

(j)

On Access Control m Object-Oriented Database

Systems

by

Keishi Taj ima

Department of Informatio n Scie nce

University o f Tokyo

A Dissertat ion

Submitted to

Th e Graduate School of

The University of Tokyo

in Pa rtial Fu lfillment of the Requirements

for the Degree of Doctor of Science

in Informat ion Science

ADSTRACT

\Ve develop fundamental mcchan isn1s for access control in object-oriented database systems. In par­

ticular, we ex plore control depending on the static name of the accessed data (71a1ne-depende1ll access

con /rolL control depending on the dynami c values of the accessed da ta (content-dependent access conl.rol),

and control depending on the context where that access occ urs (contexl-dependen l arcess co ntrol).

'vVe achieve name-dependent access control by int roduci ng mu ltiple in terfaces of objects, in other words

m ultiple "views1
' of objects. In different views of an object, different., sets of att ributes a re defined. VVe

achieve content-dependent access control by in t roducing classes of objects defined with predicates. As

a theoret ical hasis of those mechan isms, we develop a typed polyrnorphic calculus that. supports general

mechanisms for views on objects an d for object. sharing among classes [OT94]. In this calculus. a class

contains in clusion speci fi cations of objects from other classes. Each such specification consists of a predical.e

determining a subset of objects to be included and a viewing funct.ion th rough which those inclu ded objects

a re manipul ated. Both predicates and viewi ng funct ions can be any type consistent programs definabl e in

the polymorphic calculus. Inclusion speci ficati ons among classes can be cyclic, allow ing mutually rec ursive

class defini t ions. These features ach ieve nexible view definitions and wide range of class organ izations

in a compact and elegant way. Th e calculus prov ides a suitable set of operations for objects with views

a nd classes with predicates so t hat the programmer can manipu late t hem just the same way as one deals

with ord inary records and sets. Moreover, the calculus has a type inference algorithm t hat relieves t he

programme r from compl icated type declarat ions of views and cla<ises. 'The polymorp hic type system of the

calculus is also shown to be sound, which guarantees complete static check of type consistency of programs

involving classes and views.

To ach ieve context-dependent control, we develop a framework of access control where the granularity of

access control is an invocation of a composed fu nction on data objects [Taj 96]. The users are granted rights

to invoke abst ract functi ons instead of rights to invoke primitive operations. A !though primi tive operations

a re in voked inside those fun ctions, t he users can invoke them only through the granted fun ctions, that is ,

only in so me specifi c contexts . Howeve r, if the user effectively obtains t he sarne abi lity that he would

have when he could invoke t hose prirnit,ivc operations directly, the functions actua lly do not hi de the

ope rations. Access control utiliz ing encapsulated functions eas ily causes many of t his kind of c:security

fl aws" t hrough which mali cious users ca n abuse the primitive operat ions inside the fun ctions. We develop

a formal basis to deal with this issue. First, we design a framework to descr ibe security requirements

that should be satisfied. Jn this fr amework , sec urity requirements are described in terms of i11jerabilily on

returned va lues of a rbi tra ry fun ctions and controllabihly on arguments on a rbitrary functions. These two

concepts a re natural genera lizat ion of classica l read and write capabi lit y, and a re precise representation of

user capab il ity in database access. Next, in order to show the effect ive ness of this fr a mework , we develop

an algori t hm t hat sy ntacti cally analyzes program code of the functi ons and determines whether the given

securi ty requirements are satis fi ed or not.

&~ :lZ ~a:

*~9~7~J'ii~~-9~-~~~0~77~~~-~~L~. ·tl~~~~~-9~8~~~-~£0(

ilill. {~liU1MHi1Hlil). ~- '~1i([i:i/,!;0(;1;~1· (li·J~1M?ili1HliJ). ~J: 1!7 7 ~ A~)C!Ji(i-ol!i'[,t\I:A.tLHII. (X

!Jf(M#~•J~~~~a*~mt~g~~-

t.l\IJ11<#$~1•1iit* ~9 ~ 7 ~ 1:1J1fr~1 / 9 7 ~ 1 ~. ~~b J:,fllfr~ 1:0 .:>.- t;<E.t L, .:L-"1'1Jt.l:)'1,~

~ 1:0 .:>.- HJ.\1~~ ~ ~ U: J: -:>~ :k.!Jl.~ ~ - it~. l*i'f'l:11<i'frull.li, ~i'htl: J: "'~>E.it~ tL~ *~9 ~ 7 ~ ~

7 7 ~ i-ifr.A L . .:L-"1'1Jt.l:l't,~ ~ 7 7 ~ i-iMiJI;~ ~ ~ 1::1: J: "'~~JJl.~ ~- i-~ J:? ~i!f~l~t~~~:§!J(iit;~

tliill:: L~ . *~9~7 r~~:C.:>.-1::77~ftll~*~9~7 H~1'r~~~;~H;\'-:>1f-#1Ji2~~atiltilt-r~. ~~~

•~~. 677~>E•~~77~1::~*~9~7r~Aw~•~>Eat~~ - ~~>E•~~w~~~*~9~7

r~il!-frt>E~~~i't-'i\:1::. -ttLI?~*~9:c7 r~1 :.-97:c1 ~t>E.&~~I:O.:>.-Jl!lfriPI?~~- ~i'htl::

1:0.:>.-r>Jfrl:lot. ~~1'l~a~>E.&iiJfi~~if:et~7o::r7L-t1ll!lll~~~- v~. #11il'}li!i~77~>E.&1:J: ~.

•m~~Aw~•,>E•nr•~~~- ~tLc,~J:~1f-•~";L->EB•777-ffl&#eM~B~2~~~~- ~

~HfJ!l:!f?~!ilill'1JtE.l(l;7 Jv::t•J ;:<"' t#s . .:L-"fli~~~ ~:C.:>.-'(>7 7 ~~!l:!~c~Hr~ ?£·~11 ~"'· ~~

7 Jv::f•J ;:(L.li't<':@:~~ ~. ~11.1: J: ~ 1:0 .:>.-'(>7 7 7- tS~7o 7·7 1. ~'Ji:@~;'l1tii'J!l:!ij(1't11'"Jfi~~~~-

i~xaM#~-~~~~. ~-f~U~~-·~fr~B~t~-~-ffi/::~~77~7-~·~ilfRt ~R

i'~. 6.:L-"!'~77 ~~ltHJl.li, £$~1'1';:.- U:~li~ < 1\T,.Il!Jfr;:," 1:: I:J'ii;<E~tL~ . ~tLC,~I11i·ll!lfr~'l>

~lii/,!;$~i'f:11'g~ ~ tL~ ~ 1::1: ~~11' . .:L-"fli~ tLC,~}J;$~1'f:i-lJ-;(_ <?tLt~/11iK&~frtilli L ~~;;,.. T~

bi; -)E~)C·~~;;,.g~~~~- LiPL, 'L~~.:L-"1'11' . .ftLC,~~,I;$J')d'f:i-II!Ji~fT~I~~I::~1'(~

1:1;tjlj] t.:fVJ '<-1'}~ ~ <?li , ~ tL<?~Il!lfrlii/,!;$l'~1'Fi-~1'tiJ'JI:IH~. L ~"~" ~ 1:: 1:~ ~. ll!lfr~:IJ 7~JHt

i-~lllL~77~7-~·i-fT~?--fr, ~~J:?~~·.:>.~~1~atL#8£~~t.:~ i-~~a4~~~J:?

~r.~lillH&? t~~~Jf3J't(t;~J,I;!li-1JilRT ~ - -t~tc"'J 1: i 'f, ~·.:>. 'J ~ 1 J:.illlt~ ~ tL~~~ ~;J<:t~ci!!!~ ~

t~~~ilfRtiltill'~~ - ~~ilfR~Ii~;J<:t fJtE;;(iiiJfi~tlJ 1:: fl1i~lmiiJfi~tlJ i::v'?liOC:"tt~"'~Jcimi'~ . ~

n<?~l!OC:-tloti!i'JJ~>~r.: r~i.'h-iliLJ. f;!l'£<:i6h-J ~fi~t.J~ -~ll:ft~~ ~ . .:L-"1'~~-,~-7-77~~~:~

It~ fiiUJ tiitii;TJI:~m_ L ~"' ~- i- L ~ ;}-:1:, ~hi? ~l!OC:'t11'1t1f~~ J:? ~~·.:>. 'J ~ 1 ~l~llillH&? J:. ~1'rlll

~~ ~ ~ 1:: t ii'T tc"'J 1:. itllllfr~ 7o 7'7 A tl'l1>8(JI:WI-IIr~ ~ ~ 1:: 1: J: "'~, ~h. G ~l!OC:'ti-19!-:> ~~cim ~h.

t~~;)<11'i,:lit~ ~ tL ~"'~11,1::'? 11''<-'l'IJ)ET ~ 7 Jv:i') ;(A t~ilrT ~-

Acknowledgements

Most of this research was done while the author was working under Atushi Ohori for two years at Research

Institu te for Mathematical Sciences (RJMS) in Kyoto University. I wou ld like to thank Atsushi Ohori for his

great ly valuable suggest ions a nd long substantia l discussions t hrough thP resea rch. I also thank Kazuhiko

Kato for his motivat ing me to beginn ing the research on views in object-or iented databases. The author

is also indebted to Takashi Masud a for his continuous support. and encou ragement. Many other colleagues

helped me in carrying out this research . Kenjiro laura helped me in va rious things during the preparation

of th is thes is. Takashi Miyata continuous ly encouraged me so that I can concent rate on the work for this

th esis. T heir encouragement undoubtedly promoted the work. Masakazu Soshi helped me in survey ing

the research a rea on secu rity iss ues. Naoki Kobayashi made a contribution to this research by giv ing a

suggest ion when the researc h on secu rity analysis was in its early stage. The preparation of th is thesis is

carried out rnain ly at KABA . I would like to thank Reiji Nakajima for his a llowi ng me to accessing and

stay in g at KA BA freely. ivl any colleagues at KA BA , Yasuhi ko J'VIinam ide, Koji Kagawa, Makoto Tanabe,

Susumu Nisimura. J un P. F'uruse, Jacques Gar rigue, Etsuko Suganami, and !'VIinako Tarumi , prov ided me

comfortable environment and pleasant relaxi ng time during t he preparation of this thesis. l could have

joyful time with them whi le I was working for this thesis.

Table of Contents

A cknowlcdgcn1e nts

List of Figures iv

1. Overvie w of The Thesis

2. A Polymorphic Calculus for Objects wi t h Views and Classes with Object Sharing 3

2. 1 Introduction. 3

2.2 T he Core Language.

2.3 View Extension

2.3.1 An algebra for objects and views

2.3.2 E:xamples of views

2.3.3 Typing and semantics of objects and views

2.t1 Classes and Object. Sharing

2.4.J C lass definit io ns and t heir typing .

2.4.2 An example of a c lass

2.4.3 Semantics of classes

2.4.4 Recursive class definition

2.5 Application

2.5.1 Objects as Abstract Data Type Objects

2.5.2 C lasses as Temp late a nd Interface of their Instances

2.5.3 In cremental Construct ion of the Schema .

2.6 Contribution and Future \Yor k

3. Static D e tect ion of Security F laws Caused by Encapsulation Failures

3.1 Introduction.

3.1.1 Re lated Work

3.2 The Bas ic Model

3.3 Specifi cation of Security Req uirements

i i

12

14

17

20

23

23

25

26

27

32

33

33

34

36

38

38

40

41

43

3.3. 1 Basic Concepls

3.3.2 Causali ty bet ween capabil it ies .

3.3 .3 Formalization

3.4 An Algorithm for Fl aw Detection

3 .4 .1 The Algori t hm

3.4 .2 An Example

3.5 ConLribution and Fu ture Work

R efe re nces

Ill

43

46

48

56

56

71

72

74

List of Figures

2. 1 T ype System (1/2)

2.2 T ype Sys tem (2/2)

2.3 T yping Rules for Objects and Views

2.4 Semantics of Objects and Views through Transformation .

2.5 T yping Rules for Classes .

2.6 Semantics of Classes t hrough Transformation

2.7 T yping rule for recursive class definition

2. 8 'The directed acycli c graph illustrat in g total incl usion relation

3. 1 Implications between capa bili t ies

3 .2 Actual ranges of values of expressions

iv

10

ll

2 1

22

25

27

28

31

44

59

Chapter 1

Overview of The Thesis

\Ne develop fundamental mechanisms for access control in object-oriented data base systems. There are

several classes of access control [FS\V81] . Among them, 11ame-depe11denl access control , which is control

depending on the static name, such as attribute name, of the accessed data, and content-dependent access

control , which is control depending on the dynamic valu e of the accessed data, are the most fundan1ental

classes of access control. In the relational database sys tems, only these two classes of access control are

usually supp orted. context-de]Jendent access control , which is cont rol depending on the context where that

access occurs, is also widely regarded as a useful feature. In this thesis, we explore these three classes of

access control.

This thesis consists of two parts. In C hapter 2, we discuss name-dependent access cont rol and content­

dependent access control. Name-dependent access control can be achieved by introdu cing multiple inter­

faces, in o t her words different "views", of objects, and by providing different views for different users.

In different views , different set of attributes are defin ed. Each user can access only attributes defined in

his view. On t he other hand, content-dependent access control can be achieved by introdu cing classes of

objects defined with predicates. Those classes dynamically include only objects that satisfy those predi­

cates. By prov iding different sets of classes for different users , each user can access objects that satisfy the

predicates of the classes given to him . By comb ining those two approaches, that is, by int roducing classes

with predicates and attaching different views to different classes, we can achieve both name-dependent

access control and content-depend ent access control. This a pproach is t he t raditional way to provide

name-dependent and content-dependent access control in the relational database systems. "Views" in the

relational databases are virtual re lations defin ed by queries which specify conditions on the contents of

tup les and attributes included in the view. Many recent researches also proposed introdu ction of views

(or often called tt virtual classes") similar to those in the relat ional databases into object-oriented database

systems [TY I88, AB91 , SLT91, Run92]. Those researches, however, introdu ce them into the ordinary

object-orient ed database systems in rather ad-hoc ways. Moreover, they just describe desired facilities,

and no formal model of those facilities is es tablished. The facilities needed for views are essen tially those

for object-s haring among classes. In t his thesis, we show that t hose facili t ies ca n be introduced as a natural

generalization of the inheritan ce mechanism, which is one of the basic fac il ities of many object-oriented

database systems. F'urther , as a theoretical basis of such a framework , we develop a typed polymorphic

calculus t hat supports general mechanisms for object sha ring among classes and views on objects.

In Chapter :3 , we discuss context-dependent access control. To realize context-dependent control, we

develop a fram ework of access control where the granu lar ity of access to be controlled is an invocation of

a composed fun ction on data objects. Although pri mitive operat ions a re invoked inside those fun ctions,

the users ca n invoke them only t hrough t he granted fun ctions, that is, only in some specific contexts. The

idea of access control using encapsulated fun ctions is not new. In fact, this is exactly the idea of abstract

data type, and is the important feature of many object-oriented database systems. Access control utili zing

encapsul ated functions, however, eas ily causes many "secur ity f\awsn through wh ich malicious users can

abuse the primitive operat ions inside the fun ctions. In other words, it is diffi cult to ensure that a primitive

operation in a fun ction is invoked certai nly in a desired context. In order to establish a formal basis to

deal with t his issue, we design a formal framework to specify a '"desired context" in a more abst ract way.

Next, in order to show t he effectiveness of our formalization , we develop techniques to statically detect

security Aaws, that is, to stat ically determine wh ether primi tive operat ions are actually in voked in the

specified "desired context". Because access control by provid ing for users only views defin ed by fun ctions

mapping origin a l data to its view is essentially the same concept as access control by providing for users

only composed fun ctions, these techn iq ues can also be applied to validation of t he definitions of views in

t he framework shown in Chapter 2.

2

Chapter 2

A Polymorphic Calculus for Objects with Views and

Classes with Object Sharing

2.1 Int roduction

To provide name-dependent. access co ntrol and content-dependent access control, we develop a mechanism

to organ ize objects into cl asses in accordance with predicates on the dynami c values of those objects. In

the usual object-oriented database systems, objects in the database are classi fi ed into classes. Each class

has its extent, that is , a set of a ll objec ts that belongs to that class. Classes share objects in their extent

with each other via inheritance mechanism. l11h eriJ.ance is a term that implies hierarchically organizi ng

some resources through a partial ordering on classes usually called a n IS-A relation. As discussed in

[A13D+89, 1309 1, BT B091], this concept appears to be used for two di fferent purposes in object-oriented

databases. As in object-oriented progranuni ng languages in Smallta lk [G ll83] tradition, it is used for code

sharing; by asserting that Employee i S-A Person , we expect. that any method applicable to Person objects is

a lso a pplicable to Employee objects. In object-oriented databases, inheritance is also used for mai ntaining

exten t incluswn as mentioned above; by the asserlion that Emp loyee IS-A Person we usually assume that

the set of Employee objects is a subset of the set of Person objects. Several object-oriented database systems

and languages have been proposed by using these two forms of inh eri tan ce [BD K92, AC0 85]. T hese two

mechanisms ca lled '' inherita nce'' are, in essence, mechan isms for sha1'ing of methods or objects among

classes, but they are speciaJizcd for only cases which correspond to IS-A relation between classes. While

this specia lization prov ides a co rnpact. a nd in t uitive ly ap pearing way of orga nizi ng met.hods and objects,

there must be more fund arncnta l framework for sha ring. Indeed, there seems t.o be no a priori reason why

each of t hese two kind of sha ri ng should be cont rolled by simp le part ial o rd eri ngs.

As for code sharing 1 IS- A relation achieves some fl ex ib ility of method application by allow ing a n obj ect

of one type to have its supertypes. This usage of IS-A relation can be rega rded as an "approximation" to

polymorphic typing in programming with records. Recent years have seen that polymorphJc type inference

for records provides a better a lternative for met hod sha ring [Wan87, JM 88, 0888, llS9]. In this paradigm,

3

the fact that Employee can inherit a method dcfinrd on Person corresponds to the propert y th at the

method is polymorphic so t hat it can also be app licab le to elements of Employee. Sin ce type inference

directly captures the polymorphic nature of a method th rough inferr ing the principal type of t he method,

it achieves more general and rigorous model for method shar ing. The iS-A re lation is then regarded as

a special case of method applicability represented by polymorphi c typing for methods. As demonstrated

by Machiavell i [O BBT89, B096], this paradigm can be successfull y applied to database programmi ng for

various forms of complex objects.

VVe believe that a simil ar s itu ation exists for object sharing. Extent inclusion t hrough IS-A relat ion is

certai nly useful for many cases. However, there are others where a simple partial ordering is inadequate

for exp ressing the desired st ru cture of object shari ng. For example, suppose we have classes Student and

Employee and want to defin e a new class Fema leMember. We natu rall y want the class FemaleMember

to include Student obj ects and Emp loyee objects that a re considered also as female. Such a situat ion

cannot be directly modeled by usual inclusion through a parti al ordering. There are some proposa ls

[TY I88, SLT9 1, AB9l , Run92] that attempt to overcome this limitation by in troducing spec ial classes

that a re dynami ca lly derived from other cl asses in accord ance with t he specifications of them , and by

placing them in a usual inheri tance hierarchy. This process, however, generally requires t he generation of

intermediate classes to conform to the presupposed model of extent in clusion. In add ition, t he t reatment

of update to such dynamically der ived classes needs ad-hoc rules. However, we need not be bound by

partial ordering. A more direct and natural app roach is to develop a framework for object ha ring where

t he programmer can specify desi red object sharing relat ions between a rbit rary two classes and with an

arbitrary cond ition. Usual extent inclusion, where one class un conditionally in cl udes the entire ex tent of

another class, then becomes a special case of t his general mechanism. The motivation of our work is to

develop such a framework.

The first step in our develop ment is to defin e a fl exible mechanism for views of individual objects.

The abil ity for a class to share objects with another class necessarily im plies t he abili ty to view an object

di fferently depending on the context in which the object is manipulated. For example, if FemaleMember

class imports some Employee object , then the imported Employee object should behave like a Female Member

object when evalu ating a query on FemaleMember class . VVe realize views of objects by attaching an

unevaJu ated function , which we call viewing Junc J.ion , onto every object. The viewing fun ction would

be dynamically evalu ated and rnaps the raw attribute information of that object to the view. Any type

consistent program can be used as a viewing fun ction. Users can mani pul ate an object as if it has the

type of the range of t he viewing fun ction, whi ch we call t he view Jyp e of that object . In addit ion, we can

attach some view accumulatively on top of anot her ex is ting view. Internally, t hat is realized by fun ction

composition.

The idea of representing views through fun ctions is not new. In t he relat ional model, a view is essentia lly

an ex pression specifying how t he relations be transformed. Cottlob, Paolini and Zica ri [C PZ88] developed a

theory of re la tional view update based on the notion of dy11armc vzewS 1 which is regarded as an association

of a data object and a viewing fun ction. In the context of object-oriented databases 1 Heiler and Zdonik

[HZ90] uses a simila r notion to provide a viewing mechanism. '·View object'1 in [\•Vie86, BI\SW91) can

also be regarded as an unevalu ated viewing fun ct ion. The general idea of views is a lso related to uroles'' of

objects [1159 1, ABG093]. These proposals contain a mechanism to attach multiple roles to objects, which

can be rega rd ed as a s imple method to implement some as pect of views. However 1 these existing approaches

in object-oriented databases on ly describe some desi red features of views operationally ; t here seems to be

no formal framework for systematic manipul ation of objects and views with a rigorous semantics. If ere we

attempt to provid e such a framework within a paradigm of type theory of programming languages. We

hope that. the fr amework present,ed here will serve as a typed foundati on for statica lly typed polymorphic

object-oriented database programming languages.

T he second step of our developme nt is to define a mechanism for object sbaring among classes. We

allow a class defin ition to contain inclusion specifications of objects from other classes. Ther fore , the

ex tent of each class consists of its ow n extent and imported extent which is dynamically calcul ated. Each

such in clusion specification consists of a pred1cal e that selects the subset of objects to be inc luded and a

viewing function defin ing view under which the included objects are manipulated . llot h predicates and

viewing fun ctions can be any type consistent programs definabl e in the polymorphic calcu lus. T his achieves

flexibl e sha rin g among classes. Moreover 1 the dependence structure among classes indu ced by the inclusion

specifi cations can be cyclic 1 and t herefore mutually recursive class defintlions are possible. Cyc lic sharing

relation a re necessary typ ically for mutual sharing between two classes. For example, in the example above,

if someone inserts an instan ce to class Student and that instance is a female, t hen class FemaleMember should

inclu de that inst ance whi le if someone inser ts an instance to class FemaleMember and t hat ins tance is a

student 1 then that instan ce should be also included to class Student. Allowing any recursive definiti ons 1

however 1 can cause arnbiguous definitions or infinite computations. ln t his develop ment , we give proper

primitives for class definition so that. no such problems occurs and we defin e clear semantics for those

primitives.

One more point to note in our development is t hat we integrate t hose two mec han isms for object sharing

into the polymorp hic type inference system for met hod sharing. Thus 1 we prov ide a general and formal

basis for object-oriented databases in clud ing both met hod sharing and object sharing. Our development of

such a polymorphi c language for views ru1d classes is ca rried out in a following three steps. \ Ve first define

a polymorphic language ror lab led records and sets simi la r to Machiave lli [OBBT89, 8096] as t he core

language. We then defin e the necessa ry st ructures and operat ions for views on top of the core language.

In order to defin e a fr amework for uniform manipulation of objects with same view type but with di fferent

in terna l structure, we should de fin e a proper set of ope rat ions t hat a llow the programmer to manipulate

objects just the same way as one manipulates ordinary values of t he view type of those objects. This

uniformity is essential for extending the language for objects to classes, which correspond to collections

of those objects that seem to have the same virw type but may have different data struc ture of attr ibute

information. In this development, we give suc h a set of operations and define their precise semantics

and an effect ive implementation algorithm by developing a systematic method to translate the operations

into t he core calculus. Fina lly1 we develop a mecha nism for classes with gene ral sha ring relations on top

of the language for objects. A class is concep tu ally represented as a pair consist ing of a set of objects

representin g its own extent and an inclusio11 funclwn that computes a set of objects included from other

classes. Similar to what we do for objects, we defin e a set of operations on those classes in such a way that

the programmer can ma nipulate classes just the same way as one manipulate usual sets of objects. 'We

then define their precise semantics and an effect ive implementation a lgorithm by developing a systematic

method to t rans late the operations into the language we have defi ned for objects. 'We show that the two

t ranslations we described preserve typings , which estab lishes that the language with views and classes can

be statically type-checked . Moreover, there is an algori t hm to infer a principal type for any type consisten t

program involving views a nd classes .

Views and object sharing have also been considered in deductive app roaches, where views a re repre­

sented by a form or deductive rules. Based on t his general idea, in [KLW90, AL UW93], a semantically

sou nd accounts for views a re given. These approaches seems to depends crucially on the properties of

the underlying framework , i.e. fo rmal logic. It is not at a ll clear how the notions of views and objects in

deductive framework are related to those in database programming languages. Precise comparison of our

approach with those in ded uctive databases is certain ly interesting, but it may require a more abstract

character izat ion of views and objects. We will comment more on this in Section 2.6.

One issue we have not add ressed in this thesis is a proper t reatment of persistent data , which req uire

some form of dynamic typing. Connor et. al. [COM 8 90] demonstrated that various features of views of

persistent data can be represent ed by comb ining a form of localized dynamic typ ing and ex istentia l types.

T heir techniques seems to be complementary to our method.

The rest of this chapter is orga nized as follows. Sect.ion 2.2 defines the core language for records and sets.

Section 2.3 extends t he core to objects. Section 2.4 extends the language to classes. Section 2.5 desc ribe

some examples of applications of our calcul us. Section 2.6 discusses some furt her issues and concludes this

parl.

2 .2 T he Core L a n g uage

This section defin es a polymorphi c ca lcu lus si milar to Machiavelli . Th is serves as the core language on

which view a nd object shar ing mecha nisms will be developed late r. VVe fi rst explain two important data

structures: record and set .

