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Abstract

We consider discrete inference approaches to image segmentation and dense correspon-
dence. The two problems cover diverse tasks such as image segmentation, binarization,
cosegmentation, motion segmentation, binocular stereo vision, optical flow and general
dense correspondence, which are addressed sorely or jointly in this work as energy mini-
mization problems on Markov random fields (MRFs). Discrete inference approaches are
employed to effectively optimize inherently discrete functions or highly non-convex con-
tinuous functions. The contributions of this work are two folds: proposal of novel joint
frameworks of image segmentation and dense correspondence problems, and develop-
ment of new inference techniques for sole or joint tasks. Specifically, we comprehensively
address three challenges of discrete inference, that is, label space size, higher-order
energy, and non-submodular energy, which are posed in various forms in the following
tasks that we tackle.

First, we study inference problems on non-submodular and higher-order MRFs that
have binary variables. Such problems naturally appear in low-level computer vision tasks
such as image segmentation and binarization of gray images. They are also imposed as
subproblems in estimation of more general multi-valued or continuous-valued variables.
For such fundamental inference problems, we develop a new theoretical insight into
several existing optimization methods and propose a new method by unifying them.
The proposed method has a mechanism to better avoid bad local minimums of non-
submodular functions, and is thus more robust to initializations compared to existing
methods. The proposed method was evaluated on image segmentation and binarization

tasks and was shown to outperform state-of-the-art methods.

Second, we propose an efficient and accurate binocular stereo matching method,
whose model and inference both favor piecewise planar surfaces. We formulate the
stereo problem by a model of per-pixel local 3D surface planes with piecewise planar
smoothness regularization, which forms a pairwise MRF with a continuous 3D label
space. In order to efficiently infer this rich model, we propose a new inference tech-
nique that extends the well-known expansion move algorithm by incorporating the
spatial propagation and randomization search mechanisms of PatchMatch inference.
Unlike conventional fusion-based approaches, the proposed method does not require
solution proposals and also produces submodular energies that are optimally minimized
by graph cuts during the inference. The computations can be easily accelerated by
parallelization and using fast cost-map filtering. The proposed method achieved the
state-of-the-art performance on the Middlebury stereo benchmark among more than 160

stereo algorithms.

Third, we propose a unified framework of general dense correspondence and coseg-

mentation for two images, where common “foreground” regions in the two images are




segmented and aligned to each other. Our method is formulated using a hierarchical
MRF model with joint labels of segmentation and correspondence. The correspondence
tield is parameterized using similarity transformations (4-DOF) assigned on superpixels.
The hierarchy is used to evaluate correspondence across various coarseness of super-
pixels, which brings high robustness when aligning objects with different appearances.
Unlike prior hierarchical methods which assume that the structure is given, we dynam-
ically recover the structure along with the correspondence and segmentation labeling.
This joint inference is performed in an energy minimization framework using iterated
graph cuts. The proposed method was quantitatively evaluated on a new dataset and it
outperformed state-of-the-art methods designed specifically for either cosegmentation

or correspondence estimation.

Finally, we propose a fast scene flow method for stereo image sequences that simulta-
neously recovers motion segmentation of moving objects as well as camera ego-motion.
This framework unifies four tasks —stereo, optical flow, motion segmentation and visual
odometry— providing rich information of disparity, 2D flow and binary segmentation of
moving objects at every pixel along with camera motion. The inference is carried out
through a multi-staged pipeline where the solution to one task benefits others, leading
to overall higher accuracy and efficiency. The proposed method was evaluated on the
KITTI 2015 scene flow benchmark and was ranked third. Furthermore, our CPU imple-
mentation processed each frame in 2-3 seconds, which was 1-3 orders of magnitude
faster than the top six methods that took 1-50 minutes per frame. Our method was also
thoroughly evaluated on challenging Sintel sequences having fast camera and object
motion, where our method consistently outperformed the method ranked second on the
KITTI benchmark.

Keywords: Markov random field, energy minimization, higher-order energy, discrete-

continuous optimization, segmentation, stereo, optical flow, dense correspondence
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Introduction

1.1 Markov Random Fields in Computer Vision

ARKOV random fields (MRFs) [Geman and Geman, 1984] are considered a funda-
mental probabilistic model for various low and middle-level computer vision
tasks such as image restoration [Boykov et al., 1998], image segmentation [Boykov and
Jolly, 2001; Rother et al., 2004], stereo vision [Kolmogorov and Zabih, 2001, 2002; Wood-
ford et al., 2008, 2009], optical flow [Lempitsky et al., 2007, 2008; Xu et al., 2012] and
super resolution [Rajan and Chaudhuri, 2002]. In this approach, an unknown solution
is formulated as a mapping function f, = f(p) :  — L that assigns each site p € 2 a
value from a label space L. The sites p often represent the pixels of a reference image.
For example, in image segmentation problems, we estimate a discrete object labeling
f(p): 2 —{1,2,--- , K} on the image domain 2. When K = 2, the labeling indicates a
binary object mask. In stereo vision, we estimate unknown depth values z = f(p) € R"
at individual pixels p on the image domain Q. Such mapping functions f(p) : @ — R*
are often called depth maps. In optical flow problems, 2D vector fields f(p) : Q — R2
as known as flow maps are estimated for image sequences, where each value u = f(p)
indicates a 2D motion vector (or 2D translation) from a pixel p in a reference image to its
visually corresponding point in another image. See Figures 1.1-1.3 for visualization of
mapping functions f in segmentation, stereo and optical flow.
MRF-based approaches infer desired solutions by minimizing energy functions that

are generally formulated as follows.

E(f) =Y 6pfo)+ Y bpalfor o) + D belfers feasoons fou) - (1.1)
peEQ (p,q)EN ceC
Unary term Pairw;;e term Higher—oii:ler term

Here, N is a set of node pairs that represents a neighborhood system for Q. C is a set
of cliques that represents subsets of nodes having mutual dependencies. The first term

defined for individual nodes p € Q is called a unary term, and the second term defined for




1.1. MARKOV RANDOM FIELDS IN COMPUTER VISION

Figure 1.1 Illustration of image segmentation. Defined on a reference image (left), a solution
f:Q—={1,2,---, K} represents a discrete object labeling (right).

Figure 1.2 Illustration of stereo vision. Defined on a reference image (left), a solution f : Q@ — R*
represents a depth map (right).

Figure 1.3 Illustration of optical flow. Given an image sequence (left), a solution f : Q — R?
represents a 2D-motion vector field or flow map (right). Motion vectors from the reference to
future frame are visualized by green lines in top-right and by color-code in bottom-right.
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neighbor pairs (p, q) € N is called a pairwise term. The last term involving more than two
nodes in cliques c € C, is called a higher-oder term. MRFs with only unary and pairwise
terms are called pairwise MRFs or first-order MRFs, while MRFs containing higher-order
terms are called higher-order MRFs. These terms are often used for specific purposes as
explained below.

Unary Term: The unary term is often called a data term, because it is typically used for
evaluating (dis)likelihood that each node p takes some value f, given observed data.
More specifically, when it is expected from observed data that f, is likely to take some
value « than f3, the cost ¢, () for f, taking a will be lower than the cost ¢, (/3) for taking 3,
so that f;, more favors .. The unary data terms provide direct cues for desired solutions,
but they are usually noisy. This leads to introducing additional terms below.

Pairwise Term: The pairwise term is typically defined for pixel neighbor pairs (p, q) € N’
on the image pixel grid. This form of term is often called a smoothness term or regularization
term, because ¢pq( fp, f4) is usually used for enforcing two values f, and f, of neighboring
nodes to be spatially smooth. Typically, the smoothness terms is defined as ¢, (fp, fq) =0
if f, = fq and ¢pe(fp, fy) > 0if f, # f4. For example, stereo methods often use a
smoothness term that enforces f,, and f, to take close depth values, and segmentation
methods enforce the two values to take the same object label.

Higher-order Term: Although pairwise MRFs are widely used for their well-balanced
trade-off between efficiency and accuracy, their expressive power is limited. When data
terms are noisy and provide only weak cues for desired solutions, the minimizers of such
simple energy functions are strongly biased toward undesired solutions. Such a bias is
well known as a front-parallel bias in stereo [Woodford et al., 2009] and a short-boundary bias
in segmentation [Jegelka and Bilmes, 2011]. Higher-order terms are used to overcome
this limitation. Exploiting higher-order information becomes especially very crucial for
medical image processing [Kitamura ef al., 2016; Gorelick ef al., 2013, 2012] each pixel in
observed images can provide only limited information of a noisy gray-scale intensity.
Also, some special forms of higher-order terms can be efficiently converted to pairwise
forms by adding auxiliary variables [Kohli et al., 2007, 2009; Delong et al., 2012].

Generally, more sophisticated models have higher expressive power that can capture
more realistic behaviors of desired solutions and data structures. This is in-turn traded-off
by lower efficiency due to difficulty of inference on complicated models. In other words,
existence of powerful and efficient inference methods enables us to use sophisticated
models and achieve higher overall performances in various applications.
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1.2 Inference on Markov Random Fields

Depending on what type of optimizers we use to minimize the energy function in
Eq. (1.1), there are mainly two groups of approaches for inference on MRFs: continuous
and discrete inference approaches.

Continuous inference approaches [Lucas and Kanade, 1981; Shi and Malik, 2000;
Baker and Matthews, 2004; Pock et al., 2008; Levin et al., 2008; Mollenhoff et al., 2016;
Laude et al., 2016; Lv et al., 2016] use continuous optimizers that are based on the principle
of gradient descent. While continuous optimizers are very powerful tools for optimizing
convex functions, the energy functions of our interests are mostly highly non-convex.
Because of the non-convexity, continuous inference methods tend to converge into
bad local minimum solutions. To avoid this, continuous inference methods require
good initializations obtained by discrete inference methods or require relaxation to the
functions to reduce or remove the non-convexity. However, because the relaxation
approaches change the form of functions, the global minimums of the relaxed functions
may not correspond to those of the original functions. Also, these methods often require
the energy functions be differentiable.

On the other hand, discrete inference approaches use discrete optimizers such as
graph cuts (GC) [Kolmogorov and Zabin, 2004] and message passing algorithms [Felzen-
szwalb and Huttenlocher, 2006; Kolmogorov, 2006] that are based on combinatorial
optimization. While it is straightforward to apply discrete optimizers for the inference
of discrete-valued solutions (e.g., segmentation labeling), they are also used to infer
solutions that reside in continuous spaces. This type of approach is called discrete-
continuous optimization. In contrast to pure continuous optimization, discrete-continuous
optimization is very insensitive to initializations and has better ability to avoid bad local
minimums of non-convex functions [Chen and Koltun, 2016; Lempitsky et al., 2010].
In fact, on a well-known stereo benchmark [Scharstein and Szeliski, 2002] where more
than 200 stereo algorithms have been registered, most of the methods fully or partly
employ discrete inference approaches, because of the non-convexity inherent in the
stereo problem formulations.

In this dissertation, we also study discrete inference approaches in various appli-
cations regarding image segmentation and dense correspondence. Generally, discrete
inference approaches have the following three challenges, which are comprehensively
addressed in this study.

Label Space Size: When we naively use a discrete optimizer for a labeling problem,
we take an exhaustive search approach where all possible labels in the label space £
are enumerated as candidates for combinatorial optimization. Hence, when the label

space L is enormous, such exhaustive approaches become computationally intractable.
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Discrete-continuous optimization is considered a typical instance of this case where L is
a continuous space and the number of candidate labels is essentially infinite. Similarly,
when the label space £ becomes multi-dimensional (e.g., |£| = 2 in optical flow), the

label number increases exponentially with the dimension size.

Higher-order Energy: In principle, the order of an energy function also exponentially
influences the computation amount of discrete optimization methods [Ishikawa, 2011],
except for some special forms of higher-order terms [Delong et al., 2012; Kohli et al.,
2009]. While optimization of higher-order terms with a clique size of three [Woodford
et al., 2009] or four [Ishikawa, 2011] may be computationally tractable, more higher-order

energies will require proper approximations for efficient inference.

Non-submodular Energy: For discrete functions (especially, functions with the binary
label space S = {0, 1}), there is a special property named submodularity, which is a similar
concept to convexity of continuous functions. It is well known that submodular functions
can be minimized in polynomial times [Schrijver, 2000; Iwata et al., 2001]. However, when
the energy functions contain non-submodular terms, minimization of those functions

generally becomes NP-hard problems.

1.3 Contributions

In this thesis, we study discrete inference approaches to image segmentation and dense
correspondence estimation. The two problems cover a variety of tasks such as image
segmentation, binarization, cosegmentation, motion segmentation, binocular stereo
vision, optical flow and general dense correspondence, which are addressed sorely or
jointly in this work as energy minimization problems on MRFs.

The contributions of this work are two folds: proposal of novel joint frameworks of
multiple tasks, and development of new inference techniques for sole or joint tasks. As
contributions on frameworks, we propose unified methods for new joint problems of
image segmentation and dense correspondence, after thoroughly studying each problem.
As contributions on inference algorithms, we comprehensively address the aforemen-
tioned three difficulties of discrete inference that are posed by individual tasks in different
way. Here, instead of directly applying existing core optimizers, we carefully tailor them
to individual tasks in order to account for the properties of optimizers as well as the
properties specific to the tasks. We summarize the contributions of this work in Table 1.1
and explain more details below. This also provides an overview of the main four chapters
of this thesis.




1.3. CONTRIBUTIONS

Table 1.1 Summary of tasks and inference challenges addressed in this work. In the left side, we
show which tasks in computer vision are addressed in this work. We mainly focus on three tasks:
image segmentation, binocular stereo vision, and optical flow. In the right side, we also show
which of the three challenges — label space size, higher-order energy, non-submodular energy —
in discrete inference approaches (described in Section 1.2) are posed by individual problems
and addressed in this work. Note that when multiple tasks are simultaneously addressed, label
spaces of individual tasks are concatenated to form the overall label space, which is expressed
using a symbol of “+” in the table. Also notice that submodularity or non-submodularity is a
property specific to energies with the binary label space, which is thus not applicable to other
non-binary inference problems.

Tasks Inference challenges
Seg. | Stereo | Flow Label space MRF form | Non-submodular
Chap. 3 v - - Binary Higher-order Yes
Chap. 4 - v - Continuous 3D Pairwise (Non-convex)
Chap. 5 v - v Bin. + Cont. 4D | Hierarchical (Non-convex)
Chap. 6 v v v Bin. + 1D + 2D Pairwise (Non-convex)

Chapter 3: Binary MRF Inference for Segmentation and Low Level Vision

First, we study inference on binary MRFs that have the binary label space £ = {0,1}.
Particularly, inference on higher-order and non-submodular MRFs is addressed. Such
problems naturally appear in image segmentation, binarization and deconvolution [Tang
et al., 2014] and become crucial in medical image processing [Kitamura et al., 2016].
Furthermore, optimization of binary MRFs is a central problem in more general multi-
valued MRF inference. Thus, binary MRF optimization can be considered the most
fundamental problem in MRF inference.

In this study, we show theoretical links between several existing optimization tech-
niques [Narasimhan and Bilmes, 2005; Ayed et al., 2015, 2013; Tang et al., 2014; Gorelick
et al., 2014] and propose a new method by unifying them. The proposed method has
a mechanism to better avoid bad local minimums of non-submodular discrete func-
tions and is more robust to initializations compared to other methods. The proposed
method was evaluated on image segmentation and binarization tasks and was shown to
outperform state-of-the-art optimization methods.

Chapter 4: Continuous MRF Inference for Binocular Stereo Vision

Second, we study discrete-continuous optimization for a binocular stereo vision problem.
Employing an accurate stereo matching data term of [Bleyer ef al., 2011] and a pairwise
smoothness term of [Olsson ef al., 2013], stereo matching is formulated as recovery of
per-pixel local 3D surface planes. Hence, a pairwise MRF used here has a continuous and
three-dimensional label space £ that represents the parameter space of surface planes.
For this inference problem, we propose a new optimization technique that extends
the well-known expansion move algorithm [Boykov et al., 2001] by incorporating fast
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inference mechanisms of PatchMatch [Barnes et al., 2009, 2010]. Compared to existing
approaches to continuous MRF inference, the proposed technique has several advantages.
It produces submodular energies during the inference, which are optimally minimized by
graph cuts. Both the proposed model and inference are designed to favor locally planar
surfaces that are realistic in many scenes. It can be easily accelerated by parallelization
and fast cost-map filtering. The proposed method was evaluated on the Middlebury
benchmark (version 2) [Scharstein and Szeliski, 2002] and ranked first among more than
160 stereo methods.

Chapter 5: Joint Hierarchical MRF Inference for General Dense Correspon-
dence and Cosegmentation

Third, a novel joint problem of general dense correspondence and cosegmentation is
addressed. General dense correspondence [Liu et al., 2011] is a problem of aligning the
regions of same or similar objects in two images showing different scenes. Compared to
conventional correspondence problems such as stereo and optical flow, it additionally
imposes a fundamental difficulty of robustly aligning objects whose appearances may
significantly differ. We solve this problem in a more proper setting where we jointly
estimate valid correspondence regions or cosegmentation [Rother et al., 2006] in the two
images. The proposed method is useful, e.g., for data augmentation [Smith et al., 2013;
Liu et al., 2011] by transferring labelings on annotated images to unlabeled images, or for
estimating 3D shapes from images that are obtained through the Internet search [Vicente
et al.,2014].

For this task, we propose a novel hierarchical MRF with joint labels of segmentation
and correspondence. The correspondence field is parameterized using similarity trans-
formations (4-DOF) assigned on superpixels. The superpixels have a nested structure
forming a hierarchy in each image, which brings high robustness in correspondence
estimation. Unlike prior hierarchical methods which assume that the structure is given,
we dynamically recover the structure along with the correspondence and segmentation
labeling. This joint inference involves higher-order energies and is performed in an
energy minimization framework using iterated graph cuts. The proposed method was
quantitatively evaluated on a new dataset and it outperformed state-of-the-art methods

designed specifically for either cosegmentation or correspondence estimation.

Chapter 6: Joint MRF Inference for Stereo Scene Flow and Motion Segmenta-
tion

Finally, we propose a fast stereo scene flow method that unifies four tasks of stereo,
optical flow, motion segmentation and visual odometry. Hence, the proposed method
provides at every pixel its depth value, 2D flow vector, and binary segmentation label
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indicating moving objects in a rigid scene. It also estimates the 6-DOF camera-ego motion
from visual odometry. This rich information is useful in various applications such as
video analysis and editing, 3D mapping, autonomous driving [Menze and Geiger, 2015]
and mobile robotics.

Despite the high dimensionality of the overall label space, the inference is efficiently
carried out through a proposed multi-staged process. Here, the four tasks are solved
collaboratively through a pipeline where the solution to one task benefits others. This
leads to higher accuracy and also increases the overall computational efficiency. The
proposed method was evaluated on KITTI 2015 scene flow benchmark [Menze and
Geiger, 2015] using real images from driving scenes, and was ranked third by overall
accuracy. Furthermore, a CPU implementation of our method efficiently processed each
frame in 2-3 seconds, which was 1-3 orders of magnitude faster than top six methods on
the KITTI benchmark that took 1-50 minutes per frame.

1.4 Thesis Overview

The rest of this thesis is organized as follows.

In Chapter 2, we first review theoretical background of MRFs as well as basic discrete
inference techniques using graph cuts and message passing. We then briefly review basic
problem settings of image segmentation and dense correspondence, and also introduce
related works in these areas.

In Chapter 3, we present our first study on binary MRF inference for segmentation and
low level vision. This chapter primarily covers the contents of a published work [Taniai
et al., 2015] with some additional descriptions, details, and proofs.

In Chapter 4, we present our second study on continuous MRF inference for binocular
stereo vision. This chapter includes the contents of an unpublished work [Taniai et al.,
2016a], whose main ideas have been presented in a published work [Taniai et al., 2014].
Although the two versions share essentially the same concept, the algorithm presented in
this chapter as well as [Taniai ef al., 2016a] has been polished and extended since [Taniai
et al., 2014].

In Chapter 5, we present our third study on joint hierarchical MRF inference for
general dense correspondence and cosegmentation. This chapter primarily covers the
contents of a published work [Taniai et al., 2016b] with some additional details and
proofs.

In Chapter 6, we present our fourth study on joint MRF inference for stereo scene
flow and motion segmentation. This chapter includes the contents of an unpublished
work. See also a publication list in pages 166-167.

Finally in Chapter 7, we conclude this thesis and show future directions of this work.




Background and Related Work

HIS chapter provides preliminary knowledge and concepts that are frequently re-
ferred in this dissertation. We first provides theoretical background of MRFs as a
graphical model in Section 2.1. We then review discrete inference methods for MRFs
based on graph cuts in Section 2.2 and then review methods based on message passing in
Section 2.3. We also allocate Sections 2.4 and 2.5 for brief reviews of image segmentation

and dense correspondence tasks that are addressed in this work.

2.1 Markov Random Field

This section provides a definition of Markov random fields in a more formal fashion as
being a probabilistic model.

Let us first introduce some notations. Let G = (V, £) be an undirected graph where
the node set V = {1,2,--- , N} enumerates the indices of the nodes and the edge set
€ C (V x V) provides pairwise node neighbors. A subset C' C V is a clique C € C
if all pairs of the nodes in C' are neighbors. Upon the graph G, we define a set of
random variables X = {X;, X»,---, Xn}, where each random variable X; is sited at
each of individual nodes 7 € V. For the random variables X, we define variables
x = {x1,22,--- ,xn} that represent a particular configuration of X. Each variable z;
takes a value from a corresponding variable space &;. Here, A; can be continuous or
discrete. The space X for all the variables z is expressed as the product space of all
individual variable spaces X = II; X;. Let P(X = z), or simply P(x), be the probability
that the random variables X take a particular configuration z € X'.

2.1.1 Markov Property

The random variables X are then said to form a Markov random field, if they have the
local Markov property, i.e., each of individual variables x; is conditionally independent of all

the other variables given its neighbors x ;). This property can be formally expressed as
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follows.
P(xilzy (3y) = P(xilzar)) (2.1)

2.1.2 Hammersley-Clifford Theorem

Hammersley and Clifford in 1971 showed in an unpublished work that, under the
Markov property condition, a strictly positive joint probability distribution P(x) can be
factorized in a Gibbs distribution form

P(z) = %exp {— Z qbc(acc)} , (2.2)

cec

where ¢¢c(z¢) is a clique potential taking a set of variables z¢ of nodes in a clique C, and

Z is a normalization constant called the partition function defined as

Z=7 exp {— > asc(:cc)} : (23)

ceC

This equivalence is known as the Hammersley-Clifford theorem, whose formal proof can
be found, e.g., in [Koller and Friedman, 2009].

By taking the negative log of the probability P(x), we can also derive its energy
function form as follows.

E(z) =) ¢clac) +log Z (2.4)
cec

This energy function F(x) is equivalent to E(f) in Eq. (1.1) up to a constant log Z, by
considering that V = (2, z; = f(i) and the clique set C here is defined to contain all of €2,
N and C in the unary, pairwise and higher-order terms in Eq. (1.1).

2.1.3 MAP-MREF Inference

Maximum a posteriori (MAP) inference on MRFs refers to the problem of finding a global
maximizer = of P(z) in Eq. (2.2), or equivalently, finding a minimizer x of E(z) in
Eq. (2.4). This is often called the MAP-MRF inference. In MAP-MREF inference, the
partition function Z in P(z) or log Z in E(z) can be omitted from the objective function,
because it is independent of =.

Besides MAP inference, there is another type of inference for MRFs known as the
maximum posterior marginal (MPM) inference. In MAP inference, we are only interested in
finding single maximizer/minimizer points z of P(x) or E(z). In MPM inference, on the
other hand, we estimate the marginal distribution P(z;) for each variable ;. While there
are many methods for MAP-MRF inference such as graph cuts and max-product message
passing algorithms that we will review later in this chapter, there are only a limited

10
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number of methods for MPM-MRF inference such as sum-product message passing.

In this dissertation, we focus on MAP inference on various types of MRFs that appear
in image segmentation and dense correspondence problems. For more discussions on
MPM-MREF inference, the readers may refer to [Saito, 2016].

2.2 Inference Methods based on Graph Cuts

In this section, we review various inference methods for MRFs that use graph cuts [Kol-
mogorov and Zabin, 2004; Boykov and Kolmogorov, 2004] as a core discrete optimizer.

A series of techniques called “graph cuts” originally refer to algorithms for the
maximum-flow minimum-cut problem in graph theory, which was studied in the field
of operations research at least from 1960s [Hammer, 1965] and later applied to image
restoration problems in 1980s [Greig et al., 1986, 1989]. In the computer vision community,
the graph cut method was introduced in 1990s [Ishikawa and Geiger, 1998a,b; Boykov
et al., 1998; Roy and Cox, 1998], and since then it was broadly applied to many computer
vision and graphics tasks including but not limited to image restoration [Boykov et al.,
1998], image segmentation [Ishikawa and Geiger, 1998b; Boykov and Jolly, 2001; Rother
et al., 2004], stereo matching [Ishikawa and Geiger, 1998a; Roy and Cox, 1998; Kolmogorov
and Zabih, 2001, 2002; Wei and Quan, 2005; Woodford et al., 2008], optical flow [Lempitsky
et al., 2007, 2008; Xu et al., 2012], photomontage [Agarwala et al., 2004] and texture
synthesis [Kwatra et al., 2003]. Meanwhile, its theoretical properties and relationship to
submodular function optimization were more studied and reported in 2000s [Ishikawa,
2003; Kolmogorov and Zabin, 2004; Kolmogorov and Rother, 2007].

In the following sections, we review basic and well-established inference methods
using graph cuts for various types of pairwise MRFs, and later discuss techniques for
higher-order MRFs.

2.21 S-T Max-Flow and Min-Cut for Binary Submodular MRFs

Most of the inference methods based on graph cuts are rooted to the optimization
problem of energy functions based on binary submodular MRFs. Binary MRFs refer to
MRFs with the binary label space £ = {0,1}. Such binary labels are directly used in
binary image processing such as image segmentation [Boykov and Jolly, 2001; Rother
et al., 2004; Ayed et al., 2013; Kitamura et al., 2016], video segmentation [Bai et al., 2009;
Pham et al., 2010; Ayed et al., 2015] and gray-image binarization [Gorelick et al., 2014; Tang
et al., 2014]. Other than 2D MRFs on image grids, there is also an interesting application
of binary MRFs in multi-view 3D mesh reconstruction [Vu et al., 2012].

Submodularity is a mathematical concept describing a property of discrete func-
tions [Fujishige, 2005]. It is usually defined for set functions F(S) : 2% — R (ie.,

11
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functions F' that take a set S C () as a variable), and is stated as follows.

Definition 2.1. Submodular function. A function F(S) is sudmodular if and only
if it satisfies the following inequity for any S,T C €.

F(SNT)+ F(SUT) < F(S)+ F(S) (2.5)

There is another definition for submodular functions as follows.

Definition 2.2. Submodular function. A function F(S) is sudmodular if and only
if it satisfies the following inequity for any S C Q and i,j € (2 \ 5).

F(SU{i}) = F(S) = F(SU{i,j}) — F(SU{i}) (2.6)

The second definition is more intuitive, i.e., functions are submodular if they have
decreasing gain. When the inequalities in Egs. (2.5) and (2.6) hold equal, F'(.S) is said to
be modular, which is similar to linearity in the continuous domain. Also, the negative of
a submodular function is called a supermodular function. While submodular functions
can be efficiently minimized in polynomial times [Schrijver, 2000; Iwata et al., 2001],
minimization of non-submodular functions is NP-hard.

Our energy function E(f) with binary variables f, € {0,1} can be equivalently
considered as a set function, by replacing the binary variables with a set variable S as

S={plpef, =1} 2.7)

With this conversion and submodularity of Eq. (2.5), the submodularity for the energy
functions E(f) of binary pairwise MRFs can be derived as follows.

Theorem 2.1. Submodularity for binary pairwise MRFs [Kolmogorov and Zabin,
2004]. The energy functions E(f) of binary pairwise MRFs in Eq. (1.1) are submod-
ular, if and only if all the pairwise terms ¢, satisty the following inequity:

QSPCI(O? O) + prq(l, 1) < ¢P(I(17 0) + qbp(](O’ 1) (28)

When the above condition is satisfied, the minimization of E(f) can be replaced by the
max-flow min-cut problem on a specific graph [Kolmogorov and Zabin, 2004], which
can be exactly solved in a polynomial time.

More specifically, we make a s-t graph such as illustrated in Figure 2.1. Here, we
have nodes (colored yellow in Figure 2.1) that correspond to individual sites p € Q2 in
E(f). These nodes are mutually connected by edges (black arrows in Figure 2.1) that
represent neighborhood (p, ¢) € N in E(f). We additionally have two special nodes, the

12
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Figure 2.1 Illustration of s-t minimum cut for 2D grids. In graph cut optimization, we make a
graph with nodes corresponding to sites p and additionally two special nodes called the source
and terminal. Basically, the unary term costs are encoded into the weights of source-to-node
and node-to-terminal edges (blue and orange edges), and the pairwise term costs are encoded
into the weights of node-to-node edges (black edges). The optimal labeling is obtained as the
minimum-cost cut that separates the nodes into the source and terminal sides.

source and terminal, which are connected to site nodes p. By following some conversion
rules [Kolmogorov and Zabin, 2004], these edge weights are set to some non-negative
values that represent unary and pairwise terms in E( f). The conversion is intuitive when
®pq(0,0) = ¢pe(1,1) = 0. In this case, the weights of bidirectional node-to-node edges are
set to the pairwise term values ¢,,(1,0) and ¢,4(0, 1), and the weights of source-to-node
and node-to-terminal edges are set to the unary term values ¢,(0) and ¢,(1). By properly
constructing this s-t graph, the minimum cut problem on the s-t graph (i.e., the problem
of finding a cutting surface that separates the graph nodes p into the source and terminal
sides with the minimum edge-cutting cost) becomes equivalent to the minimization
of the binary energy function E(f). After obtaining a minimum cut (see the dashed
line in Figure 2.1) using an max-flow min-cut solver [Boykov and Kolmogorov, 2004], a

minimizer of E(f) is then obtained as follows.

1 if p belongs to the source side by the minimum cut
fp < . ‘ ‘ o . (2.9)
0 if p belongs to the terminal side by the minimum cut

In binary image tasks such as foreground-background segmentation, this binary labeling
directly indicates a class labeling, e.g., whether each node (or pixel) is foreground or
background.

13



2.2. INFERENCE METHODS BASED ON GRAPH CUTS

2.2.2 Roof Duality (QPBO) for Binary Non-submodular MRFs

When binary MRF energies are non-submodular, their minimization is NP-hard and thus
cannot be optimally solved. This can be intuitively explained from the point of view
that how s-t graphs are constructed (Section 2.2.1). The max-flow min-cut algorithms
require all the graph edges be non-negative. However, when binary MRF energies are
non-submodular, corresponding s-t graphs inevitably produce negative edge weights,
which cannot be handled by the solvers. This is more discussed as graph representability
in [Kolmogorov and Zabin, 2004]. For non-submodular energies, earlier work used
some naive approximation (e.g., Rother et al. [2005] truncated non-submodular terms to
be submodular), but later Kolmogorov and Rother [2007] introduced the roof duality
technique, which has become quit common nowadays.

The roof duality [Boros et al., 1991; Hammer et al., 1984] or often known as quadratic
pseudo boolean optimization (QPBO) in the computer vision community, was introduced to
the community by Kolmogorov and Rother [2007] as a technique to mitigate the issue
of non-submodular energy optimization. With this technique, we can obtain a partial
solution that tells us the optimal labels for a subset of the nodes. We briefly explain this
technique below.

Roof Duality

The binary pairwise MRF energies can be equivalently expressed as quadratic functions
with binary variables z, = f(p) € {0,1} as follows.

E(x;UV) =YY Vigzpzg+ Y Upzy+c (2.10)
p q p

Here, the coefficients V,,, and U, are parameters that determine the function E(f), and ¢
is a constant. From the submodularity condition of Eq. (2.8), it can be shown that only
the quadratic terms with positive coefficients produce non-submodular energies. Let us
denote such positive coefficients as V' = {Vjq | Vpq > 0}.

Then, the roof duality introduces new binary variables z,, which have the following
flipped meaning (but are not hard constrained to)

Z,=1-1,. (2.11)
Using the two forms of variables x and X, an auxiliary function is introduced as follows.
Ax,x;U, V)= E(x;U,V\V)+EQ-xUV\VY +B(x,x; V1) (2.12)

Here, the first and second terms represent the quadratic functions in Eq. (2.10) in two
ways without the positive quadratic terms. The last term accounts for the positive

14
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quadratic terms V! ;7 also in two ways as follows.
BV =S Vi [:cp(l — Zg) + (1 — Tp)zg). (2.13)
P oa

Unlike the other two terms, this term does not equivalently express the original energies
because x, and z, are treated as independent variables. Because of this relaxation, non-
submodular terms are now converted to submodular terms. Therefore, the auxiliary
energy function A(x,x; U, V) is submodular in x and X, and thus can be minimized via
graph cuts as explained in Section 2.2.1.

By the roof duality technique, we obtain two independent solutions x and x. A partial

optimal solution z is then obtained as follows.

1 ifo,=1-7,=1
Zp: O 1fﬂjp:17fp:0 (2.14)

unknown otherwise

This is equivalent to saying that if x and X agree in their meanings, then their values are
valid. The partial solution z tells us that there exists a global minimum x* of the energy
function in Eq. (2.10) such that 2}, = 2, for all labeled nodes p.

The unknown labels in z have to be somehow determined in practical use. However,

there is a useful property called persistency that can mitigate this issue.

Theorem 2.2. Persistency [Kolmogorov and Rother, 2007]. Let z be a partial optimal

solution and y be an arbitrary solution. When we make a new solution x by

z, Iifz unknown
AR v 7 , (2.15)
yp otherwise

then the energy at x never increases fromy, i.e.,

E(x) < E(y). (2.16)

Although the roof duality technique or QPBO offers an alleviation for the non-
submodular energy optimization, it is effective only when the number of non-submodular
terms is relatively small. Otherwise, many nodes will be left unlabeled [Gorelick et al.,
2014; Olsson et al., 2013]. This is problematic especially in binary image processing. For
such highly non-submodular functions, we may use message passing methods [Kol-
mogorov, 2006] or may approximate non-submodular pairwise terms by unary terms in
an iterative manner [Gorelick et al., 2014; Tang et al., 2014; Taniai et al., 2015]. This is more
discussed in Chapter 3.
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2.2.3 Expansion Moves for Discrete MRFs

Boykov et al. [2001] have proposed the expansion move algorithm for efficiently opti-
mizing multi-labeling MRFs using graph cuts. The multi-valued labels are often used
to represent pixel intensities in image restoration [Boykov ef al., 1998], or depth val-
ues (disparities) in stereo matching [Kolmogorov and Zabih, 2001], or object indices
in segmentation [Delong et al., 2012]. Algorithm 2.1 summarizes the expansion move

algorithm.

Algorithm 2.1: EXPANSION MOVE ALGORITHM [Boykov et al., 2001]
1 Define the discrete label space: £ = {Z(O),E(l), ...,E(K_l)} ;

2 Initialize the labeling: f, QN

3 repeat

4 foreach label o € £ do

5

6

7

| Solve a binary labeling problem: f < argmin E(f’|f} € {f,,a});
end
until convergence;

In this algorithm, the multi-labeling problem is reduced to a sequence of binary-labeling
problems, where each node is allowed to either retain at its current value f, or take a
new proposal label o € L. This sequential process is also illustrated in Figure 2.2.

Atline 5 of Algorithm 2.1, these binary labeling problems are repeatedly solved using
the s-t max-flow min-cut. Here, they can be optimally solved, if only the pairwise terms
¢pq in E( f) meet the following submodularity of expansion moves [Boykov et al., 2001;
Kolmogorov and Rother, 2007]:

Ppg(v, @) + dpg(B,7) < bpg(Bs ) + Ppg(a, ). (2.17)

When this optimality condition is satisfied, then we can show that the energy E(f) does
not increase over the iterations.

When not satisfied, i.e., when binary energies E(f’) at line 5 of Algorithm 2.1 are
not submodular, QPBO (or the roof duality discussed in Section 2.2.2) is usually used to
solve the binary labeling problems. In this case, unknown labels of the partial solution
are filled by the current solution values. This way we can still show the monotonic
convergence of the energy from the persistency property shown in Theorem 2.2.

2.2.4 Fusion Moves for Continuous MRFs

Lempitsky et al. [2010] have proposed the fusion move algorithm for efficiently opti-
mizing continuous MRFs. The continuous-valued labels are often used to represent

depth values (disparities) in stereo [Woodford et al., 2009] or flow vectors in optical
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(a) initial solution (b) ®-expansion

a

(c) ®@-expansion (d) “-expansion

(e) “-expansion (f) -expansion

i

(g) ®-expansion (h) ®-expansion

Figure 2.2 Illustration of the expansion move algorithm [Boykov et al., 2001]. Starting with (a) an
initial solution, the expansion move algorithm visits each proposal label, and tries to update each
pixel’s currently assigned label by the proposal label. As shown through (a) to (h), this process
repeatedly expands the regions where the proposal label is currently assigned (e.g., the green
region is expanded in (a) to (b), and in (g) to (h)). The images are cited from [Boykov et al., 2007].
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flow [Lempitsky et al., 2008; Xu et al., 2012]. The fusion move algorithm is generalization

to the expansion move algorithm, and is summarized in Algorithm 2.2.

