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Abstract:
The development of methods to forecast PV power generation regionally is of utmost

importance to support the spread of such power systems in current power grids. The objective of
this study is to propose and to evaluate methods to forecast regional PV power one-day ahead of
time and to compare their performances. Four forecast methods were regarded of which 2 are
new ones proposed in this study. Together they characterize a set of forecast methods that can be
applied  in  different  scenarios  regarding  availability  of  data  and  infrastructure  to  make  the
forecasts. The forecast methods were based on the use of support vector regression and weather
prediction data.  Evaluations were done for 1 year  of hourly forecasts  using data  of 273 PV
systems  installed  in  2  adjacent  regions  in  Japan,  Kanto  and  Chubu.  The  results  show  the
importance  of  selecting  the  proper  forecast  method  regarding  the  region  characteristics.  For
Chubu, the region with a variety of weather conditions, the forecast methods based on single
systems’ forecasts and the one based on stratified sampling provided the best results. In this case
the best annual normalized RMSE and MAE were 0.25 kWh/kWhavg and 0.15 kWh/kWhavg. For
Kanto, with homogeneous weather conditions, the 4 methods performed similarly. In this case,
the lowest annual forecast errors were 0.33 kWh/kWhavg for the normalized RMSE and 0.202
kWh/kWhavg for the normalized MAE.

Keywords: photovoltaic systems, regional power generation, support vector regression, stratified
sampling, principal component analysis

1. Introduction
With  the  current  conditions  of  world-wide  increases  of  CO2 emissions  and  doubts

regarding the safety of nuclear power, associated with their long term harmful effects in case of
accidents,  power  systems  based  on  renewable  resources  are  expected  to  give  a  strong
contribution  in  the  attenuation  efforts  regarding  greenhouse  gases  emissions.  Moreover,  the
widespread use of such systems is seen as a way to decrease the world’s dependence on fossil
fuels, helping in the transition to more sustainable societies. In Japan, after the nuclear disaster in
Fukushima on 2011, most of nuclear power plants  were put in maintenance mode and their
reactivation is being strongly opposed. As result, the country became highly dependent on fossil
fuel  based  power generation  [1],  which  is  increasing  costs  and CO2 emissions.  Under  these
conditions, to increase the share that power systems based on renewable resources have in the
total  power  generation  mix  in  Japan  became  a  pressing  matter,  causing  the  government  to
reformulate its policies in this area. One consequence of this reformulation was the enactment of
a new feed-in tariff program for photovoltaic, PV, systems in 2012. Through this program it
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became very attractive to install PV systems in Japan, resulting in more than 3.3 GW of new
installed capacity from 2012 to May of 2013 [2]. 

Given such growth rates it is expected that soon PV power will have a meaningful share
in the total power generation in Japan. Thus interesting challenges to power utilities regarding
the operation and integration of these systems on current power grids will be created. In this
regard, one important issue is the intermittence of PV power, which is strongly dependent on
weather conditions. Sudden and unexpected changes in the weather can cause sharp variation in
the  PV power  generation,  and  if  such  variations  in  large  scale  are  not  properly  dealt  with
frequency regulation and power supply issues can arise. One way to deal with this problem is to
forecast PV power so that counter-measures to keep the frequency stable and the balance of
power supply and demand can be properly and timely prepared. 

As forecasting of PV power is an important tool to support of the widespread use of PV
systems, several researchers are actively looking for methods that can provide accurate forecasts
as it can be seen in Paulescu et al[3]. Different methods were proposed to forecast PV power in
different forecast horizons. In the case of a few minutes or hours ahead of time, there are works
such as the one of Chow et al[4], who proposed to use neural networks to mimic the nonlinear
relation between weather parameters and PV power on 10 minutes ahead forecasts. Bracale et
al[5], proposed a Bayesian approach modifying an auto-regressive time-series model to take in
account  the  relation  between  the  clearness  index  with  other  meteorological  variables  on  15
minutes ahead forecasts. Takahashi and Mori[6], devised a method based on Generalized Radial
Basis  Function  Network  and  deterministic  annealing,  which  improved  30  minutes  ahead
forecasts of PV power near to 12% compared with a simpler approach. Pedro and Coimbra[7],
compared several forecasting techniques that do not use exogenous inputs to forecast PV power
of a 1 MW power plant up to 2 hours ahead of time, concluding that a neural network with its
parameters set by a genetic algorithm was the best approach. Regarding forecasts one day ahead
or more, there is also a variety of studies available. Jimenez et al[8] proposed the use of two
numerical weather models and an artificial neural network to forecast PV power of plant aiming
the determination of suitable hours to perform maintenance tasks.  Bofinger and Heilscher[9]
used model of output statistics with local weather stations data to improve one day and five days
ahead forecasts  of PV power in Germany using irradiance forecasts  of the ECMWF. We, in
previous  studies  also  proposed  a  method  for  1  day  ahead  forecasts  using  support  vector
regression and numerical weather prediction, evaluating the approach with 1 year of data for a 1
MW power plant[10]. Most of these forecast methods are based on the use of past measured or
forecasted of weather related variables. Furthermore, they can directly use past PV power in the
training data [11], or be based on forecasts of irradiance. In the latter case, PV power is obtained
from  irradiance  forecasts  using  conversion  or  downscaling  models  [12],[13],[14].  Finally,
regardless the forecast horizon and the way PV power forecasts are obtained, several techniques
can be used, such as neural networks, support vector regression, fuzzy logic [15] and others.

