

The entry of usual data caches is usually called a cache line whose size is typically

32 to 64 bytes, to reduce the management overhead, under the fact that it is also

advantageous for IPC because of spatial locality of reference.

In contrast, a register cache entry is a physical register. Even if an entry has

multiple registers, spatial locality cannot be exploited because physical registers

are randomly allocated as described above.

This results in a difference in partial modification of an entry. A store instruction

modifies only part of a data cache entry, and the modified entry still has valid data

unmodified. Conversely, a register write modifies the entire register cache entry.

Lifetime of Cache Entry

A register cache entry has much shorter lifetime than a usual data cache entry.

Shioya, et al. showed that a register cache with only 8 entries has sufficiently good

IPC for a 4-issue processor [2]. If the IPC is 2, 2 entries are replaced in every cycle,

and all the 8 entries will be replaced in 4 cycles.

3.2.2 Difference in Cache Design

The differences in the basic features described above result in differences in the

cache design as described below.

Write Allocation

Because of the short lifetime, a register cache entry is almost always replaced

before its physical register is re-allocated and re-written.
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As a result, almost all of the register writes cause misses, and the new register

cache entry is allocated on these write misses. This write allocation strongly affects

the design of the tag array, as described in Section 4.2.3.2.

Write-through Policy

Unlike usual data caches, register caches should adopt not a write-back policy

but a write-through policy.

In usual data caches, because stores to the same addresses often appear, a write-

back policy reduces the number of write(-back)s to the main memory from the

number of stores. Therefore, it is useful to adopt a relatively complex write-back

mechanism for data caches.

Conversely, in the register caches, because an overwrite to the same entry never

occurs because of register renaming, the write-back policy does not reduce the

number of write(-back)s to the main register file. Consequently, a write-back policy

is meaningless in the case of a register cache.

3.3 Structure and Pipelined Behavior

Figure 3.1 shows a block diagram of the backend pipeline of NORCS for a 2-

issue processor. In a conventional processor, instructions read the register file in

the stages after the instruction issue (labeled issue in the diagram) before execute
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(exec). In a register cache system, the register cache and the main register file

are placed in the position of the register file.

In this diagram, instructions access the tag array in the register schedule (RS)

stage; and then, read the data array in the cache read (RR2/CR) stage.

When an access to the register cache cause a miss, the instruction reads the main

register file. In this diagram, the main register file is pipelined into the decoder

(RR1) and the data array (RR2), and takes two cycles to read.

Although, the register cache needs only one cycle to read, the register cache

in the NORCS pipeline has the same two cycle latency as the main register file,

because of the additional pipeline latches, which are located between the tag array

and the data array of the register cache. Therefore, the NORCS pipeline is not

stalled immediately on a register cache miss.

The register cache is smaller than the conventional register file, because it has

a smaller number of entries, whereas it has the same number of ports as the con-

ventional register file. On the contrary, the main register file is smaller than the

conventional register file, because it has a smaller number of ports; it has the same

number of entries as the conventional register file.

In this diagram, the main register file has only two read ports; however, in a

2-issue processor, at most four source operands are read by the two instructions in

a single cycle. Thus, the 4-to-2 register number switch (Reg# Read SW) is used to

route two out of four register numbers (of two instructions) to the two read ports

of the main register file, which is controlled by the hit/miss result from the tag

array of the register cache.

The write buffer, placed between the execution units and the main register file,

makes a difference in the writing method, as detailed in Section 3.4.

Figure 3.2 shows the pipelined behavior of NORCS for a 1-issue processor.

In this figure, the stages to read the source operands (CR and RR1/2) are divided

into upper and lower halves to indicate that each instruction has the first and

second source operands. The white boxes indicate that the instructions do not

have a source operand and no register access is made. The gray bands denote

cycles when the pipeline is stalled.

The author focuses on two instructions, I1 and I3, in the figure. I1 has two

source operands and only the second operand causes a register cache miss. On the

other hand, both of the first and second source operands of I3 cause register cache

misses. These instructions flow through the pipelines as follows:
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issue, RS, CR/RR1/2, exec, and RW indicate the instruction issue, register schedule,

register read, execute, and register write stages, respectively. The X symbols denote

register cache misses.

I1 I1 accesses the tag array of the register cache in the RS stage and detects that

the second operand causes a register cache miss in c2.

The NORCS pipeline is not stalled for I1. In spite of the register cache miss

in c2, the NORCS pipeline originally has the RR1 and RR2(/CR) stages for

reading the main register file. Access to the second operand of I1 reads the

main register file in the RR1 and RR2(/CR) stages in c3 and c4. At the same

time, access to the first operand passes through the RR1 stage and reads the

register cache in the (RR2/)CR stage in c4.

I3 Both the first and second operands of I3 cause register cache misses in c5.

As described above, the NORCS pipeline is stalled when the main register

file read ports fall short, and the main register file has only one read port

in this figure. Thus, the NORCS pipeline is stalled for I3, which causes two

register cache misses in a single cycle. Because the NORCS pipeline has RR1

and RR2(/CR) stages for reading the main register file, I3 uses the stages to

read the main register file for the first operand. For the second operand, the

pipeline is stalled for one cycle in c7.

As shown in this figure, even when the instruction pipeline is stalled, the main

register file works in a pipelined manner independently of the instruction pipeline.
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3.4 Write Buffer

Unlike the read ports, the register cache does not reduce the write ports of the main

register file. Note that, because it does not adopt write-back policy, the register

cache itself does not reduce the number or write(-back)s to the main register file

(Section 3.2). Instead, NORCS adopts a write buffer for this purpose.

The write buffer temporarily holds the results of instructions from the exe-

cution units; and then, write them to the write ports of the main register file.

Because the register cache adopts a write-through policy, the results are written

both to the register cache, and to the main register file via the write buffer, in

parallel.

The number of write ports in the main register file is reduced by averaging the

traffic from the execution units to the main register file. As described in the original

article [2], the number of write ports is reduced from 4 to 2 for a 4-issue processor,

at the risk that the reduced number of write ports gives the maximum IPC of the

processor.





Chapter 4

Design of NORCS

Shioya, et al. usedCACTI to evaluate the area and energy consumption of NORCS

in their original article [2]. CACTI is a design space exploration tool for usual in-

struction/data caches (not for register caches). The evaluation with CACTI in the

original article sufficiently proved the effectiveness of NORCS from the viewpoint

of microarchitecture. However, approximations of CACTI are insufficient to show

the practicality of NORCS from the viewpoint of LSI design. Therefore, in this

study, the author shows more detailed design of NORCS with FreePDK45, an

open source process design kit for 45 nm technology, for detailed evaluation from

the viewpoint of LSI design.

Section 4.2 shows the detail design of NORCS. The author performed manual

layout of the memory cells and arrays of NORCS. The memory cells of the main

register file is smaller than that of the conventional register file, because of its fewer

ports. Therefore, two memory cells were arranged in the width of a 1-bit slice of

execution units.

Section 4.3 shows the evaluation results of the area, energy consumption and

latency. The main register file adopted a hierarchical bitline architecture in the

same way as the conventional register file.

The evaluation results were consistent with that of the original article, except

for the static energy.

35
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4.1 FreePDK45 and CACTI

In the original article, Shioya, et al. used CACTI to evaluate the area and energy

consumption of NORCS [2]. CACTI is a design space exploration tool for usual

instruction/data caches (not for register caches). A cache has a large design space;

for example, as detailed in Section 4.2, there are a number of configurations for

subarray partitioning. For a fast search for an optimal configuration in such a large

design space, CACTI performs a rough estimation unfavorable for LSI design as

follows:

Cell size The width and height of the memory cells are calculated using simple

linear approximations based on the number of ports.

Layout NORCS consists of several kinds of memories, and they and the execution

units must be aligned with each other. CACTI does not consider such inter-

module constraints as this.

Latency CACTI is designed for cache memories as large as or larger than level-1

caches, and calculates their latency with a linear approximation especially for

memories of such sizes. As a consequence, the divergence in this approximation

becomes large for smaller memories such as register files and register caches.

Thus, in the original article, the latencies of the baseline register file are simply

extrapolated, the register cache and main register file 2, 1 and 1 cycles from the

ratio of their areas for IPC evaluation.

It is not rare to use CACTI in the microarchitecture field, and the evaluation with

CACTI in the original article sufficiently proved the effectiveness of NORCS from

the viewpoint of microarchitecture. However, these approximations of CACTI are

insufficient to show the practicality of NORCS from the viewpoint of LSI design.

Design with FreePDK45

Therefore, in this study, the author shows more detailed design of NORCS with

FreePDK45, an open source process design kit for 45 nm technology. First, the

author manually designed the physical layout of the memories of NORCS, and

measured the areas. Then, the author extracted the RC load from the layout, and

performed SPICE simulation to calculate the energy consumption and latency.

Although the author focused on NORCS in this study, the results are partly

applicable to conventional register cache because their structures are almost the
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same. the author also designed conventional register file, which has 4-read+2-write,

as a baseline of register file.

The remainder of this chapter is organized as follows: Section 4.2 explains the

circuit and layout of NORCS. Section 4.3 shows the evaluation methodology and

the evaluation result in terms of area, energy consumption and latency.

4.2 Design

This section explains the design of NORCS in terms of of layout and circuit, and

compares it to the conventional register file. NORCS has a complex structure, as

compared to the conventional register file. In the design of NORCS, the bitline

structure, the layout of the small size cell in main register file, and the tag array

are important features. These are also the contribution of this thesis.

4.2.1 Outline

Figure 4.1 shows the floorplans of a conventional register file (upper) and that in

NORCS (lower) for a 2-issue processor. Table 4.1 summarizes the main modules

composed of the memory arrays that the author designed.

4.2.1.1 Conventional Register File

The upper diagram in Figure 4.1 shows a floorplan of a conventional register file

(CRF). The CRF for a 2-issue processor is composed of 4-read+2-write cells for

the 4 source and 2 destination operands of 2 instructions executed in parallel. The

interconnection of the CRF and execution units is simple; the read and write ports

of the register file are directly connected to the input and output ports of the

execution units, respectively.

4.2.1.2 NORCS

The lower diagram in Figure 4.1 shows the floorplan of NORCS. NORCS consists

of three modules: a main register file (MRF), a write buffer (WB), and a register

cache (RCD and RCT).

Similar to the CRF, the read and write ports of the RCD are directly connected

to the input and output ports of the execution units, respectively. RCT is placed
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in the position of the decoder of the CRF.

The WB is placed between the execution units and the MRF; it averages the

traffic from the execution units to the MRF.

The MRF has a fewer ports than either the CRF or the RCD. The read and write

ports of the MRF are connected to the execution units via the register number

switch and the write buffer. Regarding the read ports, the register number switch

is placed such that it routes the input ports of the execution units to the (fewer)

read ports of the MRF.