Algorithm 2.2: FUSION MOVE ALGORITHM [Lempitsky et al., 2010]

1 Generate solution proposals: P = {g(®, g1 .. ¢E-11;

2 Initialize the labeling: f < ¢(*;

3 repeat

4 foreach solution proposal g € P do

5 ‘ Solve a binary labeling problem: f < argmin E(f’[f, € {fp,9p}) ;
6 end

7 until convergence;

In this algorithm, we first generate many weak solution proposals P = {g(©, (1) ... g(K=1},
Those proposals are usually generated by external simple methods. The number K of
proposals is usually an order of 100s [Lempitsky et al., 2008; Woodford et al., 2009]. The
fusion move algorithm then sequentially fuses each proposal g € P to the current solu-
tion f, by solving a binary labeling problem. In each binary labeling problem, a binary
variable fl’) at each node either retains at its current value f, or takes a new value g,
suggested by the proposal g for p.

Notice that if each proposal is provided spatially constant as g]gi) = s for"p € Q,
then the fusion move algorithm reduces to the expansion move algorithm in Algo-
rithm 2.1. However, when proposals are given arbitrarily unlike expansion moves, we
cannot guarantee that the energies produced by fusion moves are submodular. Therefore,
it is essential in the fusion algorithm that we use QPBO (Section 2.2.2) for solving a series
of binary labeling problems.

2.2.5 Multi-Model Fitting for Continuous MRFs

The fusion move algorithm is suitable for inferring a continuous-valued labeling where
nodes are individually assigned (possibly) different values. However, we often require a
more regularized representation where nodes are assigned and segmented by a small
number of continuous and high-dimensional models. Figure 2.3 illustrates such an
example where line models are assigned to the clutter of 2D points.

Isack and Boykov [2012] have proposed a multi-model fitting algorithm, which is a
simple extension to the expansion move algorithm (Algorithm 2.1) and is summarized
in Algorithm 2.3. This algorithm optimizes the energy function E(f) by alternating
between optimizing the assignment f and updating the models L. Specifically, at line 3
of Algorithm 2.3, the energy is optimized for the labeling f while the models £ are fixed.
This is solved using the expansion move algorithm (Algorithm 2.1). At line 4, the models
L are updated to reduce the energy E(f) while the assignment f is fixed. This is done,
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Algorithm 2.3: MULTI-MODEL FITTING ALGORITHM [Isack and Boykov,
2012]

1 Initialize models (can be done randomly): £ « {Z(O),E(l), A *1)} ;
2 repeat

3 Assign models: f < argmin E(f|L) ;

4

5

Update models: L < argmin E(L|f) ;
until convergence;

e.g., by fitting geometric models to inlier points using least squares in a case of geometric
model fitting. Figure 2.3 shows the process of this algorithm in a line fitting problem.
For this kind of problem, Delong et al. [2012] have proposed a useful higher-order
term that penalizes the number of models appearing in f to reduce the model complexity.
This term behaves as a regularizer for over-fitting. Although this term originally forms a
higher-order term, it can be efficiently optimized as submodular pairwise terms during

the expansion move algorithm. We discuss this more in the next section.

2.2.6 Order Reduction for Higher-order MRFs

We have thus far reviewed graph cut based optimization techniques for various pairwise
or first-order MRFs. For higher-order MRFs, Kolmogorov and Zabin [2004] have shown
a conversion from second to first-oder MRFs, and later Ishikawa [2011] has shown that
any higher-order MRFs can be reduced to first-order MRFs. However, these techniques
convert higher-order terms into new pairwise terms whose number exponentially in-
creases as the order of the source higher-order terms increases. Also, these pairwise terms
can be non-submodular requiring some treatment such as QPBO as used in [Woodford
et al., 2009; Ishikawa, 2011]. Therefore, these order reduction approaches are effective
when the order of energies is relatively low. Otherwise, there will be many pairwise
non-submodular terms, whose optimization is computationally expensive and difficult.
We will study more general higher-order energy optimization in Chapter 3.

Meanwhile, there are some special forms of higher-order terms that can be more
efficiently transformed and optimized. The P" Potts model [Kohli et al., 2007], robust
P" Potts model [Kohli et al., 2009], label costs [Delong et al., 2012] are all this kind of
higher-oder terms. They also share a similar concept, i.e., they softly enforce multiple
nodes to take the same label. To illustrate this, let us consider the following higher-order
term as a toy example that is defined for binary variables z,, € {0,1} at nodes p in a
clique ..

0 ifz,= 0,p € Q.

de(x) = , (2.18)
A otherwise

This is a simplified version of the P™ Potts model [Kohli et al., 2007]. This term softly
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(c) models & inliers (iteration 2) (d) models & inliers (iteration 5)

Figure 2.3 Multi-model fitting. The images are from [Isack and Boykov, 2012].

enforces x,, for all the nodes p € €. to be consistently 0. When minimizing this higher-
oder term ¢.(x), we can derive an equivalent function ¢.(x,a) using an additional
auxiliary variable a € {0,1} as follows.

m)zn de(x) = r)r(liglqﬁé(x, a) (2.19)

= min\ {a +(1-a) ) a;p] (2.20)

PEQc

We can see the equivalence by confirming that, if x = 0, then miny , ¢.(x,a) = ¢,(0,0) =
0, and if x # 0 then miny , ¢.(x,a) = ¢.(x,1) = A. Notice that this new representation
¢..(x, a) has only unary and submodular pairwise terms that can be optimally minimized
via graph cuts. Generally, when higher-oder terms are submodular, there is the possibility
that those terms can be reduced to pairwise submodular forms by introducing auxiliary
variables (but not always possible).

The label costs [Delong et al., 2012] extend this regional consistency term to the multi-

label case, where the number of labels used in the resulting f is directly penalized to
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reduce the model complexity. During inference using expansion moves, this term is
dynamically converted to submodular pairwise terms using similar order reduction by

adding auxiliary variables.

2.3 Inference Methods based on Message Passing

In addition to graph cut based methods, the message passing principle makes another
body of discrete inference methods for MRFs. Although those methods are not in the
primal scope of this dissertation, we in this section provide an overview recapping
message passing algorithms and their variants.

As discussed in Section 2.1.3, message passing can be used for both MAP and MPM
inference problems but in different forms of algorithms known as the max-product and
sum-product message passing, respectively. As MAP inference being our primary focus,

we here only explain algorithms based on max-product message passing.

2.3.1 Belief Propagation

First, we rewrite the energy function of pairwise MRFs in Eq. (1.1) by the following
equivalent form.

E(f) :Z¢p(fp)+z Z ¢pq(fpafq)- (2.21)

peQ peQ) qGN(p)

The max-product belief propagation (MPBP) is an algorithm for estimating the min-
imizer f of E(f). During the inference by MPBP, each node owns the disbelief (or the
negative log of the likelihood) about its values f;,, which is defined at each node p and
forf, € L as

By(fp) = dp(fp) + Z Mg—p(fp)- (2.22)
9€N (p)
Here, the disbelief is defined as the sum of the unary term ¢, ( f,) and messages M,_,,(fp)
from the neighbors. The message M,_,,( f,) represents “node ¢’s opinion of the [negative
log of the] likelihood that node p takes value f,,” [Besse et al., 2014], which is formally
defined as

Mysp(fp) = H}}In Gpg(fps fq) + Bo(fq) — Mp—q(fy)- (2.23)

This can be interpreted as “the belief at ¢, modified by the pairwise term, and neglecting
p’s contribution to ¢’s belief” [Besse et al., 2014].

The MPBP algorithm updates the beliefs B, at individual nodes by applying the
update rule of Eq. (2.22). As an important property of the MPBP algorithm, it converges
to the optimal solution in two-pass (forward and backward) of updates when the graph
structure has no cycle (i.e., the graph is a tree). The MAP solution f,; at each node p is
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then retrieved as
fp = argmin By(fp). (2.24)

frel

When the graph has cycles, a BP algorithm called loopy belief propagation (LBP) [Mur-
phy et al., 1999] is known for approximately estimating the solution. In this case, the
beliefs are usually updated in a sequential schedule visiting individual nodes in some
ordering, where the messages are initialized by zero at the beginning. However, the
general convergence property of LBP is unknown.

A naive implementation of the MPBP algorithm has a computation order of O(|Q||£|?),
since the message computation of Eq. (2.23) takes O(|£|) and that is repeated for ¥ f, € £
and "p € ) to compute beliefs B,(f,) in one iteration. Felzenszwalb and Huttenlocher
[2004, 2006] have proposed an efficient MPBP algorithm, which reduced the overall com-
putation order to O(|?||£|). This acceleration is achieved by computing the messages of
Eq. (2.23) in O(1) using distance transform techniques, which can be applied to certain

forms of pairwise terms ¢y,.

2.3.2 Tree-Reweighted Message Passing

The tree-reweighted belief propagation (TRW-T) [Wainwright et al., 2002] is a variant
of belief propagation. The method makes use of the optimality property of MPBP for
tree structures. Specifically, it decomposes the minimization problem of E(f) on a
loopy graph G into many subproblems of minimizing energies E;(f;) on tree-shaped
subgraphs G; of G. Here, the energy function E;(f;) on each subgraph G; is known to
give a lower bound as E;(f;) < E(f;), and the minimization of E;( f;) can be optimally
solved by MPBP. The solutions of those subproblems are then aggregated in a way so as
to maximize the lower bound, to obtain the final MAP solution f.

Although TRW-T has no convergence property, Kolmogorov [2006] has extended it to
a sequential algorithm (TRW-S) that can monotonically reduce the energy E(f) over the
iterations. This TRW-S is known to be a standard message passing algorithm for MAP
inference on general loopy graph structures.

2.3.3 Particle Belief Propagation and PatchMatch

The message passing algorithms that we have seen so far are all for discrete pairwise
MRFs. For continuous MRF inference, particle belief propagation (PBP) [Ihler and
McAllester, 2009] and its max-product algorithm (MP-PBP) [Kothapa et al., 2011] have
been proposed. In these algorithms, each node p has its own discrete solution space L,,
which contains a certain number of candidate labels or particles L, = {21(31) ; 31(,2), el E,(jK) }.
During the message passing inference, each node value f), is assigned a label from the

particles £, while the particles are also updated by the Markov chain Monte Carlo
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(MCMC) resampling.

Apart from PBP, Barnes et al. [2009] have proposed algorithms called PatchMatch for
efficiently estimating nearest neighbor fields. The nearest neighbor field estimation is
a variant of dense correspondence estimation between two images, where the nearest
neighbors for the patches in the source image are searched in the target image. Therefore,
it is equivalent to minimizing an energy function E(f) with only the unary data term
that evaluates patch dissimilarity. PatchMatch achieves highly efficient inference by
using spatial propagation and randomization search schemes. It is summarized in
Algorithm 2.4. At line 4 in Algorithm 2.4, a node p collects current labels of neighbors,

Algorithm 2.4: PATCHMATCH ALGORITHM [Barnes et al., 2009]

1 Initialize f randomly ;

2 repeat

3 foreach nodes p € (2 in a sequential (raster-scan) order do
4 fp < argmin ¢, (s) with s € {f,, fole € N(p)};
5 form =1to M do
6 ‘ fp < argmin ¢, (s) with s € {fp, f, + A/2™};
7 end
8 end
9 until convergence;

and tries to update its current label f,, using those labels as candidates. Because nearby
pixels have tendency to share similar solutions, this spatial propagation can effectively
provide plausible solutions. At line 6, the current solution f, is iteratively refined using
randomization search. Here, the perturbation value A is exponentially decreased over
the iterations. This algorithm was later generalized using k-nearest neighbor search in
[Barnes et al., 2010].

Later on, Besse et al. [2012, 2014] have pointed out a close relationship between the
generalized PatchMatch [Barnes et al., 2010] and the aforementioned MP-PBP [Kothapa
et al., 2011], leading to a unified algorithm named PatchMatch belief propagation (PMBP)
for efficient inference of continuous pairwise MRFs.

These PBP based methods have an issue of producing duplicated particles in each £,,.
Pacheco et al. [2014] have proposed an optimized selection technique of particles. Their
technique keeps diversity of particles when updating £,,. This increases insensitivity to

initializations.

2.3.4 Semi-Global Matching

The semi-global matching (SGM) algorithm [Hirschmuller, 2008] was originally pre-
sented as an efficient stereo matching method, but later Drory et al. [2014] have proven

that its core optimization algorithm is a variant of message passing. As we will use this

23



2.3. INFERENCE METHODS BASED ON MESSAGE PASSING

algorithm in Chapter 6, we provide detailed descriptions of SGM below.

Let us consider the following energy function based on a pairwise MRE.

E(f) = Z¢p(fp) tc Z Gpg(fps fq)- (2.25)
PEN P.a)eEN
Here, f takes an integer label space £ = {Dmin, - - - ; Dmax}, and the coefficient ¢ > 0 is

some constant explained later. While the unary term ¢, can be arbitrarily defined, the
pairwise term is usually defined as

0 if f=1f,
¢pq(fpqu) = Py if |fp - fq| =1 . (2.26)
P, otherwise

Here, P and P, (0 < P; < P,) are smoothness penalties. This term enforces the label
difference | f, — f,| between neighbors to be at most one. Also, the neighbors (p,q) € N
in Eq. (2.25) are usually 4 or 8-connected adjacent pixel pairs on the image pixel grid.

To optimize such a 2D MRF energy function, Hirschmuller [2008] have proposed
to decompose the 2D MRF into many 1D MRFs along 4 or 8 cardinal directions r and
minimize them using dynamic programming. This is done by recursively updating the
following cost arrays L. (p, d) along 1D scan lines in the directions r from the image
boundaries.

Le(p,d) = 9p(d) + min [Le(a,d') + dpq(d, )] — min Le(q, d). 227)

Here, p denotes the 2D pixel coordinate of p and q = p —r is its previous pixel coordinate
in the direction r. By introducing the following normalized scan-line costs

Lr(pa d) =L, (p, d) - glel% L, (p, d,), (2-28)

the updating rule of Eq. (2.27) is simplified as follows.

L.(p,d) = Cp(d) + gleig [Er(q, d) + ¢pq(d, d')] (2.29)
= Cp(d) + min{L,(q,d), Ly(q,d — 1) + P1, Ly(q,d + 1) + P, P2} (2.30)

Then, the scan-line costs by the 8 directions are aggregated as

S(p,d) = Le(p,d), (2.31)
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from which the disparity estimate at each pixel p is retrieved as

fp = argmin S(p, d). (2.32)
deD
Drory et al. [2014] have proven that this algorithm is a variant of TRW-T [Wainwright
et al., 2002]. The coefficient c in Eq. (2.25) is a scaling factor that accounts for an over-
weighting effect on the unary term during SGM (¢ = 1/n where n is the number of
scan-line directions r).
Drory et al. [2014] have also proposed an uncertainty measure ¢/ that is computed as

U(p) =min Yy | Le(p,d) = )  min Ly(p,d). (2.33)

U(p) is lower-bounded by 0, and becomes 0 when minimizers of individual scan-line
costs agree. Since the first and second term in Eq. (2.33) are respectively computed in
Egs. (2.32) and (2.27), the computation of ¢/ (p) essentially does not require computational
overhead.

Facciolo et al. [2015] have recently proposed an extension to the SGM optimizer
named more-global matching (MGM). This algorithm incorporates messages not only from
the previous pixel in the same scan-line but also from a neighboring pixel in the previous
scan-line, which leads to more global inference than 1D MRFs.

2.4 Image Segmentation

In this section, we review seminal works in image segmentation and also explain basic

problem settings of interactive segmentation and cosegmentation.

2.4.1 Interactive Segmentation

Boykov and Jolly [2001] have proposed an interactive image segmentation using graph
cuts. In their method, a user inputs scribble-annotations (21, 2y C ?) for foreground and
background pixels in an image I, from which color models {6, 6y} of foreground and
background are learned. The energy function E(f) is formulated based on a binary pair-
wise MRF in Eq. (1.1) where binary labels 1 and 0 indicate foreground and background,

respectively. The unary data term is given as

_fPCOO 1fp e
Pp(fp) = { fCo0 ifpeQy - (2.34)
—fplog P(1,]01) — (1 — fp)log P(Ipl61) otherwise
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Here, C is the infinite cost that hard-constrains f), to take 1 or 0 if p is in user-scribbles
of foreground or background. Otherwise, f, is softly constrained by the negative log of
the likelihood of each pixel color I, based on the learned color probability distributions
P(-|6p) and P(-|0;) expressed as histograms. The pairwise smoothness term is defined

based on the Potts model as
pg = e~ Tp—1ql? /207 o — fal, (2.35)

which essentially regularizes the length of segmentation boundaries. Here, the term
is weighted to induce segmentation boundaries to occur at image edges. The contrast-
sensitivity parameter o is learned automatically as the expectation value of |1, — I, |2
over all neighbor pairs (p,q) € N based on a Gaussian image noise assumption. The
energy is binary submodular, thus it can be optimally minimized via graph cuts.

Rother et al. [2004] have proposed an interactive segmentation named GrabCut that
uses a bounding box as user’s input. The energy formulation is essentially the same with
[Boykov and Jolly, 2001], except that the color models are expressed by the Gaussian
mixture models and initialized using the bounding box. They also have proposed an
iterative algorithm where the segmentation f and the color models {6, 6} are alternately
updated. This procedure has been shown to alternately minimize the joint energy
E(f,01,6p), whose optimization strategies have been more studied in [Vicente et al., 2009;
Tang et al., 2014]. GrabCut has become a standard segmentation method and is broadly
used, e.g., as a built-in tool of Microsoft Office products.

Although the boundary-length regularization term in Eq. (2.35) is commonly used in
segmentation because of its nice submodularity property, it suffers from a short-boundary
bias especially when segmenting thin structures [Jegelka and Bilmes, 2011]. For this issue,
Jegelka and Bilmes [2011] have proposed a smoothness term using truncated boundary-
length penalties that successfully overcome the issue. Combined with the standard color
likelihood term, the energy function imposes non-submodular higher-order inference.
An approximate optimization algorithm by [Jegelka and Bilmes, 2011] uses a iterative
procedure motivated from submodular function optimization. Kohli et al. [2013] have
later shown that its exact inference is computationally tractable.

2.4.2 Cosegmentation

Rother et al. [2006] have proposed an automatic image segmentation problem named
cosegmentation that does not require any user interaction. Given two images, cosegmen-
tation is originally cast as a problem of simultaneously finding object regions in each
image that show the same or similar objects.

They also have proposed a distribution matching approach for segmentation, which

enforces the appearance consistencies of corresponding objects by minimizing the dis-
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tance between feature distributions in the regions. This imposes high-order constraints.
Rother et al. [2006] have proposed to optimize the higher-order MRF by iteratively
minimizing some approximation functions via graph cuts.

Since [Rother et al., 2006], cosegmentation problems have been applied in broader
settings including a case of multiple input images [Batra et al., 2010; Joulin et al., 2010;
Kim et al., 2011; Vicente et al., 2011; Joulin et al., 2012; Kowdle et al., 2012] and also a case
of multi-class segmentation [Kim et al., 2011; Joulin et al., 2012; Kowdle et al., 2012].

2.5 Dense Correspondence

In this section, we review various types of image dense correspondence problems in
computer vision. We first discuss the binocular stereo vision problem in Section 2.5.1,
which is probably the most fundamental among all dense correspondence problems and
is also considered one of the most classic problems in computer vision. We here provide
a comprehensive and in-depth overview of binocular stereo vision, because some of
its subjects often commonly appear in other dense correspondence problems. Later in
Sections 2.5.2-2.5.4, we briefly review more generalized problems such as optical flow
and scene flow.

2.5.1 Binocular Stereo Vision

Stereo vision or stereo matching is a technique for estimating the 3D geometries of static
scenes using multiple images taken from different view points. Of various settings of
stereo vision, the binocular stereo problem that assumes two input images taken from
a stereo camera rig, makes a fundamental building block in stereo vision. Figure 2.4
illustrates the typical settings of binocular stereo vision. Here, a depth value z at a 2D

image coordinate p on the left view image can be triangulated by
2= fB/d (2.36)

when p’s corresponding point p’ = p — (d, 0) on the right image as well as the camera’s
focal length f and baseline B are known. Therefore, the objective of binocular stereo
vision amounts to estimating the horizontal shift d or so-called the disparity at each pixel.
In the rest of this section, we express the mapping f of E(f) in Eq. (1.1) by the disparity
map d where d, = f,.

Generally in stereo, for each pixel p in the source (reference) image, its corresponding
point p’ in the target image is constrained to lie on a 1D line. This is known as epipolar
constraints or epipolar lines. The settings shown in Figure 2.4 are a special case known as
rectified binocular stereo, where the epipolar lines are horizontal, thus p and p’ have the

same vertical image coordinate. It is also known that any image pairs can be transformed
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(x,y,7)

= ~
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Figure 2.4 Basic setups of rectified binocular stereo vision. Two front-parallel cameras with the
focal length f are placed at (0,0, 0) and (B, 0,0). A 3D point (x, y, ) is projected onto the left and
right image planes at pixel coordinates p and p’, respectively.

into this rectified settings using rectification techniques [Hartley and Zisserman, 2004;
Monasse, 2011], given intrinsic and extrinsic calibration parameters of the two cameras.
Stereo vision problems consist of several subjects —camera calibration, photo-consistency
measure, cost aggregation, regularization, optimization, occlusion—, each of which has
been often individually studied as a fundamental problem of stereo. These problems
are also often posed in other dense correspondence problems. In the followings, we
overview these subjects while focusing on the binocular stereo problem. More details
and theories of multiple view stereo can be found in [Hartley and Zisserman, 2004].

Camera Calibration

Camera calibration refers to recovering extrinsic and intrinsic parameters of cameras.
Extrinsic parameters define the pose of a camera by a 3D translation vector t and
rotation matrix R. They determine the geometric transformation from the 3D world
coordinates to local camera coordinates. Extrinsic parameters can be estimated from
images using structure-from-motion techniques [Hartley and Zisserman, 2004]. Intrinsic
parameters such as focal length f, principal point, and lens distortion coefficients define
the perspective projection transformation from 3D camera coordinates to 2D image
coordinates.

In binocular stereo vision, we typically assume that image pairs have been already
rectified by known camera parameters. In this case, the primary goal of stereo vision
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becomes estimating disparities at individual pixels, which can be done without any
information of camera calibration. Performances of stereo algorithm are often evaluated
by errors in disparity. For example, the Middlebury stereo benchmark [Scharstein and
Szeliski, 2002] uses disparity error rates with some thresholds.

Photo-Consistency Measure

The design of accurate and robust photo-consistency measures (or matching costs) is
fundamental in stereo vision and other correspondence estimation. This corresponds to
the design of the unary data term ¢,(-) in MRFs of Eq. (1.1). The most naive measure
is SAD (sum of absolute difference). Birchfield and Tomasi [1998] have also proposed
a pixel dissimilarity measure that is insensitive to image sampling. However, direct
comparison of image intensities is not robust to illumination changes.

As more robust measures, normalized cross correlation (NCC) between image patches
can be used but its computation is relatively expensive. Zabih and Woodfill [1994] have
proposed the CENSUS transform that encodes an image patch into a binary feature
vector by comparing intensity differences of pixel pairs in the patch. The distance
between CENSUS features can be efficiently computed as the Hamming distance using
bit operations. Also, image gradient-based measures are often used by combining with
intensity-based measures linearly [Klaus ef al., 2006] or selectively [Xu et al., 2012]. See
also [Hirschmuller and Scharstein, 2007] for evaluations on some of photo-consistency
measures in stereo.

More recently, matching costs based on local features learned by convolutional neural
networks (CNNs) have been proposed [Zbontar and LeCun, 2015, 2016]. In this approach,
feature vectors are densely extracted at individual pixels by converting image patches
through a CNN. Distances of those feature vectors are then evaluated as matching costs,
using L, norm or through a subsequent neural network.

Cost Aggregation

Patch-based photo-consistency measures are more robust and reliable than those mea-
sured by single pixel pairs. The aforementioned NCC, CENSUS and local feature based
matching costs are considered as patch-based measures. Patch-based matching costs can
be also computed by aggregating pixelwise matching costs in local support windows,
which is called cost aggregation in the literature.

Patch-based cost aggregation relies on an implicit assumption of constant disparity.
That is, all pixels in a support windows have the same disparity with that of the center
pixel. As discussed in [Bleyer et al., 2011], this assumption is unlikely to hold for two
reasons: (1) When pixels in the window lie on a different surface than the center pixel;
(2) When the local region is not front-parallel and highly slanted. The first issue causes the
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flattening effect, which refers to an artifact of extended object surfaces at depth boundaries.
The second issue causes the front-parallel bias, which produces an artifact that disparity
maps look like a staircase at slanted surfaces. These issues are traded off by matching
reliability. That is, when we use larger windows for higher reliability, the constant
disparity assumption is more unlikely to hold and we will more suffer from the artifacts.

The first issue is well handled by incorporating adaptive window approaches [Hosni
et al., 2012] that use soft support windows for aggregation. The window weights account
for likelihoods of support pixels lying on the same surface with the center pixel. The
concept is illustrated in Figure 2.5. The cost aggregation using adaptive weights can be
seen as applying edge-preserving filtering on cost maps of pixelwise matching costs. For
this purpose, Yoon and Kweon [2005] first used the joint bilateral filtering [Tomasi and
Manduchi, 1998], and later Rhemann et al. [2011] used the guided image filtering [He
et al., 2013]. Hence, development of fast and accurate edge-aware filtering [He et al., 2010,
2013; Lu et al., 2012] is also an important subject in stereo.

For the second case, Bleyer et al. [2011] have recently shown that, by estimating the
local 3D disparity plane for each patch, we can effectively address the front-parallel
bias by large matching windows. In this approach, however, the label space becomes
a continuous 3D space. Bleyer et al. [2011] have proposed to use PatchMatch [Barnes
et al., 2009] for densely estimating 3D planes, but it is not applicable to pairwise MRF

inference.

Regularization

Estimating disparities by relying on only photo-consistency cues is ambiguous and noisy.
Smoothness regularization is therefore often employed, which corresponds to adding the
pairwise smoothness term ¢, (dy, dy) to the unary data term ¢,(d)) in Eq. (1.1) forming a
pairwise MRF. In stereo the methods having the pairwise smoothness term are called
global methods, whereas those using only the unary data term are often called local methods.

The simplest and broadly used regularizer is the picewise-constant smoothness
term |d, — d,| that penalizes disparity deviations between neighboring pixels. This is
often truncated as min{r, |d, — d,|} to allow depth discontinuities at object boundaries.
However, this model has the front-parallel bias that causes a staircase artifact at slanted
surfaces. Woodford et al. [2009] have proposed a second-order smoothness term which
takes a higher-order form of |dg; — 2d, 4 dg2| using a tuple of three consecutive pixels
(g1, p, q2). However, it requires complicated optimization due to higher-order energies.
Olsson et al. [2013] have proposed a second-order smoothness term using a plane-based

formulation, which can be expressed in a pairwise form.
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(a) window (b) depth

(e) bilateral weights (c) spatial weigts (d) color-based weights

Figure 2.5 Concept of adaptive support windows. (a) The support window may contain pixels
that lie on a different surface than the center (yellow) pixel, as shown in (b) the depth map.
The bilateral adaptive windows [Yoon and Kweon, 2005] use window weights shown in (e) by
combining (c) spatial weights and (d) color-based weights. In the context of cost-volume filtering,
the weights can be seen as filter kernels.

Optimization

Optimization in stereo refers to minimizing the energy function E( f). For local methods
that have only the unary term, this is done simply in a winner-take-all manner. Otherwise,
we need to infer pairwise or higher-oder MRFs using methods such we have seen in
Sections 2.2 and 2.3.

For standard global stereo methods (i.e., those using pairwise MRFs with a discrete
label space of integer disparities), their optimization is well established [Szeliski et al.,
2008] and can be done by directly applying discrete optimizers such as BP and the
expansion move algorithm using graph cuts. However, when we infer continuous-
valued disparities dj, € [Dmin, Dmax] or disparity planes d, = a,u + byv + ¢, that are
parameterized by (a,, by, ¢;,) € R3, we need discrete-continuous optimization that is not
trivial even for local methods. In Chapter 4, we address the optimization problem of a
global stereo method that estimates the disparity plane at every pixel.
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Occlusion

If a pixel in one image is invisible in other target images (because the corresponding
point is occluded by an object surface or because it is out of field-of-view), we cannot
estimate the correspondence in principle. This problem is known as occlusion in stereo.
These occluded pixels cause artifacts without proper handling.

Occlusion is usually handled either in a post processing [Rhemann et al., 2011] or
during inference by incorporating occlusion into the model [Kolmogorov and Zabih,
2001, 2002; Wei and Quan, 2005; Woodford et al., 2008]. The post-processing is usually
done by 1) estimating disparity maps on both images, 2) filtering out outliers using
consistency check for the two disparity maps, and 3) filling the holes using e.g. weighted
median filtering [Rhemann et al., 2011; Zhang et al., 2014]. In the latter approach, occluded
pixels are geometrically reasoned and matching costs at those pixels are ignored. This
introduces higher-order terms that make the inference complicated [Woodford et al.,
2008].

2.5.2 Optical Flow

Optical flow generalizes the binocular stereo problem by assuming that the two images
are taken at different times from possibly different view points. This gives raise to many
difficulties in optical flow that are discussed below.

Dynamic Object Motions

Objects shown in images can dynamically move between the two time steps. While rigid
motions are constrained by the epipolar geometry due to the global camera motion and
the depths of object points, dynamic non-rigid motions are quite arbitrary and must
be explicitly estimated. Optical flow motions are generally expressed as 2D translation
vectors or flow vectors, which causes the following issue of broader label spaces.

Broader Search Space

While correspondence points are efficiently expressed by 1D disparity values in stereo
due to the epipolar constraints, we have to search 2D displacement or flow vectors at
individual pixels in optical flow. When motions between the images are large, naive
discrete inference approaches become computationally very expensive.

Because of this, early works on optical flow rely on continuous inference [Horn and
Schunck, 1981; Lucas and Kanade, 1981]. However, these methods tend to converge into
bad local solutions due to highly non-convex energy functions. Also, they are sensitive
to initializations making them difficult to handle large motions.
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Lempitsky et al. [2008] have proposed a discrete-continuous approach to optical flow
using the fusion move algorithm [Lempitsky et al., 2010] (Section 2.2.4). The proposals
were generated using continuous methods of [Horn and Schunck, 1981; Lucas and
Kanade, 1981] and the fused solution was further refined using continuous optimization
based on gradient descent. Xu et al. [2012] have also proposed a fusion-based method
for large motion optical flow, which uses proposals generated by feature-based tracking
as well as continuous solvers in a coarse-to-fine framework. Then, as another line of
inference approaches, PatchMatch [Barnes et al., 2009, 2010] (Section 2.3.3) and its variants
[Barnes et al., 2009, 2010; Besse et al., 2012, 2014; Lu et al., 2013] have emerged.

These discrete inference approaches essentially subsample the full 2D flow space
using proposals or random sampling. Very recently, Chen and Koltun [2016] have
proposed FullFlow, which solves combinatorial optimization on a standard pairwise
MRF but using the full search space without any subsampling. They have shown that
such expensive computations are still tractable using TRW-S [Kolmogorov, 2006] with

some acceleration techniques.

2.5.3 General Dense Correspondence

Liu et al. [2011] have proposed a more general optical flow problem where we estimate
correspondence between images taken from different scenes but showing similar objects.
Figure 2.6 shows examples of correspondence estimates for image pairs from different
scenes. General dense correspondence can be used for non-parametric scene parsing and
label transferring tasks. In their method named SIFT Flow, they use densely extracted
SIFT features [Lowe, 2004] to robustly evaluate matching consistencies. Their pairwise
MRF model is inferred using BP in a coase-to-fine framework of [Felzenszwalb and
Huttenlocher, 2006] for dealing with large motions.

Since the seminal work of Liu ef al. [2011], many follow-up studies have appeared [Has-
sner et al., 2012; Kim et al., 2013; Hur et al., 2015; Yang et al., 2014]. Among them, Hassner
et al. [2012] have dealt with scaling differences. Kim et al. [2013] have proposed a hi-
erarchical regularization using a spatial pyramid, which has been further extended by
Hur et al. [2015]. Yang et al. [2014] have proposed a simplified local method that uses
cost-volume filtering instead of pairwise smoothness terms for enforcing smoothness. In
Chapter 5, we also address a similar problem but estimate dense correspondence jointly

with cosegmentation.

2.5.4 Stereo Scene Flow

3D scene flow originally refers to a task of estimating 3D flow in the world [Vedula
et al., 1999, 2005], which describes the motions of 3D object points between two time
steps. While optical flow estimates 2D flow motions on the 2D image domain, scene flow
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Figure 2.6 SIFT Flow. First and second rows: input image pairs. Third row: warped second
images that are aligned onto the first images. The images are cited from [Liu et al., 2011].

extends it by estimating 3D motions in the 3D world.

Stereo scene flow [Huguet and Devernay, 2007; Li and Sclaroff, 2008; Wedel et al.,
2011] is another representation of the same task, which estimates dense disparity and
optical flow maps for sequences of stereo image pairs. When camera intrinsics and
camera ego-motion are known, we can recover 3D flow from sequences of disparity and
optical flow maps.

Earlier works on stereo scene flow assumed static cameras or cameras moving in
relatively simple scenes. The task has then shifted to deal with more challenging and
realistic scenes with many moving objects captured by a moving stereo camera [Cech
et al.,2011; Vogel et al., 2011, 2013, 2014, 2015; Menze and Geiger, 2015; Lv et al., 2016],
while introducing better regularization, models, optimization methods, etc. Menze
and Geiger [2015] also for the first time evaluated scene flow algorithms on realistic
KITTI benchmark — earlier versions of KITTI did not have ground truth flow for moving
objects. In Chapter 6, we also address the stereo scene flow problem jointly with motion

segmentation and camera ego-motion estimation.
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Binary MRF Inference for
Segmentation and Low Level Vision

INARY labeling problems naturally appear in many computer vision tasks such as
B image segmentation and binarization of gray images, and even play a central role
in more general multi-valued labeling problems. Even though the variable space is as
small as binary, non-submodularity and higher-orderness of the energy functions pose
fundamental difficulties, making the inference problems NP-hard. Yet, the use of such
sophisticated models is often required to overcome undesired biases or achieve greater
performances that are unattainable by pairwise and submodular MRF formulations.
In this chapter, we study fundamental inference problems on binary MRFs with non-
submodular and higher-order terms, and develop a new theoretical insight that unifies

several existing optimization methods.

3.1 Introduction

Many low-level vision problems such as image segmentation, binarization, denoising,
and tracking are often formulated as binary energy minimization [Boykov and Kol-
mogorov, 2004; Rother et al., 2006; Ayed et al., 2010; Tang et al., 2014; El-Zehiry and
Grady, 2010]. For example, in image segmentation, the use of Markov random field
formulations [Geman and Geman, 1984] and graph cuts [Kolmogorov and Zabin, 2004;
Boykov and Kolmogorov, 2004] has been becoming one of primary approaches [Boykov
and Jolly, 2001; Rother et al., 2004; Price et al., 2010; Tang et al., 2014; Gorelick et al., 2014;
Ayed et al., 2013; Gorelick et al., 2013, 2012; Taniai et al., 2012; Pham et al., 2011; Ayed et al.,
2010; Rother et al., 2006]. In this approach, the energy function is typically formulated as

E(S) = R(S) + Q(5), (3.1)

where R(S) describes appearance consistencies between resulting segments S and given
information about target regions, and Q(.S) enforces smoothness on segment-boundaries.
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The form of R(.S) is often restricted to simple linear (i.e., pixelwise unary) forms [Boykov
et al., 2001; Rother et al., 2004; Price et al., 2010] because graph cuts allow globally optimal
inference only for unary and submodular pairwise forms of energies [Kolmogorov and
Zabin, 2004]. However, recent studies [Tang et al., 2014; Ayed et al., 2013; Gorelick et al.,
2013, 2012; Taniai et al., 2012; Pham et al., 2011; Ayed et al., 2010; Rother et al., 2006]
have shown that the use of higher-order information (or non-linear terms) can yield
outstanding improvements over conventional pixelwise consistency measures.

In general, higher-order terms involve difficult optimization problems. Recent promis-
ing approaches try reducing energies by iteratively minimizing either first-order approxi-
mations (gradient descent approach) [Gorelick et al., 2013, 2012] or upper-bounds (bound
optimization approach) [Tang et al., 2014; Ayed et al., 2013; Taniai et al., 2012; Pham et al.,
2011; Ayed et al., 2010] of non-linear functions using graph cuts. The bound optimization
approach has some advantages over the gradient descent approach [Ayed et al., 2013]: It
requires no parameters (e.g., step-size) and never worsens the solutions during iterations.
But we must in turn derive appropriate bounds for individual functions. A notable work
is auxiliary cuts (AC) by Ayed et al. [2013], where they derive general bounds for broad
classes of non-linear functionals for segmentation. However, the bounds derived in
[Ayed et al., 2013] are formulated to successively reduce target regions; thus the resulting
segments are restricted within initial segments. Such a property actually limits the
applications and accuracy of the method.