In spite of the variety of forecast methods for the PV power generation most of them are
tested and developed for single PV systems. Of the studies mentioned only a few were developed
to  tackle  the  problem on regional  scale,  such as  the  work of  Lorenz  et  al  [12] focused on
Germany.  In  Japan  the  structure  to  provide  the  necessary  information  to  make  feasible  the
application of one of more of these methods in regional scale was not yet conceived, and it is not
even clear which structure should be prepared. For example, it is not known if every PV system
in a region should be monitored to provide better regional forecasts of PV power, or how the
gains in accuracy that such approach provides compares with the costs it creates. Furthermore,
due to privacy concerns, it may not even be possible to monitor the power generation of every
PV system without changing current laws. In this case, to measure only solar irradiance or just a
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sample  of  PV systems  could  be  feasible  options  but  they  may  imply  forecasts  with  lower
accuracy.  For  power  utilities  operating  in  a  region  or  even  smart  grid  operators  these  are
important  topics  that  should  be  considered  when  choosing  a  method  to  forecast  PV power
generation to assist in the operation of their grids. For policy makers these are also important
questions  that  should  be  answered  when  discussing  which  structure  regarding  networks,
information flow, data storage, monitoring, etc, should be conceived so that useful forecasts of
PV power generation can be provided. Moreover, the issues regarding the impact of PV power in
regional scale  are  not  only relevant in Japan but  in all  places where PV power systems are
expected to provide an important share of the required power supply.

Thus,  the objective of this  study is  to  propose and to  evaluate  different methods to
obtain regional forecasts of PV power generation in different scenarios regarding availability of
data. Two new forecast methods are proposed and compared with other 2 existent ones. Together
the methods represent  4 alternatives  that  can be applied in different  scenarios  regarding the
availability of data to make the forecasts.  The basic input data used were based on weather
forecast  data  and the  methods used,  in  different  ways,  support  vector  regression as  forecast
technique. Each method differs from the other regarding how the input data are used and what
data regarding the PV systems installed in a region are available for the forecasts. To evaluate the
methods, they were used to forecast, one-day ahead of time, hourly PV power generation during
1 year in Japan, for 2 regions with different areas, installed PV power capacity, and weather
conditions. Furthermore, a third region including the previous 2 was also regarded. In this way,
the performance of the forecast methods in different conditions is also assessed. The different
regions size, weather conditions, PV systems capacity and installation conditions, give the study
general applicability, and the methods proposed can be adapted to other locations. Furthermore,
it is expected that the results of this study will also provide to policy makers and stakeholders in
the renewable energy sector useful information when deciding about data availability and data
aggregation policies to support regional PV power generation forecasting. 

2. Data Used in the Forecasts
The data used in the forecasts are described in this section. The input data are based on

weather forecast information and they are described in subsection 2.1. The output of the forecast
is  the  hourly  regional  PV power  generation.  The  sets  of  PV systems  used  in  the  study  to
represent the regional forecasts  and their  respective locations are described in section 2.2.  It
should be noted that how and which data are used depends on the type of forecast method,
described in section 3.

2.1 Input Data
Most of the input data used were based on the weather forecasts provided by the grid-

point-values  obtained  from the  meso-scale  model,  GPV-MSM,  of  the  Japan  Meteorological
Agency[16]. The GPV-MSM weather forecast system uses non-hydrostatic meso-scale modeling
to reproduce the atmospheric phenomena. The GPV-MSM data-set has a 3 dimensional domain,
covering an area of 3600 x 2400 km surrounding Japan, Fig. 1, and reaching an altitude of 21.8
km.  Furthermore,  the  vertical  domain  is  divided  in  50  layers  modeling  the  atmosphere
phenomena  at  different  heights.  The  GPV-MSM  contains  forecasts  with  a  geographical
resolution of 25 km2 (0.05o x 0.0625o). Regarding Initial conditions, the MSM is initialized with
forecasts of a weather system with coarser resolution (400 km2), but with a domain covering the
entire planet, the global spectral model, GSM. Forecasts of several weather related variables are
obtained with the MSM, and these variables are forecasted hourly 8 times a day with a maximum
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forecast horizon of 15 or 33 hours ahead of time, according to the forecast time.

Figure 1 Computational domain of the MSM weather forecast system developed by the JMA.

Surface and 2-dimensional data provided by the GPV-MSM were used in the forecasts.
From  the  surface  data,  air  temperature,  and  air  relative  humidity  were  used;  from  the  2
dimensional data cloudiness in three levels were used. The forecasts for next day were provided
at 12h JST, characterizing a forecast horizon from 18h to 31h ahead of time. Besides the weather
forecast data, the extraterrestrial horizontal insolation was also used as input data. This quantity
is  derived  from the  total  amount  of  solar  radiation  reaching  the  planet  before  entering  the
atmosphere and it can be theoretically calculated for every location on the planet and hour of the
forecasts [17]. 

This input data set was used in all forecast methods presented in section 3 excluding the
persistence method. However, according to the forecast method the data set was partially used or
used in different ways. 

2.2 Output Data
The output data of the forecasts were the regional PV power generation for every hour

of the period evaluated and every region regarded. Two regions were used in the study, the Kanto
region and the Chubu region in Japan. To verify how the forecast methods perform with areas of
different sizes, a third region considering Kanto and Chubu together was also regarded in the
analyses. In Fig. 2 the three areas regarded and the location of their respective PV systems are
presented. 
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(A)                               (B)                                      (C)
Figure 2- Target areas (in orange) with their respective PV systems’ locations (in red) regarded in
the regional forecasts of PV power. * indicates the Tokyo administrative area. ■Indicates Nagano
Prefecture.