The sy ntax for records is:

[! ,!]

where f denotes fields whose syntax is eil her I = c fo r immutab le fie lds o r I := e for mutable fields. For

examp le,

let joe = [N ame = " Doe", Sa lary := 3000]

will y ield a record with immutable Name fie ld and mutable Salary fi eld . In most cases, it is i his str uct ure

t hat store a ttribute information in objects. To prope rly capture mu tabi lity of objects, we dec ide that

evaluat ion of a record ex pression creates a new ident ity (in terna lly irnplemented by a reference) and t hat

equ ality on records is iden ti ty, i.e. L-va lue equali ty.

There are t hree operat ions on records. T he Hrst is fie ld extraction: 1··l, which extracts the value of I

fi eld from the record r. T he extrac ted val ue is a lways an ord inary va lue, i.e. H.-value even if the l fie ld in r

is mu table. The second is a specia l form of fi eld extract ion: extract(7', i) , whi ch ex tracts the L-va lue of the

mu table fie ld I of t he record r. T he extracted L- values ca n only be used as Held va lues in record creations.

For example,

let doe = [Name = " Doe", Income := extra ct(joe, Salary)]

let john = [Name = " John", Salary = extract(joe, Salary)]

are legal, resul t ing in joe 's Salary fie ld , doe 's Income fi e ld , a nd john 's Salary field a ll sharing the sa me L­

value. lf one changes joe 's Salary field, then that cha nge will be refl ected to doe and also to john even

t hough john 's Salary fi eld is immutable . However , both of t he following a re illegal and wi ll be rejected by

the type system we sha ll defin e later:

[N ame =" Joe Doe", In co me = extract(joe , Sa la ry)* 2]

[Name = extra ct(joe, Name), Income := joe -Salary]

The first t ry to pe rform ar it hmetic operat ion on an ext racted L-value and t he second attempts to extracts

t he L-value of a n immu tab le fi eld. Distinguishi ng t hese t wo forms of fie ld extract ion a llow us to properly

t ransfer mutabili ty of fi e ld s to views. The t hird operat ion on records is fi e ld update: update(r, I , e), whi ch

cha nges t he va lu e of t he mutab le I fi eld of the record 7' to e. !'or examp le, update(joe , Salary, 4000) will

cha nge joe 's Sa lary value to 4000 , while update(joe , Name ," Peter") is illegal and is rejected by the type

system, s ince joe 's Name fi e ld is im mu table.

Another data structure we consider here is set , whose sy ntax is:

The basic operations for sets a re: union(e. e) and hom(S, f , op, z). hom [0 13BT89] is a genera l ite rat ion

operat ion simila r to "pump" in FAD[BBKV88J. Its intuiti ve meaning ca n be expl a ined by t. he equation:

hom({e 1, ... ,e,).J. op,z) = op(f(e!), op(f(e2) , op(f (e,).=) ...))

'There are other possib il ities for a general elimination operat ion for sets. \Ve believe that adoption of a

difrerent e li mination operation for sets will not affect the mechan isms for views and classes we shall develop

in this t hesis. The following operations are definab le us in g union and hom:

member(ei, e,)

remove(ei, e,)

prod(e1, ... , e.,)

map(ei, e,)

filter(e1, e,)

test whether e1 is a member of e2

remove an element e1 from a set e2

return the 11-ary Cartesian product of sets e1, ... , en

map a fun ction e 1 to a set e2

se lect a ll the elements x in a set e, suc h that (e1 x) =true

These operations will be used later for t he development of views and classes.

By integrating records and sets in a lambda calculus, we define the syntax of the core language:

c' I() I xI eq(e,e) I Ax.e I (e e) I[!, ... , !] I e· ll ext ract(e, /) I update(e, /,e) I

{e , ... ,e) I union(e,e) I hom(e,e,e,e) I fix x.e I let x = e in e end

cr s tands for constants of type T. ()is t he only value of type un.il t hat can be returned by fun ct ions such

as update . :z: stands for variables of the calcu lus. eq(e 1 , e2) is equality test. For records and fun ctions, eq

uses L-value eq uality; for other types, it uses the usual value eq uali ty\x .e stands for lambda abst ract ion,

and (e e) for function appl ication. fi x x.e is for recursive fun ction defini t ion whe re x can occur free in e,

and let :c = e in e end is ML's polymorphic let construction. By combin ing fix , let , lambda abstraction ,

and record , it is possible to defin e t he following mutually recursive function definition:

fun / 1 x1 = e1 and · · and J,l .Cn = En

where t he fun ctions ft , ... , fn being defin ed may be used in the bodies e,, ... , en of t hose fun ction defini­

tions. We use pairs (e 1 , e2 } as an abb rev iation for two element records with numeric labels , and the projec­

t ions e· l and e·2 for the corresponding fi eld extract ions. Accordingly, we write TJ X T2 for [1 = r1 ,2 = T2] .

We a lso write ...\().e for a fun ction whose domain type is unit.

The type system of the language is an adaptation of t,hat of [Oho92] with a refin ement for distinguishing

immutable and mutable record field s. Th e set of rnonotypes (ra nged over by T) of the la nguage is given by

the sy ntax:

T ::=b I unillt I r~r I {r} I £(r) I [F,. , F]

where b sta nds for base types such as sh·ing, l for type variab les, T---.T for function types, { T} for set types

whose element type is T. L:(r) is a type of L-values of a fi eld of type Tin a record. L-values can be used

as first class values. They can be passed from fun ctions to functions as thei r arguments or their return

va lues. However, we can not ma nipulate the contents of L-values. T he only substantia l usage of L-values

is to use them as field values in record creations. [F', ... , F] stands for record types where F is eit her l = T

for im mu table fi e lds or I := T for mu tab le fields.

To rep resent polymorphic types for operatio ns on records. we place kwd constraznt on type variables.

The set of kinds (ranged over by X) is given by the gramrnar:

/{ ::= u I [F, .. , F]

U deno tes arbitrary types, while [F1 , ••• , F,J denotes those record types that contain field s F{, ... , F~ and

possibly others, where each .F'f must satisfy the foll owing condition: if Fi is I :::::::. r then Ff must be I :::::::. r,

on the other hand if Fi is l :::::: r then Ff can be either I :::::: r or I: :::::: r. We write Fi < Ff for this condition.

We write f ::]\' for a type variable l with a kind constraint X. For such a type variable, only those types

having the kind X can be substituted. Us ing kinds , the set of polytypes is defin ed by the syntax:

()' ::= T I Itt:: t<.o-

'V f :: K.u is a po lymorphic type where l is quantified over the subset of types denoted by the kind]{

The type system of this language has two forms of judgeme nts. A kinding judgement X:. 1- r :: K asserts

that the type r has th e kind I< under the kind assignmenl K. , whi ch is a mapping from type variables to

kinds. A typ ing judgements K. ,A I> e : u asserts that the ex pression e has the type u under IC 1 and a type

assignment A , whi ch is a mapping fr om var iab les to types . Figure 2.1 a nd Figure 2.2 shows the rules to

derive these two forms of judgernents. Note that the mutability and immutability of the field is correctly

enforced by rest ricting fi e ld I in the rules for special field extraction and fi e ld update to be mutable fi eld ,

while that in th e rule for fi eld selection can be immutabl e fi eld. Al so note that the rule for record is the

only rule that e liminates .C(r).

Since ML-sty le polymorphic typ ing is not sound with respect to the usual operational semantics of

mutable values [Mil78], we place th e res triction that the type of mutable fie lds be ground monotypes.

Wi th this restriction , we can show that the type system is sound with respect to an ope rational semantics

of the language in the sty le of [Oho92], and that "well typed programs cannot. go wrong" as shown by

Milner [Mi l78] for ML. Moreover , there is an algorithm to compute a principal type of any type consistent

program. The following properties can be shown by the techniques developed in [Oho92].

Proposition 1 if K,A I> e rand e evaluates to v ·under an enviromnent that respects the ki11d assign­

m ent and the type assignment K, A , ·th en v has the t.ype r.

Proposition 2 For any e and X:. , A , if e has a fypi11g u11der K. a11d A , th en e has a principal type "lt?lder

JC ,A such tltat. any other t.ype U.1ld er· JC,A is Lis instance. Moreover, a pr-incipal type is comput.ed effectively.

F'or example, we can infer th e principal type of the following function including record structure and

set structure as below:

let wealthy= AS.map(,\x.x·Name , filter(-'x .(x.Sa lary > 100), S))

: Vt 1 :: U . VI.2 ::[Name = t 1 , Salary= int]. {1. ,)~{1. !}

J\. f- T :: lj for a iJ T

K. r t :: [F1, ... ,Fn] if t E domai11(K.) ,K.(t) = [F;, ... ,F~, ...] such that F; < F[(1 ~ i ~ 11)

K.r [F; , .. ,F~,- .] :: [F1, ... , Fn] such that F; < F[(1 ~ i ~ 11)

(const)

(unit)

(var)

(eq)

(abs)

(app)

(record)

(dot)

K. , A t> () : U11il

K. ,A t>x: u ifxEdomain(A) ,A(x)=u

K. ,A t> e1 : r K.,A t> e2: r

K. ,A t>eq(e1,e 2): boo/

A: ,A{x ~ ri} t> e, : r,

X:, A t> Ax .e1 : Tt-1'2

X:: ,A t> e1: r,-r2 K: ,A P. e2: Tt

K. ,A t> (e1 e,) : r2

A.: , A t> e 1 : rf , . , K, A t> en : ~~

K.,A t> e: r 1 K r TJ :: [I= r,]

K. ,A t> e-1: r 2

K. , A t> e : r, K. r TJ :: [/ := r,]
(ext ract) --'-------'-----=----"­

K. ,A t> extract(e, /) : C(r,)

where @i is= or := ,

and rf is Ti or .C(ri)

K. ,A t> e1 : r 1 K. ,A t> e2 : r 2 K. r r 1 :: [/ := r 2]
(u pdale) _.:__ _ _:__..:_ _ ___:'------'---'------'---_::_-_:.:_

.C ,A t> update(e, ./ ,ez): u11il

Figure 2. 1: Type System (1/2)

10

(set)

(union)

(hom)

(fix)

(let)

(gen)

(inst)

K,A l>e;: r (1:5 i:5 n)

K ,A I> {e,, ... ,en } {r}

K,A 1> e, {r} K ,A 1> c, {r}

K,A t>union(e1,e2): {r}

K, At>e1 {r1} IC ,Al>e2:r1----.r2 K, At> ea: T2 X T:J-TJ K,At>e 4 :ra

K ,A{x:r) !>e: T

K,A t> fix x.e : T

K ,A I> hom(e,,e,,e3,e4): T3

K , A 1> e1 : u K , A{x>-+u) t>e,: T

K,A l> let x = e1 in e2 end : r

K{t k),A 1> e : u

K , A 1> c : \It :: k.u
t not, free in A

K , A I> e : \It :: k.u K r T :: k

K ,A 1> e : u[r/1]

Figure 2.2: Type System (2/2)

II

This ty pe indicates t hat this function can be app li r d to a ny set of record s with at least Name field of

a rbitrary type and Salary fi eld of type int, and retu rns a set of the type of Name field. Suppose there a re

two sets defined as below:

let managerSet = { ... }: {[Name = sl1·ing, Age := inl, Salary := int , Section:= sh"ing])

let employeeSet = { ... } · {[Name = string, Age:= int, Salary := int, Job := str·ing])

Then, both of the following fun ction application is d termined as valid by the type system:

(wealthy managerSet) : {s tring)

(wealthy employeeSet) : {sh·ing}

2.3 View Extension

This section extends the core with a mechanism for manipulating objects with views. As explained in

the introdu ction, we realize a view of an object, by attaching a viewing fun clion onto each object, which

translates th e raw attribute informat ion stored in that obj ect to the view. That viewing functi on is a pplied

to the att ribute information immed iately before some query is performed on that object, a nd then the

query is actually performed on the result of that application. By that, users can manipulate the object as

if manipulating t he usual value of the type of that view.

Conceptually we regard an object, as a pair of a viewing fun ction and a raw attribute information.

There a re seve ral ways to implement it. One way is to implement a n object directly as a pair of a function

that work as a view ing fun ction and a record , which we call mw object and works as a carrier of a n identity

a nd att ribute information. A new object is created by specifying a record used as a raw object. Eq uality

on objects is determined based on the equality on raw objects, and t herefore obj ects created wi t h the sa me

raw object. have t he same identity. When a query is issued on that object, the viewing fun ct.ion is applied

to the raw object a nd t he raw object is mapped to the view type, and then the query is exec uted on the

result of t he mapping. Another way is to implement an obj ect as a stale ju11 clion associated with a n object

iden-tifi er. The state fun ction is a functi on closure whi ch encapsulates both the attrib ute information and

the viewing funct ion of that object. The contents of th e state functi on is simply applying the viewing

fun ction to the att ribute inforrnai.ion and returning t he resu lt of that ap plication. The evalu at ion of the

state fun ction is delayed. In the same way as in the a nother way of implemen tation, it would be evaluated

each Lime some query is issued on that object. The objecl identifier is used to determi ne the equ ality on

obj ects independ ent. from th e difference of their views . Each Lime a new object is created , a new identifier

is assigned to it , and from t hat time on, the identifier sha ll not be changed even after a new view is defined

on that object.. Each of those two app roaches has its advantages and disadvantages. One adva ntage of the

former way is that it can be implemented even with t he la nguage that does not support fun ction closure ,

such as C la nguage. With C language, an object would be implernented as a pai r of a pointer to a fun ction

12

and a record st. ruct.ure. On t he other hand , one advantage of the latter way is that. we can define a view

t hat augment the i11format. ion of an object as ex plained later. In this thesis, we choose the latte r app roach .

Even if we chose t he form er approach, however, the similar development and th e proof of the soundness of

the polymorphic type system wou ld be possib le.

Our object supports encapsulat,ion. Detail of t.he data structu re of attribute information is hidden to t he

use rs and they can access objects only through the views. Outside objects, t he use rs ca n defin e fun ctions

that access objects through the views , and we have a mechanism of code sharing for t hese user fun ctions.

In some sense, this st. ru cture can be rega rded as corresponding to the well-know n three- level architectu re of

database schema [ANS75]; internal level that is the physical implementation of data, conceptual level that

is t he well-defined interface of data to users, and external level where users can freely define customized

in terface appropri ate for t heir application. Attr ib ute information corresponds to t he physica l stru ctu re

level, view corresponds to t he conceptua l in ter face level, and user fun ctions correspond to the extern al

level.

This structure seems to be different from usual object models for object-oriented databases. In many

object-oriented database systems, an object belongs to some classes and the object can be manipul ated only

by iuvoking methods defin ed on th ose classes. T hose meLhods can be shared among classes by inheritance.

If any of usua l users is a llowed to define those methods , it means objects a re not encapsulated to the

user. On the contrary, if usua l users a re on ly allowed to defin e functions outside of t.he classes, objects

are encapsul ated but t hose users cannot utilize the inheri tance in their defining user functions. In other

object-oriented databases t hat use polymorphic type inference for code sharing, an object is just a bare

record, and the mechanisms for code shar ing works for fun ctions directly accessing those records. Again ,

in this case, if any user can defin e those fun ct ions, object.s are not encapsu lated, and if usual users cannot

define t hose functions, they cannot ut.ilize the mechanisms for code sharing.

On the ol,her hand, in our model, code sharing works fo r user 's fun ctions that can access objects only

through t heir interface. To provide code sharing for those user's functions , we develop a type system that.

can deal with poly morphic nature of fun ctions manipulat ing obj ects through their views , by properly lifting

a polymorphic type system for usual record fun ct ions. In addition, while in t he usual models interface of

objects is defin ed at classes , in our model, individual obj ects have their own interface. By th at, as explain ed

in a later section, classes in our model ca n be set.s of objects with same concep tual interface, i.e. with same

view ty pe, but with heterogeneous intern al s tru cture, whi le classes in usual models a re sets of objects with

homogeneous int ernal structure. This heterogeneity is especially important for dal abases, beca use database

objects are pe rsistent and it cause several issues ca lled sc hema version ing, heterogeneous database, and so

on . Moreover, as we mentioned in the introd uction, t.his heterogeneity is essential for object shari ng among

cl asses we develop in this research. Although we do not discuss more on these issues except for object.

sha ring, we believe objects for databases should have this struct ure for t hese various issues .

13

2.3.1 An a lgeb1·a for objects and views

The set of e xpressions is extended wi t h the following set of ex pression cons tructors, wh ic h serves as a n

"algebra" for objec ts and views:

e ::= · · I obj(e) I (e as e) I query(e,e) I fuse(e,e) I relobj(l, = e , , . . . , 1,. = e,.)

The intended mea nings of these constructors are expl ained below. Their precise semantics is given later

by defining a translation of them into the core language.

Object creatio n : obj(e).

This cons tru ct. takes some value, in most cases a record e. Then, it creates a new objec t by us ing e

as its raw aUribute in formation. The created objec t is an association of th e s tate functi on t ha t s irnply

returns th at raw a ttr ibute informat ion and a fresh identifier.

Vie w compositio n: (e 1 as c2).

Given an object e 1 and a fun ction e2, this creates a new object whose identifi er is t he same as that

of e 1 and whose s tate fun ction is the composit ion of th at of e1 a nd t he fun ction e2 . Tha t is, it crea tes a

new object by attaching a view defin ed by e2 on top of the object e , . Allhough t his construct creates a

new obj ect with a new view, the created object has the same identity as the origi nal object f t becau se

identity of objects is determined by their identifier as exp lained before. After this view definition, one can

manipulate the created object as if it has the type of t he ran ge of e2, which we call view type of th at object.

The detail of manipu la tion of objects with views will be explained later .

By this constru ction , we obta in the desired closure property of objects and view definiti on; defining a

view on an object yields anoth er object that has the same formal status as being an object , and t herefore

yet another views can freely be defined on it. In addition, in that defin it ion , we ca n use fun ct ions whose

domain is the view type of th at object. It means th a t even when defining views on objects, we can see

those objecls through their views and need not know the internal stru ci..ure of th e attribute informa tion .

We do not usually regard a fun ct ion that changes the state of an object as a viewin g fun ct ion. So

it would be useful for the type system to check wh eth er e2 in this cons tru ct updates any mutable fi eld

of some record in cluded in a ttribute information. It seems to be not hard to refine the type system to

check whet her e2 in volves update operations (directly or in directly through other function s ca lled from e2) .

However, this s ign ifi cant ly in creases the complexity of the type sys tem, and is not dealt with here. Also,

there might be a case where a function with side effect can be considered as a suitable viewing fun ction.

Query on vie ws : query(e 1 .e2).

This eval ua tes a query spec ifi ed by a fun ction e1 again st an object e2 . It is only this operation th at

actually evaluates a viewing fun ct ions of objects. In tuit ively, this express ion first evaluates or "materializes"

the view by eva lu ating t he state fu nction of e2, and then applies the fun ction e, to the result of that

evaluation. e 1 can be any fun ction applicable to e2's view type. Therefore, using this construct , we can

freely mani pul ate the object as if it has its view type. In most cases, the view type of objects may be some

14

record type and we ca n use usual record fun ctions. \¥e need not. worry about writing compl icated interface

functions for proper ly lifting o rdinary fun ct ions on records to views. As a special case of this construction,

if e 1 is the ide ntity function, then this construct s imply returns the current value under the view.

Generalized equality on objects: fuse(e 1 ,e 2).

Identity of objects is determined by thei r identifier. If two object have different state functi ons and

the refore diffe rent view type but they have the same identifier , they have the same identity. On the

contrary, even if two object share the same attribute informat ion , if they have different identifiers, it. means

they are created in different object. creation s, therefore those objects have different identity. NoLice that

by the term 11 idcntity", we are no t referring to the spec ial characteristic that distinguishes mutable objects

from usual values. Here, the te rm " identity" si mply mea ns t he equality in the sense that "those objects

are regarded by the users as representing the identi ca l entity in the real world". In database, mechanisms

to ex press such user 's intention is important , because we often need to represent one real-world entity by

mu ltiple database o bjects in o rder to describe various views, aspects, o r versions of that entity.

This construct first tests whether e1 and e2 have the same identifier, i.e. the same identity. If they do

then it returns a s ingleton set of a new object whose id entifie r is the same as that o f e1 and e2, and whose

view encodes the views of both e1 and e2 in a pair. Therefore, its view type is a product of view types of

e1 and e2. If e 1 and e2 have different identifier , then the result is the empty set. . This operation is inspired

by a similar operat ion considered in (8096], and is regarded as a generalization of equality test for objects.

It can a lso be considered as a translation of equality-joi n for relations into the context. of o ur objects.

R e lation object creation: relobj(l , = eJ, ... ,ln =en)·

This creates a relation object from the g iven set of objects. Different from all the previous o perations,

t his creates a new object identifier, and the refore new id entity. The new view is composed of the views of

ei, · .. 1 en, and corresponds t.o the relation of their views. Combining with sets, this construction can be

used to represent. relatio n obj ects between sets o f objects.

Alt.hough we have not yet developed a formal basis to discuss expressive power of languages for objects

and views, we be lieve that the operations just defin ed form a sufficient set of operations for manipulating

objects and views; any other operations for objects and v iews seem t.o be definable using these together

with lambda abstraction. Some useful operations for objects and views definable using these fiv e operations

include:

• Equality test for objects: objeq(e 1 , e2). This tests whether two objects has the sa me identifier and

therefo re have the same identity. This is implemented as

not(eq(fuse(e1 ,e,), {}))

• Select view mapping: (select as e from S where 7J). This selects those objects that satisfi es p from S

with attaching a new view defin ed by a fun ction e. This is implemented as:

map(.h .(x as e) , filter(p,S))

15

• Inte rsection: intersect(et, e2). Given sets et and e2 of objects, t his returns a new sets t hat corresponds

to t he intersection of the two. The view type of objects of the resulting Lis t he product type of the

view types of objects of the two sets. This is implemented as:

hom(prod(e , ,e,), -'x.fuse(x·l ,x·2) , union , {))

It is easy to generalize this to n-ary intersection intersect(e 1, ••• , en), which will be usrd in the

fo llowing development.

• Rela tion style qu ery : relation [i, =et. · . . ,ln=en] from .c 1 E S 1 , ... ,Xm E Sm where p where ei a nd p

can contain X j . This creates a set of relation obj ects satisfyin g the predicate p from the sets Si of

objed s. This can be implemented by lifting the techniques we used in Machiavelli [8096] to objects

and views using rela tion object creation. One implementation is the following:

map(h .x·l.

filter(Ay .y 2,

map(A(x , , .. ,xm) .(relobj(l, = e , , .. . , l ,. =en) . p),

prod(S , , S,, . .. , S'm))))

The las t three in volve sets of objects. Before we proceed , there is one decision to be made on the

semantics of sets of objects. Since there arc two form of equality on objects, we need to determine which

equality is used in fo rmation of a set of objects. Here we choose objeq . T'his decision yields a simpler

formul ation of recurs ive classes a nd views we shall develop later.

C hoosing objeq implies that we need to '(coll apse" elements that arc objeq whenever we make a union

of two sets. Conce ptu ally, there would be two alternatives. One is to require that if a union of two sets

contain s two objects th at are objeq , then they must also have the same state fun ction, i.e. the fun ct ion

closures with the same [, value. The other alternative is to select one object among those that have the

same identity. Here we choose the latter approach and assume that if e1 E S1 and e2 E S2 such that

objeq(e1 , e2) , then S 1 U S2 will choose e1 and discard e2 . This will yield a more fl exible mec hanism for

classes and object sharing. However , the other alternative is equally possible . The fo llowing development

can easily be adopted for the o ther semantics of sets of objcct.s .

One consid era ble a lte rn ative in selecting primitives is to provide primitives by which users can directly

man ipulat e idenlifiers of objecLs. For example, instead of providing one primitive obj , we can provide the

follow ing primitives: (I) id() which creates a fresh id entifier whenever evaluated , (2) idextract(e) which

ext racts the identifie r of the obj ect e, and (3) obj(e1. e2) wh ich creates a. new object using e 1 in the same

way as obj
1

but whi ch ass ign s t he ident ifi er e2 to that objec t.. In the situ ations where we need to describe

multiple versions of the same entity, the ability to expli cit ly ass ign a n identifier of some existing object

to some newly created object is needed. In this development , however , we do no t choose this a lternative

16

because here we treat o nly view mecha nis ms, a nd in that context we think we should not be able to directly

manipu late ident ifi ers.

One impor ~ant feat ure of our a pproach is th at s uch viewing mechanisms are typed ope ra t ions in our

poly morphi c type system. VVe introd uce a new type co nst ructor obj(r) fo r objects with view type r , in

othe r words, o bjects that can be manipulated as if it has type r. As seen below, this type is internally

imple mented as a type of the fo rm ·1d x (()-r) where id is the type of the identifie r. In practice, object

identifie rs can be implemented in several ways, such as with serial integer numbers or with empty record s,

and id would be substituted by those types. However , how to implement identifie r would not have any

effect to o ther part of this development, therefore, here we denote the type of identifiers just as 1d.

2.3.2 Exarnples of views

The mechanism defin ed above allows us to represent most o f the features of views discussed in li te rature.

\•Ve demonstrate below some o f them.

Basic functionalities of views: The example below includes att ribute renaming , attribute hiding,

computed attribute and access res tri ctio n.

joe= obj([Name =" Joe" , Birth Year = 1955, Salary := 2000, Bonus := 5000])

obj([Name =string , Birth Year= int, Salary := in.t, Bonus := int])

joe_view =(joe as .h.[Name = x·Name , Age = ThisYear()- x·BirthYear ,

Income= x·Salary, Bonus := extract(x , Bonus)])

obj([Name = st7·ing , Age = int, Income = int, Bonus := int])

joe and joe_view are objects with the same identifier, and objeq(joe , joe_view) is true . joe_view renames

Salary att ribute to Income, hides Birth Year, adds a "computed attribute'' Age . It also prohibit the user

from updating Salary fi e ld by making Income to be immutable.