In order to derive more accurate and useful bounds, we revisit a submodular-
supermodular procedure (SSP) [Narasimhan and Bilmes, 2005], a general bound opti-
mization scheme for supermodular functions. We then propose a bound optimization
method as generalization of SSP. Unlike SSP, our method can be used even for non-
supermodular functions; and unlike AC, it allows bi-directional optimization (see Fig-
ure 3.1 for an illustration in segmentation) and can produce more accurate approximation
bounds. We further show that our method can be seen as generalization of AC and some
state-of-the-art method [Gorelick et al., 2014] for pairwise non-submodular functions.

When compared with gradient descent methods (e.g., FIR [Gorelick ef al., 2013]
and LSA-TR [Gorelick et al., 2014] that are based on the trust region principle), our
method has advantages of faster convergence and better ability to avoid bad local
minimums. It is intuitively illustrated in Figure 3.2, where we compare our approach
and the gradient-descent approaches. Since the gradient-based methods use Taylor-
based local approximations, they tend to converge into weak local minimums and their
convergence is also slow. In contrast, as we will see later, our method produces piecewise
linear approximation bounds that are updated in a coarse-to-fine manner over iterations.
The proposed bounds more globally approximate the energy functions, leading to faster
convergence. Also, the coarse-to-fine scheme can avoid implausible weak solutions. Such

a tendency will be verified in experiments.
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Initialization I Initialization II

Input

SDC-GEO

pPBC

FIR

Figure 3.1 Matching foreground color distribution using the proposed SDC-GEO, parametric
pseudo bound cuts (pPBC) [Tang et al., 2014], and fast trust region (FTR) [Gorelick et al., 2013]
with two types of initialization. pPBC can only successively reduce the initial segment, while
our method allows arbitrary directions of optimization and is thus robust to initialization. (L
distance for 643 bins of RGB histograms are used)
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coarse-to-fine
approximation bounds

Taylor-based
local approximations

Energy

@)
529 s

(b) Proposed piecewise linear

(a) Gradient-based approximations L
approximations

Figure 3.2 Intuitive illustration of the proposed piecewise linear approximations in comparison
with the gradient-based approximations. The blue and red lines, and orange points show the
energy function E(S), its approximations, and solutions SY, S!, S? obtained at each iteration,
respectively. (a) In the gradient descent approach (e.g., FTR [Gorelick et al., 2013] and LSA-
TR [Gorelick et al., 2014]), the energy function is approximated by local gradients (green) with
trust region constraints (or step-size). The overall approximation at S! is depicted as the red curve,
and its minimization results in falling in a bad local minimum S?2. (b) In our approach, the energy
function is approximated by piecewise linear upper-bound functions. Here, the approximation
bounds are updated in a coarse-to-fine manner (i.e., solid to dashed red lines) in order to avoid
bad local minimums.

In this study, we make the following contributions:

¢ We propose an optimization method for broad classes of higher-order and pairwise
non-submodular functions that allows arbitrary directions of convergence and out-
performs the state-of-the-art [Gorelick et al., 2014, 2013; Tang et al., 2014; Ayed et al.,
2013].

¢ Our method generalizes existing optimization methods including from early [Narasimhan
and Bilmes, 2005] to state-of-the-art [Gorelick ef al., 2014; Tang et al., 2014; Ayed et al.,
2013, 2010] methods.

In the rest of this chapter, we first show our scope of the problems in Section 3.1.1.
Then, after briefly reviewing SSP [Narasimhan and Bilmes, 2005] in Section 3.2, we
propose our method in Section 3.3 as a generalization to SSP. Relationships between our
method and other existing methods [Gorelick et al., 2014; Tang et al., 2014; Ayed et al.,
2013, 2010] are further discussed in Section 3.4. Finally, we experimentally evaluate the
proposed method in Section 3.5, and summarize this study in Section 3.6.

3.1.1 Scope of the Problems

Our objective is to seek the binary variable S such that it minimizes E(S) of Eq. (3.1). In
this study, we focus on three types of energy functions. Before defining those functions,
we define the following function as the basis of all types.
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Pairwise Submodular Functions

Let s; € {0, 1} be a binary variable defined for pixels i € 2 in the image domain (2, and
we define S = {i|s; = 1} as a segment in the domain Q. If R(S) in Eq. (3.1) is a linear
product of a function h; = h(i) : @ - Rand S

R(S) = (h,S) = hisi (32)
i€Q

and Q(5) is the sum of pairwise functions

Q(S) = Z mij8iSj, (3.3)

(4,7)€Q

and if all the quadratic terms are non-positive (m;; < 0), then E(S) is submodular and
can be globally minimized via graph cuts [Boykov and Kolmogorov, 2004; Kolmogorov
and Zabin, 2004] in polynomial time.

Type-1: Higer-Order Supermodular Energies

We consider the energies E(S) with pairwise submodular Q(.S) and the following form
of R(5):
Riype1(S) = > _Ro(S) =Y f.((9:,5)) (3.4)

where f.(x) is convex and g.(i) : & — RT is a positive function. Hence, R.(S) is

supermodular, i.e., if it satisfies the following inequality for any X,Y C €
R.(X)+R,(Y)<R,(XNY)+ R, (XUY). (3.5)

Note that R, (S) = —R,(S) is submodular, if R,(S) is supermodular. While any submod-
ular functions can be minimized in polynomial time [Schrijver, 2000], the minimization
of supermodular functions is NP-hard.

Higher-order supermodular functions have been used, for example, as a L,-distance
histogram constraint R(S) =3, |h. — n? ‘p for co-segmentation [Rother et al., 2006;
Vicente et al., 2010; Mukherjee et al., 2009] and tracking [Jiang, 2012], where z € Z is a bin
of color or feature histograms, & is the given target histogram, and n? is the number of
pixels in S that fall into the bin z. A volumetric constraint R(S) = |V — |S||¥ has been
also used for medical image analysis [Gorelick et al., 2012, 2013].
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3.2. SUBMODULAR-SUPERMODULAR PROCEDURE

Type-2: Fractional Higer-Order Energies

We further deal with non-supermodular functions:
RtypeZ(S) :Zfz ({92, S)/(w., S)) (3.6)

such that R.(S) = f. ((92,5)/(w., So)) becomes a Type-1 term for fixed Sy. Examples
of such functions include the KL-divergence R(S) = — Y, p.log (n5/|S| + €) + const.
and the Bhattacharyya coefficient R(S) = — 3, v/p.n2/|S|, both are used for image
segmentation [Ayed et al., 2010, 2013; Tang et al., 2014]. Here, > |, p. = 1 is the target
distribution.

Type-3: Pairwise Non-submodular Energies

We also consider pairwise non-submodular energies, i.e., Q(S) of Eq. (3.3) containing
non-submodular or supermodular terms (i.e. m;; > 0). QPBO [Kolmogorov and Rother,
2007] is often used for such functions, but it leaves many variables unlabeled when the
amount of non-submodular terms is significant [Gorelick et al., 2014].

3.2 Submodular-Supermodular Procedure

Before presenting our method, we review SSP [Narasimhan and Bilmes, 2005], an opti-
mization method for general supermodular functions, and later propose our method as
its generalization.

SSP is classified as a bound optimization approach, where a tight upper bound

function £(S|S?) given an auxiliary variable S? is derived for E(S), i.e.,
E(S) < E(S|SY) and E(S?) = E(SSY). (3.7)
Then, the bound is iteratively minimized as
St = argmin E(S|SY), (t=0,1,2,...). (3.8)

Here, it is guaranteed that the energy does not go up, i.e. E(S?) > E(S**1) holds for any
t, because E(S?) = E(S|St) > E(S'T1|St) > E(SH1).

3.2.1 Permutation Bounds

SSP derives tight bounds for supermodular functions based on the superdifferential [Fu-
jishige, 2005; Iyer et al., 2013], which is a similar concept to the subderivative of continu-

ous functions. Given a supermodular functions R(S) and S* C ©, a modular (or linear)
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(a) Chain in SSP [Narasimhan and Bilmes, 2005]
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(b) Our generalized chain

Figure 3.3 Illustration of the chain and permutation.

function H(S) := (h, S) + R(0) that satisfies
H(S)— H(S") > R(S) — R(S") (39)

forany S C Q, is called a supergradient of R at S*. We denote OR(S") the set of all the su-
pergradients of R at S?, which is called the superdifferential. Notice that if H(S*) = R(S?)
holds, then H (S) gives a tight upper bound to R(S). Such extreme points of R(S*) may
be obtained using the following theorem.

Theorem 3.1. (Theorem 6.11 in [Fujishige, 2005]): For any S' C , a modular
function H(S) = (h,S) + R(0) is an extreme point of 9R(S"), if and only if there

exists a maximal chain
C:@ZSoCle'--CSn:Q, (3.10)

with S; = S* for some j, such that

H(S;)—H(Sj—1) = R(Sj)—R(Sj-1), (j=1,....12]). (3.11)

Based on this theorem, SSP [Narasimhan and Bilmes, 2005] derives a supergradient
H(S|S") of R(S) at S* by the following greedy algorithm. Let o (j) : {1,2,...,|Q|} — Q
be a permutation of ) that assigns the elements in S* to the first |S?| positions, i.e.,
o(j) € Stif and only if j < |S!|. A maximal chain C” is then defined as SJ = () and
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Figure 3.4 Illustration of upper bounds for supermodular functions. The supermodular function
R(S) and its bounds are visualized by blue and red lines, respectively. The green arrows in (a)
show the unary costs h(o(j)) of a supergradient H?(S|S*).
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87 ={0(1),0(2),...,0(4)}, so Sist| = St. See Figure 3.3 (a) for an illustration. Using this
chain C°, a supergradient H°(S|S") is obtained as

H(S]S") = (h?,S) + R(D), (3.12)
where each unary cost 77 (i) is given by

h(a(4)) = R(S7) — R(57-1), (1 =1,2,..,|9)). (3.13)

Figure 3.4 (a) illustrates how h%(co(j)) are computed. Since R(S) is supermodular, vari-
ables in earlier positions of ¢ are assigned lower unary costs, i.e., more prone to be labeled
as 1 via cost minimization. Therefore, if we knew a priori how likely each variable is 1,
the ideal permutation would arrange variables in order of decreasing likelihood so as to
maximize the likelihood via cost minimization. Here, the bounds H?(.S) approximate
R(S) tightly at along the chain of solutions {S7}. However, because H° () can largely
deviate from R(S) at other than {57 }, SSP is problematic when likelihood or permutation

is given inaccurate.

3.3 Proposed Method

In the following sections, we first present our key idea by extending SSP [Narasimhan
and Bilmes, 2005]. We then show how to apply it to and optimize the three types of
functions in Sec. 3.3.2, and describe implementation details in Sec. 3.3.3.

3.3.1 Grouped Permutation Bounds

In this section, we derive general bounds for Type-1 terms R(S) = f((g, S)) by extending
the SSP’s permutation scheme. First, we introduce a grouped permutation w, which is
made by grouping SSP’s ordered-elements o = {o(1),0(2),---,0(|?])} into M (M <
|Q2]) groups: w(1),7(2),---, (M) C Q. Each group m(j) contains some consecutive
elements of o: w(j) = {o(j'),0(j' +1),--- ,0(3' +m)}, and groups are mutually disjoint:
w(j)Nn(j") = 0if j # j'. Using this grouped permutation = we define a chain C™: SJ = ()
and ST = 7(1) Um(2) U ... Um(j) as illustrated in Figure 3.3 (b). Here, we make sure that
any group does not across o(|S*|) and o(|S*| + 1), so there exists ST = S* for some j.
Then, our bound for R(.S) is defined similarly to that of SSP in Eq. (3.12) as

H™(S|SY) = (h™, S) + R(0), (3.14)
where unary costs A7 (i) :  — R are defined fori € m(j) and j = 1,2, ..., M as

K™ (i) = g(i) [R(ST) — R(ST_1)] / (g, 7(j)) - (3.15)
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E(S)=2|Sl+52—1|+52 HT[(S)=2+SZ

Global optima
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(a) Non-submodular function (b) Our grouped permutation bound

H‘Tl(S) = (252 - 251 + 2) + s, HO-Z(S) = (251 - 252 + 2) + s,

—o 4 N W o= oo

0 o 0 o

(c) SSP’s bound (best permutation) (d) SSP’s bound (worst permutation)

Figure 3.5 Illustrations of our grouped permutation bound and SSP’s bound. (a) A supermodular
function with two variables, whose optimal solution is (s1,s2) = (1,0) or S = {1}. (b) Our
grouped permutation bound with the full grouping = = {1,2}. (c) SSP’s bound with the best
permutation o1 (1 — 2). (d) SSP’s bound with the worst permutation ¢2 (2 — 1). Notice that
the SSP’s bounds are tight to the function E(S) along the chain of solutions determined by the
permutations (red arrows). If the optimal solution exists on the chain such as shown in (c), the
SSP’s bound is tight at the optimal solution. However, when the permutation is inaccurate as
shown in (d), our grouped permutation produces a tighter bound than that of SSP.

The essence of this formulation becomes clearer if we assume g = 1 so that H™(S|S?)
becomes piecewise-mean-approximations of SSP’s bound H?(S|S?), which is visualized
in Figure 3.4 (b) using the example permutation 7 shown in Figure 3.3 (b). Note that our
bound H™(5|S*) becomes equivalent to the supergradients H(S|S*) of SSP, if 7(j) =

{o(h)}-

Proposition 3.1. The function H™(S|S") satisfies the conditions of Eq. (3.7) and is
thus a tight upper bound for R(S).

Proof. See Appendix A.1. O

One may wonder why our grouped permutation bound is better than SSP’s bound
that looks tighter than ours. However, we should pay attention to the z-axes of Figure 3.4,
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which are defined along a 1D chained path S € {S7} (j =0, 1,-- -, |$]). The path can be
seen as a single slice of the high dimensional variable space of S. Indeed, SSP’s bound
can be tighter than ours but only along a single path in 2/!l of all possible states ¥S C Q.
If the optimal solution exists on the path (i.e., the permutation ¢ is very accurate), SSP’s
bound is the best choice. However, when the permutation ¢ is unreliable, the optimal
solution is unlikely on the path. In this case, our bound will be a better approximation.

To visually illustrate this property, let us consider a supersubmodular function
defined with two binary variables s, s2 € {0,1} as E(S) = 2|s; + s2 — 1| + s2. This func-
tion is visualized in Figure 3.5 (a). By approximating the supermodular term |s; + so — 1|
using our bound, we obtain a linear approximation as shown in Figure 3.5 (b). Similarly,
SSP’s bounds with the best and worst permutations are shown in Figures 3.5 (c) and (d).
When the permutation of SSP is inaccurate, our grouped permutation produces better an
approximation bound.

This analysis gives us a strategy of how to make the grouped permutation. That
is, we make fine/coarse approximation bounds when elementwise permutations o are
accurate/inaccurate. Specifically, when the permutation of o(j) and o(j + 1) is unreliable,
we do not take the risk of making a bad bound by explicitly permuting the two. Instead,
we put them into the same group in order to treat them equally and leave a decision (i.e.,
which is more likely to be labeled as 1) to other interactions, e.g., pairwise smoothness
terms. As we will show in Sec. 3.3.3, our method makes coarse-to-fine approximation
bounds over iterations. This helps to avoid weak local minimums at early iterations and

reach a strong local minimum at convergence.

3.3.2 Optimization Procedure

We optimize E(S) by iteratively minimizing its approximation function £(S|S*~!) de-
rived by our grouped permutation bounds. Here, the minimization of £(.S) is achieved
using a max-flow /min-cut algorithm [Boykov and Kolmogorov, 2004].

Type-1: We derive a bound HT (S|S?) for each R.(S) of Riype1(S), and set £(S|S?) =
>, HT(S]S") + Q(S). Here, it is guaranteed that minimization of E(S) does not increase
the energy E(S). Therefore, its optimization procedure is a simple iteration algorithm
shown in Algorithm 3.1 (without lines 5 and 6).

Type-2: Similarly to [Ayed et al., 2013; Tang et al., 2014], we approximate Riype2(S) by
partially fixing S at S* as

Riypea(SIS") = £+ ({92, S) / (w2, S)) . (3.16)

Here, ]:Etypez(S |S?) is a Type-1 function. Therefore, we can approximate ]:Etypez(S |S?)
using our bounds H™(S|S?). As long as S C S! is forced, this linear function H™
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3.3. PROPOSED METHOD

Table 3.1 The proposed linear conversions of non-submodular terms m;;s;s; with comparisons
to the conversions of SSP [Narasimhan and Bilmes, 2005] and LSA [Gorelick et al., 2014]. Below,
we omit m;; which is multiplied to all terms in the table. Notice that our linear conversion can
bee seen as generalization of both SSP and LSA-AUX.

(st sh) ] Ours \ sSSP | LSA-AUX | LSA-TR
1 1 . B B
58i 4+ 585 if w(1)={i, j} . _
(0,0) oo if (1) = {i} sj o(l)=i g1 0
J s; ifo(l)=y 2 27
s; ifm(1)={s} '
(0, 1) Si S; S; Si
(1,0) 8 5 5 5
(1,1) s) i w(1)={i} i llff;’((ll))f Lot ls; | sits—1
si if m(1)={;} Z -

Algorithm 3.1: OPTIMIZATION FOR TYPE-1,3 [TYPE-2]

1 Initialize S° ;
2 fort=0,1,2,--- do

Create a permutation 7 // for all Types ;

S« argmin E(S|SY) // for Type-1,3;

[{S*} « argmin E(S|S*) + A(|St — |S]) for YA ;

[S**! < argmin E(S) for S € {S*,S*}] // for Type-2;
end

NS g s W

makes a tight bound for Riyper [Ayed et al., 2013]. However, we rather do not re-
strict S for allowing bi-directional optimization. In this case, the minimization of
E(S|St) = H™(S|S%) + Q(S) may increase the actual energy F(S). For this we use the
pseudo bound optimization scheme of [Tang et al., 2014], where we make a family
of relaxed bounds E)(S) = E(S|S?) + A(|S?| — |S]), and we exhaustively search $* =
argmin E(S) for all A € (—o0,00) by using parametric maxflow [Kolmogorov et al.,
2007]. Then we choose the best S* that minimizes E(S). Therefore, the optimization
procedure in Algorithm 3.1 takes lines 5 and 6 instead of 4 for Type-2.

Type-3: We make a bound E(S) by approximating each of non-submodular terms
R(S) = myjs;sj (my; > 0) with a linear function h;s; + hjs; 4 const. Its form depends
on both current values (s, s
[R(S;S) — R(5%_)| /Im(j')| similarly to Eq. (3.15). We summarize the conversion in
Table 3.1.

) and the permutation 7 of {i,;j}, and given as h(i) =

3.3.3 Implementation Details

We make permutations o and 7 according to the signed distance from the boundary
of S'. In [Rother et al., 2006], the Euclidean distance was used, but we use geodesic
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Segments Euclidean distance Geodesic distance

Figure 3.6 Illustrations of geodesic distance [Criminisi ef al., 2008].

distance [Criminisi ef al., 2008] for more effectively creating the permutations. Figure 3.6
shows examples of both distances. We denote the geodesic distance for segments S by
D(i|S,I) : @ = R, and D(i|S) < 0 for i € S. See Eq. (7) of [Criminisi ef al., 2008] and
also Appendix A.2 for its definition. As discussed in [Criminisi et al., 2008], D(i|S,I) is
efficiently computed in O(|Q2|) using an approximate algorithm [Toivanen, 1996].
Using the geodesic distance, we construct the bound H™(S|S?) in each iteration
as follows. Firstly, we compute D(i|S?) for the current segments S’. Secondly, we
make a permutation o such that D(c(j)) < D(o(j + 1)). Finally, we make a grouped
permutation 7 from o. We process o(j) from o(2) to o(|€?|), and put o(j) into the same
group with o(j — 1) if D(o(j)) — D(o(j — 1)) < 7, while making sure the group does
not across o(|S!|) and o(]S?| + 1). Basically, the size of the threshold 7 reflects how
much the permutation o by D(7) is reliable. We empirically use a grouping threshold
givenby 7 = (u +as)/(t+1)" (t = 0,1, 2,...), where p and s are the mean and standard
deviation of distance differences |D(c(j)) — D(o(j — 1))|. We use this monotonically
decreasing thresholds, because as iterations proceed the segments S* are expected to be
more accurate and so permutations o by D(i|S") becomes accordingly more reasonable.
Also, when S% = Q or S° = (), so D(i|S?) cannot be defined, we set (1) = Q. This makes
the full linear approximations of R(S) drawn from R(()) to R(f2), which give reasonable

initial approximations.

3.4 Relationship with Prior Art

In this section, we discuss relationships between our method and other previous methods
Auxiliary Cuts (AC) [Ayed et al., 2013], Parametric Pseudo Boolean Cuts (pPBC) [Tang
et al., 2014] and Local Submodular Approximations (LSA) [Gorelick et al., 2014].
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3.4.1 Auxiliary Cuts and pPBC

The authors of [Ayed et al., 2013] derived a bound for Riype1(S) by using the Jensen’s
inequality and assuming S C S’. Its essential form is given as

Axsw@::3w4ﬂ56+wuasﬂ<1—5?5%), (3.17)

where a > 0 is a parameter and By, (S|S?) is expressed as

R(S") — R(0)

B (S]S7) = R(0) + (g, S

(g, 5) . (3.18)
From Eq. (3.18), B (S]S?) can be seen as the linear approximations of R(S) drawn
from R(0) to R(S'). See Figure 3.4 (c), where the solid red line visualizes this linear
approximation bound, the infinite bound reflects the restriction S C S t and the dotted
line depicts the effect of the a-term in Eq. (3.17). The use of this bound results in
successively shrinking segments: S° O S' D S2. pPBC [Tang et al., 2014] extends AC
by exhaustively searching the best & € (—o00,00) in each iteration using parametric
maxflow [Kolmogorov et al., 2007].

To point out a relationship to our method, we use another bound Bexp (S]S?) for R(S),
which is similar to By, (5|S?) and can be derived by [Ayed et al., 2013]’s derivations as

R(Q) — R(S")

Bep(S157) = R(S)+ = o g1

{g,5\ 8. (3.19)
Here, S? is restricted to S* C S, so the iterative minimization of By, (S|S?) successively
expands the segments S. This bound can be seen as the linear approximation of R(S)
drawn from R(S?) to R(Q).

We now show that these bounds Bgp,(S|S") and Beyp(S|S*) can be derived using our
grouped permutation bounds. When a grouped permutation is given as 7(1) = S and
7(2) = St with St := Q\ S¢, our bound H™(S|S) becomes the following form:

Hfull(S|St) = Bshr(S N St‘st) =+ Bexp(S N St|5t)- (3-20)

Notice that it no longer requires the restrictions for S (i.e., S C St or St C S) used
in [Ayed et al., 2013; Tang et al., 2014], which are turned out to be unnecessary by our
derivation. Also notice that Hg,; does not depend on the permutation 7. Although
Hygyy does not accurately approximate its original function R(S), it is still useful when
permutations are inaccurate (e.g. at first iterations). Our method is designed to behave
between AC [Ayed et al., 2013] and SSP [Narasimhan and Bilmes, 2005] and to produce

coarse-to-fine approximation bounds as iterations proceed, by using the monotonically
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decreasing grouping-threshold 7 defined in Section 3.3.3.

3.4.2 Local Submodular Approximations

Very recently, an optimization method for pairwise non-submodular energies called
LSA [Gorelick et al., 2014] has been proposed and shown to outperform other state-
of-the-art methods such as TRW-S [Kolmogorov, 2006] and QPBO [Kolmogorov and
Rother, 2007]. This method approximates non-submodular pairwise terms by linear
terms. In [Gorelick et al., 2014], two types of approximation conversions are proposed.
LSA-TR applies a Taylor-based approximation and uses the gradient-descent framework
of FIR [Gorelick et al., 2013]. LSA-AUX uses a bound-based approximation and uses the
bound optimization framework. The linear conversions of LSA-TR and LSA-AUX are
summarized in Table 3.1.

As you can see from the table, our linear conversion includes the conversion of
LSA-AUX. In fact, our conversion with a full-grouping m produces the same bounds with
LSA-AUX. Furthermore, as mentioned in [Gorelick ef al., 2014], there are other types of
bounds that can be made by the permutation scheme of SSP [Narasimhan and Bilmes,
2005]. Our method generalizes both conversions of SSP and LSA-AUX, and adaptively

chooses either conversion for each term.

3.5 Experiments

For evaluation, we use four variations of our method: SDC-GEO is the proposed method
described in Section 3.3. SDC-DIST uses the standard Euclidean distance for mak-
ing permutations o, but the other settings are the same with SDC-GEO. SSP-DIST is
SSP [Narasimhan and Bilmes, 2005] that follows the implementations by Rother et al.
[2006]. It is basically the same with SDC-DIST but uses no mean approximations for
bound constructions. We also use SSP-GEO, which is the same with SSP-DIST but uses
the geodesic distance. Note that when S° = (2 at the first iterations, we make permu-
tations o randomly for SSP-DIST and SSP-GEO, based on 10 x 10-pixels of patches as
described in [Rother et al., 2006].

We also compare with three state-of-the-art methods for higher-order energies:
AC [Ayed et al., 2013] uses the bound A, of Eq. (3.17). pPBC [Tang et al., 2014] uses the
same bound but exhaustively chooses the best o using parametric maxflow [Kolmogorov
et al., 2007]. FTR [Gorelick et al., 2013] is the state-of-the-art of gradient-descent meth-
ods. For pairwise energies, we compare with LSA-AUX,-TR [Gorelick et al., 2014] and
pPBC-T,-B,-L [Tang et al., 2014] as state-of-the-art.

All the methods are implemented in C++, and run on a system with a 3.5GHz Core i7
CPU and 16GB RAM.
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3.5.1 Segmentation via Distribution Matching

Similarly to [Tang et al., 2014; Ayed et al., 2013; Rother et al., 2006], we evaluate the
performances of the methods using the GrabCut dataset [Rother et al., 2004]. For pure
evaluations of optimization performances, we learn the target histograms from the
ground truth!. We use a standard 16-neighbor pairwise smoothness term similar to
[Rother ef al., 2004]: Q(S) = A, max(w;, €)|s; — s;|/|pi — pj| where p; is pixel coordi-
nates and w;; = exp(—p3|I; — I;]?). Here, 3 is automatically estimated as 3 = 2E[|I; — I;|?]

the expectation over all neighbor pairs. We use RGB-histograms.

Type-1: L, and L, Distance of Histograms

For Type-1 terms, we use the Ly and L; distances between histograms. For {), ¢}, we
use {1.0,0.5} and {0.5,0.5} for the L, and L;-distances, respectively. S* is trivially
initialized as S° < Q. For both SDC-GEO and SDC-DIST, we use a grouping threshold
7= (u+8s)/(t+1)%5.

Tables 3.2 and 3.3 summarize the performance comparisons, showing average misclas-
sified pixel rates, energy values of £(S) and R(S), running times, and individual-image
comparisons with SDC-GEO. Among the seven methods, our proposed method SDC-
GEO outperforms the others for all error and energy scores. In some cases, SDC-GEO
completely outperforms pPBC, AC, FTR, and SSP-DIST for all individual images. Note
that the error rates of SSP-DIST are better than the rates originally reported in [Rother
et al., 2006] because the definition of pixel feature histograms is different’. Comparing the
results of SDC-DIST and SSP-DIST with L, and 643 bins, SDC-DIST finds more accurate
segmentations in spite of the higher energies. This is because in SSP-DIST the appearance
consistencies are forced regardless of how permutations o and corresponding bounds
are inaccurate, resulting in highly non-smooth, visibly bad local minimas. In Figure 3.7,
we show example results of Ly and L; with 64 bins. Figures 3.9 and 3.10 show the plots
of the accuracy transitions using the L, and L;-distances w.r.t. the number of bins. As
shown, SDC-GEQO is robust to the difference of the number of bins. In order to show
robustness to initialization, we compare SDC-GEO, pPBC, and FIR using two types of
initialization shown in Figure 3.1. Unlike pPBC (and AC) that can only reduce the target
regions, our method is robust to initialization and finds very accurate solutions even for

such difficult camouflage images.

'If the target histograms are inaccurate, the minimum solutions of E(S) are deviated from the ground
truth [Taniai ef al., 2012], and the error rate criteria thus does not reflect the actual performances of the
optimization methods.

2[Rother et al., 2006] uses a normalized 2D color vector and texton as a pixel feature, since the method is
intended for co-segmentation and image retrieval.
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Type-2: Bhattacharyya Distance and KL Divergence

We use Bhattacharyya distance and KL divergence as Type-2. As described in Sec-
tion 3.3.2, we use the pseudo bound optimization scheme of [Tang et al., 2014] using
parametric maxflow [Kolmogorov et al., 2007] for our method SDC-GEO. We show the
performance comparisons with pPBC, AC, and FTR in Table 3.4, where our method
outperforms the others in error and energy values. It is worth noting that although
SSP [Narasimhan and Bilmes, 2005] is originally oriented for supermodular functions,

our extended method successfully optimizes non-supermodular functions (Type-2).

3.5.2 Type-3: Image Deconvolution

We make a blurred image I by a mean filter and additive Gaussian noises: I; =
s> jew, Li + N (0, 0?), where W; is a 3 x 3 window centered at i. We recover the original
image I by minimizing E(S) = ", (/i — 3 D jew; s;)%. In Figure 3.11, we show exam-
ple results of our method, pPBC [Tang et al., 2014], and LSA [Gorelick et al., 2014] for two
noise levels ¢ = 0.15, 0.30. In Figure 3.12, we show the plots of energies, squared errors
Oilsi— 1 2), and running times. LSA-TR and pPBC-T,-L reach the lower energies but
inaccurate results. Our method and LSA-AUX perform best in terms of both accuracy

and efficiency.

3.5.3 Type-3: Curvature Regularization

We apply our method to a curvature regularization model of [El-Zehiry and Grady, 2010]
in image binarization. We show the input image and results by our method, pPBC [Tang
et al., 2014], and LSA [Gorelick et al., 2014] in Figure 3.13. The plots in Figure 3.14 show
energies at convergence w.r.t. regularization weights. Our method always reaches the

lowest energies and is most stable among all methods.

3.6 Summary

In this study we have revisited SSP [Narasimhan and Bilmes, 2005], an early approach
to higher-order energy optimization, and proposed our method as generalization of
SSP. The key idea of our method is piecewise mean approximation bounds, which are
designed to produce coarse-to-fine approximation bounds during iterations. We further
show that our method has close connections to some state-of-the-art methods [Ayed
et al., 2013; Tang et al., 2014; Gorelick et al., 2014]. Although the proposed method shows
promising improvements over state-of-the-art methods [Tang et al., 2014; Gorelick et al.,
2013, 2014; Ayed et al., 2013], we would like to further push the envelope by improving
the definition of geodesic distance and the thresholding scheme for making grouped

permutations.
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Table 3.2 Evaluations on the GrabCut dataset [Rother et al., 2004] using Lo-distance. We compare
the proposed SDC-GEO with SDC-DIST, SSP-GEO, SSP-DIST, pPBC [Tang et al., 2014], AC [Ayed
et al., 2013], FTR [Gorelick et al., 2013]. We show average error rates, E(S), R(S), times over 50
images. The last column shows the number of images for which the proposed method (SDC-
GEO) outperforms each method. We use 1923 and 642 bins. SSP-DIST is SSP [Narasimhan and
Bilmes, 2005] that follows the implementations by Rother et al. [2006].

Method Error (%) E(S) R(S) Time (sec) | SDC-GEO vs
(La-distance) || 192° | 64° [ 192° | 64° 192° [ 64° [192° ] 64° [192° [ 64°
Ground truth 0 0 3569 | 3569 0 0 - - -

SDC-GEO 0.095 | 0.288 | 3511 3809 179 235 6.2 | 11.7 - -
SDC-DIST 0.134 | 1.123 | 4121 18922 577 9946 23 2.7 32 46
SSP-GEO 0.116 | 1.132 | 3594 6477 166 377 49 | 151 24 45
SSP-DIST 0.312 | 2.575 | 4415 | 13969 295 877 2.0 42 32 50

pPBC 1.062 | 2.677 | 19381 | 190332 | 13187 | 176315 | 36.7 | 24.6 | 49 50
AC 1.214 | 3.542 | 19888 | 195729 | 13646 | 177947 | 1.0 1.0 50 50
FIR 1.859 | 3.167 | 21003 | 153212 | 17669 | 146394 | 36.8 | 121.2 | 50 48

Table 3.3 Evaluations on the GrabCut dataset [Rother et al., 2004] using L;-distance. See Table 3.2
for the descriptions.

Method Error (%) E(S) R(S) Time (sec) | SDC-GEO vs
(L;-distance) || 1027 | 64° | 192 | 64° | 192° | 64° | 192° | 64° | 192° | 64°
Ground truth 0 0 1785 | 1785 0 0 - - - -

SDC-GEO 0.033 | 0.205 | 1804 | 1882 54 120 54 94 - -
SDC-DIST 0.041 | 0.242 | 1813 | 1967 70 229 1.9 3.8 38 42
SSP-GEO 0.043 | 0.943 | 1813 | 2766 31 298 3.7 9.7 28 46
SSP-DIST 0.075 | 1.341 | 1898 | 3666 50 411 1.6 24 34 48

pPBC 0.154 | 0.583 | 2013 | 2632 | 309 997 174 | 18.9 48 48
AC 0.339 | 1.281 | 2502 | 4336 | 762 | 2476 0.6 0.6 50 50
FIR 0.147 | 0.366 | 1908 | 2105 | 277 495 46.1 | 100.7 | 46 41

Table 3.4 Evaluations on the GrabCut dataset [Rother et al., 2004] using the Bhattacharyya
distance and KL divergence. We use 64% bins and the bounding box initialization.

Error (%) E(S) Time (sec)
Method Bhat. [KL-div.| Bhat. |KL-div.| Bhat. |KL-div.
SDC-GEO 0373 | 0515 | -14906 | 7025 | 198 | 129
pPBC [Tang et al, 2014] || 0498 | 0818 | -14870 | 7057 | 18 | 15
AC [Ayedetal,2013] | 1829 | 1607 | -11878 | 749 | 04 | 04
FTR [Gorelick et al,, 2013] || 0435 | 1076 | -14894 | 7049 | 29 | 64
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| o ) ']

¥

Ground Truth SDC-GEO

Figure 3.7 Examples of L,-distance matching. We show the ground truth segmentation (blue
boundary), results of the proposed SDC-GEO, SSP-DIST [Rother et al., 2006], pPBC [Tang et al.,
2014], AC [Ayed et al., 2013] and FTR [Gorelick et al., 2013]. The segments are initialized as all
foreground, and 643 bins of histograms are used.
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Ground Truth SDC-GEO

SSP-DIST pPBC

AC FTR

Figure 3.8 Examples of L;-distance matching. We show the ground truth segmentation (blue
boundary), results of the proposed SDC-GEO, SSP-DIST [Rother et al., 2006], pPBC [Tang et al.,
2014], AC [Ayed et al., 2013] and FTR [Gorelick et al., 2013]. The segments are initialized as all
foreground, and 643 bins of histograms are used.
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Figure 3.9 Error rate transitions w.r.t. the number of bins using L, distance. We compare the
proposed SDC-GEO with pPBC [Tang et al., 2014], AC [Ayed et al., 2013] and FTR [Gorelick et al.,
2013]. Our method significantly outperforms state-of-the-art methods.
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Figure 3.10 Error rate transitions w.r.t. the number of bins using L; distance. We compare the
proposed SDC-GEO with pPBC [Tang et al., 2014], AC [Ayed et al., 2013] and FIR [Gorelick ef al.,
2013]. Similarly to the L, distance case, Our method outperforms state-of-the-art methods.
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Figure 3.11 Image deconvolution results. We show results for two images with noise levels of
o = 0.15 (left) and ¢ = 0.30 (right). Our method is accurate and stable.
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Figure 3.12 Performance comparisons of image deconvolution. Convergence energies, square
errors, and running times w.r.t. noise levels are shown. The values are averaged over 30 random
noise images at each point. We use 7 = (u + s)/(t + 1) for our method. Notice that our method
obtains more accurate solutions in spite of their higher energies, because our course-to-fine
scheme avoids bad local minimums.
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LSA-AUX [Gorelick et al.,
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Figure 3.13 Results of curvature optimization at the weight of 25.
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Figure 3.14 Convergence energies w.r.t. curvature regularization weights. We use 7 = u1/(¢t+1)2°.
Our method stably finds solutions that have lower energies than the others.
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Continuous MRF Inference for
Binocular Stereo Vision

TEREO vision recovers the 3D surfaces of a scene given a stereo image pair. The
S problem amounts to estimating the dense correspondence field between the image
pair, namely, the disparity map. Being one of the oldest problems in computer vision
and the most fundamental problem of dense correspondence, stereo matching has been
well studied from approaches using discrete labeling formulations. However, such
approaches suffer from discretization artifacts, and there is thus spontaneous demand
for continuous representations leading to introducing continuous MRFs. Recent studies
have also shown that the use of continuous MRFs allows us to use better matching
measures and regularization enabling much higher accuracy. In this chapter, we propose
a highly accurate stereo matching method, focusing on a challenging inference problem
of a pairwise MRF that has a three-dimensional continuous label space.

