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Abstract

Machine learning has gained in popularity over recent years. It shows great power

in many real-world problems, including Computer Vision, Natural Language Pro-

cessing and Speech Recognition. However, a clear theoretical mechanism is still

lacked behind many machine learning algorithms, such as Deep Learning. Good

theoretical analysis can not only explain the current success of machine learning,

but also reveal new approaches to future advancements.

In last few years, more and more physicists contributed good works that provided

novel insights and philosophy for machine learning communities. Due to two

reasons, we believe physical approaches can be very promising. First, we think

machine learning share some similar theoretical mechanism with physical theories,

particularly quantum physics and statistical physics. We may employ physical

languages to study machine learning models in some physical frameworks. Second,

real-world problems and information itself must obey some fundamental laws,

which are often physical laws for our universe. Good physical prior knowledge

which may be helpful to reduce model complexity and improve generalization.

The physical perspective deserve more attention.

In this thesis, we review a few related works on the physics based approach and

related traditional machine learning. It helps us understand how physics may

interact with machine learning. We propose quantum interpretations for ma-

chine learning and a class of original physics-inspired machine learning algorithms,

named Quantum-Inspired Forest. Both theoretical proof and empirical analysis

are presented in details. The success of quantum-inspired machine learning en-

courages us to pay attention to multiple physical viewpoints. Even without solid

theoretical analysis, important prior knowledge and heuristics may be obtained

from physical models. The proposed algorithm is an example that illustrates how

to combine physics and machine learning together. We in particular discuss a phys-

ical perspective on machine learning. We hope our physical analysis on machine

learning would inspire more novel works in near future.

Keyword: Machine Learning, Ensemble Learning, Quantum Physics, Statistical

Physics
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Chapter 1

Introduction

Machine learning not only has gained in popularity over recent years, but also

has fundamentally changed the way humans interact with data. Benefitted from

increasing data size and computational resources, a lot of promising works have

emerged in recent years. On the one hand, a lot of works have been applied on

real-world problems. Some of works even outperform humans in specific tasks.

For example, [Taigman et al., 2014] first achieved human-level face recognition;

[Mnih et al., 2015] performed human-level control through deep reinforcement

learning; AlphaGo beat the famous Go world champion Lee Sedol in 2016 [Silver

et al., 2016]. On the other hand, these advancements also have deepen our under-

standing about data and intelligence. Machine learning is a science that employ

”experiences” to improve learning systems based on computation. And data is

exactly the experience for computers. Intelligent life like human can learn laws of

nature from rich experience, and take action based on the laws. And a good ma-

chine learning system also have similar characteristics. Machine learning systems

possesses the ability to learn models from data. In our current understanding, the

set of abilities is corresponding to machine learning algorithms. Driven by big da-

ta and large computational resources, researchers have proposed various machine

learning algorithms. According to different tasks or ”actions”, we have different

types of machine learning algorithms, mainly including supervised learning and

unsupervised learning. Both regression and classification are supervised learning,

that needs to learn a mapping from inputs ~x to target variables ~y. Regression

has real-valued target variables, while classification categorical target variables.

Unsupervised learning points a class of learning that tries to learn ”interesting

patterns” in the data without any target variables.

1



Chapter 1. Introduction 1.0 Chapter 1 Introduction

Applications of machine learning range from Computer Vision to Natural Lan-

guage Processing. However, a clear theoretical mechanism is still lacked behind

many machine learning algorithms, such as Deep Learning[LeCun et al., 2015].

It is not strange that Deep Neural Networks (DNN) have strong representation

power with so many model parameters. But it is very hard to understand the

unreasonably wonderful generalization ability of DNN. Good theoretical analysis

can not only explain the current success of machine learning, but also reveal new

approaches to future advancements.

In last few years, more and more physicists contributed good works that provided

novel insights and philosophy different from traditional machine learning commu-

nities. Due to two reasons, we believe physics-inspired machine learning can be

very promising. First, we think machine learning share some similar theoretical

mechanism with physical theories, particularly quantum physics and statistical

physics. We may employ physical languages to study machine learning models in

some physical framework. Second, real-world problems must obey some funda-

mental laws, which are exactly physical laws for our universe. Current machine

learning approach almost explores all mathematically possible hypothesis space,

but ignore important physical prior knowledge. Physical prior knowledge may be

helpful to reduce model complexity and improve model generalization abilities. We

consider theoretical connections and physical prior knowledge as two main way to

achieve physics-inspired machine learning.

And among various physics-inspired approaches, the quantum theoretical approach

has attracted most attention, while the statistical physical approach is another one.

One reason is that the natural laws are quantum mechanical at the scales of mod-

ern information processing technology, while the more familiar classical physics

dominates at the human scale. And information itself not only has natural con-

nections with statistical physics from a information theoretical viewpoint, but also

plays a core role in quantum mechanics as quantum information. Quantum theory

provides us new tools and insights toward information. Quantum machine learn-

ing and quantum-inspired machine learning are two confusing concepts. Generally

speaking, Quantum machine learning refers to machine learning algorithms that

need be implemented on quantum machines. The common quantum machines are

general-purpose quantum computers that perform real quantum computing using

qubits. But a quantum machine doesn’t have to be a general-purpose quantum

computer. Actually any machines that employ some quantum effects to perform

2



Chapter 1. Introduction 1.1 Thesis Overview

computing beyond classical computing may be called quantum machines [Boixo

et al., 2014]. In last decade, a lot of works about quantum machine learning have

been reported [Schuld et al., 2015, Wittek, 2014]. Quantum machine learning has

become a promising interdisciplinary research field. Quantum-inspired machine

learning differs from Quantum Machine Learning in several aspects. quantum-

inspired machine learning means machine learning algorithms that involve in some

quantum theoretical elements but don’t require a quantum machine for implement-

ing it. Quantum physics and machine learning can be deeply interconnected in

theoretical analysis. Several works of algorithms utilizing Quantum physics are

introduced in Chapter 2 and Chapter 5.

The success of quantum-inspired machine learning encourages us to pay attention

multiple physical viewpoints. Good theoretical works may deeply inovate machine

learning. But even without solid theoretical analysis, important prior knowledge

and heuristics may be obtained from physical models. We present several interest-

ing examples that illustrates how to combine physics models and machine learning

models together. We hope these physical analysis would inspired more novel works

in near future.

1.1 Thesis Overview

The thesis is organized as follows. In Chapter 2, we review a few recent work-

s on ensemble learning and quantum-inspired machine learning. In particular,

we also introduce necessary elements of quantum physics and take the famous

Quantum Annealing as an example for quantum-inspired models. In Chapter 3,

we propose quantum interpretations for machine learning and a class of original

physics-inspired machine learning algorithms, named Quantum-Inspired Regres-

sion Forest. Both theoretical proof and empirical analysis are presented in details.

In Chapter 4, we further develop Quantum-Inspired Classification Forest inspired

by similar heuristics. A empirical analysis is studied. Chapter 5 is a relatively

isolated chapter but provide highly rich knowledge and insights. No specific al-

gorithm is presented. The meaning lies in the physical perspective on machine

learning. Chapter 6 is a summary of the thesis. We present the main conclusions

in this chapter.

3



Chapter 2

Background

2.1 Ensemble Learning

The goal of ensemble learning [Zhou, 2012] is to combine the predictions of multiple

base learners to get more accurate aggregate predictions. Ensemble learning al-

gorithms frequently rank top in many data mining competitions, and consistently

outperform single learners, such as Support Vector Machines [Cortes and Vapnik,

1995]. This approach has proven to be a powerful method in practical applica-

tions, especially for those general-purpose tasks. The ensemble method generally

is favored in terms of increasing robustness and accuracy. Since the theoretical

analysis of ensemble models, particularly tree ensembles, has been carefully stud-

ied, we are able to theoretically analyze novel ensemble algorithms besides the

empirical analysis. Many researchers have contributed to a significant amount of

good works in last decades.

Researchers have known that ensemble diversity and the accuracy of base learn-

ers are two main factors deciding the performance of ensemble models [Zhou,

2012]. We usually inject randomness into ensemble models aiming at generat-

ing diversified base learners and ensemble strategies. Unfortunately, the random-

ness approach generally reduced the accuracy of base learners. It’s not surprising

that randomness may lead some slight deviation from optimal base learners. Re-

searchers find it quite difficult to improve ensemble diversity without damaging

the accuracy of base learners. How to deal with the trade-off between diversity

and accuracy becomes one of core challenges in ensemble learning.

4



Chapter 2. Background 2.1 Ensemble Learning

Figure 2.1: The structure of CART

2.1.1 Tree and Forest

Decision Tree is an important type of algorithm for predictive modeling machine

learning. It has a more modern name, Classification And Regression Tree (CART)

[Breiman, 1984]. The classical decision tree algorithms have been studied for

decades and modern tree ensembles like Random Forest [Breiman, 2001] are among

the most powerful techniques available.

Decision tree consists of a set of tree-structured decision tests working in a divide-

and-conquer way. The tree are obtained by recursively partitioning the data space

and fitting another simple tree model within each partition. The recursively con-

structed model finally has a typical tree structure, seen in 2.1. Decision trees used

in data mining are of two main types. Classification tree is when the predicted

variable is the class or category. Regression tree analysis is when the predicted

predicted variable can be considered a real number, such as the price of stocks.

Algorithms for constructing decision trees usually work top-down. A typical tree

chooses a variable at each step that best splits the set of items. And we may use

different metrics for measuring the quality of the split according to requirements

of tasks. The key part of a decision tree algorithm is exactly how to select the

splits properly. Selection strategies that can balance accuracy and diversity well

is usually considered as excellent ones.

A key advantage of the tree structure is its scalable applicability to any high-

dimensional data. The main difference among different kinds of Decision Trees

5



Chapter 2. Background 2.1 Ensemble Learning

Algorithm 1: Basic Steps for Decision Tree Construction

1 Start at the root node.
2 For each ~xk, find the set Fk that minimizes the sum of the node impurities in the

two child nodes and choose the split x? ∈ F ? that gives the minimum overall ~xk
and Fk.

3 If a stopping criterion is reached, exit. Otherwise, apply step 2 to each child
node in a turn.

lies in the measure of node impurities. For regression trees, mean square errors is

used for measuring information gain. The first published classification tree THAID

[Messenger and Mandell, 1972] measures node impurities based on the distribution

of the target variables in the node. In more modern tree algorithms, two criterions

are commonly used for the information gain in splitting. One is Gini index, the

other is entropy. They are defined as follows, respectively,

Gini(E) = 1−
c∑
j=1

p2j , (2.1)

H(E) = −
c∑
j=1

pj log pj. (2.2)

Gini measurement is the probability of a random sample being classified correctly

if we randomly pick a label according to the distribution in a branch. Entropy is a

measurement of information that measures how you reduce the uncertainty about

the label. However, in practice both Gini index and Entropy typically perform

pretty much same. It is often not worth spending much time on evaluating trees

using different impurity measurements in practice.

Decision Trees are very fast but weak machine learning algorithms. We usually

combine the predictions of multiple trees to get more accurate aggregate predic-

tions in practice. And the tree ensemble methods are also called forests. Re-

searchers have proposed multiple good ensemble algorithms. One of most classical

ensemble method is Bagging (Bootstrap AGGregatING) [Breiman, 1996], whose

two key ingredients are bootstrap and aggregation. Given a standard training set

D of size n, Bagging generates T new training sets Di, each of size nprime, by

sampling from D uniformly and with replacement. By sampling with replacemen-

t, some samples may be repeated in each Di. Statistically, a sample is likely to

appear at least once in the sample with a probability of 64%. Random Subspace

[Ho, 1998] is another classical ensemble method, also named Attribute Bugging

6



Chapter 2. Background 2.2 Ensemble Learning

or Feature Bagging. The random subspace method is similar to bagging except

that the features are randomly sampled, with or without replacement, for base

each learner. In each pass, we randomly choose some dimensions from the given

feature space, and all samples are projected to this subspace. And a decision tree

is constructed using the projected training samples. Finally, we obtain many trees

constructed in randomly chosen subspaces.