Table 4.1: Designed Modules

Model Description Ports Bits × Words

CRF Conventional Register File 8-read+4-write 64 × 128

MRF Main Register File 2-read+2-write 64 × 128
RCD Register Cache Data array 8-read+4-write 64 × 8
RCT Register Cache Tag array 8-search+4-write 7 × 8
WB Write Buffer (tag and data) 2-read+4-write 64 × 4
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4.2.2 Layout and Circuit

Figure 4.2 shows the circuits of the CRF, RCD, and MRF. In this figure, for the

sake of simplicity, only 1-read+1-write, out of 8-read+4-write or 2-read+2-write

ports, is shown.

All of these circuits have the same width (the vertical direction in the figure) of

64-bit data, which is based on the width of the execution units. Both the register

files and the execution units adopt a bit-slice design. Therefore, the 64-bit width

is arranged as the 64 repetitions of one-bit-slice width.

4.2.2.1 Conventional Register File

The upper diagram in Figure 4.2 shows the CRF.

The design in this figure adopts a hierarchical bitline architecture. The array

is divided into 8 subarrays which consists of one local sense amp and 16 memory

cells. As shown in the figure, the local sense amp is placed in the center of the 16

memory cells so as to reduce the length of the local bitlines.

This design uses single-ended bitlines. Single-ended bitlines are particularly

effective at reducing the area of highly-multi-ported memory.

4.2.2.2 Register Cache of NORCS

The middle diagram in Figure 4.2 shows the RCD.

The RCD uses the same cells as the CRF. Shioya, et al. shows that 8 entries

of a register cache with 128 entries of physical registers have sufficiently good

performance in the original article [2]. In this case, the height (the horizontal

direction in the figure) of the register cache is roughly 8/128 = 1/16.

The tag arrays are placed in the position of the decoders of the CRF. The author

explains the RCT in detail in Section 4.2.3.

The total number of entries is only half of one subarray of the CRF. Therefore,

the register cache does not adopt a hierarchical bitline structure. The author

evaluates the bitline structure in Section 4.3.2.2.

4.2.2.3 Main Register File of NORCS

The lower diagram in Figure 4.2 shows the circuit of the MRF.
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The MRF uses a RAM cell with fewer ports. The height and width of the cell is

smaller than that of the CRF, because there are fewer ports. As described above,

the width (the vertical direction in the figure) of a 1-bit slice are determined by

the width of the execution units. Therefore, the author arranged two memory cells

in the width of a 1-bit slice.

Each subarray consists of 16 memory cells and a local sense amp. A wordline is

shared by the two memory cells of different columns. One bit out of the addresses

(reg# r[0]/reg# r[0] in the figure) selects column 0 or column 1.

Read Access of MRF

Figure 4.3 shows one subarray from Figure 4.2. The memory cells in the upper

and lower half of Figure 4.3 belong to column 0 and column 1, respectively. When

one wordline is activated, the two corresponding memory cells of column 0 and

column 1 are selected and the two local bitlines are driven. The local sense amp

selects one of two local bitlines and drives the global bitline.

Write Access of MRF

Unlike for read, the author adopted differential bitlines for write.

In Figure 4.2, reg# w[0]/reg# w[0] selects one write driver. The selected write

driver drives its bitline pair, whereas the unselected write driver retains its bitline
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pair in a precharged state. As a result, the contents of the memory cell connected

to the non-discharged bitline pair do not flip, even if its wordline is asserted.

This differential bitline design is smaller than one that uses two write wordlines

for the two columns to select one of the two columns.

4.2.3 Tag Array of Register Cache

Figure 4.4 shows a circuit diagram of RCT and RCD for a 2-issue core. In this

figure, the register cache is composed of three arrays. The lower array in the figure

is the data array (RCD), which consists of 4-read+2-write RAM cells, as described

in the previous subsection. The upper and middle arrays are the tag arrays (RCT)

consisting of CAM cells.

The signals reg# (01)L/R/D are the register numbers allocated to the left and

right source and destination operands; where (01) is the issue port number, with

values of either 0 or 1. The register numbers reg# (01)D are written to the write

ports of the CAMs. The register numbers reg# (01)L/R/D are input to the search

ports of the CAMs to associatively search the entries that have the same register

numbers written to them.

The RCT is composed of a replicated pair of arrays for the destination (upper in

the figure) and the source (middle) so as to reduce the effective number of search

ports. The contents of the two arrays are replicated, that is, the same reg#(01)D

are written to the same entries of both arrays at the same time.

The flip-flop between the tag and data arrays is the valid flag of each entry.

In the following two subsections, the author describes read, and write (and allo-

cate) operations.

4.2.3.1 Read from the Register Cache

The read operation is the same as for a usual data cache. The tag array for read

takes reg# (01)L/R. If these register numbers match the contents, the correspond-

ing match lines are asserted. Then, the results is AND-ed with the valid flags to

produce the read hit signals.

The values of the read hit signals will be used as the values of the read wordlines

of the RCD in the CR stage as they are. Therefore, RCD does not need a decoder.
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4.2.3.2 Write to the Register Cache

As described in Section 3.2, almost all of the writes cause misses. Therefore, it is

not useful to exactly handle rare write hits.

In the usual data cache, allocation of a new entry must be started after write

hit detection. A store instruction modifies only a part of the entry; this entry still

has valid data that is unmodified (Section 3.2). Consequently, on a write hit, the

hit entry must be used, and a new entry must not be allocated. However, this

sequence of allocation after write hit detection will require one more cycle.

In the design in Figure 4.4, whether a write hits or misses the register cache,

another entry is (newly) allocated to the write. The hit entry, if any, is invalidated

in the same cycle. This technique works from the following reason: the newly

allocated entry will have a completely new register value written, and the hit entry

on the write can be regarded as obsolete.

Because of this blind write allocation, all of the write accesses write to RCD,

regardless of whether the write accesses hit or miss the register cache.

4.3 Evaluation

The author designed NORCS and a conventional register file for a 4-issue core using

FreePDK45 [44], an open source process design kit (PDK) in 45 nm technology.

This section shows the evaluation results of these designs. First, the author

summarizes the design methodology in Section 4.3.1. Next, the author optimizes

the subarray configuration of CRF, RCD, and MRF in Section 4.3.2. Finally, Sec-

tion 4.3.3, 4.3.4, and 4.3.5 show the detailed results on the area, energy consump-

tion, and latency, respectively.

4.3.1 Design and Evaluation Methodology

4.3.1.1 Design Methodology

The author designed the layout of memory cells and arrays with Cadence Virtuoso.

The author performed manual layout for the memory cells.

The author extracted RC parasitics with Mentor Calibre xACT 3D, and simu-

lated with Synopsys HSIM.

The author verified the design with Mentor Calibre to comply with the DRC
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rules of FreePDK45. Although some of the DRC rules are too strict for memory

cells, this design complies with all of the rules.

Table 4.2 summarizes the EDA tools that the author used.

4.3.1.2 Process Parameters

Table 4.3 summarizes the wire pitch in FreePDK45 to compare it with commercial

Intel 45 nm technology [45]. The parameters shown strongly affect the size of

memory arrays. As shown in the table, FreePDK45 is almost equivalent to Intel

45 nm technology. Both technologies have three lower metal layers with minimized

pitches, and three upper metal layers with double pitches.

The author used the typical conditions of FreePDK45, i.e., a supply voltage of

1.1V, a temperature of 55 ◦C, and the typical transistor model.

4.3.1.3 Architecture Simulation

To calculate energy consumption and energy efficiency, the author also performed

architecture simulation to obtain several parameters such as the number of register

reads and writes, the register cache hit rate, and the IPC.

The author used a very similar environment as the original article of NORCS

[2]. The author used the Onikiri 2 simulator [31]. The author used all of the

29 programs of the SPEC CPU 2006 benchmark with the ref data sets [3]. The

programs were compiled with gcc 4.2.2 −O3. The author evaluated the 100M

instructions after the first 1G instructions.

Table 4.4 shows the processor configuration. The configuration is the same as in

the original article.

Table 4.2: EDA Tools

Circuit and layout edit Cadence Virtuoso IC6.1.5.500.15
LVS, DRC verification Mentor Calibre v2012.3_31.26
RC Extraction Mentor Calibre xACT 3D v2012.3_31.26
3D Field Solver Synopsys Raphael E-2010.12
SPICE Simulation Synopsys Hsim 2012
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Table 4.3: Wire Pitch of Intel 45 nm Technology and FreePDK45

Layer Intel 45nm FreePDK45 Used for

Metal

M6 360

280
Global Bitline

Power/GND
M5 280

M4 240

M3

160
140

Wordline

M2 Local Bitline

M1 130
Cell

Contacted Gate 160 160

Table 4.4: Configuration of Processor Core

ISA Alpha w/ byte-word ext.
width fetch, issue, commit: 4
inst. window int:32, fp:16, mem:16
reorder buffer 128 entries
registers int:128, fp:128
exec. units int:2, fp:2, mem:2
pipeline stages fetch:3, rename:2, dispatch:2, issue:2, register read:3
branch pred. 8K:gshare

miss penalty 13 cycles
BTB 2K-entries, 4-ways
L1C 32KB, 4-way, 64B/line, 3 cycles
L2C 4MB, 8-way, 64B/line, 10 cycles
main memory 200 cycles
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4.3.2 Subarray Configuration

Before going into detailed evaluation in the next subsections, this subsection tries

to fix the (sub)array configurations of the data arrays.

4.3.2.1 Subarray Configuration of MRF

The upper graph in Figure 4.5 shows the trade-off between latency and local bitline

length for MRF. The y- and x-axes of the graph are the bitline latency and the

data array area, respectively. The curves are plotted for the different numbers of

cells per local bitline.

The x-axis of the graph, i.e., the area, also represents the total length of the

bitline, because the width (vertical directions in the diagrams) of the CRF, RC,

and MRF arrays are exactly the same as described in Section 4.2.2.3.

As shown in this graph, a shorter local bitline shortens the latency of the local

bitline, while it lengthens the latency of the global bitline due to the increased

number the local sense amplifiers (the detailed reason is described later). As a

result, the total latency is minimized at the point of 4 cells per local bitline.

The lower graph in Figure 4.5 shows the total bitline latencies such as shown

in the upper graph for different sizes of the driver transistors of the local sense

amplifiers. In the graph, three curves are plotted for three relative sizes of the

drivers: ×0.5, ×1 (1.1 µm in gate width), and ×2. That is, the curve for ×1 is

precisely the same as the curve in the upper graph.

As shown in this graph, even if the drivers are doubled in size, the latency is not

sufficiently improved for the increase in area. In both the cases, the capacitance of

the global bitline is increased in the following two ways:

1. Its transistor capacitance is directly increased by the increased number or by

the increased size of the driver transistors of the local sense amplifiers.

2. The data array area is increased by the increased number of the local sense

amplifiers or by the increased size of the driver transistors. Then, its wire

capacitance is indirectly increased by the increase in length.

From these results, The author choses 4 cells per bitline and ×1 local sense

amplifier for MRF.
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4.3.2.2 Array Configurations of CRF and RCD

Figure 4.6 shows the total bitline latencies ofMRF of 2-read+2-write cells, and those

of CRF and RCD of 8-read+4-write cells. In this graph, the filled and non-filled

markers are for hierarchical and non-hierarchical bitlines, respectively.

