東京大学大学院新領域創成科学研究科 社会文化環境学専攻

2017 年度 修士論文

局所加熱によるガラス溶着法における 残留応力の低減法と数値解析アルゴリズム

Reduction Method and Simulation Algorithm of Residual Stress in Locally Fused Glass Plates

2018 年 1 月 22 日提出 指導教員 佐藤淳 准教授

西村 祐哉 Yuya Nishimura

目次

- 1章 序章
 - 1-1. 建築分野におけるガラスと溶着技術
 - 1-2. 想定するガラス溶着方法と課題
 - 1-3. ガラス溶着に関連する技術
 - 1-4. 用語の定義
 - 1-5. 既往研究での成果と本研究の目的
 - 1-6. 本論文の構成
- 2章 ガラスの性質
 - 2-1. ガラス転移
 - 2-2. ガラスの実用強度
 - 2-3. 冷却に伴う残留応力
 - 2-4. 粘弹性
 - 2-5. 光弹性原理
 - 2-5-1. 複屈折
 - 2-5-2. 偏光顕微鏡
 - 2-5-3.等傾線画像
 - 2-5-4.等色線画像
 - 2-5-5. 鋭敏色画像
- 3章 溶着実験
 - 3-1. 目的
 - 3-2. 実験方法
 - 3-2-1.試験体
 - 3-2-2.溶着手順
 - 3-2-3. 温度測定法
 - 3-2-4.ガラス溶着炉
 - 3-2-5. 偏光顕微鏡
 - 3-3. 実験内容
 - 3-3-1.パラメータの定義
 - 3-3-2.実験内容の分類
 - 3-3-3.試験体一覧
 - 3-3-4. 応力值測定方法
 - 3-4. 実験結果
 - 3-5.考察
 - 3-5-1.ガラス表面温度と雰囲気温度の違い
 - 3-5-2.ガス溶着炉の温度分布特性
 - 3-5-3.温度勾配のあるガラスの冷却に伴う残留応力発生原理
 - 3-5-4.温度勾配と残留応力値の関係

- 3-5-5.溶着後の残留応力分布
- 3-5-6.局所加熱完了時とアニーリング終了時における軟化範囲と溶着の可能性
- 3-5-7.溶着後の割れの原因
- 4章 熱応力解析手法
 - 4-1. 解析の目的・位置づけ
 - 4-2. モデル化
 - 4-2-1. 剛性のモデル化
 - 4-2-2.ガラスの機械的性質のモデル化
 - 4-2-3.粘弾性のモデル化
 - 4-2-4.温度分布のモデル化
 - 4-2-5.温度履歴のモデル化
 - 4-3. 解析方法
 - 4-4. 解析結果
 - 4-5.考察
 - 4-5-1.ステップ刻みの違いによる影響
 - 4-5-2.実験結果との比較一最大・最小主応力度
 - 4-5-3.実験結果との比較-xy軸上での応力分布
- 5章 溶着線方向への展開
 - 5-1. 本章の目的
 - 5-2. 実験方法
 - 5-3. 試験体一覧
 - 5-4. 実験結果
- 6章 総括
 - 6-1. 本論文での成果
 - 6-2. 今後の課題

付録

各試験体の実験詳細・解析詳細 熱応力解析プログラム 参考文献

謝辞

1章 序章

1-1.建築分野におけるガラスと溶着技術

現在、建築に使われている主なガラス板はフロート製法で作られたソーダ石灰ガラスであり、一般 的にフロート板ガラスと呼ばれる。フロート板ガラスは連続した帯状のガラスとして成形されてお り、製造可能な幅方向の寸法には上限がある。原理的にはどれだけ長いガラスも製造可能であるが、 工場から陸路で運搬する際の制限から長さ方向にも限界がある。このように、建築に使用できるガラ ス板の寸法には限界があり、以下の表1.1に製品としてのガラス板の最大寸法の一例を示す。

呼び厚さ[ミリ]	最大寸法[mm]		
2	$914 \times 813 \cdot 1219 \times 610$		
3	2438×1829		
4	2438×1829		
5	3590×2490		
6	6000×2980		
8	7620 imes 2921		
10	7620 imes 2921		
12	10160×2921		
15	10160×2921		
19	10160×2921		

表1.1 製品としてのフロート板ガラス最大寸法[1][2]

これまでに、上記のような限られた寸法のガラス板で大きなガラスファサードを構成するための 様々な構法が登場した。ガラスの支持方法として、サッシやフレームにガラスをはめ込み、シーリン グ材等で固定する方法がよく見られる。ガラス面のみでファサードを成立させようと試みたものは主 に SSG 構法(Structural Sealant Glazing)と Planar Fitting System が挙げられる^{[3][4]}。前者はガラスの エッジ部を構造シーラントの接着によって室内側に設けられたサッシに取り付ける支持方法で、ファ サードにはサッシ枠が現れない。シーラントの接着性能が特に重要であり、シーラントが荷重・変形 を負担しないような工夫がなされている。後者は主にガラスの隅部を金物によって支持する方法で、 特に DPG 構法(Dot Point Glazing)が有名である。どちらの構法も目地幅を極力小さくしガラスの連 続性を追求しているものの、依然目地は完全には消えていない。またガラスの支持構造体が別途必要 であり、張力トラスやガラスリブといった透明かつ繊細な構造体が用いられているが、透明度を損な う要素であることに違いはない。