Algorithm 2: Random Forest

1 function RandomForest (S, F, T )
Input : A training set S = (x1, y1), ..., (xn, yn), features F, and the forest T
Output: Random Forest H

2 H ← ∅
3 for i← 1 to T do
4 Si ← a bootstrap sample from S
5 F i ← a subset from F
6 hi ← TreeLearn(Si, F i)
7 H ← H ∪ {hi}
8 return H

Random Forest [Breiman, 2001] is a representative of the state-of-the-art tree

ensemble algorithm. Random Forest combines Bagging and Random Subspace

together, and then improve the performance significantly. Random Forest has

several desirable characteristics as Breiman describes:

(1) Its accuracy is as good as Adaboost and sometimes better.

(2) It’s relatively robust to outliers and noise.

(3) It’s faster than bagging or boosting.

(4) It gives useful internal estimates of error, strength, correlation and variable

importance.

(5) It’s simple and easily parallelized.

These characteristics make Random Forest a powerful and fast algorithm widely

used in many data competitions. We can find recent enhancements of Random

Forest in [Fawagreh et al., 2014], including perfect random tree ensembles [Cutler

and Zhao, 2001], extremely random trees [Geurts et al., 2006], and completely

random decision trees [Fan et al., 2006, Liu et al., 2005]. Improving strength

of individual trees and decreasing the correlation between trees are main factors

in reducing the Random Forest error rate [Breiman, 2001]. It means we need

strong trees, but the trees need become strong in different ways. Our proposed

Quantum-Inspired Forest aims at improve individual accuracies and decreasing

the correlation between trees at same time.

7



Chapter 2. Background 2.2 Quantum Mechanics

2.2 Quantum Mechanics

Quantum mechanics, also called quantum theory, usually refers to a fundamen-

tal physical theory of nature at small scales and low energy levels of atoms and

subatomic particles. And quantum mechanics further led us to discover the field

of quantum computation and quantum information [Nielsen and Chuang, 2010].

This forms a bridge between physical world and information, which many people

thought are quite distinct concepts before.

Quantum computing is of course an important bridge between quantum mechanics

and machine learning. In last decade, it has become a promising interdisciplinary

research filed, named quantum machine learning. Generally speaking, quantum

machine learning refers to machine learning algorithms that need be implement-

ed on quantum machines. The common quantum machines are general-purpose

quantum computers that perform real quantum computing using qubits. But a

quantum machine doesn’t have to be a general-purpose quantum computer. Ac-

tually any machines that employ some quantum effects to perform computing

beyond classical computing may be called quantum machines [Boixo et al., 2014].

In last decade, a lot of works about quantum machine learning have been reported

[Schuld et al., 2015, Wittek, 2014]. We discuss this topic, particularly quantum

annealers, in 2.3.

In our opinion, quantum mechanics is more than a kind of physical theory. It

has a deeper meaning than its physical part. Quantum mechanics actually is

a mathematical framework that can used for construction of physical theories.

Some advanced physical theories, such as quantum electrodynamics, is built on

the framework of quantum theory, buy they also have elements not determined by

quantum theory itself. They are developed within the mathematical framework,

but involve in new rules. This is the philosophy that we could also apply to

machine learning.

Specifically, quantum theory is naturally a theory of probability [Rédei and Sum-

mers, 2007] due to the probabilistic essence of nature. The mathematical frame-

work of quantum mechanics provides a set of useful tools for probabilistic de-

scriptions which we could apply to general fields other than physics. This is a

approach that may connect quantum mechanics and machine learning directly.

How can quantum probability theory benefit machine learning is an interesting

question.

8



Chapter 2. Background 2.3 Quantum Annealing

Might quantum theory revolutionize the whole probabilistic framework of ma-

chine learning like how it revolutionized physics last century? Some researchers

have proposed their thoughts. For example, [Melucci and van Rijsbergen, 2011]

proposed a quantum theoretical framework for information retrieval.

2.2.1 Density Matrices

The density matrix is the main tool we apply in Quantum-Inspired Forest. The

formalism of the density matrix or operators was first introduced by [Von Neuman-

n, 1927] independently. [Nielsen and Chuang, 2010] Section 2.7 discusses density

matrix and operators in detail. We briefly introduce the density matrix here. A

density matrix are a matrix that describes quantum systems in a mixed state, an

ensemble of several pure states. In quantum mechanics, physicists often denote a

pure state as a state vector |ψ〉. However, there exist mixed states, which cannot

be written as a state vector. A mixed quantum state corresponds to a proba-

bilistic mixture of pure states, also called a quantum ensemble. [Von Neumann,

1927] proposed the powerful tool that can describe both pure states and mixed

states well in one frame. We show how to introduce density matrix and quantum

operators into machine learning in this section.

2.3 Quantum Annealing

Quantum Annealing(QA) is an optimization method that employs quantum effects

to optimize the cost function. QA escapes local minima by quantum tunneling

through barriers separating local minima. QA can be implemented by Quantum

Monte Carlo Simulation Method on classical computers, which is a well discussed

topic. Quantum devices that implement QA directly have also become anoth-

er important direction. As quantum devices that employs quantum effects have

the potential of quantum speedup, quantum annealers like D-wave Systems have

attracted most attention recently. However, the quantum speedup of Quantum

Annealing is still an open question. As a famous algorithm inspired by quantum

mechanics, QA has showed favorable performance in previous works. QA is a very

good example showing how we could employ physical models to invent new algo-

rithms. As QA plays an important role in both quantum and quantum-inspired

9



Chapter 2. Background 2.3 Quantum Annealing

machine learning, we carefully introduce its background, principle, and comparison

with classical simulated annealing in this section.

2.3.1 Background of Quantum Annealing

We call minimizing or maximizing an objective function as optimization problem-

s. Optimization problems are common and important in many fields, including

machine learning. Training a machine learning model requires minimizing its cost

function. Researchers have proposed the convex optimization method for most

optimization problems, but a class of nonconvex optimization problems, such as

Combinatorial Optimization, are still too hard to solve efficiently. Finding the

ground state of a Ising spin glasses is a typical combinatorial optimization prob-

lem in quantum physics.

Simulated annealing (SA), another physics-inspired algorithm, was first proposed

as a general probabilistic method for optimization problems in [Kirkpatrick et al.,

1983]. Actually it is said thermal annealing is likely to the oldest optimization

method in human history. By first heating metal and let it cool down slowly,

we can make the metal materials relieve internal stresses and reach a low energy

state. Simulated annealing is easy to implement and effective in solving most

combinatorial problems. Simulated annealing, also known as classical annealing

(CA), simulates thermal annealing process to allow the system to escape from

local minima of the cost function so that the system reaches the global minimum

under an appropriate annealing schedule, controlled by the rate of decrease of

temperature.

Researchers have widely applied SA to various problems, particularly those non-

convex optimization problems, even if SA lacks a theoretically guaranteed speed

of convergence. Comprehensive studies [Johnson et al., 1992, 1989, 1991] dis-

cuss the application of simulated annealing to four problems: the traveling sales

man(TSP), graph partitioning problem (GPP), graph coloring problem (GCP)and

number partitioning problem (NPP). Other typical problems include job schedul-

ing, circuit minimization, and chain optimization which are all non-deterministic

polynomially (NP) hard problems. Bohachevsky and his partners proposed a

generalized simulated annealing framework for continuous optimization problems

[Bohachevsky et al., 1986]. Overall, simulated annealing is a generally applicable,

efficient, and easy-to-implement probabilistic approximation algorithm to produce
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good solutions for combinatorial optimization problems. And it requires little

domain knowledge on problems and cost functions.

Quantum annealing is a quantum-mechanical paradigm to solve combinatorial

optimization problems and was proposed by Kadowaki and Nishimori in 1998

[Kadowaki and Nishimori, 1998]. Some other pioneering works also made impor-

tant contributions, theoretically by [Amara and Kuhar, 1993, Farhi et al., 2001,

Finnila et al., 1994, Santoro et al., 2002], experimentally by [Brooke et al., 1999].

Quantum annealing introduces quantum fluctuations into annealing process of

optimization problems, aiming at faster convergence to the optimal state. Quan-

tum annealing can be simulated on conventional computers using Quantum Monte

Carlo Method. But the most natural way of implementing QA is directly using

a quantum mechanical system. Such quantum mechanical systems are also called

quantum annealers. D-wave System is the first commercial quantum annealer.

Recently, researchers have made a few experimental progress on D-Wave Systems.

2.3.2 Principle of Quantum Annealing

In this subsection, we introduce the fundamental principle of quantum annealing

[Das and Chakrabarti, 2008]. We can see the basic difference of principles between

simulated thermal annealing and quantum annealing in 2.2.

We first consider the simple Ising model with transverse fields:

H(t) = −
∑
ij

JijS
z
i S

z
j − Γ(t)

∑
i

Sxi (2.3)

= Hc + Γ(t)Hkin (2.4)

The artificial quantum kinetic term Γ(t)Hkin causes quantum tunneling between

various classical states. And we could let the parameter Γ decrease gradually from

a large value to zero, the Hamiltonian evolves into the optimal state, namely the

ground state of H0. Initially Γ is kept high so that the quantum fluctuations term

Hkin dominates and the ground state is trivially a uniform superposition of all

the classical configurations. And then we decrease Γ following some annealing

schedule. If we let the annealing schedule be slow enough, the evolving system

will always remain at the instantaneous ground state assured by the adiabatic

theorem of the quantum mechanics [Sarandy et al., 2004]. The system will be
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Figure 2.2: While optimizing the cost function of a computationally hard
problem (like the ground state energy of a spin glass or the minimum travel
distance for a traveling salesman problem), one has to get out of a shallower
local minimum like the configuration C (spin configuration or travel route), to
reach a deeper minimum C ′. This requires jumps or tunneling like fluctuations
in the dynamics. Classically one has to jump over the energy or the cost barriers
separating them, while quantum mechanically one can tunnel through the same.
If the barrier is high enough, thermal jump becomes very difficult. However,
if the barrier is narrow enough, quantum tunneling often becomes quite easy.

[Das and Chakrabarti, 2008]

found in the ground state of the original classical Hamiltonian Hc as desired when

Γ finally decreases to zero. Although some arguments still exit, most researchers

believe strictly adiabatic and quasi-stationary quantum annealing is equivalent to

Quantum Adiabatic Evolution [Farhi et al., 2001].

Three more important questions worthy be discussed are how to decide annealing

schedule in order to assure quantum adiabaticity, how to choose an appropriate

Hkin and how to prepare the classical Hamiltonian Hc.

There are a few common choices of function Γ, such as Γ(t) = 1− t
T

. But for assur-

ing adiabatic evolution, according to the adiabatic theorem of quantum mechanics,

12
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the evolution time τ must satisfy the following condition

τ � |〈H〉|max
∆2
min

(2.5)

, where

|〈H〉|max = max
0≤t≤τ

[|〈φ0(t)|
dH

ds
|φ1(t)〉|] (2.6)

∆2
min = min

0≤t≤τ
[δ2(t)]; s =

t

τ
; 0 ≤ t ≤ τ (2.7)

, φ0(t) and φ1(t) being respectively the instantaneous ground state and the first

excited state of the total Hamiltonian H, and ∆(t) the instantaneous gap between

the ground state and the first exited state energies [Sarandy et al., 2004]. QA may

work out very well for any finite systems, as the gap ∆min is very unlikely vanish

for a random system.