The tabular in the figure shows the subarray configurations for MRF and CRF

obtained in Section 4.3.2.1. The ratios between the number of cells per local

(Cells/LBL) to the number of subarrays per global bitline (SAs/GBL) are different

for 8-, 32- and 128-entry; and 16- and 64-entry, because they are alternately doubled

to double the entries. This difference is the cause of the fluctuations on the curves.

For the same area, i.e., for the same bitline length, the latency of MRF is longer

than that of CRF both for hierarchical and for non-hierarchical bitlines, because

of the difference in capacitance. As described above, MRF is composed of a larger

number of smaller cells than CRF. Thus, the bitline of MRF of the same length

as that of CRF has the same wire capacitance as and larger transistor capacitance

due to a larger number of cells than that of CRF.

While CRF and MRF have 128, RCD has only 8 or 16 entries. As a result, while

hierarchical bitline structure drastically reduces the latencies of CRF and MRF, it

slightly reduces that of RCD for the increase in area.

4.3.3 Area

4.3.3.1 Layout of Cells and Arrays

Figure 4.7 shows the layout of two 2-read+2-write cells for the MRF (left) and one

8-read+4-write cell for the CRF and the RCD (right). The author used M2 and M3

for the local bitlines and wordlines, respectively.

As shown in Figure 4.7, two 2-read+2-write cells can be arranged within the

width (the vertical direction in the figure) of a 1-bit slice.

Figure 4.8 shows the layout of the MRF subarray, which is composed of a pair

of local SAs and 16 memory cells, based on the results of the optimization in

Section 4.3.5. The local SA accounts for 31.6% of a subarray.

4.3.3.2 Area

Figure 4.9 shows the areas of the conventional register file and NORCS. Overall,

NORCS with an 8-entry register cache achieves a 75.2% reduction in area. In this
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case, the MRF accounts for 59.6% of the total area.

4.3.4 Energy Consumption

The energy consumption of register cache systems strongly depends on both the

register cache hit rate and the read-to-write ratio. The author calculates the energy

consumption from these parameters obtained using the architecture simulation for

the SPEC 2006 benchmark (Section 4.3.1.3).

4.3.4.1 Energy per Access

Figure 4.10 shows energy consumption of NORCS and CRF for one read access and

for one write access.

For read access, the energy consumption of NORCS considerably differs as to

whether the read access hits or misses the register cache. The relative read energy

of NORCS to that of CRF is 18.2% on a register cache hit and 54.3% on a miss. It

is mainly because of the smaller energy consumption of the RCD and the MRF as

compared to the CRF.

In contrast, write energy does not vary based on whether the write access hits

or misses the register cache, because all of the write accesses write to the RCD
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because of the blind write allocation described in Section 4.2.3. The relative energy

consumption of NORCS to that of the CRF is 67.6%. The write energy of NORCS

is increased by the WB.

4.3.4.2 Total Energy

Figure 4.11 shows the energy consumption for the SPEC 2006 benchmark averaged

over one access, which is calculated as follows: first, energy per read and write

accesses in Figure 4.10 is accumulated for 100M instructions (after the first 1G

instructions) for all 29 programs in SPEC 2006. Then, the accumulated energy is

divided by the total number of read and write accesses (Section 4.3.1.3).

As shown in Figure 4.11, a larger register cache affects the total energy con-

sumption in the following two ways. On one hand, a larger register cache increase

the register cache hit rate, and reduces the main register file read accesses which

consumes more energy than the register cache. On the other hand, a larger register

cache increases the energy consumption of the register cache itself.

As a result, the total energy consumption is minimized when the size of RC is

8. In this case, a 48.2% reduction in the total energy consumption of the CRF is

achieved.

4.3.5 Latency

Figure 4.12 shows the latencies calculated by SPICE simulation for two types of

pipeline stage allocation; the left and right halves are for two and three cycles,

respectively. The allocation of each modules is as follows:

RCT RCT is always allocated to the first cycle.

RCD RCD is accessed on register cache hit. To reduce the complexity of the

operand bypass network, RCD is allocated to the last cycle [2]. Thus, RCD is

allocated to the second or third cycle in the two- or three-cycle allocations,

respectively; and, nothing is allocated to the second cycle in the three-cycle

allocation.

Here, the author should note that a decoder is not necessary for RCD, because

RCT directly provides hit entry with the raed hit signals for the wordlines

(Section 4.2.3).

MRF MRF is accessed on register cache miss.
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MRF is allocated to the second cycle in the two-cycle allocation. While in

the three-cycle allocation, MRF is divided into two parts of the decoder and

local/global bitlines, and allocated to the second and third cycles.

CRF CRF is divided into two parts of the decoder, and local/global bitlines, and

allocated to the first and second cycles in the two-cycle allocation. While in

the three-cycle allocation, CRF is divided into three parts of the decoder, local

bitline, and global bitline; and allocated to the first, second, and third cycles.

The latencies of the critical paths of NORCS are 307 ps and 174 ps for the two-

and three-cycle allocation, respectively. In both the cases, they are shorter than

those of the CRF. Even in the two-cycle allocation, a clock frequency of 3GHz

can be achieved for the typical case, which is realistic for processors in 45 nm

generation.

The three-cycle allocation provides more timing margin in return for IPC degra-

dation caused by a one-cycle additional miss penalty of speculation such as branch

prediction. As detailed in the later graph, this IPC degradation accounts for 1.9%

for NORCS with 8-entry register cache.

Both in the two- and three-cycle allocations, the latencies of the critical paths

of NORCS are comparable with (shorter than, in actual) those of CRF; and it is

fair to allocate the same number of cycles both to NORCS and CRF.
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The curves are plotted for different size of register cache: 4, 8, 16 and 32. The area

and energy of the original article are cited from [2].

4.3.6 Area and Energy Efficiency

Figure 4.13 shows the relative IPC versus the relative area and energy consumption.

The values of area and energy consumption are simply derived from Figures 4.9

and 4.11, respectively. The relative IPC is averaged for 29 programs using SPEC

CPU 2006. The author shows the relative IPC for both two cycles and three cycles

register file.

The graphs show the trade-off between IPC and area, and between IPC and

energy consumption. In general, a technique will achieve higher IPC if it uses

more area or energy. As a result, there will be upward curves in these graphs.

When applying a technique to reduce area and energy while keeping the IPC, it is

important to plot one point within the region close to the top of the graphs and

as close to the y-axis as possible.

In each graph, the relative IPC is greater than 0.97 for a register cache size of

greater than or equal to 8, and saturates above 16.
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4.3.7 Difference from the Original Article

The author compared these evaluation results with those of the original article [2].

After the detailed design in this study, the author could confirm that the results in

the original article were approximately correct. As summarized in Table 4.5, the

results on area and latency in cycle are quite consistent, while those on energy is

not.

Difference in Energy Consumption

The results on energy consumption considerably differs between the original

article and this study. As for the reduction in energy consumption for an 8-entry

register cache, the result of the original article and paper are 68.1% and 48.2%,

respectively.

This difference is caused by the difference in the estimation of static energy.

In the results of FreePDK45, static energy is considerably smaller than dynamic

energy. In contrast, CACTI seems to overestimate static energy.

Although CACTI and FreePDK45 are both use 45 nm technology, their release

dates are quite different. CACTI was released when static energy was supposed to

be more serious than it is today.

Difference in Latency in Cycle

In the original article, they simply extrapolated the latencies in cycle from the

ratio in the areas, and assumed that that of NORCS is the same as that of conven-

tional register files. This latency assumption is quite important because it means

Table 4.5: Results of the original article and this study for 8-entry register cache

Original This study

Relative Area −75.1% −75.2%
Relative Energy −68.1% −48.2%

Latency (cycles) 2-cycle 2-cycle 3-cycle

CRF 2 2 3

NORCS (RCT + MRF) 2 2 3
RCT 1 1 1
RCD 1 1 1
MRF 1 1 2
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that the NORCS pipeline which is not for latency reduction purpose does not

increase the pipeline depth from conventional register files.

In reality, as shown in Figure 4.6, it is not simple to estimate latencies from the

ratio in bitline lengths or areas because of hierarchical bitline structure. However,

as summarized in Table 4.5, this latency assumption and its resulting IPC in the

original article are confirmed by the detailed design in this study.



Chapter 5

Multibanked Register File

Systems

Multibanking is a technique typically used for the main memory of vector proces-

sors, there is no standard implementation of a multibanked register file. Therefore,

this chapter devotes several pages to show a possible plain multibanked register

file before going into the proposals in Chapters 6 and 7. The author compares

the proposed techniques with the plain multibanked register file described in this

chapter.

First, Section 5.1 shows a possible structure of plain multibanked register file.

The most important part of the structure is a data switch. The interconnection

of conventional multiport register file and execution units is simple; the read and

write ports of the register file are directly connected to the input and output ports

of the execution units, respectively. In contrast, a multibanked register file needs

read data and write data switches for any-to-any routing between the execution

units and banks, because any execution unit can read or write any bank.

Section 5.2 discusses an operand bypass network. The multibanked register file

composed of single-port banks can bypass the values on its bank ports. These bank

ports partially substitutes for the operand bypass network.

Section 5.3 shows a difference between a multibanked register file and a multi-

banked main memory. Unlike an address of a multibanked main memory, a physical

register number of a multibanked register file is randomized by register renaming.

Because of register renaming, a physical register number space does not need to

be a linear space. The number of banks not a power of 2 is also applicable.

Lastly, Section 5.4 shows the related works.

59
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Figure 5.1: Datapaths of Full-port, Register Cache, and Multibanked Systems.

5.1 Structure

Figure 5.1 (lower) shows the datapath of a multibanked register file. Figure 5.2

adds the control to the left half.

5.1.1 Datapaths

A multibanked register file has read and write switches for any-to-any routing

between the execution units and banks. As described in Chapter 1, the banks are

more than an order of magnitude smaller than the original full-port register file in
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area.

Circuit Size of Data Switches

These switches are also more than an order of magnitude smaller contrary to

expectation. Thus, the author gives an intuitive explanation on the circuit size of

the switches before quantitative evaluation in Chapter 9.

The circuit size of these switches can be estimated via a 64-bit r-read+w-write

memory with only 1-entry. This 1-entry memory works as a 64-bit any-to-any

switch by writing a 64-bit word to any of the w write ports, and reading it from any

of the r read ports. This 1-entry r-read+w-write memory is two orders of magnitude

smaller than an r-read+w-write register file with hundred entries. Obviously, an

actual switch can be optimized as a switch.

The read and write switches are a few times larger than this memory because

they are not r-read+w-write, but r-read+b-write and b-read+w-write, respectively,

where b is the number of banks and b > r = 2w. Finally, these switches are more

than an order of magnitude smaller than the r-read+w-write register file.

The any-to-any routing and memory functions are integrated in a full-port, while

distributed into the switches and banks in a multibanked register file. It is safe to

say that a multibanked register file is smaller because of this function distribution

at the risk of bank conflicts.
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5.1.2 Control

The physical register number from the instruction issue port is used as the con-

catenation of the bank number and intra-bank number fields, which are 4- to 5-bit

wide.