4.1 Introduction

Recent years have seen significant progress in accuracy of stereo vision. One of the
breakthroughs is the use of slanted patch matching [Bleyer et al., 2011; Besse et al., 2012;
Lu et al., 2013; Olsson et al., 2013; Heise et al., 2013]. In this approach, the disparity d,, of

each pixel p is over-parameterized by a local disparity plane
dp, = apu + byv + ¢, 4.1)

defined on the image domain (u,v), and rather than directly estimating d,, the triplet
(ap, by, cp) is estimated for each pixel p. The matching window is then transformed
according to this disparity plane, which produces linearly-varying disparities within the
window and thereby achieves accurate photo-consistency measures between matching
pixels even with large matching windows. While stereo with standard 1D discrete
disparity labels [Wang and Yang, 2011; Kolmogorov and Zabih, 2002, 2001; Boykov et al.,
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2001] can be directly solved by discrete optimizers such as graph cuts (GC) [Kolmogorov
and Zabin, 2004; Boykov and Kolmogorov, 2004] and belief propagation (BP) [Yedidia
et al., 2000; Felzenszwalb and Huttenlocher, 2004], such approaches cannot be directly
used for continuous 3D labels due to the huge or infinite label space (a, b, ¢) € R3.

Recent successful methods [Bleyer et al., 2011; Besse et al., 2012; Lu et al., 2013; Heise
et al., 2013] use PatchMatch inference [Barnes et al., 2009, 2010] to efficiently infer cor-
rect 3D planes using spatial propagation; each pixel’s candidate label is, in raster-scan
order, refined and then propagated to next pixels. Further in [Besse et al., 2012], this
sequential algorithm is combined with BP yielding an efficient optimizer PMBP for
pairwise Markov random fields (MRFs) [Geman and Geman, 1984]. In terms of MRF
optimization, however, BP is considered a sequential optimizer, which improves each
variable individually keeping others conditioned at the current state. In contrast, GC
improves all variables simultaneously by accounting for interactions across variables,
and this global property helps optimization avoid local minimas [Szeliski et al., 2008;
Woodford et al., 2009]. In order to take this advantage and efficiently infer 3D planes by
GC, it is important to use spatial propagation. Nevertheless, incorporating such spatial
propagation into GC-based optimization is not straightforward, because inference using
GC proceeds rather all-nodes-simultaneously, not one-by-one-sequentially like PatchMatch
and BP.

In this study, we introduce a new move making scheme, local expansion moves, that
enables spatial propagation in GC optimization. The local expansion moves are presented
as many a-expansions [Boykov et al., 2001] defined for a small extend of regions at
different locations. Each of this small or local a-expansion tries improving the current
labels in its local region in an energy minimization manner using GC. Here, those current
labels are allowed to move to a candidate label o, which is given uniquely to each local
a-expansion in order to achieve efficient label searching. At the same time, this procedure
is designed to propagate a current label in a local region for nearby pixels. For natural
scenes that often exhibit locally planar structures, the joint use of local expansion moves
and GC has a useful property. It allows multiple pixels in a local region to be assigned
the same disparity plane by a single min-cut in order to find a smooth solution. Being able
to simultaneously update multiple variables also helps to avoid trapped at a bad local
minima.

The advantages of our method are as follows.

* Our local expansion move method produces submodular moves that guarantee the
optimal labeling at each min-cut (subproblem optimal), which in contrast is not

guaranteed in general fusion moves [Lempitsky et al., 2010].

¢ This optimality property and spatial propagation allow randomized search, rather

than employ external methods to generate plausible initial proposals as done in fusion
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Random init. 1 iteration 2 iterations 3 iterations 10 iterations

processing

Figure 4.1 Evolution of our stereo matching estimates. From top to bottom, we show dispar-
ity maps, normal maps of disparity planes, and error maps with 0.5 pixel threshold. In our
framework, we start with random disparities that are represented by per-pixel 3D planes, i.e.,
disparities (top) and normals (middle). We then iteratively apply our local expansion moves
using GC (middles) to update and propagate local disparity planes. Finally, the resulting disparity
map is further refined at a post-processing stage using left-right consistency check and weighted
median filtering (rightmost).

approaches [Lempitsky et al., 2010; Woodford et al., 2009; Olsson et al., 2013], which
may limit the possible solutions.

* Our method achieves greater accuracy than BP [Besse et al., 2012] thanks to the good
properties of GC and local expansion moves.

¢ Unlike other PatchMatch based methods [Bleyer et al., 2011; Besse et al., 2012; Heise
et al., 2013], our method can effectively incorporate the fast cost filtering technique of
[Luet al., 2013]. In this manner, we can efficiently reduce the computation complexity
of unary terms from O(|W|) to approximately O(1), removing the dependency from
the support window size |W|.

¢ Unlike PMBP [Besse et al., 2012], our method is well suited for parallelization using
both CPU and GPU.! With multiple CPU cores, each of our local a-expansions (i.e.,
min-cut computations) can be individually performed in parallel. With a GPU imple-
mentation, the computation of unary terms can be efficiently performed in a parallel

manner for further acceleration.

This study is an extension to our conference paper [Taniai et al., 2014]. The extensions
are summarized as follows. We add theoretical verifications on the preferability of

! Although BP is usually parallelizable on GPU as well as CPU, PMBP differs from BP’s standard settings
in that it defines label space uniquely and distinctively for each pixel and propagate it; both make parallelization
indeed non-trivial.
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our method for piecewise planar scenes in Section 4.3.1, and also on the subproblem
optimality of our algorithm in Section 10. Furthermore, the efficiency of our algorithm is
improved by two ways; In Section 10 we show the parallelizablity of our local expansion
move algorithm; In Section 4.3.5 we show that the fast cost filtering technique of [Lu
et al., 2013] can be used in our method. The effectiveness of both extensions is thoroughly
evaluated in the experiments, and we show that even a CPU implementation of the
proposed method achieves about 2.1x faster running times than our previous GPU

implementation [Taniai ef al., 2014], with comparable or even greater accuracy.

4.2 Related Work

4.2.1 MRF Stereo Methods

MREF stereo methods can be categorized into three approaches: discrete stereo, segment-

based stereo, and continuous stereo.

Discrete Stereo

Discrete stereo [Wang and Yang, 2011; Kolmogorov and Zabih, 2002, 2001; Boykov et al.,
2001] formulates stereo matching as a discrete multi-labeling problem, where each pixel
is individually assigned one of pre-defined discrete disparity values. For this problem,
many powerful discrete optimizers, such as BP [Yedidia et al., 2000; Felzenszwalb and
Huttenlocher, 2004], TRW-S [Kolmogorov, 2006], and GC [Kolmogorov and Zabin, 2004;
Boykov and Kolmogorov, 2004], can be directly used. Successful results are shown using
GC with expansion moves [Boykov et al., 2001; Szeliski et al., 2008]. In expansion moves,
the multi-labeling problem is reduced to a sequence of binary-labeling problems, each
of which can be exactly solved by GC, if only pairwise potentials 1) meet the following
submodularity of expansion moves [Kolmogorov and Rother, 2007; Boykov et al., 2001]:

Pla,a) +9(8,7) < 9B, a) +¢(a,7). (4.2)

Segment-based Stereo

Segment-based stereo [Tao et al., 2001; Hong and Chen, 2004; Klaus et al., 2006; Wang and
Zheng, 2008] assigns a 3D disparity plane for each of over-segmented image regions. The
candidate planes are generated by fitting planes to a roughly estimated disparity map,
and then the optimal assignment of the planes is estimated by, e.g., GC with expansion
moves [Boykov et al., 2001; Hong and Chen, 2004] or BP [Felzenszwalb and Huttenlocher,
2004; Klaus et al., 2006]. Although this approach yields continuous-valued disparities, it
strictly limits the reconstruction to a piecewise planar representation. Also, results are
subject to the quality of the segmentation.
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Continuous Stereo

The last group, to which our method belongs, is continuous stereo [Woodford et al., 2009;
Bleyer et al., 2011; Besse et al., 2012; Olsson et al., 2013; Lu et al., 2013; Heise et al., 2013],
where each pixel is assigned a distinct continuous disparity value.

Some methods [Woodford et al., 2009; Olsson et al., 2013] use fusion moves [Lem-
pitsky et al., 2010], an operation that combines two disparity maps to make a better
one (binary fusion) by solving a non-submodular binary-labeling problem using QPBO-
GC [Kolmogorov and Rother, 2007; Lempitsky et al., 2010]. In this approach, a number of
continuous-valued disparity maps (or so-called proposals in the literature [Lempitsky et al.,
2010]) are first generated by other external methods (e.g., segment-based stereo [Wood-
ford et al., 2009]), which are then combined as a sequence of binary fusions. Our method
differs from this fusion-based approach in that we use spatial propagation and random-
ization search during inference, by which we only require a randomized initial solution
instead of those generated by external methods. More importantly, binary energies
produced in our method are always submodular, i.e., each binary-energy minimization is
optimally solved via GC (subproblem optimal).

A stereo method by Bleyer et al. [2011] proposes accurate photo-consistency measures
using 3D disparity planes that are inferred by PatchMatch [Barnes et al., 2009, 2010].
Heise et al. [2013] incorporate Huber regularization into [Bleyer et al., 2011] using convex
optimization. Besse et al. [2012] point out a close relationship between PatchMatch and
BP and present a unified method called PatchMatch BP (PMBP) for pairwise continuous
MRFs. PMBP is probably the closest approach to ours in spirit, but we use GC instead
of BP for the inference. Therefore, our method is able to take advantage of better
convergence of GC [Szeliski et al., 2008] for achieving greater accuracy. In addition, our
method allows efficient parallel computation of unary matching costs.

4.2.2 Cost-Volume Filtering

Patch-based stereo methods often use cost-volume filtering for fast implementations.
Generally, computing a matching cost C for a patch requires O(|W|) of computation,
where || is the size of the patch. However, given a cost-volume p4(p) that represents
pixelwise raw matching costs || I(p) — I'(p — d)|| for a certain disparity label d, the patch-
based matching costs can be efficiently computed by applying a filtering to the cost-
volume as Cy(p) = 3, wpgpa(q). Here, the filter kernel wy,, represents the matching
window at p. If we use a constant-time filtering, each matching cost Cy(p) is efficiently
computed in O(1).

The box filtering can achieve O(1) by using integral image but results in flattening
object boundaries. For this boundary issue, Yoon and Kweon [2005] propose an adaptive
support-window technique that uses the joint bilateral filtering [Petschnigg et al., 2004]
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for cost filtering. Although this adaptive window technique successfully deals with the
boundary issue [Hosni ef al., 2012], it involves O(|W|) of computation because of the
complexity of the bilateral filtering. Recently, He et al. [2010, 2013] propose a constant-
time edge-aware filtering named the guided image filtering. This filtering is employed in a
cost-volume filtering method of [Rhemann et al., 2011; Hosni et al., 2013], achieving both
edge-awareness and O(1) of matching-cost computation.

In principle, stereo methods using PatchMatch inference [Bleyer et al., 2011; Besse
et al., 2012; Heise et al., 2013] cannot take advantage of the cost filtering acceleration, since
in those methods the candidate disparity labels are given uniquely to each pixel and we
cannot make a constant-label cost-volume p,4(p). To this issue, Lu ef al. [2013] extend
[Bleyer et al., 2011] to use superpixels as a unit of cost calculations. In their method, called
PatchMatch filter (PMF), fast cost-volume filtering of [Rhemann et al., 2011; Hosni et al.,
2013] is applied in small subregions and that approximately achieves O(1) of complexity.
We will show in Section 4.3.5 that their subregion filtering technique can be effectively
incorporated into our method, and we achieve greater accuracy than their local stereo
method [Lu et al., 2013].

4.3 Proposed Method

This section describes our proposed method. Given two input images I;, and I, our
purpose is to estimate the disparities of both images.

In Section 4.3.1, we first analyze the formulation of disparity planes used in the slanted
patch matching approach [Bleyer et al., 2011], and show its relationship to homographies.
We then define our energy function in Section 4.3.2, and describe the fundamental idea
of our optimizing strategy and its properties in Section 4.3.3. The whole optimization
procedure is presented in Section 4.3.4, and we further discuss a fast implementation in
Section 4.3.5.

4.3.1 Geometric Interpretation to Slanted Patch Matching

Slanted patch matching [Bleyer et al., 2011; Besse et al., 2012; Lu et al., 2013; Heise et al.,
2013; Taniai et al., 2014] is an important technique for patch-based stereo matching, where
a patch is warped and transformed in the other view using a disparity plane in Eq. (4.1).

More specifically, each patch is warped by the following form of affine transformations

l—a —-b —c
u 0 1 0 | u, (4.3)
0 0 1
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(a) (b) (©)

a

Figure 4.2 Effects of (a,b,c) in slanted patch matching [Bleyer et al., 2011]. Square windows
(gray) in a reference view are warped and transformed in the other view by disparity planes
d = au + bv + c. Image courtesy of [Heise et al., 2013].

where u and u’ are homogeneous pixel coordinates in the left and right view images,
respectively. As illustrated in Figure 4.2, this formulation produces linearly-varying
disparities within a matching window, and can avoid a bias toward front-parallel surfaces
that appears when using a constant disparity within a matching window [Bleyer et al.,
2011]. This approach implicitly assumes that the true disparity maps are piecewise linear.
In this section we show the validity of this piecewise linear disparity assumption for the
scenes with piecewise planar surfaces. As we will discuss later, the result of this section
also supports our method design, since our model and inference both prefer piecewise
linear disparity maps.

Let us assume a rectified stereo setting, i.e., two cameras are placed at x = 0 (left) and
x = (B,0,0)T (right), respectively, in the 3D world coordinates x = (z,y, 2)T € R3. The
two cameras have the same focal length { f,, f,} and the identity rotation R = I.

We then assume there exists a planar surface in the scene

ayt + by + ¢,z = hy) (4.4)

that is parameterized by (ay,, b),, ¢, h;,) and observed at the pixel p in the left view. Using

the perspective model
v =uz/fe, y=0vz/fy, (4.5)

the 3D points (z,y, z) on the geometry plane of Eq. (4.4) are projected at (u, v, z) on the

left image domain (u, v) as

al b,
z(u,v) = hy,/ (pu + Lo+ c;,> . (4.6)
for By
Here, z(u, v) is so-called a depth map representing depth values z of the geometry plane
at the left image coordinates (u, v). In the rectified stereo, it is well known that depth z
and disparity d are related by
z = Bf/d. (4.7)

By plugging this equation into Eq. (4.6), we finally obtain the geometry plane that is
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transformed into the form of disparity plane of Eq. (4.1):

B . al b/

d(u,v) = h{ <;u + Lov+ cﬁ,) . (4.8)
p \Jz y

This result shows that, in the rectified stereo setting, the warping induced by a planar

surface or a homography can be described by a single disparity plane with three degrees

of freedom. Therefore, the piecewise linearity of disparity maps in the image coordinates

is equivalent to the piecewise planarity of object surfaces in the world coordinates.

4.3.2 Formulation

We follow the slanted patch matching approach of [Bleyer et al., 2011]. Here, each pixel
p’s disparity d, is over-parameterized by a 3D plane d, = ayu + b,v + ¢,. Therefore,
we seek a mapping f, = f(p) : @ — L that assigns a disparity plane f, = (ap, by, ¢p) € L
for every pixel p in the left and right images. To estimate f, we use a pairwise MRF
formulation by following conventional stereo matching methods [Olsson et al., 2013;
Wang and Yang, 2011; Kolmogorov and Zabih, 2002, 2001; Boykov et al., 2001]. In the

MREF framework, we seek f such that minimizes

E(f):ZCbp(fp)“‘)‘ Z ¢pq(fpafq>- (4.9)

peN (p.a)eN

The first term, called the data term or unary term, measures the photo-consistency between
matching pixels. The disparity plane f, defines a warp from a pixel p in one image to
its correspondence in the other image. The second term is called the smoothness term or
pairwise term, which penalizes discontinuity of disparities between neighboring pixel
pairs (p, q) € N. We define these terms as below.

Data Term

To measure photo-consistencies, we use a data term that has been recently proposed
by Bleyer et al. [2011]. The data term of p in the left image is defined as

Sp(fp) = D wps ps|fp)- (4.10)

seWp

Here, W, is a square window centered at p. The weight w,; implements the adaptive
support window proposed in [Yoon and Kweon, 2005], and is defined as

s = e L@/, (4.11)
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2 Here, we

where 7 is a user-defined parameter, and || - ||; represents the ¢;-norm.
assume RGB color intensities I € [0, 255]%. Note that this weight w,,s will be re-defined
in Section 4.3.5 for a fast implementation. Given a disparity plane f, = (ap, by, ¢p), the
function p(s|f,) in Eq. (4.10) measures the pixel dissimilarity between a support pixel

s = (Sy, Sp) in the window W), and its matching point in the right image
s' =5 — (apsy + bpsy + ¢, 0) (4.12)
as

p(slfp) = (1 — a) min(||T1(s) — Ir(s") |1, Teor)
+a min(|V,I(s) = VaIr(s)|, Tgrad)- (4.13)

Here, VI represents the z-component of the gray-value gradient of image I, and «
is a factor that balances the weights of color and gradient terms. The two terms are
truncated by 7., and 7,44 to increase the robustness for occluded regions. We use linear
interpolation for I (s"), and a sobel filter kernel of [-0.5 0 0.5] for V. When the data
term is defined on the right image, we swap I, and Iy in Egs. (4.11) and (4.13), and add
the disparity value in Eq. (4.12).

Smoothness Term

For the smoothness term, we use a curvature-based, second-order smoothness regular-
ization term [Olsson ef al., 2013] defined as

¢pq(fpa fq) = Imnax (qua €) min(ﬂ_)pq(fpa fq)a Tdis)s (4.14)

where ¢ is a small constant value that gives a lower bound to the weight w,, to increase
the robustness for image noises. The function v, (f,, f,) penalizes the discontinuity
between f;, and f, in terms of disparity as

J’pq(fpv fq) = |dp(fp)_dp(fq)| + ‘dq(fq)_dq(fp)’a (4.15)

where d,(fq) = agpu + bgpy + ¢4. The first term in Eq. (4.15) measures the difference
between f;, and f, by their disparity values at p, and the second term is defined similarly
at . We visualize 1,4 (fp, f;) as red arrows in Figure 4.3 (). The ¢,( f,, f,) is truncated
by 74is to allow sharp jumps in disparity at depth edges.

Notice that ¥, (fp, f4) = 2|cp — ¢l when a = b = 0 is forced (see Figure 4.3 (c));

therefore, the smoothness term 1, ( fp, f;) naturally extends the traditional truncated

?We have removed the spatial range weight of [Yoon and Kweon, 2005] that compares pixel positions.
As mentioned in [Bleyer et al., 2011; Hosni ef al., 2012], improvement due to this term is minor.
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@) fy # I ®) f, = fy (©a=b=0

Figure 4.3 Illustration of the smoothness term proposed in [Olsson ef al., 2013]. (a) The smooth-
ness term penalizes the deviations of neighboring disparity planes shown as red arrows. (b)
When neighboring pixels are assigned the same disparity plane, it gives no penalty; thus, it
enforces second order smoothness for the disparity maps. (c) When a = b = 0 is forced, this term
reduces to a conventional linear model that has a front-parallel bias.

q

linear model [Boykov et al., 2001], although it has a front-parallel bias and should be
avoided [Woodford et al., 2009; Olsson et al., 2013]. Also, as shown in Figure 4.3 (b), this
term becomes zero when f, = f,. This enforces piecewise linear disparity maps and so
piecewise planar object surfaces. Furthermore, this term satisfies the following property

for taking advantage of GC.

Lemma 4.1. The term p,( fp, f4) in Eq. (4.14) satisfies the submodularity of expan-

sion moves in Eq. (4.2).

Proof. See [Olsson et al., 2013] and also Appendix B.1. O

4.3.3 Local Expansion Moves

In this section, we describe the fundamental idea of our method, local expansion moves,
as the main contribution of this study. We first briefly review the original expansion
move algorithm [Boykov et al., 2001], and then describe how we extend it for efficiently
optimizing continuous MRFs.

The expansion move algorithm [Boykov et al., 2001] is a discrete optimization method
for pairwise MRFs of Eq. (4.9), which iteratively solves a sequence of the following binary
labeling problems

f0 = argmin B(f'| f; € {7, o) (4.16)

for all possible candidate labels Ya € L. Here, the binary variable f for each pixel p
is assigned either its current label fz(,t) or a candidate label «. If all the pairwise terms
in E(f) meet the condition of Eq. (4.2), then the binary energies E(f’) in Eq. (4.16) are
submodular and this minimization can thus be exactly solved via GC [Boykov et al.,
2001] (subproblem optimal). Here, it is guaranteed that the energy does not increase:
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Current — Local a-expansions
disparity map

'_._Lw Ti )|

(1) Produce local a-expansions
(3x3 cells)

Improved Current Proposal

¢ Qhusion
via GC

L]

a (2) Apply local a-expansions

Figure 4.4 Illustration of the proposed local expansion moves. The local expansion moves consist
of many small a-expansions (or local a-expansions), which are defined using grid structures
such shown in the left part. These local a-expansions are defined at each grid-cell and applied
for 3 x 3 cells of regions (or expansion regions). In the bottom part, we illustrate how each of
local a-expansions works. (1) The candidate label « (i.e., & = (a, b, ¢) representing a disparity
plane d = au + bv + ¢) is produced by randomly choosing and perturbing one of the currently
assigned labels in its center cell. (2) The current labels in the expansion region are updated by
a in an energy minimization manner using GC. Consequently, a current label in the center cell
of each local a-expansion can be propagated for its surrounding cells. In the right part, local
a-expansions are visualized as small patches on stacked layers with three different sizes of grid
structures. As shown here, using local a-expansions we can localize the scopes of label searching
by their locations. Each layer represents a group of mutually-disjoint local a-expansions, which
are efficiently performed individually in a parallel manner.

E(f# 1) < B(f®). However, the label space £ in our setting is a three dimensional
continuous space (a, b, ¢); therefore, such an exhaustive approach cannot be employed.
Our local expansion moves extend traditional expansion moves by two ways; lo-
calization and spatial propagation. By localization, we use different candidate labels «
depending on the locations of pixels p in Eq. (4.16), rather than using the same « label for
all pixels. This is reasonable because the distributions of disparities should be different
from location to location, therefore the selection of candidate labels « should be accord-
ingly different. By spatial propagation, we incorporate label propagation similar to the
PatchMatch inference [Barnes et al., 2009, 2010; Bleyer et al., 2011] into GC optimization,
and propagate currently assigned labels to nearby pixels via GC. The assumption behind
this propagation is that, if a good label is assigned to a pixel, this label is likely a good

estimate for nearby pixels as well. The localization and spatial propagation together
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make it possible for us to use a powerful randomized search scheme, where we no
longer need to produce initial solution proposals as usually done in the fusion based
approach [Lempitsky et al., 2010]. Below we provide the detailed descriptions of our
algorithm.

Local a-Expansions for Spatial Propagation

We first define a grid structure that divides the image domain €2 into grid regions C;; C €,
which are indexed by 2D integer coordinates (i, j) € Z?. We refer to each of these grid
regions as a cell. We assume a regular square cell and its size can be as small as 1 x 1 pixel.
At a high level, the size of cells balances between the level of localization and the range
of spatial propagation. Smaller sizes of cells can achieve finer localization but result in
shorter ranges of spatial propagation. Later in Sec 4.3.4 we introduce different sizes of
multiple grid structures for well balancing these two factors, but for now let us focus on
using one grid structure.

Given a grid structure, we define a local a-expansion at each cell (7, j), which we
specifically denote as o;;-expansion. We further define two types of regions for each
o j-expansion: its center region C;; and expansion region

Rij = Cl'j U U Comn ¢, (4.17)
(m,n)EN(i,5)

i.e., 3 x 3 cells consisting of the center region C;; and its eight neighbor cells.

In the bottom part of Figure 4.4, we focus on an expansion region and illustrate how
an o;j-expansion works. We first randomly select a pixel » from the center region C;j,
and take its currently assigned label as (a,b,c¢) = f,. We then make a candidate label
a;j by perturbing this current label as «;; = (a, b, ¢) + A. Finally, we update the current
labels of pixels p in the expansion region R;;, by choosing either their current labels f,
or the candidate label o;;. Here, similarly to Eq. (4.16), we update the partial labeling
by minimizing E(f’) with binary variables: f, € {f,,a;;} for p € R;j, and f, = f, for
p ¢ R;j. Consequently, we obtain an improved solution as its minimizer with a lower or
equal energy.

Notice that making the expansion region R;; larger than the label selection region
Cjj is the key idea for achieving spatial propagation. We can see this since, in an «;;-
expansion without perturbation (A = 0), a current label f, in the center region C;; can
be propagated for its nearby pixels in R;; as the candidate label «;;.

We use this o;;-expansion iteratively as shown in Algorithm 4.1. Similarity to the
PatchMatch algorithm [Barnes et al., 2009], this iterative algorithm consists of two steps:
In the propagation step, we apply «;;-expansions without perturbation to propagate
labels from Cj; for R;;; In the randomization step, we apply «;j-expansions with an
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Algorithm 4.1: ITERATIVE «;;-EXPANSION

input :current f, target cell (i, j), perturbation size |A’|
output:updated f (only labels f, at p € R;; are updated)
repeat propagation:

a;; <+ fr with randomly chosen r € Cj; ;

[ argmin E(f'| f, € {fp, aij},p € Rij) ;
until K., times;
repeat randomization:

a;; + fr with randomly chosen r € Cj; ;

aij o + A

f < argmin E(f'| f} € {fp, cij},p € Rij) ;

A |A"/2;
until K,,,4 times (or |A’| is sufficiently small);

O© 0 3 O Ul B WN e

e
o

exponentially decreasing perturbation-size to refine the labels. We perform this iterative

a;j-expansion at every cell (i, j).

This local a-expansion method has the following useful properties.

Piecewise linearity: It helps to obtain smooth solutions. In each «;j-expansion, mul-
tiple pixels in the expansion region R;; are allowed to move-at-once to the same
candidate label o;; at one binary-energy minimization, which contrasts to BP that
updates only one pixel at once. Since a label represents a disparity plane here, our
method helps to obtain piecewise linear disparity maps and thus piecewise planar
surfaces as we have shown in Sec 4.3.1.

Cost filtering acceleration: We can accelerate the computation of matching costs
¢p(fp) in Eq. (4.10) by using cost-volume filtering techniques. We discuss this more in
Sec 4.3.5.

Optimality and parallelizability: With our energy formulation, it is guaranteed that
each binary-energy minimization in Algorithm 4.1 can be optimally solved via GC. In
addition, we can efficiently perform many «;;-expansions in a parallel manner. We

discuss these matters in the following sections.

Mutually-Disjoint Local a-Expansions

While the previous section shows how each local a-expansion behaves, here we discuss

the scheduling of local a-expansions. We need a proper scheduling, because local a-

expansions cannot be simultaneously performed due to the overlapping expansion

regions.

To efficiently perform local a-expansions, we divide them into groups such that the

local a-expansions in each group are mutually disjoint. Specifically, we assign each
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Figure 4.5 Group index for a;;-expansions. We
perform o;j-expansions in the same group in

parallel.

Cellindex i
0 1 2 3 4 5 6 7

Figure 4.6 Expansion regions of mu-
tually disjoint «;j-expansions (group
index k = 0). We leave white gaps be-
tween neighbors.

Matching window W,
Expansion region R;;
Center region C;;

Filtering region M;;

Figure 4.7 Filtering region M,;. The
margin width r corresponds with the
radius of the matching window W,,.
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a;j-expansion a group index k given by
k =4(j mod4)+ (i mod 4), (4.18)

and perform the iterative o;j-expansions in one group and another. As illustrated in
Figure 4.5, this grouping rule picks o;;-expansions at every four vertical and horizontal
cells into the same group, and it amounts to 16 groups of mutually-disjoint local a-
expansions. We visualize a group of disjoint local a-expansions as orange regions in
Figure 4.6, and also as a single layer of stacks in the right part of Figure 4.4 with three
different grid structures.

Notice that in each group, we leave gaps of one cell width between neighboring local
a-expansions. These gaps are to guarantee submodularity and independency for local
a-expansions. By the submodularity, we can show that our local a-expansions always
produce submodular energies and can thus be optimally solved via GC. Because of this
submodularity, we can use a standard GC algorithm [Boykov and Kolmogorov, 2004]
instead of an expensive QPBO-GC algorithm [Kolmogorov and Rother, 2007], which
is usually required in the fusion based approach. By the independency, we can show
that the local a-expansions in the same group do not interfere with each other. Hence,
we can perform them simultaneously in a parallel manner. The parallelization of GC
algorithms are of interests in computer vision [Liu and Sun, 2010; Strandmark and Kahl,
2010]. Our scheme is simple and can use existing GC implementations. The proof of this

submodularity and independency is presented in the next section.

Submodularity and Independency

To formally address the submodularity and independency of local a-expansions, we
discuss it using the form of fusion moves [Lempitsky et al., 2010]. Let us assume a current
solution f and a group of mutually-disjoint c;j-expansions to be applied. Simultaneously
applying these «;j-expansions is equivalent to the following fusion-energy minimization:

fr=argmin E(f'| f, € {fp, 9p}), (4.19)

where the proposal solution g is set to g, = «;; if p belongs to any of expansion regions
R;; in this group; otherwise, p is in gaps so we assign ¢,(g,) an infinite unary cost for
forcing fz/) = fp. This proposal disparity map g is visualized as a single layer of stacks in
the right part of Figure 4.4. We prove the following lemmas:

Lemma 4.2. Submodularity. The binary energies in Eq. (4.19) are submodular, i.e.,
all the pairwise interactions in Eq. (4.19) meet the following submodularity of fusion
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moves [Lempitsky et al., 2010; Kolmogorov and Rother, 2007]:

VYpq(9ps 9q) + Upa(fp fa) < Upg(fps 9g) + Vpa(9ps fo)- (4.20)

Proof. All the pairwise terms v, (f;, f;) in Eq. (4.19) can be summarized into three types:
pairwise terms inside expansion regions 4 ( f7, f;), inside gap regions ¥cq( f., f;), and
between expansion and gap regions ¢..(f,, f.). Examples of the four pixels (a, b, c, d)
are shown in Figure 4.6, where the cell size is shown as a 1 x 1 pixel here for simplicity.
Notice that there is no 9,,(f,, f,) that directly connects p and ¢ in different expansion
regions, since we use the eight-neighbor pairwise terms and their neighbor ranges cannot
be longer than the gap width.

For ¢q(f;, f7): It holds that g, = g;, because g, is constant within an expansion region.
By substituting g, = g, = o, f, = 5, and f; = v into Eq. (4.20), we obtain a relaxed
condition known as the submodularity of expansion moves shown in Eq. (4.2). This
condition holds for our pairwise term 1,4, as proved in Appendix B.1.

For vcq(f,, f}) and vqc(f,, f.): Because of the infinite unary costs of g. and g4, the
binary variables f/ and f/, are forced to take their current labels f. and f;, respectively.
Thus, ¥qc(f}, i) becomes an a’s unary potential ¢ ([}, fc), and ¥cq(fL, f;) becomes a
constant energy cq(fe, f4), both are submodular.® O

Lemma 4.3. Independency. The assignments to f, and f, in Eq. (4.19) do not

influence each other, if p and q are in different expansion regions.

Proof. The f;, and f; have interactions if and only if there exists a chain of pairwise
interactions C' = {U(fl,, fi,), w(fi,, fa,), -+ ¥(f _,. fi,)} that connects p = s and
q = 5n.

As discussed in the above proof of submodularity, there is no direct interaction
Y(f,, [)- Therefore, such a chain must contain two types of pairwise terms 1cq(f, fz)
and vq.(f., f;) described above in order to get across the gap between p and ¢. These
two terms become a unary potential and a constant, respectively. Therefore, there is no

such chain of pairwise interactions connecting p and q. O

4.3.4 Optimization Procedure

Using the local expansion moves shown in the previous section, we present the overall
optimization procedure in this section and summarize it in Algorithm 4.2.

3Therefore, when implementing an «a;;-expansion using min-cut in a subregion, we create nodes for
Vpe R;;, and add vac(f, fc) as unary potentials of nodes a at the inner edge of R;; as well as the unary
and pairwise terms defined inside R;;. See also [Boykov et al., 2001] for the conversion of pairwise terms
into edge capacities under expansion moves.
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Algorithm 4.2: OVERVIEW OF OPTIMIZATION PROCEDURE

1 Define three levels of grid structures: H = {hy, h2, h3};
2 Initialize the current solution f randomly ;

3 Initialize the perturbation size |A|;

4 repeat

5 foreach grid structure h € H do
6 foreach disjoint group k = 0,1, ..., 15 do

7 foreach cell (i, j) in the disjoint group k do [in parallel]
8 ‘ Apply iterative «;; expansion (f, (4, ), |Al) ;

9 end

10 end

11 end

12 |A] < |A]/2;

13 until convergence;

14 Post processing ;

This algorithm begins with defining grid structures. Here, we use thee different sizes
of grid structures for better balancing localization and spatial propagation.

At line 2 of Algorithm 4.2, the solution f is randomly initialized. To evenly sam-
ple the allowed solution space, we take the initialization strategy described in [Bleyer
et al., 2011]. Specifically, for each f, = (ap, by, c,) we select a random disparity zj in
the allowed disparity range [0, dispmax|. Then, a random unit vector n=(nz,ny,n.)
and z are converted to the plane representation by a, = —n,/n., b, = —n,/n., and
cp = —(Ngpy + nypy + nz20) /.

In the main loop through lines 4-13, we select one grid level i from the pre-defined
grid structures (line 5), and apply the iterative «;; expansions of Algorithm 4.1 for each
cell of the selected structure % (lines 6-10). As discussed in Sec 10, we perform the
iterative «;; expansions by dividing into disjoint groups defined by Eq. (4.18). Because
of this grouping, the «;; expansions in the loop at lines 7-9 are mutually independent
and can be efficiently performed in parallel.

The perturbation at line 7 of Algorithm 4.1 is implemented as described in [Bleyer et al.,
2011]. Namely, each candidate label o;; = (a, b, ¢) is converted to the form of a disparity d
and normal vector n. We then add a random disparity A/, € [—74, 7] and a random unit
vector AJ, to them, respectively, as d' = d,, + A/, and n' = n + r,A;,. Finally, d’ and n//|n/|
are converted to the plane representation a;; < (a',b’, ¢’) to obtain a perturbed candidate
label. The values r4 and 7, define an allowed change of disparity planes. We initialize
them by setting 74 <— dispmax/2 and ,, < 1 at line 3 of Algorithm 4.2, and update them
by rq < rq/2 and 7, < 1, /2 at line 12 of Algorithm 4.2 and line 9 of Algorithm 4.1.

Finally, after the whole process, we perform post-processing using left-right consis-
tency check and weighted median filtering as described in [Bleyer et al., 2011] for further
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improving the results. This step is widely employed in recent methods [Bleyer ef al., 2011;
Besse et al., 2012; Lu et al., 2013; Heise et al., 2013].

Note that there are mainly two differences between this algorithm and our previous
version [Taniai ef al., 2014]. For one thing, we have removed a per-pixel label refinement
step of [Taniai ef al., 2014]. This step is required for updating a special label space
structure named locally shared labels (LSL) used in [Taniai ef al., 2014], but can be removed
in our new algorithm by using local a-expansions instead. For the other, the previous
algorithm proceeds rather in a batch cycle; i.e., it produces all local a-expansions with all
grid structures at once and then applies them to the current solution f in one iteration.
This way we can minimize the overhead of data transferring between GPU in unary cost
computation, but results in slower convergence than our new algorithm that produces
each local a-expansion always from the latest current solution f. Our new algorithm
rather concedes the increased overhead of GPU because it is also intended for a fast CPU
implementation as we describe below.

4.3.5 Fast Implementation

Our method has two major computation parts: the calculations of matching costs ¢, ( f;)
of Eq. (4.10), and application of GC in Algorithm 4.1. In Section 4.3.3 and Section 4.3.4,
we have shown that the latter part can be accelerated by performing disjoint local «
expansions in parallel. In this section, we discuss the former part.

The calculations of the matching costs ¢,( f,) are very expensive, since they require
O(|W]) of computation for each term, where |IV| is the size of the matching window. In
our previous algorithm [Taniai et al., 2014], we accelerate this part by using GPU. The
use of GPU is reasonable for our method because ¢,( f,) of all pixels can be individually
computed in parallel during the inference, which contrasts to PMBP [Besse et al., 2012]
that can only sequentially process each pixel. Still, the computation complexity is O(|W|)
and it becomes very inefficient if we only use CPU [Taniai et al., 2014].