そこでガラス材同士をエッジ部で突き合わせて、接合部を再加熱し一体化することが出来れば2次 部材なしでの接合が可能となり、極めて透明度の高いガラス面の実現が可能となる。この技術はガラ ス板を同一面内で接合するだけでなく、角度をつけて板ガラス同士を接合することにも応用でき、ガ ラス面で構成されるガラスドームのような立体的な構築物の可能性も秘めている。

現在のガラス製造分野において、物理強化と呼ばれるガラスの熱的強化方法においてガラス板の再 加熱は行われているが、この場合はガラス内部の板厚方向に発生する温度差を扱うものであり、ガラ ス面内での温度差に着目した研究は少ない。本研究はガラス溶着技術において必然的に生じるガラス 面内温度差に着目して、実験及び解析を通してガラス溶着技術の成立に向けた基礎的研究を行うもの である。 1-2. 想定するガラス溶着方法と課題

本研究の将来的な目標は、図1.1に示すような、ガラス目地を走査しながら逐次的に溶着していく小型の装置を開発することである。運搬可能な寸法のガラス板を建設現場まで運び、建設現場で自走式溶着装置を用いて溶着する想定である。装置内部に加熱を担う部分と冷却を担う部分が共存し、装置が通過した部分のガラスは溶着されているというような装置である。溶着するガラス板は炉以外の支持機構によって固定されており、ガラス面の上側と下側に同期を取りながら並進するような溶着炉を想定する。このような溶着装置の場合、装置内ではガラスは溶融するほどの高温となり、装置の外ではガラスが外気と触れるためほぼ常温となる。このような温度差がガラス内部に伸縮量の違いをもたらし、割れもしくは溶着後の残留応力の原因となる。この温度差に伴う残留応力が溶着法における根源的な課題である。

1-3. ガラス溶着に関連する技術

ガラス工芸の分野では、ガラス板やガラスの小片を溶融し一体化するガラスフュージングやキャステ ィングと呼ばれる技法が知られている。また、ガラス容器やガラスブロックのようなガラス製品の製造 においても溶融したガラスを扱っており、特に光学ガラスの製造においては、ガラス内部の屈折率の制 御が重要なため、慎重な徐冷過程がなされている。このようなガラス工芸やガラス製造の分野では、冷 却過程においてガラス全体が均一な温度になるように冷却速度を管理している。特に冷却過程において アニールソークと呼ばれる定温保持過程とアニールクールと呼ばれる定速冷却過程(徐冷)が重要であ ることが知られている^{[7][8]}。どちらの工程もガラス内部に温度差が生じないよう徐冷するためであり、 こうした慎重な温度管理によって残留応力の少ないガラスを制作・製造している。

図1.2 光学ガラス製造におけるアニールの熱履歴

ガラス溶着と類似した技術として鉄骨の溶接が挙げられる。溶接工学においても面内での温度差に起 因する残留変形と残留応力は研究の対象となっている^{[9][10]}。残留変形は、溶着線方向の変形(縦収縮)、 溶着線と垂直な方向の変形(横収縮)、面外方向の回転変形(角変形)の3種類に分類され、溶接の条件 によってはこれらの組合せによってより複雑な変形が生じる。

図1.3 溶接による残留変形

ガラスの溶着と鉄骨の溶接で決定的に違うのは、鉄骨は塑性化するということである。溶接工学で明ら かになっている残留応力の発生プロセスにおいて鉄骨は塑性化しており、残留応力の最大値は降伏強度 σ_yであるとされている。一方ガラスは脆性材料であること、またガラスの強度はばらつきが大きいこ とが知られており、溶着技術を成立させるには残留応力を十分に小さく抑える必要があると考えられる。

1.3

1-4.用語の定義

本論文で用いる用語について定義する。

・方向の呼称と座標軸

溶着線を基準とし、溶着線と平行な方向を奥行方向もしくは溶着線方向、溶着線と垂直な方 向を幅方向と呼ぶことがある。また、ガラス面上の位置を示すために幅方向を x 軸、奥行方向 を y 軸とし、y 軸は溶着線と重なるようにとる。厚み方向に関しては本論文では扱わない。

図1.5 方向の呼称と xy 座標

・温度分布

ガラス面内での2次元的な温度の分布を表す。現在の研究段階ではガラスの厚み方向の温度 差を測定することが出来ないため、厚み方向の温度差はないと仮定している。

・温度勾配

温度分布を単純化して捉えるために、1 次元的な温度の変化率を温度勾配として表す。すな わち、(温度勾配 S) = (温度変化量 dT) / (距離 dx) であり、単位は[℃/cm]で表す。

・軟化範囲

ガラスは結晶体とは違い、ガラス転移点と呼ばれる温度(2-1に後述)を境に物性が急激に 変化することが知られている。そこで、ガラス転移点以上の温度ではガラスは軟化したとみな し、軟化している領域を軟化範囲と呼ぶ。

図1.6 温度勾配と軟化範囲の定義

1-5. 既往研究での成果と本研究の目的

本研究に関する既往研究での成果を示す。筆者^[11]および滝口ら^[12]によって、溶着が可能となる温度条 件を明らかにすることを目的とし、局所加熱時(3-2-2に後述)の軟化範囲とアニーリング終了時の 軟化範囲に着目した実験が行われている。試験体は 150x300x8mm のフロート板ガラスを用いており、 奥行方向の温度分布は均一であると仮定し幅方向の温度分布のみを考慮している。以下の提言・示唆が なされている。