The system has the arbiters and the intra-bank number routing switches. The

bank number field of the register number is decoded and distributed to the arbiters.

Then, the intra-bank number field is routed to the bank through the switches

controlled by the arbitration result.

Circuit Size of Arbiters and Register Number Switches

The arbiters and the register number switches are further smaller than the 64-bit

datapath described above, mainly because they are around 4-bit wide.

The arbiter is equivalent to a select logic of an instruction scheduler that selects

one out of the same number of instructions as the register file banks with fixed

priority. Thus, its latency is a fraction of a half-cycle time usually allocated to the

select logic that selects two or more out of 64 or more instructions. Note that the

arbiters work in parallel with one another.

The intra-bank register number is 4-bit wide, and the register number routing

switches are approximately 4/64 of the read/write switches for 64-bit data in area.

As shown by the pipeline registers in the middle of Figure 5.2, one cycle is

assigned to the arbitration and register number routing throughout this thesis.

5.2 Reduction of Operand Bypass Network

The multibanked register file can reduce the operand bypass network only for in-

structions executed back-to-back as in a register file with half-cycle latency, because

the bank ports partially substitutes for the original bypass. Figure 5.3 shows the

pipeline with a multibanked register file to explain operand passing. In this figure,

the result of Ip is passed to I3, I2, and I1 as follows:

Bank Because of the short latency of the banks, I3 can read the result of Ip

through the bank.

Bank port Because the bank is 1-read/write, when the result appears at the

bank port to be written, I2 can read it through the read switch (Figure 5.1

(lower)).
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Figure 5.3: Operand Passing in Multibanked System.

The stages are: issue = instruction issue, a = arbitration, r = register number

routing, RR = register read, exec = execute, and RW = register write.

Bypass Consequently, only I1, which is executed back-to-back with Ip, must

receive the result through the usual bypass in the execution unit.

Thus, the control logic for the original bypass can be used to control the passing

via the bank ports.

5.3 Register Number for Multibanked Register

File

The physical register number for a multibanked register file is similar to but dif-

ferent from the address for a multibanked main memory.

Randomness of Register Number

In a multibanked main memory, consecutive addresses reside in different banks

to prevent bank conflicts in particular on continuous access. In contrast, it is

meaningless to arrange the register numbers for the banks, because the register

numbers are randomized by register renaming as shown in Section 2.2.

A cycle-accurate simulator in Chapter 8 reproduces that this shuffling actually

randomizes the bank accesses.

Number of Banks

The number of banks of a multibanked main memory should be a power of 2

to avoid a complex operation such as division to obtain the bank number from

the address [46]. A multibanked register file can more freely choose the number of

banks. This is because the physical register number is not a consecutive sequence

number but a unique identifier, i.e., a tag; thus, the physical register number can
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be the concatenation of the bank and intra-bank numbers. The number of banks

not a power of 2 slightly decreases the utility of the bank number field.

From the same reason, a prime number of banks does not have a direct effect in

reducing bank conflicts for multibanked register file.

5.4 Techniques to Reduce Bank Conflict

As mentioned in Chapter 1, some techniques have been proposed to reduce the

bank conflict probability of a plain multibanked register file without increasing the

banks but with complex mechanisms.

Register Access Queue [25]

Hironaka, et al. proposed scheduling queues for register accesses. An instruction

is divided into one execution and two register read operations. They are dispatched

to the separate queues, and scheduled so that no bank conflict occurs.

However, the total scheduling logic is tripled for one execution and two register

read operations. Moreover, the register access queues are more complex than usual

instruction queues. To schedule register read operations so that no bank conflict

occurs, the register numbers of ready instructions must be associatively compared

with one another in the queues.

Additionally, it is difficult to predict safe combinations of accesses which do not

cause bank conflicts. It is not probable that learned safe combinations will not

cause bank conflicts, because the register numbers are randomized as described in

Section 5.3.

Register Multi-mapping [26]

Duong et al. proposed a technique to allocate to an instruction two registers in

different banks. The instruction writes the result into both the registers. Even if

the read access to the first register fails due to a bank conflict, there remains a

chance to read the second in another bank. The pipeline is stalled if read accesses

to both the registers fail because of double conflicts.

However, the overhead of multi-mapping is unacceptably large. A a näıve imple-

mentation of double mapping also doubles the registers. The register management

logic, such as the register mapping table, the active and free lists, is also doubled.
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Delayed Register Allocation [26,27]

In addition to read, write accesses also cause bank conflicts. Write accesses

have more alternatives to cope with because they have longer slack time to finish

than read. Park et al. proposed the delayed register allocation [27]. The register

multi-mapping described above adopted the same technique in combination [26].

This technique allocates a virtual tag to an instruction in the rename stage to

resolve dependency among instructions; then, actually does a physical register im-

mediately before the writeback stage so that no bank conflict occurs on writeback.

However, an extra mapping table is required to map the virtual tag to the

register. This table is almost equivalent to a full-port register file with a 1/4

bitwidth, mainly because the tag is roughly 1/4 of the register in bitwidth. Park et

al. added an extra cycle to read this table before reading the multibanked register

file.





Chapter 6

Bank-Aware Instruction

Scheduler

This chapter describes the proposed bank-aware scheduler. As mentioned in

Chapter 1, prior studies briefly mentioned the possibility of bank-aware scheduling

or rejected it because of the increased latency [23,30]. However, the detailed design

clarifies that the latency of the logic is not practically increased.

In addition, the author made following observatios:

1. Accesses that obtain their operands from the operand bypass network can be

excluded from the bank arbitration.

2. The two accesses to the two operands of an instruction can cause a bank

conflict, and resolving this type of a bank conflict requires an additional cycle.

3. However, some of conflicts are caused by the two accesses to the same register

value to calculate the square or double of the value, and can be excluded.

67
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Figure 6.1: Proposed select logic (3 instructions to 24 banks).

6.1 Structure

Figure 6.1 shows the proposed select logic that selects three instructions to a 24-

bank register file. The upper half of the figure repressents conventional select logic

composed of cascaded three cascaded arbiters; each arbiter selects at most one from

at most W requests, where W is the instruction window size [47]. These arbiters

work in series by withdrawing the requests to the next arbiter when granted. They

produce gp[i][p] for the i-th instruction to be issued from the p-th issuing port.

The lower half is comprised of the read arbiters for the 24 banks added for the

proposed logic. The physical register numbers allocated to the source operands are

stored in the src0/src1 registers, which are parts of the instruction window entries.

The bank numbers of these registers are decoded, bit-wise ORed, and distributed

to the arbiters, which are identical to those in the conventional select logic stated

above. When all of the read requests for i-th instruction, if any, is granted, gr[i] is

asserted. The author should note that, unlike the conventional select logic stated

above, these 24 arbiters work in parallel.

In typical instruction windows, src0/src1 are fields of the rows of the wakeup
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CAM [47]. In this case, it is necessary to read the CAM in order to know the bank

numbers of ready instructions for arbitration. Thus, the point of the proposed

logic is to change these fields into the registers so that the bank numbers can be

routed to the arbiters without reading the CAM.

Though not shown in the figure, the write arbiters exist that produce gw[i] in

almost the same way as the read arbiters except that an instruction has only one

destination operand. The read and write arbiters cannot be merged because the

cycles when the target banks are used are different between read and write. As

shown in the figure, the read arbiters are disabled by the busy signals when the

bank is used for a write request of instructions issued in previous cycles.

Finally, the i-th instruction is selected to be issued from the p-th port when

gp[i][p] && (gr[i] && gw[i]) == 1.

Size and Latency

The read/write arbiters are about (24/w) times larger than the conventional

select logic, where w is the issue width and is 3 in Figure 6.1. However, the latencies

of the read/write arbiters are considerably shorter than that of the conventional

logic. As stated before, the w arbiters work in series, while the 24 read/write

arbiters work in parallel. Thus, the latencies of the read/write arbiters are basically

1/w of the conventional logic, and the critical path of the entire logic resides in

the conventional logic. Therefore, the entire latency of the proposed select logic is

longer than the conventional select logic by the latency of the 2-input AND gates

that appear in the above expression.

6.2 Bypass-Aware Scheduling

As shown in Section 2.5, multibanked register file systems should properly handle

operand bypasses.

Figure 6.2 shows the pipelined behaviors of two instructions Ip and Ic. Ic depends

on Ip; that is, Ic reads the same physical register that Ip writes.

In the upper figure, Ic is issued immediately after Ip. In this case, the issue of Ic

is not avoided by the bank-aware instruction scheduling, because Ic and Ip request

the same bank in the different cycles (C4 and C5).

However, the select of Ic is delayed for one cycle for some reason, Ic is unexpect-

edly delayed for two cycles. In the lower of the figure, the issue of Ic is delayed
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Figure 6.2: Ic is immediately issued (upper), delayed for one cycle for some reason

(middle and lower). The stages are W: wakeup, S: select, exec: execution, and

read/write: register read/write.

for one cycle. In this case, the value is usually passed through the operand bypass

network. However, if left unhandled, Ic meaninglessly requests the same bank.

This request is not granted because the bank is used by Ip in the cycle C5, and the

issue of Ic is delayed for another cycle, as shown in the lower of the figure.

To solve this problem for bank-aware instruction scheduler, the author adopts a

trick. In Figure 6.1, the operand ready signals, which are set by the wakeup signals,

are connected to the enable pins of the decoders for the read arbiters through the

FFs shown in the middle. These FFs delay the requests for the read arbiters for

two cycles after wakeup.

In the case of Figure 6.2, Ic does not request the bank in the cycles C2 and C3.

This is the same as Ic does not have the source operands. As a result, Ic is selected

in C3 as shown in the middle of the figure.

6.3 Bank Conflict in One Instruction

A bank conflict can occur between the two source operands of an instruction. In

this case, the backend pipeline must be invoked to make a cycle to read the second

operand. The author should note that it is difficult to solve this problem with

register renaming. Physical registers have already been allocated as destinations for

the operands of the dependent instructions, and this mapping cannot be changed

for the convenience of the source operands of the instruction to be scheduled.
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The author found that some of these types of conflicts are caused when an

instruction has two identical source operands. For example, sphinx3 in SPEC

2006 has a number of multiply instructions with two identical source operands to

calculate the square. In this case, a bank conflict can be avoided by reading the

bank once and duplicating the read value in the read switch.





Chapter 7

Skewed Multistaged Multibanked

Register File System

The proposed skewed multistaged multibanked register file (MStage) reduces

not the bank conflict probability but the pipeline disturbance probability by the

second stage. In this chapter, MStage is detailed from Sections 7.1 to 7.3.

The main difference between MStage and the plain multibanked register file is

pipelined behavior. Section 7.1 shows the difference between MStage and the plain

multibanked register file in pipelined behavior.

The structures of MStage is basically the same as that of the plain multibanked

register file except for the second stage. To implement the second stage, MStage

adopted a skewed multistaged pipeline. Section 7.1 also shows the unique structure

of the skewed multistaged pipeline.