Quantum annealing has a flexibility that classical annealing does not have. Quan-

tum annealing may choose an appropriate quantum kinetic term, which may bring

significant improvements. Morita and Nishimori demonstrated this flexibility well

for QA of random field Ising model by introducing a ferro-magnetic transverse

field interaction, in addition to the conventional single-spin-flip transverse field

term [Morita and Nishimori, 2007]. If a ferromagnetic transverse term of the

form:

H
(2)
kin = −Γ(t)

∑
ij

Sxi S
x
j (2.8)

is added to the original Hamiltonian H, an considerable improvement of QA is

observed. Figure 2.3 shows how a quantum kinetic term may increase the energy

gap. The improvements are observed because the ferromagnetic transverse field

term effectively increases the gap ∆ between the ground state and the first excited

state and thus decreases the characteristic timescale for the system. This example

illustrates how one can utilize the flexibility in choosing the kinetic term in QA

to formulate faster algorithms. This also reminds us how the knowledge of the

phase diagram of the system, such as the position of the quantum critical point in

particular (where the gap tends to vanish), helps us choose appropriate additional

kinetic terms so that the annealing paths that can avoid the regions of very low

gap at least to some extent.
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Figure 2.3: The transverse field as the kinetic term effectively increases the
energy gap ∆ between the ground state and the first excited state[Shin et al.,

2014]

2.3.3 Quantum Annealing vs. Classical Annealing

As we mention above, simulated annealing is a powerful algorithm for many NP-

hard combinatorial optimization problems. A consequence of NP-hardness is that

any method to efficiently solve Ising spin problem would stand as an efficient

method of solving other important problems. We mainly discuss recent reports

[Heim et al., 2015] on the performance of quantum annealing and classical anneal-

ing on Ising spin glass problems in this section. In particular, we study the Ising

spin glasses with N spins whose Hamiltonian is written as:

Hc(t) = −
∑
ij

JijSiSj −
∑
i

hiSi (2.9)

where Si takes the values ±1 and represents the orientation of the spin on the

lattice site i. The couplings between spin i and j are denoted by Jij and hi are

local fields.
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Researchers demonstrated that simulated annealing using the Metropolis algo-

rithms is a powerful algorithm to minimize Hc. The initial thermal excitations

allow the system to escape from a suboptimal and relax into a low energy state

with energy close to that of the ground state. The principle behind this algorithm

is same as that behind metal materials reach a low energy state after thermal

annealing. We will refer to the difference between the final energy and the energy

of the ground state as the residual energy Eres = E − E0.

As we discussed above, quantum annealing that employs quantum tunneling in-

stead of thermal annealing can be advantageous for cost functions with narrow but

tall barriers, which are easier to tunneling through than to thermally climb over.

To perform quantum annealing of Ising spin glasses, we add a non-commuting

kinetic term as usual:

Htot(t) = −
∑
ij

JijS
z
i S

z
j −

∑
i

hiS
z
i − Γ(t)

∑
i

Sxi

= Hc + Γ(t)Hkin

The transverse field term Γ(t) shall decrease from a large value to zero as usual.

Although the classical simulation of quantum annealing grows exponentially with

system size, QA can be efficiently implemented using Path Integra Monte Carlo

(PIMC). We call it simulated quantum annealing (SQA) in this section.

The performance comparison of SQA and SA gives the strongest evidence for

quantum annealing superpior to classical annealing for Ising spin glasses [Heim

et al., 2015, Martoňák et al., 2002]. In Figure 2.4, researchers show best results

of 32 independent SA simulations, whose computational cost is roughly same as

the computation cost of SQA simulation. There, DT-SQA stands for a discrete

time SQA simulation, and CT-SQA stands for a continuous time SQA simulation.

DT-SQA is performed with a finite number of time slices M and a corresponding

non-zero time step ∆τ = β
M

= 1, which brings time discretization errors of order

O( β
3

M2 ). Please refer to [Heim et al., 2015] for more details of simulation algorithms

and annealing schedules. Overall, we can see that, in either case, the performance

of PIMC-based SQA is superior to that of SA.

The reason behind the advantage is also interesting [Heim et al., 2015]. Bettina

Heim and his co-authors believe that the advantage observed for PIMC compared
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Figure 2.4: Decrease of the residual energy Eres for SA, DT-SQA (panel A)
and CT-SQA (panel B) as a function of the annealing time ta [in units of Monte
Carlo steps (MCS)] for the square lattice Ising spin glass instance of [Santoro
et al., 2002] with 6400 spins and uniformly distributed couplings in (−2, 2).
The plotted value of Eres and error bars are obtained by averaging over forty

annealing runs. [Heim et al., 2015]

to classical annealing is due to the use of large imaginary times steps in the path

integral. When we take the physical limit of continuous time and measuring the

average energy, the advantage tends to vanish. We note that the continuous time

SQA is the one more like a real quantum annealing using quantum machines.

This experimental result shows that upon increasing the annealing time SQA

minimizes the residual energy faster than SA. It has truly indicated some quantum

advantage. But, in contrast to quantum advantage of SQA over SA seen, recent

studies of D-wave Systems still failed to prove solid quantum speedup, while the

evolution of hardware is consistent with that of a quantum annealer.

It is fair to stress that it is a priori but not obvious or guaranteed that a QA

approach should outperform a CA on a given problem. The comparative per-

formance of QA and CA reply on the energy landscape of the problem at hand,

in particular on the type of barriers separating the different local minima, and

the kinetic term, which also plays a crucially important role. Unfortunately, when

dealing with practical problems, we usually know little about the energy landscape
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Figure 2.5: Scatter plot of success probabilities. The correlation between D-
Wave and SQA is noticeably better than that between D-Wave and the classical

models.[Boixo et al., 2014]

Figure 2.6: Photograph of the QA processor. Measurements performed on
the eight-qubit unit cell indicated. The bodies of the qubits are extended loops
of Nb wiring (highlighted with red rectangles). Inter-qubit couplers are located

at the intersections of the qubit bodies. [Lanting et al., 2014]
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of cost function. And there is still no reliable theory predicting the performance

of a QA algorithm, in particular correlating it with the energy landscape of the

given optimization problem.

2.4 Quantum-Inspired Machine Learning

We briefly review some recent works about quantum-inspired machine learning.

Readers may compare their quantum-inspired approaches with ours. Quantum

machine learning and quantum-inspired machine learning are two confusing con-

cepts. Generally speaking, quantum machine learning refers to machine learning

algorithms that need be implemented on quantum machines. Quantum-inspired

machine learning differs from quantum machine learning in several aspects. Quantum-

Inspired Machine Learning means machine learning algorithms that involve in

some quantum theoretical elements but don’t require a quantum machine for im-

plementing it. Quantum physics and machine learning can be deeply intercon-

nected in theoretical analysis.

In recent years, multiple quantum-inspired machine learning algorithms have been

proposed. [Wolf, 2006] reported Learning using the Born Rule. In Quantum Me-

chanics, Born rule states that the probability of an outcome |a〉 given a state |Φ〉 is

the square of their inner products 〈a|Ψ〉. It provides a new tool for probabilistic de-

scriptions different from the Bayesian rule. Lior Wolf unraveled a new probabilistic

justification for popular algebraic algorithms, based on the Born rule. Lior Wolf

discussed several algorithms include two-class and multiple-class spectral cluster-

ing, and algorithms based on Euclidean distances. The Born rule actually has the

potential to upgrade many classical algorithms into quantum or quantum-inspired

algorithm.

[Leifer and Poulin, 2008] reported quantum belief propagation. Belief propagation,

also known as sum-product message passing, is a message passing algorithm for

performing Bayesian inference on graphical models of classical probability distri-

butions, such as Bayesian Networks, Factor Graphs and Markov Random Fields.

It calculates the marginal distribution for each unobserved node, conditional on

any observed nodes. Belief propagation algorithms prove to be amongst the most

powerful known methods for deriving probabilistic inferences amongst large num-

bers of random variables. Quantum belief propagation presents a generalization of
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these classical concepts and methods to the quantum case, driven by the idea that

quantum theory is also a generalized probability theory, which is noncommutative

and operator-valued.

[Weinstein and Horn, 2009] reported a quantum-inspired clustering method, named

dynamic quantum clustering. This method associates data samples in some feature

space with a Schrodinger equation whose potential is determined by the data.

This is a typical approach to transforming data science into physical problems.

Data patterns decide the potential landscape of the data quantum system. Here

Schrodinger evolution is used for clustering, an important unsupervised learning

problem.

[Huang et al., 2012] reported a quantum-inspired anomaly detection algorithm.

In machine learning, anomaly detection (outlier detection) is the identification of

data samples which do not conform to an expected pattern or other samples in

a data set. This work has made the first attempt to apply quantum mechanics

to anomaly detection in high-dimensional datasets for data mining. It originally

proposed Fermi Density Descriptor which can represent the probability of mea-

suring a fermion at a specific location for anomaly detection, where Fermi-Dirac

statistics replace classical statistics to describe the location of those non-physical

particles, namely data samples.

[Dong et al., 2012] reported a novel quantum-inspired reinforcement learning algo-

rithm for navigation control of autonomous mobile robots. The main originality is

to adopt a probabilistic action selection policy and a new reinforcement strategy,

which are inspired, respectively, by the collapse phenomenon in quantum measure-

ment and amplitude amplification in quantum computation. It originally employs

quantum probabilistic concepts, including the Born rule and probability ampli-

tudes, to replace classical probability theory. According to the experimental anal-

ysis, the Quantum-Inspired RL is more robust to learning rates and initial states

than traditional reinforcement learning. It indicates that quantum-inspired meth-

ods may generalize the power of classical methods. And, different from quantum

machine learning that requires a quantum machine, quantum-inspired machine

learning can be applied to real-world problems directly.

[Blacoe et al., 2013] reported a quantum-inspired semantic space model for distri-

butional semantics. This work formulates a formal quantum theoretical framework

for capturing lexical meaning by using the language of quantum matrices. It tries
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to represent the meaning of words by density matrices that encode dependency

neighborhoods. Several quantum elements such quantum superposition and en-

tanglement are also included into this model. The creative application of density

matrices show the general potential of quantum theory as well as great power in

empirical analysis.

[Stoudenmire and Schwab, 2016] reported supervised learning with quantum-inspired

tensor networks. The most successful use of tensor networks in physics so far has

been quantum many-body problem, where combining N independent systems cor-

responds to taking the tensor product of their individual state vectors. With

the goal of applying similar tensor networks to machine learning, quantum ten-

sor networks become an important approach to quantum-inspired neural networks

learning. This work demonstrates how algorithms for optimizing such tensor net-

works can be adapted to supervised learning tasks by using matrix product states.

Overall, quantum tensor networks are likely to become a useful framework for

applying quantum theory to neural networks.
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Chapter 3

Quantum-Inspired Regression

Forest

3.1 Introduction

We interpret the ensemble learning process in several quantum physics concepts,

and merge quantum-inspired techniques into the ensemble method naturally. We

mainly focus on Tree Ensemble methods due to two truths. First, Tree Ensemble

is a powerful and robust method that is widely used in multiple domain’s tasks.

An significant improvement on this popular method could make QIS very valuable.

Second, base learners are constructed independently and in parallel. This indicates

that we may take many elements of Tree Ensemble as black boxes except for

generating the feature subsets. We make QI Forest and Random Forest only differ

in generating feature subsets for individual learners. It provides the advantage

that we can ensure any performance differences are purely caused by the proposed

Quantum-Inspired Subspace method.

In Section 3.2, we present quantum interpretations and the proposed algorithms.