- (1) アニーリング終了時の温度勾配が緩やかな方が残留応力値が小さい。
- (2) 溶着を可能とするには、アニーリング終了時の軟化範囲がある程度以上必要である。具体的には、試験体全幅W(溶着する2枚の試験体幅の合計)に対するアニーリング終了時の軟化範囲幅 L_Aの割合 L_A/W が 0.37 以上の場合に溶着が成功した。試験体は W=600mm に統一されているので L_A≧222mm である。ただし、試験体全幅が 600mm に限定されているため、必要な軟化範囲幅が絶対値なのか相対値なのかの判断が出来ていない。また、局所加熱時の軟化範囲とアニーリング時の軟化範囲がともに十分小さいような条件での実験は行えていない。
- (3) アニーリング終了時の軟化範囲境界付近に残留応力のピーク値が分布する。これは割れが発生した試験体での割れのパターンからも推測される。

定性的に温度勾配の小さいほうが残留応力値が小さくなることが指摘されている。残留応力値を制御 し十分小さく抑えるためには、温度勾配と残留応力の定量的な関係を把握する必要がある。そこで本論 文では、これまでに溶着に成功した試験体に加え、試験体の幅を 450mm 及び 600mm としてアニーリ ング終了時の温度勾配を変化させた実験を行い、温度勾配と残留応力の関係を明らかにすることを目的 とした。

1-6.本論文の構成

本論文の構成を以下に述べる。

- 1章 建築におけるガラス板の使用可能な寸法制限を背景としたガラス溶着法による新たなガラス 表現の可能性について言及した。既往研究での進展と、本研究で想定するガラス溶着法を踏ま えて、本論文での研究目標について述べた。またガラス溶着法に関連する分野を参考に、ガラ ス溶着法において想定される課題点を挙げた。
- 2章 ガラスの機械的性質・熱的性質のうち、溶着に関連するものについて述べる。さらに溶着後の ガラスに生じる残留応力の検出に利用する光弾性原理について述べる。
- 3章 幅方向の温度勾配をパラメータとして行った実験について述べる。また溶着後の試験体に生じ た残留応力の計測方法についても述べる。
- 4章 粘弾性によるガラスの緩和現象を考慮した増分解析の提案を行う。3章における実験で得られ た温度データを入力値とした解析を行い、実験結果の応力状態との比較によって解析の妥当性 と問題点を示す。
- 5章 これまでの幅方向の温度勾配に制限したガラス溶着から、溶着線方向への展開を試みる。想定 する自走式溶着炉においては溶着線方向にも温度勾配が発生する。3章での考察により、溶着 に適したと考えられる幅方向の温度勾配条件が溶着線に沿って逐次的に展開される実験につ いて述べる。
- 6章 本論文での成果と今後の課題をまとめる。

2章 ガラスの性質

2-1. ガラス転移

ガラスの定義には様々なものがあるが、一般的には以下の2条件を満たすものをガラスと定義する^[6]。

(1) 結晶の存在しない、非晶質であること

(2) ガラス転移現象を示すこと

通常の物質は、冷却時に融点において結晶を生成し固化するが、ガラスは結晶化しないまま温度の下降とともに流動性をう。その過程でガラスの性質が急激に変化することが知られており、その現象をガラス転移と呼ぶ。図 2.1 は例として比容の温度依存性を示したものである。ガラスは融点 Tm においては性質の変化を示さず、過冷却液体として冷却され、ガラス転移点 Tg と呼ばれる温度において液相からガラス相へと相転移をする。これは冷却に伴いガラスの粘性が極めて大きくなり固体とみなせる状態に転移することに対応している。図 2.2 に示すようにガラス転移点は冷却速度によってわずかに変化するため、ガラス転移点のことをガラス転移範囲と呼ぶこともある。ガラス内部で冷却速度が異なると、相転移後のガラス性質に違いが生じ、残留ひずみの原因となる。冷却速度が均一になるように徐冷を行うことが重要である。

図2.1 ガラス転移

図2.2 冷却速度とガラス転移

2-2. ガラスの実用強度

ガラスの破壊はガラスを構成する原子間の結合が引き離されることで起こる。理論的な原子間結合力 より計算されるガラスの強度は約 29,420N/mm² であるが、実用的な強度としては 49~98N/mm² 程度 である。これはガラス表面に製造や運搬等の過程で微細な傷がつき、表面に引張応力が発生した場合に 傷の先端部において応力集中が発生するためである。この傷はグリフィスフローと呼ばれ、特にガラス のエッジ部に多く分布する。従って、応力状態としてエッジ部に引張応力が生じるような状態は避ける べきである。傷の発生具合を制御することは現状出来ず、ガラスの寸法や荷重条件によりガラス強度に ばらつきが存在するが、ここでは平均値としての破壊応力と許容応力を示す。

	-		-		_	-
呼び厚さ	長期許	容応力	短期許	容応力	平均破	壞応力
[ミリ]	面内	エッジ	面内	エッジ	面内	エッジ
2,3,4,5,6,8	9.8		24.5		54.9	
10,12	8.8	6.9	22.1	177	51.0	25.2
15,19	7.8		19.6	17.7	48.1	- 55.5
22,25	7.4		18.6		46.6	