Sections 7.2 and 7.3 show the basic structure of the control logic of MStage.

Section 7.2 explains a request aggregation which is the technique to aggregate the

requests to the same register file entry in the cycle. Section 7.3 shows the bank

arbitration logic. The author also shows the detailed evaluation of the control logic

in the latter chapter (Chapter 9), the results of the detailed design is consistent

with the consideration in this chapter.

Two different mathematical models are also presented for quantitative explana-

tion of a low disturbance probability of MStage in Section 7.4.

73
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Figure 7.1: Plain and Multistaged Pipelines.

The stages are: issue = instruction issue, a = arbitration, r = register number

routing, RR = register read, exec = execute, and RW = register write.

7.1 Skewed Multistaged Pipeline

Figure 7.1 shows the pipelined behavior of a plain and a multistaged pipelines. In

this figure, the stages to read the register file are divided into upper and lower

halves to indicate that an instruction has two source operands. The blank stages

indicate that the instructions do not have the corresponding source operands. This

figure shows the rarest case where all the accesses are to the bank 0 to prevent the

diagram from being unnecessarily long.

In this section, the author denotes the accesses of the instruction Ii, from the

p-th operand issue port, to the b-th bank as ip,b. In Figure 7.1, I1 has two source

operands and they are denoted as 10,0 and 11,0.

Because all the accesses are to the bank 0, the plain pipeline shown in the upper

half of the figure is stalled every time when an instruction has two source operands.

For example, 11,0 fails to read the bank due to the bank conflict with 10,0 as denoted

by the blocked sign. The pipeline is stalled in C3, when 11,0 reads the bank 0.
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7.1.1 Pipeline Behavior

In contrast, the multistaged pipeline has two stages of RR1 and RR2 for reading

the register file banks, to reduce not bank conflicts but pipeline stalls as follows:

• 10,0 wins the bank 0, and read it in RR1 in C2.

• As in the plain pipeline, 11,0 loses the bank 0 with 10,0. However, in the mul-

tistaged pipeline, losing 11,0 retries in C2; then, it successfully reads it in RR2

in C3 without stalling the pipeline.

When losing 11,0 reads the bank in C3, winning 10,0 passes through this stage

with the source operand obtained in the previous cycle as denoted by the

dashed box in the figure. As a result, both the source operands are provided

at the same time for exec in C4.

• The accesses to a bank are served in FCFS (FIFO) manner. 31,0 lost in C3 is

given a higher priority than newly arriving 40,0 in C4, and hence never loses

to the latter.

• In contrast, 51,0 loses twice in C5 and C6, resulting in a pipeline stall in C8.

In this figure, the multistaged pipeline finishes 1 cycle faster than the plain,

owing to less stalled cycles, though the former is 1 stage deeper than the latter.

Whereas stalls directly prolong the execution time, an extra pipeline stage only

does so by prolonging the penalty on infrequent mispredictions.

7.1.2 Pipeline Structure

Figure 7.3 shows the unique structure of the skewed multistaged pipeline that

realizes the above-described behavior. For simplicity, this figure extracts two read

ports and one bank from r read and w write ports and b banks.

In the middle of this figure, there are two physical stages of Arbiter and Reg#

SW; and Bank and Read SW. These two physical stages are skewed and shared

by three virtual stages. The accesses from the issue ports P0 and P1 corresponds

to 10,0 and 11,0 in Figure 7.1 (lower), and they follow the solid arrows as follows:

• In C1, 10,0 wins the bank 0, and the two physical stages are allocated to the

first and second virtual stages.

On the contrary, 11,0 loses, and proceeds to the pipeline register denoted as

rn2.

• In C2, because 10,0 goes to the next stage, 11,0 can win the bank, and the two
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Figure 7.3: Skewed Multistaged Pipeline for 3 Read Ports and 1 Bank.

physical stages are allocated to the second and third virtual stages.

In this cycle, 10,0 reads the bank 0, and the read operand is written to the

pipeline latch denoted as d1, to make a pair with the operand of 11,0 that will

be read in the next cycle, which preserves pipelined behavior.

In this manner, the two physical stages are dynamically allocated to the first and

second, or to the second and third, of the three virtual stages depending on whether

the accesses win or lose the bank. From the other perspective, in each of the

three virtual stages, the physical partial circuit that realizes actual processing

dynamically varies with winning or losing.

This is quite unusual for conventional pipelines. In general, a stage means a

specific physical module. It is possible that a shared module appears in plural

stages, for example, an I/D unified cache appears in the fetch and memory stages.

However, it is unusual that a module moves to the neighboring stages.

Cycle-by-Cycle Behavior

Figure 7.2 shows cycle-by-cycle behavior of the skewed pipeline. In this figure,

rn1, rn2, rnx, d1, and d2 are the pipeline latches in Figure 7.3. The behavior in this

figure is the same as Figure 7.1 (lower) and Figure 7.3, and the above explanation
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for the behavior can be exactly applied to that in this figure. Thus, the author does

not repeat the same explanation, but the author should note that the following

items with this figure:

• More than one accesses are serialized, and at most one access resides in the

Bank column. This condition satisfies the resource restriction of the banks.

• All the accesses that appear in the rn1 column in Cc also appear in the d2

column in Cc+3 (except for stalled cycles), where the difference from C3 to

Cc+3 comes from the number of virtual stages. This condition ensures the

pipelined behavior.

In particular, the pair of 50,0 and 51,0 which appears in rn1 in C5 also appears

in d2 in C9 because of the presence of the stalled cycle in C8. In C8, 50,0 has

already arrived at d2; and then, it stays there until C9 because of the stall,

when 51,0 catches up with 50,0 in d2.

7.1.3 Pipeline Stall

As explained in Section 2.6, stalling is more advantageous than rescheduling for

multibanked systems.

Stall Condition

The multistaged pipeline is stalled if a bank has a total of 3 or more accesses in a

cycle. In Figure 7.1 (lower) and Figure 7.2, this condition is met in C5 as denoted

by the dashed box with rounded corners. In this case, the bank 0 has one access

being served and two newly arriving accesses. In Figure 7.2, 51,0 proceeds to rnx

in C7; then, reads the bank 0 in the stalled cycle of C8.

Critical Paths for Stall

As mentioned in Section 2.6, in general, stall logic can make critical paths;

fortunately, this does not hold true for the multistaged pipeline. In Figure 7.1, a

stall condition is detected in the middle of C5; then, the pipeline is actually stalled

in C8. Thus, the tree to distribute the stall signal can take longer than 2 cycles.

Consequently, it is practically impossible for the logic to make critical paths.
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7.2 Request Aggregation

If two or more instructions in the scheduler have the same source operand, it is

probable that they are woken up and issued at the same time, and then, will cause

a bank conflict for that operand.

This problem of accesses to the same register is specific to multibanked register

files. Designers of multibanked main memories inevitably consider consecutive or

stride accesses, but they have hardly considered accesses to the same address.

Tseng et al. proposed to share the read port among the read requests to the

same register [23,24]. The author also adopted request aggregation to the same

register. As Tseng et al. called their technique as read sharing, they aggregate only

read accesses. In contrast, the author aggregates both read and write accesses.

Because the bank is 1-read/write, a data to be written can be read from the same

port as shown in Section 5.2.

When two or more accesses to the same register are detected, the access with the

highest priority requests the bank for the others. When this aggregated request is

granted, all of the accesses receive the grant signals for the bank. After that, the

following processes are automatically performed depending on whether the accesses

are read or write:

Read and Read When two or more read requests are aggregated, the read

switch duplicates the data read from the bank controlled by the grant sig-

nals.

Write and Read Aggregation of a write and a read request realizes the operand

passing via the bank port described in Section 5.2.

These two processes are combined for one write and two or more read accesses.

Comparator Array

For this request aggregation, an array of comparators shown in Figure 7.4 is

placed before the arbiters. As shown in this figure, the write accesses are given

higher priority than the read accesses to ensure read-after-write dependency. Thus,

the comparators can be omitted or added without affecting the correctness of the

behavior. In this figure and the evaluation in Chapter 8 and 9, the comparators are

provided only for the newly arriving accesses, and the match result is reused in the

second stage when aggregated requests are not granted. Instead, extra comparators
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can be added between newly arriving and losing accesses with an IPC increase of

1% or less.

AND-OR Array

The comparator array is not enough to implement request aggregation. A request

can be aggregated only if the request matches with the other request which has a

grant. To implement this logic, the AND-OR array in Figure 7.5 is placed after

the arbiters.

7.3 Decoder and Arbiter

Figure 7.6 shows the arbiter circuit which has 15 request ports (10-read+5-write)

and 18-banked multibanked register file. Arbitration is proccessed for each bank.

Therefore, the decoders are placed between the request inputs and the arbiters.
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The each arbiter gives the grant signal of its bank, then the grant signals are

gathered by multi-input OR circuit.

The number of the decoded request signals roughly determines the scale of the

circuit. Therefore, the scale of the circuit is roughly proportional to the product

of the number of requests and the number of banks. As shown in Section 9.2, the

decoders and arbiters are the significant part of the control circuit of MStage.
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7.4 Stall Probability

This section presents analytic solutions for the stall probabilities of existing and

proposed techniques.

Unlike a multibanked main memory, the bank of each access is assumed to be

randomly chosen, because the physical registers are randomly allocated to instruc-

tions after sufficient cycles have passed since initialization.

The author found two different approaches, a queueing theory approach and a

birthday problem approarch. The following two subsections explain each of the two

different approaches.

Throughout this section, the number of banks is b, and the number of register

accesses per cycle is n.

7.4.1 Queueing Theory Approach

The bank of a multibanked register file system can be modeled as a waiting queue,

where the server is the bank itself, and the customers are accesses to the bank. This

subsection presents analytic solutions for the stall probabilities based on queueing

theory.

M/D/1/1 Queue

Each of the banks (not the whole system) of a plain multibanked system corre-

sponds to the M/D/1/1 queue, as detailed as follows:

M The arrival process can be assumed to be Markovian because the bank accesses

(customers) are randomized by register renaming (Section 5.3).

D A customer (access) is served by the server (bank) in a deterministic time of 1

cycle in a pipelined manner.

1 The number of servers (banks) is 1.

1 The capacity includes the places for a customer being served and those in the

waiting room. That is, the M/D/1/1 queue has no waiting room.

Because of no waiting room, if two customers arrive at the M/D/1/1 queue in

a single cycle, the lost customer leaves the queue. This corresponds to a bank

conflict and the resulting pipeline stall.
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M/D/1/2 Queue [48]

The M/D/1/2 queue, which has the waiting room for only one customer, largely

reduces this leaving probability. Even if two customers arrive at theM/D/1/2 queue

in a single cycle, the lost customer can wait in the waiting room and be served in

the next cycle.

In this manner, a bank conflict for the M/D/1/2 queue does not necessarily result

in a pipeline stall. The M/D/1/2 queue decreases the pipeline stall probability

without decreasing the bank conflict probability. The bank conflict probability

itself is contrarily increased in the M/D/1/2 queue.