In the following part, we show that we can approximately achieve O(1) of complexity
for computing each ¢,(f,). The key observation here is that, we only need to compute
this matching cost ¢, ( f,) during the «;j-expansions in Algorithm 4.1, where ¢,(f,) is
computed as ¢, (a;;) for all p € R;;. With this constant-label property, we can effectively
incorporate the fast subregion cost-filtering technique used in [Lu et al., 2013], by which
¢p(ayj) for all p € R;; are computed altogether.

To more specifically discuss it, we first separate the computation of ¢,( f,) into two
steps: the calculations of raw matching costs

Ps,(8) = p(s|fp) (4.21)

for the support pixels s € W), and the aggregation of the raw matching costs using an
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edge-aware filter kernel w,;

br,(0) = D wps py, (). (4.22)

seWp

We also define a filtering region M;; as the joint matching windows in R;; as

My = |J W, (4.23)
PER;;

As shown in Figure 4.7, this M;; is typically a square region margining R;; with r pixels
of width around R;;, where r is the radius of the matching windows.

In the raw matching part of Eq. (4.21), the calculations of the raw costs py, (s), Vs € W,
for all p € R;; generally require O(|W||R;;|) of total computation. However, with the
constant-label property (i.e., f, = «a;; for all p € R;;), they can be computed at once in
O(|M;5]) by computing p,,, (s) for Vs € M;;. Here, the computation complexity per each
unary term is O(|M;;|/|Rij|). Therefore, if |M;;| ~ |R;;|, we can approximately achieve
O(|M;;]/|Ri;]) = O(1) [Lu et al., 2013].

Similarly, the cost aggregation part of Eq. (4.22) can be done in approximately O(1),
if we apply a constant-time edge-aware filtering wy to pa,, (s), Vs € M;; [Lu et al., 2013].
Unfortunately, our weight function w,, in Eq. (4.11) represents a variant of the joint bilat-
eral filtering [Petschnigg ef al., 2004], which generally requires O(|W|) of computation.
However, there are several constant-time edge-aware filterings that work similarly to or
even better than the bilateral filtering, such as the guided image filtering [He et al., 2013]
and the cross-based local multipoint filterings [Lu et al., 2012]. Therefore, if we replace
the adaptive window weight w,,s of Eq. (4.11) with those filter kernels, the overall com-
putation complexity for each unary cost ¢, (f,) becomes approximately O(1). Formally,
we use the following filter kernel of the guided image filtering [He et al., 2013]:

1

wps = s Y (L (= m)T (S +€) 7 (I — ) (4.24)
|W | k:(p,s)eW],

Here, I, = I1(p)/255 is a normalized color vector, p and ¥j are the mean and co-
variance matrix of I, in a local regression window W}, and e is an identity matrix with
a small positive coefficient for avoiding over-fitting. This filtering can be computed in
O(1) using integral image.

Note that as the constant-label property is the key to being able to use the filtering
techniques, this scheme cannot be used in other PatchMatch based methods [Besse et al.,
2012; Bleyer et al., 2011; Heise et al., 2013] except for [Lu et al., 2013] that uses superpixels

as computation units.
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4.4 Experiments

In the experiments, we first evaluate our method on the Middlebury benchmark. We
further assess the effect of sizes of grid-cells and also the effectiveness of the proposed
acceleration schemes in comparison to our previous method [Taniai et al., 2014]. Our
method is further compared with the PMBP [Besse et al., 2012] and PMF methods [Lu
et al., 2013] that are closely related to our approach.

Settings

We use the following settings throughout the experiments. We use a desktop computer
with a Core i7 CPU (3.5 GHz x 4 physical cores) and NVIDIA GeForce GTX Titan Black
GPU. All methods are implemented using C++ and OpenCV.

The parameters of our data term are set as {7co, Tgrad, 7, @} = {10,2,10,0.9} as
specified in [Bleyer et al., 2011]. The size of matching windows W), is set to 41 x 41, which
is the same setting with PMBP [Besse et al., 2012] and [Bleyer ef al., 2011; Heise et al.,
2013]. For the smoothness term, we use {\, 745, €} = {20, 1,0.01} and eight neighbors
for N. All of these model parameters are the same with the ones we used in [Taniai ef al.,
2014].

For our algorithm, we use three grid structures with cell sizes of 5 x 5, 15 x 15, and
25 x 25 pixels. The iteration numbers { Kp,op, Kyrand} in Algorithm 4.1 are set to {1, 7} for
the first grid structure, and {2, 0} (only propagation step) for the other two. We iterate
the main loop ten times. We use a GC implementation of [Boykov and Kolmogorov,
2004].

We use two variants of our method. LE-BF uses the bilateral filtering weight w,,s of
Eq. (4.11) for the adaptive windows. Therefore, the computation of matching costs is as
slow as O(|W|). In a GPU implementation, we accelerate this calculation by computing
each unary term individually in parallel on GPU. In a CPU implementation, we compute
them as filtering to raw matching costs. This way we can still accelerate the computation
at the first step of cost filtering. LE-GF uses the guided image filtering [He et al., 2013] of
Eq. (4.24) for wys. The size of local regression windows W}, is set to 21 x 21 so that the
size of actual matching windows becomes 41 x 41. We use e = 0.01? as specified in [Lu
et al., 2013; Rhemann et al., 2011], and A = 1. We only use a CPU implementation for this
method. For both LE-BF and LE-GF, we perform disjoint local a-expansions in parallel
using four CPU cores.

4.4.1 Evaluation on the Middlebury Benchmark

We show in Table 4.1 selected rankings on the Middlebury stereo benchmark for 0.5-pixel
accuracy. The proposed LE-GF method achieves the current best average rank (3.9) and

78



4.4. EXPERIMENTS

Table 4.1 Middlebury stereo benchmark results. In the top part, we compare the proposed
method (LE-GF) with our previous method (GC+LSL) [Taniai et al., 2014], PM-Huber [Heise et al.,
2013], PMF [Lu et al., 2013], PMBP [Besse et al., 2012], and PatchMatch [Bleyer et al., 2011]. In the
bottom part, we also compare results of our LE-GF and LE-BF with and without post-processing.
Error rates using the threshold of 0.5-pixel are shown. Our method using the guided image
filtering (GF) achieves the current best average rank 3.9. The rankings were evaluated on April
22nd, 2015. In all, results are evaluated for all pixels where the ground truth is given, while only

for non-occluded pixels in nonocc, and around depth discontinuities in disc.

Algorithm Avg. Tsukuba Venus Teddy Cones Average Percent
Rank|nonocc all  disc |nonocc all  disc [nonocc all  disc |nonocc all  disc Bad Pixels
1. PROPOSED (GF) | 3.9 | 4.082 4.712 9.714| 0.352 0.562 3.302| 5.165 7.733 14.25| 3.465 8.656 9.729 5.97]
2. GC+LSL 6.2 | 5.043 5563 14.013| 0.666 0.886 5.8238| 4201 7.122 12.93| 3.778 9.169 10.4 13 6.63)|
3. PM-Huber 8.8 |7.1211 7.801313.7 11/ 1.00 12 1.40 137.80 19| 5.53 8 9.365 15.99| 2.701 7.902 7.77 1 7.33)|
7. PMF 12.5 |11.039 11.43616.0 32| 0.728 0.927 527 7| 4453 9.447 1374|2892 8.313 8.222] 7.69|
11. PMBP 19.7 | 11.952 12.34817.8 60/ 0.85 10 1.108 6.45 11| 5609 12.012 15.56| 3.486 8.888 9.4156 || 8.77|
14. PatchMatch 28.2 | 15.0 74 15.4 7320.3 89| 1.00 13 1.34 127.75 17| 5.66 10 11.8 1016.5 10| 3.80 9 10.2 1110.2 11| 9.91|
Reference Evaluations
BF w/ post-proc 6.6 | 5483 6.07314.515| 0.829 1.087 6.32 10 4.051 7.243 12.43| 3.697 9.128 9.96 10 6.73
BF w/o post-proc 8.4 | 5363 5993 14.114 0.829 1.1196.33 10/ 4594 10.88 14.05| 3.909 10.31310.6 14 7.32
GF w/ post-proc 39 | 4082 4712 9.714| 0352 0562 3.302| 5165 7.733 14.25| 3.465 8.656 9.729 5.97]
GF w/o post-proc 39 | 4072 4792 9.784| 0412 0.782 4.012| 4262 9.194 1364 3.375 9.639 9.599 6.13||

bad-pixel-rate (5.97%) amongst more than 150 stereo methods including our previous
method (GC+LSL) [Taniai et al., 2014]. Even without post-processing, our LE-GF method
still outperforms the other methods in average rank, despite that methods [Bleyer et al.,
2011; Besse et al., 2012; Lu et al., 2013; Heise et al., 2013; Taniai et al., 2014] use the
post-processing. On the other hand, the proposed LE-BF method achieves comparable
accuracy with our previous algorithm [Taniai et al., 2014], since both methods optimize
the same energy function in a very similar way.

Compared with closely related approaches (PMBP [Besse et al., 2012] and PatchMatch
stereo [Bleyer et al., 2011]), which are ranked eleventh and fourteenth in Table 4.1,
although their results of Cones are slightly better than ours in some evaluations, our LE-
GF and LE-BF methods consistently outperform the two methods in the other evaluations.

We summarize the results of our LE-GF method in Figures 4.8—4.11.

4.4.2 Effect of Grid-Cell Sizes

To observe the effect of grid-cell sizes, we use the three sizes of grid-cells, 5 x 5 pixels
(denoted as “S”mall), 15 x 15 pixels (denoted as “M”edium), 25 x 25 pixels (denoted
as “L”arge), in different combinations and assess the performance using the following
five different settings; (S, S, S): the small-size cells for all grid-structures; (M, M, M):
the medium-size cells for all grid-structures; (L, L, L): the large-size cells for all grid-
structures; (S, M, M): the small and medium-size cells for the first and the other two
grid-structures, respectively; (S, M, L): the small, medium, and large-size cells for the
tirst, second, and third grid-structures, respectively (the default setting for our method
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(a) left view

(d) after post-processing
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(e) error map (f) ground truth

Figure 4.8 Results of the proposed LE-GF method on Tsukuba in Middlebury benchmark. From
top-left to right-bottom, we show (a) left and (b) right views of input images, (c) our result before
post-processing, (d) after post-processing, (e) the error map of the result after post-processing,
and (f) the ground truth. In the error maps, white and black pixels indicate correct and incorrect
disparities, while gray indicates incorrect but occluded pixels. The error threshold of 0.5-pixel
is used. Note that Tsukuba may not be appropriate for accurate evaluations because its ground
truth has only integer precision.
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(a) left view (b) right view

(c) raw result (d) after post-processing

i —

(e) error map (f) ground truth

Figure 4.9 Results of the proposed LE-GF method on Venus in Middlebury benchmark. From
top-left to right-bottom, we show (a) left and (b) right views of input images, (c) our result before
post-processing, (d) after post-processing, (e) the error map of the result after post-processing,
and (f) the ground truth. In the error maps, white and black pixels indicate correct and incorrect
disparities, while gray indicates incorrect but occluded pixels. The error threshold of 0.5-pixel is
used.
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(a) left view (b) right view

(d) after post-processing

(e) error map (f) ground truth

Figure 4.10 Results of the proposed LE-GF method on Teddy in Middlebury benchmark. From
top-left to right-bottom, we show (a) left and (b) right views of input images, (c) our result before
post-processing, (d) after post-processing, (e) the error map of the result after post-processing,
and (f) the ground truth. In the error maps, white and black pixels indicate correct and incorrect
disparities, while gray indicates incorrect but occluded pixels. The error threshold of 0.5-pixel is
used.
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(a) left view

(c) raw result (d) after post-processing
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(e) error map (f) ground truth

Figure 4.11 Results of the proposed LE-GF method on Cones in Middlebury benchmark. From
top-left to right-bottom, we show (a) left and (b) right views of input images, (c) our result before
post-processing, (d) after post-processing, (e) the error map of the result after post-processing,
and (f) the ground truth. In the error maps, white and black pixels indicate correct and incorrect
disparities, while gray indicates incorrect but occluded pixels. The error threshold of 0.5-pixel is
used.
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described above). Here, the iteration numbers for the first to third grid-structures are
kept as default. We use the LE-GF method so as to access the effect on cost filtering
acceleration as well. We use A = 0.5 but keep the other parameters as default. Using
these settings, we observe the performance variations by estimating the disparities of
only the left image of the Reindeer dataset without post-processing.

The plots in Figure 4.12 (a) show the transitions of the energy function values over
iterations. Here, energies are evaluated by the re-defined energy function using Eq. (4.24).
The plots in Figure 4.12 (b) show the temporal transitions of error rates with subpixel
accuracy. As shown, the joint use of multiple cell sizes improves the performance in
both energy reduction and accuracy. Although (S, M, M) and (S, M, L) show almost the
same energy transitions, the proposed combination (S, M, L) shows faster and better
convergence in accuracy.

Figure 4.13 compares the results of the five settings with corresponding error maps.
The use of larger grid-cells helps to obtain smoother disparities, and it is especially
effective for occluded regions.

Comparing the running times in Figure 4.12 (b), the use of the small-size cells is
inefficient due to the increased overhead in cost filtering, whereas the use of the medium
and large-size cells achieves almost the same efficiency.

4.4.3 Efficiency Evaluation in Comparison to Our Previous Algorithm

In this section, we evaluate the effectiveness of the three acceleration techniques: 1)
parallelization of disjoint a-expansions, and 2) acceleration of unary cost computation
by GPU and 3) by cost filtering. For evaluation, we compare following six variants of
our method: LE-BF and LE-GF using one or four CPU cores (denoted as CPUx1 and
CPUx4), and LE-BF using GPU and one or four CPU cores (denoted as GPU+CPUx1
and GPU+CPUx4). Additionally, we compare with our previous algorithm of [Taniai
et al., 2014] with CPU and GPU implementations (denoted as LSL with CPUx1 and
GPU+CPUx4). We use the Rocks1 dataset by estimating the disparities of only the left
image without post-processing. Figures 4.14 (a)—(c) show the temporal transitions of the
energy values in the full and zoomed scales, and the subpixel error rates, respectively.

Parallelization of local a-expansions on CPU: Comparing CPUx1 and CPUx4, we
observe about 3.5x of speed-up for both LE-BF and LE-GF. Note that the converged
energy values of LE-GF are relatively higher than the others because it optimizes a
different energy function. However, if we see Figure 4.14 (c), it actually finds better
solutions in this example. On the other hand, speed-up for LE-BF from GPU+CPUx1
to GPU+CPUx4 is limited to about 1.7x. This is because the unary cost computation is
already parallelized by GPU and this speed-up is accounted for the parallelization of
other parts, e.g., the computation of pairwise terms and min-cut.
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Figure 4.12 Effect of grid-cell sizes. We use LE-GF with different combinations of grid structures.
The S, M, and L denote small, medium, and large grid-cells, respectively. The joint use of different
sizes of grid-cells improves the performance. See also Figure 4.13 for visual comparison.
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Figure 4.13 Visual effect of grid-cell sizes. The use of larger grid-cells leads to smoother solutions
and effective for occluded regions. The proposed combination (S, M, L) well balances localization
and spatial propagation and performs best. These are all raw results without post-processing.
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Parallelization of unary cost computation on GPU: By comparing GPU+CPUx1 and
CPUx1 of LE-BF, we obtain about 19x of speed-up. This is relatively smaller than 32x of
speed-up in our previous LSL method, mainly due to the larger overhead of GPU data
transferring.

Fast cost filtering: By comparing LE-GF and LE-BF methods, we observe about 5.3x
speed-up for both CPUx1 and CPUx4 versions. It is also worth noting that even a CPU
implementation of LE-GF (CPUx4) achieves almost comparable efficiency with a GPU
implementation of LE-BF (GPU+CPUx1).

Comparison to our previous method [Taniai et al., 2014]: In comparison to our
previous LSL method [Taniai et al., 2014], our LE-BF shows much faster convergence
than LSL in the same single-core results (CPUx1). We consider there are mainly three
factors contributing to this speed-up; First, the batch-cycle algorithm adopted in [Taniai
et al., 2014] makes its convergence slower; Second, we use cost filtering and compute
its first step (i.e., raw image matching) in O(1), while [Taniai et al., 2014] computes each
unary term individually in O(|W|); Finally, we have removed a per-pixel label refinement
step of [Taniai et al., 2014] which requires additional unary-cost computations. Similar
speed-up can be observed from LSL (GPU+CPUx4) to LE-BF (GPU+CPUx4). Note that
we obtain only a few percents of speed-up by CPU parallelization in [Taniai ef al., 2014],
since it does not perform min-cut computation in parallel as disjoint local a-expansions.

4.4.4 Comparison with PMBP

We compare our method with PMBP [Besse et al., 2012] that is the closest method to ours.
For a fair comparison, we use four neighbors for A/ in Eq. (4.9), which is the same setting
with PMBP. For a comparable smoothness weight with the default setting (eight-neighbor
N), we use A = 40 for LE-BF and X\ = 4 for LE-GF, and keep the other parameters as
default. For PMBP, we use the same model as ours; the only difference from the original
PMBP is the smoothness term, which does not satisfy the submodularity of Eq. (4.2).
In PMBP, it defines K candidate labels for each pixel, for which we set K = 1 and
K = 5 (original paper uses K = 5). We show the comparison using the Cones dataset by
estimating the disparities of only the left image without post-processing.

Figures 4.15 (a)—(c) show the temporal transitions of the energy values in the full and
zoomed scales, and the subpixel error rates, respectively. We show the performance of
our method using its GPU and CPU (one or four CPU cores) implementations. For PMBP,
we also implemented the unary cost computation on GPU, but it became rather slow,
due to the overhead of data transfer. Efficient GPU implementations for PMBP are not
available in literature.* Therefore, the plots show PMBP results that use a single CPU

* GPU-parallelization schemes of BP are not directly applicable due to PMBP’s unique settings. The
“jump flooding” used in the original PatchMatch [Barnes ef al., 2009] reports 7x speed-ups by GPU. However,
because it propagates candidate labels to distant pixels, it is not applicable to PMBP that must propagate
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Figure 4.14 Efficiency evaluation in comparison to our previous algorithm (LSL) [Taniai et al.,

2014]. Accuracies are evaluated for all-regions at each iteration.
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core. Figures 4.15 (a) and (b) show that, even with a single CPU-core implementation,
our LE-BF and LE-GF show comparable or even faster convergence than PMBP. With
CPU and GPU parallelization, our methods achieve much faster convergence than PMBP.
Furthermore, our methods reach lower energies with greater accuracies than PMBP at
the convergence.

In Figure 4.16 we compare the results of our LE-GF method and PMBP with K = 5.
While PMBP yields noisy disparities, our method finds smoother and better disparities

at around edges and occluded regions.

4.4.5 Comparison with PMF

We also compare our LE-GF method with PMF [Lu et al., 2013] using the same data term
as ours. For PMF, the number of superpixels K is set to 300, 500, and 700 as used in [Lu
etal., 2013] (K = 500 is the default in [Lu et al., 2013]), and we sufficiently iterate 30 times.
Both LE-GF and PMF are run using a single CPU core.

Figures 4.17 (a)—(c) show the temporal transitions of the energy values in the full
and zoomed scales, and the subpixel error rates, respectively. Here, the energy values
are evaluated by the re-defined weights using Eq. (4.24). As shown in Figures 4.17 (a)
and (b), PMF converges at higher energies than ours, since it cannot explicitly optimize
pairwise smoothness terms as being a local method. Furthermore, although energies
are reduced almost monotonically in PMF, the transitions of accuracies are not stable
and even degrade in same cases. This is also because of the lack of explicit smoothness
regularizer, and PMF converges at a bad local minima. Figure 4.18 compares the results
of our method and PMF with K = 500. Again, our methods find smoother and better

disparities at around edges and occluded regions.

4.5 Summary

In this study, we have presented an accurate and efficient stereo matching method for con-
tinuous disparity estimation. Unlike previous approaches that use fusion moves [Lem-
pitsky et al., 2010; Olsson et al., 2013; Woodford et al., 2009], our method is subproblem
optimal and only requires a randomized initial solution. By comparing with a recent
continuous MREF stereo method, PMBP [Besse ef al., 2012], our method has shown an
advantage in efficiency and comparable or greater accuracy. The use of a GC-based
optimizer makes our method advantageous.

Furthermore, by using the subregion cost-filtering scheme developed in a local stereo

method PMF [Lu et al., 2013], we achieve a fast CPU implementation of our algorithm

messages to neighbors, and is not as efficient as our 19x, either.
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and greater accuracy than PMF. As shown in [Lu et al., 2013], our method will be even
faster by using a more light-weight constant-time filtering such as [Lu et al., 2012].

We believe that our optimization strategy can be applied for more general correspond-
ing field estimation such as optical flow. We also believe that some occlusion handling
schemes based on GC optimization [Kolmogorov and Zabih, 2001, 2002; Wei and Quan,

2005] can be incorporated into our framework, which may yield even greater accuracy.
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Figure 4.15 Efficiency and accuracy comparison with PMBP [Besse et al., 2012]. Our methods
achieve much faster convergence, reaching lower energies and better accuracies at the conver-
gence. Accuracies are evaluated for all-regions at each iteration. See also Figure 4.16 for visual

comparison.
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(a) Ground truth

(d) PMBP

(e) Zoomed-in on the reference image, ground truth, results of ours and PMBP.

Figure 4.16 Visual comparison with PMBP [Besse et al., 2012]. Our method finds smother and
better disparities at around edges and occluded regions.
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Figure 4.17 Efficiency and accuracy comparison with PMF [Lu et al., 2013]. Our method stably

improves the solution and reaches a lower energy with greater accuracy at the convergence. Ac-
curacies are evaluated for all-regions at each iteration. See also Figure 4.18 for visual comparison.
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Figure 4.18 Visual comparison with PMF [Lu et al., 2013]. With explicit smoothness regularization,
our method finds smoother and better disparities at around edges and occluded regions.
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Joint Hierarchical MRF Inference for
General Dense Correspondence and
Cosegmentation

ENSE correspondence problems such as stereo and optical flow originally target on
D images showing the same scene. However, since the emergence of SIFT Flow [Liu
et al., 2011], more general or semantic correspondence estimation for images from different
scenes has been gathering attentions. This generalized setting additionally brings a
fundamental difficulty of robustly aligning regions of objects whose appearances may
significantly differ. In this chapter, we also study a general dense correspondence prob-
lem but in a more proper form by jointly estimating valid correspondence regions or
cosegmentation. We model the problem using joint labels of correspondence and coseg-
mentation on a MRE, and also use higher-order constraints for the robust correspondence
estimation. We therefore also tackle inference challenges due to the high-dimensional
label space and higher-order energies.

5.1 Introduction

Recovering dense per-pixel correspondence between image regions in two or more
images is a central problem in computer vision. While correspondence estimation for
images of the same scene (stereo, optical flow, etc.) is well studied, there has been
growing interest in the case where the images portray semantically similar but different
scenes or depict semantically related but different object instances [Liu et al., 2011]. Due
to the variability in appearance, shape and pose of distinct object instances, camera
viewpoint, scene lighting and backgrounds in the images, the task is quite challenging in
the unsupervised setting. Yet, correspondence estimation enables fine-grained image
alignment crucial in tasks such as non-parametric scene parsing and label transfer [Liu
et al., 2011], 3D shape recovery [Vicente et al., 2014], image editing [HaCohen ef al., 2011]

and unsupervised visual object discovery [Chen et al., 2014; Rubinstein et al., 2013; Sivic
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Input two images

Ground truth segmented flow maps

Ground truth aligned images

Estimated aligned images

Figure 5.1 Joint recovery of dense correspondence and cosegmentation where foregrounds are
segmented and aligned. We show our results and corresponding ground truth from our new
dataset.
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et al., 2005; Tuytelaars et al., 2010].

In parallel to advances in correspondence estimation, there has also been rapid
progress in image cosegmentation [Faktor and Irani, 2013; Joulin ef al., 2014; Rother et al.,
2006; Tang et al., 2014] methods that automatically segment similar “foreground” areas
in two or more images. These methods often require the foregrounds depicting common
objects to have similar region statistics. Most cosegmentation methods do not explicitly
recover dense pixel correspondence and alignment in the region labeled foreground. On
the other hand, correspondence estimation methods [Liu et al., 2011; Kim et al., 2013; Yang
et al., 2014; Hur et al., 2015] align all the pixels without explicitly inferring which pixels
in the two images actually have valid correspondence. Thus, recovering cosegmentation
along with a dense alignment of the common foregrounds can be viewed as a holistic
approach to solving both tasks.

In this study, we present insight into how image cosegmentation and correspondence
(or flow) estimation can be tackled within a unified framework by framing it as a labeling
problem (Figure 5). We show that jointly solving the two tasks in this way can improve
performance on both of them. This study deals with the case where only two input
images are given. The setting is unsupervised and we do not assume a priori information
about the objects or the scene.

Our contributions are three folds. First, we propose a new hierarchical Markov
random field (MRF) model for joint cosegmentation and correspondence recovery. The
hierarchy is defined over nested image regions in the reference image and the nodes rep-
resenting these regions take segmentation and flow labels. In our method, the hierarchy
itself is inferred in conjunction with the labeling and is crucial for achieving robustness
to dissimilar appearance of different object instances. Precomputed hierarchical struc-
tures [Kim et al., 2013; Hur et al., 2015; Kennedy and Taylor, 2015] are unsuitable for our
task because pixels inferred as background must be excluded from matching.

Second, we propose a new optimization technique for the joint inference of the graph
structure and labeling. Performing exact inference jointly on the whole hierarchical struc-
ture is intractable. In the proposed approach, layers of the hierarchy are incrementally
estimated with the labeling in an energy minimization framework using iterated graph
cuts [Boykov and Kolmogorov, 2004; Kolmogorov and Zabin, 2004] (alpha expansion
moves).

Finally, we release a new dataset with 400 image pairs for which we provide ground
truth cosegmentation masks and flow maps. The original images and some of the
segmentation masks are taken from existing datasets [Lin et al., 2014; Rubinstein et al.,
2013; Hariharan et al., 2011]. The remaining segmentation masks were obtained using
interactive image segmentation. The flow maps were obtained by selecting sparse
keypoint correspondence with our interactive annotation tool and applying natural

neighbor interpolation [Sibson, 1981] on the sparse data. Poor flow maps were discarded
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by visually inspecting the flow-induced image warping result. The ground truth flow
maps makes it possible to directly evaluate dense image alignment. Even SIFT Flow [Liu
et al., 2011] and other correspondence estimation methods [Kim et al., 2013; Zhang et al.,
2015] are evaluated indirectly on tasks such as segmentation transfer and scene parsing
using datasets that lack ground truth pixel correspondence.

The rest of this chapter is organized as follows. We describe related work in Section 5.2
and our proposed model in Section 5.3. Section 5.4 presents our optimization method
whereas implementation details and the images features used are described in Section 5.5.
Finally, in Section 5.6, we report experimental evaluation and comparisons with existing

approaches.

5.2 Related Work

We are not aware of any existing method that explicitly solves both cosegmentation and
dense correspondence recovery together. However, the motivation behind our work
is similar to that behind some recent cosegmentation methods [Dai et al., 2013; Faktor
and Irani, 2013; Rubio et al., 2012]. We review those and other broadly related works on

cosegmentation and correspondence estimation.

Cosegmentation

Rubio et al. [2012] formulate cosegmentation in terms of region matching. However,
the matches are computed independently using graph matching [Duchenne et al., 2011]
and then exploited in their cosegmentation algorithm. Faktor and Irani [2013] describe
a model where common foregrounds in multiple images can be composed from inter-
changeable image regions. Although region matching is a key element of their method, it
is primarily used to estimate unary potentials (foreground /background likelihoods) for
a standard image segmentation method. While, Dai et al. [2013] propose to cosegment
images by matching foregrounds through a codebook of deformable shape templates,
it involves learning a codebook requiring external background images. While a notion
of correspondence implicitly exists in all these works, none of them explicitly compute
dense correspondence maps between the cosegmented regions, which is an important
distinction to our work.

Cosegmentation methods originally proposed by Rother et al. [2006] have been
applied in broader settings [Batra et al., 2010; Joulin et al., 2010, 2012; Kowdle et al., 2012;
Kim et al., 2011; Vicente et al., 2010] and also on large sets of Internet images [Rubinstein
et al., 2013; Chen et al., 2014]. Interesting convex formulations have also been proposed
for a variant of cosegmentation — the object co-localization task [Joulin et al., 2014], which

aims to find a bounding box around related objects in multiple images.
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Correspondence Estimation

SIFT Flow [Liu et al., 2011] generalizes optical flow to images of different scenes and esti-
mates complete flow maps with 2D translations at every pixel. Their energy function uses
local matching costs based on dense SIFT features, and smoothness terms encoding stan-
dard pairwise potentials. SIFT Flow uses loopy belief propagation (BP) [Felzenszwalb
and Huttenlocher, 2006] for inference in a coarse-to-fine pipeline but other inference
techniques [HaCohen et al., 2011; Yang et al., 2014] have also been explored. HaCohen
et al. [HaCohen et al., 2011] propose an extension of PatchMatch [Barnes et al., 2009,
2010] that handles images of identical scenes with large motions. However, their method
is often unable to handle different scenes as it lacks regularization on correspondence
fields. As another extension, DAISY filter flow (DFF) [Yang et al., 2014] proposes to
use efficient cost-volume filtering [Lu et al., 2013] for enforcing smoothness, instead of
adding explicit regularization. Deformable spatial pyramid (DSP) matching [Kim et al.,
2013] and its generalization [Hur et al., 2015] propose hierarchical regularization using a
regular grid-cell pyramid for flow estimation. Correspondence maps are parameterized
using similarity transformations in [Hur et al., 2015] similarly to our work. Images with
scale differences are handled by [Qiu et al., 2014; Hassner et al., 2012; Hur et al., 2015].
Cosegmentation has been used to guide sparse feature correspondence recovery [Cech

et al., 2010]. However, such methods do not aim to accurately segment common regions.

Hierarchical Models

To exploit multi-scale image cues or to add flexible regularization, hierarchical conditional
random fields (CRFs) have been proposed for single image segmentation [He et al.,
2004], image matching [Todorovic and Ahuja, 2008], stereo correspondence [Lei et al.,
2006], and much recently for optical flow [Lei and Yang, 2009; Kennedy and Taylor,
2015] and more general correspondence estimation [Kim et al., 2013; Hur et al., 2015].
These methods use precomputed hierarchical structures such obtained by an external
hierarchical oversegmentation method [Arbelaez et al., 2011], or spatial pyramids as used
in DSP [Kim et al., 2013; Hur et al., 2015].

Optimization Techniques

Discrete optimization is commonplace in stereo but often problematic in general dense
correspondence estimation because of the large label spaces involved. For this issue, SIFT
Flow [Liu et al., 2011] performs hierarchical BP [Felzenszwalb and Huttenlocher, 2006] on
the image pyramid from coarse to fine levels using limited translation ranges. Recently,
inspired by randomization search and label propagation schemes of PatchMatch [Barnes
et al., 2009, 2010; Bleyer et al., 2011], optimization methods using BP [Besse et al., 2014]
or graph cuts [Taniai et al., 2016a, 2014] (Chapter 4) have been proposed for efficient

99



5.3. PROPOSED MODEL

inference in pairwise MRFs with large label spaces. However, they are not directly
applicable to our hierarchical model. We extend graph cut techniques [Taniai et al., 2016a,
2014] for our inference task where we recover both the graph structure as well as the
labeling.

5.3 Proposed Model

Given two images I and I our goal is to find dense correspondence and cosegmentation
of a common object shown in the two images. The reference image I is represented by a
set of superpixel nodes i € V where ; C 2 denotes a superpixel region in the image
domain 2 C Z2.

In the reference image, we seek a labeling involving a geometric transformation
T; € T and a foreground alpha-matte value «; € [0, 1] for each superpixel i € V. We
formulate this as a mapping function f; = f(i) : V. — {7 x [0, 1]} that assigns each
node a pair of labels f; = (T}, o). Here, o is continuous during inference and binarized
at the final step!. T; denotes a similarity transform parameterized using a quadruplet
(tu, tv, s, 7). Slightly abusing the notation, we express the warped pixel location of p’ in
the other image as follows.

p' = Ti(p) = sR(p —¢;) +¢; +t. (5.1)

Here, c; is the centroid of pixels in region €2;, and centering at this point, p is rotated by
the 2D rotation matrix R, of angle r and scaled by s, and then translated by t = (., t,).

In following sections we present the proposed model, by first defining a standard
2D MRF model in Section 5.3.1 and later generalizing it to a hierarchical model in

Section 5.3.2. We discuss the allowed hierarchical structure in Section 5.3.3.

5.3.1 Single Layer Model

Let L = (V, E) be a graphical representation of the image I, where nodes i € V' and edges
(i,7) € E represent superpixels and spatial neighbors, respectively. Given this graph, our
single layer model is defined as a standard 2D MRF model:

mrf(f|L - )\ﬂozgﬂo fl +)\segz seg Z wSt reg fsaft) (52)

eV eV (s,t)eE

which consists of the flow data term, cosegmentation data term and the spatial regular-
ization term described below.

!To avoid degenerate flow solutions, we set o; always larger than 0.1 during inference. See Appendix C.1
for a detailed explanation.
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Flow Data Term

&}, measures similarity between corresponding regions in the image pair. We define it as

gﬁo(fl) = Z [ozi,o(p, p/) + d’i)\OCC]a (5.3)
pPEQ;

where &; = 1 — a; and A is a constant penalty for background pixels to avoid trivial
solutions where all pixels are labeled background. The p(p, p’) robustly measures visual
dissimilarity between p and its correspondence p’ as

p(p,p’) = min{||D(p) — D'(p"))[3, ™} (5.4)

where truncation using the threshold m adds robustness. D(p) is a local feature descrip-
tor extracted at p in the image I, and D’(p) is extracted in I'>. We use a variant of the
HOG descriptor [Dalal and Triggs, 2005]. See Section 5.5.1 for the details.
Cosegmentation Data Term

The foreground and background likelihoods for each node are defined as follows.

Eig(f) == [ai In P(I,]0%) + @i In P(Ip|03)} , (5.5)
PEQ;

Here, P(-|0) is likelihood given a foreground or background color model {67, 87} of the
image I, which is implemented as 643 bins of RGB color histograms. The color models
are estimated during initialization (Section 5.5.3).

Spatial Regularization Term

The term ngg encourages flow and alpha values of neighboring nodes to be similar.

gI-Sgg(fsa ft) = Ast1 min{asa at} Z ¢St(p)/|Bst| + AstZ‘as - at|- (56)
pEBst

Here, By = 09, N 0); is the set of pixels on the boundary of two adjoining regions €
and , and ¢*!(p) penalizes flow discontinuities at these pixels. It is defined as

¢ (p) = min{||Ts(p) — Te(p)ll2, 7st}- (5.7)

If a were binary, then the first term in Eq. (5.6) would enforce flow smoothness when
two adjoining regions are labeled foreground (a; =« =1), and the second term would

2As suggested in [Hur et al., 2015; Yang et al., 2014], D'(p’) can be more accurately computed by using
the scale s and rotation r of the similarity transformation T;.
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give a constant penalty As» only when o, # a;. However, Eq. (5.6) generalizes this idea
to continuous valued a.

5.3.2 Hierarchical Model

Now we introduce the notion of a layered graph and generalize the single layer model
to a full hierarchical model. As illustrated in Figure 5.2, our hierarchical graph G =
(V, E) consists of multiple layered subgraphs {Lo, L1, -- , Ly }. Each layer L; = (V}, E})
represents a superpixel graph of the image. In addition to spatial edges within each layer
E}, our hierarchy G contains parent-child edges (p, c) € ElpC that connect parent nodes
p € V] to their children nodes ¢ € V;_; (green edges in Figure 5.2).

Using a layered graph G and the model &,,.¢(f|L) defined in Eq. (5.2), we define our

hierarchical model as

H
= 3" [EmerlFIL) + Ereg (1) + ERalVD)]- 5.8)

1=0
Here, we treat the hierarchical graph G as a variable that is dynamically estimated
together with f. Our construction is fundamentally different from prior work [Hur et al.,
2015; Kennedy and Taylor, 2015; Kim et al., 2013], where the hierarchical structure is

computed before flow inference.

Multi-layer Regularization Term

Similar to the spatial regularization term in Eq. (5.6), the term Srleg enforces smoothness

between parent child pairs of V; and V;_; as

Elg(FIG) = > wpe EL(fp. fo), (5.9)

pc
(p,0)EE,

where £i; is defined using Eq. (5.7) and ¢’s centroid c. as

Exeg(fys fe) = Aper min{ay, achy(cc) + Apealay — ] (5.10)
Graph Validity Term
The term 5éra measures validity of the layer structure V; as
géra(%) = )‘nodﬁl“/” — Acol Z Z In P(Ip|9i)- (5.11)
z’EVl pGQi

The first term reduces nodes in the higher layers. We set 3 = 2 to reduce the node count
approximately by half at each layer. The second term enforces color consistencies within
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each region €2;. 6" represents the RGB color histogram of the region ;. Our definition of
Eq. (5.11) is motivated by work in multi-region segmentation [Delong et al., 2012].