表2.1 フロート板ガラスの許容応力と平均破壊応力^[1] [N/mm²]

2-3. 冷却に伴う残留応力

ここでは例として、平板ガラスを一定の速度で冷却する際の厚み方向の温度分布を考える。図2.3、 図2.4、図2.5はガラス板を一定の冷却速度で冷却した際の、板厚方向での温度分布と応力の発生状 態を示したものである^[15]。

図2.3のようにガラス転移点以下の温度からガラスを冷却する場合、ガラス内部に温度差が生じる と、伸縮量の違いによるずれ(ひずみ)が発生するが、温度差がなくなるとひずみもなくなる。このよ うなひずみは一時ひずみと呼ばれる。一方、図2.4に示すような溶融したガラスを冷却する場合には、 ガラス内部に温度差が生じた状態で相転移をし、冷却過程で一時ひずみが生じない。最後にガラス全体 が常温になった時点でガラス内部にひずみが現れる。このようなひずみを残留ひずみ(永久ひずみ)と いい、残留ひずみによる応力を残留応力という。フロート板ガラスの製造においては板厚方向に温度差 が生じないようにガラス転移点付近の温度帯で慎重な徐冷を行っている。

図2.5のようにガラス転移点付近から冷却する場合には、ガラス表面付近が先行してガラス転移す る。このとき、中央部の粘度はある程度は大きいために一時ひずみが発生する。最後に温度分布が平坦 になる際には一時ひずみとは逆方向のひずみが生じる。結果的には一時ひずみが残留ひずみを減少させ るように働く。

2-4. 粘弹性

ガラスは粘弾性を示す物質である。粘弾性とは、固体が持つ弾性と液体が持つ粘性の狭間として捉えら れる。物質にある応力が作用したとき、弾性体は応力に比例した変形が生じ、応力が消えると変形も消 え元の形に戻る。一方、粘性体の場合は応力が消えても変形が残り元の形には戻らない。

粘弾性体において一定の応力を与えた場合、時間とともに歪が増大する。この現象をクリープと呼 ぶ。また、一定の歪を与えた場合、応力が時間とともに減少していき、応力緩和現象と呼ばれる。

図2.6 粘弾性体における時間依存性のある応力--- 歪現象

粘弾性体の挙動は、弾性を表すバネと粘性を表すダッシュポッドを組合せた力学モデルによって定性 的に表されるが、温度に依存するガラスの挙動を厳密にモデル化するのは容易ではない。最も基本的な 粘弾性の力学モデルとしてバネとダッシュポッドを直列に繋げたマクスウェルモデル、並列に繋げたフ ォークトモデルが知られる(図2.7)。

図 2.7 粘弾性の力学モデル

一定のひずみを与えた場合のマクスウェルモデルの構成方程式は、

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}t} = \frac{\mathrm{d}(\varepsilon_{\mathrm{s}} + \varepsilon_{d})}{dt} = \frac{1}{E} \cdot \frac{\mathrm{d}\sigma}{\mathrm{d}t} + \frac{\sigma}{\eta}$$
(2.1)

今ひずみは一定なので、

$$\sigma = -\frac{\eta}{E} \cdot \frac{d\sigma}{dt}$$

$$\sigma = e^{-t\frac{E}{\eta}} \cdot \sigma_0 = e^{-\frac{t}{\tau}} \cdot \sigma_0 \qquad (2.2)$$

 η は粘度[Pa・s]、E は弾性係数[Pa]、t は経過時間[t]を表す。式(2.2)は応力緩和を表している。 τ を緩 和時間と呼び、応力緩和の速度を表す指標となる。緩和時間 τ だけ保持した場合、式(2.2)より、

$$\sigma_{t=\tau} = \frac{1}{e} \cdot \sigma_0 \cong 0.37\sigma_0$$

となり、初期の応力の約37%まで緩和される。

式(2.2)より、応力緩和には粘度が影響していることが分かる。ガラスの製造においては粘度の管理 が重要であり、いくつかの特異点が工学的に定義されている。

	温度	粘度	定義	
	[°C]	[(log)Pa·s]		
軟化点	734	7.6	ガラスが加熱により自重で変形、軟化を起こし始める温度	
徐冷点	550	13.0	15 分間温度保持するとひずみが除かれる	
転移点	550	13.0	ガラスが固体状態から液体状態に変わり急激に伸び率が上がる温度	
歪点	508	14.5	この温度以下では粘性流動による歪は生じない	

表2.2 フロート板ガラスの特性温度[7]

溶融したガラスに永久歪が生じないように、かつガラス自体を変形させずに冷却するには、ガラスの 粘度が十分大きく変形を生じないような温度で、なおかつ緩和時間が十分短い温度でガラスを保持した のち、これ以上ガラスに歪が生じない温度までガラス全体をゆっくりと均一に冷やす必要がある。歪点 以下では、ガラスに歪が生じないので比較的急速に冷却しても構わないが、冷却過程での一時歪により ガラスが割れてしまわないように注意する必要がある。 2-5. 光弹性原理