We show the process how quantum mechanics inspires us to invent a novel ensemble

method. In Section 3.3, we provide a solid mathematical proof for the advantage

of the proposed algorithm. We prove that Quantum-Inspired Forest Regressors’

advantage over Random Forest in case of the first order approximation. In our

mathematical analysis, the Linear Regressor is nonlinear base regressors’ first order

approximation. In Section 3.4, we empirically compare Quantum-Inspired Forest
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Regressors and Random Forest Regressors on date sets from UCI Repository [Lich-

man, 2013]. What’s more, we perform one more empirical comparison, where we

take Linear Regressors as base learners instead of Decision Tree Regressor. In

Section 3.5, we discuss and summary our main work.

3.2 The Quantum-Inspired Approach

3.2.1 Quantum Interpretations

We believe quantum physics may provide a novel and valuable viewpoint for ma-

chine learning. Quantum physics shares similar forms with machine learning. And

these similar forms or equations encourage us to think about machine learning in a

quantum theoretical way. The motivation behind our works starts from Principal

Component Analysis (PCA) and density matrices. [Nielsen and Chuang, 2010]

introduced density matrix and operators in detail. In quantum mechanics, physi-

cists often denote a pure state as a state vector |ψ〉. However, there exist mixed

states, which cannot be written as a state vector. A mixed state corresponds to

a probabilistic mixture of pure states, also called a quantum ensemble. A density

matrix is a matrix that describes a quantum mixed state, an ensemble of several

pure states. We show how to establish connections between density matrix and

quantum operators to PCA as follows.

We interpret principal components as eigenstates in a mixed state. Suppose we

are given a data set X ∈ Rn×m, ~y ∈ Rn for a regression or classification problem.

X, a n×m data matrix, contains n data samples, and each feature vector ~xi has

m features. The target variable vector ~y is a vector with a length of n. Singular

Value Decomposition (SVD) is a widely used method to perform PCA [Wall et al.,

2003]. For a data matrix X, there exist matrices U, S, V satisfying

X = USV >, (3.1)

where U is a n × n unitary matrix, S is a n × m matrix with non-negative real

numbers si on the diagonal line, and V is a m × m unitary matrix. We define

the Gram matrix ρ = XX> that is a symmetric and positive semi-definite n × n
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matrix. And S has r non-zero diagonal elements. And then we have

ρ = XX> = USV >V S>U> = UΣU>, (3.2)

where Σ = SS> is a n×n diagonal matrix with diagonal elements σi = s2i . Column

vectors of US are equal to principal components in PCA. And people often use

first k column features US as dimension-reduced k-dimension feature vectors.

The quantum journey begins from here. As the density matrix of quantum me-

chanics is Hermitain, positive semi-definite and of trace 1, if we normalize the

Gram matrix ρ by multiplying a factor 1
Tr(ρ)

, the Gram matrix can be regarded as

a density matrix in quantum theory. For simplicity of our notation, we also denote

the density matrix by ρ. So we redefine ρ and U with a normalization factor as

ρ =
XX>

Tr(XX>)
= UΣU>. (3.3)

Let ~ui denote the ith column vector of matrix U , so ~ui is also a pure state vector,

which denotes |ui〉 in quantum theory. As we have replaced the Gram Matrix by

the normalized ρ, the sum of diagonal elements of Σ,
∑n

i=1 s
2
i , is equal to 1. The

density matrix ρ describing the data matrix as a mixed state is also an operator

of the form

ρ =
n∑
i=1

s2i |ui〉〈ui|. (3.4)

The rank of matrix X indicates how many pure states we have in a quantum

ensemble. As the rank of matrix X is r, we have

ρ =
r∑
i=1

s2i |ui〉〈ui|. (3.5)

Physically, it means a data matrix X can be regarded as a mixed state or a

quantum ensemble consisting of r pure states. In physics, an quantum ensemble,

namely an ensemble of pure states, can reflect statistical expectations of quantum

systems. And the variance s2i is the fraction(weight probability) of the ensemble

in each pure state |ui〉.

On the one hand, the quantum interpretation treats PCA naturally as a dimen-

sionality reduction process. In machine learning, researchers usually preserve the
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first k components with largest variance values as dimensionality reduced features.

In quantum mechanics, PCA means that we remove several non-principal eigen-

states from the mixed state and preserve those principal eigenstates so that we

prepare a new mixed state consisting of less eigenstates. The new state is exactly

a low-rank approximated copy of the original mixed state. Obviously, PCA makes

clear sense to us from a viewpoint of physics. But PCA is also a naive and biased

operation that assigns uniform weights to principal eigenstates and weight 0 to

non-principal eigenstate. If we preserve a large number of principal states, PCA

will indeed provide us a deterministic low-dimensional feature set which can be

used for training only one but relatively accurate learner. On the other hand,

Random Subspace is used in Random Forest to produce diversified feature sets for

base learners. Different from PCA, Random Subspace completely randomly as-

signs uniform weights to all principal components and non-principal components.

Diversified low-dimensional feature sets can be repeatedly produced by Random

Subspace, but the diversity comes at a large cost of accuracy. Randomly removing

a lot of features of course unavoidably cause a large loss of information. PCA can

be used for training a relatively accurate but deterministic base learner, while Ran-

dom Subspace can be used for training relatively diversified but inaccurate base

learners. So the problem is may we find a better way to balance accuracy and

diversity? In scenarios of ensemble learning, we do have a reasonable way. Quan-

tum mechanics naturally provides us the fraction probability of each eigenstate.

The fraction probability
s2k∑r
i=1 s

2
i

must possess a physics meaning. And we believe

this physics meaning also indicates a valuable meaning in ensemble learning. We

will mathematically prove the theoretical connection in Section 3.3. We prove

that
s2k∑r
i=1 s

2
i

is the optimal probabilistic distribution under Gaussian assumptions

of model parameters.

And the second quantum interpretation is we can also regard regression as a state

preparation process that we operate several pure states to approximate a target

state |y〉. Translated in quantum theoretical language, it can be written as

ρy = |y〉〈y| = ÂρxÂ
†, (3.6)

where the state operation is noted by some quantum operator Â. So the quantum

mechanism of regression tasks can be understood as we learn a Model Operator

to operate eigenstates in a mixed to approximate a target pure state under some

metrics. From a quantum theoretical viewpoint, the importance of an eigenstate
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|ui〉 is reflected by the Transition Probability from en eigenstate |ui〉 jumping

into the target state |y〉. We denote Transition Probability as ti. Obviously, the

Transition Probability is a parameter decided by model operator, the eigenstate,

and the target state together. Aggregating fraction probabilities and transition

probabilities together, the Fraction Transition Probability for the ith principal

component is proportional to s2i |〈y|Â|ui〉|2. So we take the the Fraction Transition

Probability for the ith principal component as

pk =
s2kt

2
k∑r

i=1 s
2
i t

2
i

. (3.7)

In Section 3.3, we prove that Transition Probability Ampplitudes happen to equal

to parameters of linear regression mapping from X to y in the first order approxi-

mated situation. According to the heuristical Fraction Transition Probabilities, we

successfully propose Quantum-Inspired Subspace Method and Quantum-Inspired

Forest.

3.2.2 Algorithm

Random Subspace is a fast and efficient ensemble method widely used in many

algorithms, including Random Forest. Random Subspace randomly select a sub-

set of features for training a base learner. But Quantum-Inspired Subspace can

utilize the extra information inspired by quantum mechanics. We first preprocess

the input data matrix X by using full-rank PCA. Different from either preserving

principal components with largest eigenvalues or random subspace, QIS selects a

component in a probability proportional to the corresponding Fraction Transition

Probability. Under Gaussian assumptions of model parameters, we let pk =
s2k∑r
i=1 s

2
i

for the component k. When we replace Random Subspace by Quantum-Inspired

Subspace for Random Forest, we obtain a novel algorithm, namely Quantum-

Inspired Forest. We note that, in principle, full-rank PCA preprocessing generally

can neither improve nor damage algorithm performance. The additional compu-

tational cost of the proposed algorithm is only brought by Principal Component

Analysis and several matrix operations for computing Fraction Transition Proba-

bilities. So it is a very low cost in practice.

Denote by h1, . . . , hT the regressors in the ensemble and by F , the feature set. As

with most ensemble methods, we need to choose ensemble size T in advance. All
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base regressors can be trained in parallel, which is also the case with Bagging and

Random Forests. Algorithm 3 explains how to generate construct the training

feature set Fi for regressor hi. And we modify Random Forest into Quantum-

Inspired Forest by employing Quantum-Inspired Subspace to generate ensemble

feature subsets instead of Random Subspace.

Algorithm 3: Quantum-Inspired Subspace for generating feature subsets

1 function QuantumInspiredSubspace (X, y, F, T,K)
Input : real [n×m] X: the data matrix
Input : real [n] ~y: the target variable vector
Input : int T: the ensemble size
Input : int K: the target space dimensionality K = αm
Output: feature subsets {Fi|i = 1, . . . , T}

2 Preprocess data matrix XR ← PCA(X) by using full-rank PCA
3 Compute Fraction Probabilities ~ps ← the diagonal elements of covariance matrix
X>X

4 Compute Transition Probability Amplitudes ~t← (X>RXR)−1X>R~y which are LR
parameters

5 Compute Transition Probabilities ~pt ← ~t. ∗ ~t
6 Compute Fraction Transition Probabilities ~p← ~ps.∗~pt

norm( ~ps.∗~pt)
7 for i← 1 to T do
8 Select K unique random integers a1, . . . , aK from [1,m] in probabilities of pai
9 Fi ← {a1, . . . , aK}

10 return {Fi|i = 1, . . . , T}

Algorithm 4: Quantum-Inspired Regression Forest

1 function QIForest (S, F, T,K)
Input : A training set S = (x1, y1), ..., (xn, yn), features F , and the forest size

T , the target space dimensionality K
Output: Quantum-Forest H

2 H ← ∅
3 {Fi|i = 1, . . . , T} generated by function QISubspace (X, y, F, T,K)

4 for i← 1 to T do
5 Si ← a bootstrap sample from S
6 F i ← Fi
7 hi ← RegressionTreeLearn(Si, F i)
8 H ← H ∪ {hi}
9 return H

It is worthy noting that Quantum-Inspired Subspace is a general method which

can be easily applied with other ensemble methods and multiple base learners

together. QIS also lend itself naturally to parallel processing, as ensemble feature

26



Chapter 3. QI Regression Forest 3.3 Theoretical Analysis and Proof

sets and individual learners can be built in parallel. QIS is not only naturally

applicable to Tree Ensembles, but also makes sense for any ensemble regressors

whose diversity is based random feature selections.

3.3 Theoretical Analysis and Proof

In this section, we prove the advantage of Quantum-Inspired Subspace through

error-variance-covariance decomposition that combines error-ambiguity decompo-

sition and bias-variance-covariance decomposition together. The proof states that

the advantage of QIS theoretically increase ensemble ambiguity and decrease the

individual error expectation in the first order approximation. And in our empiri-

cal analysis, the experimental results support the advantage is still approximately

applicable to nonlinear models, such as Decision Tree. The mathematical proof for

ensemble classification cannot hold in the same way, although our empirical anal-

ysis support that Quantum-Inspired Forest Classifiers can be favorably compared

with Random Forest Classifiers.

3.3.1 Error-Variance-Covariance Decomposition

In this section, we show how to obtain Error-Variance-Covariance Decomposition.