In some cases, we want to define a view that has more information than the original object. Su ch a

view can be defi ned by using constants if that information would not be updated , o r by using an additio nal

reco rd if that information might be upd ated.

joe_view2 = (joe _view as let r= [Nickname := '' Smile"J in

Ax .[Name = x·Name , Age = x·Age ,

Sex=" Male", Nickname := extract(r , Nickname)]

end)

obj([Name = sl.rin,q, Age = in/, Sex= st1·ing, Nickname := string])

In this view, an imrnutab le fi e ld Sex is added us ing a constant and a mutable fi e ld Nickname is added using

an additio nal record. The add it ional record wo uld be included in the new functi on closure and carried

together with other atLr ibute information. This example also shows how we ca n accumu late views. We

defin e joe_view2 on top of another view, joe_view , just th e same way as we defined joe_view .

17

Query on objects: The calculus achieves a uniform treatment of views and queries; i.e. t hey are

essenlially Lhe same. Qu eries correspond to eva luation of views us ing query ins lead of composition of views

using as. F'or example , if we defin e a fun ction

let annuallncome = ..\x .x-lncome * 12 + x·Bonus

lit :: [lncome = int. Bonus = int]. t - i11t

then the expression

query(a nnual lncomejoe_view)

yields 29000. Moreover, query fun ctions can be arbitrarily complex fun ctions defin ab le in the la nguage.

We are also able to directly define fun ctions for objecLs instead of fun ctions for records. Fo r example,

we can defin e the following fun ction instead of annual Income above .

let annual lncome2 = ..\o.query(..\x.x·lncome * 12 + x-Bonus ,o)

Then, our type system can infer the prin ciple type of this function as foll ows:

Vt :: [lncome = int , Bonus= int]. obj(t) --+ int

As we can see in this example, our type system is properly lifted to object worl d so that it can work for

polymorphic function s for objects just th e same way it works for polymorphi c record fun ctions.

In some cases, however, we must tak e care about where we should use query . F'o r example, suppose o

is bound lo lhe following objecl.

let o = (obj([Name =" Doe", Age := 24])

as Ax .[Name = x-Name, Age := extract(x , Age) , Class = x·Age div 5]) ;

where div is di vis ion for integer. Then the fo llowing two progra ms evaluated to different results.

let f = Ax.(update(x , Age , x-Age + 1) ; x-Ciass) in

query(f,o)

end

let f =Ax .(query(Ay.update(y , Age , y-Age + 1) .x) ; query(Az.z.(lass,x)) in

(f o)

end

";" in the programs above means sequential execution that can be easily defin ed as a macro expression . The

former programs returns 4 while the latter returns 5. Jn some cases, the former one may be appropriate,

and in other cases , the laj ter may be appropriate. Because our calcu lus can have clear semantics about

the evaluation of views by exp licitly using query construct , the user can choose either case a ppropriately.

View u pdate: View update can be done by simply writing a query th at changes some of mutable

fi elds of a view by us ing an ord inary fun ction that update record fi elds . For example,

18

adjustBonus = Ao .query(Ax. update(x, Bonus , x· ln come * 3) ,o)

: Vt ::[lncome=int , Bonus :=int].obj(t)~un it

is used as a query that adjust an object's Bonus att ri bute. 13y applying this qu ery as in

(adjustBonus joe_view)

Bonus fi e ld is correctly updated. After this query, query(Ax .x,joe_view) wil l y ie ld

[Name=" Joe", Age= 39 , ln come= 2000, Bonus:=6000]

I t should be noted that the renaming of attributes is transparent to programmers; he can program any

upd ate allowed by th e ty pe of a view. Note also that view evalu at ion is done laz ily 1 so that an update

made through one view is correctly reflecled lo any other views sharing the same att ribute information.

So, after this, the query query(Ax.x,joe) will yie ld

[Name=" Joe", BirthYear= l955 , Salary:=2000 , Bonus:=6000]

where the change of Bonus fi eld through joe_view is correctly refl ected.

Manipulation of sets o f obj ects: 13y combining objed s with views of the same view type, we can

write a query against a set of heterogeneous objec ts. The following fun ction return s the set of objects

whose annua llncome exceeds 100000 .

let wealthy = AS .select as Ax .[Name= x·Name , Age = x·Age]

from S

where Ax. query(annuallncome ,x) > 100000

: Vt 1 ::U.Ift2::U.Vt3 :: [lncome=int , Bonus=int , Name = 11 , Age= t 2].

{ obj(l3)} ~ { obj([Name= t , ,Age= t2])}

which can be applied to any se t. of objects, even if whose internal stru cture may be heterogeneous, as long

as wh ose view type contains Name , Age , Income, and Bonus field s, as seen in the example:

let EmployeeRecords = { .. . }

{[Name = string , Birth Year = inl , Sa lary := int , Bonus := inl]}

let Manager Records = { . .. }

{[Name = stl·ing , Age := i>Jt , In come := in t , Bonus := int , Section := sl!'ing])

let EmployeeObjects = map(Ax .(obj(x) as Ay .[Name = y·Name , Age = This Year() - y·BirthYear ,

In come = y·Salary, Bonus = y·Bonus]) ,

EmployeeRecords)

{obj([Name = st1·ing , Age = int , Income = int , Bonus = int]))

let ManagerObjects = map(Ax .(obj(x) as Ay.[Name = y·Name, Age = y·Age ,

In come = y· ln come , Bonus = y·Bonus]) ,

19

ManagerRecords)

{obj([Name = str·ing. Age = ·int, In come = int . Bonus= int]))

let S= union(EmployeeObjects. Man agerObjects)

{obj([Name = st l'ing, Age = inl, In come= in t , Bonus = int]))

(wealthy S)

obj([Name=sll' in[/ , Age=in t])

Creati ng a new relat ion from sets of objects are a lso be easily done by us ing relation · · · from ---whe re -

const ructs we have defined .

re lation [Employee = x, Manager = y]

from e E EmployeeObjects , m E ManagerObjects

where query(.h.query(Ay. (x· lncome > y· lncome), m), e)

{[Employee = obj([Name = sl7·ing, Age = int, In come = int, Bonus= int]) ,

Manager = obj([Name = Sll' ing, Age = int , In come = int , Bonus = int])])

T his p rogrmn returns t,he re lat io ns of an employee object. and a manager object such t hat t he employee's

in come is greater th a n the manage r's in come.

2.3.3 Typing and setnantics of object s and vie ws

We int rod uce new constructors for objecls with views and a type constru ctor obj() for t hem. T he typ ing

ru les fo r t he new expression constructors a re show n in F' igure 2.3.

T he semantics for t hese new construc tors for objects is given by a systematic t ranslation for t hese new

expression constru ctors into the core language. F' igure 2.4 shows a set of rules that recursive ly elimin ate

t he new constructors we have in t rod uced in t. his section. newid in t hese t ra nslat io n ru les is a exp ression

t hat creates a new identifier . Because t he implemen t at ion o f this const ruct depends on how we implement

id, here we denote it s imply as neund. One poin t to note in lhose t ranslation rules is that a ny componen ts

e; of t hose constru ct s hould be evalu ated only o nce because the evalu atio n of t hose componen ts may cause

some s ide effect , such as record creatio n o r record update. In such cases, t he order of evaluatio n o f those

components is a lso important . These t ra ns lat ion is defin ed so that compo nents of a constru ct a re a lways

evalu ated in the order of e1, ... , en.

T he view extension prese rves t he type soun d ness. \~Ve estab lish th is by showing t hat t he t ra ns lat io n t r (e)

preserves typin g. Let r be a type of t he extended language. Then we defi ne lr(r), 111lenwl 1·epresentation

of r, as a type of the core la nguage t hat is obtai ned by repeated ly s ubsti tuting any component type of r

of the form obj(r') wit h a type of t he form zd x (()~r'). We also defi ne 11'(/.::) and tr(A), t he t ranslation

o f K. a nd A , as ass ignments that is o bta ined from A. or A by repeatedly s ubstit uti ng a ll obj(r) appeari ng

in it with the in te rnal representat ion of t heirs. For exam ple, t he intern a l representations of obj([Name =
sl7·ing]) ->slring is (id x (()->[Name = st ring]))->sl>·ing.

20

(obj)
K,A t>e T

K,A t> obj(e) obj(r)

(vcomp)
K ,A t> e, : obj(r,) K,A t> e2 Tt--+T2

K ,A t> (e1 as P2) : obj(r2)

(query)
K,A t> e, . Tt---.T2 K ,At> e, obj(r1)

K , A t> query(e1 ,e,) r,

(fuse)
K,A t> e, : obj(r1) K ,A t> e, : obj(T,)

K,A t>fuse(e 1 ,e,) {obj(r1 x r2))

(rei)
K,A t> ei obj(ri) (I:=; i :=; n)

K,A t> relobj(/ 1 = e 1 , . . . , In = en) obj([11 = r , . .. ' In = Tn])

Figure 2.3: Typing Rules for Objects and Views

We then have the following desirable property:

Propositio n 3 Let e be an expression possibly C01llaining object expressions. Jf K, A l> e T is derivable

in th e ext.ended language, then t1·(K) , t1·(A) t> t r (e) tr(r) is denva ble in the core language.

Proof outline This can be eas ily proved by the induction on the structures of the exp ressions of the

extended language. I

\Ve show some examples. By the typing rules for the ex tended language the assert ion below is derivable .

{}{} t>(obj([Name =" Joe", Age = 35]) as Ax .[Name = x·Name])

: obj([Name = st1·ing])

Then the assertion on the translation of this ex pression and the internal representation of the type above

is derivab le in the core language as below .

{}{} t>((Ao.Af.(o l, ,\().(f (o2 ())))

(.>.o .(newid, .>.().o) [Name =" Joe", Age = 35)))

.>.x.[Name = x·Name])

: idx(()~[Name = st7·ing])

Similarly1 the following assert ion is derivable in the ex tend ed language:

21

tr(obj (e))

tr((e 1 as e,))

tr(query(e1 ,e,))

tr(fuse(e, ,e,))

tr(relobj(/ 1 = e1 , .. , 1,. =en))

(>.o.(new1d, >.().o) tr(e))

((.>.o . .>.f.(o·l, .>.().(f (o2 ()))) tr(e,)) tr(c,))

((.>.Uo.(f (o·2 ())) tr(et)) tr(e,))

((.>.oUo2.

if eq(ol ·l.o2 ·1) then {(oll , .>.().((o1·2 ()), (o2·2 ())))}else {}

tr{e 1)) tr(e2))

(· .. (.>.ol. .. ·>.on.

(newid, .>.()[1 1=(ol·2 ()), ... , 1n=(on.·2 ())])

tr(e,))· tr(en))

F'igu re 2.4: Sema ntics of Objects and Views through Transformation

{! ::[Supervisor = obj([Name = sl!·ing])]J

{f: obj(t)~obj([Name = sl!·ing]) , o:obj([Name = st•·ing, Supervisor= obj([Name =string])])}

l>(f o): obj([Name = st1·ing])

Cor respondi ng to it , the assertion belo w is derivable in the core lan guage:

{! ::[Supervisor = td x (()-[Name = sl.ringmJ

{f:(itl x (()~t))-(td x (()~[Name = sll·ing])),

o:id x (()~[Name = st•·ing, Supervisor= td x (()~[Name = stf"ing])])}

l>{f o): id x (()- [Name = st•·ing])

This proposit ion and t he soundness res ull o f the core la nguage (Propos it io n 1) imply that. the poly­

mo rphic type system with objects a nd views is sou nd wit h respect to the o perationa l semantics defin ed by

trans lat in g t he extended language with the functi on tr() a nd th en eva luating the res ul ti ng exp ress ion in

the core language. Th erefore, th e sloga n that ua well typed program cannot go wrong" also hold for our

language with objects a nd views. The ext ended language a lso preserves the existence of a complete type

inference algori thm. T his is eas ily seen from the shape of t he new typing rules. Any tau appearing in the

bottom of t he rules for the constru cts for objects also appears in t he top of t he rule as a part of a resu lt of

typ ing of component. of the construct . Therefore 1 if we comp ute the principa l type of those subexp ress i on s~

we can a lso cornpute t he princi pal type of the object exp ressions.

22

2.4 C lasses and Object Sha ring

VVe are now going to deve lop a mechanism fo r classes and object sharing among t hem on top of l he language

we have just defined . Classes in this calc ulus are not used as tem pla tes for object. creation nor as method

cli cl iona ries but t hey a re used to o rganize objects in a databases . (However , cla'5ses wit h such features

also can be implemented on top of this ca lculu s as clesn ibed in a later section.) ' lasses have t hei r ex tent,

whi ch is a set of objects of uniform view type but possibly of heterogeneous inte rnal stru cture. T he extent

of a class consists of two components; its ow n extent which is a set of objects that directly belong to that

class, a nd its imported extent which is a set of object imported from other classes. T he own extent is

statically defi ned by enumerat ion, while the imported exten t is defined by pred icates a nd is dy nam ica lly

com puted. T herefore, classes can be regarded as a specia l kind of sets tha t a re defi ned wit h both intension

a nd extension.

In usua l object-oriented databases, t he extent of a class s imi larly consists of two compone nts, its ow n

extent a nd the ex tent inherited from its subclasses. As explained in the in t rod uction, th is model can express

on ly lim ited fo rm of object sha ring. Some researches have in troduced classes which is defined by g iving how

t he exten t of t hat class is dynami ca ll y derived fr om other classes' extent. Int rod ucing t hose classes t hat

ex ist only vir t ua lly wi t hout their physical substance, however, cause some prob lems. Those vir t ual classes

and usua l cl asses ca nnot be uniformly manip ula ted, especiall y when t hey are updated. In our rnodel, every

cl ass has same status a nd sha re instances wi t h each other on a equal te rm. T herefore, no dist in ction would

be needed. Even updates to each cla.':>!';CS can be bid irect ionally propagated by using mutua lly recu rsive

cla.':>s defini tion we expla in later in th is section. Moreover, in t rod ucing those vi rt ual classes in add ition to

t he usual inheritance mechanism seems t.o be ad-hoc way to ma ke up for a deficiency of usual inheri tance

model. O ur approach, which allows users to defin e any object shar ing relat ion between arbit ra ry classes,

is more natura l way. Actua lly, it successfully prov ide a highly ge nera l an d flexib le fr amework as described

in t his section .

2.4.1 C lass d efi n it io ns a nd t h e ir typin g

'To deal wi Lh cl asses, Lhe synta x of t he la nguage is ex tended wi t h t he follow ing constru cto rs:

e ::= · · · I class e in clude e, ... , e as e where e

in clude e, ... , e as e w here e end

I c-query(e, e) I insert(e, e) I delete(e, e)

The in tended meanings of t hese constru ctors are expla ined below. T hei r precise semantics is given later

by definin g a t ra ns lat ion of them in LO t he la nguage fo r objects.

C lass d efi n i t ion : class s incl ude Cl) ... 'c;nl as Ct where P I ... include C~, ... 'c~l,. as en where Pn end

23

The first, component. creates a class, where 5' is t he ow n extent of the class, and each include Ct, ... , Cn

as e where p clause asserts that the class being defined in cludes a ll the objects that. satisfy p from the

intersection (i n the sense of intersect) of the classes C1 , ... , Cn under a new view specified by lhe function

e. As seen in the seman t ic defini t ion below , the actual inclusion does not take place until some query

requiring the entire extent of the class is evalu ated.

This general form of class definiti on combines four bas ic functi onalities of object sharing: union through

mu ltip le include clauses, intersection , selection (where), and view com posit ion (as). Although we believe

t hat. this syntax is general enough to represent most ca.'5es of object. sha ring, some other operat ions may also

be included, and we leave this issue as a future investigation. ll ere we only point out one issue in selecting

operations in cl ass definitions. In analogy with SQL, one mi ght think that the above class definit.ion would

be more ge nera l if one wou ld have interpreted the set of classes C 1 , ... , Cn in an include clause as product

formation. However , in our model as well as most of objec t.-oriented data models, forming a product or

more ge nera lly forming a record implies creation of new identity. In our model, a class definition in volving

an identity creatin g operation cannot be given a well founded semantics. T his is a natural consequence

of the intended semanti cs of a class definitions; in ou r model a class specifies new views and shari ng of

ex isting objects from other classes 1 both of them do not imply creation of new obj ect identity.

Class query: c-query(e1 , e,).

This evaluates a query specified by a function ft aga inst. a class e2, where e1 may be any function on

sets of objects whose type is the same as that of objects of the class. T his constr uct allows the programmer

to treat classes just as sets of objects. In t uitively, t his construct first compute the extent of the class e2

by evalu at ing its inclusion predicates and apply e1 lo the computed extent.. It is only this const ru ct that

materialize the extent of classes.

Insertion: insert(e1, e2) .

This inserts an object e1 to a class e2 's own extent. If some other class is including objects from the

class e2 , and object e1 satisfies the inclusion predicates, then this insertion should be a lso renected t.o t hat

class. As expla ined later , this update propagation is rea lized by dynamically creating the extent of classes

immed iately before evaluating queries on classes.

De letion: delete(e1 , e,).

Th is removes an object e1 from a class e2's own extent. In the same way as insertion , this remova l is

propagated to classes including objects from this class. Other semanti cs for delete can also be possible. \•Ve

could define it so that if the speci fi ed element is import ed from another class then it removes the element

from that class
1

or it bloc ks the in clusion of the clement from that cl ass. The rat ionale of our choice is

clarity and safeLy.

The extended syntax allows any mixture of classes and ot her expression constructors , i.e. classes can

be treated as first-class values. This ope ns up the possibility of var ious powerful programming sty les with

classes, such as using class creating fun ctions.

24

(c lass)

(cquery)

(insert)

(de le te)

K ,A I> S {obj (r))

K ,A 1> Cf class(rf)

IC ,A l> ei r/ x · · ·X r:"•- r

A: , A l> Pi : obj(r/ x · · x r;n·)-bool

A: , A t> class S'include as e 1 where P I · include as en where Pn : cla ss(r)

K ,A 1> e1 K, A 1> '' : class(r 1)

K , A I> c-query(e,, e,) r,
K ,A 1> e1 : class(r1) K , A I> e, : obj(r,)

K ,A I> insert(e,,e,) unit

K ,A 1> e1 : c/ass(r1) K ,A l> e,: obj(r1)

K ,A I> delete(e,,e,) un it

Figure 2.5: Typing Rules for C lasses

T o define typing rules for classcs 1 we introduce a new type constru ctor for classes :

r ::= · · I class(r)

denoting a class of objects having type obj(r). The typing rules for classes and operations on classes are

given in Figure 2.5.

2.4.2 An example of a class

'We show a s imple example of a class. Suppose Staff and Student are classes already defin ed with type

c/ass([Name = sl7·ing , Age = int , Sex = st•·ing , Salary := sl7·in g]) and c/ass([Name = stl'ing , Age = int ,

Sex = s t?·ing , Degree := int]). The following example defin es a new class FemaleMember:

let FemaleMember = class {}

includes Staff

as As.[Name = s·Name, Age = s ·Age , Category = " starr']

where As.query{Ax.eq(x·Sex , " female") ,s)

includes Student

as As .[Name = s·Name , Age = s ·Age , Category = " student"]

where As.query{Ax.eq{x·Sex, " fema le") ,s)

: c/ass([Name = st1·ing , Age = in/ , Category = string])

In this definition , the initial value of the own e;dent of FemaleMember is the empty sel. It can be updated

after th e class format ion by using insert and delete operations . Class FemaleMember shares Lhose objects

25

of Staff and Student whose Sex is " female". Salary field of Staff objects, and Degree fi eld of Student objects,

a nd Sex fi eld of both of them a re hidden, and an additiona l fi e ld Category is se t a ppropriately.

Be lo w is an example o f a qu ery against the cla.<ss FemaleMember:

let names = ~s.map(.h . query(~y.y · Name , x) , s)

\IL,: :U.V't2 ::[Name = t ,]. {obj(t2)} ~{ti}

c-query(names, FemaleMember)

{s/?·ing}

The fun ction names is the operation on usual sets of objects. VVe can issue a query on a cl ass using usual

set operations a nd c-query constru ct . The extent of FemaleMember is computed just before t his c-query is

eva lu a ted , so the resul t of this query, the names of all members that are cons idered as female, renects the

latest status of Student a nd Staff.

']' he following is an examp le of cl ass definiti on where an include cla use contains multiple classes:

StudentStaff = class {}

includes Staff, Student

as ~p . [Name = p·l ·Name , Age = p·l ·Age . Sex = p·l ·Sex,

Sal := extract(p ·l , Salary) , Deg := extract(p·2 , Degree)]

where .\p . true

: c/ass([Name = string , Age = int , Sex = string , Sal := string , Deg := int])

Intuiti vely StudentStaff corresponds to t he in te rsect ion cl ass of Staff and Student.

2.4.3 Se tnantics of classes

Classes are sets of objects th at a re e valu ated laz ily so tha t upd ates to classes propagate properly through

sharing predicates . The precise semantics of classes is defin ed by giving a systematic trans la tion of classes

into the extended core language defin ed in the prev ious section. This also provid es an efrective al gorithm

to implement the extended language with cl asses.

The t ranslation tr() for express ions including classes is given in Figure 2.6. As seen in these definitions,

la mbda abstract ion , ..\() .· · ·, of inclu sion fun ctions delays the materialization of t he extent inclus ion from

o ther classes . The actual extent is created immedi ately before a query inc-query expression. The tra nslation

of type constructor class is defin ed as:

t1·(cla ss(r)) = [OwnExt :={obj(r)} , Ext:= un it - {obj (r)]]

As seen in the tran slation above, fun ction type is used only fo r delaying the extent creation a nd t herefo re

its input type is the trivial type unil. T'he tra ns la1 ion for kind assignment or type ass ignment , denoted

as 1.1· (/C) or t1·(A) , is also defin ed as the ass ignment that is obtained by repeatedly substituting a ll types

a ppearing in it of the fo rm class(r) with t1·(cla.ss(r)).

26

tr(class s include c:' ... l c~l! as el where PI ... include c~). . 'c;n,. as en where]Jn end)

[Own Ext := 5,

t r (c-query(e, C))

t r (insert(e, C))

tr(delete(e, C))

Ext := .\(} .union(S, union(. , union(

{select as t r (e;) from intersect(... , (tr(C/)· Ext {)) , ...)where t r (p;)),

un ion(-· ·))))]

{tr(e) (tr(C)· Ext ()))

{kupdate{c, Own Ext , union({tr (e)}, c·OwnExt)) t r {C))

(.\c . update(c. Own Ext , remove(tr(e) , c·OwnExt)) t r{C))

Figure 2.6: Sema n~ics of Classes through Transformation

We can then prove the following property:

P roposit ion 4 Let e be an expression possibly containi11g classes and opem lio11S on classes. If X:: , A t> e : 1

is derivab le i11 the extended language /h en tr(A") , tr·(A) t> t r (e) : tr·(r) is der·ived in the language wzth ob­

jecls defi11ed in Section 3.

P roof outlin e This can be easi ly proved by the induction on the stru ct ures of the ex pressions of the

extended language. I

This property together with Proposition l a nd 3 establishes t.he soundness of the language with classes.

As in the case of view extension, it is easily proved that ~he class extension preserves the existence of a

comp lete type inference a lgorithm .

2.4.4 R ecursive class d e fiu i t iou

'The above typing rule for class defin ition and its semantics do not a llow cycli c sharing arnong various classes,

which is sometimes useful. To support cycl ic sharing, we add the fo llowing recursive class defi nit ion:

let c1 = class 5 1

include 1Cf, . .. q Cf as e~ where]J :

includ e lc;n'' ... ,1;"' c;n, as e~11 where p't'
and c2 = ·

and Cn= class Sn

includ e 1 C,~, .. , 1 ~ C,~ as e~l where p~

includ e 1 C~1 "' . .. •l:'n c~ln as e~1 " where]J~ln

in e end

27

K ,A 1> S; {obj(r;))

K ,A{cl : classh), ... 'Cn : class(rn)} i> k cl : class(, ,-f)

(rec-class)
X: , At> e{ 1-r/ X·· · X 1~ r/-. r;
K ,A I> Pi obj(I r[x · · · x 1~ r[)~bool

K,A{ c1 : cla.ss(TJ) , ... ,cn :class(rn)) l> e T

K ,A t> let CJ = · and ··· and C11 = · · · in e end T

Figure 2 .7 : Typing rule for recursive class definiti on

kG{ are either o ne of cl ass identifie rs c1 , •.• , c11 o r any class expressio n tha t does not conta in a ny of

c1, .. . , C11 • ei and Pi are as before and cannot conta in clac;s ident ifiers c1, .. . , C11 . Therefore, Ct, ... , c,. can

appear recursively o nly in a form of 1'indude . .. ,ci, · This res tric ted use of recursio n enables us to

defi ne a well found ed semantics for the recursive cl ass definiti ons.

The typing ru le fo r this recursive cl ass definiti on is given in Figure 2.7 . Note that the res tri ction that

"c; cannot appear in p{ and e{n is correctly enforced by using the type ass ig nment A for 1l; and e{ that

does no t contain the assumption on the variables c1, ••• , en. Althou gh the another restrictio n , "c t , . .. , en

can not be a component.. of some expression even in include cl a uses", is not expressed in t he typing rules,

it also ca n b st a tically checked with ease . 'We s how some examples to expla in those res trictions:

Suppose we attem pts to defin e a class C and two mutually recursi ve classes Ct a nd C2 to represent the

relat io n cl = c \ c, a nd c, = c \ cl by t he code:

let C = class {o}

in let cl = class{} includes c as ... where ,\x .c-query(Ay.not(member(x ,y)) , c,)

and C, = class{} includes C as·· · where ,\x .c-query(.Ay .not(member(x,y)) . C i)

in · · · end

end

However , the intended semantics is itse lf ambig uous . Either "C t =:: { o} a nd C2 =:: {} '' o r "C1 =:: {} and

C 2 = {o}" can satisfy the intended sharing relation. In fact , this code cannot be well typed by our typing

rules. On the other hand , the following recursive defini t ion has clear meaning, and be well ty ped in our

typing rules.

let C =class {o1 . o,)

in let cl = class {oJ , OJ} includes c, as .. where AX.c-query(Ay .not(member(x,y)) . C)

and C 2 = class {o2 , o,) includes C 1 as ··· where -lx.c-query(-ly .not(member(x.y)) . C)

in · · · end

end

In tuitively, t his definiti on intends t he sharing relat ion G\ ::J C 2 \ C and C, ::J G'1 \C. The app rop rial

solu t ion is C 1 = {o, , 03, o_,} and G'2 = {02, OJ, 04}.