2-5-1. 複屈折

原子や分子の電子分極状態が異方性を示すために、結晶において屈折率(誘電率)に異方性が現れる ような物質を複屈折性の物質という。このような異方性(光学的異方性)をもつ透明な物質に直線偏光 を入射させた際に、振動面が互いに直交する2つの偏光に分解される現象を複屈折という。ガラスは光 学的には等方性物質であるが、応力を受けていると複屈折が起こることが知られており、この性質を光 弾性と呼ぶ。光弾性体においては応力によって応力方向の屈折率が変化しており、溶着後のガラス板に 発生している残留応力を観察・計測するためにこの光弾性を利用する。本論文では、偏光顕微鏡を使用 した非破壊法による残留応力測定を行った。

複屈折により分解された2つの光波は正常光と異常光と呼ばれ、光波が分解される方向を光学軸と呼ぶ。空気中での光速を c_0 、それぞれの光学軸での屈折率を n_1, n_2 ($n_1 > n_2$)とすると、正常光と異常光の物質中を進む光の速度は、

$$c_1 = \frac{c_0}{n_1}$$
 (2.3)

$$c_2 = \frac{c_0}{n_2}$$
 (2.4)

また、物質に応力が働くと、応力に比例して屈折率が変化し、その比例定数を光弾性定数 C と呼ぶ。 $n = n_0 + C \cdot \sigma$ (2.5)

このようにそれぞれの光学軸方向での物質の屈折率に応じて、物質中を透過する際の光の速度が異な るため物質を透過した後の正常光と異常光との間には光波の波長に寄らない光路差が生じる。この光路 差をレタデーション(Retardation)と呼びRで表す。

$$R = c_0 \left(\frac{t}{c_1} - \frac{t}{c_2}\right) = t (n_1 - n_2) = C t (\sigma_1 - \sigma_2)$$
(2.6)

ここで、 t:物質の光波進行方向の厚み

 σ_1 , σ_2 :物質中の最大主応力度、最小主応力度(引張を正とする) 光波の波長を λ [nm]とすると、レタデーション R[nm]に相当する位相差 δ [rad]は

図2.8 複屈折

ここでは物質の厚み方向に一様な応力状態を仮定しているが、変化する場合は積分値として R が求められる。式(2.3)及び(2.5)より、引張応力($\sigma > 0$)が働く場合には透過光が遅れ、圧縮応力($\sigma < 0$)の場合は透過光が速まることになる。

2-5-2. 偏光顕微鏡

偏光顕微鏡とは、光源と偏光板から成る光学顕微鏡のことを指し、内部応力が生じているガラスの 複屈折を検出・分析するために使用する。光源には通常単色光が用いられるが、ここでは3章で使用 する偏光顕微鏡が白色光を用いているため、白色光を用いた場合の性質について述べる。基本的な光 学系としては、図2.9に示すように面光源と観測用カメラの間に2枚の偏光板が平行に設置されてい る。光源側の偏光板は偏光子(polarizer)、観測レンズ側のものは検光子(analyzer)と呼ばれる。互 いの透過軸は直交するように設置されるため、観測レンズまで光源の光が届かず視界は黒くなる。し かし、内部応力のあるガラス試験体を2枚の偏光板の間に挿入すると複屈折が起こり、検光子を光が 透過するようになり、ガラスの応力状態を反映した光の状態を観察できる。さらに波長板を適切に挿 入した光学系として、検光子を透過した光の様子を観察することでガラスの主応力度差、及び主応力 方向が計測できることが知られている[17]。

2-5-3. 等傾線画像

図2.9のように偏光子と検光子の間に内部応力の生じたガラス板を挿入した状態での観察法を直交 ニコル法という。光源には白色光を用いているため様々な波長の光が含まれている。

図2.10 直交ニコル法における光学軸

いま、ある波長λの光に着目して、光源での光の振幅を A₀とすると、光の強度 I₀は

 $I_0 \propto A_0^2$

(2.8)

で与えられる。偏光子の透過軸と試験体の主応力方向のなす角度を θ ($0^{\circ} \leq \theta < 90^{\circ}$)、試験体の複屈 折によって正常光と異常光の間に位相差δが生じるとすると、検光子を透過した正常光・異常光はそ れぞれ以下の式で表される。

 $y = A_0 \sin\theta \cos\theta \cdot \sin\varphi = \frac{1}{2}A_0 \sin2\theta \cdot \sin\varphi$ 正常光

 $y = -A_0 \sin\theta \cos\theta \cdot \sin(\phi + \psi) = -\frac{1}{2}\sin 2\theta \cdot \sin(\phi + \delta)$ 異常光

2つの波を加法定理により合成すると、

$$y = -A_0 \sin 2\theta \cdot \sin \frac{\delta}{2} \cdot \cos(\phi + \frac{\delta}{2})$$

$$I \propto A_0^2 \sin^2 2\theta \cdot \sin^2 \frac{\delta}{2} = A_0^2 \sin^2 2\theta \cdot \sin^2 \left(\frac{R}{\lambda}\pi\right)$$
(2.9)

従って、光源から出る光のうち、観察者まで届く光の割合は式(2.8)、(2.9)より

$$\frac{I}{I_0} \propto \sin^2 2\theta \cdot \sin^2 \left(\frac{R}{\lambda}\pi\right) = \sin^2 2\theta \cdot \sin^2 \left(\frac{Ct(\sigma_1 - \sigma_2)}{\lambda}\pi\right)$$
(2.10)