The  Kanto  region  has  generally  a  homogenous  weather  conditions  with  a  high
occurrence of clear-sky days on winter; the PV system set regarded was well distributed with
some concentration in the Kanagawa prefecture in the south of Tokyo. On the other hand, Chubu
region has distinct weather conditions with high mountains in its central area, the coast of the
Sea of Japan with heavy snow fall and high occurrence of overcast days in winter, and the coast
of pacific, with almost no snow in winter. Moreover, the PV systems regarded in Chubu were
partially concentrated in the southwest and in Nagano prefecture in the central area, indicated in
Fig. 2 by the ■  symbol, with some examples in most of the prefectures of the region. As Fig. 2
shows,  both  regions  have  different  distribution  of  PV systems,  different  sizes  and  different
weather conditions providing good examples to evaluate the regional forecast methods. 

In total data of 273 PV systems were used in the study, reaching more than 8.1MW of
installed capacity. These systems are part of the Field Test project maintained by the New Energy
and Industrial Technology Development Organization, NEDO, in Japan. The description of the
PV systems per region is in Tab. 1 and Fig. 3.

Table 1 – Regions’ area and characteristic of their respective PV systems’ sets.
Region 1 Region 2 Region 3

Region name Kanto Chubu Kanto +
Area 32 423.90 km2 72 572. 34 km2 104 996.24
Installed Capacity 4 409.02 kW 3 694.16 kW 8 103.18 kW
Number of PV systems 143 (100%) 130 (100%) 273 (100%)

C
el
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st
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Amourphous-Si 5 (3.50%) 1 (0.77%) 6 (2.20%)
Monocrystalline-Si 6 (4.20%) 0 6 (2.20%)
Heterojunction 
with Intrinsic Thin 

16 (11.19%) 14 (10.77%) 30 (10.99%)

Polycrystalline-Si 116 (81.11%) 115 (88.46%) 231(84.61%)

 
In Table 1, the regional PV power output for every hour is regarded as the sum of the

PV power generation of all 143 PV systems for Kanto, 130 PV systems for Chubu, and 273 PV
systems for the region including Kanto and Chubu. Hourly forecasts were done for the 3 regions
for  one  year,  2009.  Furthermore,  most  of  the  PV systems were  of  the  polycrystalline  type;
examples of other types were present in small quantities. 
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Regarding the orientation angle of the modules, more than 70% of them were facing
south or near to south directions (Fig. 3A). Common tilt angles were 10o and 20o and near to 90%
of the modules had tilt angles lower or equal to 30o (Fig. 3A), characterizing typical installation
conditions in Japan.

(A)                                           (B)
Figure 3- Modules’ orientation angles (A) and tilt angles (B) of the PV systems set according to

the region.

3. Methods to Forecast the Regional PV power
Four methods were evaluated in the forecast of regional PV power generation during

any  given  hour.  Each  method  reflects  a  scenario  regarding  the  availability  of  data  for  the
forecasts.  Thus,  regional  forecasts  can  be  obtained  for  different  conditions,  markets  or
regulations. The four methods were not only compared to each other but also with a reference
approach based on persistence. The persistence method simply regards the hourly values of PV
power generation measured in a day as the forecast values for the next day. This method is a
naïve way to make a forecast and any other forecast method should provide results at least better
than persistence to justify its use. Finally, Method 1 and Method 3 were proposed on previous
studies. To complete the 4 scenarios analyses in this study we propose further 2 new forecast
methods, Method 2 and Method 4, and present a comprehensive analysis of their performances.

3.1 Method 1 – Based on each PV Systems’ Power Generation
In this method an hourly forecast for each PV system in a region is done. The regional

value is then obtained adding the forecasted contributions of every PV system. To make a single
PV system forecast we used a method based on the use of support vector regression [10]. 

As the method for forecasts of single PV systems was already presented, only a brief
description  of  it  will  be  given.  The   support  vector  regression  was  used  as  the  forecast
algorithm. In it the deviation that a forecast can have from a target answer is minimized; and the
algorithm works expressing in a hyper dimensional space the problem of determining the relation
between sets of input patterns and their targets. The problem is taken to a high dimension space
with  map  functions  and  then  restated  with  Lagrangian  coefficients  so  that  an  optimization
procedure  can  take  place.  In  this  way,  the  training  stage  with  a  support  vector  regression
algorithm  is  treated  as  an  optimization  problem.  Further  information  about  support  vector
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regression can be found in literature [18], [19].
To  use  the  support  vector  regression  a  set  of  configuration  parameters  in  the

optimization problem and a kernel function, which will perform the mapping, have to be chosen
beforehand. To find suitable values for these parameters an approach based on ensemble set of
models was used. In this approach ranges for the variation of the values of the configuration
parameters are predefined and a forecast is done for each possible combination. After all the
combinations generated a forecast, the median of the results is chosen as the algorithm forecast
output.  This  procedure  to  set  the  support  vector  regression  was  previously  proposed  in  the
similar insolation forecast problem, yielding good results [20]. 

The kernel function used was the radial basis function described in Eq. 1. The parameter
 in Eq. 1 and the cost C and the  parameters from the support vector regression optimization
procedure, not showed here, varied in the range of values presented in Table 2. These ranges of
variation were found based on trial and error experiments.

k (x i , x j )=e
−γ∨ xi−x j∨❑

2

.................................... (1)

Table 2- Range of values for the configuration parameters
of the support vector regression algorithm.

Configuratio
n Parameter

Minimu
m Value

Maximu
m Value

Step
Size

C 21 24 2X+1

 0.5 0.9 0.2
 2-3 20 2X+1

 
In total 48 combinations of values for the configuration parameters were used. For each

combination the algorithm is trained and yields hourly forecasts. Once all 48 forecasts were done
their median, for every hour, was regarded as the output of the forecast method. This procedure
was repeated for each day of forecasts. With this approach the configuration and training of the
support vector regression are integrated and the use of spare data just to set the algorithm, with a
grid search approach for example, becomes unnecessary as the only data used are the training
data.