Markov Chains

Figure 7.7 shows the Markov chains of the M/D/1/1 and M/D/1/2 queues. The

circles represent the states corresponding to the number of customers in the system.

The percentage numbers in the circles are the stationary probabilities of these

states. The arrows labeled as “k (xk%)” represent the state transition, where k is

the number of arriving customers and xk% is the transition probability.

For example, in the M/D/1/2 queue, if 2 customers arrive in the state 0 (i.e., 0

customers in the system), the first is served while the second waits in the waiting

room; thus, the queue moves to the state 1 (1 customer). Then, if 1 customer

arrives, the queue stays in the state 1, because the service time is 1 cycle.

Transition and Stationary Probabilities

For the ease of understanding the calculation, the probabilities are calculated

assuming the number of banks b = 10 and the number of register accesses per

cycle is fixed to n = 3.

In this case, the transition probability is given by the binomial distribution xk =

3Ck(1/10)
k(9/10)3−k. For example, x2 = 3C2(1/10)

2(9/10)1 = (3× 9)/103 = 2.7%,

0 (72.9%), 2 (2.7%)
1 (24.3%)

0 (72.9%)

3 (0.1%)

1 (24.3%)

2 (2.7%),

0 (72.9%),

1 (24.3%)

3 (0.1%)

2 (2.7%),

3 (0.1%)

0
(100%) (96.6%) (3.4%)

0 1

2 (2.7%),

Figure 7.7: Markov chains of M/D/1/1 and M/D/1/2 queues.
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resulting in the label “2 (2.7%)”.

The dashed arrows represent the state transitions with leaving customers, each

results in a pipeline stall. The dashed arrows return to the state 0, which means

stalled cycles are not counted in the stationary probabilities.

The stationary probabilities of theM/D/1/2 queues are calculated from the chain.

Note that the stationary probability of the state 1 is as low as 3.4%, intuitively

because the state 1 is hard to come (2.7%) and easy to go (72.9 + 2.7 + 0.1 =

1− 24.3 = 75.7%).

Pipeline Stall Probability

Compared with the M/D/1/1 queue, the M/D/1/2 queue decreases the pipeline

stall probability per bank as follows:

State 0 If 2 accesses arrive, the M/D/1/1 queue lets one of them leave, while the

M/D/1/2 queue does not and moves to the state 1. That is, the M/D/1/2 queue

in the state 0 increases the least number of arriving accesses to cause a bank

stall from 2 to 3. As a result, the stall probability in the state 0 is decreased

from 2.7 + 0.1% to 0.1%.

State 1 In the state 1, a stall occurs when 2 or more customers arrive as with the

M/D/1/1 queue. However, the stall probability in the state 1 is multiplied by

the stationary probability, and decreased from 2.8% to 2.8%×3.4% = 0.0952%.

In total, the stall probability pre bank p is decreased from 2.8% to 0.1 + 0.0952 =

0.1952%.

Then, the overall pipeline stall probability P = (1 − p)b is decreased from 1 −
(1− 0.028)10 ≃ 24.7% to 1− (1− 0.001952)10 ≃ 1.93%.

A waiting room for only one customer has an equivalent effect to increasing the

number of banks to b times. The simulation results in Chapter 8 show P = 2.5%

when b = 18 for SPEC benchmark.

7.4.2 Birthday Problem Approach

This subsection presents analytic solutions for the stall probabilities based on birth-

day problem.
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Multibanked Register File

The pipeline of a conventional multibanked register file with single-port cells is

stalled on a bank conflict.

The stall probabilities of a conventional multibanked register file is equivalent

to the birthday problem [49]. The probability that the bank of the second access

is different to that of the first is (b− 1)/b, and that the bank of the third access is

different to both the first and second is (b− 2)/b. In this way, the probability that

all the n accesses are to different banks is (b−1)/b× (b−2)/b×· · ·× (b−n+1)/b.

Inversely, the stall probability, which is the probability that some of the n access

are to the same bank, is as follows:

PPlain(b, n) = 1− b− 1

b
× b− 2

b
× · · · × b− n+ 1

b
. (7.1)

When n = 3, the probability is:

PPlain(b, 3) = (3b− 2)/b2. (7.2)

Multiported Multibanked Register File

The pipeline of the multiported system with 2-read/write cells is stalled when

some banks have more than 2 accesses.

This is equivalent to an extended birthday problem that 3 or more people will

have the same birthday. This probability is as follows [49]:

PmPort(b, n) = 1−
⌊n/2⌋∑
i=0

b!n!

i! (n− 2i)! (b− n+ i)! 2ibn
. (7.3)

When n = 3, this equation is simplified as follows:

PmPort(b, 3) = 1/b2. (7.4)

Multistaged Multibanked Register File

The stall probability of the multistaged system is primarily the same as that of

the multiported system because each bank of this system can virtually accept two

accesses per cycle, by carrying over one of them to the next cycle. Conversely,

the access carried over from the previous cycle increases the effective number of

accesses in this cycle.
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Rough Estimate

A carry-over occurs when a bank has 2 accesses in a single cycle, and this

probability is the same as PPlain (Equation 7.1). When b = 16 and n = 3,

PPlain(16, 3) ≃ 18.0%; thus, the effective number of accesses in the next cycles

is increased from 3 to 3.18 on average. Then, the stall probability is obtained

by assigning this increased number of accesses to the multiported stall probability

PmPort (7.3).

However, this discussion only holds true for the first cycles after the initial state.

To be more precise, the multistaged stall probability is calculated as follows.

Number of Carry-Over

The situation can be divided based on m, the maximum number of accesses per

bank:

1. When m = 1, the pipeline is never stalled.

2. When m = 2, the pipeline is conditionally stalled.

3. When m ≥ 3, the pipeline is always stalled.

When m ≥ 3, carrying over 2 (or more) accesses per bank is meaningless. Even

if 2 accesses are carried over, one of the two will win but the other will also lose in

the second stage. Consequently, the system can limit the number of carry over per

bank to one. This is the exact reason why the pipeline is always stalled in item 3.

The single access carried over necessarily wins in the second stage because it is

given higher priority. In Figure 7.1, the lower access of I3 in the RR2 stage has the

higher priority than the accesses of I4 in the RR1 stage, and hence never loses to

the latter.

Multistaged-Specific Stall

In items 1 and 3, the multistaged system behaves the same as the multiported

system. In contrast in item 2, the pipeline of the multiported system is never

stalled, while that of the multistaged system is conditionally stalled. Thus, stalls

in item 2 are multistaged-specific.

In Figure 7.1, the bank has 3 accesses in cycle c5, as denoted with a dashed

box in the figure, causing a pipeline stall in cycle c8. The situation in cycle c5 is

equivalent to item 3, where a bank has 3 (or more) accesses for the RR1 stage.

Consequently, the multistaged pipeline is stalled when a bank has a total of 3 (or

more) accesses in a cycle whether they are in the RR1 or RR2 stages.
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In this figure, instructions I3, I4, and I5 perform 2, 1, and 2 accesses, respectively.

As a result, a carry-over is produced by the 2 accesses of I3, then propagated by 1

access of I4, and finally results in a stall by 2 accesses of I5. These generation and

propagation look like G and P functions in a carry-lookahead adder. Eventually, a

multistaged-specific stall occurs when a bank has 2, (1,)∗ 2 accesses in consecutive

cycles, where “(1,)∗” denotes zero or more repetition of “1,”.

Stall Probability

The multistaged-specific stall probability is given by the sum of geometric series

of the probabilities that a bank has 2, (1,)∗ 2 accesses in consecutive cycles. Thus,

it can be approximated by the first term, which is the probability that a bank has

2 and 2 accesses in two consecutive cycles.

The probability that a bank has 2 accesses in a single cycle is the same as PPlain,

the probability that the same bank has 2 accesses again in the next cycle is PPlain/b.

Thus, the multistaged-specific probability is PPlain × PPlain/b = (PPlain)
2/b.

Finally, the stall probability is given by the sum of the multiported stall prob-

ability (Equation 7.3) and the multistaged-specific probability, and is as follows:

PMStage(b, n) = PmPort(b, n) + PPlain(b, n)
2/b. (7.5)

When n = 3, this probability is:

PMStage(b, 3) = 1/b2 + (3b− 2)2/b5. (7.6)

7.4.3 Comparison

Figure 7.8 shows the stall probabilities calculated by the two different approaches.

In the graph, the x-axis is the number of banks. The graph shows the stall prob-

abilities calculated by Section 7.4.1 and 7.4.2. The x− and y-axis are log-scaledd.

Four curves are plotted for Plain andMStage by the two different approaches, where

the number of access are n = 3. The results of the two different approaches are

quite consistent each other.
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Chapter 8

Evaluation of IPC

This chapter shows the evaluation results of IPC. The author evaluated both of the

conventional models (Multiported register file, NORCS, plain multibanked register

file), and the proposed multibanked models (BAIS and MStage). Section 8.3 shows

the detail of evaluated models. The author used SPEC CPU 2006 benchmark [3]

and Onikiri 2 [31] simulator as shown in Section 8.1.

First, the author discusses the number of operands per cycle for the benchmark

programs in Section 8.2. As shown in the Section 8.4 section, IPC of the most

models including proposed MStage is primarily determined by the number of reg-

ister file accesses per cycle of a program. For the same number of operands per

cycle, the stall probability of MStage is smaller than that of Plain, because of the

second stage. The evaluation results show that, MStage with 18 banks maintain a

relative IPC of 97.3%.

The author also evaluated BAIS. BAIS with 24 banks maintain a relative IPC

of 97.2%. MStage needs only 18 banks, while BAIS needs 24 banks to maintain a

relative IPC more than 0.97. Therefore, MStage is more efficient in the area and

energy consumption. Next Chapter 9 compares the area and energy consumption

of MStage and BAIS in detail.

Lastly, Section 8.5 shows the effect of request aggregation and operand bypass.

The results shows that both request aggregation and operand bypass were essential

parts of the efficient multibanked register file.

91
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8.1 Evaluation Methodology

Benchmark

The author used all 29 programs of the SPEC CPU 2006 benchmark with the

ref data sets [3]. The programs were compiled with gcc 4.2.2 −O3. The author

evaluated the 1G instructions after the first 10G instructions.

Simulator

The author used the Onikiri 2 [31] simulator, which was also used to evaluate

NORCS [2]. This simulator is fully cycle accurate, that is, it reproduces the be-

havior of instructions in each stage in the correct cycles. The simulator executes

instructions in the correct execute stages, and verifies the results with those of

an on-line emulator in the commit stage. Thus, the behavior on mispredictions is

also accurately reproduced. The simulator also reproduces the fact that register

renaming actually randomizes the accessed registers (Section 5.3).

8.2 Number of Operands

First, the author counted the number of operands of each program to better un-

derstand the relationship between the numbers of operands and register file ports.

Some source operands are provided by the bypass or by the request aggregation

without consuming the register file ports (Section 7.2). The other source operands

consume the read ports, and become the cause of bank conflicts. Table 8.1 classifies

these types of accesses1.