と表され、 θ =45[°]のときに検光子を通過する光の強度は最大となる。逆に θ =0[°]の時、言い換えれ ば主応力方向が偏光子及び検光子の透過軸と一致する場合には、検光子を透過する光はなく試験体は 黒く見える。主応力角度は試料面内で連続的に変化するので、線状に黒い部分が見える(図2.11)。 この線を等傾線と呼び、等傾線上では主応力角度が θ で一定である。この性質を利用して、試料を偏 光顕微鏡内で回転することで試料面内の主応力角度を得ることができる。直交ニコル法で撮影した画 像を等傾線画像と呼ぶ。

また、式(2.10)において R=0、すなわち内部応力が存在しない場合にも直交ニコル法では黒く見える。周囲の様子から明白な場合が多いが、次に述べる等色線画像と比較することで内部応力が存在するかどうかは判別できる。

図 2.11 等傾線画像の例

2-5-4. 等色線画像

図2.12のように偏光子と試験体の間、及び試験体と検光子の間に 4 分の1波長板を挿入した状態 での観察方法を円偏光法という。

※矢印は、試料においては主応力方向を、偏光板においては透過軸を、波長板においては遅相軸を表す

図2.13 円偏光法における光学軸

4分の1波長板は複屈折材料から成り、入射する偏光を一定の光路差を持つ2つの直交する偏光に分 解するものである。ここで用いた4分の1波長板は140nmの光路差を与えるもので、550nmの波長の 波(緑の光波)に対して4分の1波長に相当する。波長板において、正常光の振動面と平行な光学軸 を進相軸、異常光の振動面と平行な光学軸を遅相軸という。円偏光法の光学系においては、2枚の4分 の1波長板の進相軸は互いに直交している必要があり、なおかつ偏光子・検光子の透過軸に対して45 度の角度を成すように設置しなければならない(図2.13)。偏光子を透過した直線偏光が4分の1波 長板を透過すると、4分の1波長に相当する位相差、すなわちπ/2の位相差のある正常光と異常光に 分解される。この偏光状態を円偏光と呼ぶ。

上述したように、厳密に述べると4分の1波長板は550nm程度の波長の光に対してのみ直線偏光を 円偏光に変換することができる。異なる波長に対しては楕円偏光と呼ばれる偏光状態となるが、その 差は僅かであることから、ここではすべての波長に対して円偏光状態であると仮定する。

円偏光法の場合、検光子を透過できる光の割合は、

$$\frac{I}{I_0} \propto \sin^2\left(\frac{R}{\lambda}\pi\right) = \sin^2\left(\frac{Ct(\sigma_1 - \sigma_2)}{\lambda}\pi\right)$$
(2.11)

で表され、観測される光の強度は試験体の主応力角度に寄らないことが分かる。これは偏光顕微鏡内 で試験体を水平面内で回転させても干渉縞のパターンに変化がないということである。

従って円偏光法でレタデーション R を計測すれば主応力角度が分からなくとも式(2.11)より主応力 度差が求められる。

光源には白色光を用いているので波長の異なる波が存在する。式(2.11)より、波長により検光子を透 過する光の割合が異なることが分かる。例えば、国際照明委員会(CIE)により定義された RGB 三原 色の波長(R=700nm、G=546.1nm、B=435.8nm)に関して、検光子を透過できる光の割合をグラフ 化すると図2.14のようになる。赤・緑・青の光の割合がレタデーション R によって異なることか ら、図2.15のようなカラフルな干渉縞が観測される。この干渉縞の凡例をもとに試料面内のレタデ ーションを計測し、主応力度差を得る。円偏光法で撮影した等色線画像の例を図2.16に示す。

図 2.16 等色線画像の例

2-5-5. 鋭敏色画像

偏光子と検光子の間に、530nm 付近の波長に対する1波長板(鋭敏色板)を挟むことで赤紫色の鮮や かな干渉色が得られる。このような光学系での観察法を鋭敏色法と呼ぶ。

※矢印は、試料においては主応力方向を、偏光板においては透過軸を、波長板においては遅相軸を表す

図2.18 鋭敏色法における光学軸

装置によって、あるいは観測者の好みによって鋭敏色板の波長は異なることが知られているが、こ こでは 530nm を使用する。鋭敏色板の光学軸が偏光板の光学軸と 45°の角度を成すように設置する と視界が最も明るくなるため一般にはこのように設置する。1 波長板を挿入すると、対応する波長の 正常光と異常光の位相差がπとなるので、互いに打ち消し合うことになる。530nm という波長はおお よそ緑の波長に相当するので、鋭敏色板を透過できるのは3 原色においては赤と青になり、干渉色と して赤紫色が得られる(図 2.19)。

直交ニコル法及び円偏光法では主応力度差の大きさに応じて干渉色が現れることを述べたが、図2. 20からわかるように偏光板のみでの観測の場合、R=0付近での色の変化が緩慢で小さな主応力度差 を検出しにくいという課題がある(図2.20)。これに対して、色の変化が鋭敏に表れるR=530nm付 近を原点として主応力度差を検出する方法が鋭敏色法である。Rが小さくなる方向には赤紫→赤→橙 →黄、Rが大きくなる方向には赤紫→紫→青→水色というように色が変化するため、Rの正負を判別し やすいことも利点の一つである。