Usi ng Ci as a n ex pression compone nt. in t he include clause also ca uses ambiguous defi ni t ions. For

examp le:

let C = class {o}

in let C 1 = class {} includes setminus(C, C2) as ... where Ax. true

and C, = class {} includes setminus(C, C,) as · .. where h. true

in · · · end

end

He re, assume Lhat setminus(C, C') is a fun ction that has a type 'It :U.class(t) x class(t')-class(t) a nd

returns a class with a extent C \ C'. This definit ion causes ambiguity in the same sense as t he example

above .

As ment io ned earl ier , we limit the operat ions in in clude clause so t hat they does not includ e any identity

creation. If they does, for example, if we choose Cartes ian produ ct in the place o f inte rsection , infinite

id entity creation may occ ur. Suppose the fo llowing example:

let C = {o}

in let C1 = class {o1} include C2 as· ·· where Ax. true

and C, = class {} include C 1 , C as · · · where AX. true

in · · · end

end

Then , th e compu tat ion of t he extent of cl becomes infinit.e. The extent of cl must includes OJ, (oil o),

((o1 , o), o), (((o1 , o), o), o), ·

One example that may be somet ime use ful but t hat ca nnot be dealt with in our fr a mework is t.he

defini t io n o f "closure'' class. Fo r examp le:

let Person = {PJ , P2, P3· · · · }

let fathers = AS .map(Ay .query(Az .z ·Father ,y) , S)

let My Ancestor = {me} include Person as ·

where Ax.member(x, c-query(fathers , MyAncestor))

T his class intuitive ly means t he closu re p rod uced by me o bjec t through the Father fi eld. But such class

defi ni t io n is not supported in our fr am ework . ln deed 1 t his recursive use o f MyAncestor cause type e rro r in

our t.yping rules.

Le t us s how examples of classes with useful cycl ic s ha ring. In the previous example o n FemaleMember ,

if some obj ect is newly inserted to t he ow n ex tent o f FemaleMember1 we wou ld like lo make that objec t

29

shared appropriately by either of Staff or Student. This implies FemaleMember and the other two classes

should perforrn mutual shari ng. Then we can use the following recursive definition.

let Staff= class {}

includes FemaleMember

as Af.[Name = f. Name , Age = f. Age , Sex = " female"]

where Af.query(Ax.(x ·Category = "staff ').f)

and Student = class {}

includes FemaleMember

as Af.[Name = f·Name , Age = f·Age , Sex = " female"]

where Af.query(Ax.(x·Category = "student' '),f)

and FemaleMember = class {}

includes Staff

as As .[Name = s·Name , Age = s·Age , Category= " staff']

where As.query(Ax.(x·Sex = " female"),s)

includes Student

as As .[Name = s·Name , Age = s·Age , Category = " student"]

where As.query(Ax.(x·Sex = " female"),s)

1n · · end

By this definition, update to each classes is approp riately propagated to the other classes. When some user

seeing class Staff or Student inserts into them a new instance which is also a female, that insertion will be

approp ri ately propagated to FemaleMember, and when some user seeing class FemaleMember inserts to it

a new instance which is also a staff or a student , that insertion will be appropriately propagated to Staff

or Student. Sim ilarly, class StudentStaff can be defin ed with the following cyclic shar ing.

let Staff = class {)

include StudentStaff

as As.[Name = s·Name, Age = s·Age , Sex = s·Sex , Salary := extract(s , Sa l)]

where As . true

and Student = class {}

include StudentStaff

as As .[Name = s ·Name, Age = s·Age, Sex= s·Sex, Degree := extract(s, Deg)]

where As . true

and StudentStaff = class {)

includes Staff, Student

as Ap. [Name = p·l ·Name , Age= p·l·Age , Sex = p·l ·Sex ,

Sa l := extract(p ·l , Salary) , Deg := extract(p ·2, Degree)]

where Ap. tr ue

30

Staf~udent

StudentStaff

F'igure 2.8: 'l'he directed acyclic graph illustrat ing total in clus ion relat ion

One rnay cons id er that one of the ro les of IS-A hierarchy is to rep resent the hierarchical classification

of objects to the user. The hierarchical classification is very easy to understand and helps the user to

grasp the organization of object.s. However , prov iding the users with easily understa ndable hierarchical

cl ass ification and controlling the object sha ring among classes are different issues. Indeed, even in ou r

fran1ewo rk , it is not difficult for the system to detect the all include clauses using true in its where part, and

to display a. directed acycl ic graph ill ustrati ng which class tota lly includes which class. For example, from

the defin itions a bove, the sys tem can construct a nd disp lay 1 he di rected acyclic graphs shown in Figure 2.8.

Intuit ively, the semantics of recurs ive class definitions can be und erstood as follows. F'irst , recursive

use of th e name of the classes can appear only in a form li ke:

let c, = .. include ., C2, as

and <2 = ... include C3, as

and C3 = ... include ., c,' as

Then , t he computation of the extent of Ct needs the cornputalion of the extent of c2, and that compu tation ,

in turn, needs c3, and then Ct is needed agai n. At that time, however , the comp utat ion of c1 is not really

necessary. The objects to be included t hro ugh include ... , Ct. . is intersection of those classes, therefore,

those objects are already included in c 1• Since we have defined that set of objects is collapsed based o n

objeq , those o bjects need not be included again.

Then, we formally defin e an effective semanti cs fo r the recurs ive class definition. Some care must be

taken so that repeated inclusion of obj ects is avoided. Let C be a recursive class defin ition of the form:

let c1 = ..
and Ci= class Si

include 1 Cl, .. . ,1: C/ as ef where pf
include lc;u·, ... ,l~ ' c;n, as e~11 ' where p;n,

and Cn = ·
in e end

We first define Lhe set of mutually recurs ive function {!'I I :0 i :0 n) corresponding to Lhe set o f class

ident ifi e rs {ct, ... , en } as fo llows:

31

! ' = ,\L. ,\(), s, u u,~j~m. (select as ej

from intersect(1Cf ... ·q:Cf)

where pj)

where kCf is the following expression:

if kef = ca t hen

if a E L then{} else((!" (L U {a))) ())

else t r (,C{)

The application((!' {i}) ()) computes the extent denoted by the class identifie r c;. The extra pa rameter

L to f ' indicates the set of fun ctions {!"Ia E L} t hat ind irectly invoke t he ap pli cation in quest ion. T hus

if J' is called wit h {a, .. . } t hen t his call is to calculate t he objects t hat a re included in t he class Ca and

t herefore t he call to f a is not needed.

The recu rsive defin it ion is well defin ed in the following sense:

Prop osition 5 There is 110 i11ji!1 ile calli11 g sequ e!l ce of {! 1, .•. , f"} star·li11g fr'orn any (! ' {i}).

Proof ske t ch Suppose we have a n infinite sequence (!" • L ,), (!"' L ,) , ... , (!"' L;),(!">+• L;+>) , .

such that evalua t ion of (!"' L;) in volves eva lua t ion of(! ">+' Li+ 1). By the definition of each J', the

following propert ies can be verifi ed : (l) ILJ+d = IL;I + I, a nd (2) L; <; {l , ... ,n}. T hese two propert ies

contrad icts the fact that t he sequence is infini te. I

Th is means t hat extent comp utation termin a tes whenever each ~ an d e{ termin ates.

This funct ion is routine to t ra nslate t he above defi ni t ion into a te rm in t he language wi t h views. T he

t rans lat ion for recu rsive cl ass is t hen defi ned as follows:

tr(let ···) = let c1 = [OwnExt :=St, Ext:=(! ' {!}))

and ·

an d Cn = [OwnExt := "' Ext :=(!" {n}))

in e end

This operat iona l semant ics corresponds to t he leas t (wit h respect to set inclus ion) solut ion to the cl ass

definiti on when we consider it as a system of equation over sets of objects under objeq.

2.5 A pplication

In the previous sections, we prov ide t he highly general basis for object-oriented database la nguages. They

are, in deed , just t he formal bas is, so we need not. necessarily use it d irectly. Instead, we ca n defin e more

customized la nguage on top of our calculus. Our calculus is so general t hat we can fl ex ibly define a wide

range of object-oriented features, such a'i object encapsulat ion, object creation by cl asses, and so on. ln

t his section, we show some exa mples of such a ppl ications of our calculus.

32

2.5 .1 Obj ec ts as Abstract Data Type Objects

Jn o ur calculus , objects are manipulated as if they are usual values, in most case, record s. In some applica­

t ions, however , objects sho uld be abstract data type objects that can be manipulated only li mited abst ract

primitives . We can imp lement such o bjects as objects whose view type is the record of those primiti ve

fun ctions. Because att ribu te information can be direct ly manipu lated on ly with in a state fun ction , encap­

sulat ion of imp lementat ion of abstract data types can be achieved. For example, an object representing

"moving point on one d imens ion)) ca n be implemented using the following stru ct ure:

let mp = (obj((x := 10. vx := 2])

as Ap.(Accelerate = -1().-\ax.update(p , vx , p·vx + ax) ,

Position = -l() .p ·x,

Tick = -l().update(p , x, p·x + p·vx)]);

A moving point has its position x and its velocity vx. Primitives to manipul ate a moving point is Accelerate

which augment t he velocity of t he point , Posit ion whi ch returns the current posit io n of the point, and Tick

whi ch upd ates the positio n of the point in accord ance with its velocity. () at the head of those primitives

is used to p revent that all function s are evaluated every time when this view is materialized. We can

man ipul ate t his object only by evalu ati ng one of those fun ctions in its view like below:

query(Ax.(x Position ()) ,mp);

Of course, we can defin e some macros so that we can write those programs more concisely. For exam ple,

like below:

let mp = (obj([x := 10 , vx := 2]) abstract

-\p .(Accelerate = ,\ax.update(p, vx , p ·vx + ax) ,

Position = p·x,

Tick = update(p , x, p·x + p·vx)]) ;

mp <- Position ;

2 .5 .2 C lasses as Ternplate an d Interface of t heir Instances

While classes in o ur calculus wor k only as a container of objects to o rgani ze objects in the databases, classes

in many o bject-oriented systems also work as a template for object creation. 'We can impleme nt cl asses

with that feature on top of ou r calculus by definin g the following macro for definit ion of su ch classes.

C lass w it h Object Template: class C : (/1 = t1, ... , In = tn] as f include ..

fn this definition , C is the name of th is class, [i t = f 1, .. , ln ::::: l 11] is the intern al structu re of attribute

information of objects created by this class, and f is th e defa ult viewing fun ction of those objects. This

definition is translated to the de fi nition below.

33

let C = class {} include

let newC = Axl.. .. Axn .let o = (obj((/ 1 = xl , ... , In = xn]) as f) in insert(o, C):o end ;

Combin ing abstract. data type objects a nd object creating classes, we can implement class('s as in terface

of their inst ances, i.e. classes defin ed with fixed instance n1et hods only through which objects can be

man ipu lated . To defi ne such classes, we defin e the following macro:

C lass wi t h Instance Method: class C': [/1 = It, ... , ln = ln] abst ract [m , = !1 , ... , nln = fn] include

For example , we can define class MovingPoint as below:

class MovingPoint: [x := inl, vx := int] abstract

Ap .(Accelerate = Aax.update(p, vx, p·vx + ax) ,

Position = p·x,

Tick = update(p , x, p·x + p·vx)]) :

Then th is definition is translated as below:

let MovingPoin t = class {} :

let newMoving Point = Ax.Avx. let o = ([x := in!, vx := int]

as Ap .(Accelerate = A() .Aax.update(p , vx , p ·vx + ax) ,

Position = A() .p·x,

Tick = A() .update(p , x, p·x + p·vx)])

in insert(o, MovingPoint) ;o end :

2.5 .3 lncre1nental Construction o f t he Sch mua

In our calc ulus, we must. defin e classes with all its sharing relations using one class construct. Especially,

when we defin e cycl ic sharing, we mu st define a ll classes in that. cycle in one let .. and . and ... constru ct

a t once. In pract ice, however , we often need to defin e the schema of a database in a incremental way. To

define classes in the schema in such a way, we introdu ce the follow ing const ruct.

lucr etnental Sharing D efini t ion: C incl ude . as . where .

This cons tru ct define a new sharing relation for some a lready defin ed cl ass C. VVhen a new sharing

relat ion is defined by this constru ct, the system exa mine whether it cause any invalid recursive definiti on or

not. I f it. does , the system rejects that defin ition and reports an error. Otherwise, t he syste m redefin e the

sharing pred icate of Lhe class C. Because classes a re internally implemented as mutab le records and any

class importing objects from class C has reference to that. record , we ca n realize this constru ct by simply

updating a mutable fi e ld Ext of class C.

VVe a lso ca n introduce some constructs for frequently used kind of class definitions, such as union ,

intersection or selection class defin it ions.

U n ion C lass D efinition : class C union CJ 1 ••• , Cn.

34

This construct defines the class Cas the union class of c1 , .•• , Cn. The view type of Cis the record

includin g fi e lds common to all of c 1 , ••• , c 11 , and the data stru ctu re for attribute informatio n of C's instance

is the record with fi e lds that are used in c1 to implement those common fi e lds. The below is an example

o f the de finition of a union class.

class Adult : [Name = str·iny, Birth Year = illt , Children := {Child}]

as >.x.[Name = x·Name, Age = This Year() - x·BirthYear, Children := extract(x, Children)] ;

class Child . [Name = string , Age = in/, Father = Adult , Mother = Adult]

as >.x.[Name = x·Name, Age = x·Age, Father = x·Father, Mother = x·Mother] ;

class Person union Adult and Child;

Then, the definition of Person is translated to the program below:

class Person · [Name = sl7·ing, Birth Year = in. t]

as >.x. [Name = x·Name, Age = ThisYear() - x·BirthYear];

include Adult as >.x.[Name = x·Name, Age = x·Age]

where ,\x. true :

include Child as >.x .[Name = x·Name, Age = x·Age]

where ,\x . true;

Intersection C lass Definition: class C intersect c1, ... , cu.

This construct defines the class C as the intersect ion class of c1, ... , Cu. The view type of Cis the

record including all fields o f Ct, ... , Cn, and the structu re of attri bute info rmation C is the same as that

o f c 1 . \•Ve show an example of a intersection class below.

class Staff: [Name = string, Sal := int]

as >.x. [Name = x·Name. Sa lary := extract(x, Sa l)];

class Student . [Name = str·illg, Deg := ill/.]

as >.x.[Name = x· Name, Degree := extract(x, Sal)];

class StudentStaff intersect Staff and Student ;

Th en, the last de finition o f Stu dentStaff is translated into one class definition and two include constructs

as below;

class StudentStaff : [Name = string , Sa l := in/ , Deg := illt]

as >.x.[Name = x·Name, Salary := extract(x, Sal) Degree := extract(x , Deg)J

include Staff, Student

as >.x.[Name = x·l·Name, Salary := extract(x·l , Sal) , Degree := extract(x ·l, Deg)J

where ,\x.true;

class Staff include StudentStaff

as >.x.[Name = x·Name , Salary := extract(x, Sal)]

35

where .Ax . true;

class Student include Studen tStaff

as .:lx.[Name = x· Name, Degree := extract(x, Deg)J

where .Ax .true ;

Selec tion Class D e finition: class C select c1 where 1J

This const ru ct defin ed the class Ca.<; the select ion class from c 1 t hrough the predicate p. The view type

and the str uct ure of attribute in formation of C is the same as c1. For example, if the class taff is already

defined as above, we can define High Sa laryStaff as fo llows:

class High Sa laryS taff select Staff where .:lx.q uery(.:ly.y·Sal.x) > 100;

This defi ni t ion is t ranslated to the defin ition below:

class High SalaryStaff : [Name = str·ing, Sa l := int]

as h. [Name = x· Name, Salary := extract(x , Sal)]

include Staff as .:lx.x where Ax.query(.:ly.y·Sal ,x) > 100;

class Sta ff include HighSalarySta ff as .:lx.x where Ax . true;

2.6 Contribution and Future Work

We have presented a typed polymorphic functiona l calculu s that supports powerfu l view definiti ons a nd

nexible object sha ring. In this calcu lus, one can a.':isociate objects with views. Views can be any type

consistent functions definab le in the calculus. T hose objeds can be manipu lated by ordinary fun ctions

for their view type. T he necessary code for fu nctions to interface with objects is automatically generated

by the system. One can define classes of those objects with general shari ng specificat ions. Each such

speci ri cation consists of a predi cate on the objects to be included a nd a viewing function, both of which

are defined in the same lan guage for manipu lat ing objects. It is also possibl e to defin e recurs ive classes,

where in clusion relation contains cycles. VVe ob tai ned the calculus by successively deri nin g the necessary

stru ctures a nd operations for manipulating views and classes on top of t he core calculus for records and

sets. We also gave t heir precise semantics a nd an effect ive a lgori thm to implement them by developing a

systematic method to translate t hose structures and opera t ions into the calculus for records a nd sets.

The most important contribut ion of t his research is that we provided highly general basis for method

sharing and object shar ing in object-oriented database models. VVe believe our app roac h combining method

sha ring via polymorphic type inference and object sharin g via general pred icates can serve as a better

altern ative and can replace the ord in ary method and object sharing via user-defi ned class hiera rchy.

One notable advantage of our approach is that our language uniformly integrates object-oriented

database programming and typed polymorphic programming. \Ve believe t hat th is integrat ion will open

36

up t he possib ili ty of t ransferring various recent results in type theory to object-oriented database program­

ming. For example 1 it is not hard to integrate t.he cl ass structures we have deve loped with parametr ic

cla.ses ror object-oriented programming [01389].

Another in teresting issue is abstract characterization of views. In developing a systematic t ranslat ion for

a language with views and classes int o a language without them
1

we noticed an in t riguin g s imil arity between

certain operat ions associated with Monad in category theory and our operations for lifting operat ions for

usual values to objects and classes. This suggests that \'\.'e may be able to find a categori cal characteri zation

of object-oriented databases that ca n be app licable to wid er range of data stru ctures. Such an abst ract

analysis might be useful for com paring exp ressive powers of languages with views in di fferent pa rad igms.

37

Chapter 3

Static Detection of Security Flaws Caused b y

Encapsulation Failures

3.1 I nt roduction

User access to a data base is either an action to get some information from the database1 o r an action to

give some information to the database in order to make it refl ected by the database state. Access cont rol is

to impose rest rict ion s on those actions in ord er to meet the req uirements concerned with securi ty. In many

theoretical researches on security analys is, t hose two types of access arc represented by read a nd write

operat ions for s implicity. The basis of this si mplification is the fad that a ny information fl ow between

the users and the database origin ates in those operat ions. In practice, however, it is often the case that

security requ irements cannot be exp ressed in terms of such si mple operations. For example, there may be

a situation where a user should be allowed to get just partial informat ion on some data but should not

know the exact value of it . There is also a situation wh ere a user should be allowed to update some data

in some specifi c procedu re, but should not be ab le to write a ny value he wants. 'VVe can impose these kinds

of restrictions by definin g appropriate fun ctions and by authorizing users to invoke those functions instead

of author izing them to directly execute read or write operat ions. Those fun ctions read the data but return

a processed data through some comp utation , or they write the data followi ng the required procedure.

Although primitive read or write operations are invoked ins ide t hose functions, the users can invoke t hem

only ind ireclly th rough those fun ctions. In oLher words, the funcLions encapsulate those primitives into

some procedures. By this encapsulation , we can achive context-dependent access control. Th e access

control by ut ilizi ng encapsulation of funct ions (or "methods" in the obj ect-oriented terminology) is one of

important reatures or many object-oriented database systems [ADG 92, Der92 , GGF93].

We use funct ions in order to encapsulate some sensitive primitive operat ions inside them. Therefore, it is

essential t hat t hose funct ions certa inly hide those primitives. If one can infer t he res ult of a read opera.L ion

encapsulated in sorne fun ction , or ca n control (i.e. can change to any value he wants) the a rgument of

a write operation ins ide some funci.ion , that fun ction is not actually hiding t hose operations. The user

38

efrect. ively obta ins the sa me capabi li ty that. he wou ld have when he were aiJO\\'ed to invoke thesC' primitives

d irect ly, Such fl aws easily occur especia ll y when the user exercises multiple capab il it. ies together, F'or

example, suppose a stock company has a database about a ll stockbrokers of th e com pany, In t his company,

each stockbroker is given a budget for his stock dealing and there is a regulation th at the budget of each

broker should not be higher t han ten times his sa lary, One clerk is assigned a job to periodi ca lly examin e

wheth er the budget of each broker is not illegally high against th is regul at ion, but he should not be ab le to

know the exact amount of the sa la ry of each broker, Th en, the database adm inistrat.or defi nes a fun ct ion

t hat reads out t he sala ry and t he budget of a broker, compares them , and returns t rue or fa lse, The clerk is

authorized to invoke this fun ct ion but is not authorized to directly read t he salary data, In this situ ation,

however, if tha t clerk can know the amount of the budget of some broker, he can know a lit tle about the

salary of t he broker j "his salary is at least higher (lower) than this", Or in a worse case, if that user can

change the amoun t. of t he budget to any va lue he wants, he can infer the exact amount of I he salary by

repeated ly changing the budget to several va lues and invoking the testi ng fun ction, Those a re security

fl aws, Anoth er examp le is concerned wit h write access, Suppose t he sa lary of each broker is updated once

a wee k to a new value calculated from t he budget given to him las t week and the profit he made las t week,

T hen, the database administrator defines a fun ct ion that reads the budget and the profit of each broker,

calculates a new salary value, and writes it in, An clerk is authorized to invok t his fun ct ion, In this

situation, ir the employee is also able to change the budget of each broker to any value he wants, and as a

consequence of it , can change the new sala ry value t.o any value he wants , t hen he can write any value he

wants as t he new salary. When we use encapsulation of run ctions for access control, many of these types

of security flaws may occur,

In this chapter , we develop a technique to sta tica lly detect those fl aws, \Ve authorize users to invoke

fun ctions , and we also descri be securit,y requirements as negative authori zations like "one should not be able

to infer the result of this read operation", or "one shou ld not be able to control the argument of th is write

operation". We call the fo rmer capabi lity inf erabilily and call t he latter capability conlro llab iilty. These

two capab ili t ies effectively correspond to t he ab ili ties to invoke read or write operation directly, Because

read and write operations ca n be considered as special cases of fun ction invocations, we can naturally

genera lize t he notion of inferabi lit.y onto ret urned va lues of any fun ctions and the notion of controllability

onto arguments of any runctions, In fact , we somet imes want to encapsu late a comp osed function into

another fun ction and to describe the req uirement in te rms of the encapsulated composed functi on, like

"one should not be ab le to inrer the result of t his fun ction invocation '' , Then, sec urity requirernents are

described in the following forms; (1) lhe user 'U shou ld not have inferabi lity on the returned value of the

fun ction f , or (2) t he user u should not have cont roll abi lity on the argument a of the funct ion f , lnferability

on returned values of fun ctions and controll ab ili ty on arguments of fun ctions precise ly represent two kinds

of user ab ili t ies in database access; (I) th e abili ty to get data from the database and (2) the ab ility to give

data to the database.

39

Based on these two notions, first, we es tab lish a framework for descript ion of security req uirements. To

defin e inferabil it.y formally, we design an inference system that. models th e inference ability of users. Next,

we develop an algorithm that statically detects security flaws violating the given requirements. The main

part of the algorithm is another inference system that simulates the infereuce system above by sy ntact ical

analysis of the program code of the function s.

As mentioned in [ADG92, Ber92 , GGF93}, when we control access in fun ction granu larity, th ere are

two ways to impose restr ictions; verifying only direct function in vocations or ver ifyi ng indirect invocations

as well. The advantage of the former is t hat we can grant users encapsulated abstract op erations, and

t he advantage of t he latter is that security flaws are less li kely to occur because every access is verified.

We achieve both advantages by choosing t he former approach and by providing the static security flaw

detect ion mecha nism.

3.1.1 R e lated Work

There are many researches on statically determining whet her a user can infer sensitive informat ion in

t he database especially in the context of relational database systems [B ur90, MJ88, JS9J , S09 1, HD92 ,

QSK+93 , Qia94]. Those researches focus on whet her users can know the existence of some entities or

can make sensitive associations between ent ities or values in the database, while we focus on different

aspect, i.e. whet her a user can compute the attribute values from supp lied values. [Mor87 , Row89, MSS88]

propose frameworks to detect the possibility of user inference on sensit ive values through the knowledge

about semantic depend ency or the integrity constraints between data in the database. On the ot her hand ,

our mec hanism deals wit h dependencies between arguments or returned values of functions , and data in the

database which a re referred to in those functi ons. Although all researches deal with dependency , fun ctions

can represent wid er range of dependencies t han semant ic depend encies or in tegri ty constrain ts. In fact ,

our mec hanisms can include integrity constraints by describing eac h integrity constraint in the form of a

funct ion with no argument and returning boolean values, and by assuming the res ult of t he fun ction is

known to the use r . On the contrary, a function can not always be described in a form of constraint because

t he notion of fun ctions include the notion of arguments, to wh ich users can assign several values, and t he

notion of return ed values of a ny types . Moreover, [Mor87, Row89] do not consider t he effect. of update by

the user. [MSS88] takes into consideration only limited kin d of s ituations ; situations where users can infer

some data by repeatedly updating some data. But. their model does not analyze whether use r can actually

realize needed update, and does not include another kind of cases where update a ffects on inferability.

In order to includ e the notion of arguments given by the user , and to examine more elaborately how t he

user ca n update t he data, we introd uce the notion of controllability and investigate how it interacts with

inferability. We then develop an algor ithm that analyzes both controll ability and inferability, and show

how t hat algorithm ca n be applied to stat ic security flaw detection in object-oriented databases.

There are rnany researches on access control using ''views" in object-oriented data bases [TY ISS, HZ90 1

40

11 090, AB91, SLT91, Bun92]. Also we propose mechanisms for access control with views in the previous

chapter. A I though the idea of access control using views defined by fun ctions is essentially the same concept

with access cont rol using fun ctions, those researches do not. discuss about security issues. Our technique

can be appl ied to the ver ifi cation of view definitions in those systems as well. In [DA 1f +87], they provide a

mechanism to automatically compute security levels of computed att ri butes in views in t he context of the

relational databases. Their method is, however, si mply to compute th e least upper bound of secu ri ty levels

of all data used in the computat ion without any analysis of the program code. Therefore , their method

cannot be used for our purposej to give users no t. total but partial information on some data through some

comp utations.