Figure 8.1 shows the numbers of ports used by these types of accesses per cycle

for all 29 programs and the average of them. Some programs such as h264ref and

bzip2 consume approximately 2 read and 2 write ports per cycle; however, this does

not mean that a 4-port register file is sufficient.

Figure 8.2 shows the cumulative distribution of port usage for h264ref, which is

the program with the largest number of operands. In this graph, R(—)+W at the

point of 4 ports is 52.4%, which means that only 52.4% of the execution cycles are

covered by a 4-port register file. Conversely, this curve reaches 97.8% at the point

1Some technique such as delayed allocation excludes write accesses; however, the author did

not show the evaluation result because the overhead is too large to compare with the others, as

mentioned in Section 5.4.
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Table 8.1: Classification of Accesses based on Exclusion.
Symbol Read/Write Excluded from the cause of bank conflict by 

■ R(BP)

Read

Bypass

■ R(RA) Request Aggregation

■ R(—) (cannot be excluded)

■ W Write (can be excluded by Delayed Allocation, etc.)
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of 9 ports, which means that it is not practically difficult to reduce the number of

ports to 9 or more.

8.3 Evaluated Models

Table 8.2 shows the evaluated models of their default configurations. The au-

thor choses as the default the minimum configurations with which BAIS, MStage,

NORCS and RPort show average relative IPC of more than 0.97.

Baseline Model

The baseline core has a full-port register file composed of a replicated pair of

RAMs. This replication is widely used in recent cores such as the Bulldozer core

in Chapter 1 [5, 13,16–19].

Table 8.3 and Figure 8.3 give its configuration, which follows modern 8-issue cores

such as the IBM POWER7/8, and Intel Haswell and Skylake processors [5–8].

Plain Multi-Bank Models

The author evaluated Plain model, which is the plain multibanked register file

simply stalled on a bank conflict. For fair comparison with MStage, the author

also evaluted PlainRA which is a Plain with request aggregation.

Reduced Port Model

As described in Section 8.2, it is not practically difficult to reduce the number

of ports from 15 to 9 or less. In fact, commercial processors adopt ad-hoc methods

to reduce the number of ports; however, they are difficult to generalize.

Table 8.2: Evaluated Models and Their Default Configurations
Name Technique ports RF read stages remarks

(baseline) Replicated Pair 5/4r+5w(int/fp) 3 RF:3

■ Plain
Plain Multibank

1rw (bank)
2

a/r:1

RF:1

w/o Request Aggregation

■ PlainRA with Request Aggregation

■ BAIS Bank-Aware Instruction Scheduler w/o Request Aggregation

■ MStage Multistage
3

RF:2
with Request Aggregation

■ RPort Reduced Port 7rw (RF) RF:2

■ NORCS NORCS 3r+3w (MRF) 2 RC:1 MRF:1 RC: 12 ent.

RF: reg. file, RC: reg. cache, MRF: main RF, a/r: arbitration/reg. number routing
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Table 8.3: Configuration of Baseline Core

ISA Alpha w/ byte-word ext.
width fetch, issue, commit: 8
inst. window 64 (unified)
reorder buffer 256 entries
registers int:180, fp:180
exec. units int:3, fp:3, mem:2
pipeline stages fetch to dispatch:9, schedule: 1, issue:2, register read: 3
branch pred. 16K:gshare + 8K:local

miss penalty 16 cycles
BTB 2K-entries, 4-ways
L1C 64KB, 8-way, 64B/line, 2 cycles
L2C 512KB, 8-way, 64B/line, 8 cycles
L3C 8MB, 8-way, 64B/line, 24 cycles
main memory 200 cycles

int0 int1 int2 mem0 mem1 fp0 fp1 fp2

Unified Issue Queue (64 entries)

fp reg (8-read/5-write)

int reg (10-read/5-write)

Figure 8.3: Execution units and Register Files of Baseline Core
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Thus, the author evaluated the RPort model which has a b-port register file

(b < 15) for reference. From the PlainRA model (Figure 5.1 (lower)), the b banks of

1-read/write RAM is replaced with one b-read/write RAM. The model is free from

bank conflicts; instead, the backend pipeline is stalled when more than b operands

are accessed in a single cycle. For fair comparison with MStage, the author applied

the request aggregation (Section 7.2) to this model.

Register Latencies

As described in Section 5.1, the author assumed that the arbitration and register

number routing of the multibanked models take one cycle, which is denoted as “a/r:

1” in Table 8.2.

Unfortunately, the register file latency is not documented for recent cores [50].

The author assumed that the latency of the baseline core is 3 cycles, and that of

some models is reduced to 2 or 1, as shown in Table 8.2.

However, this difference of one cycle has an insignificant effect on the IPC of

recent cores with highly accurate predictors. In this evaluation, the average IPC

decreased by 1.4% because of this one-cycle increase.

These latencies are partially verified in Section 9.4.

8.4 Relative IPC and Stalled Cycles

Relative IPC

The graphs in Figure 8.4 show the averaged relative IPC of the models with

different configurations averaged for the 29 programs in SPEC CPU 2006. In

this graph, four bars are shown for multibanked models with different numbers of

banks, for RPort with different numbers of ports, and for NORCS with different

size of register cache. Regarding NORCS, the author evaluated many other config-

urations, e.g., a main register file with fewer write ports, and selected these four as

representatives so that they can prove that the default configuration is the best.

The author evaluated the number of banks in multiples of 6 based on the layout

constraint derived in Section 9.2. As described in Section 5.3, the number of banks

not being a power of 2 does not have a significant impact.

While Plain and PlainRA cannot achieve sufficient IPC even with 30 banks, BAIS

achieves a relative IPC as high as 97.2% with 24 banks, and MStage achieves a

relative IPC of as high as 97.3% with 18 banks.
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Figure 8.4: Averaged Relative IPC of Models with Different Configurations.

Figure 8.5 shows the relative IPC of the models with the default configurations

shown in Table 8.2 for all the 29 programs in SPEC CPU 2006. The programs

are arranged in descending order of the number of R(—) + W accesses shown as

the curve in this graph, which is that to the integer register file or that to the

floating-point register file, whichever is greater (Figure 8.1).

The author choses the default configurations so that MStage, BAIS, RPort, and

NORCS show average relative IPC of more than 0.97. However,most of them show

the relative IPC of as low as 0.9 for programs with a large number of register file

accesses such as h264ref.

Relative IPC and Bank Conflicts

The first graph in Figure 8.6 shows the number of stalls per cycles caused by

bank conflicts, the pipeline disturbance probability caused by bank conflicts, for 29

all programs and the average of all the 29 programs. The second graph is extracted

from Figure 8.5 to compare with the first.

From PlainRA, MStage reduces this disturbance probability from 0.124 to 0.025,

which is the actual effect of the M/D/1/2 queue.

Table 8.4 shows the correlation coefficent between (R(—)+W) and (1−RelativeIPC).

NORCS, RPort, Plain, PlainRA and MStage models have strong correlation between

them, while BAIS does not.

As a whole, R(—)+W accesses per cycle, stalled cycles caused by bank conflicts,
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Figure 8.5: Relative IPC of Models with Default Configurations for All 29 Programs

and Average of them.

and the IPC show strong correlation for NORCS, RPort, Plain, PlainRA and MStage

models. It is safe to say that the IPC of these models is primarily determined by

the number of register file accesses per cycle of a program.

8.5 Request Aggregation

Figure 8.7 shows the relative IPC of MStage with and without the bypass and

request aggregation. In this graph, three bars are shown for each of the programs,

and the differences between the first and second, and the second and third, show

improvement by the bypass and by request aggregation, respectively.

As shown in this graph, these two techniques have the same level of impact

on IPC. However, as shown in Figure 8.1, the accesses excluded by the request

Table 8.4: Correlation Coefficient between (R(—)+W) and (1 - Relative IPC).

NORCS RPort MStage BAIS Plain PlainRA

0.64 0.79 0.78 0.21 0.75 0.78
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aggregation are quite few. This phenomenon occurs because the bypass and request

aggregation has an indirect and a direct effect, respectively, as described below.

Even if the accesses that can be excluded by the bypass are not excluded, they

do not necessarily cause bank conflicts. They increase the number of accesses; and

then, stochastically increase the stalled cycles.

On the contrary, if the accesses that can be excluded by request aggregation are

not excluded, they increase the stalled cycles with probability 1.

Thus, the author can conclude that request aggregation is as important as the

bypass for multibanked register files.



Chapter 9

Evaluation of Area and Energy

Consumption

This chapter shows the evaluation results of the area and energy consumption of

conventional and proposed multibanked models.The author evaluated the same

models shown in the last chapter (Section 8.3).

The author described the entire system of the models in System Verilog. Then,

the author performed a logic synthesis with the open source cell library of FreePDK-

15. The memory cells and switches were modeled by CACTI, because FreePDK15

does not include RAMs or switches. Section 9.1 shows the detailed evaluation

environment.

As shown in Chapter 4, the register file and the execution units must be aligned

with each other. The author aligned the banks and data switches with the pitch

of execution units. Section 9.2 shows the detailed layout.

The evaluation results show that, compared with NORCS [2], which is the lat-

est research on a register file for area and energy efficiency, BAIS with 24 banks

achieves a 23.6% and 61.8%, and MStage with 18 banks achieves a 40.6% and

68.9% reduction in circuit area and in energy consumption, while maintaining a

relative IPC more than 0.97 as shown in the last Chapter 8.
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9.1 Evaluation Methodology

FreePDK15 and CACTI

The author used FreePDK15, a predictive process design kit for 15nm FinFET

technology [51], and NanGate FreePDK15 Open Cell Library [52].

Because this library does not include RAMs or switches, the author used CACTI

[11, 28, 29] to evaluate them. CACTI is a design space exploration tool for usual

instruction/data caches. CACTI calculates the RAM area from the numbers of

vertical and horizontal wires, and the RAM energy from the capacitance of the

transistors and wires charged and discharged in read and write operation.

CACTI is not designed to estimate switches. However, the circuit size of the

switches can be estimated via a 64-bit r-read+w-write memory with only 1-entry.

This 1-entry memory works as a 64-bit any-to-any switch by writing a 64-bit word

to any of the w write ports, and reading it from any of the r read ports.

CACTI and FreePDK15 do not have the same semiconductor processes. There-

fore, the results of them were converted with the minimum pitch of wires.

RAM and Switch Cells

Table 9.1 shows the areas of RAM cells calculated in this manner. Because the

areas of small cells strongly depend on the designers’ efforts, the author investigated

recent researches on small-port memory cells [53, 54], and verified that the values

are quite consistent.

Table 9.1: Estimated Cell Areas (µm2).

Cell area relative used for

1-read/write 0.096 1 RFB (Plain/MStage)
3-read+3-write 0.714 7.46 RF (NORCS)
7-read/write 1.169 12.22 RF (RPort)
3-read+5-write 1.219 12.74 WB (NORCS)
5-read+5-write×2 3.320 34.70 RF (base), RC (NORCS)
10-read+5-write 3.049 31.97 RF

RF: register file, RFB: RF bank, RC: register cache, WB: write buffer
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Logic Synthesis and Place-and-Route

The author described the entire systems of Plain and MStage in System Verilog.

