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In this study, we proposed a series effective analysis methods for spare parts demand correlations. First, we 

applied Random Matrix Theory (RMT) to find the genuine correlations in auto spare parts demand by means of 

investigating the statistics of correlation coefficients and the eigenvalue distribution of the correlation matrix by 

comparing with a series of random matrices. We found that the distribution of components for the eigenvectors 

corresponding to the eigenvalues outside the RMT prediction reflects the stable deviations in time, which indicated 

the correlated demand in different groups. Second, we applied the network analysis to visualize the topological 

structure of auto spare parts. We found that the threshold method in network analysis successfully detect the 

change of clusters of correlated demand, and the structure of demand factors could be built by applying the 

minimum spanning tree method to auto spare parts kinds network. The branches of MST reflect certain demand 

factors, the inner layer contains complex demand factors whereas the outer layer indicates simple demand factors. 
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1 Introduction 

1.1 Background 

  Croston’s method1) and its modified versions by 

Boylan2) and Synteton3) are the most widely used 

approaches for intermittent spare parts demand 

forecasting. Croston assumed inter-arrival times as a 

Bernoulli process, making the intervals between 

demand independent and identically distributed (iid) 

geometric, and he further assumed the demand size to 

be iid Normal. In the follow-up related researches, 

some used log transformations of both demands and 

inter-arrival times to amend the sample space for 

Croston’s model including negative values which is 

inconsistent with reality that demand is always 

non-negative, some modified the inter-arrival times to 

other distributions, and the latest study4) implied that 

it is more closer to Negative Binomial Distribution or 

Stuttering Poisson. To improve the prediction accuracy, 

some recent studies5,6) applied the hierarchical 

processing to change item level times into group level 

time series by classification methods such as logical 

regression, and still consider the demand to occur as a 

non-stationary Bernoulli process. 

  However all aforementioned models are based on 

simple exponential smoothing (SES), the forecast 

variances are all increasing over time. 

1.2 Motivation 

  While analyzing the fluctuations in time series data 

of auto spare parts demand, we have observed peculiar 

characteristics such as volatility clustering and 

heavy-tailed leptokurtic distribution, the so-called 

stylized facts found in financial time series. These 

characteristics not only reflect explicit deviations from 

some previous research assumptions, but also motivate 

us to use unconventional analysis methods to explain 

those deviations and to solve the challenges in analyses 

of auto spare parts demand related to demand 

forecasting and inventory management. 

  A latest study of applying RMT to analysis of 

financial market7) shows various stylized facts in the 

distributions of stock return, which are similar to our 

findings in auto spare parts demand data. Furthermore, 

these results implied that the demand of auto spare 

part is not a set of weak-convergence variables, 

correlations among different parts demand. 

  Another recent study successfully applied RMT to 

identify the corresponding business sectors in financial 

data by means of analyzing the statistics of eigenvalue 

and eigenvectors calculated from the correlation matrix 
8). This is an empirical proof that RMT is a suitable 

method to systematically analyze the correlated 

demand in auto spare parts. To our knowledge, RMT 

has not been applied for spare parts demand data 

analysis. Those aforementioned interesting 

characteristics observed from spare parts data 

motivate us to use the econophysics approaches to 

establish a series analysis methods for auto spare parts 

demand correlations. 

 

Fig. 1 Heavy-tailed leptokurtic distribution of auto 
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spare parts demand change 

2 Research Goals 

Our aim is to propose a series effective analysis 

methods for spare parts demand correlations. First, to 

find the genuine correlations of spare parts demand on 

the basis of full investigation of eigenvalues and 

eigenvectors calculated from a serious of correlation 

matrix. Second, to explain the mechanism of the 

emerged demand correlations by means of applying 

alternative network approaches. 

3 Econophysics approaches 

3.1 Statistics of correlation coefficients 

  We first calculate the demand change of auto spare 

parts by 

𝐺𝑖(𝑡) = 𝑆𝑖(𝑡) − 𝑆𝑖(𝑡 − 1),                                                             (1) 

where 𝑆𝑖(𝑡) denotes the demand of material 𝑖. Since 

different materials have varying levels of demand scale, 

we define a normalized change as 

𝑔𝑖(𝑡) =
𝐺𝑖(𝑡) − 𝐸𝐺𝑖(𝑡)

√𝑣𝑎𝑟𝐺𝑖(𝑡)
,                                                                (2) 

where 𝐸𝐺𝑖(𝑡) is the expectation of 𝐺𝑖(𝑡), √𝑣𝑎𝑟𝐺𝑖(𝑡) is 

the standard deviation of 𝐺𝑖(𝑡). In matrix notation, the 

correlation matrix can be written as 

𝑪 =
1

𝑇
𝑮𝑮𝑻,                                                                                        (3) 

where 𝑮  is an 𝑁 × 𝑇  matrix, and 𝑮𝑻  denotes the 

transpose of 𝑮 . Thus, we construct a random 

correlation matrix 𝑹 = (1 𝑇⁄ )𝑨𝑨𝑻 with zero mean and 

unit variance, where 𝑨  is a 𝑁 × 𝑇  random normal 

matrix with zero mean and unit variance. Fig. 2 shows 

the comparison of correlation matrix elements. 