For each day of forecasts the algorithm is trained with the 60 days of data preceding
such day. A day of forecasts for a single PV system is regarded as the period from 6h to 19h and
hourly  values  of  PV  power  generation  are  provided  by  the  forecast  method.  As  for  the
implementation  of  the  support  vector  regression  the  port  for  R  language  of  the  LibSVM
library[21] was used.

For a day of forecasts for each PV system, the data described in section 2.1 of the
nearest grid-point to its location were used as input. Namely, to forecast the PV power generation
of a system at a given hour, forecasts of air temperature, relative humidity, cloudiness in 3 levels
and  the  horizontal  extraterrestrial  insolation  for  such  hour  were  used  with  the  values  of
temperature, relative humidity and extraterrestrial insolation of the preceding hour. Furthermore,
each PV system had its power generation forecasted by a support vector regression algorithm
trained  with  the  PV system data  as  showed  in  Fig.  4.  Finally,  the  regional  value  is  easily
calculated adding the forecasts of power of each PV system. 

Some considerations should be done about this forecast method. First, it requires the
monitoring  of  power  generation  of  every  PV  system  in  a  region.  Depending  on  market
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conditions, data aggregators or the PV systems’ owners could do such monitoring although it
may not be a feasible solution in some countries. Second, for thousands of PV systems installed
in a region such method may not scale well depending on how the forecasts are done. If all data
are centralized in one place and then individual forecasts are done, this method may require a
significant computing power to yield solutions in short amount of time. However, if the forecasts
are  done  in  a  decentralized  way  and  just  the  result  is  aggregated,  the  scaling  problem  is
attenuated. 

In spite of these disadvantages, there is not any physical or technological impossibility
to implement such method and if in some places individual PV systems’ monitoring is already
done,  for maintenance of fault  detection for example,  it  could be an option for the regional
forecasting. The stand-alone performance of this method for 5 regions in Japan including Kanto
and Chubu was studied in Fonseca et al [22].

3.2 Method 2 – Based on Stratified Sampling
Another  option  to  forecast  regional  PV power  is  to  use  sampling.  This  method  is

suitable for situations where it is not possible to monitor every single PV system in a region and
where PV power generation is not measured regionally. In this case, it is possible to select a few
PV systems through sampling, to make forecasts of their power generation using support vector
regression  as  showed  in  section  3.1,  and  finally  to  calculate  the  regional  yield  from those
forecasts. In order to that, a method based on stratified sampling regarding installed capacity and
PV system location is proposed in this section.

Before describing the proposed method 2 issues about the sampling are discussed, the

Figure 4 – Method 1 for regional forecasts (using each PV systems’ power generation).
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sampling size and the sampling procedure to calculate the regional forecast. To obtain a suitable
sampling size it was assumed that, for every hour, the mean of the PV power generation of the
systems in the samples, normalized by their capacity, follow a normal distribution. In this case
the sampling size can be calculated according to Eq. 2, as showed in Nelson et al [23].

n=[ t (α /2; ∞) s
d ]

2

(2)

In Eq. 2 is d the error margin for the mean regional PV power provided by the sampling,
t is the t-student distribution, s is the standard deviation of the samples value and n is the sample
size. Using Eq. 2 the sampling size can be determined for a given confidence level as long as s
and d can be estimated. 

For the problem of the hourly regional  PV power generation forecast,  s and  d vary
according to the hour of day, season of year and weather conditions. Therefore, estimates for s
and  d were made so that constant values can be used regardless the hour of the day, and a
reasonably  low  sampling  size  can  be  obtained.  The  value  for  d was  assumed  to  be  0.05
kWh/kWcap, which is approximately the annual root mean square error of regional forecasts of
power reported in literature [24]. Based on knowledge of forecasts of PV systems in Japan, the
value for d was assumed to be 0.15 kWh/kWcap. The use of these values was preliminary assessed
in a previous study [25], yielding good results. Using the proposed values and a confidence level
of  95% the  nominal  sampling  size  achieved  was  39  samples.  Thus,  if  the  sampling  theory
applies,  the  use  of  39 samples  should be enough to represent  the regional  PV power  yield,
regardless the total number of PV systems installed in a region.

Regarding  the  sampling  procedure,  it  was  used  stratified  sampling  of  PV systems
according to their location. In stratified sampling the PV systems are separated in categories or
strata and from each stratum a subset of PV systems is selected. The stratum regarded was the
prefecture where the PV systems are located. The number of samples to be selected from each
prefecture is decided according to the proportion of PV systems of such prefecture related to the
total. Thus, if a prefecture contains 10% of the PV system of the set, 10% of samples will be
retrieved from this prefecture. With stratified sampling the aim is to achieve a balanced set of
samples  that  represent  efficiently  the  total  population.  Applying stratified  sampling  to  the  3
regions and rounding up the number of samples per stratum yielded a sampling size of 41 PV
systems for Kanto and Chubu and 44 PV systems when Kanto and Chubu are regarded as one
region.

Finally, after the samples of each stratum are selected and their corresponding PV power
capacities are calculated a correction factor is applied to each stratum to account also for the
weight  of  their  capacity  in  the  total  installed  capacity  of  the  set.  The  correction  factor  is
determined by Eq. (3).

f i=
Ctpref , i
Ct reg

×
Cstot
Cspref ,i

(3)

In Eq. (3) f is a proportionality correction factor. It is calculated based on total PV power
capacity of a prefecture Ctpref, i, the total PV power capacity of region Ctreg, the PV power capacity
of samples retrieved from such prefecture Cspref, i, and the total PV power capacity of the sample
set Cstot. After f for a prefecture is found it is then applied to the forecasted PV power generation
of the samples retrieved from such prefecture.