[Den76 , Coh77, DD77] proposed techniques to analyze program code in order to detect all fl ow of

information. Their methods also compute the least upper bound of the secu ri ty levels of sou rce data.

Therefore, their methods cannot be used for our purpose for the same reason rnentioned above.

The rest of this chapter is orga nized a.'5 follows. Section 3.2 briefly exp lains the basic data model used

as the base of the development. Section 3.3 discusses and formally defi nes the concept of inferability and

controll ab ility. Section 3.4 describes the algorithm that. analyzes program code and detects security flaws .

Finally 1 Section 3.5 me nt ions some furth er issues and concludes this chapter.

3.2 The Basic Model

In this section, we ex plain the basic model of database on which we develop our framework for access

control. Although in this t hesis we assume a s imple dala model with mutable objects and classes, the

on ly essential point of the development shown in this thesis is that users access data objects by invoking

functions. We believe that our mechanis m ca n be translated onto several other data models, such as the

relational data model with abstract data types.

The data model is defined as follows;

schema

o_type

type

db

({c.name: o.type), {(f.11ame(a1·g: l.ype, ... , a1"!J: type): type, body)), {v.name: o.type))

[attl·ibv.te :type , . . , a/tribute :type]

b I c.name I {type }

({(c.name, {obj ect))), {(v.name,objccl)), {(tLname, {! .nam e I v.name))))

A schema schema is a triple of a set. of class definitions, a set of fun ction definitions, a set of global

variable definitions. Each class definition has t he form c_nmne : o_type, which declares that the Lype of

the instan ces of the class c_name is the type o_lype . Each fun ction definition is a pair of the signature

of the fo rm J .name(m·g : type, ... , arg : type) : type and the defi nition of its body. Each global va ri able

definition has the from v_n am e : o.J.ype, which decla res that the type of the object stored in t he global

va ri able v_name is the type o.J.ype. 1'he users access the database by invoking those fun ctions. We ca ll

them access functions. \<Ve can interpret an access fun ction also as a "method" defined on the class of the

41

first argument by in terpreting the first a rgument as the receiver. Some additional considerat ion that would

be needed if we introd uced subtyp ing and overloading will be ex plained later. o_type [at : t1, ... , an : tn]

denotes t,he type of objects with attrib utes a 1 , ••• ,an of type tt,- .. ,tn. Objec ts are mutable entities, and

we ca n read out current values of th eir at tributes, update their attributes, pass them to fun ctions as

arguments, and store them in attr ibutes of other objects. type is either of a basi c type b such as in teger, a

class name c_name that is interpreted as the type of its instances, or a set type of some type. A database

db is a pair of (l) a set of pairs of a class name a nd its extension , i.e. a set of all objects that are instances

o r the class, a nd (2) a set or all registe red use r names, eac h or whi ch is paired with his capability list. A

capability list is a set of all access function names (or special functions explained later) that the user is

a llowed to invoke in the query, and all g lobal variable names that the user is allowed to refer in the query.

(The query language is defin ed later in this section.) Bod ies of access functions are descri bed us ing the

funclwn deji111tzon language defin ed by the followi ng sy ntax;

cIa I xI X I fo(e, ... ,e) I J, (e, ... ,e) I _r_alt(e) 1-w_alt(e, e) I let x = e, ... , x = e in e end

c stands for constants , a sta nds for the arguments of the access function , x stands for local variab les defined

in some let constru ct), and X stands for global variab les. f b(e, .. , e) is an invocation of a basic functi on

fh with arguments e, ... ,e. Basic fun ctions are primitive operations on basi c types, such as addition on

integers. f a(e, ... , e) is an invocation of another already defined access fun ction fa- _r_att and _w_aU

a re spec ial functi ons that read or write att ri butes of objects. For example, _r_salary(x) returns the current

value of the att ribute salary of the object x, and _w_salary(x , 100) writes 100 into t. he attribut salary of the

object x a nd returns a special value null. let x 1 = e1, ... , Xn = en in e end is a constru ct that binds the

result of the eva lu ation of e1 , ••• , e11 to x 1, .•• , Xn, eva lu ates e under those binding , a nd return the result

of that e valuation.

The use rs issue query using the rollowing SQL-like que ry language ;

select item, ... , item. from At E C1 , ... , An E Cn where condition.

In this sy nta..x , C 1 , ... , Cn is a class name. At, ... , An a rc called from-clause variables and are bound to

eac h combination of instances of Ct, -.. ,Cn- it em is f(v , ... ,v) where f is an access functi on or a special

fun ction (_r_att or _w_att) and v is either a constant of some basic type, some global var iab le na me, or

one of the from-clause variables. If object identifiers ca n have some printable form, such as (i d:730710), we

ca n also use them in place of v. In this developrnenL, however, we assume object identifiers do not have

any printable form . 'l'le ex plain the reason of this choice later in Section 3.3. Items in a select cl ause are

evaluated in order from left to right. condition consist of boolean terms connecled by and and or where

each boolea n term has the form either of "f (v, ... ,v) op v" or '' f(v, ... ,v) op f(v, ... ,vY'. op is a binary

predicate for ba'Sic types, such as > for intege rs. F'or exam ple, if the access fun ction profile(x: Per· son):string

is defin ed , and a user has _r_name , profile , and _r_age in his capability list, he ca n issue a query below;

select _r_name(p) , profile(p) from p E Person where _r_age(p) > 20

42

which re turns a se t of pa irs of a name a nd a profil e for a ll Person inst a nces whose age are greater t hen :W.

i tem can also be a noth er nes ted select . const ru ct whose from clau se includes, instead of class na mes ,

some set valued functi ons (or read o perat ions of some set valued att ributes). For example, suppose Pe1·son

has an at tribute chi ld : { P e1·son}. Then, the query below return s a set of names of children of a person with

the name 'J ohn ';

select (select _r_name(q) from q E child(p)) from p E Person where _r_name(p) =' John '

3.3 Specification of Security Requirements

In th is section , we explain how we describe security requirements using the notion of inferability and

contro llability. We discuss the pro perties of those two kind s of capability and give t he formal semantics of

them.

3.3 .1 B asic Con cepts

In Section 3.1 , we int roduced the no tion of inferability on returned values and controll ability on arguments

as ability effect ively equivalent to ability to invoke the functions directly. VVhile the meaning of infera bili ty

mu st be quite clear , t he not ion of controlla bi lity may need more explanation. Controllability on an argu­

ment intuitively means that o ne can use any value he wants as that argument . To have controllability o n

an argument , therefore, he must be able to change the value of that a rgument to any values . We call this

ability alterability. Alterabi lity o nly, however, is not eno ugh to imply controllability. Suppose a fun ctio n f
is indirectly invoked in a nother fun ction g. If one can change the value used as an argument of an fun ction

indi rectly , but cannot know whi ch valu e it takes now , it is simi la r to walking in the dark. He can move ,

bu t he cannot know where he is no w. Fo r example, suppose there is an access fun ctio n f(x, o) defin ed as

g(+(x , _r _age(o)) and one user is allowed to invoke f directly in the query. Then , he can change the value

of the a rg ument of g , i.e . the value of th e expression +(x, _r_age(o)), to any values by changing the value o f

x. However, if he cannot kno w the valu e of _r_age(o), he cann ot know the current value of the argument of

g . We co nsider, therefor e, having controllability equals to ha ving both inferability and alterability. From

now on, we decompose contro llabiliLy into these two capabilities.

We furth er class ify inferability in to th e ability to infer the exact va lue, tot.al inferability , and the ability

to infer a se t o f values to which the value must belo ng, parl.ial inferabilily. Partial inferability is , in

oth er words, the ability to infer at least one value th a t, an expression can NOT be. Similarly , we classify

alterability into the ability to change the value to any value of its type, lola/ alterability , and the ability to

change the value to only with in some limited subset , partia.l alterability. Total inferability imp lies parti a l

inferability, and total a lterability do partial alterability.

Another dimension of classification of capa bility is certainty o f them. lf a user is a lways a ble to have a

capability, in other words if he can have it no matter what the current database state is, we say that he

43

certa in tota l infcrability

~
certain partial

inferabi li ty
occasional total

inferability

~
occasiona l partial inferabi li t.y

certai n total alterability

~
certain pa rtial

alte rab ility
occasional total

alterabili ty

~
occasional partial alterab ili ty

Figure 3.1: Implications between capabilities

has a certa in capabili ty. On the other hand , if a user is occasio nally able to have a capab ili ty depending

on the database state , we say that he has a occasional capability. Certain capability implies occasional

capability.

Combining t hose two dimensio ns, we can consider fo ur types of inferabilityj certain tota l inferability ,

certain part ia l inferabili ty, occasional total inferability, and occasional partial inferability. Imp lication

between th em is ill ustrated in Figure 3.1. Sin1ilarly, a lte rabili ty is class ified into four types of a lte rability ,

and there are impli cations between them a.c; illustrated in fi gure 3. 1.

Us ing t hese notio ns, we describ e sec urity requirements in the following sy ntax;

requirement .. - (t~,f(a 1 : caplist , ... , a0 : caplist): caplist)

caplist .. - cap : cap : . : cap

, «n : c~1 · · · : c~1 n) : cb · · : c~"o means t hat the user u s hould not

be able to invoke the fun ction fin a context where he can simultaneously achieve a ll specified capabilities

c1 o n each a rgument and on the returned va lue. f ca n be any of basic functio ns, access fun ctions, or

special fun ctions explained in Sect ion 3.2. Capabi lities are certa in tota l inferab ili ty ct i, certai n p artial

inferabi lity cpi 1 certain to tal alterability eta , certa in p artial altera bility cpa 1 or other fo ur types o f

occasiona l capability. (lt. must be easy to imagine whi ch capability each abbrev iation represents .) \rVe g ive

t he forma l definit ion of t he semanti cs o f those capabilities and the descript ion of security req uirements

later in this section. VVhile t he decomposit ion o f cont roll ab ility into inferability and a lte rability is essential

for t he security a nalys is described Sectio n 3.4 1 it. is not signifi ca nt for security requirement desc ri ption

above . ln deed
1

we can include terms specifying contro ll ability just as an abbrev iation of specifying both

inferability and alterabili ty.

We s how ho w sec urity requirements are descr ibed using t he examples ex plained in Sectio n 3. 1. Suppose

the class Broker representing stockbrokers is defin ed with the type [name:sll·ing , salary :int, budget :int,

profit :int]. T he ad ministrator defines t he access fun ctio n check Budget as below;

44

check Bud get(broker : B roker·): boo/

>=(_r_budget(broker). • (10 , _r_salary(broker)))

The first line is the s ignature o f this fun c tion , and t he following line is t he bo dy. This fun ction ta kes a n

a rgument broker , reads out budget an d salary of it , compa res the budget wi t h te n t imes t he salary, and

re turns true or fa lse. A user u is authorized to in voke this fun ction, b ut shoul d not be able to know

t he exact amount of each bro ker 's sala ry. This requirement is described as (u, _r...sa lary(x) : cti). As we

ex pl a ined before, a flaw occurs if u can cont rol (i.e. ca n infer and ca n a lte r) the valu e of _r_budget(broker).

For examp le, if he a lso has _w_budget in his capabili ty lis t , he ca n infer t he sala ry o f each broker by iss uing

the query be low;

select _w_budget(b , 1) , checkBudget(b) , _w_budget(b . 2) . checkBudget(b) ..

from b E Broker where _r_name(b) ='John '

whi ch wil l y ield a set {(null , false , nul l, false , null , true , .)). (Here, we assume t here is only one

broker with the name 'J ohn ' . Of course, there may be more.) We de tect t his security fl aw by ex amining

wh ether the requirement a bove is satisfi ed or not. Simil a rly, t he administrator defin es the access fun ction

updateSalary as belo w;

up d a teSa I a ry(broker : B rok er·) : nul I

_w_salary(broker , calcSalary(_r _budget(broker) . _r _profit(broker)))

This fun ction ta kes a broker object , read budget and profit o f it , calcu lates his new sa la ry by in vokin g

an other access fun ction calcSalary , and wr ites t he res ult to salary. A user u. is aut horized to invo ke this

access fun ction but should not be a ble to change the new valu e of salary. In this case, however , if t he user

can alter t he value of t he expression _r_budget(broker) , and as a consequence of it, can alter t he returned

value of calcSalary , he can a lte r th e value of salary , whi ch mea ns t he re is a securi ty fl aw. This flaw can be

d etected by describ ing t he sec urity req uireme nt (u, _w_salary(a , v : cpa)), and by examining whether t his

requirement is sat isfi ed or not .

If we introd uced su btyping and overloadin g, a single access fun ction name would correspond to multiple

implemen tat ions defin ed o n diffe rent s ubclasses. E ven in such a sit ua tion , t hose mul t iple implementat ions

a re implementing a concep t ua lly same fun ctionality. Because it is na tura l to in terpret those securi ty

requirements as refe rring not specifi c imp lementa tio ns but concept ua l fun ctionali t ies 1 we in te rpret each se­

curity requirement as specified for all the implementations of the fun ction na me. Under th is inte rpreta i.. ion ,

we can dete rmine whether the requirement is satisfi ed o r not by considering aJI possible s ub classes. T hat

p rocess cannot be infinite because our language is recurs ion-free. If we a lso a llowed recursion , the a nalys is

wo uld be quite ha rd , but that. difficulty is commo n to va rious static an alys is of a language wi t h overload ing

and recurs io n.

Note th a t we ass ume the users can read the program code of t he access fun ctio ns. E ven if we prohi b it

it , t he users should know the se mantics of t.he access fun ct io ns to use t hem , and t herefore, ca n infe r t he

45

con Lents of the access funct ions. To La ke Lhat know ledg into consideration, we assume that the users can

read the program code.

3.3.2 Causality b e tween capabilities

As we ca n see in the examples above, in o rder to a nalyze inferab ili ty and a1Lerabili1y, we must consider

inferability and alterabili ty on every s ubex pression in t he program code, and musL trace how t hey a re

propagated to other subexpressions. Th erefore, we genera li ze t he notions of in fc rab il ity and contro llab il ity

to any ex pressions of t he fun ction defini t ion la nguage. Before giving fo rmal semant ics of t hem, we give

some in t ui tive discussion abou t causa lity of t hose two kin ds of capability.

There a re two kinds of exp ressions, t hose of basic types and those of object types. Fi rst, we consider

capab ili ty o n basic type exp ressions.

T he base cases o f inferabi li ty on basic type expressions a re exp ressions whose va lues a re di rect ly shown

to the user , i.e. constants in t he p rogram code, or t he a rguments and the ret urned values of t he fun ctions di­

rectly in voked in t he query. lnferabi li ty o n basic type ex press io ns is p ropagated through the "dependency,

between expressions. T his dependency comes fro m the dependency between arguments and returned values

of basic fun ctions. Th e type of inferabili ty caused via depe ndency depends on the s hape of t he corres po n­

denc rela tio n between t he values of th e exp ressions. Sup pose t he values of expressions e1 a nd e2 depends

on eac h other , and in t hat depende ncy, each valu e of e1 corresponds to max1 va lues a t maximum and to

min1 valu es at mini mu m. If max1 = J , certai n total inferabil ity on e1 causes certain total in fe rabil ity o n

thee,, while if I < m ox1 < fe,f (fe,f denotes the number of values of domain of e,), certain tota l inferabi l·

ity on Ct causes only cer tain partial inferabil ity on ei. If maxi = le2 l, certain total inferab ili ty on e1 causes

no cer ta in inferabi lity on e2. \.Yh ile certa in infcrabili ty ca used on e2 is dete rmined by max1 , occasiona l

inferab il ity is determined by min1 . Even when maxi > l , if min 1 = I, occasional total in ferabili ty on e 1

causes occasiona l tota l inferab il ity o n t>2. Simil arly, even when nwxi = le2l, if min 1 < le 2 l, then occasio nal

total in fe rab ili ty o n ei causes occasiona l part ia l inferabili ty on e2 .

Anot her property t hat t ra nsmits inferabi lity is eq ua lity. If t he use r kn ows t ha t t he values of t wo

expressio ns must be t he same, t hen inferabili ty on either one causes inferability o n t he other . The user

can know that t he va lues of two expressions a rc equ a l if (I) they are t he values stored in t he same variable

a nd no update occurs between t hose two expressions, or (2) they are t he value of the same att ri bute o f t he

same object and no update occurs between those two exp ressions.

Simila rly, a lte rabi lity o n bas ic type exp ressions is p ropagated through dependency between returned

va lues a nd arguments of basic fun ctions. Suppose t here is a expression f (ei, ... ,e11). If t he returned

valu e of J changes to a ll values of its type while t he value of ei is changing to a ll values o f its type,

then total a lterab ili ty o n e 1 causes tota l a lte rabi li ty on f (et, ... , e,l). If t he returned value off cha nges

to only limited values, on ly pa rtia l a lterabili ty o n f(ei, ... ,e11) is caused. If the ret,urn ed value of f can

cha nge to a ll values only when the ot her arguments ta ke s peci fi c values, t hen occasio na l total a lterabil ity

46

on f(el, ... , en)is caused. Alterability is also propagated through persistent data. If one has a lterab iliLy

on the argument of some write operation, he has alterabi li ty on the returned value of the followi ng read

ope rations that will read out the value written by that write operation. The user can alter the result of

read operations also by changing the objects to be accessed , i.e . by utilizing alterability on the argument

of the read operations. The base cases of alterabi li ty are expressions whos~ values are directly speci fi ed by

the user , that is, t he arguments of the functions diredly invoked in the query.

Alterability can be analyzed independent of inferability because alterability is caused on ly by another

alterabi li ty. lnferability never causes alterabi li ty. On the other hand, alterabili ty plays a role to cause

inferability. Suppose inferabili ty on e 1,. , e,l causes certain partial inferability on e, that is , one can infer

some set of values about e . If he can change e1 , ... , en to several values, and can infer different subsets

from diffe rent values of e1, ... , en, then he can infer that the value of e must be in t.he intersect.ion of those

sets. If the intersection is a singleton set, he ca n infer the exact value of e. F'or examp le, suppose there is

an expression >=(x , y). Certain total inferability on the whole exp ression and on x cause certain partial

inferability on y. 1f one also has alterability on x, then he can infer the exact value of y by repeatedly

changing x to several values and check the resu lt of >=(x, y). This kind of situation is pointed out in

[MSS88]. Another type of situations where alterability causes inferabil ity is the case where inferability on

some exp ress ion e causes inferabi lity on another only when c takes some specific values. A typical examp le

is the eq uality operator. Suppose t here is an expression =(x, y) and one can infer the value of the whole

express ion and the value of x. They cause certain partial inferabil ity on y. They also cause occasional

total inferabil ity because only when x happen to be equal toy, we can infer the exact value of y. lf he has

a lterability on x, he can always make t hat s ituation happen, and therefore 1 he can always infer the value of

y, t hat is, he has certain total inferabil ity. Other examp les of the former type of operations are the div ision

or the reminder operator on integer . The division operator on integer is also an examp le of the latter type

because on ly when the divisor is 1, total inferability on the result causes total inferability on the dividend ,

and vice versa.

Next, we consider capabil ity on ex pressions of object types. T he actual value of an object type ex­

press ion is some form of object identifier. We can consider two kinds of situations. One is where object

identifiers have some pri ntable form , such as (id:730710), and another is where they do not have any print­

ab le form. In t,he former case , the user can directly speci fy an object. in a query, and when the result of a

query is a n object, it can be outp ut to output devices. In such a s ituation, capabi li ty on object identiflers

can be treated in the same way as that on bas ic values. Because t he development for this s it uation is rather

si mple, we assu me the latter case in this development. In the latter case, when the result of a query was an

object, it may be shown in some form like (a Person object) , and the onl y way to pass an object to function

in a query is to give it th rough from-clause variables or global variables. For example, in the example

of query in Section 3.2, t he a rgu ment for _r _name is given through the from-clause variable p. In such a

situation , inferability on object identi fiers does not make sense . Even in t his situat ion, however , we can

47

recogni ze equ a li ty between t wo objects. For example, in t he query in Section 3.2, we can recognize t hat p

in _r _name(p) and p in profile(p) is identi cal within one evalu at ion of t he select clause for one broker object.

Simila rly, in the access fun ction checkBudget above, we can recogn ize th at broker in _r_budget(broker) and

broker in _r__salary(broker) a re identical. As for alte rability, we consider a user has total alte rabi li ty on

arguments of access fun ctions d irectly in voked in a query even when t he arguments are of object ty pes. For

example, in the query in Section 3.2, the user can a lte r an object passed to profile to any Person instance

by chan ging t he predicate in where cla use (or rather he can invoke profile for a ll Person objects sim ply by

using true in where cl ause). T herefore, he has a lte rability on t he argument of profile .

3.3.3 Formalization

Now we give the fo rmal sema nti cs of t he capabili ty a nd t he secu ri ty requirement descr ip t ions. We defin e

t he seman tics of inferability by definin g a n inference system t hat fo rmulates the inference ab ility of the

users .

F'irst , we clarify wh a t a user can do in the queries wi t h the select constru ct. In the select cl a use, a

user can invoke t he access fun ctions or special fun ctions in his capabili ty list. Al t hough he ca n get some

information or can update some data wi t hin th e where clause as well , what. he can do in th e where clause

is a subset of wh at he can do in the select clause . T herefore, what a user can do in a query is essent ia lly

to invoke a sequence of fun ct ions in his capabili ty list. In those in vocat ions, as expl ained befo re, a user

can pass arbitrary bas ic values and arbitrary objects as t he arguments, and he can make two d ifferent

arguments be t he same object by using the same from-clause va ri able or t he same globa l variab le for t hose

arguments.

To describe the semant ics of capabili ty, we in t rodu ce some not ions. A function seq'uence availa.bJe to th e

user u is a sequence of some fun ctions in the capability list of u . These sequences correspond to wh at u can

do in queries. (f 1, ... , f n) denotes a functi on sequence cons ist ing of ! 1, . .. , f n· It may include the same

fun ction more tha n twi ce . .C(u) denotes the set of all fun ction sequ ences availa ble to the user u. G iven a

sequence, we unfo ld each function in t he sequence with replacing it to its body. We also recurs ively unfold

all access fun ction in vocations insid e it by replacing a n access fun ction in vocat ion f (e 1, •• • ,en) wi t h let(f)

a1 = e1 , an = en in e end , where e is a body of J and a 1,. . , O. n are argument names off. VVe use let(/)

to record t ha t t his let constru ct was an invocation of f . Then, we number all subex pressions like ke where

k is a seri al number corresponding to t he o rder of the evalu a tion in the ac tu al execut ion of the seq uence.

S(L) denotes the set of all the numbered subexpressions in t he sequ ence L. For exa mple, if L = (f , f), f(x)

= + (g(x) ,l) , and g(y) = • (y,2) , the unfolded and numbered sequence is:

(7 + (• 1et(g) y = ' x in ' •('y," 2) end ,6 1), 14+ (121et(g) y = 8 x in "•("y, 102) end ,131))

and S (L) is

48

51et(g) y = 1x in 4 •('y,3 2) end , 6 ! , '+(• let(g) y = 'x in '•('y,3 2) end , 6 !),

•x. 9y, 102, 11 •(• y , 10 2).

121et(g) y = 8x in 11
•(9y, 10 2) end , 13 1, "+('21et(g) y = •x in "•(9y, 10 2) end ,13!)}

W e: number all subexpressions in order to distinguish different occurrences of the sy ntact ically same subex­

pressions. If s pecial funct ions a re included in D, we number them without unfolding. For example, if

_w_name(p, v) is included in L, we number it like 8 _w _name(6p, 7v). Because the signatu re of every access

fun ction is defin ed in the sc hema, the type of any subexpression can be statically determined. DomC' e)

denotes the set of all values of the type of ke.

Let L = {ft , ... , fn)- Then an execulwn instance of L is a tuple of the for m (D , f t (v:, ... , v;n•) = r1,

fn(v~, ... , v~") = rn} , which represents an execution of L with D as the initial database state, with

v:, ... ,v;n• .. ,v~, ... ,v~n,. as the a rguments , and resulting to the returned values 7'J 1 ••• 1 1'n· If each Ti

equals to t he resul t of the actual execution , that execution instance is said to be va lid. £(D, L) denotes

the set o f all valid executio n instances of L with D as the initial database state. [.l:e]e denotes the val ue

to which .l:e wo uld be evaluated in the ac tu a l execu tion of the executio n instance E. Fo r example, let E

be (0 , f(l) =3, f(2) = 5), then E isa val id execution instance of Labove, and f•(1x,22)Je = 2.

Usi ng these notations, we defin e the semantics of the secur ity req uirement desc riptions as fo llows;

De finition 1 A requirement (u, j (a1 :d ... : c';' ... , an : c~. : c~1 "): cb ... : c~10) ts not satisfied iff

the followmg holds;

3L E L:(u). 3 •' let{!) a, ='•e, , .. ,an =•· en in . end E S (L).

{Vi(I ~ i ~ n). Vj(I ~ j ~ m;). Can(IJ, c!, • ·e;)) 1\

{Vj(l ~ j ~ m 0). Can(L, <{, ko Jet(f) .. end)} o

Here, Can (L, c, ke), which is forrnally defin ed later , in tuit ively means that t he capability con .l:e can be

achieved in L. This definiti on says if there ex isi s a fun ction sequence available to u which includes the

subexpression ko J(k' e1, .. ,"'"en), a nd if a ll t.he specified capab ilities are achieved on that subexp ression,

then the req uirement is not satis fi ed . Iff is not an access fundion but a s pecial fun ction , then ko let(f)

a. 1="''e 1 , ••• ,an =k" en in . end in the defi ni tion above is rep laced wit h koj(.l:'e,, .. ."'" en)· Can(L 1 c, ke)

is defin ed for each capabilities as follows;

Defin it ion 2 Can(L
1

eta , ke) m eaus th e j ollowi119 holds;

VD. Vv E Dom(• e). 3E E £(D , L). ['e]e = v o

Defi n i t ion 3 Ca11(L, ota , ke) mea11s lhe followwg holds;

30. Vv E Oom(' e). 3E E £(0 , L). ['e]e = v o

Defiuition 4 Can(L, cpa , 'e) means th e f ollowing holds;

VD. 3v1,v2 E Dom(•e). (v 1 of v,) Vv E {v, ,v,). 3E E £(0 , L). ['e]e = v o

49

Definition 5 Can(L, opa , •e) means th e followmg holds;

3D. 3v, , v, E Dom{' e). (v, # v,) Vv E { v1, v2) . 3E E £(D, L). [' e]E = v o

Definition 6 Can(L , cti , ke) mea11s th e followmg holds;

VD. 3v E Dom(• e). 3E E t:(D, L).

the mferell ce system T(E) defil~e d below call ded·ace ['e E {v)] o

Definition 7 Can(L, oti , 'e) m.ea11s th e follo wing holds;

3D. 3v E Dom(' e). 3E E t:(D, L).

the i11f erence system T(E) defined below can ded11 ce ['e E {v)] o

Definition 8 Can(L, cpi , 'e) means the following holds;

VD. 35 C Dom('e). 3E E t:(D, L).