 

Fig. 2 Statistics of correlation coefficients. N=1516, 

mean value of correlation matrix elements is 0.1399, 

variance is 0.0066, skewness is 1.7259 calculated from 

∑ (𝐶𝑖𝑗 − 𝐸𝐶𝑖𝑗)𝑛/[𝑁2(𝑣𝑎𝑟𝐶𝑖𝑗)𝑛 2⁄ ]𝑁
𝑖,𝑗=1  when n=3, kurtosis 

is 12.9280 when n=4. 

  Fig. 2 initially showed the bulk of correlation matrix 

elements of auto spare parts demand is not random. 

Next, we test the eigenvalue distribution of the 

correlation matrix. 

3.2 Eigenvalue distribution of the correlation matrix 

  According to random matrix theory, For matrix 𝑹, 

when 𝑁, 𝑇 → ∞  and 𝑄 ≡ 𝑇 𝑁⁄ > 1 , the probability 

density 𝜌(𝜆)  of eigenvalues 𝜆  of the random 

correlation matrix is given by 

𝜌(𝜆) =
𝑄

2𝜋

√(𝜆+ − 𝜆)(𝜆 − 𝜆−)

𝜆
,                                                   (4) 

where the maximum and minimum eigenvalues of 𝑹, 

respectively, given by 

𝜆± = 1 +
1

𝑄
± 2√

1

𝑄
 .                                                                      (5) 

  The distribution of eigenvalues 𝜆 of the correlation 

matrix 𝑪  appeared deviations from RMT scope as 

shown in Fig. 3. 

 

Fig. 3 Eigenvalue distribution of the correlation matrix. 

The largest eigenvalue 𝜆1516 =234.4, 𝜆100 < 𝜆− < 𝜆101 , 

𝜆1469 < 𝜆+ < 𝜆1470, 𝜆−=0.0029, 𝜆+=3.7858. 

  We note several eigenvalues outside the RMT upper 

bound 𝜆+ , this is a clear distinction between 

correlation matrix 𝑪  and 𝑹 . Although most 

eigenvalues of 𝑪 are included in RMT range [𝜆−, 𝜆+], 

we need to further test the statistics of eigenvalue 

distribution inside RMT range [𝜆−, 𝜆+] to investigate 

whether the deviation is stable in time. First, we 

calculate the unfolding eigenvalue 𝜉𝑖(𝜆𝑖) by 

𝜉𝑖(𝜆𝑖) = 𝑁̃ ∫
𝑄

2𝜋

𝜆𝑖

𝜆−

√(𝜆+ − 𝜆)(𝜆 − 𝜆−)

𝜆
𝑑𝜆,                                (6) 

where 𝑁̃ is the amount of eigenvalues inside [𝜆−, 𝜆+]. 

Defining 𝑠𝑖 = 𝜉𝑖+1 − 𝜉𝑖 is the nearest-neighbor spacing, 

if the correlation matrix have the properties of 

Gaussian orthogonal ensemble, then the distribution of 

𝑠𝑖 is given by 
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𝜌𝐺𝑂𝐸(𝑠) =
𝜋𝑠

2
𝑒−

𝜋
4

𝑠2

,                                                                       (7) 

the distribution of unfolding eigenvalues of correlation 

matrix 𝑪 also appeared the some deviation from RMT 

prediction as shown in Fig. 4. Although the eigenvalue 

spacing distribution of 𝑪  deviates from the GOE 

prediction, general distribution feature like 

distribution shape remains the same. A small amount 

of correlation information inside RMT bound cannot 

reject the hypothesis that the deviations outside the 

RMT upper bound are the genuine and stable 

correlation information in auto spare parts demand. 

 

Fig. 4 Nearest-neighbor spacing distribution of the 

unfolded eigenvalues of the correlation matrix 

3.3 Statistics of eigenvectors 

  The deviations of eigenvalue distribution of 

correlation matrix from RMT prediction imply that 

these deviations should also be discovered in the 

statistics of the corresponding eigenvector components. 

According to RMT, if a random correlation matrix is 

constructed by zero mean and unit variance, then the 

eigenvector components 𝑢𝑗
(𝑖)

 obey Gaussian 

distribution 

ρ (𝑢𝑗
(𝑖)

) =
1

√2𝜋
𝑒−

𝑢𝑗
(𝑖)2

2 ,                                                                   (8) 

  We observed the grouping of spare parts and car 

series in the eigenvector components corresponding to 

the eigenvalues outside the upper RMT bound, and 

there is no grouping occurs in the eigenvector 

components inside RMT bound, the grouping of spare 

parts emerges in the eigenvector components 

corresponding to the eigenvalues outside the lower 

RMT bound whereas the grouping of car series did not 

emerge. 