Once the sample set is selected and its PV power generation forecasted, Pset
fcst in kWh,

normalized by the set capacity, Cstot in kW, is calculated and an upscaling procedure is done to
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calculate the regional yield, Preg
fcst in kW, as showed in Eq. (4). 

Pfcst
reg ≈

Pfcst
set

Cs tot
×Ct reg (4)

Using this sampling procedure it is possible to obtain the regional forecast of PV for
regions  of  any  size,  any  number  of  PV systems  and  capacity.  In  this  study,  the  sampling
procedure was used to make 1 year of hourly regional forecasts 100 times, each time with a
different random sample, and the annual error distribution of these forecasts was calculated. The
sampling the yielded the median annual forecast error was then selected to represent typical PV
power regional forecasts that can be obtained with this method. 

3.3 Method 3 – Based on Regional PV Power Generation
A third scenario proposed is one where individual power generation data of the PV

systems installed  in  a  region  are  not  available,  but  the  total  regional  yield  of  PV power  is
available. In this case, it is not necessary to make individual forecasts and an algorithm such as
support vector regression can be trained and used to model directly the relation between regional
PV power and weather data. 

The question in this case is about which weather data to use for the forecasts. Average
values characterizing the regional  weather  conditions could be used.  Another  idea is  to  use,
within a region, all local weather data from the geographic locations near to the place where PV
systems are installed or where they are expected to be installed. However, this approach, even for
the few hundred PV systems regarded in this study, would generate a large number of input
variables. Such condition associated with the fact that several of these input variables would be
highly  correlated,  would  cause  difficult  learning  problems  for  the  algorithm,  resulting  in
forecasts with low accuracy.

To  deal  with  these  problems  and  to  make  method  3  feasible  pre-processing  of  the
weather data with principal component analysis, PCA, as showed in Fig.5 is done. With PCA a
linear invertible transformation in a set with n correlated variables is performed to obtain a set of
uncorrelated  variables.  After  that,  the  variables  of  the  new set  are  ordered  according to  the
weight that their variance has in the total variance of the set. Finally, only the few first variables
are selected so that most of the intrinsic information of the original set is retained. The theory
behind PCA can be found in several references such as in Haykin [26]. 

The PCA transformation was done using eigenvalue decomposition of the covariance
matrix of the input data. To find a suitable number of principal components to use as input data
of  the  forecasts,  a  threshold  for  the  cumulative  variance  of  90%  of  total  variance  of  the
transformed  data  set  was  used.  Moreover,  the  procedure  was  applied  sequentially  to  every
forecast day, before training the forecast algorithm. PCA was applied using input data of the
forecast day and of the previous 60 days to obtain a covariance matrix.

With method 3 regional forecasts can be done when there is only regional PV power
generation data. Moreover, only one support vector regression is trained for a day of forecasts.
However, the preprocessing step may require intensive computational resources if not properly
conducted.  For example,  in  large regions  covered by a  weather  forecasts  system with high
resolution and thousands of PV systems installed, it  may be computationally expensive and
ineffective to perform PCA using all data. In this case, a limited number of points with weather
forecasts data can be set so that they describe properly the main characteristics of the locations
in the region where the PV systems are installed. Once this number is set PCA can then be
easily applied. As the sample used involves at most 273 PV systems, this step was not necessary
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and PCA was directly applied. The specific benefits of a PCA based forecast of regional PV
power versus a no-PCA condition was assessed in Fonseca et al [27] and part of the results of
this analysis for Kanto region will be presented in the results section for comparison purposes.

3.4 Method 4 – From Solar Irradiation Forecasts
To characterize a scenario where no PV power data  are  available  a  new method to

forecast regional PV power was devised. This method is based on the assumption that PV power
generation data are not available at all, either on local or regional scale. In this case, PV power
generation forecasts can be obtained from solar irradiation forecasts. Even though PV power
generation data are not required with this  method, it  is  still  necessary to know the installed
capacity of PV systems in a region and their approximated distribution regarding their module
tilt angles and orientations. If such data are available or can be estimated, the regional PV power
generation, Preg

fcst in kWh, can be calculated as showed in Eq. 5 and Eq. 6.

Pfcst
reg ≈

Pcap
reg

H ref

k∑ aiH inc ,i (5)

∑ ai=1 (6)

In Eq. 5 the regional capacity is regarded as the total PV systems capacity, Preg
cap in kW, rated at a

reference incident solar irradiance, Href, equals to 1 kW/m2. In the same equation k is the balance
of system coefficient, and a is the weight given to the forecast of solar irradiation that reaches the
PV modules with a given tilt angle and orientation, Hinc in kWh/m2. For example, if 25% of the
PV systems in the region have modules with a tilt angle of 10o and are facing south, the forecast
of solar irradiation reaching these modules in any given hour is calculated and then multiplied by
a  weight  a of  0.25  to  yield  the  corresponding PV power generation  of  these  modules.  The
procedure then is repeated for all categories of tilt angles and orientation of the PV systems in a

Figure 5 – Regional forecast method 3 (Using Regional PV Power Generation).
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region. With this approach the information about the distribution of tilt angles and orientation of
the modules with the total rated capacity is enough to provide a forecast of regional PV power
generation from the solar irradiation forecasts. Regarding the solar irradiation on tilted plane,
Hinc,  it  was  calculated  from  global  horizontal  solar  irradiation  forecasts  using  the  models
proposed by Perez et al[28] and Erbs et al[29]. 

It should be noted that a distribution of balance of system coefficients,  k, can also be
used if available. However, for simplification purposes  k was kept constant in this study. The
value for k and for the distribution of tilt angles and orientation are in Table 3.