5.3.3 Hierarchical Structure

Here we describe the form of hierarchical graphs allowed in our method. The nodes
i € V; in each layer divide the image domain €2 into |V}| connected regions ; C Q. Our
hierarchical superpixels have a nested (or tree) structure, i.e., a superpixel (parent) in a
layer V; consists of the union of superpixels (children) in its sublayer V;_;. The lowest
layer Vp named the pixel layer is special because each node i € V{ represents a pixel p; € 2.
The finest region layer V; has about 500 nodes which are set to SLIC superpixels [Achanta
etal.,2012].
For parent-child edges (p,c) € Ef (I =1,--- , H), the edge weights w), are assigned
to the area of child regions
Wpe = el (5.12)

At the two lowest layers (I = 0, 1), edges (s,t) € E; between adjoining nodes are assigned
edge weights wg; as
Wet = e_HIS_I*”%/“, (5.13)

where I, € R3 is the mean color of the region §2;. Following [Rother ef al., 2004], we set
K to the expected value of 2||I; — I;||3 over (s,t) € E;. For the upper layers (I > 2), the
edge weights w,; are set to the sum of the children’s edge weights as

Wst = Z Wt (514)

where (s',t') € Ej_; are children of s and ¢, respectively.

54 Optimization

Optimizing £(f, G) in Eq. (5.8) has two main difficulties. 1) The joint inference of f and
G is intractable due to the dependency of f on G. 2) The label space of f resides in
a 5-dimensional continuous domain and the number of candidate labels is essentially
infinite. To practically address these issues, we propose two-pass bottom-up and top-
down optimizing procedures that approximately optimize the energy. In the bottom-up
phase, we construct a hierarchical structure G by incrementally adding layers from lower
to higher levels, while simultaneously estimating the labeling f. In the top-down phase,
we refine the labeling f while keeping the structure G fixed. The optimization procedure
is summarized in Algorithm 5.1. Next we discuss the details.
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Hierarchical graph G Flow and alpha maps f

Figure 5.2 Hierarchical model. Each layer (2D MRF) estimates a dense flow and alpha map f,
which is regularized by higher-level estimates and the final estimates are obtained at the bottom
layer.

i i Optimization on temporary graph
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Figure 5.3 Bottom-up Graph Construction (one step). Each rectangular cell in the illustration
represents a node ¢ € V; and a set of contiguous cells represents a graph layer V. The arrows and
colors denote flow and alpha labels f; (red: foreground, blue: background). (a) Graph G* and its
labeling f. (b) By duplicating the top layer V;, of G¥, we create a temporary graph G**! as an
approximation of G**1. (c) We optimize the labeling f on G**!. The number of unique labels
in V}/ is reduced by label costs [Delong et al., 2012] to induce region merging. (d) V) is converted
into a new layer V1, by merging nodes of V) assigned the same label that form connected
components in G*+1.,

Erop(fs Liy1)
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5.4.1 Bottom-Up Hierarchy Construction

To formally describe our bottom-up procedure, we denote G* = (V*, E¥) as a hierarchy
consisting of £+ 1 layered subgraphs {Ly, - - , Ly} where L; = (V}, E}). We also define it
sequentially, i.e., G and G**! share the same structure for the bottom k+1 layers.

At a high level, our bottom-up procedure is presented as a sequence of subtasks,
where given a current solution {f,G*} we estimate {f, G¥™!} as illustrated in Fig-
ures 5.3 (a) and (d), respectively. We estimate { f, GF*1} as approximate minimizers
of £(f, G**1) in Eq. (5.8). Here, £(f, G**1) given G* can be separated into two parts

E(f,GF) = E(FIGF) + Ewop(f, Li1), (5.15)

where £(f|G*) is energy involved in the known graph G* while Eop(f, Li+1) refers to the
unknown top layer Ly ;.

Erop(f> Livs1) = Emet(f1Li11) + Eg (FIG™H) + Egt (Vira)- (5.16)

Jointly inferring G**! and its labeling f is difficult. Therefore, we assume a known
temporary graph G*+1 for unknown G**1, and we replace this joint problem by a simpler
labeling problem f on G*+1,

E(fIGFT) = £(fIGF) + A(f). (5.17)

Here, £(f|G*) is equivalent to £(f|G*) in Eq. (5.15), and A is an approximation of the
top layer energy Eiop.

In following three sections, we detail lines 4-10 of Algorithm 5.1 and explain how we
derive £(f|G¥t1), optimize it, and obtain the desired solution { f, G**} from {f, G¥*1}.

Energy Approximation using Temporary Graphs

We now briefly explain the conversion from £(f, G*1) in Eq. (5.15) to £(f|G*t1) in
Eq. (5.17). For detailed derivations, please refer to Appendix C.2.

To relax the joint inference of £(f, G¥*1), we create a temporary graph G**! as an
approximation of G**!, by duplicating the top layer of G* as L} = (V{, E}) < (Vi, E))
(line 4 of Algorithm 5.1). We illustrate G* and GF+lin Figures 5.3 (a) and (b), respectively.
Here, a labeling f on G**! (or V}) can equivalently express all possible f on G**1 (or
Vit1), because V/ is the finest form of any possible V;, 1. The labeling f is copied from f
at line 5.

Substituting G**! « G**1into £(f, G*'), we derive its approximation &( f|G**1)
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in Eq. (6.17) with following A.

A(f) = Emut(FIL1) + E (FIGH) + EGE (FIVR).- (5.18)

The conversion from &op in Eq. (5.16) to this A is provably exact except for only terms
Sg;g L and Sfetg in &y of Eq. (5.2). Here, conversion of egrg ! is tricky because we need to
convert variables from Vj;; to a labeling f on V}/. We observe that the region of each
node ¢ € Vj41 should optimally 1) be a connected component, 2) assigned a single label
unique from neighbors, and 3) be the union of regions in Vk’ . Thus, we can treat nodes

i € Vj41 as connected components C; of nodes in V) assigned the same label, i.e.,

(5.19)

the same label f, and connected.

Vet = { c, nodes “c€ C; in V] are assigned } .

This property allows us to rewrite Sgrjg '(Viy1) in Eq. (5.11) as a function of f. To further
make inference tractable, we relax the connectivity of |Vj1| and treat |Vj11| as label
costs [Delong et al., 2012] of f , 1.e., the number of unique labels fl in V;/ without considering
their spatial connections. In this manner, the formulation of Eq. (5.11) becomes the same
as that of multi-region segmentation [Delong ef al., 2012]. Following their model fitting
approach based on alpha expansion moves [Boykov et al., 2001], we treat the label costs
and the likelihood terms of Eq. (5.11) as pairwise submodular terms and unary terms,

respectively. See more discussions in Appendix C.1.

Optimization of Approximation Energy

In Figure 5.3 (c) and at line 6 of Algorithm 5.1, we minimize the approximation energy
é ( f \Gkﬂ) of Eq. (5.17) with known G To efficiently infer the continuous 5dof labels
in f, we use the local expansion move method of [Taniai ef al., 2016a, 2014] (Chapter 4).

In its general form, the local expansion move algorithm repeatedly solves the follow-
ing binary labeling problem for each target node i € V' visited in sequence.

f(t+1) = argmin E(f|f; € {f;t),f} forj € R;). (5.20)

Here, R; C V is a set of local nodes around the target node ¢ (named expansion region),
and this operation tries to improve the labels of the local nodes j € R; by assigning them
either their current label f]@ or a candidate label £. We use graph cuts [Boykov and
Kolmogorov, 2004] to solve this binary problem.

Our version of local expansion moves is summarized in Algorithm 5.2. During the
bottom-up process, we randomly visit all nodes in the top layer V} (i.e., target layer V7)
at line 1, and update the labeling of local nodes. In order to apply the local expansion
move algorithm for our hierarchical MRF model, we extended it in two ways. First,
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Algorithm 5.1: TWO-PASS OPTIMIZATION PROCESS

input :Two images I, T’

output:Hierarchical graph G and flow-alpha map f

Initialize the graph: G + G*

Initialize the labeling f and color models 0,07 (Section 5.5.3)
fork =1,2,--- do bottom-up graph construction

Create temporary G*+! by duplicating V;, of G* ;

Initialize temporary f by copying labels from f ;

SN Ul R W N =

Perform local expansion moves (£,f, G511, Vi)
f « argmin £(f|GF 1) ;
7 Create G**! by merging nodes of V] in Gk+1

8 if rejection criterion is met then break;
9 | Updatesolution {f,G} « {f,GF*1};
10 if any stopping criteria is met then break;
11 end
12 fork = H,---,1 do top-down label refinement
13 Perform local expansion moves (&, f, G, Vj)
f < argmin £(f|G) with f; fixed for Vi € Vi>y ;
14 end

Algorithm 5.2: LOCAL EXPANSION MOVES [Taniai et al., 2016a, 2014]

argments: (model &, labeling f, graph G, target layer Vr)
1 foreach target node i € Vr do

2 Make neighborhood: N; < {i’s neighbors}U{i} ;

3 Make expansion region: R; < {NN;’s descendants}UN; ;
4 foreach candidate proposer do

5 Generate a candidate label £ = (T, ) ;

6 Apply alocal expansion move using min-cut:

[« argmin £(f|G) with f; € {f;, £} forj € R; ;

7 end
8 end
9 return f;
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the expansion region R; is extended from i’s neighbors (JV; at line 2) to include all their
descendants (line 3). Second, when generating candidate labels £ for the target node i

(line 5), we use four types of candidate proposers listed below.

* Expansion proposer generates a label by copying the current label as £ < f;. This tries
to propagate the current label f; to nearby nodes in R; as explained in [Taniai et al.,
2016al].

* Cross-view proposer refers to the current labeling f” of the other image, and uses a label
fl, that gives warping to the target node region ©; as a candidate £, using inverse warp
of f/,. This is similar to view propagation in [Bleyer et al., 2011; Besse et al., 2014].

* Merging proposer generates labels £ < w; f; + w; f; as weighted sums of i’s current label
fi and its neighbors’ labels f;, j € N;. The weights w;, w; € [0,1] are proportional
to their region sizes [€;], |€2;|. This is a new extension for promoting better region
merging.

 Perturbation proposer generates labels £ < f; + A by randomly perturbing the current
label f;. Similarly to [Taniai ef al., 2016a; Bleyer et al., 2011], we iterate between lines 5

and 6 several times while reducing the perturbation size |A| by half.

Incremental Layer Construction

In Figure 5.3 (d) and at line 7 of Algorithm 5.1, we create a new graph GF+1 by merging
nodes of V}/ in Gkl Here, Viet1 is created from V[ and f using the variable conversion
of Eq. (5.19). After merging regions, we check the number of new foreground regions
at the top layer. If it is zero (line 8), we reject the new solution and stop the graph
construction process. Otherwise, we adopt the new solution {f, G**1} as {f, G} (line
9). Later we check the foreground count again and if it is one or not reduced from the
previous iteration (line 10), we stop the graph construction process.

5.4.2 Top-Down Labeling Refinement

After the bottom-up phase, we further refine the labeling f during the top-down phase
shown at lines 12-14 of Algorithm 5.1. Since G is held fixed during this step, we can
directly optimize £(f|G) using local expansion moves without requiring the energy
conversion described in Section 5.4.1. During this phase, we visit layers V;, in G in
top-down order (from k£ = H to k£ =1) and apply local expansion moves with V;, as a
target layer V. Here, the labeling f for the higher layers V; (I > k) does not change,
because the expansion regions R; only contain nodes in layers V}, and below.
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5.5 Implementation Details

We now discuss initialization steps and features used in our method.

5.5.1 Local HOG Features

The images are first resized so that their larger dimension becomes 512 pixels. A Gaussian
pyramid is then built for each image (we use 1 octave and 1 sub-octave). From each
pyramid layer, we densely extract local histogram of gradient (HOG) feature descrip-
tors [Dalal and Triggs, 2005]. These features are extracted at every pixel on the image
grid from patches of size 27 x 27 pixels. Our HOG descriptors are 96-dimensional. We
use a 3 x 3 cell grid for each patch and 16 equally spaced bins for the oriented gradient
histograms. Each gradient histogram thus has 16 bins for signed gradients and 8 bins
for unsigned gradients. The histograms for each contiguous 2 x 2 block of the 3 x 3
cell grid are aggregated to form a 24-dimensional vector. These are then L2-normalized
followed by element-wise truncation (using a threshold of 0.5). Four such vectors are
concatenated to form the final 96-dimensional HOG descriptor. These HOG features
are used to compute the flow data terms & described earlier. They are also used to
construct bag of visual words (BoW) histogram features required during the initialization

stage.

5.5.2 BoW Histogram Features

Each HOG descriptor is vector-quantized using a K-means codebook of size 256. Next,
BoW histograms are computed from several overlapping image patches of size 64 x 64
pixels. These patches are sampled every 4 pixels (both horizontally and vertically) in the
image. We use integral images (one per visual word) to speed up the BoW histogram
computation. All the visual words are aggregated into a histogram. This is repeated for
2x2 sub-regions. The five BoW histograms are then L2-normalized followed by element-
wise square root normalization®. The 256-dimensional histograms are concatenated to
form 1280-dimensional BoW histogram features.

5.5.3 Initialization

During initialization, initial flow candidates and foreground /background color models
for each image are computed as follows. First, dense matching is done using the BoW
features at three levels in the image pyramid. The Euclidean distances between each
pixel feature in the first image and features for all pixels within a search window in

the second image are computed. Fortunately this is quite fast due to the sparsity of the

*This is equivalent to using a Hellinger kernel instead of the Euclidean distance to measure the similarity
of two feature vectors.
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Input two images

Falrs Fale

Segmentation heat maps on three levels of pyramids.

|

Geodesic distance maps.

Figure 5.4 Initial segmentation cues. For an input image pair (top), minimum/maximum ratios
of BoW feature matching distances in local windows (middle) are computed as cues of initial
segmentation. Low ratios (blue) are likely to suggest foreground. Geodesic distances from the
image boundary (bottom) are also used to add background clues (black regions).
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BoW features. The best match is stored as a flow candidate. The ratio of the Euclidean
distances of the best and worst match is computed. We use this heuristic to predict the
probability of a true match, motivated by the ratio test [Lowe, 2004] (see Figure 5.4).

Areas with high and low match probabilities are likely to be the “foreground” and
“background” respectively. By thresholding the ratio values, we create foreground /back-
ground soft seeds and initial segmentations as input to GrabCut [Rother et al., 2004]
and learn color models {87, 87} for each image. Geodesic distance from the image
boundary is used as an additional unary background likelihood term (Figure 5.4, right).
See Appendix C.3 for further implementation details.

5.5.4 Efficient Implementation

Three key ideas allow our optimization method to be efficiently implemented. First,
unary terms & (f;) and Ssieg( fi) in Eq. (5.2) can be efficiently computed using the tree
structure of G. Specifically, the unary cost £7(£) of a node p € V; is computed as the
sum ) E(£) over its children ¢ € V,_;, if their labels £ are the same. This constant-label
property is satisfied during local expansion moves because the candidate label £ is the
same for all nodes in an expansion region R;. Thus, at line 6 of Algorithm 5.2, we
compute the unary costs £ (£) for j € R; by sequentially summing them up from bottom
to top layer nodes. Second, we exclude the pixel layer Ly / Vj from the graph G during
the main iterations. We add it to G just before the last refinement step in the top-down
phase (k=1 at line 13 of Algorithm 5.1). Finally, we use efficient graph cuts [Boykov
and Kolmogorov, 2004] at line 6 of Algorithm 5.2, instead of QPBO [Kolmogorov and
Rother, 2007]. This is possible because our energy is submodular under (local) expansion

moves [Taniai et al., 2016a, 2014]. The proofs are in Appendix C.4.

5.6 Experiments

We evaluate our method for flow and segmentation accuracy and compare it to existing

methods on our new dataset.

Dataset

Our dataset comprises of 400 image pairs divided into three groups — FG3DCar contains
195 image pairs of vehicles from [Lin et al., 2014]. JODS contains 81 image pairs of
airplanes, horses, and cars from [Rubinstein et al., 2013]. PASCAL contains 124 image
pairs of bicycles, motorbikes, buses, cars, trains from [Hariharan et al., 2011]. The object
categories of JODS and PASCAL are summarized in Figure 5.5. We also show some
example image pairs from each group in Figure 5.6. Notice that JODS and PASCAL

contain some horizontally flipped image pairs, i.e., one image requires a mirror reflection
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JODS PASCAL

oD

&

®m Plane m= Horse = Car ® Bus m Bicycle = Motorbike m Train = Car

Figure 5.5 Object categories of JODS and PASCAL.

FG3DCar JODS PASCAL

Figure 5.6 Example image pairs of our dataset. FG3DCar contains 195 image pairs of vehicles
from [Lin et al., 2014]. JODS contains 81 image pairs from [Rubinstein et al., 2013]. PASCAL
contains 124 image pairs from [Hariharan ef al., 2011].
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prior to alignment. The numbers of such flipped image pairs included in each group are
follows. FG3DCar: 2 pairs (1 %). JODS: 9 pairs (11 %). PASCAL: 48 pairs (39 %).

Flow Accuracy

We evaluate flow accuracy by the percentage of pixels in the true foreground region that
have an error measure below a certain threshold. Here, we compute the absolute flow
endpoint error (i.e., the Euclidean distance between estimated and true flow vectors) in a

normalized scale where the larger dimensions of images are 100 pixels.

Segmentation Accuracy

We use the standard intersection-over-union ratio metric for segmentation accuracy. As ex-
isting flow estimation methods do not recover common foreground regions, we compute
them by post-processing the estimated flow maps. Specifically, given the two flow maps,
we do a left-right consistency check with a suitable threshold and treat pixels that pass
this test as foreground.

Settings

We strictly fixed all the parameters throughout the experiments as follows. For the data
and graph term parameters, we set { Afio, Aocc, 7D, Aseg> Anod> Acol } <= 10.25,2.4,6.5,0.8,125, 1}.
For regularization parameters { Ast1, Ast2; Tst, Apels Ape2, Tpe } associated with the pixel layer
(edges Ey and E]fc) we use {0.5, 20,20, 0.005, 10,200}, and for the other edges we use
{0.1,4,20,0.04,8,200}. See Appendix C.5 for our strategy of tuning parameters. Our
method is implemented using C++ and run by a single thread on a Core i7 CPU of

3.5 GHz.

5.6.1 Comparison with Existing Approaches

For correspondence, we compare our method with SIFT Flow [Liu et al., 2011], DSP [Kim
et al., 2013] and DFF [Yang et al., 2014]. We also evaluate our method using only the
single layer model without hierarchy, which can be done by skipping the bottom-up
construction step in Algorithm 5.1. This single layer method can be seen as a variant of
[Taniai et al., 2016a]. Here, we omit results of HaCohen et al. [2011] for its low performance
on our dataset. It could not find any correspondence for many image pairs.

For cosegmentation, we compare our method with Joulin et al. [2010] and Faktor and
Irani [2013] based only on segmentation accuracies. For Joulin et al. [2010] that cannot
identify the “foreground” label from {0, 1}, we refer to ground truth and choose for each
image pair either 0 or 1 to maximize the scores. Results of their extension method [Joulin
et al., 2012] are omitted since we could not observe improvemnts over [Joulin et al., 2010]

113



5.7. SUMMARY

in our settings. Also, we omit results of Dai et al. [2013] as it did not work for many
image pairs. The method seems to fail in finding matches with learned templates.

We summarize average accuracy scores for each subset in the upper part of Table 5.1,
where flow accuracy is evaluated using a threshold of 5 pixels. The plots in Figure 5.7
show average flow accuracies with varying thresholds. As shown here, our method
achieves the best performance on all three groups at all thresholds. Our average flow
accuracies for FG3DCar, JODS and PASCAL, respectively, are up to 45%, 19% and 34%
higher than SIFT Flow (best existing method). Superior results to our single layer method
shows the effectiveness of our hierarchical model and inference. DFF [Yang et al., 2014]
cannot handle large appearance differences of objects due to lack of explicit regularization.
We show qualitative comparisons with SIFT Flow [Liu et al., 2011] and DSP [Kim et al.,
2013] in Figures 5.9-5.11.

We report average segmentation scores in the lower part of Table 5.1. Figures 5.12—
5.14 show qualitative comparisons with Faktor and Irani [2013] and Joulin et al. [Joulin
et al., 2010]. Although our model for segmentation is quite simple compared to other
methods, our method is competitive or has higher accuracy due to joint inference of
foreground correspondence.

Since our method and others do not explicitly handle flipped image pairs that are
included in our dataset, they fail to find correspondence for them. Therefore, we also
evaluate accuracy scores similar to Table 5.1 and Figure 5.7 but excluding flipped image
pairs from the evaluation. We show the average scores for the three groups in Table 5.2,
and the plots of average flow accuracies with varying thresholds in Figure 5.8. We
observe similar trends between scores with and without flipped image pairs.

Running time of our method is about 7 minutes for obtaining a pair of flow-alpha
maps of 512 x 384 pixels, including 1 minute for the feature extraction and initialization,

3 minutes for the final refinement step with the pixel layer.

5.7 Summary

We have presented a joint method for cosegmentation and dense correspondence estima-
tion in two images. Our method uses a hierarchical MRF model and jointly infers the
hierarchy as well as segmentation and correspondence using iterated graph cuts. Our
method outperforms a number of methods designed specifically either for correspon-
dence recovery [Liu et al., 2011; Kim et al., 2013; HaCohen et al., 2011; Yang et al., 2014]
or cosegmentation [Joulin et al., 2010, 2012; Faktor and Irani, 2013; Dai et al., 2013]. We
provide a new dataset for quantitative evaluation. Enforcing left-right consistencies on
flow and segmentation maps for two images, or by using multiple images [Cho et al.,

2015; Zhou et al., 2015; Joulin et al., 2012] are promising avenues for future work.
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Table 5.1 Correspondence and cosegmentation benchmark results. FAcc is flow accuracy rate for
an error threshold of 5 pixels in a normalized scale where the larger dimensions of two images
are 100 pixels. SAcc is segmentation accuracy by intersection-over-union ratios. SAcc scores (- - -)
of optical flow mothods are computed by post-processing using left right consistency check. Note
that our single layer method refers to the proposed algorithm without the hierarchy construction,
whose optimization strategy is similar to [Taniai et al., 2016a].

Optical flow / FG3DCar JODS PASCAL
cosegmentation methods FAcc | SAcc [ FAcc | SAcc [[ FAcc | SAcc
Ours 0.830 | 0.744 0.595 | 0.495 0.483 | 0.624
Our single layer ([Taniai et al., 2016a]) || 0.728 | 0.746 || 0.473 | 0.500 || 0.414 | 0.616
SIFT Flow [Liu et al., 2011] 0.634 | (0.405) || 0.522 | (0.242) || 0.453 | (0.392)
DSP [Kim et al., 2013] 0.487 | (0.279) || 0.465 | (0.224) || 0.382 | (0.329)
DFF [Yang et al., 2014] 0.495 | (0.312) || 0.304 | (0.210) || 0.224 | (0.195)
Faktor and Irani [2013] - 0.678 - 0.539 - 0.492
Joulin et al. [2010] - 0.450 - 0.318 - 0.389
FG3DCar JODS PASCAL
1.0 0.9 0.7
0.9 0.8 06
0.8 0.7
0.5
0.7 0.6
0.6 05 0.4
0.5 04
. 0.3
04 —0Ours 0.3
0.3 Single layer ’ 0.2
0.2 ——SIFT Flow 0.2
——DSP 0.1
0.1
0.1 DFF
0.0 0.0 0.0
0 5 10 15 0 5 10 15 0 5 10 15
Error threshold [pixels] Error threshold [pixels] Error threshold [pixels]

Figure 5.7 Average flow accuracies with varying error thresholds. Here, the endpoint errors
are evaluated in a normalized scale in a normalized scale where the larger dimensions of two
images are 100 pixels. Our method always shows best scores. DFF [Yang et al., 2014] is not robust
due to lack of explicit regularization. By comparing with our single layer method, the proposed
hierarchical model and inference have shown to be effective.
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Table 5.2 Correspondence and cosegmentation benchmark results (without flipped images).
FAcc is flow accuracy rate for an error threshold of 5 pixels in a normalized scale where the larger
dimensions of two images are 100 pixels. SAcc is segmentation accuracy by intersection-over-
union ratios. SAcc scores (- - -) of optical flow mothods are computed by post-processing using
left right consistency check. Note that our single layer method refers to the proposed algorithm
without the hierarchy construction, whose optimization strategy is similar to [Taniai et al., 2016a].

Optical flow / FG3DCar JODS PASCAL
cosegmentation methods FAcc | SAcc [[ FAcc | SAcc [[ FAcc | SAcc
Ours 0.838 | 0.744 0.665 | 0.512 0.755 | 0.634
Our single layer ([Taniai ef al., 2016a]) || 0.735 | 0.745 || 0.525 | 0.516 || 0.649 | 0.625
SIFT Flow [Liu et al., 2011] 0.640 | (0.405) || 0.582 | (0.258) || 0.704 | (0.458)
DSP [Kim et al., 2013] 0.492 | (0.279) || 0.517 | (0.232) || 0.598 | (0.361)
DEFF [Yang et al., 2014] 0.499 | (0.314) || 0.331 | (0.217) || 0.338 | (0.237)
Faktor and Irani [2013] - 0.676 - 0.545 - 0.478
Joulin et al. [2010] - 0.450 - 0.331 - 0.400
FG3DCar JODS PASCAL
1.0 1.0 1.0
0.9 0.9 0.9
0.8 0.8 0.8
0.7 0.7 0.7
0.6 0.6 0.6
0.5 0.5 0.5
0.4 —urs 0.4 0.4
0.3 Single layer 0.3 0.3
0.2 —SIFT Flow 0.2 0.2
——DSP
0.1 DFF 0.1 0.1
0.0 0.0 0.0
0 5 10 15 0 5 10 15 0 5 10 15
Error threshold [pixels] Error threshold [pixels] Error threshold [pixels]

Figure 5.8 Average flow accuracies with varying error thresholds (without flipped images).
Similarly to Figure 5.7, our method shows always best scores.
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Z

Estimated aligned images by DSP [Kim et al., 2013]

Figure 5.9 Correspondence results (FG3Dcar).
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we P

Estimated aligned images by DSP [Kim et al., 2013]

Figure 5.10 Correspondence results (JODS).
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Estimated aligned images by DSP [Kim et al., 2013]

Figure 5.11 Correspondence results (PASCAL).
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Estimated cosegmentation by Joulin et al. [2010]

Figure 5.12 Cosegmentation results (FG3Dcar).
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Estimated cosegmentation by our method

Estimated cosegmentation by Faktor and Irani [2013]

Vi

Estimated cosegmentation by Joulin et al. [2010]

Figure 5.13 Cosegmentation results (JODS).
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Estimated cosegmentation by Joulin et al. [2010]

Figure 5.14 Cosegmentation results (PASCAL).
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Joint MRF Inference for Stereo Scene Flow
and Motion Segmentation

TEREO scene flow is a task of simultaneously recovering disparity and optical flow
maps given a sequence of stereo image pairs. While stereo disparities can be
efficiently estimated even in real-time, optical flow estimation requires much more
expensive computations due to the large 2D label space, making it a bottleneck in scene
flow estimation. However, if the scene is rigid, explicit flow estimation can be avoided,
because it can be efficiently recovered by computing projections of 3D points given
by the disparity map. This only requires additional information of the 6-DOF camera
ego-motion. In this chapter, we study fast inference of scene flow by fully exploiting this
property. In a general dynamic scene, the presence of moving objects prevents direct
application of this approach. Hence, we also estimate motion segmentation to identify
moving object regions, for which optical flow is explicitly computed. This leads to a new

unified framework of stereo, visual odometry, optical flow and motion segmentation.

6.1 Introduction

Scene flow refers to 3D flow or equivalently the dense 3D motion field of a scene [Vedula
et al., 1999]. It can be estimated from video acquired with synchronized cameras from
multiple viewpoints [Lv et al., 2016; Mayer et al., 2016; Menze and Geiger, 2015; Vogel
et al., 2015] or with RGB-D sensors [Hornacek et al., 2014; Jaimez et al., 2015b; Herbst
et al., 2013; Quiroga et al., 2014] and has applications in video analysis and editing, 3D
mapping, autonomous driving [Menze and Geiger, 2015] and mobile robotics.

Scene flow estimation builds upon two tasks central to computer vision — stereo
matching and optical flow estimation. Even though many existing methods can already
solve these two tasks independently [Kolmogorov and Zabih, 2001; Hirschmuller, 2008;
Taniai et al., 2014; Lucas and Kanade, 1981; Horn and Schunck, 1981; Xu et al., 2012;
Chen and Koltun, 2016], a naive combination of stereo and optical flow methods for
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computing scene flow is unable to exploit inherent redundancies in the two tasks or
leverage additional scene information which may be available. Specifically, it is well
known that the optical flow between consecutive image pairs for stationary (rigid) 3D
points are constrained by their depths and the associated 6-DOF motion of the camera
rig. However, this idea has not been fully exploited by existing scene flow methods.
Perhaps, this is due to the additional complexity involved in simultaneously estimating
camera motion and detecting moving objects in the scene.

Recent renewed interest in stereoscopic scene flow estimation has led to improved
accuracy on challenging benchmarks, which stems from better representations, priors,
optimization objectives as well as the use of better optimization methods [Huguet and
Devernay, 2007; Wedel et al., 2011; Cech et al., 2011; Menze and Geiger, 2015; Vogel et al.,
2015; Lv et al., 2016]. However, those state of the art methods are computationally expen-
sive which limits their practical usage. In addition, other than a few exceptions [Vogel
et al., 2014], most existing scene flow methods process every two consecutive frames
independently and cannot efficiently propagate information across long sequences.

In this study, we propose a new technique to estimate scene flow from a multi-frame
sequence acquired by a calibrated stereo camera on a moving rig. We simultaneously
compute dense disparity and optical flow maps on every frame. In addition, the 6-DOF
relative camera pose between consecutive frames is estimated along with a per-pixel
binary mask that indicates which pixels correspond to either rigid or non-rigid indepen-
dently moving objects (see Figure 6.1). Our sequential algorithm uses information only
from the past and present, thus useful for real-time systems.

We exploit the fact that even in dynamic scenes, many observed pixels often corre-
spond to static rigid surfaces. Given disparity maps estimated from stereo images, we
robustly compute the 6-DOF camera motion using visual odometry robust to outliers
(moving objects in the scene). Given the ego-motion estimate, we improve the depth esti-
mates at occluded pixels via epipolar stereo matching. Then, we identify image regions
inconsistent with the camera motion and compute an explicit optical flow proposal for
these regions. Finally, this flow proposal is fused with the camera motion-based flow
proposal using fusion moves to obtain the final flow map and motion segmentation.

While these four tasks — stereo, optical flow, visual odometry and motion segmen-
tation has been extensively studied, most of the existing methods solve these tasks
independently. In contrast, we present a single unified framework where the solution
to one task benefits the other tasks. This is the primary contribution of our work. For-
tunately, this also increases the computational efficiency. Our method is significantly
faster than top six methods on KITTI. Our method takes about 2-3 seconds per frame
(on the CPU) whereas state-of-the-art methods take 1-50 minutes per-frame [Vogel et al.,
2015; Menze and Geiger, 2015; Lv et al., 2016; Vogel et al., 2013]. Not only is our method
faster but it also explicitly recovers the camera motion and motion segmentation. We
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A 4

(a) Left input frame (reference) (b) Zoom-in on stereo frames

(c) Ground truth disparity (d) Estimated disparity D
t\ .
v M
(e) Ground truth flow (f) Estimated flow F

(g) Ground truth segmentation (h) Estimated segmentation S

Figure 6.1 Proposed unified framework. Our method estimates dense disparity and optical flow
from stereo pairs, which is equivalent to stereoscopic scene flow estimation. The camera motion is
simultaneously recovered and allows moving objects to be explicitly segmented in our approach.
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Figure 6.2 Overview of the proposed method. In the first three steps, we estimate the disparity
D and camera motion P using stereo matching and visual odometry techniques. We then detect
moving object regions by using the rigid flow iz computed from D and P. Optical flow is
performed only for the detected regions, and the resulting non-rigid flow Fion is fused with Fig
to obtain final flow F and segmentation S.
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now discuss how our unified framework benefits each of the four individual tasks.

Optical Flow. Given known depth and camera motion, the 2D flow for rigid 3D
points which we refer to as rigid flow in this study, can be recovered more efficiently and
accurately compared to generic non-rigid flow. We still need to compute non-rigid flow
but only at pixels associated with moving objects. This reduces redundant computation.
Furthermore, this representation is effective for occlusion. Even when corresponding
points are invisible in consecutive frames, the rigid flow can be correctly computed as

long as the depth and camera motion estimates are correct.

Stereo. For rigid surfaces in the scene, our method can recover more accurate disparities
at pixels with left-right stereo occlusions. This is because computing camera motions over
consecutive frames makes it possible to use multi-view stereo matching on temporally

adjacent stereo frames in addition to the current frame pair.

Visual Odometry. Explicit motion segmentation makes camera motion recovery more
robust. In our method, the binary mask from the previous frame is used to predict which
pixels in the current frame are likely to be outliers and must be downweighted during

visual odometry estimation.

Motion Segmentation. This task is essentially solved for free in our method. Since
the final optimization performed on each frame fuses rigid and non-rigid optical flow
proposals (using MRF fusion moves) the resulting binary labeling indicates which pixels
belong to non-rigid objects.

6.2 Related Work

Starting with the seminal work by Vedula et al. [1999, 2005], the task of estimating scene
flow from multiview image sequences has often been formulated as a variational prob-
lem [Pons et al., 2003, 2007; Basha et al., 2012; Wedel et al., 2011]. These problems were
solved using different optimization methods — Pons et al. [2003, 2007] proposed a solution
based on level-sets for volumetric representations whereas Basha et al. [2012] proposed
view-centric representations suiltable for occlusion reasoning and large motions. Previ-
ously, Zhang and Kambhamettu [2001] studied how image segmentation cues can help
recover accurate motion and depth discontinuities in multi-view scene flow.
Subsequently, the problem was studied in the binocular stereo setting [Li and Sclaroff,
2008; Huguet and Devernay, 2007; Wedel et al., 2011]. Huguet and Devernay [2007]
proposed a variational method suitable for the two-view case and Li and Sclaroff [Li
and Sclaroff, 2008] proposed a multiscale approach that incorporated uncertainty during
coarse to fine processing. Wedel et al. [2011] proposed an efficient variational method

suitable for GPUs where scene flow recovery was decoupled into two subtasks — disparity
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and optical flow estimation. Valgaerts et al. [2010] proposed a variational method that
dealt with stereo cameras with unknown extrinsics.

Earlier works on scene flow were evaluated on sequences from static cameras or
cameras moving in relatively simple scenes (see [Menze and Geiger, 2015] for a detailed
discussion). Cech et al. [2011]proposed a seed-growing method for sterescopic scene flow
which could handle realistic scenes with many moving objects captured by a moving
stereo camera. The advent of the KITTI benchmark led to further improvements in
scene flow estimation. Vogel et al. [2011, 2013, 2014, 2015] recently explored a type
of 3D regularization — they proposed a model of dense depth and 3D motion vector
fields in [Vogel et al., 2011] and later proposed a piecewise rigid scene model (PRSM) in
two [Vogel et al., 2013] and multi-frame settings [Vogel et al., 2014, 2015] that treats scenes
as a collection of planar segments undergoing rigid motions. While PRSM [Vogel et al.,
2015] is the current top method on KITT]I, its joint estimation of 3D geometries, rigid
motions and superpixel segmentation using discrete-continuous optimization is fairly
complex and computationally expensive. Lv et al. [2016] recently proposed a simplified
approach to PRSM using continuous optimization and fixed superpixels (named CSF),
which is faster than [Vogel et al., 2015] but is still too slow for practical use.

As a closely related approach to ours, object scene flow (OSF) [Menze and Geiger,
2015] segments scenes into multiple rigidly-moving objects based on fixed superpixels,
where each object is modeled as a set of planar segments. This model is more rigidly
regularized than PRSM. The inference by max-product particle belief propagation is also
very computationally expensive taking 50 minutes per frame. A faster setting of their
code takes 2 minutes but has lower accuracy.

A different line of work explored scene flow estimation from RGB-D sequences [Herbst
et al., 2013; Quiroga et al., 2014; Hornacek et al., 2014; Jaimez et al., 2015b,a; Wang et al.,
2016]. Meanwhile, deep convolutional neural network (CNN) based supervised learning
methods have shown promise [Mayer et al., 2016] but it is still unclear to what extent it

can generalize to new scenes.

6.3 Notations and Preliminaries

Before describing our method in details, we define notations and review basic concepts
used in this study.