試料のエッジ部においては、エッジに垂直な方向の内部応力成分は0であると考えてよいので、干 渉色によりエッジに沿った方向の主応力の正負が判別できる。2-4-1で述べたように圧縮の場合には 光が速まり、引張では遅くなることから、図2.21に示すような鋭敏色の光学軸と干渉色の関係が得 られる。

図2.21 エッジに沿った主応力状態の判別

3章 溶着実験

3-1.目的

本章での実験の目的は、温度勾配と残留応力値の定量的な関係を明らかにすることである。

3-2. 実験方法

3-2-1. 試験体

ガラス試験体にはフロート板ガラス t=7.8mm (公称厚さ 8 ミリ)を使用した。試験体幅は 300mm,450mm,600mm の 3 種類があり、奥行長さはすべて 150mm である。溶着後の目地の透明性を 確保するため試験体の小口は磨き仕上げとしている。さらに、溶着後にガラスに残留応力が生じること が想定され、エッジ部の微細な傷によってガラスの強度低下が起こることが知られていることから、小 口は糸面を取ってあり、出隅部も面取りを施したものを使用している。

溶着目地においてはガラス板の間に約 1.5mm の隙間を設け、母材と同じガラス板を砕いて作成した ガラスカレットと呼ばれるガラスの粒を詰めて溶着を行った。これは建設現場で溶着技術を応用する際 に、溶着すべきガラス板間に施工誤差による隙間がある場合に対応するためである。ガラスカレットの 最大径は 1mm 以上2ミリ未満とした。図 3.2 に示すように、溶着線を十分に覆うようにカレットを設 置して実験を行っている。これはガラスが溶け、隙間が充填されていく過程で溶着部の板厚を母材と同 等かそれ以上に保つためである。

図 3.1 試験体写真

図3.2 溶着部 セッティング時の断面図

3-2-2. 溶着手順

溶着法における基本的な熱工程について順を追って説明する。この熱工程はガラス工芸のフュージン グなどを参考に既往研究で確立されたものである。

I. 予熱

ガラスを部分的に、かつ急激に加熱すると一時ひずみによって容易に熱割れしてしまう。これを防ぐために溶着部付近を電熱線ヒーターでゆっくりと加熱する。この工程を予熱と呼ぶ。 溶着部付近の雰囲気温度が540°Cになった時点で予熱完了とした。

II. 局所加熱

溶着部を溶融させ、母材同士を一体化するためにガラスが十分流動的になるような温度まで 加熱する。ガラス全体を加熱するのではなく、溶着部周辺のみを加熱・溶融することを表現す るためにこの工程を「局所加熱」と呼ぶ。加熱方法は、溶着部の溶け具合を確認しながらガス バーナーを用いて手動で行う場合と、電熱線ヒーターを用いて自動で行う場合の2種類がある。 将来的な溶着装置をなるべく小型で経済的なものにするには、局所加熱範囲を狭くすることが 望ましい。

Ⅲ. 急冷

次の熱工程のアニーリングまでの間にガラスを冷ます工程を「急冷」と呼ぶ。この過程はガ ラスの失透と深くかかわっており、なるべく素早く冷却を行うことが望ましい。

IV. アニーリング

ガラス転移点付近で温度保持を行うことでガラスの内部構造を安定化させ残留ひずみの減 少に有効な工程であり、「アニーリング」と呼ぶ。局所加熱時と同様、アニーリングを行う範囲 もなるべく狭くすることが望ましい。

V. 徐冷

アニール終了後、なるべくガラス全体が均一に冷えるように温度を下げていく工程を「徐冷」 と呼ぶ。ガラスを急激に冷やすと温度差による割れの恐れがある、ガラス全体が常温になるま で自然冷却とした。

全熱工程を経てガラス全体が室温近くまで冷えた後、試験体を炉から取り出して偏光顕微鏡で等傾線 画像・等色線画像および鋭敏色画像を撮影する。これらの画像からガラス面内の残留応力を算出する。

図3.4 ガスバーナーでの局所加熱の様子

3-2-3. 温度測定法

本実験では熱電対を用いて温度を測定する。熱電対の詳細は表3.1に示す。局所加熱時にはガラスが 溶融するため、熱電対の先端をガラス表面に接触させると冷却後にガラス内部に埋め込まれてしまい割 れの原因となる。そこでガラス表面から1~2cm 程度離して熱電対を設置し、ガラス表面付近の雰囲気 温度を測定している。それぞれの実験での温度測定位置は付録の実験詳細に記載した。

データロガーを使用して測定温度の記録を行い、実験開始からアニーリング終了までは 10 秒毎に、 徐冷時には1分毎にインターバル測定を実施した。

·	双 J .1 然	电灯 叶阳
熱電対タイプ		セラミック編組被服熱電対線
		(K タイプ)
導体 外径	[mm]	0.65
仕上がり外径	[mm]	2.2×3.3
常用限度温度	[°C]	650
加熱使用限度温度	[°C]	850

図3.5 熱電対設置の様子

3-2-4. ガラス溶着炉

本章の実験では2種類のガラス溶着炉を使用しており、それぞれガス溶着炉・電気溶着炉と呼ぶ。ど ちらも断熱ボードで構成され、炉内部に電熱線ヒーターが設置されている。溶着部周辺のガラスが炉内 で加熱冷却され、周縁部は炉外に露出している。炉内の断熱材の配置や熱源の制御を変えることで所期 の温度条件を実現している。冷却装置はなく、炉の一部を開けるなどして冷却速度を変えることが出来 るが、基本的には自然冷却である。炉内のガラスの下にはアルミナ板を敷き、溶融したガラスが垂れな いようにしている。