/.he mf<7'e?lce system I (E) defilled below call ded11 ce ['e E S] o

D efinition 9 Can(L , opi, ke) mem1s I he follo wing holds;

3D. 35' C Dom ('e). 3E E t:(D, L).

th e inference system I(E) defi11 ecl below can dedu ce [' e E S] o

S C S' means non-equal subset. T he defin it ion of total inferabi lity says '1
11 0 matter what the initial

database slate is, and for any value v in Dom(ke), one can make ke be evalu ated to ·v by executing L with

some arguments". The definiti on of pa rtial inferabili ty says ''no matter what the initial databa':ie state is,

there exist at least two values v1 and v2 in Dom.(ke), and one can make ke be evaluated lou by exec uting

L with some arg uments". The definitions of occasional capabilities use 3D instead o f 'V D, that is, they

say "there ex ist a possib le initial database state" instead of "no matter what the initial database state isn.

lnferabili t ies are defined with using I(E). I(E) is an inference system t hat formulates the inference that

the users do from the observat ion of the execution of E. lt performs inference on the terms defin ed by the

syntax below:

(k 1 e1, ... ,k., en) de notes tuples of any nu mber of express ions in S(E), and [(k 1 e1, ... /"en) E S) is a term

say ing that ([' ' e1]s, ... , [''e1]e) E S. S is a subset of Dom(' •eJ) x · · · x Dom('"e,). ['•e, = ''e2] is a

term say ing that ['' e,]E equals lo [''e2]s.

Let E = (D,ft(vf, ... ,v7l') = 1'1 1 ... , fn(v~, ... ,v:") = r,l)- Then, the axioms and the inference

rules of I(E) are as be lo w. In that descriptio n, we use some macro ex pressio ns. \Vhen we use a and fJ (or

a, (3, and -y), it means t hat the inference rule holds for any A, B (or A , B, C) such that An B = 0 (=

[J n C = G' n A) and A U B (U G') = {I , ... , 11} , a nd e0 mea ns the row of e0 for a ll a in A. For exa mple,

if A= {1 ,2 } , then e0 mea ns "e 1,e2"-

Definition 10 The "xioms "nd th e i1lff1'e11ce rules of I(E)

50

(axioms)

~[('c) E {c}]

~ [('ai) E {v!JJ (if a;, the jth argument of/;, has a. basic type)

~ [('e;) E {!-;}] (if 'e;, which is the entire body of/;, has a. basic type)

~ [('' _r_att(''e)) E Dom(' •_r_att.(''e))]

--7 [{k'e,, ... ,t" en,k0he•1et, ... /"en)) E {(v,, ... ,vn,r) I ! b(v, , ... ,vn)=1·)}]

--+ [k 1 a = k2 a] (k 1a and A:., a a re di fferent occurrences of the same argument variable)

--+ [k 1 a{1
1 = k2ag] (if uU and vfi are passed through the same from-clause variable)

- ['' aL' = ''X] (if v!i are passed through the global variab le X)

~ ['•X = ''X]

- [''x = ''e]

(k 1 x and 4'1 x a re different occurrences of the same global variable)

(if let ... , x = ''e,. in . end E S(E) and '•x is in the scope of that x)

- [''e = ''let.
(inference rules)

in k, e end]

1, j oin and projection of E

[('• eo.'• ep) E 5!], [(
1
'' ep,'' e,) E 5,]-[('' e,, ... ,''• e,) E { (v,, ... , v,) I (v0 , vp) E 5,, (vp, v,) E 5,]]

[(''e,, ... ,'"·e,) E 5]- [('•eo) E {(v 0) 13(vp) (v,, ... ,v,) E5}]

2, rules for =
(if k, _w_att(''e,, ''e,) E S(E), ks < k,)

3, rule for E based on =

[''e 1 = ''e2] ~ [(''e 1 , ''e2 } E {(v,v) lv E Dom(~ e 1)]]
0

Base cases of terms with E are the constants in the program code c, the arguments v{ or the returned

values 7'i of the functions directly invoked by the user , and the constrain ts on the arguments and the

returned va lues of the basi c function s f b· Starting those Lermsl the users proceed inference us ing the rules

in I . The users also use th e knowledge on equality of two expressions. The rule 3 says that. if two basic type

expression s are equal , we can also use that information. The IaUe r part of <L'{ioms say that two expressions

are equal if they are the same argument. variable, if they are different argument. variables given values

through the same from-c lause variable, if they a re a global variable and an argument variab le given a value

through that global variable, if they a re a loca l va riable and an expression bound to that variable in a let

constru ct, or if they are a let construct and an expression between in a nd end of that let construct . The

rules in 2 a lso say that two expressions are eq ual if they are values of the sam e attribute of the same objec t..

If update has occurred , two values of the sa me attribute of t he same object are not necessarily same. In

51

a model that allows multiple attributes to share an objecl , the users are not always able to determine

whether an att ri bute has been updated or not , but. sometimes Lhey are. To include cases wh re they can

determine it , we assu me that the values o f the same attri bute of the same object are always same.

We show a simple example demonstrating how I(E) works. Cons ider the query below:

select _w_budget(b , 999), checkBudget(b), _w_budget(b , 1000) , checkBudget(b)

from b E Broker where _r_name(b) =' John '

and suppose that it yie lded La {(null, false, null , true} }. The function seq uence corresponding th is query is

(_w_budget(o, v). checkBudget(a) , _w_budget(o, v) , checkBudget(a)) , unfolded and numbered form o f which

is:

(3 _w_budget(1o , 2v),

10 >=(' _r _budget(4 broker) , 9
• (6 10, 8 _r_sa lary(broker)))

13 _w_budget(11 o , 12v),

20 >=(15 _r _budget(14 broker), 19 •(16 10, 18 _r ..salary(17 broker))))

and the execution instance corresponding this query E is:

{D, _w_budget(b , 999)=null, checkBudget(b)=false

_w_budget(b , lOOO)=null , checkBudget(b)=true)

Then , I(E) can proceed the following inference:

- [(
5 _r_budget(...) ," •(...), 10 >= (...)) E

{ {0, 0, true), {0, I , false) ,.. , {999, 999, true), {999, I 000, false), ... }] (ax iom fo r basic functions)

-> [1o = 4 broker] (ax iom for arguments)

(
1o = 4 broker]-> [2 v =' _r_budget(...)] (r ule for=)

[2 v = 5 _r_budget(...)]

- (ev,'_r_budget(...)) E {{0,0), .. ,{999,999), ...)]

- ['v E {999}]

[(
2v,'_r_budget(..)) E {{0 ,0), ... ,{999,999), ...)], [2vE {999}]

-> (ev,' _r_budget(...)) E {(999,999)}]

[(
2v,' _r _budget(...)} E { (999, 999)}] - [5 -'_budget(...) E {999}]

52

(rule forE based on=)

(axiom for arguments)

(join)

(projection)

[(
5 _r_budget(..) ," •(.. .) ,10 >= (...)) E

{(0, 0, true), (0, 1, false), .. , (999, 999 , true), (999 , 1000, false), .. }],

[5 _r_budget(.) E {999))

~ [(
5 _r_budget(. .)," •(...),10 >= (...)) E

{ (999, 0, true), .. , (999 , 999 , true), (999 , 1000 , false), . .)) (join)

- [
10 >= (...) E {false}) (axiom for ret urned va lues)

[(
5 _r _budget(..) ," •(...),10 >= (..)) E

{ (999, 0, true}, . . , (999, 999, true), (999 , 1000, false), ..)],

[10 >= (. .) E {false})

- [(
5_r_budget(..),9

•(. . .) , 10 >= (..)) E

{(999 , l OOO ,false), . .)) (join)

[(
5 _r _budget(...),9 •(. ..) , JO >= (..)} E

{ (999 , 1000, false), ...))

~ [9 •(. . .) E {1 000 , .. })

~ [(6 10,8 _r_salary(..) ," •(.. .)) E

{(0, 0, 0},(0, 1, 0}, .. ,(10, 0, 0),(10, 1, 10), ..))

[6 10 E { 10}],

[(
610 ,8 _r_salary(...),9 •(..)) E

{(0 , 0, 0} , (0, 1, 0} , ,(10, 0,0) , (10, 1,10) , ..))

~ [(
6 10 ,8 _r_salary(.),9 •(.. .)) E

{p roject ion)

(a.xiom for constants)

(ax iom for basic fu nctions)

{(10, 0, 0) , .. , (10, 99 , 990) , (10, 100 , 1000} , ..)) (join)

["•(..) E {1 000 , . . .)) ,

[(
6 10,8 _r_salary(...) ," •(. .)} E

{ {l 0, 0, 0)' ... ' (10, 99 , 990) , (10 , 100 , 1000) , . . } l
~ [(

6 10,8 _r_salary{ ..),9 •(. .)) E

{(10, 100, 1000) , ...))

[(
610,8 _r_salary(. .) ,9 •(...)} E { (1 0, I 00 , 1000}, .. })

~ [8 _r_salary(. .) E { 100 , ... })

53

(join)

(projec t ion)

~ [(
15 _r _budget(...) , 19

•(...), 20 >= (...)) E

{(O ,O,true),(O, I , fa lse), .. ,{ 1000 , IOOO , true) ,(IOOO , IOOI , fal se) , ...)J (axiom for basic functions)

- [
11 o = 14 broker] (axiom for arguments)

[
11 o = 14 broker]~ [12v = 1s _r_budget(...)] (rule for =)

[12 v = 1s _r_budget(..)]

--> (e 2v, 1s _r_budget(...)) E {(0 ,0) , .. , (1000, 1000), ...)] (ru le fo r E based on=)

- (
12v E { 1000}] (axiom for a rguments)

(e 2 v, IS _r _budget(.)) E { (0, 0) ,. , (1000 , 1000) , ... }], (12v E { 1000)]

--> (e 2v,15 _r_budget(...)) E {(1000 , 1000)}] (join)

(e 2 v, IS _r _budget(...)) E { (1000 , 1000))] ~ (15 _r _budget(. .) E { 1000}] (project ion)

[e 5 _r_budget(..),19 •(...),'o >= (...)) E

{ (0, 0, true), (0, I , false), ... , (1000, 1000 , true), (I 000 , 100 1, false), .. }],

[1S _r _budget(...) E { 1000}]

--> [(
15 _r_budget(...) ,19 •(...),2° >= (...)) E

{ (1000 , 0, true),. . , (I 000 , 1000, tru e) , (1000 , 1001 , false), .. } J (join)

__, (20 >= (...) E {true)] (axiom for returned values)

[es _r_budget(..),19 •(..), 20 >= (...)) E

{ (I 000, 0, true), ... , (1000 , 1000, true), (J 000 , I 00 I, fal se), . . . }],

[20 >= (...) E {true }]

__, [(
1s_r_budget(...),19 •(...) , 20 >= (...)) E

{(IOOO , O, true), .. ,(1000 , 1000 , true)}] (joi n)

(es_r_budget(..),19 •(...) , 20 >= (...))E

{ (1000, 0, true), ... , (1000 , 1000 , true)}]

__, [1 9 •(. ..) E {0 , ... , 1000}] (p rojec t ion)

__, [16 10 E {10}] (axiom for constants)

54

~ [(
16 10,' 8 _r_salary(...). 19 •(...)) E

{{0 ,0, 0),{0 , 1,0), ,{10,0,0),{10, 1, 10) , ..)]

[16 10 E { 10}),

[{
16 10,18 _r_salary(),19 •(...)) E

{{0, 0, 0), {0, 1, 0), . . . ' {10,0,0) , {10, 1, 10), . . }]

~ [(16 10 ,18 _r_salary(.),19 • (...)) E

(axiom for basic functions)

{ {10, 0, 0), . , { 10, 100, I 000), {10, I OJ, 10 10), ...)] (join)

[
19

•(.) E {0 , . . ' 1000}],

[{
16 10,18 _r _salary(.. .), 19 • (...)) E

{{10 , 0, 0), ... ,{ 10, 100, 1000),{ 10, 101,10 10),. }]

~ [{ 16 10,18 _r..salary(. ..),19 • (.. .)) E

{(10, 0, 0), . ,{ 10, 100, 1000)}] (join)

[(
16 10,18 _r..sa lary(..),19

•(...)) E {{ 10,0, 0),. , {10, 100, 1000)}]

- [
18 _r_salary(...) E {0, ... , 100}] (projection)

[18 _r _salary(. ..) =8 _r _salary(..)]

~ [('
8 _r..salary(. .) ,8 _r_salary(. .)) E

{{0,0), . .. ,{ 100, 100) , }] (rule for E based on =)

[{
18 _r_salary(.),8 _r _salary(..)) E

{{0,0), ,{ 100, 100), . ..)],

[18 _r_salary(..) E {0 , .. , 100}]

~ [{
18 _r_salary(...),8 _r_salary(.)) E

{ {0, 0), . .. , {100, 100) }] (join)

[('
8 _r_sa lary(..),8 _r_salary()) E

{{0, 0), . . ,{ 100, 100)}]

~ [8 _r_salary(.. .) E {0, . . . , 100}]

(proj ection)

[8 _r..salary(. ..) E { 100 , . . }], [8 _r_salary(. .) E {0 , .. , 100}]

~ [8 _r_salary(.) E {100}] (join)

Thus, I (E) deduce [8 _ualary(...) E {1 00}], whi c corresponds to the fact t.hat t he user can infer the value

55

of t he retu rn valu e of 8 _r _salary(..).

3 .4 A n A lgori t hm for F law Detection

Alt hough we gave forma l semant ics of security req ui rements in t he last section, we can not determi ne

whether given requi rements are satisfied or not by d irectly following t hat defini t ion because t hat de fi nit ion

includes t he notion of infini te sequences of fun ctions. Examini ng all possible ini t ia l database state is also

im practical. In t his secLion, we develop a n algorithm that detects securi ty fl aws in a reasona ble a mount of

compu tat ion . This algorithm syn tact ica lly analyze program code usin g an inference system th at simulates

I (E) by ta king some pessimistic assumptions. This algorithm is sound 1 t hat is, this a lgorith m a lways

judges that t he requirement is not satisfied when really it is not .

3 .4.1 T h e A lgorithm

In order to avoid infinite sequences of fun ctions, our algorithm considers a set of a ll t he fun ctions in cl uded

in the user 's capa bi lity list1 which must be a fi nite set, instead of considering a specific execution instance.

We t hen develop a n a lgorithm t hat determines whether there exists some fun ction sequence consisting of

only those fun ctions in t he set an d fur t her there exists its execution inst ance where the user can achieve

each capa bili t ies on each expressions. We t hen pessimistically ass ume that when t he user can achieve some

capabilit ies se pa rately, t here a lways exists some execution instance of some fun ct ion seq uence where he

ca n achieve all those capabil ities simu ltaneously. Based on this assumption, our algorith m just sepa rately

determines whether users can achieve each capabili ty with using t he given set of fun ctions.

As a first step, in the same way we did for fu nction sequences, we unfold all access fun ction in vocat ions

in th e given set of fun ct ions, a nd num ber all subexpressions like 1e. S ' (F) denotes a set of all t he num­

bered s ubexpressio ns in the set of fun ction F . Fo r example, let F be {f(x) , _r_name(person)} and f(x) be

_w_age(x , + (_r_age(x) , 1)). Then u nfolded and numbered fun ctions are;

{ 6 _w_age(1x, s+(3_r_age(2x) , 4 1)) , s_r_name(7person) }

a nd S '(F) is

{ ,x, 2x. J-r_age(2x), ,1 , s+(3_r_age(2x) , , 1), 6-w_age(,x , s+(J _r_age(zx) , , 1)),

7pe rson , g_r_name(7person) }

Note th at 1e denotes each occ urrence in some set F , and is different. from ke denoting each occu rrence in

some sequence L. Each ke corres ponds to one 1e in S'(F) whi le each 1e may correspond to mu lt iple ke in

one L . We call t hose ke correspondent of te. T hen we develop an inference system 3(F') that sy nt.act ically

ana lyzes program co de, a nd pessimistically determ ine whether t he use r ca n achieve each capabili ty on each

1e . :J(F) performs inference on terms defin ed by t he following sy ntax;

t enn cta[1e, nmn]l cp a[1e,num] l ota[1e,numJI opa[1e, num]l ceq [1,e,, ,,e,JI o eq L,e,, 1,e2]

56

dir

I cti[1e, {(num,di1')}]1 cpi[(1,e 1 , . ,r. en) , {(num ,di,·))]

I oti[1e, {(nt1m, di1·)}]l opi[(1,e 1 , ... ,1• e,),{(num, dir)}]

I =L, <t , r,e2JI can[1e, v]

+I-

eta, cpa , ota, and opa are terms sayi ng that there may ex ist a fun ction sequence L including ke which is

correspondent of 1e and on which the use r achieves each capabili ty. nu.rn. in those terms is used to record

where that alterability is ach ieved. The term for alterability is deduced iJ1 five ways ; (1) t he user can have

alterabi li ty on argument var iables of functions that he directly invokes, such as 1a{. Jn th is case, we record

it with the number/. (2) The user may have alterabili ty on the result of a basic function , such as tf(.. .) ,

through alterab il ity on its arguments. In this case, we record it with the nu mber /. (3) The user may

have a lterabil ity on a read operation, such as r2 _r_att(r
1
e), t hrough alte rabi li ty on its argument , i.e. 1, e.

In this case, we record it with I, (4) The user may have alte rability on a read operation a lso through

a lte rability on arguments of some write operation to the same att ribu te, such as r2 e2 in r3 _w_att(11 e1, 12e2).

In this case, we record it with the number 12 . (5) The user can alter the result of a read operation even

through alterabi lity on /1 e1 in some write operation r3_w_att(r1 e1, r2e2) because if he alter 1, e, to the same

object accessed in the read operation , the result of the read operat ion would be r2 e2, and if he a lter

r1 e1 to a different object, the result of the read operat ion could be a different value. In this case, we

record it with the number 1,. num in terms on alterabili ty works as follows; suppose there are expressions
5 _w_age{"al , 4il) , 12 _w_age(10a2, 11 i2) , and 16_uge(l 5 p). lf the user can alter 3al and 10a2 , he can a lter

the resu lt of 16 _r_age(l 5 p) by sometime lett in g 3 al be equal t.o 15 p and sometime letting 10 a2 be equal to
15 p. F'urther, if he has partial alterabi li ty on both 4 i and 11 i2, t hen t he union of the ranges of each of

them may happen to be eq ua l to t he entire domain of the type of the att ribu te, a nd thus he may have

total a lterabil ity on 16 _r _age(l 5 p). Si mila rly, if he has occasional a lterability on both 4 i and 11 i2 , then he

may have certain alte rabi lity on 16 _r _age(l 5 p). To find out such cases , we use nmn parameter of ter ms on

a lte rabi lity.

ceq (
11

e1 , 12 e2] is a ter m saying that there exists a function sequence L such that S(L) includes k 1e1

and k2e2 which are correspondent of 11 e1 and 12e2 respectively1 a nd there exists its execution instance

E E t:(()D, L) for any D where [•'e,]s = [•'e,]s. oeq[1, <t, r,e,] is a simi lar ter m but it says there exists

such a execution instance for some D. These ter ms are used to detennine whether one ca n alter the result

of a read operat ion by making the objecL accessed in that read operation and t he object accessed in a

proceeding write operation be eq ual. T herefore, we consider these terms on ly for ex pressions of object

type .

cti and oti are terms saying that t here may exist a fu nct ion seq uence L including ke which is cor­

respondent of 1e and on which the user achieves each capability. cpi and opi are similar, but they a re

defined on tuples of any number of expressions. They mean that I(E) may deduce [(1,et , . ,r. e,) E S]

with someS. {(n-um, dir} } is used to record where that inferab ility has been achieved. 'rhe reasons we

57

need to record it a re explained later. Jnferabil ity originates in (1) inference on the returned value of some

1 / b from th e know ledge on its arguments 1 or (2) inference on the a rguments of tfb using the know ledge on

its other arguments a nd its ret,urned value. \Vhen t he partial inferability is achieved through t he former

type of inference on 1/b, we record it using 1 and +, a nd when it is ach ieved through the latter type of

inference on 1/b, we record it usi ng k and -. \>Ve rnust use a set of pairs of 11 ·um and di1· because some

capabi lity may achieved joining multiple weaker capabilities as shown later.

= (11 f1 1 1 -.,e~] is a term saying that there exists a fun ction sequence and its execution instance where the

use rs can deduce [k, e1 = k1 e2]. 'A'e need not distinguish whether it is always or just occasionally th at

one ca n deduce it because the deducability of [k 1 e1 = k 1 e2) is independent of t he database state. Note

t hat= slates t hat t he user can kn ow two ex pressions are equal , while ceq or oeq state that the user can

let two expressions be evaluated to the same value, no matter whether he can know it or not.

can[1e, v] is a term say ing that there exists some ke which is a correspondent of ,e a nd t he user is

a lways able to let ke be evalu ated to v no matter what t he current database state is. More formal\y , the

term can[1e 1 v] mea ns the below may hold for some ke which is correspondent of ,e.

3 L. \/D. 3E E £(0, L). ke E S(L) and ['e]E = v

This te rm is used Lo test whether one can a lways achieve some capability or just occasiona lly. However , if

we deduced this term for all the combin at ion of ,e and v with whi ch the a bove holds, the numbe r of t he

te rm that is to be deduced would be too large. For example 1 if the user have certain total alterabi li ty on ke

whi ch is correspondent of 1e, we must deduce can{1e, v] for all valu es of Dam(" e). Therefore, we deduce

canLe, v] only when we don 't have certain total/partial inferab ility on it but the above hold . There a re

two cases where this happens. One is a case where ,c constant ly takes v, and the other is a case where the

user has occasional alterab ili ty on ,e, and when he ca nnot alte r t he value 1 1e takes c. An typical examp le of

the latter case is *(X, a) where the user have no alterabi li ty on X but have total alterability on argument

variable a. In this case, can [*(X, a) , O] holds because the user has occasiona l a lterabi li ty on *(X, a) (on ly

when X= 0 1 he cannot alter t he value), and when ,y = 0, *(X , a) takes 0.

Fi gure 3.2 helps us und erstand those situations. These charts illus trates whi ch range of va lues an

ex pression e takes while t he init ial database state D changes. The horizontal a.xis of eac h chart is the

initial da tabase state D and the vert ica l axis is the value of 'e in some S(L). We plot poi nts (D, v) such

that th ere exists an execution instance E(D 1 D) where [ke]E = v. Chart (a) illust rates t he case where ,.e

is a constant ex pression kc. In this case, the user does not have a ny alte rabi lity. Chart (b) illustrates t he

case for global vari able X. In this case the user also docs not have any alterabi li ty, but the value changes

whi le the initial database stale chan ges. The chart for a read operation, such as k,_ r_age(k 1 p) , is a lso like

(b) if there is no update in L before the read operat ion. If there is an update writing e' as its new va lue 1

then Lhe chart for the read operation is th e same with the char t for e'. Chart (c) illustrates the case for

argument var iables of fun ctions direc tly invoked in L. In this case, the user ca n pass any value to the

va.ri a.b le
1

that is
1

he have certain total a lterab ility. The cha rts for basic fundions ca n be various forms

58

(a) constant

(d) basic function

lielltLS
v ~

~
r

D

(b) global variable

(e) basic function

(c) argument variable

(I) basic function

f'igure 3.2: Actual ranges of va lues of ex pressions

depending o n the situations, s uch a• (d), (e), or (f). The statement above ho lds in (a), (c), (d), and (f),

but we deduce can[' e, v] only for (a) and (f).

When defining the a.x_ioms a nd t he inference rules of .J(F) , we take the follow ing pessimistic assump­

tions;

• for any '' e1 , .•. ,k· en, there is a possibil ity that { (v,, ... , vn) I 30. 3E E £(D, L). ['e 1]e = v1 ,

[ken]E = v,J is a set with only l.wo e!Cincnts.

• if I(E) can deduce [ke E S] and ["e E S'] through two different ways, S n S' may be a singleton

se t . In other words, if a user ca n achieve part ial inferability through two difl.erent ways, he may have

total infcrability. This is o ne case where one can achieve some capability by joining rnultiple wea ker

capab il ities.

• if one can have an occasional inferab ility throug h two different ways, he may a lways be able lo infer

it thro ugh either way, that is, he may have a certai n inferability. This is another case where o ne ca n

achieve some capability by joining mul t iple weaker capabilities.

• if one can have a n occasional parLial a lterabi li ty through two different ways, he may have certain

total a lterability. This a lso is a case whNe one ca n ac hieve some ca pability by jo ining multiple weaker

capabilities.

59

• when the re a re two read operations (or one write operation and one read operation) on the same

att ributes, update obstructing t he inference does not occu r between t hose two operat ions.