We denote relative camera motion between two images using matrices P = [R|t] €
R3*4, which transform homogeneous 3D points X = (x,y, z,1)T in camera coordinates
of the source image to 3D points x’ = Px in camera coordinates of the target image. For
simplicity, we assume a rectified calibrated stereo system. Therefore, the two cameras
have the same known camera intrinsics matrix K € R3*? and the left-to-right camera
pose P! = [I| — Be,] is also known. Here, I is the identity rotation, e, = (1,0,0)%, and
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B is the baseline between the left and right cameras.

We assume the input stereo image pairs have the same size of image domains Q € Z?
where p = (u,v)T € Q is a pixel coordinate. Disparity D, flow F and segmentation S are
defined as mappings on the image domain €2, e.¢., D(p) : @ — R, F(p) : @ — R? and
S(p): Q2 —{0,1}.

Given relative camera motion P and a disparity map D of the source image, pixels p
of stationary surfaces in the source image are warped to points p’ = w(p; D, P) in the

target image by the rigid transformation [Hartley and Zisserman, 2004] as

p
E) e

is the 2D homogeneous coordinate of p, the function 7 (u, v, w) =

K! 0

w(p;D,P)=m (KP oT  (fB)

Here, p = (u,v,1)7
(u/w,v/w)T returns 2D non-homogeneous coordinates, and f is the focal length of the
cameras. This warping is also used to find which pixels p in the source image are visible

in the target image using z-buffering based visibility test and whether p’ € Q.

6.4 Proposed Method

Let I? and I}, t € {1,2,---, N + 1} be the input image sequences captured by the left
and right cameras of a calibrated stereo system, respectively. We sequentially process the
first to IV-th frames and estimate their disparity maps D;, flow maps F;, camera motions
P; and motion segmentation masks S; for the left (reference) images. We call moving
and stationary objects as foreground and background, respectively. Below we focus on
processing the ¢-th frame and omit the subscript ¢t when it is not needed.

At a high level, our method is designed to implicitly minimize image residuals
E©)=) |I1/(p) — I}1(w(p; ©))] (6.2)
P

by estimating the parameters © of the warping function w
® ={D,P,S, Fron}- (6.3)

The warping function is defined, in the form of the flow map w(p; ®) = p + F(p), using

the binary segmentation S on the reference image I as follows.

Flp) = { Frig(p)  if S(p) = background 6

Foon(p) if S(p) = foreground

Here, Fig(p) is the rigid flow computed from the disparity map D and the camera
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motion P using Eq. (6.1), and Fyon(p) is the non-rigid flow defined non-parametrically.
Directly estimating this full model is computationally expensive. Instead, we start with a
simpler rigid motion model computed from the reduced model parameters ® = {D, P}
(Eq. (6.1)), and then increase the complexity of the motion model by adding non-rigid
motion regions S and their flow Fpon. Instead of directly comparing pixel intensities, at
various steps of our method, we robustly evaluate the image residuals ||I(p) — I'(p’))||

by truncated normalized cross-correlation
TNCC,(p, p’) = min{1 — NCC(p, p’), 7}. (6.5)

Here, NCC is normalized cross-correlation computed for 5 x 5 grayscale image patches
centered at I(p) and I'(p’), respectively. The thresholding value 7 is set to 1.

In the following sections, we describe the proposed pipeline of our method. We first
estimate an initial disparity map D (Section 6.4.1). The disparity map D is then used
to estimate the camera motion P using visual odometry recovery (Section 6.4.2). This
motion estimate P is used in the epipolar stereo matching stage, where we improve the
initial disparity to get the final disparity map D (Section 6.4.3). The D and P estimates
are used to compute a rigid flow proposal F;z and recover an initial segmentation S
(Section 6.4.4). We then estimate non-rigid flow proposal Fyon for only the moving
object regions of S (Section 6.4.5). Finally we fuse the rigid and non-rigid flow proposals
{]—"rig, Frnon} and obtain the final flow map F and segmentation S (Section 6.4.6). All the
steps of the proposed method are summarized in Figure 6.2.

6.4.1 Binocular Stereo

Given left and right images I° and I', we first estimate an initial disparity map D of the
left image and also its occlusion map O and uncertainty map U [Drory et al., 2014]. We
visualize example estimates in Figures 6.3 (a)—(c).

As a defacto standard method, we estimate disparity maps by using semi-global
matching (SGM) [Hirschmuller, 2008] with a fixed disparity range of [0,1, - , Dmax].
Our implementation of SGM uses 8 cardinal directions and NCC-based matching costs
of Eq. (6.5) for the data term. The occlusion map O is obtained by left-right consistency
check. The uncertainty map U is computed during SGM as described in [Drory et al.,
2014] without any computational overhead. We also define a fixed confidence threshold
T, forlU, ie., ﬁ(p) is considered unreliable if ¢/(p) > 7,. More details are provided in
Appendix D.1.

130



6.4. PROPOSED METHOD

(c) Occlusion map O 7 (d) Final disparity map D

Figure 6.3 Binocular and epipolar stereo. (a) Initial disparity map. (c) Uncertainity map [Drory
et al., 2014] (darker pixels are more confident). (b) Occlusion map (black pixels are invisible in the
right image). (d) Final disparity estimate by epipolar stereo.

6.4.2 Stereo Visual Odometry

Given the current and next image I} and I, ; and the initial disparity map D; of I, we
estimate the relative camera motion P between the current and next frame. Our method
extends an existing stereo visual odometry method [Alismail and Browning , 2014]. This
is a direct method, i.e., it estimates the 6-DOF camera motion P by directly minimizing

image intensity residuals

Evo(P) = " wip (11(P) = 1f4 (w(p: Dy, P) ) (6.6)
peT

for some target pixels p € T, using the rigid warping w of Eq. (6.1). To achieve robustness
to outliers (e.g., by moving objects, occlusion, incorrect disparity), the residuals are scored
using the Tukey’s bi-weight [Beaton and Tukey, 1974] function denoted by p. The energy
Ey, is minimized by iteratively re-weighted least squares in the inverse compositional
framework [Baker and Matthews, 2004].

We have modified this method as follows. First, to exploit motion segmentation
available in our method, we adjust the weights wi® differently. They are set to ei-
ther 0 or 1 based on the occlusion map O(p) but later downweighted by 1/8, if p is
predicted as a moving object point by the previous mask S;_; and flow F;_;. Sec-
ond, to reduce sensitivity of direct methods to initialization, we generate multiple
diverse initializations for the optimizer and obtain multiple candidate solutions. We then

choose the final estimate P such that best minimizes weighted NCC-based residuals
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E= ZpEQ wpTNCC (p, w(p; Dy, P)). For diverse initializations, we use (a) the identity
motion, (b) the previous motion P;_1, (c) a motion estimate by feature-based correspon-
dences using [Lepetit et al., 2009], and (d) various forward translation motions (about 16

candidates, used only for driving scenes).

6.4.3 Epipolar Stereo Refinement

As shown in Figure 6.3 (a), the initial disparity map D computed from the current stereo
pair {I?, I'} can have errors at pixels occluded in right image. To address this issue,
we use the multi-view epipolar stereo technique on temporarily adjacent six images
{0, 1}, 1P, I} 1D, |, I}, 1 } and obtain the final disparity map D shown in Figure 6.1 (d).

From the binocular stereo stage, we already have computed a matching cost volume
of I for I}, which we denote as Cp(d), with some disparity range d € [0, Dmax]. The
goal here is to get a better cost volume C’Epi(d) as input to SGM, by blending Cp,(d) with
matching costs for each of the four target images I’ € {Ip {, I} |, 1., I} ;}. Since the
relative camera poses of the current to next frame P, and previous to current frame P;_;
are already estimated by the visual odometry in Section 6.4.2, the relative poses from I
to each target image can be estimated as P’ € {P; !, P'P !, P;, P''P,}, respectively.
Recall P% is the known left-to-right camera pose. Then, for each target image I’, we
compute matching costs C},(d) by projecting points (p,d)” in I} to its corresponding
points in /" using the pose P’ and the rigid transformation of Eq. (6.1). Since C},(d) may
be unreliable due to moving objects, we here lower the thresholding value 7 of NCC
in Eq. (6.5) to 1/4 for higher robustness. The four cost volumes are averaged to obtain
Cp'"(d). We also truncate the left-right matching costs Cp(d) at 7 = 1/4 at occluded
pixels known by O(p).

Finally, we compute the improved cost volume Cf,pi(d) by linearly blending Cp(d)
with C3V*(d) as

CeP'(d) = (1 — ap)Cp(d) + apCa¥(d), 6.7)

and run SGM with Cf,pi(d) to get the final disparity map D. The blending weights
ap € [0, 1] are computed from the uncertainty map U (p) (from Section 6.4.1) normalized

as up = min{U(p)/7y, 1} and then converted as follows.
ap(up) = max{up — 7¢,0} /(1 — 7). (6.8)

Here, 7. is a confidence threshold. If up < 7, we get o, = 0 and thus Cf;pi = Cp. When
up increases from 7. to 1, ap, linearly increases from 0 to 1. Therefore, we only need to

compute C5V*(d) at p where up, > 7c, which saves computation. We use 7. = 0.1.
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Figure 6.4 Initial segmentation. We detect moving object regions using clues from (a) image
residuals weighted by (b) patch-intensity variance and (c) prior flow. We also use (d) depth edge
and (e) image edge information to obtain (f) initial segmentation.

6.4.4 Initial Segmentation

During the initial segmentation step, the goal is to find a binary segmentation S in the
reference image I{, which shows where the rigid flow proposal F;, is inaccurate and
hence optical flow must be recomputed. Recall that F;4 is obtained from the estimated
disparity map D and camera motion P using Eq. (6.1). An example of S is shown in
Figure 6.4 (f). We now present the details.

First, we define binary variables s, € {0, 1} as proxy of S(p) where 1 and 0 corre-
spond to foreground (moving objects) and background, respectively. Our segmentation
energy Fgeg(s) is defined as

Egeg = Y [C5 4+ O 1 €+ OB 5p + Epotts (9). (6.9)
peQ

Here, 5, = 1 — sp. The bracketed terms |- | are data terms that encode the likelihoods for
mask S, i.e., positive values bias s, toward 1 (moving foreground). FEpotts is the pairwise
smoothness term. We explain each term below.
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Appearance Term C

This term finds moving objects by checking image residuals of rigidly aligned images.
We compute NCC-based matching costs between I = I and I’ = I}, as

CI?)CC(L I/) = TNCC; (p, p/; I, I/) — Tnce (6.10)

where p’ = p + Fiig(p) and e € (0, 7) is a threshold. However, TNCC values are unre-
liable at texture-less regions (see the high-residual tarp in Figure 6.4 (a)). Furthermore, if
p’ is out of field-of-view, C'[* is not determined (yellow pixels in Figure 6.4 (a)). Thus,
similarly to epipolar stereo, we match I with I’ € {I? |, I} ;,I? 1, I}, ;} and compute
the average of valid matching costs

Cp = Anccwy™ Average,, [C'0(I, I')]. (6.11)

Matching with many images increases the recall for detecting moving objects. To improve
matching reliability, C5* is weighted by w*" = min(StdDev (), 7,) /7w, the truncated
standard deviation of the 5 x 5 patch centered at I(p). The weight map wp?" is visualized
in Figure 6.4 (b). We also truncate C'[°(I, I) at 0, if p’ is expected to be occluded in I' by

visibility test. We use (Ancc; Tnees Tw) = (4, 0.5,0.005).

Flow Term Cg°

This term evaluates flow residuals rp = || Frig(P) — Fpri(P)|| between the rigid flow F
and (non-rigid) prior flow ;i computed by [Farnebédck, 2003] (see Figure 6.4 (c)). Using

a threshold Trf)lo and the patch-variance weight wp™, we define C’SO as

Clo = Agowy™ [min(rp, 275°) — 75°] /75°. (6.12)

var
1

computed at each pixel p by

The part after wy*" normalizes (rp — Tgo) to lie within [—1,1]. The threshold Tgo is

750 = max(r"°, 7| Frig (p)|))- (6.13)

This way the threshold is relaxed if the rigid motion Fiig(p) is large. If prior flow Fp,.i(p)
is invalidated by bi-directional consistency check (black holes in Figure 6.4 (c)), Cgo is set
to 0. We use (Ao, 711°,7) = (4,0.75,0.3).

Prior Term Cgri

This term encodes segmentation priors based on results from previous frames or on

scene context via ground plane detection. Section 6.4.7 for the details.
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Color Term Cg’l
This is a standard color-likelihood term [Boykov et al., 2001] for RGB color vectors I, of
pixels in the reference image I? (p):

C = Aoy [log 01(Ip) — log o (Ip)]. (6.14)

We use A\ = 0.5 and 642 bins of histograms for the color models {6, 61 }.

Smoothness Term Epots

This term is based on the Potts model defined for all pairs of neighboring pixels (p,q) €
N on the 8-connected pixel grid.

d
Epotts (S) = )\potts Z (ch)czi + wpgp + wf,tfl)]sp — Sq|- (615)
(P.a)EN

f,‘i}l is computed as w‘rf,‘g =
2 . .

e~ ITe—Lall2/%1 where k; is estimated as the expected value of 2||I, — I4/|2 over (p,q) €

N [Rother et al., 2004]. The depth-based weight wgzp is computed as wgzp = ¢~ |LptLal/k2

where L, = |AD(p)|is the absolute Laplacian of the disparity map D. The x is estimated

We use three types of edge weights. The color-based weight w

similarly to 1. The edge-based weight w5 uses an edge map e, € [0, 1] obtained by
a fast edge detector [Dollar and Zitnick, 2015] and is computed as wi = e~lepteal/ns,
Edge maps of wggp and wyg (in the form of 1 — wy,q) are visualized in Figures 6.4 (d) and
(e). We use (Apotts; ©3) = (10,0.2).

The minimization of Eseg(s) is similar to the GrabCut [Rother et al., 2004] algorithm,
i.e., we alternate between minimizing Fseg(s) using graph cuts [Boykov and Kolmogorov,
2004] and updating the color models {61, 6y} of C’f)"l from segmentation s. We run up to

five iterations until convergence using dynamic max-flow [Kohli and Torr, 2007].

6.4.5 Optical Flow

Next, we estimate the non-rigid flow proposal Fyon for the moving foreground regions
estimated as the initial segmentation S. Similar to Full Flow [Chen and Koltun, 2016],
we pose optical flow as a discrete labeling problem where the labels represent 2D transla-
tional shifts with in a 2D search range (see Section 6.4.7 for range estimation). Instead
of TRW-S [Kolmogorov, 2006] as used in [Chen and Koltun, 2016], we apply the SGM
algorithm as a discrete optimizer. After obtaining a flow map from SGM as shown
in Figure 6.5 (a), we filter it further by 1) doing bi-directional consistency check (see
Figure 6.5 (b)), and 2) filing holes by weighted median filtering to get the non-rigid
flow proposal Fnon. The flow consistency map O1°(p) is passed to the next stage. Our
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» LI B i . oAt
(a) Non-rigid flow by SGM flow (b) Consistency check

(c) Non-rigid flow proposal Fnon (d) Rigid flow proposal Frig

(e) Final flow map F (f) Final segmentation mask &

Figure 6.5 Optical flow and flow fusion. We obtain non-rigid flow proposal by (a) performing
SGM followed by (b) consistency filtering and (c) hole filing using weighted median filtering.
This flow proposal is fused with (d) the rigid flow proposal to obtain (e) the final flow estimate
and (f) motion segmentation.

extension of SGM is straightforward and is detailed in Appendix D.2. The details of the
refinement scheme is also provide in Appendix D.3.

6.4.6 Flow Fusion and Final Segmentation

Given the rigid and non-rigid flow proposals Fiz and Fnon, we fuse them to obtain the
final flow estimate F. This fusion step also produces the final segmentation S. These
inputs and outputs are illustrated in Figures 6.5 (c)—(f).

The fusion process is similar to the initial segmentation. The binary variables
sp € {0,1} indicating the final segmentation S, now also indicate which of the two
flow proposals { Frig(P), Fnon(P)} is selected as the final flow estimate F(p). To this end,
the energy Eseg of Eq. (6.9) is modified as follows. First, C5¢ is replaced by

Cp = Anccwy ' [TNCC- (p, p;ig) — TNCC-(p, Phon)], (6.16)

where p;ig = p + Frig(P) and Pjon = P + Fnon(P)- Second, the prior flow Fpri(p) in C’go
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is replaced by Fnon(p). When p;ig is out of view or Fnon(p) is invalidated by the flow
occlusion map O°(p), we set Cp¢ and C’go to 0.

This fusion step only infers sy, for pixels labeled foreground in the initial segmentation
S, since the background labels are fixed. The graph cut optimization for fusion is typically
very efficient, since the pixels labeled foreground in S is often a small fraction of all the

pixels.

6.4.7 Implementation Details
Disparity Range Reduction

For improving the efficiency of epipolar stereo, the disparity range [0, Dmax] is reduced by
estimating Dy, from the initially estimated D(p). We compute Dpax robustly by making
histograms of non-occluded disparities of D(p) and ignoring bins whose frequency is
less than 0.5%. Dmay is then chosen as the max bin from remaining valid non-zero bins.

Prior Flow

Fopri is obtained as follows. 1) Run SGM flow for low-resolution images (width of 100
pixels) with a 2D flow range of [—16, 16]2. 2) Do bi-directional consistency check and
fill the holes by EpicFlow interpolation [Revaud et al., 2015]. 3) Upscale the flow map
and use it as initialization of [Farnebéack, 2003]. We use OpenCV’s implementations of
EpicFlow and [Farneback, 2003].

Flow Range Estimation

The 2D search range R = ([Umin; %max] X [Umin;Vmax]) for SGM flow is estimated as
follows. For the target region S, we compute three such ranges from feature-based sparse
correspondences, the prior flow and rigid flow. For the latter two, we robustly compute
ranges by making 2D histograms of flow vectors and ignoring bins whose frequency is
less than one-tenth of the max frequency. Then, the final range R is the range that covers
all three. To make R more compact, we repeat the range estimation and subsequent SGM

for individual connected components in S.

Cost-Map Smoothing

Since NCC and flow-based cost maps Cp* and Cgo used in the segmentation and fusion
steps are noisy, we smooth them by averaging the values within superpixels. We use
superpixelization of approximately 850 segments produced by [Van den Bergh et al.,
2012] in OpenCV.
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Figure 6.6 Segmentation ground prior. For road scenes (top), we compute
the ground prior (middle) from the disparity map (bottom). This prior is used
only for the sequences from the KITTI dataset. See also Appendix D.4 for the
implementation details.

Segmentation Priors

We define Cgri of Eq. (6.9) as Cgri = )\maskCgaSk + CECOI. Here, Cg‘aSk € [-0.1,1] is a
signed soft mask predicted by previous mask S;—; and flow F;_;. Negative background
regions are downweighted by 0.1 for better detection of new emerging objects. We
use Apask = 2. C’SCOI is a color term similar to Eq. (6.14) with the same A\, but uses
color models updated online as the average of past color models. For road scenes, we
additionally use the ground prior such as shown in Figure 6.6 as a cue for the background.
It is derived by the ground plane detected using RANSAC. See Appendix D.4 for more
details.

Others

We run our algorithm on images downscaled by a factor of 0.4 for optical flow and
0.65 for the other steps (each image in KITTI is 1242 x 375 pixels). We do a subpixel
refinement of the SGM disparity and flow maps via standard local quadratic curve
fitting [Hirschmuller, 2008].
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6.5 Experiments

We evaluate our method on the KITTI 2015 scene flow benchmark [Menze and Geiger,
2015] and further extensively evaluate on the challenging Sintel (stereo) datasets [Butler
etal.,2012]. On Sintel we compare with the top two state of the art methods — PRSM [Vogel
et al., 2015] and OSF [Menze and Geiger, 2015]. PRSM is a multi-frame method like ours.
Although OSF does not explicitly distinguish moving objects from static background
in segmentation, the dominant rigid motion bodies are assigned the first object index,
which we regarded as background in evaluations. Our method was implemented in C++
and running times were measured on a computer with a quadcore 3.5GHz CPU. All
parameter settings were determined using KITTI training data for validation. Only two
parameters were re-tuned for Sintel. See also Appendix D.5 for our strategy of tuning

parameters.

6.5.1 KITTI 2015 Scene Flow Benchmark

We show a selected ranking of KITTI benchmark results in Table 6.1, where our method is
ranked third. Our method is much faster than all the top methods and more accurate than
the fast methods [Derome et al., 2016; Cech et al., 2011]. See Figure 6.7 for the per-stage
running times. The timings for most stages of our method are small and constant, while
for optical flow they vary depending on the size of the moving objects. Results of our
method on four sequences are shown in Figures 6.8-6.11. Motion segmentation results
are visually quite accurate. As shown in Table 6.2, epipolar stereo refinement using
temporarily adjacent stereo frames improves disparity accuracy even for non-occluded
pixels. By visual inspection of successive images aligned via the camera motion and

depth, we verified that there was never any failure in ego-motion estimation.

6.5.2 Evaluation on Sintel Dataset

Unlike previous scene flow methods, we also evaluated our method on Sintel and
compared it with OSF [Menze and Geiger, 2015] and PRSM [Vogel et al., 2015] (see
Table 6.3 — best viewed in color). We also show qualitative comparisons on ambush_5,
cave_4, mountain_1 and temple_2 in Figures 6.12-6.15. Recall, PRSM does not perform
motion segmentation. Although OSF and PRSM are more accurate on KITTI, our method
outperforms OSF on Sintel on all metrics. Also, unlike OSF, our method is multi-frame.
Sintel scenes have fast, unpredictable camera motion, drastic non-rigid object motion
and deformation unlike KITTI where vehicles are the only type of moving objects. While
OSF and PRSM need strong rigid regularization, we employ per-pixel inference without
requiring piecewise planar assumption. Therefore, our method generalizes more easily

to Sintel. Only two parameters had to be modified as follows. (Aqol; Tnee) = (1.5, 0.25).
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Limitations and Discussions.

The visual odometry step may fail when the scene is far away (see mountain_1 in
Figure 6.14) due to subtle disparity. It may also fail when the moving objects dominate
the field of view. Our motion segmentation results are often accurate but in the future

we will improve temporal consistency to produce more coherent motion segmentation.

6.6 Summary

We proposed an efficient scene flow method that unifies dense stereo, optical flow, visual
odometry, and motion segmentation estimation. Even though simple optimization meth-
ods were used in our technique, the unified framework led to higher overall accuracy
and efficiency. Our method is currently ranked third on the KITTI 2015 scene flow
benchmark after PRSM [Vogel et al., 2015] and OSF [Menze and Geiger, 2015] but is 1-3
orders of magnitude faster than the top six methods. On challenging Sintel sequences,
our method outperforms OSF [Menze and Geiger, 2015] and is close to PRSM [Vogel et al.,
2015] in terms of accuracy. Our efficient method could be used to initialize PRSM [Vogel
et al., 2015] to improve its convergence speed. We hope it will enable new, practical

applications of scene flow.
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Table 6.1 KITTI 2015 scene flow benchmark results [Menze and Geiger, 2015]. We show the error
rates (%) for the disparity on the reference frame (D1) and second frame (D2), the optical flow (Fl)
and the scene flow (SF) at background (bg), foreground (fg) and all pixels. Disparity or flow is
considered correctly estimated if the end-point error is < 3px or < 5%. Scene flow is considered

correct if D1, D2 and Fl are correct.

Rank Method D1-bg | D1-fg | D1-all | D2-bg | D2-fg | D2-all
1 PRSM [Vogel et al., 2015] 3.02 10.52 4.27 5.13 15.11 6.79
2 OSF [Menze and Geiger, 2015] 4.54 12.03 5.79 5.45 19.41 7.77
3 FSF+MS (ours) 5.72 11.84 | 6.74 757 | 2128 | 9.85
4 CSEF [Lv et al., 2016] 457 | 13.04 | 598 792 | 20.76 | 10.06
5 PR-Sceneflow [Vogel et al., 2013] 474 | 1374 | 6.24 11.14 | 2047 | 12.69
8 PCOF+ACTF [Derome et al., 2016] | 6.31 19.24 | 846 19.15 | 36.27 | 22.00

12 GCSF [Cech et al., 2011] 1164 | 2711 | 1421 | 3294 | 35.77 | 3341
Method Fl-bg | Fl-fg | Fl-all | SF-bg | SF-fg | SF-all Time
PRSM 533 | 17.02 | 7.28 6.61 23.60 9.44 300s
OSF 562 | 2217 | 8.37 7.01 | 28.76 | 10.63 50 min
FSF+MS (ours) | 848 | 29.62 | 12.00 | 11.17 | 37.40 | 15.54 2.7s
CSF 1040 | 30.33 | 13.71 | 1221 | 36.97 | 16.33 80s
PR-Sceneflow | 11.73 | 27.73 | 1439 | 1349 | 33.72 | 16.85 150 s
PCOF+ACTF | 14.89 | 6242 | 22.80 | 25.77 | 69.35 | 33.02 | 0.08s (GPU)
GCSF 4738 | 45.08 | 47.00 | 52.92 | 59.11 | 53.95 24s

Table 6.2 Disparity improvements by epipolar stereo.

| all pixels

D1-bg | D1-fg | D1-all

non-occluded pixels

D1-bg | D1-fg | D1-all

Binocular stereo (D) | 796 | 12.61 | 8.68 7.09 | 10.57 | 7.61
Epipolar stereo (D) 5.82 | 10.34 | 6.51 5.57 8.84 6.06
4
Flow fusion

Running time per frame (sec)
N

Initial segmentation

Optical flow

Epipolar stereo

Visual odometry

Binocular stereo

Prior flow
Initialization

Figure 6.7 Running times on 200 sequences from KITTI. The average running time per-frame
was 2.7 sec. Initialization includes edge extraction [Dollar and Zitnick, 2015], superpixeliza-

tion [Van den Bergh et al., 2012] and feature tracking.
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Reference image

= = X

Estimated disparity map Disparity error map

Estimated flow map Flow error map

Figure 6.8 Our results on KITTI testing sequences (002). Black pixels in error heat maps indicate
missing ground truth while darker shaded pixels indicate occluded pixels.

CenE.
Disparity error map

Estimated flow map Flow error map

Figure 6.9 Our results on KITTI testing sequences (006). Black pixels in error heat maps indicate
missing ground truth while darker shaded pixels indicate occluded pixels.
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Reference image

Estimated disparity map Disparity error map

Estimated flow map Flow error map

Figure 6.10 Our results on KITTI testing sequences (010). Black pixels in error heat maps indicate
missing ground truth while darker shaded pixels indicate occluded pixels.

Reference image Estimated motion segmentation

Estimated disparity map Disparity error map

Estimated flow map Flow error map

Figure 6.11 Our results on KITTI testing sequences (011). Black pixels in error heat maps indicate
missing ground truth while darker shaded pixels indicate occluded pixels.
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Table 6.3 Evaluation on Sintel dataset [Butler et al., 2012]. We show error rates (%) for disparity
(D1), flow (Fl), scene flow (SF) and motion segmentation (MS) averaged over the frames. Cell
colors in OSF [Menze and Geiger, 2015] and PRSM [Vogel et al., 2015] columns show performances
relative to ours; blue shows where our method is better, red shows where it is worse. We
outperform OSF most of the time.

D1-all Fl-all SF-all MS-all

Ours | OSF | PRSM | Ours | OSF | PRSM | Ours | OSF | PRSM | Ours | OSF
alley_1 592 528 743 | 211 733 158 | 691 1004 790 | 540 | 17.45
alley_2 208 131 079 | 120 144 108 | 299 249 163 | 194 131
ambush_2 | 3693 [ 5513 4177 | 72.68 | 8737 51.33 | 80.33 | 90.96 6192 | 172 [ 3276
ambush_4 | 2330 2405 24.09 | 4523 4916 41.99 | 49.81 53.25 46.14 | 20.98 19.82
ambush_5 | 1854 19.54 1772 | 24.82 | 4470 2523 | 3515 | 52.26 3412 | 250 | 19.39
ambush_6 | 30.33  26.18 29.41 | 44.05 | 5475 4198 | 49.93 | 5846 47.08 | 53.95 | 24.98
ambush_7 | 23.47 [ 71.58 35.07 | 27.87 2247 | 335 | 4451 | 77.94 3692 | 26.77 | 36.08
bamboo_1 | 967 971 734 | 411 404 241 | 11.05 1081 835 | 443 417
bamboo_2 | 19.27 1808 17.06 | 3.65  4.86  3.58 | 21.39 21.24 1923 | 4.08 454
bandage_1 [ 2093 1937 2122 | 400 | 1840 330 | 23.72 | 3657 2337 | 3332 | 46.66
bandage_2 | 22.69 2353 2244 | 476 1312 406 | 2419 3233 2362 | 1637 | 41.14
cave_4 622 586 427 | 1462 | 3394 1632 | 1753 [ 3604 1771 | 1613 1692
market 2 | 681 661 527 | 517  10.08 477 | 1038 1452 854 | 897  13.90
market_5 | 1325 13.67 1538 | 2631 2958 2838 | 2993 3160 32.00 | 1526  15.33
market 6 | 1063 1029 899 [ 13.13 1639 1072 | 1807 2018 1509 | 3.59 | 37.63
mountain_1 | 023 078 042 | 17.05 | 88.60 371 | 17.05 | 8861  3.85 | 31.63 | 0.00
shaman_2 | 2477 2827 2549 | 056 167 046 | 2507 2943 2575 | 3098 27.04
shaman_3 | 27.09 | 5222 3392 | 131 [ 1145 175 | 27.61 | 5551 3443 | 3.81 | 29.64
sleeping 2 | 352 297 174 | 002 001 000 | 352 297 174 | 000 054
temple_2 | 596 554 492 | 966 1052 951 | 9.8 1055 987 [ 132 413
temple 3 | 10.65 16.62 11.04 | 62.34 | 81.39 32.10 | 63.56 | 81.86 3460 | 4.20 | 25.42
AVERAGE | 1535 19.84 1599 | 1832 | 2816 1370 | 27.26 | 38.93  23.52 | 13.68 = 19.95
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< PRSM

Motion segm. / reference image Disparity maps Flow maps

Figure 6.12 Comparisons on ambush_5 from Sintel. [LEFT] Motion segmentation results — our
method, OSF [Menze and Geiger, 2015] and ground truth (GT). [MIDDLE] Disparity and [RIGHT]
Flow maps estimated by our method, OSF [Menze and Geiger, 2015] and PRSM [Vogel et al.,
2015] and the ground truth versions.

GT
_ Ours
¥ 9 g OSF
PRSM
Motion segm. / reference image Disparity maps Flow maps

Figure 6.13 Comparisons on cave_4 from Sintel. See also Figure. 6.12 for descriptions.
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GT

PRSM

Motion segm. / reference image Disparity maps Flow maps

Figure 6.14 Comparisons on mountain_1 from Sintel. See also Figure. 6.12 for descriptions.

Motion segm. / reference image Disparity maps Flow maps

Figure 6.15 Comparisons on temple_2 from Sintel. See also Figure. 6.12 for descriptions.
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Conclusion

E now finally conclude this thesis by summarizing contributions and achievements

made in this work. We further discuss possible future directions.

7.1 Summary of This Thesis

In this thesis, we studied image segmentation and dense correspondence tasks as well as
their inference problems. Several tasks of image segmentation, cosegmentation, motion
segmentation, binocular stereo vision, optical flow and general dense correspondence,
were tackled sorely or jointly as energy minimization on various types of MRFs. In order
to effectively optimize inherently discrete functions or highly non-convex continuous
functions, we proposed discrete inference methods that were tailored for individual
tasks. We categorized difficulties arising in discrete inference on various types of MRFs
into three challenges —label space size, higher-order and non-submodular energy—,
which were comprehensively addressed in this work. We now conclude each of the four

studies presented in this work below.

In the first study, we tackled inference problems on non-submodular and higher-
order MRFs that have binary variables. Such binary energy minimization problems
naturally appear in low-level computer vision tasks such as image segmentation and
binarization of gray images. The use of such sophisticated models also becomes crucial
especially in medical image processing [Kitamura et al., 2016; Gorelick et al., 2012, 2013,
2014] where image observations can provide limited information of gray-scale noisy
pixel intensities. Also, binary energy minimization is often imposed during estimation
of more general multi-valued or continuous-valued variables. For such fundamental
inference problems, we have developed a new theoretical insight that has led to a method
unifying several existing optimization methods [Narasimhan and Bilmes, 2005; Ayed
et al., 2013, 2015; Gorelick et al., 2014; Tang et al., 2014]. Moreover, the proposed method
has a mechanism to better avoid bad local minimums of non-submodular functions,

and is thus more robust to initializations compared to existing methods. The proposed
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method was evaluated on image segmentation and binarization tasks, where our method
outperformed state-of-the-art methods [Narasimhan and Bilmes, 2005; Ayed et al., 2013;
Gorelick et al., 2014; Tang et al., 2014] and was shown to be often more efficient.

In the second study, we have proposed an efficient and accurate binocular stereo
matching method, whose model and inference are both designed to favor piecewise
planar surfaces as a realistic scene assumption. By borrowing the unary data term
from [Bleyer et al., 2011] and pairwise smoothness term from [Olsson et al., 2013], we
have formulated the proposed method as a pixelwise local 3D surface plane model
with piecewise planar smoothness regularization, which forms a pairwise MRF with
a continuous 3D label space. In order to efficiently infer this rich model, we have
proposed a new inference technique named local expansion moves, which extends well-
known expansion moves [Boykov et al., 2001] by incorporating the spatial propagation
and randomization search mechanisms of PatchMatch [Barnes et al., 2009]. Unlike
conventional fusion-based approaches to continuous MRF inference [Lempitsky et al.,
2010], the proposed method does not require solution proposals generated by external
methods. Furthermore, the proposed local expansion moves produce submodular binary
energies during the inference, which are optimally minimized via graph cuts. To further
accelerate the computations, we haven shown that the proposed algorithm is easily
parallelizable on multiple CPU cores, and also shown that it can incorporate a fast
cost-map filtering scheme of [Lu et al., 2013]. The proposed method was evaluated
on the Middlebury stereo benchmark [Scharstein and Szeliski, 2002] and achieved the
state-of-the-art performance among more than 160 stereo algorithms. The parallelization
using four CPU cores and the fast cost-map filtering scheme were shown to gain 3.5x and
5.3x of speed-ups, respectively. Combined together, the faster version of the proposed
method achieved more than 18x of speed-ups and even improved accuracy as being able
to use more sophisticated filtering [He et al., 2013].

In the third study, we have proposed a joint task of general dense correspondence
and cosegmentation for two images. Given two images that show same or similar objects
in different scenes, the task is defined to segment out the common object regions in
each image as well as finely align the object regions to each other. This task unifies
previously proposed two tasks of cosegmentation [Rother et al., 2006] and general dense
correspondence [Liu et al., 2011], and is useful in applications such as 3D shape recovery
from image clutters [Vicente et al., 2014], label transferring [Smith et al., 2013], and non-
parametric scene parsing [Liu et al., 2011; Karsch et al., 2014]. For this problem, we have
proposed a hierarchical MRF model with joint labels of segmentation and correspondence.
The proposed model parameterizes the correspondence field using piecewise similarity
transformations and recovers a mapping between the estimated common object regions.

The hierarchy is employed to increase robustness in estimating correspondence between
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objects with different appearances, by constraining inference across various coarseness of
superpixels. Unlike prior hierarchical methods which assume that the structure is given,
we have proposed an iterative technique that dynamically recovers the structure along
with the labeling. This joint inference involves higher-order energy optimization. We
have proposed an energy minimization approach using iterated graph cuts by extending
our local expansion move method. We have also introduced a new dataset that provides
400 image pairs with ground truth segmentation masks and correspondence maps.
The proposed method was shown to outperform state-of-the-art methods designed
specifically for either cosegmentation [Joulin et al., 2010; Faktor and Irani, 2013] or
correspondence estimation [Liu et al., 2011; Kim et al., 2013; Yang et al., 2014].

Finally in the fourth study, we have proposed an efficient scene flow method for
stereo image sequences that also recovers motion segmentation of moving objects as
well as camera ego-motion. The proposed method unifies four independent tasks —
binocular stereo, optical flow, motion segmentation and visual odometry— providing
rich information of disparity, 2D flow and binary segmentation indicating moving-objects
at every pixel along with the camera motion estimate. Such information is useful in video
analysis and editing, 3D mapping, autonomous driving [Menze and Geiger, 2015] and
mobile robotics. For the inference, we have proposed a multi-staged framework where
the solution to one task benefits others. Even though we employ simple optimization
methods in each stage, the proposed framework leads to higher accuracy and also
increases computational efficiency. The proposed method was evaluated on the KITTI
2015 scene flow benchmark [Menze and Geiger, 2015] and was ranked third. Furthermore,
a CPU implementation of the proposed method ran in 2-3 seconds per frame which
was 1-3 orders of magnitude faster than the top six methods taking 1-50 minutes per
frame. The proposed method was also thoroughly evaluated on challenging Sintel
sequences [Butler et al., 2012] with fast camera and object motion, where our method
consistently outperformed [Menze and Geiger, 2015], which was ranked second on the
KITTI benchmark.

7.2 Future Directions

In the followings, we discuss possible future directions of this work.