We organize several known conclusions together referring to derivations in Chapter

5.2 of [Zhou, 2012]. Assume that the task is to use an ensemble of T base regressors

h1, h2, ..., hT to approximate a function f : Rm → R. And a simple averaging policy

is used for the final ensemble prediction

H(~x) =
1

T

T∑
i=1

hi(~x), (3.8)

where H(~x) is the ensemble learner. And we define several notations here. The

generalization error and ambiguity of a base learner is respectively defined as

err(hi) = (hi(x)− f(x))2, (3.9)

ambi(hi) = (hi(x)−H(x))2. (3.10)
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And we also note the expectation prediction of a base learner hi as

E[hi] =

∫
hi(x)p(x)dx, (3.11)

where p(x) is the density function for data x. On the one hand, [Krogh et al.,

1995] proposed the error-ambiguity decomposition of ensemble learning, and the

generalization error of the ensemble can be written as

err(H) = err(H)− ambi(H), (3.12)

where err(H) = 1
T

∑T
i=1 err(hi) is the average of individual generalization errors,

and ambi(H) = 1
T

∑T
i=1 ambi(hi) is the average of ambiguities which is also called

the ensemble ambiguity. A basic truth is that the larger the ensemble ambiguity,

the better the ensemble.

On the other hand, [Ueda and Nakano, 1996] developed the bias-variance-covariance

decomposition. The averaged bias, averaged variance, and averaged covariance of

the individual learners are defined respectively as

bias(H) =
1

T

T∑
i=1

(E[hi]− f), (3.13)

variance(H) =
1

T

T∑
i=1

E[(hi − E[hi])
2], (3.14)

covariance(H) =
1

T (T − 1)

T∑
i=1

T∑
j 6=i,j=1

E[(hi − E[hi])(hj − E[hj])]. (3.15)

And then the bias-variance-variance decomposition of ensemble is written as

err(H) = bias(H)2 +
1

T
variance(H) + (1− 1

T
)covariance(H). (3.16)

We may establish a bridge connecting the error-ambiguity decomposition and the

bias-variance-covariance decomposition[Brown et al., 2005a,b] as

err(H)− ambi(H) = bias(H)2 +
1

T
variance(H) + (1− 1

T
)covariance(H).

(3.17)
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And then we have

err(H) = E

[
1

T

T∑
i=1

(hi − f)2

]
= bias

2
(H) + variance(H), (3.18)

and

ambi(H) = E

[
1

T

T∑
i=1

(hi −H)2

]
= variance(H)− variance(H)

= (1− 1

T
)variance(H)− (1− 1

T
)covariance(H). (3.19)

Finally, we obtain Error-Variance-Covariance Decomposition as

err(H) = err(H)− (1− 1

T
)variance(H) + (1− 1

T
)covariance(H). (3.20)

And the generalization error expectation is written as

E[err(H)] = E[err(hi)]− (1− 1

T
)E[var(hi)] + (1− 1

T
)E[covar(hi, hj)]. (3.21)

Actually, there is no simple ensemble method that can minimize the expectation

of err(H). Fortunately, according to our following analysis, we find Quantum-

Inspired Subspace method can decrease E[err(hi)], −E[var(hi)] and E[covar(hi, hj)]

simultaneously, compared to Random Subspace method.

3.3.2 Ensemble Ambiguity

We decide to prove that Quantum-Inspired Subspace can improve ensemble ambi-

guity ambi(H) and decrease individual generalization errors err(H) simultaneous-

ly. And according to the Error-Variance-Covariance Decomposition relations, in-

creasing ensemble ambiguity is equivalent to increasing E[var(hi)]−E[covar(hi, hj)].

We want to figure out how to improve variance(H) − covariance(H). We note

that nonlinear regression models degenerate to Linear Regression (LR) in case of

the first order approximation, just like how Taylor series expansion works. In the

case of the first order approximation, we ignore all high order nonlinear terms.

And we find the approximated case holds well for regression trees, as regressions

tree also aim at finding linear relationships between features and target variables.
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So in this subsection, what we decide to prove actually is, with Linear Regressors

as base regressors, Quantum-Inspired Subspace Ensemble method can increase

ensemble ambiguity strictly. Although it seems naive to consider ensemble linear

regressors only, the mathematical analysis provides important theoretical insights

about other nonlinear base learners. Assuming model parameters are independent

distributed Gaussian random variables, we further know QIS can even decrease the

averaged individual generalization errors. Given general data sets instead a certain

data set, the Gaussian assumption that takes model parameters as Gaussian ran-

dom variables is reasonable and realistic for most machine learning models. But

the independence assumption only approximately holds for several linear models,

luckily including Linear Regression. However, although what we prove only holds

for most simplified cases, we find the proof still partly holds in more general situa-

tion. For simplicity, we use several new notations in proof. We denote the original

data matrix as X ′ = USV > and its linear regression parameters as w′k ∼N (0, σ2)

, where k = 1, . . . ,m. We can safely assume each parameter independently obeys

normal distribution as we have no prior knowledge about the importance of fea-

tures. Considering a certain data set, without training, we of course know nothing

about each feature’s importance. Considering model performance on general data

sets, the independent Gaussian assumption is also realistic.

Let’s turn to the full-rank PCA preprocessed data matrix X = X ′V and its linear

regression parameters ~w = V > ~w′. As V is an orthogonal matrix, a model parame-

ter w still obeys a Gaussian distribution, w ∼ N (0, σ2). We may regard columns

vectors of preprocessed matrix X as input features. So we define individual learners

as

hi(~x) =
∑
k∈Fi

wkskuk =
∑
k∈Fi

wkxk, (3.22)

where sk is the kth-largest singular value, and Fi is the feature subset for the

ith base learner. Benefitting from orthogonalized preprocessing and LR as base

learners, model parameters stay invariant even trained by variant feature subsets.

We call this characteristic as Parameter Invariance under variant feature subsets.

In our proof, the Parameter Invariance of base learners is a key prerequisite for

improving ensemble ambiguity. And besides Linearity, how Parameter Invariance

is approximately applicable to nonlinear models is another key factor deciding how

generally the proof may hold.
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We first analyze the ensemble ambiguity ambi(H) which is equivalent to (1 −
1
T

)(variance(H)− covariance(H)). According to Equation 3.22, we have

E[covar(hi, hj)] = E

covar(
∑
k∈Fi

wkskuk,
∑
k∈Fj

wkskuk)

 =
r∑

k=1

w2
ks

2
kp

2
k (3.23)

and

E[covar(hi)] = E

[
covar(

∑
k∈Fi

wkskuk,
∑
k∈Fi

wkskuk)

]
=

r∑
k=1

w2
ks

2
kpk (3.24)

with a constraint of
∑r

k=1 pk = 1 and a statistical assumption that wk ∼N (0, σ2)

is a normal random variable. We note that Random Subspace just naively sets

pk = 1
r
. We have a better solution to increase the ensemble ambiguity. We find

the solution

pk =
w2
ks

2
k∑r

i=1w
2
i s

2
i

, (3.25)

which can exactly minimize E[covar(hi, hj)]. What’s more, it further increases

EQI [var(hi)] compared with ERS[var(hi)],

r∑
k=1

w2
ks

2
kpk >

r∑
k=1

w2
ks

2
k

r
. (3.26)

So we have

EQI [var(hi)] > ERS[var(hi)], (3.27)

and

EQI [covar(hi, hj)] < ERS[covar(hi, hj)]. (3.28)

The solution we find is in same forms as the Fraction Transition Probability that

the density matrix interpretation indicates. The Transition Probabilities of Linear

Regression Quantum Operator are exactly the linear regression model parameters.

For a certain data set, we can get certain weights ~w. For general data sets, we still

have normal distribution assumption so that
w2
k

s2
∼ χ(1) is a chi-squared random

variable. [Provost and Rudiuk, 1994] revealed the analytical probability density
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function of pk, and we know its expectation must be

p̂k =
s2k∑r
i=1 s

2
i

, (3.29)

which are exactly Fraction Probabilities given by quantum interpretations. Our

theoretical analysis of Quantum-Inspired Subspace shows that

EQI [ambi(H)] > ERS[ambi(H)]. (3.30)

3.3.3 Individual Errors

In this subsection, we want to explain that Quantum-Inspired Subspace, pk =
w2
ks

2
k∑r

i=1 w
2
i s

2
i
, tends to decrease the averaged individual error, namely err(H). Actually

this conclusion is trivial.

Although for a certain data set, we cannot conclude that each original feature

equally contributes to the model performance. But, for general data sets, un-

der the Gaussian assumption of model parameters ~w, we can safely say that the

expectation contribution of each original feature tends to be equal. As we have

preprocessed data sets by using full-rank PCA, the widely accepted prior belief

that principal components with larger variance carry more information supports

the conclusion that QIS decreases the individual errors. As we know

err(H) =
1

T

T∑
1

err(hi) = E[(hi − f)2], (3.31)

the widely accepted prior belief can be written as

EQI [(hi − f)2]] > ERS[(hi − f)2]]

EQI [err(H)] > ERS[err(H)]. (3.32)

According to Equation 3.12, 3.30 and 3.32, we finally prove the conclusion that

EQI [err(H)] < ERS[err(H)]. (3.33)

The proof indicates that the correlation between base learners is decreased with

an expectation enhancement in their strength. Statistically speaking, QIS can

even improve base learners’ performance and ensemble ambiguity simultaneously.
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Table 3.1: QI Forest Regressors vs. Random Forest Regressors: α = 0.5;
ensemble size T = 30; training instances N = 60%.

Data Instances Dimension QI-Forest R-Forest +/−

Abalone 4177 8 0.32040.0055 0.33500.0073 ++
Communities Crime 1994 122 0.27630.0025 0.30160.0080 ++

Communities Crime Unnormalized 1 2215 140 0.25150.0053 0.27660.0112 ++
Communities Crime Unnormalized 2 2215 140 0.21250.0052 0.26970.0073 ++

Facebook Metrics 500 11 0.15800.0302 0.12670.0480 −
Forests Fire 517 8 0.82960.0175 0.83690.0231 +

Housing 505 13 0.20110.0089 0.24920.0171 ++
Slump Test 103 9 0.17040.0103 0.26780.0276 ++

Wine Quality Red 1599 11 0.43790.0060 0.46220.0118 ++
Wine Quality White 4898 11 0.40560.0025 0.40870.0075 +

For the individual error expectation, the quantum-inspired weighted probabilistic

selection strategy tends to work at least the same good as the uniform probabilistic

selection strategy. We also note that this conclusion is statistically correct but not

guaranteed on some certain data set.

Although Transition Probabilities of nonlinear models are quite difficult to derive,

the Gaussian assumption is always realistic. We argue that Fraction Probabilities

are at least approximately applicable to most machine learning models. We con-

jecture that, even if without Model Transition Probabilities, Fraction Probabilities

are still very likely to improve ensemble learners, including classifiers.

Besides the simplified case of linear regression, we also need to discuss how Deci-

sion Tree may approximately preserve the first order linearity approximation and

Parameter Invariance under variant feature subsets. On the one hand, the strate-

gy to find the best split for constructing a regression tree is based on the criteria

of mean square error reduction. So the feature split order can stay approximately

invariant under variant feature subsets, whose mechanism is close to Parameter

Invariance under variant feature subsets. On the other hand, the Decision Tree

regressors learn linear relationships between features and target variables. The re-

gression function based a tree regression mapping from X to ~y can be very simple

like a combination of N step functions. In the limit of N → +∞, a combination

of N step functions tends to become a approximately smooth function. The first

order approximation makes sense in this situation.
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Table 3.2: QI Ensemble Linear Regressor vs. Random Ensemble Linear Re-
gressors: α = 0.5; ensemble size T = 30; training instances N = 60%.