We show some exa mples where t hose pessimistic assumpt ions act uall y holds. An example of t he second

assumpt ions (ex press ions t ha t. takes on ly two values) is a basic fun ction th at gets an in teger i and ret urn

t he i mod 2. An example of the sit uation where the user can have certain total al te rabi li ty through two

different occasional pa rtial alterabili ty is as fo llows. Suppose there is a read operat ion _r_age(X) and t wo

writ operat ions _w_age(al , fl(Y ,a2)) and _w_age(a 3, f2(Y,a4)) where al , ... ,a4 are argument va ri ab les of

d irectly in voked fun ctions, X and Y a re global vari ables, a11d f1 and f2 are basic functions. Suppose t he

user ca n alter t he res ul t of fl (Y,a2) to any integer but 0 by changing the value of a2 when Y is not 0 while

fl (Y,a2) ta kes 0 when Y is 0. On the other hand , he can alter t he resu lt of f2 (Y,a4) to any integer but 0

by changi ng the va lu e of a4 only when Y is 0 whi le f2(Y,a4) takes 0 when Y is not 0. In other words, the

use r ha• occasional part ial alterabi li ty on fl (Y,a2) and f2(Y,a4) . In addit ion, because he can make either

a2 or a4 be equa l to X, he has occasional partial alterab ili ty on _r_age(al) t hrough two di rferent ways. In

t his s it uat ion, t he user can indeed have certain to ta l alterability. When Y is not 0, he can let t. he value of

_r_age(X) be any valu e but 0 by assigning X to a l, and ca n let the value of _r_age(X) be 0 by ass igni ng X

to a2. VV hen Y is 0, he can let t he value be any va lu e but 0 by assignin g X to a2, and can let. t he va lue of

_r_age(X) be 0 by assigning X to al.

On the cont rary, one can never achieve certai n total inferability through t wo occasional pa rtial infer­

abil ity. Suppose one has occasional partial inferabili ty t hrough t wo ways. T hen t here ex ists a database

state Dt where one cannot have part ia l in ferabi lity in one way. Therefore, he cannot have total inferabili ty

when the database state is D1 even if he can have partia l in fe rabi lity through the other way at t hat time.

The ax ioms and t he inference rules of .J(F) is de fi ned as below.

Defin ition 11 T he axioms and the infe1·e•ce r ules of .J(F)

(ax ioms and rules for alterabi lity)

___. ctH [1a, /] (a is an argument vari able of an outer-most function)

op a [1,e 1, /3]-> ota[1, _r_all(1,e1),1,]

opa[1,e 1], o eq [1, e 1, ,,e2] _, ota[1,_r_a ll(1,e,), /s] (if ,, _w _atl(1,e1, ,,e3) E S' (F))

ce q [1, e 1 , ,,e,], cta[1,e3,l.1]-> ctaL,_r_all(,,e,),l,] (if ,,_w_a.tl(1,e,, 1,e3) E S'(F))

ce q (1,e1 , ,,e,], cp a [1,e3, /4] _, cpaL, _r_.a ll(1,e,), /,] (i f ,,_w_atl (1,e,, 1,e3) E S' (F))

o eq [1,e1 , 1,e2], ota[1,e3, /.1] _, ota[1,_r_a ll(1,e,) , l,] (if ,,_w _<tll(1,e1, 1,e3) E S'(F))

oeq [1,e1 , 1,e2], opa[1,e3, /4]- opa[1,_r_all(,,e,) , l,] (if ,,_w_all(1,e,, 1,e3) E S'(F))

60

cta[1,e, I:J]- cta~,x, 13]

(ir let .. , x = 1, e, . in . end E S(P) and 1,x in in t he scope or that x)

cpa[,, e, I"] - cpa[1,x, 13]

(if let . . , x = 11 e,. 1n . end E S(F') and I:~£ in in the scope of that x)

ota[1, e, l3] ~ ota[1,x, Ia]

(ir let ... , x = 1, e,. '" . end E S(P) and 1,x in in the scope or that x)

opa[1, e, l3] - opa[1,x, l3]

(ir let ... ' X= I, e,. in . end E S(P) and ,,x in in the scope or that x)

cta[1,e ,13]- cta~,l et . in ,,e end , l3]

cpa[1,e, l3] ~ cpa~, let . in '• e end , Ia]

ota[1,e , 13]- ota[1, 1et . in 1,e end , I:J]

opa[1,e , IJ] ~ opa[1,1et. in 1,e end , Ia]

opa[1e, l i],opa[1e,l2]- cta[1e,li]

(axioms and rules for ceq and oeq)

=[11 e,, 1'Je2]--+ ceq[1,e 1 , 12e2J

- ceq [1, a, ,,e]

(if a is an argument variable of outer-most function , and a and e have the same object type)

- oeq[1, e1, 1,e2J

ceq[1, e,, ,,e,J~ ceqL,-r-att(1,e,), ,,ea]

oeq [1,e1, 1,e2]- oeq~.-r_a tt(1 ,e2), ,,eJ]

ceq [1,e,, ,,e2]- ceqL,-r_att(,,eJ) , ,,_r_att(1,e2)]

oeq[1,e 1, 1,e2J- oeq[1, _r_att(,,eJ), 1, _r _att(1, e2)]

ceq[1,e1 , t2e2]--+ ceq[12 e2, t,ei]

ocq[1,e,, 12 e2] --+ ocq[12 f2 1 t,eJ]

ceq[1, e,, 12 e2J, ccq[1,e2, 13e3] - ceq[1, e1, 13e3]

ocq[11 e,, 1,e2], oeq[12 e2, 13e3] ____. oeq[11 f J, r3e3]

(ax ioms and rules for inferabi lity)

~ cti[1c, {(I, +)}]

(i r 1, e1 and ,,e2 have t he same object type)

(ir ,,_w_att(1,e 1• 1,e3) E S'(F))

(i r ,,_w_att(,,e,. 1,e3) E S'(F))

- cti[1a , {(1 , +)}] (a is a n argument vari ab le or an outer-most run ction)

- cti[1e , {(1, -)}] (1e is the entire body or an outer-most runction)

61

=[c 1 , e2]- cpi[(e 1 ,e2), {(0, +) }]

=[e 1 , e,], cti[e 1 , 5] - cti [e,, S]

=[e 1 , e,], cpi [(.. ,e,, ...), S]- cpi [(... ,e2 , ...), 5]

=h, e,], oti[e1, 5] ~ oti [e 2 , 5]

=[e 1 , e,], opi[(... ,e,, ...), 5] ~ opi [(. . . ,e2 , ...), 5]

cpi [(e0 ,ep), 5!] , cpi[(ep,e;, ..), 5,]- cpi [(e0 ,e;), 5] (51 n52 = 0)

cpi[1e, 5!], cpi[1e, 5,] - cti[1e, 5, u 52] (51 \52 # 0 1\ 52 \ 51 # 0)

oti[,e, 5!], otiLe, 5,] - cti [,e, 51 u 52] (51 \52 # 0 1\ 52 \ 51 # 0)

opi[1e, 5!], opi[1e, 5,]- cpi Le. 5 , u 52] (51 \ 52 # 0 A 5,\ 5, # 0)

opi[,e, 5!], opiLe, 5,] - oti[1e, 5, u 5,] (51 \52 # 0 A 5, \ 5, # 0)

(ax io ms a nd rules for =)

- =[1,a, ,,a] (I
1
a and 1'2a are different occurrences of the same argument. vari ab le)

___,. =[11 a1, 12«2] (a 1 and a2 are argument va riab les of oute r~ most. fun ctions of the same type)

--+ = [
11

a , 1
2
X] (a is an argument variable of an outer-most funct ion of the sa me type)

-+ = (1,X , l:a X J (11 X and 1,X are di rferent occurrences of the same global vari able)

--+ =L
1
x, l::zeJ (if let ... , x = 1

2
e, ... 1n ... end E S(F) and 11 x in in the scope of that. .t)

---+ =L. e, 12 let . in 11 e end]

=[e,, e,] ~ =[e3, _r_att(e,)]

=[1, e1, ,,e,]- =[1, _r_att(1, ei), ,, _r_att(1,e,)]

=[e 1 , e2] - =[e2 , ei]

=[e 1 , e,], =[e,, e3]- = [e,, e3]

(a..x iom for cau)

- can [1c, c]

(rules for impl ications betwee n ca pabil ities)

cti[1e, 5] - cpi[1e, S]

ct i[1e, 5]- oti[1e, 5]

oti[1e, S] - opi[1e, S]

cpi[1e, 5] - opi[1e, 5]

cta[1e, 5] - cpaLe, 51

cta[1e, 5] - ota[1e, 5]

ota[1e, S] - opa[1e, S]

cpa [1e, 5] - opa[1e, 5]
0

(if _w_att (e, , e3) E S'(F))

61

Most rules fo r equality and inferability directly corres po nd s to rules of T(L). The rule cpi(e , 51], cpi(e , 52]

~ct i (e, 51 U 52] correspon ds to the rule of join of ((e) E 5], and represents that we take a pessimistic

assumption that the inte rsect. ion o f two different subsets can be always a single to n se t.

We need to reco rd how a inferabilit.y is caused for two reasons. The first reason is that we assumed

t hat if the user can deduce [ke E S] with two "d ifferene' wa.ys, t he intersection of those twoS can be a

singleton se t. Therefore, we need to record bow each part ial infe rabil ity is caused. The second reason is

that we should not feed back a in ferability to its cause. For example, s uppose there is an expression + (X,

1), and the user has part ial in ferab ility on X. Then, the user can have partial inferabi lity on +(X, 1). When

there is a expression +(a , 1) and a user has partial inferability on +(a, 1) , he can achieve inferabi lity o n a .

Therefore , in the above case, the use r can achieve partial infe rability on X again via inferabil ity o n +(X,

1). T his means the use r can achieve partial inferability on X in two different ways. Ho wever , those two

sets of values infer red for X are exact ly the same, and so he never can have total inferabi lity on X. What.

was wrong is to feed back the infe rabi lity caused by X to itself again.

In add it ion to t hose rules, we must also specify the rules based on bas ic functio ns. Because those rules

depend on the semantics of each basic functi on , we must define those rules by hand. We can, however ,

pro vide "metarules" of the form '< if the semantics of the basic funct ion fh satisfies this condition, then this

rule mu st be added''. Only if rules on basic functions are correct ly given following those metarulcs, our

a lgorithm can analyze any composed functions. We list the metarules below. The ru les lis ted be low a re

general form that can be applied to bas ic funct ions with any number o f arguments, denoted as fb(a 11 ... a 11)

in the list be low. In the description below, the lines beginning with '(iP' is conditions on the semantics,

and the fo llowing lines specify rules to be added . To denote metarules, we use some new notat io ns. txl

and n denotes join operat ion and projection operation used in I. A new word "comp lete subset'' is also

used. We say a set 5 is a complete subset of 51 x ... x 5" iff 5 C 51 x ... x 5n and ll(i)5 = 5, for any

i. In order to describe the metarules in genera l form that can be applied to functions with any number

of argu ments, we use some macro expressions. \Vhen \.Ve use A , 8 , in a descript ion, it means that

the metaru le holds for any A, B , . such that An B = An C = ... = 0 and AU BU ... = {1 , ... , n),

and if we wri te A(s·tatem.ent)(de/im.iler) , it means the row of statement[i / A] for all i in A with a de limite r

between each elements. When no delim iter is needed , we omit the second pair of paren theses. For exam ple,

if A= {3, 4, 7} and we write "A(3vA(;i VA).)", it is an abbreviation of '·3v~(f v3) . 3v~(;i v,). 3vH;i v1)''

and "A(Dom(aA))(x)" is an abb reviation of "Dom(a3) X Dom(a,) X Dom.(a7)". P, Q, n , ... are also

used in the same way a nd they represent any subset of { I, . ,11}. VVe also abbreviate u3vv1,vv2 (vv1 f:.
vv,) E 5 . Vv E {vv1,vv,)" to "32(v E 5)" .

1, metarules for alterabil ity

ifC(3vc.) D(3vvv ,vv;, (vvv ;i vv;,) E Dom(av).) V(D(vv)(,)) E {(D(vvv)(,)),(D(vvv)(,))).

B(3v~.) Vr E Dom(f,). A(3vA .) B(3va (# v6).)

fo(vl, ... ,vn) = 1'

63

A(cta[eA , /A])(,), B(cpa[es , Ia])(,), C(can[ec, vc])(,) - cta[d•(e, , .. , e,), 1]

if C(3vc.) V(3vvv ,vv~ (vvv of vu~) E Dom(av).) lf(V (vv)(,)) E {(V(vvv)(,)),(V(v vv)(,))).

B(3v~.) 32(r E Dom(fh)) . A(3vA.) B(3vB (of v~).)

J,(v,, .. ,v,) = r
A (cta [eA , IA])(,), B(cpa[eu, lu])(,), C(can[ec , vc])(,) ~ cpaLJ.Ce,, .. ,e,), l]

if C(3vc.) B(3v~ .) '11· E Dom(fo). A (3vA .) B(3vs (of v~).)

J,(v,, .. , u,) = ,.
A (ota[eA,IA])(,) , B(opa[eu , Is])(,)~ ota[d,(e 1 , ... ,e,), l]

if C(3vc.) 6(3v~.) 32(1· E Dom(f,)). A (3vA .) B(3vs (of v~).)

fo(v,, ... ,v,) = ,.

A (ota [e A, IA])(,), B(opa[eu, ls])(,)--> opa[Jf,(e,, .. ,e,), l]

2, melarules for can

if C(3vc.)

{V(3v,. E Dom(av).) 3r . A (lfvA .) B(lfvs (of v~).)

J,(v1 , .• ,v,) = 1·) 1\

{V(3uv. E Dom(av).) 32(r E Dom(!,)). A(3vA.) B(3va (of v~).)

fo(v, , ... , v,) = 1·)
A(cta[eA, lA])(,), B(cpa[eu, Ia]){,), C(cau [ec, vc])(,) - can Lfo(e,, ... , e.,), 1·]

3, metarules for inferabi li ty

3. l , inferab ility on returned va lues

if B(3vs) C(3vvc,vv~ (vvc of vv~) E Dom(ac).) lf(C(vc)(,)) E {(C(vvc)(,)),(C(vvc)(,))}. A(3vA.)

3r E Dom(f,).

3Ql s. t. Ql is comp lete subset of Ql(Dom(eQ 1))(x).

3Q2 s.t. Q2 is complete subset of Q2(Dom(eQ,))(x).

fl(f,(e 1 , ... , e,))(

[(e,, .. ,e, ,J,(e,, .. ,e.,)) E {(w, , .. ,w.,, n·) I fo(w, , .. ,w,)=n·)}]l><l

P([(ep) E {vp }]){l><l)

[(QJ(eQ,)(,)) E Ql] l><l [(Q2(eQ2)(,)) E Q2] l><l ..)

[(f,(e1,. ,e,)) E {1·}]

A (cpa [eA, lA])(,), B(can [eu, vs])(,), P(cti{ep, Sp])(,),

cpi [{Q I (eQ,)(,)), SS,], cpi[(Q2(eQz)(,)) , SS,], .

64

~ ct i[1J.(eJ, .. , <n),{(i , +)}] (P(S-p # {(/,-)))(,), (SS1 # {(/ ,-)})

if B(3va.) C(3vvc, vv~ (vvc # vv~) E Dom("c).) V(C(vc)(,)) E { (C(vvc)(,)) , (C(vvc)(,)) } . A(3vA .)

3R C Dom(f,)R (x Dom(en)-

3Q l s.t. Q l is complete subset of Q l(Dom(eQ 1))(x)

3Q2 s.t. Q2 is complete subset of Q2(Dom(eQ2))(x) ..

ll (J.(ei, ... , en), R (en)(,))(

[(eJ, .. ,en,J.(e,, .. ,en)) E {(w,, . . ,Wn,n) I /b(w,, .. , wn)=n))] t<1

P([(e-p) E {v-p }])(t<~)

[(QJ(eQi)(,)) E QJ] !XI [(Q2(eQ2)(,)) E Q2] !XI ...)

[(J,(eJ , .. , en) ,R(en)(,)) E R]

A(cpa[eA ,IA])(,) , B(can[ea, va])(,), P(cti[e-p,S-p])(,) ,

cpi[(Q l (eQ 1)(,)) , 551], cpi[(Q2(e<22)(,)),552], .

~ cpi [(,J.(e, , .. ,en),R(en,)),{(l,+))] (P(S-p # {(/,-)})(,), (SS1 # {(/,-)})

if 3,. E Dom(f,). P(3v-p.)

3Q l s.t. Ql is complete subset of Ql(Dom(eQ,))(x)

3Q2 s.t . Q2 is comp lete subset of Q2(Dom(eQ2))(x) .

ll (f,(eJ,---,en))(

[(e1 , .. , en,J,(eJ , . ,e,.)) E {(w,, .. ,wn,1'1') IJ.(w, , .. , wn)=n·)}] !XI

P([(e-p) E {v-p }])(1><1)

[{Q l (eQI)(,)) E Ql] t<l [(Q2(eQ2)(,)) E Q2] !XI ...)

[(J,(eJ , .. , en)) E {r}]

P(oti [e-p , 5-p])(,),

o pi [(QJ(eQ 1)(,)), SSJ] , o p i[(Q2(eQ,)(,)),SS,] , .

- otiLJ.(eJ, .. , en) ,l ,+] (P(S-p # {(1,-)})(,), (SS, # {(/ ,-)})

if 3R C Dom(/b)R (xDom(en)- P(3v-p.)

3Q l s.t. Q l is comp lete subset of Q l(/Jom(eQ 1))(x)

3Q2 s.t. Q2 is comp lete subset of Q2(/Jom(eQ 2))(x) .

ll (f,(e,, .. ,en) ,R(en)(,))(

[(e, , .. , en , /b(eJ, .. ,en)) E ((w, , .. ,wn , IT) IJ.(w, , .. ,wn)=•·•·))] !XI

P([(e-p) E {v-p }])(t<i)

[{Q l (eQ 1)(,)) E Q J] t><1 [(Q2(e<;!2)(,)) E Q2] t><l .)

[(/b(e, .. , en), R(en)(,)) E /l]

P(oti[e-p,S-p])(,) ,

65

opi[(QI(eQ 1)(,)),SSi], opi[(Q2(eQ2)(,)),SS,],.

~ opi[(J,(e 1 , •• ,e,.),R(en,)),{(l,+) }] (P(S., "I {(1,-)})(,), (SS, "I {(1,-)})

3.2, inferabilit.y on arguments with total inferabi lity on returned values

ir 6 (3vB .) C(3vvc,vv~ (vvc f vv~) E Dom(ac).) V(C(vc)(,)) E {(C(vvc)(,)) ,(C(vvc)(,))}.

UA(v,E Dom(a,))(,) {w; E Dom(a;)J3S.

3Q I s. l. Q l is complete subset o r QI(IJom(eQi))(x)

3Q2 s.t. Q2 is complete s ubset o r Q2(1Jom(eQ 2))(x) .

n (e;)(

[(e,, ... ,e,.,j,(e,, .. ,e,.)) E {(w,, ... ,w,.,n·) I fo(w,, .. ,w,.)=7-r}]l><l

[!,(e~o ... ,e,.) E {fo(v1 , ... ,v,.)}]l><l P([(e.,) E {v.,)])(l><l)

[{Q I(eQ 1)(,)) E QJ] 1><1 [(Q2(eQ2)(,)) E Q2] 1><1 ...)

[e; E S] 1\ w; rt S) = Dam(a;)\ {v;}

A (cpa[eA, IA Jl(,), B (can[eB, VB])(,), P(cti[e.,,S.,])(,) ,

cpi[(Q l (eQl)(,)), SSJ], cpi[(Q2(eQ 2)(,)), SS2], c ti [J ,(e 1, . , , e,), So]

~ cti[e;,{(l ,-)}] (So "I {1,+))

ir B(3vo.) C(3vvc ,vv~ (vvc "I vv~) E IJom(ac).) V(C(vc)(,)) E {(C(vvc)(,)),(C(vvc)(,))}. A(3vA .)

3R C R(Dom(an))(x).

3Q I s.t. Ql is complete subset o r Ql(IJom(eQ 1))(x).

3Q2 s.t. Q2 is complete subset or Q2(1Jom(eQ 2))(x).

fi (R(en)(,))(

((e~o .. ,e,. ,j,(e,, .. ,e,.)) E {(w, , ... ,w,.,n·) Jfo(w,, ... ,w,.)= 7'7')}]1><1

[f,(e,, ... ,e,) E {J,(v,, ... ,v,) }]l><l P([(ep) E {v.,}])(l><l)

[(Q I(eQi)(,)) E Ql] 1><1 [(Q2(eQ2)(,)) E Q2] 1><1 .)v

[(R(en)(,)) E R]

A (cpa[eA, IA])(,), B (can[eu, vu])(,), P(cti[e.,,S.,])(,),

cpi [{Q I(eQ1)(,)), SSi], cpi[(Q2(eQ2)(,)), SS,J, c ti[1fo(e,, ... , e,.), So]

~ cpi[{R(en)(,)), {(I,-) }] (So "I {I,+))

ir B(3vB.) UA(•AEOom(aA))(.) {w; E Dom(a;)J3S.

3Q I s.l. Ql is comp lete s ubset or QI(Dom(eQi))(x).

3Q2 s.t. Q2 is comp lete subset or Q2(1Jom(eQ 2))(x).

fl (e;)(

[(e,, ... ,e, ,j,(e1 , •. ,e,)) E {(w, , ... ,w,., n·) J j ,(w,, .. ,w,.) = 7'7')] 1><1

[f,(e 1, •• ,e,) E {J,(v 1 , , v,))]l><l P([(e.,) E {v.,}])(l><l)

66

((Q l (eQI){,)) E Q i) D<l ((Q2(eQ2)(,)) E Q2) D<l •••)

[(fh(e 1 , ... ,e,.)) E 5] t\ w; 'I! S) = Dom(a;) \ {v;}

A(opa[e_. , /_.])(,), P(oti[e,, S,])(,),

opi [(Q J(eQ I)(,)),SS.], opi[(Q2(eQ2)(,)) ,5' 2], o ti L! ;(e 1 , .. ,e ..),So]

- oti[e,, {(1, -)}] (So# (1,+))

if 3v, E /Jam(a,), .. , Vn E Dam (a,.).

3 R C 1?.(/Jom(an))(x).

3Ql s.t. Q i is complete subset of QJ (D om(eQ.))(x).

3Q2 s.t. Q2 is complete subset of Q2(/Jom(eQ2))(x) .

ll (R (en)(,))(

[(e,, .. ,e .. ,J.(e,, . . ,en)) E {(w,, ... ,w .. ,n') I /b(w,, ... ,w,.) = 7T}] D<1

[J.(e,, ... ,e ..) E {/b(v, , .. ,vn)}]D<I P([(ep) E {vp}])(D<I)

[(QJ (eQ 1)(,)) E Ql] D<l [(Q2(eQ2)(,)) E Q2] D<l •••)

[(R (en)(,)) E R]

A (opa[e _. , /_.])(,), P (oti[e,,S,])(,),

opi[(Q J(eQ l)(,)),SS.], opi[(Q2(eQ2)(,)),SS,], oti [1!b(e,, .. ,e ..),So]

- opi[('R.(en)(,)), {(l,-) }] (So#(/,+))

3.2, inferab ili ty on arguments with part ial inferabi li ty on returned values

if 8 (3116.) C(3vvc,vvc (vvc # vvc) E Dom(ac).) V(C(vc)(,)) E {(C(vvc)(,)), (C(vvc)(,))).

UA (•AEDom(aA))(,){w; E Dmn(a;)I3S. 30 C Dom(fh)

3Ql s.t. Q i is comp lete subset of QJ (Dom(eQ.))(x) .

3Q2 s.t. Q2 is complete subset of Q2(Dmn(eQ2))(x).

n (e;)(

[(e., . . ,e .. , f ;(e,, .. ,e ..)) E {(w,, .. ,Wn,7'7') I /b(w,, .. ,wn) = 7T}] D<l

[/b(e,, .. ,e ..) E 0] D<l P ([(ep) E {v,}J)(D<I)

[(Ql (eQ 1)(,)) E Q l] D<l [(Q2(eQz)(,)) E Q2] D<l ...)

[e; E 5] t\ w; 'I! S) =Dam(a;)\ {v; }

A (cpa[e_. , /_.])(,), B(can[eB, v0])(,), P(cti [e,,S,])(,),

cpi [(Q l (eQ I)(,)) , 55.], cpi[(Q2(eQ2)(,)), SS,], cpi[1J;(e1 , .. , en). So]

- c ti [e;, {(l,-) }] (So# (1,+))

if B(3v6.) C(3vvc,vvc (vvc # vvc) E Dom(ac).) V(C(vc)(,)) E {(C(vvc)(,)),(C(vvc)(,))). A (3v_. .)

30 C Dam(!;) 3R C R (Dom(a,))(x).

3Ql s.t. Q J is complete subset of Ql(Dom(eQ.))(x).

67

3Q2 s.t. Q2 is complete subset or Q2(Dom(eQ2))(x).

fl (R(en)(,))(

((e~, .. ,en,J.(e,, .. ,en)) E {(w, , . . ,tun,1"1') [f,(w,, .. ,wn)=n·}]l><l

(f,(e,, .. , en) E 0]1><1 P(((e,) E {vp }])(1><1)

[(Q l{eQ 1)(,)) E Q!] 1><1 [(Q2(eQ2)(,)) E Q2] 1><1 .)

((R(en)(,)) E R}

A (c pa[eAJA])(,), B(can(ea, va])(,), P(cti[e, ,S,])(,),

cpi[(Q l(eQ !)(,)}, SS,], cpi((Q2(eQ2)(,)}, SS2], cpi[1f,(e, , .. , en}, So]

~ cpi[(R(en)(,)), {(/,-))] (So#(/,+))

ir B(3va.) UA(,_..EDom(a_..))(,) {w; E Dom(a;)[3S. 30 C Dom(J.) 3QJ s.l. QJ is complete subset or

Ql(Dom{eQ 1))(x).

3Q2 s.t. Q2 is complete subset or Q2(Dom(eQ 2))(x).

fl (e;)(

((e,, .. ,en.fb(e,, .. ,en)) E {(w, , .. ,wn,n·) IJ.(w,, .. ,tun)= n·}]l><l

(f,(e,, .. ,en) E 0]1><1 P(((e,) E {vp}])(l><l)

[(QJ(eQJ) (,)} E Ql] 1><1 [(Q2(eQ2)(,)} E Q2] 1><1 ...)