Higher-Order Terms for Continuous MRFs

The optimization technique of higher-oder energies developed in Chapter 3 is based on
binary MRF formulations. However, it is interesting to explore inference problems of
continuous higher-order MRFs. For example, such formulations appear in the image

matting problem, where foreground and background is expressed by a continuous alpha-
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matte map as generalization of a binary mask in image segmentation. In a standard
benchmark of image matting [Rhemann ef al., 2009], many existing methods use continu-
ous inference approaches inspired by a seminal work of [Levin et al., 2008]. The use of
discrete-continuous inference enables us to use more sophisticated non-convex models

which may lead to higher accuracy.

Continuous MRF Optimization for Other Applications

We believe that our optimization strategy presented in Chapter 4 is not limited to binocu-
lar stereo matching problems but can be broadly applied to more general corresponding
tield estimation such as multi-view stereo and optical flow. In fact, in Chapter 5, the tech-
nique was successfully applied to the inference problem of general dense correspondence
and cosegmentation. More thorough evaluations on various dense correspondence tasks
will verify broad applicability of the proposed optimization technique and will also more

contribute to the community.

Dense Correspondence and Cosegmentation for Multiple Images

The joint method of dense correspondence and cosegmentation estimation proposed
in Chapter 5 uses two images as input. However, some recent works [Cho et al., 2015;
Zhou et al., 2015; Joulin et al., 2012] have shown that the use of multiple images can
provide more information and thus leads to higher accuracy of correspondence. There,
the concept of cycle consistency [Zhou et al., 2015] has shown to be a powerful constraint
for enforcing correspondence consistencies between multiple images. Extending the
proposed method for a multi-image case using cycle consistency is a promising direction
of this study.

Stereo Scene Flow with Multi-Model Motion Segmentation

The scene flow method proposed in Chapter 6 estimates binary motion segmentation
indicating moving and static objects in a scene. Such motion segmentation cannot
distinguish multiple independently-moving objects in a scene. Therefore, it is interesting
to extend the binary motion segmentation to multi-model motion segmentation. A
similar model has been explored by [Menze and Geiger, 2015], but their method is
computationally very expensive taking 2-50 minutes per frame. As our method can
process each frame in only 2-3 seconds, we can expect a much faster method by extending

ours.
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Supplementary Information for Chapter 3

In this supplementary chapter, we present proofs and implementation details associated
with the proposed technique described in Chapter 3. The contents of this chapter are
summarized below.

* Section A.1: a proof for Proposition 3.1 shown in Section 3.3.1.

* Section A.2: the definition of the geodesic distance used in Section 3.3.3.

A.1 Proof of Proposition 3.1

Given a grouped permutation 7 = {m(1),7(2),--- ,7(M)} and its corresponding bound
H™(S|S") defined by Egs. (3.14) and (3.15), we prove Proposition 3.1 by showing the
tightness and boundness of Eq. (3.7) for H™(S|S"), respectively, using the following two

lemmas.

Lemma A.1. Tightness. It holds that H™(S|S") = R(S) for any S = S7.

Proof. Given ST with any j € {0,1,---, M}, it holds that

H™(S7[S') = RO+ > g() [RSF) — R(SE1)] / (g, n(k) (A1)

k=1ien(k)
J

= RO+ [R(SF) - R(SF_,)] (A.2)
k=1

= R(ST), (A.3)

which proves the statement. It also proves H™(S*|S*) = R(S"), since there exists S* = ST

for some j. O
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A.2. GEODESIC DISTANCE

—

Convex f(x) — / h(111)

Piecewise-linear p™ (x) — h(2|M)
h(1]1)
Unary cost h™ (i) —»

Energy Value
Energy Value
Energy Value

x=(g,S)

X0 X1 X2 X3 XM X0 X1 X2 X3 Xm X0 X1 X2 X3 XM

(b) Lower and upper (c) Worst

(a) Best approximation envelops approximation

Figure A.1 Illustration of our bounds. A convex f(z) and its piecewise-linear bounds p™ (z) are
visualized by blue and red solid-lines, respectively. The green arrows h(k|j) show the unary costs
h™ (i) our bound H™(S|S*) where i is the k-th element in the group 7 (). The green region in (b)
shows the range in which the profiles of H™(S|S") lie. Note that these functions are shown in a
continuous domain z = (g, S).

Lemma A.2. Boundness. It holds that H™(S|S*) > R(S) = f({g,S)) for any S.

Proof. We show the outline of the proof. Let z; = <g, S;r>, (j = 0,1,--- M) be a
sequence of scalar values, and let p™(z) : [xo, 23] — R be a continues piecewise-linear
approximation function of f(x). Here, p™(z) consists of M linear-pieces with M + 1
breakpoints at = z; and it tightly bounds convex f(x); i.e., it holds that p™ (z;) = f(x;)
and p™(z) > f(z) for any j and z, respectively. We visualize p™ (z) as solid red lines in
Figure A.1. Note that this figure slightly differs from Figure 3.4 in that here functions are
shown in a continuous domain = = (g, S). Using this p™ (z) we can show that

H™(S]S") > p"({9,5)) = f({g.5)) = R(S). (A.4)

The first inequality is proved by the fact that p™({g, S)) gives a lower-envelop to H™(S]5%).
We illustrate this in Figure A.1. If S evolves along the chain sequence ST (j = 0, 1,--- , M),
the profile of H™(S5|S?) is as tight as p™((g, S)), as shown in Figure A.1 (a). Generally,
S evolves arbitrarily, which means that the green arrows in Figure A.1 (a) can be re-
arranged arbitrarily as illustrated in Figure A.1 (b). Here, we can show that any profile of
H™(S|S") cannot be lower than p™(z), if f(z) is convex. Additionally, the profile of our
bound in the worst case can be depicted as Figure A.1 (c). ]

A.2 Geodesic Distance

In this section, we summarize the definition of the geodesic distance proposed in [Cri-
minisi et al., 2008]. Note that the distance D(i|S, I) used in the main chapter refers to
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A.2. GEODESIC DISTANCE

D3 (i]S,I) in Eq. (A.12) below. We now explain show this distance is defined.
Let D(i|S,I) : @ — R be an unsigned geodesic distance map from the boundary of
segments S:

D(ilS, 1) = {p%igs} da(pisps)s (A.5)

where d¢ (p;, p;) is geodesic distance between two pixels p;, p; € Z*:

Is]
da(pi, pj) = I;ggz \/Hps(k) — Ps(e-1)lI3 + V2 sy — Lsr—y 13- (A.6)
k=2

Here, P is the set of all paths joining p; and p;. Note that when v = 0, the geodesic
distance dg(pi, pj) becomes equivalent to the Euclidean distance |p; — p;|. Using the
unsigned distance map, a signed geodesic distance map from S is defined as

D,(ilS,I) = D(i|S,I) — D(i|S, I). (A7)

The use of D,(i|S, I) is more reasonable than the Euclidean distance for our purpose
to create permutations o. To illustrate this, see the two pixels a and b in Figure A.2 (a).
When using the Euclidean distance shown in Figure A.2 (b), b has a shorter distance than
a from S; hence, b is positioned before a in the permutation ¢ meaning that b is more
likely to be within the true segments S*. By contrast, when we use the geodesic distance
Dg(i|S, I) shown in Figure A.2 (c), it is likely that Ds(a|S,I) < D4(b|S,I), so a will come
before b in o.

However, as shown in Figure A.2 (d), this distance transform is sensitive to noise
speckles such shown in Figure A.2 (e). For this issue, Criminisi et al. [2008] introduce
dilation and erosion for segments S:

Si = {i€Q|DGIS 1) < +0a), (A8)
Se = {Z SRY) ‘ Ds(“Sa I) < —96}, (A9)

and further define opening and closing operations respectively as

So = {7' € | D(i’Seal) < +96}7 (AlO)
S, = {ieQ|D(i|Sq,I) > +04}. (A.11)

The effects of opening and closing are visualized in Figs. A.2 (f) and (g). Using these
operations, a robust geodesic distance is defined as

Di(i|S, 1) = [D(i|Se, I) — 0e] — [D(i]Sq, I) — 4] - (A.12)
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(b) Euclidean
distance

(d) Ds (2|5, 1)

a) segments .
(a) seg for noisy segments

(©) Ds(ilS, 1)

(h) D3(i[S, 1)
for noisy segments

(e) Noisy segments (f) Opening (g) Closing

Figure A.2 Illustration of geodesic distance [Criminisi et al., 2008]. Given (a) an image and
segments (pink), the use of (c) geodesic distance D,(i|S, ) is more reasonable than (b) the
Euclidean distance. However, (d) D, (]S, I) is sensitive to (e) noisy speckles in segments. With
the presence of (f) opening and (g) closing effects, (h) D: (]S, I) is robust to such speckles.

As shown in Figure A.2 (h), this distance is robust to noise speckles. The parameters
64 and 0, reflect the maximum sizes of speckles in foreground S and background S,
respectively. Throughout our paper, we use 6; = 6. = 5 and v = 10/255. Note that if
0e = 04 = v =0, then D:(i|S, I') becomes the standard Euclidean distance.
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Supplementary Information for Chapter 4

In this supplementary chapter, we provide a proof associated with the proposed tech-
nique described in Chapter 4.

B.1 Submodularity

Proof. For the completeness, we repeat the original proof given in [Olsson et al., 2013]
with our notations. Obviously, ¥,,(c, @) = 0. Therefore,

Upg(ct; @) + Ppg(B,7)
= &pq(ﬁa’w (B.1)
= 1dp(B) = dp(7)| + |dg(B) — dg(7)] (B.2)
= [ (dp(B) = dp(@)) = (dp(7) = dp(a)) | + | (dg(B) — dyg(@)) = (dg(7) — dy(@)) | (B.3)
< |dp(B) = dp(@)| + |dp(7) = dp(@)| + |dg(B) — dg(a)] + [dg(7) = dy(e)] (B.4)
= Upg(B, @) + Ppg(a, ). (B.5)

Thus, ¥p,(fp, f,) satisfies the submodularity of expansion moves. For its truncated

function,

min (¢pg (e, @), 7) + min (¢pg(8,7), 7)

= min (zﬁpq( ), 7') (B.6)
< min (ﬁpq(ﬁ, Q) + Ppgla, ), T) (B.7)
< min (ﬂpq(ﬂ, a), 7') -+ min (ﬂpq(a, v), T) : (B.8)

Therefore, the truncated function of ¥, (f,, f,) also satisfies the submodularity, and so

does Vpq(fps fq)- O
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Supplementary Information for Chapter 5

In this supplementary chapter, we present derivations and proofs associated with the
proposed technique described in Chapter 5. Some additional notes and implementation
details are also provided. The contents of this chapter are summarized below.

* Section C.1: a note on the use of the continuous alpha map formulation.

Section C.2: derivations of our approximation energy described in Section 5.4.1.

Section C.3: details for initialization of color models described in Section 5.5.3.

Section C.4: a proof of submodularity for our pairwise term.

Section C.5: a note on our strategy of tuning parameters.

C.1 Continuous Alpha Map Formulation

Here, we explain why in our method, the per-pixel segmentation labels must be continu-
ous alpha-matte values a € [0, 1] rather than binary values {0, 1}. If & were binary, the
flows T; at nodes labeled background (a; = 0) would be under-constrained, because the
flow data term & in Eq. (5.3) at such nodes would always be a constant Ao regardless
of the values of T;. This would be problematic, because if true foreground nodes are in-
correctly labeled background in early stages of our inference process, it would be harder
to recover their true flow labels in later iterations. To avoid this issue, we require « to be
a continuous value that is larger than a small positive value (0.1 in our implementation).
By doing this we will have meaningful flow labels T; even at nodes labeled (incorrectly)
background, because those flow labels still slightly affect matching energies of £}

C.2 Energy Approximation

We present the derivations of our approximation energy described in Section 5.4.1.
First, we derive the energy function £(f, G**1) in the form of Eq. (5.15). In order to
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C.2. ENERGY APPROXIMATION

simplify the energy formulation in Eq. (5.8), we denote energies involved in each layer as

Elg (1, G) = Emet(F111) + Erog (f1G) + Epra (V1) (C.1)

and rewrite the energy function £(f, G**!) as the sum of layer energies

k+1

Gk+1 Z Slay Gk+1 (C2)
= Z Elay (1, GF) + ELT(f,GFT) (C3)
=0
= E(f,G") +EL(f,GF). (C4)
—— y
E(f1G¥) Erop(f.LE+1)

Assuming that G¥ is known from the previous iteration, we denote £(f, G¥) as £(f|G*),
and Sllz;“l(f, GFt1) as Eop(f, L¥™) to obtain Eq. (5.15).

To approximate the above £(f,G**1), we create a temporary graph GF*1 as an
approximation of G*!, by duplicating the top layer of G* as L), = (V/, E},) + (Vi, Ex).
We further define a labeling f on this temporary graph G*+1, Since f and f are defined
on the different graphs (G**' and G**1) or different top layers (V4 and V}), we cannot
simply assume f = f. However, V[ representing a superpixel segmentation is the finest
form of any possible V},;1 due to the tree structure of G. Therefore, we can always define
f so that f and f are equivalent f = f,ie., the pixelwise labeling included by both f and
f are identical.

Using f and G**1, our approximation function &(f|G**1) for £(f, G**1) in the form
of Eq. (5.17) is obtained by substituting G¥*! « G**1and f « f into £(f, GFt1).

E(fIGH) = £(f,GF) (C.5)
=E(f, &Y+ (.65, (C.6)
N—_——
E(fIG*) A(f)

Here, because G*t! and G**! share the same structure except for the top layers, the
energies £(-|G¥) involved in the bottom hierarchy G* are equivalent between Egs. (C.4)
and (C.6). To discuss how A(f) approximates 5{;;1 (f, L**1), we write it as

f = Zgﬂo fz +)\segz seg Z wstgrsgg(fSaft)

eV eV (s,t)EE],
+ D wpe ER (o fo) + ERL(FIVR). (C7)
(psc )EEk-H
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C.2. ENERGY APPROXIMATION

Here, the conversion for the three terms 5}10, S;eg and Sﬁfg is exact, i.e., those terms in &op
and corresponding terms in A yield the same energies as long as f = f. Next, we explain
why these three conversions are exact and why the conversion for the two remaining

terms are approximate.

Exact Conversion of Flow and Cosegmentation Data Terms

Exactness for the unary terms 8}'10 and Ssieg in Egs. (5.3) and (5.5) is shown in the same
way. Notice that nodes in V1 are always obtained by merging nodes of V/, by following
the rule of Eq. (5.19). Therefore, we can assume the domain €2; of each node i € V4, is

the union of the domains of a connected component C; of nodes in V..

Q= (C.8)

i'eCy

Furthermore, from f = f it holds that f; = fy fori € Vj,1 and i’ € C;. Using these
properties, a unary term £ in Ep can be exactly converted to the form in A as follows.
(Changes from previous equations are colored by blue).

Yo=Y ) (C9)

iEVk+1 1€VE41 PEQ;

= > > > éplf) (C.10)

iEVk+1 i/eCi pGQi/

= > > > %l (C.11)

1€V41 7 €C; PEQ

=5 S Gulf) (C12)

7',/6‘/}\,,r peﬂi/

= S €i(f) (C.13)

eV

Exact Conversion of Multi-layer Regularization Term

We perform a similar derivation for the multi-layer regularization term £ in Eq. (5.10).
From Figures 5.3 (c) and (d), we can see that each of the parent-child edges (p, c) € E,Sil
in the top layer of G¥*! has a corresponding edge (p',c) € E,Eil in G**! that has the
same child c¢. Furthermore, for each one of those edges, T\,(p) = T, (p) and o, = ay,
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C.2. ENERGY APPROXIMATION

since f = f. Therefore, we can exactly convert 6&% in &op to the form in A as follows.

Z Wpe gl?ecg(fp’ fe) = Z Wpc [)\pcl min{apv acyPe(ce) + )\pc2|04p - acq (C.14)

(p.c)EEL,, (p.c)EEY,,

= > 19 [Apet minfeay, achmin{|Ty(c.) = Telee) 2, 7oe} + Aperly — | (C15)
(POEE,

= 3 e [Apd min{a,/, e} min{|| T, (ce) — Te(Ce) 2 Toe} + Apealary — ac@

(' )CEL,
(C.16)
= Z Wpe Elf)e(g(jp ]Z(‘) (C17)
(rIeBLs,
Approximate Conversion of Spatial Regularization Term
For the spatial regularization term 5§gg in Eq. (5.6), we split it into two parts.
Z Wst reg(fs; ft stl Z Wst mln{as-; Oét} Z Wt /‘Bst’
(s,t)EE) (s,t)EE) PEDBst
+Ast2 Z Wt ’O‘s - Oét|- (C18)
(sit)eE;

Here, the first and second parts evaluate flow and segmentation smoothness, respectively.
We can show exact conversion for the segmentation smoothness part. To show this, we
classify the edges of Ej, in G**! into two types: Type A) edges (s',t') € A across two
different components s’ € Cs and ¢’ € Cy. Type B) edges (s”,t") € B within the same
component s”,¢" € C;. Notice that Eﬁetg( fs. Jt) = 0 for Type A edges, because fs = f;
holds in the same component. We now derive exact conversion for the segmentation
smoothness part as follows.

Z Wst ’as —oy| = Z Z wyryr | |ovs — Oét’ (C.19)

(S,t)EEkJrl (S,t)GEk+1 (s’ t)EAst

— Z Z Wgry! ‘Ozsr — (,YL/‘ (CZO)

(S,t)EEk+1 (S/,t/)EASt

= Z Wy g — ay| (C.21)
(+/,)€A

= Z Wgryr |a5/ — atl|+ Z Wgrryrr |OLgtt — Ozt//| (C.22)
(S/7tl)eA (S//"t//)eB

= ) walos — o (C.23)
(s,t)EE;c
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C.2. ENERGY APPROXIMATION

Here, wyy = ) wyyp in Eq. (C.19) is from Eq. (5.14), but the definition of (s',t) can
be equivalently replaced as Type A edges (s',t') € Ay where s’ € Cs and ¢/ € Ch.
Equation (C.20) is from f = f, where it holds that ; = o) fori € Viyq and i’ € C;.

In contrast, the conversion of the flow smoothness part in Eq. (C.18) is not always
exact. However, the pixel locations p where the flow difference penalties 1% (p) actually
occur are the same in &op and A. Furthermore, the total costs of the flow smoothness
part are equally bounded by Z( s)€Bpir Ast1Wst Tst in both Eop and A. Thus, Eq. (C.18) is
a good approximation for the spatial regularization term.

Approximate Conversion of Graph Validity Term

To derive an approximation £yt ( f|V}}) for the graph validity term Egt! (V1) inEq. (5.11),
we need to deal with two issues. 1) We need to convert variables from the node structure
Viq1 in Eop to the labeling f onV/ in A. 2) The approximation function must be pairwise
submodular energies for allowing graph cut based optimization.

For the first issue, we apply the variable conversion of Eq. (5.19) and regard Vj1
as a function Vj., 1 (f) that represents a set of connected components C; of nodes in Vi

assigned the same label. Thus, E¥1(V}.,1) is converted to a function of f as follows.

7 ~gra
Ept (Vis1) = Anod B Vi1l = Aol D Y In P(I,]67) (C.24)
1€V 41 PEQ;
= ModB T Vet (N = Aol Y D I P(Ip|07) (C.25)
1€V 41 PESY;
= AodB M Vi1 ()l = Aol D Y InP(I,[0%) (C.26)
[ EV’ pEQ -/

Here, |Vi41(f)| is the count of the components defined by the labeling f, and 8% is
the color distribution within the region of a component C; that i’ € V] belongs to. The
fact that the computation of both |V,1(f)| and 8% involves regional (higher-order)
information of f raises the second issue.

To deal with the second issue of higher-order terms, we relax the connectivity of
|Viy1(f)| and treat it as the count of unique labels f; in i € V; without considering their
spatial connections.

Vi (DI~ > 6u(f), (C.27)

Le{all labels}
where 0;,(f) = 1if 3i € Vi fi = L; otherwise 6.(f) = 0. In this manner, |Viy1(f)|
becomes label costs [Delong et al., 2012] of f, and the formulation of Eq. (C.26) is the
same as that of multi-region segmentation of [Delong et al., 2012]. In their model fitting
approach, the label costs are optimized as pairwise submodular terms under alpha

expansion moves with additional auxiliary variables. Our optimization approach using
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C.3. INITIAILZATION OF COLOR MODELS

local expansion moves allows the same strategy. Furthermore, the distribution 8% is
treated as a label ; given by f;, rather than a value computed from C;. Thus, the

likelihood terms in Eq. (C.26) are approximated as unary potentials as follows.

= > > WmPIp[0%) ~ > £ (f) (C.28)

VeV, peEQy i€V

where Eéra( fi) evaluates the given distribution label 8; included in f; as

Eara(fi) = = D In P(Tp]0:). (C.29)
pPEQ;

Note that the energy conversion is unnecessary for the graph terms in &( f|G¥), because
those terms are constant with the fixed G*. Likewise, it is unnecessary in the whole
process of the top-down labeling refinement phase.

Consequently, f becomes the following labeling on G*+1.

p Ti7 Z'aei if ¢ V,
{ (Ti,04,0;) ifieV] (C30)

fi: (Ti,ai) 1fl€‘/2(0§l§k;)

The distribution label 8; of i € V/ is initialized as the color distribution of the region €2;.
Except for the cross-view proposer, the proposal generation for distribution labels is
essentially the same as that of other labels (T, «). The expansion and perturbation
proposers simply copy the current label 8; of the target node 7 as a candidate. The average
proposer generates candidates as the weighted sum of two distributions w;0; + w;6;.
The cross-view proposer generates a candidate as the distribution within the region €2; of
the target node 7.

C.3 Initiailzation of Color Models

Here, we explain the implementation details of the initialization of color models {87, 87}
omitted in Section 5.5.3.
Geodesic Distance

We first compute a geodesic distance map for each of the input images. At every pixel p

we compute the shortest geodesic distance to any of the image boundary pixels q € B:

D(p) = gfgg d(p, q), (C.31)
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where d(p, q) is the geodesic distance between two pixels p and q define as

Is|—1

AP, @) = min > [T(s(k + 1)) — Ts(k))z C32)
k=1

Here, P is the set of all paths joining p and q. The approximate computation of D(p) is
efficiently implemented using a linear-order algorithm of [Toivanen, 1996].
We further normalize the value range of the geodesic distance map by

D(p) = e~ D@/, (C.33)

The parameter v is given as v = no? where o = E[||I(p) — I(q)]|2] is computed as the
expectation over all spatial neighbors (p, q), and 7 is set to 20 in our implementation.

The values of 1 — D(p) are visualized in the right part of Figure 5.4.

Seeds and Initial Mask Creation for GrabCut

Secondly, we compute seeds and initial masks of foreground and background as input
to GrabCut [Rother et al., 2004]. The seeds of foreground and background regions give
constant unary likelihoods. The initial masks are used to initialize the color distributions
used in GrabCut. We compute these regions using the ratio values and the geodesic
distance as follows.

As explained in Section 5.5.3, we have three ratio values {r;, 2,73} at each pixel
computed from the three levels of the image pyramid. For each level, we normalize the
ratio values to be in the range of [0, 1] using the minimum and maximum ratio values.
After the layerwise normalization, we integrate the three ratio values to obtain a single
value as r = rirors + (1 — ri)rors + r1(1 — r2)rs + rira(1 — r3). We then create the
foreground / background seeds and foreground / background masks as regions where
r < 0.05,r > 0.95, 7 < 0.70 and r > 0.85, respectively. The regions of foreground seed
and mask are further reduced if the geodesic distance is D(p) > 0.5.

In our implementation, the color likelihood terms of GrabCut are implemented
by 643 bins of RGB color histograms with a weight coefficient of 1. The pixels in the
foreground /background seeds are assigned a constant likelihood value of 10. Using the
geodesic distance in Eq. (C.33), we also add background likelihood values of 10D(p). For
efficiency, we use the superpixel nodes of V; during this step and reuse them again in our
main algorithm. Finally, we obtain estimated color models {8, 7} of an image after a
few iterations of GrabCut. We perform this computation for each of the two images.

182



C.4. SUBMODULARITY

C.4 Submodularity

As discussed in [Taniai ef al., 2016a, 2014] (Chapter 4) the submodularity condition of
local expansion move energies in Eq. (5.20) is the same as that of conventional alpha
expansion moves [Boykov et al., 2001]. To prove that our energy is submodular under
expansion moves, we need to show that our pairwise regularization terms Ed and £ig
in Egs. (5.6) and (5.10) are submodular. To simplify discussions, we rewrite these terms

as a pairwise function, as follows.

o(x,y) = min{z, y}9(x,y) + Az — y|. (C.34)

Here, A\ > 0 is a scalar weight, a bold x denotes a label vector of (T, o) while a non-bold
x denotes its scalar alpha label a € [0, 1]. The two terms £y and Efeg can be expressed in
this form by properly defining )(x,y). Using this notation we prove the following two

lemmas.

Lemma C.1. If¢(,) satisfies the following three conditions for any x,y, z

0<d(x,y) <, (C.35)
Y(x,x) =0, (C.36)
Y(x,y) +9(z,2) < P(x,2) +Y(z,y), (C.37)
and if
T <2\, (C.38)

then ¢(x,y) is submodular under expansion moves, i.e., it satisfies the following
submodularity condition of expansion moves [Boykov et al., 2001; Kolmogorov and
Zabin, 2004]:

o(x,y) + ¢(2,2) < (x,2) + 6(z,y). (C.39)

Proof. Notice that ¢(z,z) = 0. Using this and assuming = > y without loss of generality,
Eq. (C.39) can be expressed as

Hlil’l{.fL‘, Z}¢(X?Z) + )\|.’E - Z| + min{z,y}i/)(z,y) + >‘|Z - y’ - y¢(x,y) - )\(CL‘ - y)
> 0. (C.40)

The proof for this inequity is divided into the following three cases depending on .
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Case 1 where x > y > z > 0. We show in this case that

Eq. (C.40, left)
=z29(x,2) + Mz — 2) + 2¢(2,y) + My — 2) —y(x,y) — Az —p)
= 2[v(x.2) +9(z.y)| —yplxy) +22(y - 2)
> 2)(x,y) — y(x,y) + 2M(y — 2)
= (y—2)[2A = v(xy)]

2(y—z)[2)\—7‘}

Case 2 where x > 2 > y > 0. Similarly, we show that

Eq. (C.40, left)
=29(x,2) + Az — 2) + y(z,y) + Az —y) —yd(xy) — Az — y)
= 2p(x,2) + yi(z,y) — y¥(x,y)
> y|$(x.2) + ¥(z,y) — ¥(x,y)

> 0.

Case 3 where z > x > y > 0. Finally, we show that

Eq. (C.40, left)
= 2(x,2) + Mz — 2) +y¥(z,¥) + Az — y) —y¥(x,y) — Mz —y)
=ap(x,z) + yo(z,y) — y¥(x,y) + 2A(z — 2)
> y|v(x,2) +¥(z,y) —P(x,y)| +2A(z — )

> 0.

(C.41)
(C.42)
(C.43)
(C.44)
(C.45)
(C.46)

(C.47)
(C.48)

(C.49)
(C.50)

(C.51)
(C.52)

(C.53)
(C.54)

Lemma C.2. Ifv(x,y) is given by a form of the truncated Euclidean distance as

P(x,y) = min{[[x = yll2, 7},

then v (x, y) satisties the aforementioned three conditions of Egs. (C.35) — (C.37).

(C.55)

Proof. The first and second conditions are obvious. We can also show the third condition
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as follows.

Y(x,y) +9¥(z,2) = ¥(x,y) (C.56)

= min{||x —yll2, 7} (C.57)

=min{||(x —2) — (y — 2)||2, 7} (C.58)

< min{||x — z|j2 + |y — 2|2, 7} (C.59)

< min{||x — z[|2, 7} + min{||y — z2, 7} (C.60)

=(x,2) +¥(z,y) (C.61)

]

The above two lemmas directly derive the submodularity for the parent-children
term &l using substitutions A = Ape2 and 7 = Ape1 7pe. By slightly modifying Eq. (C.55)
for the spatial term Efetg, it can also be shown to be submodular where A = Ay and

T = Ast1Tst-

C.5 Tuning Hyper Parameters

We explain our strategy of tuning parameters. Since the graph term is independent of the
labeling, we start with a simple energy function consisting of only the graph term. We set
Acol = 1 and tune Ao so that |V | >~ 2|V3| in the obtained graph. We then use the single
layer model and tune parameters of the flow (Ag,, 7p) and segmentation (Aseg) data terms
and spatial smoothness term (Ast1, As2, 7st). While checking segmentation quality, we
tune Aseg at around A and A at around 50 (the default setting in GrabCut [Rother
et al., 2004]). The remaining flow-related parameters are tuned by checking flow quality.
We finally use the hierarchical model and tune the parameters (/\pd, Apc2, TPC) of the

multi-layer regularization.

185



Supplementary Information for Chapter 6

In this supplementary chapter, we present implementation details associated with the
proposed techniques described in Chapter 6. Some additional notes and experiments are

also provided. The contents of this chapter are summarized below.

* Section D.1: implementation details of SGM stereo used in Section 6.4.1.

Section D.2: implementation details of SGM flow used in Section 6.4.5.

Section D.3: implementation details of flow map refinement used in Section 6.4.5.

Section D.4: implementation details of segmentation prior used in Section 6.4.7.

Section D.5: a note on our strategy of tuning parameters.

D.1 SGM Stereo

In the binocular and epipolar stereo stages (Section 6.4.1 and 6.4.3), we solve stereo
matching problems using the semi-global matching (SGM) algorithm [Hirschmuller,
2008]. We implement SGM as described in Section 2.3.4. Specifically, stereo matching
is cast as a discrete labeling problem, where we estimate the disparity map D, =
D(p) : 2 — D (where D = {Diin, " - - , Dmax} is the disparity range) that minimizes the
following 2D Markov random field (MRF) based energy function.

Estereo(D) = Y Cp(Dp)+ > Vpq(Dp, Dy). (D.1)
peQ (p,q)eN

In our implementation of SGM, the unary data term C}, in Eq. (D.1) is defined using
truncated normalized cross-correlation in Eq. (6.5) in the main chapter. The smoothness
penalties P; and P, of V},4 (see Eq. (2.26) for the definition of V,4) are defined as follows.

b = /\sgm/’p —q (D.2)

Py = Py (B +qwis) (D3)
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Here, wg‘g is the color edge-based weight used in Eq. (6.15) and we use parameters

of (Asgm,3,7) = (200/255,2,2). The disparity range is fixed as {Dmin; """ ; Dmax} =
{0,---,255} for the original image size of KITTI (since we downscale the images by
a factor of 0.65, the disparity range is also downscaled accordingly). We also set the

confidence threshold T, for the uncertainty map ¢ to 2000 by visually inspecting U(p).

D.2 SGM Flow

We have extended the SGM algorithm for our optical flow problem in Section 6.4.5. Here,
we estimate the flow map F, = F(p) : Q@ — R (Where R = ([tmin, Umax] X [Umin, Umax]) 1S
the 2D flow range) by minimizing the following 2D MRF energy.

Baow(F) =Y _Ch(Fp)+ Y Viq(Fp: Fa)- (D.4)
peQ (p.@)eN

Similarly to SGM stereo, we use the NCC-based matching cost of Eq. (6.5) for the data
term C},(Fp) to evaluate matching photo-consistencies between I{ and I, ,. We also

define the smoothness term as

0 if Fp=Fq
VoqFp: Fq) =4 P if 0< || Fp—Fqll <V2 . (D.5)
P, otherwise

Since we use integer flow labels, the second condition in Eq. (D.5) is equivalent to saying
that the components of the 2D vectors Fq = (uq, vq) and Fp = (up, vp) can at-most differ
by 1. We use the same smoothness penalties { P;, P»} and the parameter settings with
SGM stereo.

The optimization of Eq. (D.4) is essentially the same with SGM stereo, but the im-
plementation of updating scan-line costs in Eq. (2.27) was extended to handle the new
definition of the pairwise term V} . Therefore, Eq. (2.30) is modified using a flow label
u = (u,v) € R as follows.

Ly(p,u) = Cp(u) + min{Ly(p — r,u), Ly(p — r,u+ Ay) + P, P2} (D.6)

Here, (u + A41) is enumeration of 8 labels neighboring to u in the 2D flow space.

D.3 Refinement of Flow Maps

In the optical flow stage of Section 6.4.5, we refine flow maps using consistency check
and weighted median filtering. Similar schemes are commonly employed in stereo and
optical flow methods such as [Zhang et al., 2014; Hosni et al., 2013; Bleyer et al., 2011].
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A P 2 SIS T S

Backward flow inap (c) Consistency check

(b)

. o

et

(d) Background filling (e) Weighted median filteringf) Disparity map as guidance image

Figure D.1 Process of flow map refinement.

Below we explain these steps.

We first estimate the forward flow map F° (from I to I?,;) by SGM for only the
foreground pixels of the initial segmentation S such as shown in Figure D.1 (a). Then,
using this flow F° and the mask S, we compute a mask in the next image I, and
estimate the backward flow map F! (from I}, ; to I}) for those foreground pixels. This
produces a flow map such as shown in Figure D.1 (b). We filter out outliers in F°
using bi-directional consistency check between 7Y and F! to obtain a flow map with
holes (Figure D.1 (c)), whose background is further filled by the rigid flow Fiq (see
Figure D.1 (d)). Finally, weighted median filtering is applied for the hole pixels followed
by median filtering for all foreground pixels to obtain the non-rigid flow estimate such
as shown in Figure D.1 (e).

At the final weighted median filtering step, the filter kernel w§q = e~%a/re is
computed using geodesic distance dpq on the disparity map D (Figure D.1 (f)) as the
guidance image. For this, we define the distance between two adjacent pixels as

dist(p1, p2) = [D(p1) — D(p2)| + [IP1 — P2/|/100. (D.7)

The geodesic distance dpq is then computed for the pixels in the filter window q € Wy,
as the cumulative shortest-path distance from q to the center pixel p. This is efficiently
computed using an approximate algorithm [Toivanen, 1996]. We use the filter window
Wp of 31 x 31 size and Kgeo = 2. The subsequent (constant-weight) median filtering
further reduces outliers [Sun et al., 2010], for which we use the window of 5 x 5 size.

D.4 Segmentation Ground Prior

The segmentation ground prior term mentioned in Section 6.4.7 is computed as follows.
First, we detect the ground plane from the disparity map D(p). We use RANSAC to
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Figure D.2 Profiles of scene flow accuracies w.r.t. parameters T (left) and Ao (right). The error
rates are evaluated on 200 training sequences from KITTI. The scores with the default parameter
settings are colored by red.

fit a disparity plane [d = au + bv + ¢] defined on the 2D image coordinates. Here, we
assume that the cameras in the stereo rig are upright. Therefore, during RANSAC
we choose disparity planes whose b is positive and high and |a| is relatively small.
Then, we compute the disparity residuals between D and the ground plane as r, =
|Dp — (apy + bpy + ¢)|, where (a, b, ¢) are the obtained plane parameters. Our ground
prior as a cue of background is then defined as follows.

C’Ig,ro = Agro ( min(rp, Tgro) /Tgro — 1) (D.8)

When rp, = 0, C5 strongly favors background, and when ry, increases to Tgyo, it becomes
0. The thresholding value 7, is set to 0.01 X Dpax. We use Agro = 10.

D.5 Parameter Settings

In this section, we explain our strategy of tuning parameters and also show effects of
some parameters. Most of the parameters can be easily interpreted and tuned, and our
method is fairly insensitive to parameter settings.

For example, the effects of the threshold 7, for the uncertainty map U/ (Section 6.4.1),
the threshold 7,, for the patch-variance weight wi** (Section 6.4.4), and k3 of the image
edge-based weight wpfy (Section 6.4.4) can be easily analyzed by direct visualization as
shown in Figure 6.3 (b), Figures 6.4 (b) and (e).

The parameters of SGM (discussed in Section D.1) can be tuned independently from
the whole algorithm.

For the weights (Ance, Afios Acol; Apotts) in Section 6.4.4, we first tuned (Ance; Afios Apotts)
on a small number of sequences. Since the ranges of the NCC appearance term (Eq. (6.11))
and flow term (Eq. (6.12)) are limited to [—1, 1], they are easy to interpret. Then, we tuned
Acol Of the color term (Eq. (6.14)). Here, Apotts / Acol is known to be usually around 10 - 60
from previous work [Rother et al., 2004; Boykov and Jolly, 2001].
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Even though we fine-tuned 7 and A for Sintel, they are insensitive on KITTI image
sequences. We show the effects of these two parameters for KITTI training sequences
in Figure D.2. The threshold 7, for NCC-based matching costs was adjusted for Sintel
because its synthesized images have lesser image noise compared to real images of KITTT.
Also, the weight A, was adjusted for Sintel, to increase the weight on the prior color
term (Section 6.4.7). For Sintel sequences, sometimes moving objects stop moving on a
few frames and become stationary momentarily. In such cases, increasing \.,; improves
the temporal coherence of the motion segmentation results. In the future we will improve
the scheme for online learning of the prior color models, which will improve temporal

consistency of motion segmentation and also will make )., more insensitive to settings.
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