Data Instances Dimension QIE-LR RE-LR +/−

Abalone 4177 8 0.34660.0061 0.41860.0207 ++
Communities Crime 1994 122 0.23980.0021 0.32200.0275 ++

Communities Crime Unnormalized 1 2215 140 0.02130.0001 0.19350.0226 ++
Communities Crime Unnormalized 2 2215 140 0.11040.0022 0.23890.0202 ++

Facebook Metrics 500 11 0.00440.0004 0.06750.0196 ++
Forests Fire 517 8 0.72980.0016 0.73320.0029 ++

Housing 505 13 0.26950.0026 0.38830.0247 ++
Slump Test 103 9 0.10750.0042 0.26240.0446 ++

Wine Quality Red 1599 11 0.47640.0023 0.48330.0103 ++
Wine Quality White 4898 11 0.52450.0010 0.53340.0073 ++

Table 3.3: QI Forest Regressors vs. Random Forest Regressors: ensem-
ble size T = 30; training instances N = 60%; adjust α respectively as
0.125, 0.25, 0.5, 0.75, 1.0. When α = 1.0, QI Forest degenerates into Random

Forest.

α QI-Forest R-Forest

0.125 0.42510.0154 0.49320.0208

0.25 0.34110.0082 0.41860.0182

0.5 0.32630.0094 0.35440.0168

0.75 0.32530.0099 0.33130.0118

1.0 0.33770.0095 −

Table 3.4: QI Forest Regressors vs. Random Forest Regressors: α = 0.5;
training instances N = 60%; adjust ensemble size T respectively as 3, 10, 30, 100.

T QI-Forest R-Forest

3 0.42120.0313 0.47580.0613

10 0.35650.0219 0.38880.0317

30 0.32630.0094 0.35340.0168

100 0.31400.0046 0.33560.0076

3.4 Empirical Analysis

Quantum-Inspired Subspace is easily incorporated into existing algorithms. In

order to examine the benefit of QIS to ensemble performance, we modify stan-

dard Random Forest to incorporate Quantum-Inspired Subspace before the tree

induction phase. In our empirical study of Quantum-Inspired Forest and Ran-

dom Forest, we selected 10 UCI data sets that are commonly used in the machine

learning literature in order to make the results easier to interpret and compare.

As we take LR as base learners in our proof, we also compare Random Ensemble
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Table 3.5: QI Forest Regressors vs. Random Forest Regressors: α =
0.5; ensemble size T = 30; adjust training instances N respectively as

30%, 40%, 50%, 60%.

Training Instances QI-Forest R-Forest

30% 1.43720.0359 1.34620.0555

40% 0.83100.0208 0.88790.0334

50% 0.55510.0131 0.62090.0243

60% 0.32630.0094 0.35340.0168

Figure 3.1: QI Forest Regressors vs. Random Forest Regressors: variant α

LR with Quantum-Inspired Ensemble LR in Table 3.2, where we replace Decision

Tree by Linear Regression as base learners. Ensemble Linear Regressors are not

useful in practice, but it can show how our proof holds.

We take the averaged mean square error (MSE) on 10 data sets as the metrics
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Figure 3.2: QI Forest Regressors vs. Random Forest Regressors: variant
ensemble size T

in our empirical analysis. We decide to preprocess data sets, and take full-rank

PCA preprocessed data matrix and mean normalized target variables y as prepro-

cessed data sets. The first purpose is to ensure any performance differences are

purely caused by the proposed Quantum-Inspired Subspace method rather than

full-rank PCA preprocessing. We must leave the difference from full-rank PCA

out. The second purpose is to remove the scale differences of different data sets

so that we can fairly evaluate overall performance on 10 data sets. It’s reason-

able to start from full-rank PCA preprocessing because full-rank PCA is only an

orthogonal transformation and causes no loss or distortion of information. As

we mentioned above, in principle, full-rank PCA generally can neither improve

nor damage algorithm performance. In practice, full-rank PCA usually brings in
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Figure 3.3: QI Forest Regressors vs. Random Forest Regressors: variant
training data size

uncertain performance improvement or damage. So the full-rank PCA prepro-

cessing is necessary for removing the uncertain performance differences from the

orthogonal transformation.

We present mean square errors (with standard deviations as subscripts) on each

data set or the averaged MSE on all 10 data sets in following tables. In Ta-

ble 3.1 and 3.2, we denote better, significantly better, worse and significantly

worse respectively as +,++,− and −−. Instances is the data sample size. Di-

mension is the original data space dimensionality. We typically take 60% data

instances as training data. As we notice the performance of Random Forest and

Quantum-Inspired Forest adapt to hyperparameters in similar patterns, we decide

to study two Forests’ performance in multiple settings of forest hyperparameters.
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We employ the strategy to compare Quantum-Inspired Forest and Random For-

est counterpart in the same hyperparameter settings. This strategy removes the

performance differences from tuning hyperparameters. And we repeat each exper-

iment for 15 times to get statistically reliable results. The hyperparameter setting

for Decision Tree base learners is always fixed in our experiments. The function

to measure the quality of a split is mean square error. And a tree always find the

best split at each node. And we also set no tree depth limit, and no minimum

samples limit for splits and leaves. The default hyperparameter setting for forests

is: ensemble size T = 30; select one half features to train base learners, which

means α = 0.5; the sub-sample size in Bagging is always the same as the original

training sample size but the samples are drawn with replacements; and N = 60%

samples are used as training data instances.

Both Table 3.1 and 3.2 share the defualt hyperparameter setting: T = 30, α =

0.5, N = 60%. We present MSE and standard deviations on each data set. Ta-

ble 3.3 shares the default hyperparameter setting except that we set α respec-

tively to 0.125, 0.25, 0.5, 1.0. In this experiment, we want discover how QI Forest

is compared to Random Forest with variant α settings. Table 3.4 shares the de-

fault hyperparameter setting except that we set ensemble size T respectively as

3, 10, 30, 100. In this experiment, we want to discover how robustly QI Forest and

Random Forest perform with small ensemble sizes. Table 3.5 shares the default

hyperparameter setting except that we set training instances N respectively to

30%, 40%, 50%, 60%. In this experiment, we want to how robustly QI Forest and

Random Forest solve small data problems.

Table 3.1 shows the significant advantage of QI Forest Regressors in the default

hyperparameter setting. QI Forest significantly outperform Random Forest on

seven data sets; QI Forest slightly outperform Random Forest two data sets; and

QI Forest perform slightly worse than Random Forest on only one data sets. The

experimental result supports that Quantum-Inspired Forest Regressors outperform

Random Forest Regressors in general situation. Table 3.2 further supports our

theoretical analysis in first order approximation. QI Ensemble Linear Regressors

significantly outperform Random Ensemble Linear Regressors on all 10 data sets.

Table 3.3 supports that QI Forest not only outperforms Random Forest in one

setting of α, but also beat Random Forest with multiple α settings. We notice that

the smaller α is, the larger the advantage of QI Forest is. Especially when we select

only a small number of features for training base learners, QI Forest can outperform
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Random Forest significantly. Table 3.4 indicates that the performance difference

of QI Forest and Random Forest increases as the ensemble size T decrease. It

means QI Forest can perform significantly better than Random Forest with a

limited forest size. Table 3.5 shows another advantage that QI Forest can solve

small sample regression problems better than Random Forest. As we decrease

training instances from 60% to 30%, the performance difference also increases.

These experimental results show that given very limited computational resources

or training data, QI Forest can outperform Random Forest.

As for classification tasks, our preliminary empirical analysis also finds similar

advantage of QI Forest Classifiers. We discuss it in Chapter 4.

3.5 Discussion and Conclusion

From a heuristical viewpoint, we propose novel quantum interpretations for ma-

chine learning. On the one hand, we interpret eigenvalues of PCA as Fraction

Probabilities in a mixed state. And it naturally indicates a generally accepted

belief that eigenvalues / Fraction Probabilities can reflect the importance of each

principal component. And we should let the probability of selecting a componen-

t be proportional to the corresponding Fraction Transition Probability. And we

also interpret learning target variables as a state preparation process, that oper-

ates pure states to prepare a target state. So a machine learning model may be

regarded as a Model Operator Â in a physical sense, and determines the tran-

sition probability of an eigenstate jumping into a target state. We argue that

both Fraction Probabilities and Transition Probabilities are beneficial to improve

ensemble learning algorithms. However, considering our theoretical proof is only

the first order approximately applicable to ensemble regressors, we only claim the

advantage of QI Forest Regressors in this chapter.

From a viewpoint of theoretical analysis, we prove Fraction Probabilities and Tran-

sition Probabilities indeed can decrease ensemble errors in the simplified situation.

According to our mathematical proof, in the case of Linear Regression as base

learners, Transition Probabilities are exactly equal to model parameters of LR.

For complex machine learning models, models’ Transition Probabilities are quite

difficult to derive. But for ensemble regressors, Transition Probabilities still make

sense in the first order linearity approximation. As the Gaussian assumption of
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model parameters is almost always realistic, we argue that Fraction Probabili-

ties are approximately applicable to forest regressors. We conjecture that, even

without Model Transition Probabilities, Fraction Probabilities are still likely to

improve ensemble learning.

From a viewpoint of empirical analysis, our experiments strongly support the ad-

vantage of Quantum-Inspired Forest Regressors in multiple hyperparameter set-

tings. In Table 3.2, we take Linear regression as base regressors, Quantum-Inspired

Ensemble Linear Regressors significantly outperform Random Linear Regressors

on all 10 data sets. In other tables, we take Decision Tree as base regressors,

Quantum-Inspired Forest Regressors still outperform Random Forest Regressors

significantly in variant hyperparameter settings. And we can ensure any perfor-

mance differences are purely caused by the proposed Quantum-Inspired Subspace

Method. Our empirical analysis concludes that Quantum-Inspired Forest perform

more robustly than Random Forest, given very limited computational resources or

training data. The observation provides QI Forest an extra advantage in extreme

conditions.

In summary, we have two fold of contributions. First, we propose a novel ensem-

ble method named Quantum-Inspired Subspace and Quantum-Inspired Regression

Forest. Quantum-Inspired Subspace can be easily applied to diversified base learn-

ers and combined with other classical ensemble methods, such as Bagging. We in-

corporate Quantum-Inspired Subspace into Random Forest and propose Quantum-

Inspired Forest. The additional computational cost is very cheap, equivalent to

the cost of full-rank PCA preprocessing. Second, we propose quantum interpreta-

tions for several machine learning concepts, and successfully establish a theoretical

bridge between quantum interpretations and ensemble learning. In future research,

we consider two directions interesting. The first direction is to study Quantum-

Inspired Subspace under complex circumstances, particularly classification tasks.

The second direction is discover deeper theoretical connections between quantum

mechanics and machine learning algorithms. May the mechanism of quantum

entanglement be helpful for machine learning in some way? We also believe it

will be very valuable to theoretically analyze quantum interpretations for neural

networks.
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Chapter 4

Quantum-Inspired Classification

Forest

4.1 Quantum-Inspired Forest Classifiers

Inspired by the quantum interpretations in Chapter 3, we also proposed Quantum-

Inspired Forest Classifiers. The mechanism of Quantum-Inspired Forest Classifiers

is similar to Quantum-Inspired Forest Regressors. However, there are also differ-

ences between regression forest and classification forest. First, we use Classification

Trees as base learners instead of Regression Trees. This is a trivial modification.

Second, we remove transition probabilities from pk, because we find that the in-

fluence of transition probabilities is quite unclear in classification tasks.