Table 3- Values used for the distribution of PV systems in the 3 regions.
Orientation South
Weight a 1
Tilt angle 100

k 0.8

It was assumed, for all regions, that all PV systems have modules with a tilt angle of
10o, and that all of them are facing south. These assumptions are rough approximations of the
real modules angle and orientation distributions of the PV systems used in the study, Fig. 3A and
3B. However, in a real case application it may be difficult to have precise information about the
modules. Therefore, if method 4 is robust enough to work with rough estimates, its use can be
better justified.

Regarding the forecasts of global horizontal solar irradiation, they can be obtained from
meteorological service providers or directly forecasted. In this study, they were obtained from
the forecasts of basic weather variables using a procedure similar to the one described in section
3.1 for individual PV power systems. An hourly forecast of global horizontal solar irradiation
was done with support vector regression for every point of the grid of the GPV-MSM system
covering the 3 regions analyzed. For each point in the grid, a support vector regression algorithm
was trained with measured past and forecasted data of the nearest meteorological station. Once
forecasts of global horizontal solar irradiation are done, the regional value is regarded as the
mean value of the forecasts for all the point in the grid of the GPV-MSM covering the target
region.  This  value  is  then  converted  to  the  equivalent  amount  reaching  the  PV  modules,
according to the tilt  angle and orientations in Table 3, and then inserted in Eq. 5 with their
respective weights a. 

4. Error Parameters
Three error parameters were regarded, the normalized root mean squared error, nRMSE

in kWh/kWhavg, the normalized mean absolute error, nMAE in kWh/kWhavg, and the skill score,
SS. Only the period between 6h to 19h of each day were considered in the calculations. The
nRMSE and nMAE are measures normalized by the average regional PV power generation during
the evaluation period, 2009. They are expressed in Eq. 7 and Eq.8. 

nRMSE=√1N∑
j=1

N

❑ (7)
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nMAE=1N∑
j=1

N |P fcst , j
reg − Pmsd , j

reg |
Pmsd , avg
reg

(8)

The skill score SS is based on a ratio of mean squared errors, and it is an indicative of
the improvement achieved with the forecast methods when compared with a reference method.
The reference used for the skill score calculations were the forecasts obtained with persistence as
described in section 3. 

ss=1−
1N∑

j=1

N

(P fcst , j
reg − Pmsd , j

reg )
2

1N∑
j=1

N

(Pref , j
reg −Pmsd , j

reg
)
2

(9)

In each hour  j in Eq 7, Eq. 8 and Eq. 9, Preg
msd  is the regional PV power measured, in

kWh. In Eq. 7 and Eq.8 Preg
msd,avg is the annual mean PV power generation measured, in kWh. In

Eq. 9 Preg
ref is the regional PV power generation forecasted with persistence. 
In recent studies the use of error measures based on the mean square errors as the main

error  parameter  in  the  analysis  of  forecasts  of  weather  related  phenomena  have  been
questioned[30] and  even  different  metrics  have  been  proposed[31].  Therefore,  although  the
nRMSE and skill score will be presented most of the analyses will focus on the nMAE.

5. Results
In Fig. 6 are the annual skill scores obtained with the 4 methods to forecast regional PV

power in the 3 regions studied. All forecast methods yielded high skill scores, which indicate that
they  provide  forecasts  significantly  better  than  the  forecasts  that  can  be  achieved  with
persistence. 

Figure 6. Annual skill score obtained with each regional PV power forecast method. 

Comparing the 4 methods in the regions with different sizes, for Kanto they performed
similarly and their forecasts had skill scores around 0.8. However, for Chubu and the region
comprising Chubu and Kanto, Method 1 and Method 2, which are based on single systems’ PV
power forecasts and sampling, yielded better results than Method 3 and Method 4. Looking from
the area size point of view, increasing the area from Kanto to Chubu improved the skill scores of
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the forecasts obtained with Method 1 and Method 2. For Method 3 and Method 4 the same did
not happen as it can be noted in the percentage variation presented in Table 4. 

Table 4- Variation of the skill score according to the area size and forecast method.
% Variation From 
Kanto to

Method 1 Method 2 Method 3 Method 4

Chubu 3.4% 3.8% 0.6% -2.1%
Chubu and Kanto 2.8% 2.6% 0.5% -2.2%

The percentage variations in Table 4 show that the skill scores obtained with Method 1
and Method 2 improved more than 3% going from Kanto region to Chubu region, but it did not
reach higher values for the largest area (Chubu and Kanto). On the other hand, Method 3 was the
most stable one yielding a maximum skill score percentage variation of 0.6% regardless the area.
Finally, Method 4 did not scale up well as its related skill score became continuously lower with
the increase of the area size. 

The skill  scores provided a comparison between the proposed forecast  methods and
persistence. To focus on the differences between the performances of the 4 methods, their annual
nRMSE and nMAE in Fig. 7 and Fig. 8 are presented. The same error parameters calculated for
the forecasts obtained with persistence are also presented.

Figure 7 Annual nRMSE obtained with each regional PV power forecast method. 

The nRMSE of the regional forecasts decreased with the increase of the region size, for
Method 3 and Method 4.  Nevertheless,  the lowest  values  were  reached with Method 1 and
Method 2 at Chubu. Moreover, Method 3 and Method 4 were less sensitive to the area size than
Method 1 and Method 2. These two methods provided a nRMSE 23% lower comparing Chubu
with Kanto, whereas for Method 3 and Method 4 the variation was 17% and 12%. 
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Figure 8. Annual nMAE obtained with each regional PV power forecast method. 