Then, the author synthesized, and placed-and-routed the description with Ca-

dence Encounter v10.13 including RTL Compiler v10.10 with the standard cells in

the FreePDK15 library. In the place-and-route, the RAMs and switches are treated

as large cells which have parameters estimated with CACTI.

Regarding the baseline, NORCS, and RPort models, only RAMs and switches es-

timated with CACTI are simply added without consideration for layout constraint.

Baseline Model — Replicated Register Files

The area and energy consumption were normalized by a replicated pair of 5-read+

5-write register file (int) and 4-read+5-write register file (fp) register files, because

this replication is frequently used in recent cores such as the Bulldozer core men-

tioned in Chapter 1 [5, 13,16–19].

Although this replication has a positive effect on the latency, but a slight negative

effect on the area and energy consumption. As shown in Table 9.1, a pair of

5-read+5-write (10-port) cells is slightly larger than a 10-read+5-write (15-port)

cell because of the overheads of the power lines.

As for the energy to read/write the register file, the former (10-port) is reduced

to approximately 2/3 of that of the latter (15-port), because the lengths of the bit-

and word-lines are reduced to 10/15 = 2/3.

In contrast, the number of accesses is increased by the replication. As shown

in Figure 8.1 (lower), the number of read accesses is equal to or less than that of

write mainly because the bypass excludes approximately a half of read accesses.

The replication doubles the write accesses. Thus, the total number of accesses is

increased to more than 1/2 + 1/2× 2 = 3/2 times.

Finally, the energy consumption is increased to more than 2/3× 3/2 = 1 times

depending on the ratio of the numbers of read and write accesses. The evaluation

results show the energy consumption of the former is 1.01 times larger than those

of the latter.

9.2 Layout

Figure 9.1 shows the place-and-route results of the BAIS, MStage, PlainRA and

Plain integer register files. This figure also shows the shapes of the datapaths of
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NORCS
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Figure 9.1: Layout of Integer Register Files of Each Model.
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the baseline, NORCS and RPort integer register files for reference. Figure 9.2 shows

the enlarged view of bank control circuits.

8-bit Slice

Because each of the banks requires a decoder and a buffer, the author adopted

an 8-bit-slice design for the multibanked models to reduce the overhead to 1/8.

The width (the vertical direction in these figures) of the 8-bit slice is determined

by the width of the operand buses between the execution units and the register file

systems. These buses are {2 (read) + 1 (write)}× 5 (unit) = 15 tracks of 8-bit wire

bundles. These wires are routed in an upper layer, whose pitch is twice as thick

as that in the lower layers used for RAMs [12] and switches. Thus, 15 × 2 = 30

tracks can be used within this width for the RAMs and switches. The width of

the shapes of the datapaths of the three models in Figures 9.1 and 9.2 are also

determined in this manner.

Banks

In this 30-track width, 6 register file banks are arranged. This is the reason why

the number of banks of the multibanked models is the multiple of 6. The author

cannot freely adjust the width and height of the RAM cell because they are almost

completely determined by the number of bit- and word-lines.

Switches

The read and write switches are arranged so as to minimize the crossing wires.

The heights (the horizontal direction) of the switches are determined by the number

of routing control lines which run vertically through the eight 8-bit slices. Thus, the

read and write switches cannot overlap with each other in the horizontal direction.

The height of the layout is thus determined by the sum of the heights of banks,

and a read and a write switch.

Control

Figure 9.3 shows the breakdown of the area of the control circuit of MStage. The

arbiters and the array of comparators for request aggregation occupies 25.0% and

13.6% of the control circuit, respectively. The significant part of the rest is decoder

circuits to generate the request signals for the arbiters. As shown in Section 7.3,

the number of decoder circuits is equal to the number of ports (15 ports in the
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desgin), and the number of arbiters is equal to the number of banks (18 banks in

the design).

There remains much room for optimization. For example, the arbiters will be

considerably minimized if implemented with dynamic logic.

In contrast, The bank control circuit of BAIS shown in Figure 9.2 are mostly

pipeline latches, switches and bank decoders. However, BAIS also needs read/

write aribters in the instruction scheduler. Therefore, total area of control circuits

including the arbiters in the instruction scheduler is larger than that of MStage.

9.3 Area

Figure 9.4 shows the relative area and energy consumption of the integer and

floating-point register files of each model. The Plain and MStage areas include

dead spaces produced by layout constraint. The energy is calculated using the

access count produced by the simulation in Chapter 8.

The areas of the multibanked models are considerably smaller than those of

the other models with the default configurations. As the register file bank areas

are reduced, those of the switches and control logic become relatively large. In

particular, the switch areas increase with the square of the number of banks. The

area of MStage with 18 banks is approximately 8.3 times as large as that of the

ideal register file.

As the number of registers increases, the register file areas become dominant.

Thus, MStage with 1-read/write cells is more advantageous in heavily-multithread

cores with several times more registers.

9.4 Latency

Because CACTI does not evaluate small RAMs, and FreePDK15 has not yet pro-

vided the HSPICE model, the author measured the length of the access paths to

verify the assumption in Table 8.2. The author assumed that the latency to read

one of the register file banks through the read switch is a third of that to read the

baseline register file. As the area is reduced, the total length of the access paths of

the former is reduced to 31.2% from that of the latter. Thus, it is safe to say that

the latency assumption in Table 8.2 is not advantageous for multibanked models.
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9.5 Energy Consumption

As shown in Figure 9.4, the result of energy consumption is basically consistent

with that of the area, except that the energy of the register file banks is reduced in

inverse proportion to the number of banks; because only accessed banks consume

dynamic energy. On the contrary, the energy of switches increases with the square

of the number of banks.

9.6 Area and Energy Efficiency

Figures 9.5 and 9.6 show the relative IPC with respect to the relative area and

energy consumption. The graphs are simply derived from the graphs in Figures 8.4

and 9.4 to show the trade-off between IPC and area, and between IPC and energy

consumption. The curves for multibanked models plotted for the number of banks:

12, 18, 24, 30 and 36. The curve for RPort is plotted for the number of ports: 5 to

8. The curve for NORCS is plotted for the size of register cache: 8, 12, 16 and 24.

For technique to reduce area and energy while keeping IPC, it is important to

plot one point within the region close to the top of the graphs as close to the y-axis

as possible.

In each of the graphs, the points for MStage, BAIS, NORCS, and RPort with their

default configurations (denoted by circles) are located within the region where the

average relative IPC is more than 0.97, from left to right in this order, which proves

that MStage reduces more area and energy than BAIS, NORCS and RPort while

keeping the same level of IPC. Compared with NORCS (with a 12-entry register

cache and a 3-read+3-write main register file), MStage (with 18 banks) achieves a

40.6% and 68.9% reduction in area and energy consumption, respectively.

Comparison with DVFS

For reference, the dashed curve in the right graph is plotted for DVFS assuming

that the percentage of the register file to the whole core in energy consumption is

25% [14].

MStage, BAIS, RPort, and NORCS outperform DVFS. However, it should be

noted that these techniques are not contradicting to DVFS, that is, a core that

adopts these techniques can also utilize DVFS, and they reduces energy consump-

tion and heat when the core is operating at the highest voltage. Additionally, as
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mentioned in Chapter 1, downscaling the voltage, in particular of the register file,

is becoming more difficult in recent technologies [15].



Chapter 10

Conclusion

10.1 Summary

The region that includes the register file is one of the hot spots in high-performance

cores that limits the clock frequency. To reduce the area and energy consump-

tion of the register file, this thesis mainly focused on the two techniques register

cache system and multibanked register file. In this thesis, the author showed

the practical design of register cache system, and proposed the two architectural

techniques for multibanked register files, to reduce the possibility of the pipeline

disturbances caused by bank conflicts.

For register cache system, the author designed NORCS with FreePDK45, an

open source process design kit for 45 nm technology. NORCS is the latest research

on a register file for area and energy efficiency [2]. Researchers in NVIDIA adopted

this idea for their GPUs [21, 22]. Although the advantages of NORCS in the

microarchitecture are accepted, no LSI design of NORCS has been published.

In this study, the author performed manual layout of the memory cells and arrays

of NORCS, for detailed evaluation from the viewpoint of LSI design. The author

also performed SPICE simulations with RC parasitics to precisely estimate the

latency of the register cache system. The results with FreePDK45 were consistent

with that of the original article.

For multibanked register file, the author proposed the two architectural tech-

niques. Multibanking is the ultimate way to reduce the register file ports. Al-

though multibanking achieves the minimum number of ports (i.e., 1), pipeline stall

caused by bank conflicts can considerably degrade the IPC. To reduce the bank
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conflict probability of multibanked register files, this thesis showed the two microar-

chitectural techniques; one is Bank-Aware Instruction Scheduler (BAIS), and

the other is Skewed Multistaged Multibanked Register File (MStage).

BAIS schedules the instructions so that no bank conflict occurs in the stages

to read/write the register file. Prior studies briefly mentioned the possibility of

bank-aware scheduling, or rejected it because of the increased latency [23,30]. The

author showed an implemantation of BAIS and clarified that the latency of the

logic was not practically increased.

The author also proposedMStage, which is a totaly new microachitecture. MStage

has two stages to read the bank of the multibanked register file, and an instruc-

tion that missed the bank because of a bank conflict still has a second chance to

read the same bank in the second stage. As a result, MStage drastically reduces

the pipeline stall caused by bank conflicts. This thesis also showed the analytic

solutions for the pipeline stall probabilities of several multibanked register files.

The evaluation results showed that, compared with NORCS, BAIS with 24 banks

achieves a 23.6% and 61.8%, and MStage with 18 banks achieves a 40.6% and

68.9% reduction in circuit area and in energy consumption, while maintaining a

relative IPC of 97.2% and 97.3%, respectively.

In summary, NORCS, BAIS, andMStage show higher efficiency in area and energy

consumption in ascending order.

10.2 Future Direction

Application for Multithread Core

The areas of the switches and control logic become relatively large, because

MStage drastically reduce the register file bank areas. Therefore, MStage is more

advantageous in heavily-multithread cores with several times more registers.

Request Aggreagation

One of the advantage of MStage is its closedness. Unlike BAIS, almost no mod-

ification is needed for the other parts of the core. The control circuit of MStage

sees only the access to the register file, is not aware of instructions. However, the

request aggregation circuit has a possibility to be optimized if the control circuit

was aware of instructions. The same entry accesses are at least partly caused by

the instruction dependency, which is the plural source operands of instructions
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depend on the same one instruction.

VLSI design of MStage and BAIS

The author used FreePDK15 to evaluate area and energy consumption. However,

FreePDK15 has the following limitations: Cell library is not sufficient, there is no

RAM compilers, and HSPICE model has not released yet. Therefore, the other

process design kit is needed to perform VLSI design of MStage and BAIS.

Application for the Other Part of Superscalar Processor

The proposed technique of MStage is also important for most architects because

it is applicable to most of the other components of a superscalar processor core.

This technique will greatly reduce the area and energy consumption of the entire

superscalar processor core.
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