How may we treat ”the transition probability amplitude” from a pure state to the

target state in classification tasks? From a quantum theoretical viewpoint, the

transition probability amplitude is a very natural quantum interpretation for the

inner product of ~xk and ~y. The inner products are also used for marginal screening

in high-dimensional regression. As for classification tasks, the inner products are

not good metrics for marginal screening anymore. Worsely, neither the quantum

interpretation nor the mathematical proof in Chapter 3 are directly applicable to

Quantum-Inspired Forest Classifiers. Considering the unclear physical meaning

for regression forest, we decide remove transition probabilities from pk, and let pk
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stand for Fraction Probabilities only, which is

pk =
s2k∑r
i=1 s

2
i

. (4.1)

Algorithm 5: Quantum-Inspired Classification Forest

1 function QIForest (S, F, T,K)
Input : A training set S = (x1, y1), ..., (xn, yn), features F , and the forest size

T , the target space dimensionality K
Output: Quantum-Forest H

2 H ← ∅
3 {Fi|i = 1, . . . , T} generated by function QISubspace (X, y, F, T,K)

4 for i← 1 to T do
5 Si ← a bootstrap sample from S
6 F i ← Fi
7 hi ← ClassificationTreeLearn(Si, F i)
8 H ← H ∪ {hi}
9 return H

4.2 Empirical Analysis

In this section, we perform a empirical study for comparing Quantum-Inspired

Forest Classifiers with the baseline Random Forest Classifiers. The experimental

method and hyperparameter settings are similar to experiments in Chapter 3. We

selected 9 UCI data sets that are commonly used in the machine learning literature

in order to make the results easier to interpret and compare.

We take the averaged classification accuracy on 9 data sets as the metrics in our

empirical analysis. Full-rank PCA preprocessing is also applied as before. We

present classification accuracies (with standard deviations as subscripts) on each

data set or the averaged accuracy on all 9 data sets in following tables. In Table 4.1,

we denote better, significantly better, worse and significantly worse respectively

as +,++,− and −−. Instances is the data sample size. Dimension is the original

data space dimensionality. We typically take 60% data instances as training data.

Due to the same reasons, we decide the experimental settings similar to the coun-

terpart in Chapter 3. The hyperparameter setting for Decision Tree base learners

is always fixed in our experiments. The function to measure the quality of a split

is gini index. And a tree always find the best split at each node. And we also
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Table 4.1: QI Forest Classifiers vs. Random Forest Classifiers: α = 0.5;
ensemble size T = 30; training instances N = 60%.

Data Instances Dimension QI-Forest R-Forest +/−

arcene 200 10000 78.332.12 75.753.35 +
breast 569 30 94.210.86 94.160.97 +
dexter 600 2600 83.002.23 83.561.35 −
glass 210 9 79.682.11 77.621.95 +

hill valley(noise) 600 100 79.811.47 76.282.94 +
hill valley 600 100 92.580.76 92.082.56 +
ionosphere 351 35 91.331.03 96.901.45 −−
madelon 2600 500 63.060.77 51.891.75 ++
spambase 4600 57 92.530.13 92.780.28 −

Table 4.2: QI Forest Classifiers vs. Random Forest Classifiers: ensem-
ble size T = 30; training instances N = 60%; adjust α respectively as

0.125, 0.25, 0.5, 0.75.

α QI-Forest R-Forest

0.125 81.03 72.21
0.25 83.15 78.38
0.5 83.84 82.34
0.75 83.42 83.33

Table 4.3: QI Forest Classifiers vs. Random Forest Classifiers: α = 0.5;
training instances N = 60%; adjust ensemble size T respectively as 3, 10, 30.

T QI-Forest R-Forest

3 79.32 75.83
10 78.18 75.80
30 83.84 82.34

set no tree depth limit, and no minimum samples limit for splits and leaves. The

default hyperparameter setting for forests is: ensemble size T = 30; select one

half features to train base learners, which means α = 0.5; the sub-sample size in

Bagging is always the same as the original training sample size but the samples

are drawn with replacements; and N = 60% samples are used as training data

instances. Table 4.2 shares the default hyperparameter setting except that we set

α respectively to 0.125, 0.25, 0.5. In this experiment, we want discover how QI

Forest is compared to Random Forest with variant α settings. Table 4.3 shares

the default hyperparameter setting except that we set ensemble size T respective-

ly as 3, 10, 30. In this experiment, we want to discover how robustly QI Forest
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Table 4.4: QI Forest Classifiers vs. Random Forest Classifiers: α = 0.5; en-
semble size T = 30; adjust training instances N respectively as 20%, 30%, 60%.

Training Instances QI-Forest R-Forest

60% 83.84 82.34
30% 79.52 75.32
20% 75.90 72.14

and Random Forest perform with small ensemble sizes. Table 4.4 shares the de-

fault hyperparameter setting except that we set training instances N respectively

to 20%, 30%, 60%. In this experiment, we want to how robustly QI Forest and

Random Forest solve small data problems.

Table 4.1 shows the advantage of QI Forest Classifiers in the default hyperparam-

eter setting. QI Forest significantly outperforms Random Forest on one data set;

QI Forest slightly outperform Random Forest five data sets; QI Forest perform

slightly worse than Random Forest on two data sets; and QI Forest perform sig-

nificantly worse than Random Forest on one data set. The experimental result

supports that Quantum-Inspired Forest Classifiers can be compared to Random

Forest Classifiers in general situation. Table 4.2 supports that QI Forest not only

outperforms Random Forest in one setting of α, but also beat Random Forest with

multiple α settings. We notice that the smaller α is, the larger the advantage of QI

Forest is. Especially when we select only a small number of features for training

base learners, QI Forest can outperform Random Forest significantly. Table 4.3

indicates that the performance difference of QI Forest and Random Forest increas-

es as the ensemble size T decrease. It means QI Forest can perform significantly

better than Random Forest with a limited forest size. Table 4.4 shows another

advantage that QI Forest can solve small sample regression problems better than

Random Forest. As we decrease training instances from 60% to 20%, the per-

formance difference increases from 1.50 to 3.76. These experimental results show

that given very limited computational resources or training data, QI Forest can

be favorably compared to Random Forest.
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4.3 Discussion and Conclusion

The experimental observations for regression forest are basically close to the obser-

vations in Chapter 3. Overall, similar patterns and conclusions can be found eas-

ily. However, there are also important differences. The performance advantage of

Quantum-Inspired Forest Classifiers over Random Forest Classifiers is weaker com-

pared to the advantage for regression tasks. The advantage of Quantum-Inspired

Classification Forest is not significant enough. As we currently have solid theo-

retical analysis of Quantum-Inspired Classification Forest, we guess two reasons

here. First, it’s at least partly caused by the removal of Transition Probabilities.

How to obtain Transition Probabilities for classification tasks remains to be stud-

ied. Second, another important cause is the fact that the theoretical analysis for

ensemble regression cannot be applied to ensemble classification directly. A differ-

ent theoretical mechanism may lead a big difference between ensemble regression

and ensemble classification. We are trying to establish the theoretical analysis of

ensemble classification based information theory.

In summary, we propose a novel algorithm named Quantum-Inspired Classifica-

tion Forest in this chapter. The heuristical idea also comes from density matrix

as well as Quantum-Inspired Regression Forest. The difference between Random

Classification Forest and Quantum-Inspired Forest is that we select components

according to the corresponding Fractional Probabilities rather than uniformly ran-

domly. We also perform empirical analysis on 9 UCI data sets. Its performance

can be compared to Random Forest. We also note that the essential difference

between ensemble regression and ensemble classification. We need to find another

way to organize theoretical analysis of Quantum-Inspired Classification Forest. If

so, we may know how to improve the ensemble classification algorithms further.

This is a future direction.
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Chapter 5

A Physical Perspective

In this chapter, we present several valuable viewpoints on machine learning, partic-

ularly deep learning, based on a physical perspective. This seems to be a relatively

isolated chapter. We don’t present specific algorithms or methods here, but present

a kind of physical perspective extremely different from the philosophy of tradition-

al machine learning communities. Information is the essential bridge connecting

modern physics and machine learning. We believe this will become a important

topic that will attract much attention of both physicists and machine learners soon

in the future. A new amazing research field is forming without doubt.

At present, we think most researchers in the deep learning community underesti-

mate or even ignore the close relationship between physics and machine learning.

But a small number of researchers with both physics and machine learning back-

ground have started to pay attention to this field. They are trying very hard to

explain or study deep networks and particularly its theoretical foundation. And

some interesting results have be proposed. We decide to present the multiple

connections of deep neural networks and physics based on our best knowledge.

We also review a few recent works on physics-inspired machine learning. It helps

us understand how physics may interact with machine learning. Physical prior

knowledge for machine learning is an important content in this chapter. An inter-

esting thing is that physical prior knowledge has been generally applied to machine

learning in some sense, but few researchers are systematically discussing it. This

chapter provides a nice supplement.
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5.1 From Mathematics to Biology

Why does deep and cheap learning work so well? The success of deep neural net-

works (DNNs) is mainly due to the three important characteristics. Firstly, DNNs

are highly expressive [Montufar et al., 2014]. DNNs have the potential to approx-

imate continuous functions given many enough neurons. Recent research argues

that linear increasing depth are expressive approximately as exponentially increas-

ing width [Eldan and Shamir, 2016]. Secondly, deep learning methods have strong

generalization properties [Hardt et al., 2015]. The amazing generalization perfor-

mance of deep networks requires deeper study [Zhang et al., 2016]. Thirdly, DNNs

are usually relatively easy to train [Choromanska et al., 2015, Goodfellow et al.,

2014]. And training deep networks are actually different from classical optimiza-

tion problems somehow. They both try to minimize some loss functions. And the

concern of optimization is always about minimizing its loss function as efficiently.

But the quality of training deep networks is measured by both computational cost

and generalization errors. The solutions that bring us low generalization error

rather training error are consider good solution.

From a mathematical perspective, we think the first point is totally understand-

able. We are not surprised by the representation power of deep neural networks.

Mathematically, the representation power is very reasonable. Given enough neu-

rons, we can prove that DNNs can approximate any continuous objective function.

So theoretically speaking, DNNs have the ability to represent any probabilistic dis-

tribution. Given same amounts of neurons, deep networks generally have better

representation power than wide networks [Eldan and Shamir, 2016]. Nevertheless,

the second point is very amazing and surprising. The third point is closely related

to the second point, because the purpose of optimization is exactly to enhance

the generalization performance of deep networks. In probability theory and statis-

tics, we generally require at least 10 samples for estimating a model parameter.

Terribly, in deep learning, models parameters are often much more than training

samples. However, deep networks still work so well in test data sets. Why? The

strange generalization ability is a big challenge of deep learning theory.

From a biological perspective, we try to find some good explanations. The key lies

in the brain, particularly the architecture of neural network in the brain. Some re-

searchers believe artificial intelligence is mathematics, while some other researchers
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believe artificial intelligence is engineering. They both seems reasonable in spe-

cial directions. But we strongly prefer the claim that artificial intelligence are

science, because intelligence itself is a natural phenomenon that is consistent with

the physical laws in the universe and the physical environment in the earth.

Brain scientists present that we have already known the bottom-level principle and

architecture, though neural networks in brain are still quite complex for us. Neural

systems in human brains share several essential architecture characteristics with

DNNs. First, they both have deep hierarchical structures. Deep learning have

many neurons, but the connections between neurons in one layer are forbidden.