  Although we achieve the stable demand correlations 

from the eigenvector components corresponding to the 

eigenvalues outside the RMT prediction, and do 

observe the grouping of spare parts in those eigenvector 

components, the corresponding demand factors and the 

structure of demand correlations are still vague. We 

will apply the network analysis to solve the two issues. 

4 Network approaches 

4.1 Topological structure of spare parts networks 

  A previous study on resolving the structure of 

financial markets9) shows that the network analysis 

can efficiently and legibly interpret the connection 

between different data clusters. 

We first calculate the demand change of auto spare 

parts by Eq. (1). Since different materials have varying 

levels of demand scale, we define a normalized change 

as Eq. (2). 

  In matrix notation, the correlation matrix can be 

written as Eq. (3), this equal-time cross-correlation 

matrix is computed with elements 𝐶𝑖𝑗which are limited 

to the domain[−1,1]. For the spare parts coefficients 

𝐶𝑖𝑗 = 1 (absolute value) corresponds to perfect 

correlation between different spare parts kinds and 

𝐶𝑖𝑗 = 0 corresponds to no correlation. 

  The network of spare parts kinds using the threshold 

methods is defined as follows. The set of vertices (𝑉) of 

the network defined by the set of spare parts kinds. A 

certain threshold 𝜃 (−1 ≤ 𝜃 ≤ 1) will be given and an 

undirected edge connecting the vertices 𝑖 and 𝑗 will 

be added if 𝐶𝑖𝑗 is greater than or equal to 𝜃. Therefore 

different values of threshold generate networks with 

the same set of vertices but different sets of edges. The 

edges (𝐸) in the graph 𝐺 = (𝑉, 𝐸) which displayed the 

network of spare parts kind are given by 

𝐸 = {
𝑒𝑖𝑗 = 1, 𝑖 ≠ 𝑗, 𝑎𝑛𝑑 𝐶𝑖𝑗 ≥ 𝜃,

𝑒𝑖𝑗 = 0, 𝑖 = 𝑗.
                                                (9) 

  We construct spare parts correlation networks of 

kinds at different thresholds (𝜃 in range 0.1 to 0.9). 

The Fruchterman-Reingold layout is used to find 

clusters in all these networks. 

 

Fig. 5 The network generated by the threshold at 0.3 

  In Fig. 5, the top right group of spare parts related to 
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the components of u1506, this group mainly contains 

bumper bar and fender, both of them highly related to 

the traffic accidents. However, the spare part v1421 in 

the same cluster is a condenser which is hardly 

correlated to traffic accident based on intuitive 

inference. To distinguish between a noise and a hidden 

demand factor, we then apply the MST method to find 

the structure of demand factors and the corresponding 

parts of a certain demand factor. 

4.2 Minimum spanning tree 

  We construct the network of spare parts kinds by 

using the metric distances 𝑑𝑖𝑗 = √2(1 − 𝐶𝑖𝑗)  forming 

and 𝑁 × 𝑁  distance matrix with elements vary 

between 0 and 2. 

 

Fig. 6 Minimum spanning tree of auto spare parts 

  In Fig. 6, we found that those parts near the center of 

MST are related to the eigenvector components 

corresponding to the largest eigenvalue. Since the 

largest eigenvalue contains the most complex demand 

correlation information, the outer layer branches of 

MST should reflect certain demand factors. We can 

locate the v1421 in the most outer layer of MST, this 

result imply that v1421 have the same demand factor 

as the other parts on the same branch. Actually, the 

failure of v1421 often happens, and v1421 could be 

easily damaged in a traffic accident due to it locates at 

the front part of engine space, as a consequence, v1421 

usually replace with other spare parts related to traffic 

accidents. A hidden demand factor successfully 

revealed by MST. 

5 Summary 

  We applied RMT to analyze the auto spare parts 

demand. We found that RMT successfully met our 

analysis needs for finding the genuine correlations in 

auto spare parts demand. In particular, we investigated 

the statistics of correlation coefficients and the 

eigenvalue distribution of the correlation matrix by 

comparing with a series of random matrices. Our main 

findings is that the distribution of components for the 

eigenvectors corresponding to the eigenvalues outside 

the RMT prediction reflects the stable deviations in 

time, which indicated the correlated demand in 

different groups. 

  To further understand and to verify the analysis 

results of RMT, we applied the network approaches to 

visualize the topological structure of a simplified 

network with 91 kinds of auto spare parts. We found 

that the threshold method in network analysis 

successfully detect the change of clusters of correlated 

demand. Our main findings is that the structure of 

demand factors could be built by applying the 

minimum spanning tree method to auto spare parts 

kinds network. The branches of MST reflect certain 

demand factors, the inner layer contains complex 

demand factors whereas the outer layer indicates 

simple demand factors. 

  Combined with the two steps analyses, we proposed 

the general analysis methods for spare parts demand 

correlations. 
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