The behavior of the nMAE was similar to the one observed with the nRMSE. In this case
however, the weaker effect of the region size in the quality of the forecasts of Method 3 and 
Method 4 it is even clearer. Regardless the error parameter used or the region size, annually, 
Method 1 yielded the lowest errors. Method 2 provided forecast errors slightly higher than the 
ones obtained with Method 1, being the second best method. 

The difference between the forecast errors of the forecast methods with the area size can
also be noted in Table 5, where the percentage variation between the forecast method with the 
lowest and highest nMAE are showed. In this case the difference between the best and worst 
forecast method can reach almost 30% depending on the region size. 

Table 5. Highest variation of the nMAE according to the area size and the 4 forecast methods.
Kanto Chubu Kanto and

Chubu
Method with lowest 
nMAE

Method
1

Method
1

Method 1

Method with highest 
nMAE

Method
3

Method
4

Method 4

Maximum % Variation* 6% 28% 23.7%
*Variation between the 4 methods (persistence not included) using the lowest forecast error of each region as reference.

Analyzing the annual results, a few trends are noted. First, Method 1, based on local PV
power forecasts, had the best performance regardless the error parameter or area size. Method 2,
based on sampling,  approximated well  the results  obtained with Method 1 without requiring
forecasts for all PV systems in a region. In spite the fact that method 1 had the best performance,
its lowest annual errors were reached in Chubu, not the largest region regarded. Chubu, besides
its  large size,  contains  distinct  weather  conditions,  providing a  strong smoothing effect.  For
Kanto, with smaller area and homogeneous weather condition, the smoothing effect was weaker.
Therefore, methods such as Method 1 and Method 2, which can account better for the smoothing
effect than Method 3 and Method 4, presented a stronger performance in Chubu (an annual error
reduction of 23% from Kanto to Chubu). 

To verify seasonal variations, Fig. 9A, Fig. 9B and Fig. 9C contain the monthly nMAE
obtained with Method 1 (values on the right axis) and the corresponding percentage variations
(values on the left axis) that the other forecast methods presented compared with the values of
Method 1. Looking at the monthly results, Method 1 also has the best performance most of the
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time. Only a few exceptions occurred such as in 3 months in Kanto, Fig. 9A, or 3 months in
Chubu, Fig. 9(b).

Looking  to  the  different  regions,  Kanto  had  its  PV power  forecasted  with  similar
accuracy by all methods most of the time. Nevertheless, Method 4 presented a particularly poor
performance on January. In Chubu the performance of method 4 was even poorer in other winter
months and also in April. This behavior is somewhat unexpected if one considers that Method 4
provides regional PV power forecasts based on local forecasts of solar irradiation and thus it
should also account for the smoothing effect, this time on the solar irradiation. However, one
should  also  consider  some  factors  that,  on  specific  conditions,  make  the  forecasts  of  solar
irradiation to be decoupled from forecasts  of PV power.  First,  snow accumulated on the PV
panes does not affect the forecasts of solar irradiation, thus they will yield high overestimations
on PV power forecasts not only on the day that snow falls but also on the following days. On the
other hand if PV power is forecasted directly from PV panel past output, past few days of low
PV power generation will enter in the training data and the forecast algorithm will consequently
reduce its PV power generation for the following days. One should note that this characteristic
does not act in favor of lower errors when snow is not accumulated in the panels, but generally it
yielded lower errors than the error caused when snow is not regarded at all as in the case of solar
radiation forecasts. The second factor is related with installation conditions and efficiencies of
the  PV  panels.  These  conditions  are  only  partially  regarded  in  Method  4.  Therefore,  the
smoothing effect will not be as high as the one provided by Method 1. For example, diverse
shadow conditions of PV panels installed in different places will affect their power generation
and this effect will enter in the training data of local PV power forecasts used by Method 1. The
same does not happen with Method 4. The better expression by Method 1 of the smoothing effect
in the regional PV power in Chubu can explain it better performance.
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Figure 9. Monthly % variation of the nMAE of Methods 2, Method 3 and Method 4 compared
with Method 1 for Kanto (A), Chubu (B), Kanto and Chubu (C).

Comparing the regional forecasts of Chubu and Kanto in Fig. 9A and Fig. 9B, it is also
noted that for Kanto the effect of the rain season in summer months affected the accuracy of the
forecast  errors  in  July.  For  Chubu  however  with  its  larger  area,  different  localized  weather
conditions and stronger smoothing effect, the rain season is not uniform throughout the region.
Thus, stronger local forecast errors did not happened at the same time preventing the occurrence
of the peak detected in July in Fig. 9A, and yielding monthly regional forecast error more stable
than the ones of Kanto. 

As a general trend, it is also noted that the regional forecast error for the area Chubu +
Kanto was not significantly better the ones of Chubu. This results from the fact that there are
more PV systems in Kanto than in Chubu in the set studied. Therefore joining the two areas
caused more than half of the systems to be concentrated in one specific area. This concentration
increased disproportionally the weight that the forecast errors for the PV systems in Kanto have
on the total regional forecast error, preventing a better smoothing effect. 

To further stress the difference between the performances of the forecast methods of
regional PV power, Fig. 10 contains the error distributions for 1 year of regional forecasts with
the 4 methods and for the 3 regions studied. 
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Figure 10 – Hourly error distribution in 3 regions and with 4 forecast methods (2009).  