[(f,(e,, .. ,en)) E S] 1\ w; f/c S) = Dom(a;) \ {v;}

A(opa(eA, IA])(,), P(oti [e,,S,])(,),

opi[(QJ(eQl)(,)),SS,], opi((Q2(eQ2)(,)},SS2], otiLJ,(e, , .. ,en),So]

~oti(e;,{(l,-}}] (So-#(1,+})

ir 3v, E Dom(a,), .. , Vn E Dom(an).

30 C Dom(f,) 3R C R(Dom(an))(x).

3Q l s.t. Ql is com plete subset or Ql(Dom(eQ 1))(x).

3Q2 s.t. Q2 is complete subset or Q2(Dom(eQ2))(x).

ll (R(en)(,))(

((e,, .. ,en.fb(et, .. , en)) E {(w,, .. ,wn ,r1·) I /b(tuJ, .. ,tun)= rr)] 1><1

[f,(e, , ... ,en) E 0]1><1 P([(ep) E {vp}])(l><l)

[{Ql(eQ,)(,)} E Ql] 1><1 [(Q2(eQ2)(,)} E Q2] 1><1 ..)

((R(en)(,)} E R]

A(opa[eA' lA])(,), P(oti[e,, s,])(,),

opi((Ql(eQ l)(,)),SS,], opi((Q2(eQ2)(,)},SS2], otiLJ,(e 1 , .. ,en),So]

- opi((R(en)(,)}, {(I,-}}] (So# (1,+))

68

The conditions on rules may appear to be comp lex but they are just composed of relative ly small number of

repeatedly used parts. In the ru les deduci ng some certain capability, conditions are started with quantifiers

corresponding V D, that is, "for any initial database state". l n t hose quantifie rs, for arguments on which the

user does not have a ny a lterabi li ty or cau , we use "32((A(vA)(,)) E A(Dom(aA))(x)).", i.e. if A= {i , j} ,

"32((vi,vj} E Dom(a.i) x Dom(aj))." in stead of "Vvi. Vvi." because in the worst case ei and ei may take

only two combinations of va lues for a ll co nsiderable initial database s tates. For a rguments on which the

user have total alterabi lity, we use "3vi'' and place it after V for argu ments without alterab il ity because

the user can choose any app ropriate values for those a rguments. VVe also use "3v/' but we place it before

V for arguments without alterabil ity because there can be only one va lue for which can holds.

In the rules deducing total alterability, we usc "Vr E Dom(fb). 3vi." for arguments with total a lterabi lity,

and "3vi. 'V1·. 3vi(#: vD."' for arguments with partial alterab il ity because partial alte rab ility means there is

at least one value v; which the user cannot let the expression take. For rules ded ucing partial alterabi lity,

we use "32(•· E Dom(J.)):' instead of ''V•· E Dom(Jo)." because partial alterability means there are at

least two values t hat the user can let the express ion take .

The rules for inferabi lity are exa mining whet her the set S in the te rm [e E S] deduced by I(E) can

be a singleton set or not. The conditions on the rules deducin g certain inferability is comp osed of two

parts. Pirst, quantifiers represent ing V D are placed. T hose quantifiers bou nd vari ables VJ, ... , Vn to t rue

values of e1, ... , en. The second part corresponds to the inference by the user. For arguments with part ial

inferabil ity, we use "3Q wh ich is a comp lete subset of. However, when one has partial infcrabili ty

on (eJ, ... ,e,.), he may infer [(eJ,· .,en) E S] with S that is NOT a complete subset. F'or example,

ll(e;)S C Dom(e;) may hold. In that case, cpi[e;,SS] must a lso be deduced, and Scan be expressed as a

join of 5, C Dom(e;) and S' which is a complete subset of Dom(e 1) x ... x Dom(e,.). Therefore, we can

proceed analysis with assuming the user can infer only a comp lete subset of Dom(e 1) x .. x Dom(en)·

"U{ ... }" corresponds to the repetition of inference on the same expression with cha nging some alterable

arguments. 'vVe explain the effect of such repetit ion in Section 3.3.

In t he rules deduci ng inferabil ity, we do not d istingu ish total a lte rabi li ty and pa rtia l alterabil ity. Of

course, we can defin e a li tt.le less pessimistic rules by distinguish them. Disti nction of them, however, does

not make so mu ch improvement while it makes rules more complicated. Therefore, we omi t that d istin ction

here.

As a n example of rules based on basic fun ctions , we show the rules on t he basic function >=(x, y);

cpa[x]

opa[x]

cpi [x]. cpi[y]

o pi [x]. opi[y]

c pi [x]

opi[x]

69

c ta[>=(x, y)J

o ta [>=(x, y)J

cti[>=(x, y)J

o ti [>=(x, y)J

cpi [(y, >=(x, y))]

opi[(y, >=(x, y))]

cti [x], cpa[x] , cti[>=(x. y)]

oti[x], opa[x], oti [>=(x, y)]

cpi[x], cti[>=(x. y)]

opi[x],oti [>=(x , y)]

cti [>=(x. y)]

ot i[>=(x. y)]

cti[y]

oti[y]

cpi [y]

opi [y]

cpi [(x , y)]

opi [(x , y)J

VVe can get more rules from the defin ition above , but we omit. redundant ones, such as "cpa[x], cpa[y] _..

cta[>=(x. y)]", and those that can be got by replacing x andy, such as "cpa[y] ~ cta[>=(x, y)]"- In the

same way, the ru les for *(x, y) , mult iplication on integers, are as follows ;

ct a[x] , cta[y] cta[•(x , y)]

cta [x],can [y , I] cta[•(x. y)J

ota [x] ota[•(x , y)J

cpa[x] cpa[•(x, y)J

opa[x] opa[•(x, y)]

cti [x], cti[y] cti [•(x, y)]

cti [x], cpa [x] cti [•(x, y)J

cti[x], can [x , O] cti[•(x. y)]

oti [x] oti[•(x, y)J

cpi [x] cpi[•(x. y)]

opi[x] opi[•(x, y)]

cpi [x] cpi [(y , •(x. y))]

opi [x] opi [(y, •(x , y))]

cti [x], cti[•(x , y)] cti [y]

o ti[x],o ti[•(x, y)J oti[y]

cpi[•(x, y)] cpi [y]

opi[•(x. y)J opi[y]

cpi[•(x, y)] cpi [(x, y)]

opi[•(x, y)] opi[(x, y)J

The rule cti [x],can[x, OJ~cti [•(x, y)] holds because •(x. y) is 0 when x = 0.

Using J(F) , we defin e the algo rithm A (R) that determines whether the requirement R is satisfi ed or

not as below;

Definition 12 A (R)

Given R = (u, f(xJ : cl . . : c'1n
1

••• , X,1 : c;1 ... : c~1 ") : c6 ... : c~10 , A(R) ca lculates the closu1·e set of

all inferable tenns of J(F) where P is a set of all funct ions in /h e capabthly lis/ of u . Th.en, if th. ere

exis ts some 1/(1, e1, ... ,1" e11) E S'(F) for which all tenns correspond my lo ca7Jabililies spectfied in R are

70

mduded"' t.he closure set, A (R) detennmes that H. IS no t satisfied. Othenmse A (II) detrmlllles that H. IS

sa tisfied. o

A (R) can be proved to be sou nd ;

Theorem 1 Soundness of A(R)

If R is not satisfied, A (H.) always determin es that n is not satisfied.

(P roof outline) As for alterability and can , it is proved by induction on the struct ure of the subexpress ion.

I t is rath er simple. As for inferabi li ty, it is proved by induction on the length of inference sequence of I(£)

ded ucing [e E S}. The soundness o r the a lgorithm is essenti a lly comes rrom the ract t hat "the rules ror

basic fun ctions are defined so that the algorithm is sound". \Ve briefly describe several points that are

important in the proof.

1. Join operation in I (£) is associat ive and commutative. Therefore, the results that the user can get

by join operations only depends o n th e set of terms used in join operations and independent from

the order in which those terms are joined.

2. In I , terms of the rorm [(..) E S] a re deduced by (1) a.xioms (2) the rule dedu cin g [(e 1, e2) E ...] rrom

eq ua li ty (3) the rule corres po nding to depe ndency among arguments and results of bas ic fun ct ions.

Res ults got by (1) are s imulated by axioms in 3. Resu lts got by (2) are simul a ted by the ru le =[el, e,]

- cpi [(e 1 ,e2), ...] in :f. Resu lts got by joining (1) and (2) are simulated by t he rule =h, e,],

ct i[e 1, S]-cti[e2 , S] and =h, e,]cpi [(... , e1, ...), S}-cpi [(... , e2 , .•.), S}. Results got by (3) or

by joining (3) an d others a r simulated by the rules ror basic run clions.

3. Two different occasional partial alterability can cause certa in total alterability a<s explained before.

4. On the other hand, two different occasio nal partial inferabili ty can never cause certain total infer­

abi lity as explained before. They can cause just certa in partial inferabi li ty and occasional total

inferability.

5. The rule opa[e 1}-ota[_r_atl(e 1)] ho lds because th e o rd er or Dom.(_r_alt(e 1)) may be smalle r than

Dom(e1). On the other hand , cta[e,}-cpa[_r _att(e1)] ca nnot hold because ir every object in Dom.(e 1)

has the same value in its attribute all in the initial database state, the result of _r_atl.(e,) is always

the same value howeve r he change the value of e1.

3.4.2 An Example

We briefl y explain o ne example of the analysis. Suppose the user u can directly invoke checkBudget(broker)

and _w_budget(o, v) 1 and requi rement. (u, _r_sa lary(broker): cti) is spec ified. In this situatio n, as explained

71

in Section 3.3 1 the user u can infer the exact va lue of the salary of each broker. The refore 1 there is a security

fl aw. It ca n be detected in the follow ing way. First , we unfold and number the code of checkBudget and

_w_budget(o , v) as below;

checkBudget(broker)

7 >=(,_r _budget(1 broker) , 6*(:~10 , s-r _salary(,broker)))

ro-w_budget(so, gv)

Then, .J({check Budget (broker), _w_budget(o , v)}) can deduce cti[5 _r_.salary(' broker)] as shown below;

=[so , 1 broker]

=[9 v, 2 _r_budget(1 broker)], ct i[g v]

=[so, ,b roker], cpa (g v]

=[so, 1 broker]

=[gv, 2-' _budget(, broker)]

c ti[gv]

c ti [, _r _budget(1 broker)]

cpa[gv]

cpa[,_r _budget(1 broker)]

c ti [7 >=(...)]

c ti [,_r _budget(1 broker)], cpa[,_r _budget(1 broker)], cti[7 >=(.)]

(axiom for =)

(rule fo r =)

(axiom)

(i nferability based on =)

(ax iom)

(alterability based on =)

(ax io m)

cti[6•(3 10, 5 _r_salary(4 broker))] (basic function)

cti[310] (axiom)

c ti[alO], cti[6•(3 10, 5 _r_salary(4 broker))]

cti[s-' ..sala ry(4 broker)] (bas ic fun ction)

Thus, c ti [5 _r_salary('1 broker)] is ded uced, and t herefore, A(F) determines that (u,_r_salary(broker) :cti) is not

satisfi ed . T his mea ns the security flaw is successfully detected.

3.5 Contribution and Future Work

We define a framework for access co ntrol in the abstract operat ion gran ula ri ty, and developed an mechanism

t hat detects secur ity fl aws ca used by fun ctions not hiding primitive operations inside them. The most

important contribu t ion of t his research is that in orde r to properly model t he problem of that kind of

sec urity flaws, we introduced t he notions of inferab ili ty on returned values and cont roll abil ity on arguments,

in vest igate their properties , and gave the forma l semanti cs of the secu ri ty req uirement descr ibed in terms

of t hose notions. 'vVe thi nk that t liese not ions a re proper generalizat ion of t raditiona l read/w rit e capab il ity

and can work as a basis for va rious resea rches on access control in t he fun ction granul ari ty. In order to

show usefu lness of those notions we also developed a sound a lgorithm that determines whether a given

req uirement is satisfi ed or not.

72

Although we showed a static analysis a lgorithm which is soun d and sufficiently practical. it is not

necessa rily one and only way to avoid security flaws. In fact , the algorithm we showed in this research

is quite pessimistic ins tead of requiring relatively small amount. of computa tion. More accurate a na lysis

with more complex computation could be developed usin g existing techniques, such as several techniques

proposed in the resea rches for t he abstract interpret,ation of programs . Another alternative is to develop a

mechanism to dynamically detect sec urity flaw s dur ing execution of queries. Thosr arc future issues.

We assume a rather simple data model in this development. In [DII P89, RBKW9 1, Spo89 , GGF'93] ,

how various data modeling concepts, such as versions or inheritan ce, affect the authorization mechanisms is

discussed. The integration of the techniques we show in this thesis and the mechanisms proposed in those

researches is an issue for future researches. The function definiti on language we defin ed in this research is

also quite simple language. Including more language features into it , such as recursion and polymorphism,

is also a n interes ting issue for future researches.

In this thesis, we do not discuss about properties of aggregate fun ctions on sets. Int eresting studies on

that topic has been shown in th e context or stat istical databases [KU77 , Chi78, DDS79, DJL79, Bec80,

C082 , LDS+90] . The result or these researches say, in short , that aggregate run ctions on a set or data

almost always reveal the information on th e individual elements of the set.

73

References

[AB91] Serge Abiteboul a nd Ant hony Bonner. Objects and views. In Proc. of ACM SIC MOD, pages

238 247, Jun. 199 1.

[ABD +89] Malcolm At kisson, f'r an<;ois Bancilhon, David DeWitt, Klaus R. Di tt rich, David Maier , a nd

Stanley B. Zdonik . T he objec t-oriented database system manifesto. In Proc. of In !. Conf. 011

Deductive and ObjecJ.-Orienled Database Systems, pages 40 57. Elsev ier Science Pu bl. , Dec.

1989.

[A BG0 93] An tonio Alba no, ll. Bergamini, G iorgio Ghelli , a nd Ren zo Ors in i. An object data model with

roles. In Proc. of VLD B, pages 39- 51, Aug. 1993 .

[AC0 85] Antonio Al ba no, Luca Cardelli , a nd H.enzo O rsini . Galileo: A strongly-ty ped , interact ive

concep tua l language. ACM TODS, 10(2):230- 260, J un. 1985.

[ADG92] H.afi ul A had, J ames Dav is, and Stefa n Gower. Support ing access control in a n obj ect-ori ented

data base language. In Pmc. of ED BT, vo lume 580 of LNCS, pages 184- 200. Spri nger- Verlag,

Mar. 1992.

[AL UW93] Serge Abi teboul , Georg La usen, ll einz phoff, a nd E:mmanuel Wa ller. Methods and ru les. In

Proc. of A CAl SICMOD, pages 32- 41 , May 1993.

(ANS75) ANSI/ X3/S PAH.C Study group on data base management systems. Interim report . PDT ­

Bulletin of ACM SIC MO D, 7(2), 1975.

[BBKV88] F ran<;ois Banci lhon, Ted Briggs, Setrag Khoshafi an , and Pa trick Va lduriez. f'A D. a powerful

a nd s im ple data base language. In Pmc. of VL DB, pages 97- 105, Se p. 1988.

[BDK 92] Fran<;ois Ba ncil hon, C la ude Delobel, a nd Pa ris C. Ka nella kis, edi to rs. Butldi11g an 00/JBAIS,

The Story of 0 2. M organ Kaufmann, 1992.

[Bec80] Lela nd L. Beck. A security mecha nism for stat istical databases. A CAl TODS, 5(3):3 16- 338,

Sep. 1980.

74

(Ber92] Elisa Bertino. Data hiding and security in object-oriented databases. In Proc. of IEEE JCDE1

pages 338- 347, Feb. 1992.

(BI\SW91] Thierry Barsalou, Arthur M. 1\ellcr, Niki Siambela, and Gio Wiederhold . Updating relational

databases through object-based views. In ?roc. of ACM SIGMOD, pages 248 257, May 1991.

(13091]

(13096]

Peter Buneman and Atsushi Ohori. A type system that reconciles classes and ex tents. In Proc.

of Int. Workshop 011 D!JPL , pages 19 1- 202. Morgan Kaufmann , Aug. 199 1.

Peter Ouneman and Atsushi Ohori. Polymorphism and type inference in databa'5e program­

ming. A CM TODS, 1996. To appear in March issue .

(BTB091] Val Breazu-Tannen, Peter Bunernan , and Alsushi Ohori . Data stru ctures and data types

in object-oriented databases. iEEE Dala Engineeri11g Bulletin, Spec1al Issu e on Theoreltcai

Foundation of Object-O•'iented Databases, 14(2):23- 27, Jun. 199 1.

(Bur90] Rae K. Burns. Referential secrecy. In ?roc. of IEEE Symp. on Research in Securi ty and

Privacy , pages 133- 142, 1990.

(CDMI390] Richard C. H. Connor, Alan Dearie, Ronald Morrison , and Fred Brown. 8xistentially quantified

types as a database viewing mechanism. In ?roc. of ED!JT, volume 416 of LNCS, pages 301-

315. Springer- Verlag, Mar. 1990.

(Chi78]

(C082]

(Coh77]

Fran cis Y. Chin. Security in statistical databases for queries with small counts. ACM TODS,

3(1):92- 104, Mar. 1978.

F'rancis Y. Chin and Gultekin 6zsoyoglu. Auditing and inference control in statistical database.

IEEE Trans. on Soft . Eng., 8(6):574- 582, Nov. 1982.

Ellis Cohen. Information transmission in computational systems. In Proc. of A CM Sym.p. on

OS Prin ciples, pages 133 139, Nov. 1977.

(D A I-J +87] Dorothy 8. Denning, Selirn G. Ak l, Mark Heckman , Teresa F. Lunt , Matthew Morgenstern,

Peter G. Neumann 1 and Roger R. Schell. Views for multileve l database security. IEEE Tmns.

on Soft. Eng., 13(2): 129- 140, Feb. 1987.

(DD77]

(DDS79]

(Den76]

Dorothy E. Denning and Peter J. Denning. Certification of programs for secure information

flow . CACM, 20(7):504- 512, Jul. 1977

Dorothy E. Denning, Peter J. Denning, and Mayer D. Schwartz. The tracker: A threat to

statistical database secur ity. ACM TODS, 4(1):76- 96, Mar. 1979.

Dorothy 8. Denning. A lattice model of secu re information flow . CACM, 19(5):236- 243, May

1976

75

(DIIP89)

(DJ L79)

Klaus R . Dittrich, M arLin 11 3. r t.ig, and Hcri ber Pfefferle. Discretionary access control in struc­

t.ually object-oriented database systems. In Da tabase Secun ty /1 : Status and Prospectus , pages

105-12 1. Elsev ier Science Pu bl. , 1989.

David Do bkin , Anita 1< . Jones, and Richard J. Lipto n. Secure databases: Protection aga inst

user innuence. A CM T ODS, 4(1):97 106, Mar. 1979.

[F'SW8 1] Ed uardo B. Fernandez, Ri ta C. Su mmers, and Christop her Wood . Dat abase Secun ty and

In tegri ty, cha pter 5, pages 55- 64. T he Systems Programming Series. Addison-Wesley, 1981.

[GG 1'93] Nuri t h Ga i-Oz, Ehud Gudes, and Eud a rdo B. Ferna ndez. A model of methods a ut hor ization

in object-oriented databases. In Proc. of V LDB, pages 52- 61, Aug. 1993.

[G PZ88)

[G R83)

[fi D92]

[11 090]

[II Z90)

(J M88)

[.JS9 1]

Georg Gottlob, Paolo Paolin i, and Roberto Zicari . Properties and update semantics of consis­

tent views. A CM T ODS, 13(4):486 524, Dec. 1988.

Adele Goldberg a nd David Ro bson. Sma /lt alk- 80: The Language an d ! I S lmJJiemen tation.

Add ison-Wesley, 1983.

Thomas Hinke and Harry S . Delugach. Aerie: An inference modelin g and detect ion app roach

for dat a bases. In Database Securi ty VI: S taf.us and Prospects, pages 179- 194. IF I P WG 11.3,

Aug. 1992.

Brent ll ai lpern a nd Ha rold Ossher. Extending object to support mu lt iple in terfaces and access

control. IEEE Trans. on Sof t. En g., 16(11): 1247- 125 7, Nov. 1990.

Sandra Heiler and Stanley B. Zdonik. Object views: Extending t he vision. In Proc. of IEEE

ICDE, pages 86- 93, Feb. 1990.

La ita A. J ategaonka r a nd J ohn C. Mi tchell . ML wi t h extended pattern matching a nd subty pes.

In Proc. of A CM LFP, pages 198- 21 1, Jul. 1988.

Sus hi) Jajodia and Ravi Sandhu . Toward a mu ltileve l secure re lational dala mo de l. In Proc.

of A CM S I GMOD , pages 50 59, May 1991.

[KLW90] Michael Ki fer, Georg La use n, a nd J ames Wu . Logical found at ions of object-oriented a nd

frame-based languages. Tech . Rep. 90/ 14, State Univers ity of New York at tony Brook. 1990.

[KU77] J ohn B. Kam and J efrrey D. Ullma n. A model of statistiacl database a nd t hei r sec uri ty. ACM

T ODS, 2(1): 1- 10, Mar. 1977 .

(LDS+9Q] Teresa 1'. Lunt, Doroth y E. Denning, Roger R. Schell , Ma rk Hec kma n, and Will iam R. Shock­

ley. T he SeaView securi ty model. IEEE Tm ns. on Soft . E ng., 16(6):593 607, J un . 1990 .

76

(Mil 78]

[MJ 88]

[Mor87]

[MSS88]

[OB88]

[O B89]

Robin Milner. A theory of type polymorph ism in programming. Journal of Computer and

System Sciences, 17(3):348 375, Dec. 1978.

Catherine Meadows and S ushi! Jajodia. lnget.. ri ty versus security in mu lti-level secure

databases. 1n Datalmse Securi ty II: S tatus and Prospects, pages 89 101. IFIP WG 11 .3, Nort h­

ll olland , Oct. 1988.

Matt.hew M orgenstern . Security and inference in mu ltilevel database and knowlege-base sys­

tems. In P mc. of ACM S IGMOD , pages 357- 37 1, Dec. 1987.

Subhasish Mazumdar, David Stern pie, and Tim Sheard . Resolving the tension between integrity

and security us ing a theorem prover. In Pmc. of ACM SI GMOD, pages 233 242, Scp. 1988.

Atsushi Ohori and Peter Buneman. Type inference in a database programming language. Jn

Proc. of ACM LFP, pages 174 183, Jul. 1988.

Atushi Ohori and Peter Bune rnan. Static type inference for parametri c cla:sses. In Proc. of

A CM 00 PSLA , pages 445- 456 , Oct. 1989.

[013BT89) Atsushi Ohori , Pete r Buneman, a nd Va l Breazu-Ta nn en. Database programmin g in Machiavelli

- a polymorphic la nguage with static type inference. In Pmc. of ACM SIGMOD, pages 46- 57,

May.- J un . 1989.

[Oho92) Atsushi Ohori. A compilation method for ML-style polymorphic record calcul i. In Pmc. of

ACM POPL, pages 154 165, J an. 1992.

[OT94] Atsushi Ohori and l\ eishi Taj ima. A polymorphic calculus for views and object. sharing. In

Proc. of A CM PODS, pages 255 266, May 1994.

[Qia94] Xiaolei Qian. Inference channel- free int.egiri ty constraints in rnull,ilevel relational dat.aba;;es.

In !'roc. of IEEE .'iymp. 011 /les earch in Sec11rity and Privacy, pages 158- 167, 1994.

[QSI\ +93] Xaiolei Qian , Ma rk 8. Stickel, Peter D. 1\ arp , Teresa F'. Lun t, and Thomas D. Garvey. Detec­

tion and eliminat ion of inference channels in mult ilevel relational database systems. In Proc.

of IEEE Symp. on Research. in Securi ty and Privacy, pages 196- 205, 1993.

[R89] Didier RCmy. Typechecking records and variants in a natural extension of M L. In Proc. of

ACM POPL, pages 77- 88, J a n. 1989.

[RBKW91] F'a uslo RabiUi , Elisa Bertino, Wo n 1\im, and Darrell Woelk . A model of authorization for

next-generation database systems. ACM TODS, 16(1) :88- 13 1, Ma r. 1991.

[Row89] Neil C. Rowe. Inference-security ana lysis using resolu t ion theorem-proving. In Proc. of IEEE

ICDE, pages 4 10- 416, Feb . 1989.

77

[RS91]

[Run92]

[S LT91]

[509 1]

[Spo89]

[Taj96]

[TYI 88]

[Wan 7]

[Wie86]

Joel Richardson and Pete r Schwarz. Aspec ts: Exlending obj ects to support multiple, indepen­

dent roles . In Proc. of ACM S IGAJOD, pages 298- 307, May 199 1.

Elke A. Rundensteiner. Multiview: A methodology for supporting multiple views in object­

oriented databases. In Proc. of VUJIJ , pages 187- 198, Aug. 1992.

Ma.rc H. Scholl , C hristian Laasch, and Markus Tresch. Updat.able views in object-oriented

databases. In l'mc. of Jnt. Conf. on Dedu ctive and Object-Onented Database Sys tems, volume

566 of LNCS, pages 189 207. Springer-Verlag, Dec. 1991.

Tzong-An Su and Gultekin Ozsoyoglu . Controlling FD and MVD inferences in multilevel

relational database systems. IEEE Trans. on /\now. and Data ., 3{4):474- 485 , Dec. 199 1.

David L. Spooner. The impact of inheritance on security in object-oriented database systems.

In Database Security J/: S tatus and l'r·ospectus, pages 141 - 150. Elsevier Science Publ. , 1989.

Keishi Tajima. Static detection of sec urity flaws in object-orien ted databases. In Proc. of A CM

S IGMOD , pages 341 352, Jun . 1996. to appear.

Kat.sumi Tanaka1 M ac;atos hi Yoshikawa1 and Kozo Ishihara. Schema virt.ualizt.ion in obj ect­

oriented databases. In Proc. of IEEE ICDE, pages 23- 30, F'eb . 1988.

Mitchell Wand . Com plete type inference for simple objects. In Proc. of I EEE LICS, pages

37 44, Jun . 1987.

Gio Wiederhold. Views, obj ects, and databases. IEEE Computer, 19{12):37- 44, Dec. l986.

78