In human brains, the signals from one kind of cell are often transmitted into

neurons with different functions. Second, local connections are preferred, while

direct long-term connections between far neurons are very inefficient. This is not

strange. In deep learning, only layer-wised connections are allowed, because full

connections among all neurons can take terrible trouble when we train the deep

networks. The training dynamics can become so complex and inefficient that

we cannot train deep networks at an acceptable cost. At same time, layer-wise

connections reduce the complexity of deep networks remarkably, and still preserve

good representation power. Third, their architecture design are strongly driven

by environments or data that obey physical laws. A good example is the close

relation between convolution kernels and visual cortex. Convolution kernels take

a biological inspiration from our visual system [Tovée, 1996]. The visual cortex

has small regions of cells that are sensitive to specific visual regions. [Hubel and

Wiesel, 1962] showed that some individual neurons in the brain only responded to

edges of a certain orientation. For example, some neurons activate when exposed

to vertical edges and some when shown horizontal or diagonal edges. This is

exactly what a convolution kernel do. [Hubel and Wiesel, 1962] found out that all

of these neurons were organized in a hierarchical architecture able to produce our

visual perception. So we can find a clear biological basis behind Convolutional

Neural Networks (CNNs). Human can do pretty well with the biological neural

network architecture, so deep networks that employ a similar network architecture

are also very likely to do well. We believe this biological prior is very useful

prior knowledge, although some researchers believe that recent developments of

deep learning have nothing to do with neuroscience or brains. After a long-term

evolution, human brains have become very good at sensing and precessing the

environment information. Or we had become extinct already. This is a kind of

Anthropic Principle about intelligence and evolution. So the brain architecture is
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Figure 5.1: Intelligence: From Mathematics, to Physics, to Biology

a good prior architecture optimized by natural selections. Obviously, it becomes

reasonable to consider DNNs happen to have a architecture similar to the human

brain architecture.

5.2 Physical laws as prior knowledge

Biology is ruled by physics, while physics is ruled by mathematics. Physics is the

essential bridge that connects mathematics and biology, and also the bridge that

connects information and physical world. From a physical perspective, we can

have a deeper understanding about learning and intelligence. We have shown that

the architecture design of natural intelligence is good biological prior for artificial

intelligence. The next question is, why do CNNs well? Mathematically, CNNs

reduced weight parameters, and achieve low-level feature detection at a relatively

low cost. Biologically, CNNs have a similar architecture as our visual system. But

we also know that reducing model complexity and architecture similarity to the

brain don’t necessarily. We can find a deeper physical foundation that connects

the mathematical explanation and the biological explanation.

A key perspective is that intelligence is designed for solving problems in the phys-

ical space rather than a mathematical space. How to discriminate the physical

space and the mathematical space. Again, we take computer vision as an ex-

ample. A representative sample in the physical space looks like Figure 5.2 and

Figure 5.3. And a representative sample in the mathematical space looks like Fig-

ure 5.4, almost like only noises. The key lies in here. The mathematical space
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Figure 5.2: MNIST: Handwritten Digits Recognition. Each image has 28×28
pixels and a label ranging from 0 to 9.

Figure 5.3: Random samples
in physical space. Cifar-10.

Figure 5.4: A random sample
in mathematical space.

is too large to be compared with the physical space. The probability of which a

random sample from the mathematical space also appears in the physical space is

nearly 0. When we build artificial intelligence, we should only focus on physically

possible circumstances. This does be what natural intelligence is doing. And if

we translate those physically possible circumstances in the language of machine

learning, we will get physical prior knowledge for machine learning.

Actually, two physical laws matter a lot in the situation of CNNs. One is Space

Translation Symmetry, the other is the principle of locality in classical physics.

What is Space Translation Symmetry? In physical language, Space Translation

Symmetry is the invariance of physical laws under space translation. In daily lan-

guage, if we move a cat from one location to another location, the cat is still a

cat. It’s also true for cats in a picture. In the language of machine learning, if a

convolution kernel is useful for visual detection in one location, the convolution

kernel should also be useful for visual detection in any other locations. This is a

physical principle but not necessarily a physical principle. What is the principle
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of locality? In physical language, an object only directly interacts with its imme-

diate surroundings, and Einstein’s “Spooky Action at a Distance” is forbidden in

classical physics. In daily language, a living cat cannot be separated into parts

at multiple locations. Again, it’s also true for cats in a picture. In the language

of machine learning, we don’t need detect the pattern or knowledge of distant

locations, and small convolutions kernels that detect local features can work well.

We also need note that the principle of locality is not true in quantum physics.

The entanglement at a distance is not rare for quantum systems. If we train deep

networks to solve a quantum physical problem, such as predicting the free energy,

the localized convolution kernel will harm the generalization performance.

We emphasis that although physical prior knowledge can be learned from training

data, the learning takes more training data and computational time. Worse, the

model has higher risk of overfitting and knowledge get lost easily due to new data

flows. Hard encoding should be a better way to encoding physical prior knowl-

edge. The prior knowledge of two physical laws is hard encoded in the network

architecture by adding convolution layers. And data knowledge is soft encoded

by training network weights. Hard encoded learning requires less resources and is

lasting, while soft encoded learning requires more resources and is adaptive. Prop-

er hard encoding can further reduce the model complexity and avoid overfitting.

We should encode physical laws into model architecture in a hard encoding way

as much as possible. A recent work [Stewart and Ermon, 2017] provides a nice

example of hard encoding physical laws of motion into deep learning. This prior

knowledge of motion laws successfully relax the requirement for training data size

and get good experimental results.

5.3 A Statistical Physical Perspective

In very early period, [Jaynes, 1957] discussed the topic of statistical physics and

information theory. This is a wonderful pioneer work that pointed us a bright

direction. Statistical physics is more than a physical theory, and also an advanced

mathematical framework that uses methods of probability theory and statistics,

and deals with large populations and approximations. It is good at describing a

wide variety of fields with an inherently stochastic nature. Information or informa-

tion theory is a natural bridge between statistical physics and statistics/machine

learning. Some researchers think Maximum Likelihood Estimation and Bayesian

51



Chapter 5. A Physical Perspective 5.3 A Statistical Physical Perspective

Inference can be regarded special cases of statistical physics. But, overall speaking,

statistical physical learning is still at the very beginning phase. We have obtained

some interesting results when we try to machine learning in the statistical physical

framework. We will present these works in near future.

5.3.1 Minimum Hamiltonian Estimation

We only present an interesting preliminary result in this subsection. We success-

fully propose Minimum Hamiltonian Estimation which is equivalent to Maximum

Likelihood Estimation (MLE) according to our theoretical analysis. We also prove

that the sample size for training in machine learning is exactly equal to the inverse

temperature in thermodynamics.

Suppose there is a training sample set {x} of m independent and identically dis-

tributed observations, coming from a distribution with an unknown probability

density function p(x). It is however surmised that the density function p(x) be-

longs to a certain family of distributions {p(x|θ), θ ∈ Θ}, where θ is a vector of

parameters for this family, called the parametric model. We decide to estimate θ

by maximizing p(θ|{x}), written as

θ0 = argmax p(θ|{x}) =
p({x}|θ)∫

D(θ)p({x}|θ)dθ
, (5.1)

where D(θ)p({x}|θ) is a normalization factor, D(θ) is the density function of θ.

So we also have

θ0 = argmax p({x}|θ). (5.2)

As

p({x}|θ) =
∏

x(i)∈{x}

p(x(i)|θ)

=
∏

x(i)∈{x}

eln p(x
(i)|θ)

= e
∑
x(i)∈{x} ln p(x

(i)|θ)

= e−m(−
∑m
i=1 p(x

(i)) ln p(x(i)|θ))

= e−mH(θ), (5.3)
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the likelihood l(θ) = ln p({x}|θ) = −mH(θ). We defineH(θ) = −
∑m

i=1 p(x
(i)) ln p(xi|θ)

as the Hamiltonian. According to the analysis above, we have successfully trans-

formed Maximum Likelihood Estimation into a new equivalent estimation method,

named Minimum Hamiltonian Estimation,

θ0 = argminH(θ). (5.4)

And it is a very interesting approach to considering Maximum Likelihood Estima-

tion and Minimum Hamiltonian Estimation in a statistical physical framework.

Maximum Likelihood Estimation is a process that a thermodynamical system

reaches its ground state. And the optimization algorithm decide how the thermo-

dynamical system evolves. In thermodynamics, the probability of a state s with a

energy of E(s)

p(s) =
e−βE

Z
, (5.5)

where Z =
∑

a e
−βE(a) is called the partition function and β = 1

T
is called the

inverse temperature. Let’s compare Equation 5.3 with Equation 5.5. If we analyze

MLE in a statistical physical framework, we can easily notice that the training

sample size m is exactly equal to the inverse temperature β. If the training sample

size m is very large, we can regard the learning model as a low-temperature system.

In the limit of absolute zero T → 0, the low-temperature system certainly tends to

occupy the ground state. In this case, minimizing its hamiltonian is a very good

method modeling the low-temperature system, which indicates good generalization

performance in language of machine learning. If the training sample size m is

very small, we can regard the learning model as a high-temperature system. In

the limit of high temperature T → +∞, the high-temperature system tends to

occupy all possible state uniformly. In this case, minimizing its hamiltonian is

bad for modeling the high-temperature system, which indicates bad generalization

performance in language of machine learning.

See. We have got a very reasonable physical quantity describing the generaliza-

tion performance. Maximum Likelihood Estimation and Minimum Hamiltonian

Estimation use the ground state to model the data set {x}. But a system only

occupy the ground state in a probability of e−βEmin
Z

. So the algorithm only works

in case of low temperature. More importantly, the concept of hamiltonian and

temperature has been introduced into machine learning naturally.
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Conclusion

In this thesis, we have introduced several physical concepts in ensemble learning,

and proposed a physics-inspired machine learning algorithm, Quantum-Inspired

Forest. The physical perspective on machine learning reveals an important new

approach to advancements of machine learning. We summarize the main contri-

butions of this thesis in the following.

In Chapter 3, we mainly propose two-fold contribution. First, we propose a nov-

el ensemble method named Quantum-Inspired Subspace and Quantum-Inspired

Regression Forest. Quantum-Inspired Subspace can be easily applied to diver-

sified base learners and combined with other classical ensemble methods, such

as Bagging. We incorporate Quantum-Inspired Subspace into Random Forest

and propose Quantum-Inspired Forest. The additional computational cost is very

cheap, equivalent to the cost of full-rank PCA preprocessing. Second, we propose

quantum interpretations for several machine learning concepts, and successful-

ly establish a theoretical bridge between quantum interpretations and ensemble

learning. In future research, we consider two directions interesting. The first

direction is to study Quantum-Inspired Subspace under complex circumstances,

particularly classification tasks. The second direction is discover deeper theoretical

connections between quantum mechanics and machine learning algorithms. May

the mechanism of quantum entanglement be helpful for machine learning in some

way? We also believe it will be very valuable to theoretically analyze quantum

interpretations for neural networks.

In Chapter 4, we propose a novel algorithm named Quantum-Inspired Classifica-

tion Forest in this chapter. The heuristical idea also comes from density matrix
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as well as Quantum-Inspired Regression Forest. The difference between Random

Classification Forest and Quantum-Inspired Forest is that we select components

according to the corresponding Fractional Probabilities rather than uniformly ran-

domly. We also perform empirical analysis on 9 UCI data sets. Its performance

can be compared to Random Forest. We also note that the essential difference

between ensemble regression and ensemble classification. We need to find another

way to organize theoretical analysis of Quantum-Inspired Classification Forest. If

so, we may know how to improve the ensemble classification algorithms further.

In Chapter 5, we mainly present a physical perspective on deep neural networks.

How can machine learning interact with theoretical physics? We carefully discuss

several valuable viewpoints on neural networks based on a physical perspective.

We believe this will become a important topic that will attract much attention

of both physicists and machine learners soon in the future. This is absolutely a

forming research field. And it’s very meaningful to discuss several valuable points

at this early beginning of this new field.

In the future, we will care about two approaches. The first one is we plan to

completed the theoretical analysis of Quantum-Inspired Classification Forest in a

information theoretical way, and study the empirical performance of Quantum-

Inspired Forest under complex circumstances. The error decomposition method

of ensemble classification is incomplete now, but information entropy and mutual

information of features may explain or even improve Quantum-Inspired Subspace

further. The second approach, the most important one in our opinion, is applying

the method of quantum physics and statistical physics to machine learning and

neural networks. Not only deep networks can help physicists solve analytically

hard problems, but also physical methods can be very helpful for deep networks.
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