Although the previous results showed that for Kanto the annual error difference between
the forecast methods is small, Fig. 10A shows that Method 1 and Method 2 provided forecasts
with lowest biases. Method 3 and Method 4 often yielded overestimated forecasts, with positive
bias. For Method 4, in the regions in Fig. 10B and Fig.10C the bias became stronger, whereas for
Method 3 the bias increased but at a lower rate. Regarding the error values, with Method 1 and
Method 2 around 40% of all regional forecast errors were between -0.05 kWh/kWhavg and 0.05
kWh/kWhavg and  around  65%  of  all  errors  were  between  -0.15  kWh/kWhavg and  0.15
kWh/kWhavg. Still on Method 1 and Method 2, overestimations between 0.15 kWh/kWhavg and
0.2  kWh/kWhavg comprised  near  to  10%  of  all  total  errors,  being  more  common  than
underestimations in the same range of values. 

Analyzing the performance of Method 4 on the different  regions,  it  provided lower
errors at specific ranges when going from Kanto to Chubu, Fig. 10A and Fig. 10B. Namely the
errors  between 0.15 kWh/kWhavg and 0.2 kWh/kWhavg corresponded to  15% of  all  errors  in
Kanto but only to 11% of the errors in Chubu. Furthermore, the share of the error range between
0.05 kWh/kWhavg and  0.10  kWh/kWhavg increased  from 6% in  Kanto  to  9% in  Chubu also
indicating  an  improved  performance  and  sensitiveness  to  the  smoothing  effect  strength.
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Nevertheless, the improvement noticed with Method 1 when going from Kanto to Chubu was
stronger. The range of lower errors, between -0.025 to 0.025, increased from 27% to 30% of all
errors going from Kanto to Chubu, whereas with Method 4 the share of the same range of errors
actually decreased from 21% to 16% of all errors. 

The last results presented are in Fig. 11A, Fig. 11B and Fig. 11C, and they contain the
annual nMAE per hour of day with the different forecast methods and in the 3 regions studied. In
Kanto Method 3 presented the highest errors at peak hours (11h to 13h). However, in the other 2
regions Method 4 had the worst performance. Where with Method 1, Method 2 and Method 3 the
forecast errors in peak hours fall sharply when going from Kanto to Chubu, with Method 4 they
remain almost constant causing the difference in the annual results presented in Fig. 8. Also,
comparing  Kanto  with  Chubu,  the  forecast  errors  in  peak  hours  vary  25% with  Method  1,
reflecting the stronger smoothing effect that occurs in Chubu. 

Figure 11. Annual nMAE per hour of day in the 3 regions with yielded by the 4 forecast
methods of regional PV power.

6. Conclusions
The objective of this study was to propose and to evaluate different methods for one-

day-ahead forecasts of regional PV power generation. Each forecast method assumed a different
scenario regarding data available to make the forecasts. Two new methods to forecast regional
PV  power  were  proposed  characterizing  4  scenarios  regarding  availability  of  data  for  the
forecast. The methods were evaluated in 2 regions of different sizes, number of PV systems, and
characteristics. A third area including both regions was also regarded. The results showed that for
an area with similar weather conditions and small snow fall as Kanto, all methods can yield
forecasts with the same level of accuracy. However, for Chubu, where a strong smoothing effect
happens, Method 1, based on single PV systems forecasts, and Method 2, based on sampling,
yielded the best results. Method 3 is based on past regional PV power data and preprocessing of
weather variables. Therefore, it is not able to directly account for the error canceling process that
occurs with the smoothing effect. Method 4, considered the smoothing effect, but the one that
occurs on the forecasts of solar irradiation, presumably weaker than the one that occurs with
regional PV power. Furthermore a series of assumptions have to be made, such as the solar
irradiation in a tilt plane, the distribution of PV systems’ modules tilt  angles, orientation and
balance of system coefficients. With such assumptions Method 4 was not able to incorporate well
the  smoothing effect  that  occurs  in  Chubu,  yielding  annual  error  values  similar  to  the  ones
obtained in Kanto. 

Based on the results, Method 1 or Method 2 were the best methods to provide regional
forecasts of PV power. If monitoring of all single PV systems installed in a region is not possible
the proposed forecast method based on stratified sampling, geographic information and installed
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capacity,  Method 2,  is  an  valid  option.  Regarding the  other  new forecast  method proposed,
Method 4, it should not be completely discarded as an option. As showed by Lorenz et al[12],
detailed representation of PV systems installed in a region associated with forecasts of irradiance
are able to provide good forecasts of regional PV power generation. Besides, Method 4 may be
the only option in places where monitoring of PV system power generation is not done. In this
case better information regarding the distribution of systems’ orientation and tilt angles, as well
as the application of the method in smaller areas may yield better results. Finally, in the case of
Method  3,  a  better  application  of  preprocessing  of  input  data  of  the  forecasts  also  has  the
potential to yield better forecasts. Although, it should be difficult to obtain the same level of low
regional forecast error achieved with the smoothing effect in large regions with different weather
conditions, just improving the preprocessing of the input data.

Regarding the regions studied, Chubu is the largest geopolitical region in Japan and it
was possible to forecast regional PV power forecast in it with accuracy 25% higher than the one
achieved in Kanto. Annual error values for the regional forecasts were 0.15 kWh/kWhavg in the
best case. Thus, this value should provide an indication of the lowest regional forecast errors that
can currently be achieved in the geopolitical regions in Japan. Regardless the focus of the study
on data of Japan, the new methods proposed can be easily applied to other locations, as long as
there are similar input-output data. 

In spite of the differences found between the accuracy of the forecast methods, each one
has potential improvement points. Furthermore, one of the methods can be applied in a situation
where another  cannot  be,  providing options to  stakeholders so that  they can obtain regional
forecasts of PV power according to their operation conditions. Additionally, improvements to
yield better forecast error should be investigated as large regional errors are still occurring as
showed  in  Fig.  9.  Finally,  the  calculation  of  the  reliability  of  the  forecasts  also  provides
important information about their quality and it will be addressed in future studies. 
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