I. ガス溶着炉

炉内有効寸法は幅 460mm×奥行 260mm×高さ 250mm で、側面の断熱材厚みは 50mm である。温度 勾配を変化させるために炉内外に勾配のついた追加断熱材を設置し、アニーリング時に炉内部の熱が周 縁部に向かって伝わるようにしている。ガス溶着炉での実験では、局所加熱時にガスバーナーを用いて いる。局所加熱を効率的に行うために局所加熱領域を囲う間仕切りを設け、なおかつアニーリング時に は炉内を均一な温度に保持するため間仕切りを上方に持ち上げるという機構としている。

図3.6 ガス溶着炉 図面

炉内の底面には、個別に温調器で制御される3台の電熱線ヒーターが試験体幅方向に並んで設置され ている。電熱線ヒーターとは、カンタル線と呼ばれる電熱線を、角熱板と呼ばれる主にアルミナで構成 される絶縁体に通して使用するヒーターのことをいう。使用したカンタル線の詳細は表3.2に示す。電 熱線は温調器と接続されており、温調器によって電熱線に流す電流値を制御する。温調器は三相 200V の電源に接続されている。温調器は ON-OFF 制御をしており、温調器と接続された熱電対での測定温 度が設定温度以下になると電流が流れ、設定温度を超えると電流が止まるような制御をしている。

表 3.2	カンタル緑詳細		
線径	[mm]	1.6	
外径	[mm]	8	
密着長	[mm]	560	
単位抵抗値	$\left[\Omega/m\right]$	0.7212	
抵抗值	[Ω]	5.08	

2 、 <u>6</u>白 =34.6m

II. 電気溶着炉

電気溶着炉には、個別に温調器で制御されている電熱線ヒーターが底面と天面に3台ずつ、計6台設 置されているが、本論文での実験では便宜上、底面の中央部の電熱線ヒーターのみを使用している。電 気溶着炉での局所加熱は電熱線ヒーターで行われ、完全に電気のみで加熱を行える炉である。電源は単 相 200V で、温調器の制御方法は PID 制御である。

炉内有効寸法は幅 1400mm×奥行 1000mm×高さ 500mm で側面の断熱材厚みは 110mm であるが、 図3.7に示すように炉内部を断熱材で仕切り入れ子状にし、内側の空間で加熱を行うようにしている。 入れ子炉材の側面厚さは 50mm である。

図3.8 溶着炉写真

3-2-5. 偏光顕微鏡

実験後のガラス試験体には溶着に伴う残留応力が生じている。2-4 で述べたように偏光顕微鏡を用いて残留応力を検出し、ガラス面内の主応力度差及び主応力方向を得る。ここでは以下の2種類の偏光 顕微鏡を用いている。大型偏光顕微鏡は光弾性の原理をもとに白色光のLED電球・偏光板・4分の1波 長板を適切に設置し自作したものである。光源にはLED電球を用いているが、乳白色のアクリル板を 通すことで面的に均一な光源としている。偏光顕微鏡で観察されるガラス試験体の応力状態をカメラで 撮影し、主応力状態の算出に必要な等色線画像・等傾線画像および鋭敏色画像を得ている。

X3.5 举酬入 C川 V 3 桶儿與网奶				
	LSM-7000LE	大型偏光顕微鏡		
写真				
測定可能寸法 [mm]	200x200	1000x1000		
光源	白色 LED 3000K	LED 白色光		
観察方法	直交ニコル法 円偏光法 鋭敏色法	直交ニコル法 円偏光法		

表3.3 本論文で用いる偏光顕微鏡

3-3. 実験内容

3-3-1. パラメータの定義

1-5 で言及したように、既往研究においてアニーリング終了時の温度勾配が緩やかである方が残留 応力値を小さく抑えることが出来ることが示唆されている。

そこで図3.9のように、熱電対での温度測定点間の距離⊿Lに対する測定温度差⊿Tの割合を温度勾 配Sで表し、温度分布の様子を表現する新たなパラメータとする。

$$S = \frac{\Delta T}{\Delta L}$$
(3.1)

ここで、測定点間は直線的な温度分布であると仮定しており、図3.9に示すようなグラフを温度分布図 と呼ぶ。本論文では、徐冷の開始点となるアニーリング終了時の温度分布図における温度勾配Sに着目 する。

また、軟化範囲は温度分布図において温度が 540℃以上の領域とし、軟化範囲の幅、もしくは軟化範 囲境界の x 座標を考察の対象とする。

図3.9 温度分布図における温度勾配と軟化範囲

ここで、奥行方向の温度分布については考慮しておらず、奥行方向に並んでいる測定点での温度データ を平均し、幅方向での温度分布として考察の対象としていることを述べておく。 3-3-2. 実験内容の分類

本章では以下に示す2種類の実験を実施した。それぞれの実験内容についてまとめる。

1. 幅方向の温度勾配条件を変えた実験

既往研究での実験では、図3.10に示すように試験体の全幅(溶着する2枚の幅の合計)は600mm であった^{[12],[13]}。溶着炉の幅は外寸560mm であり、ガラスが炉の外壁から左右20mm ずつ外部に露出 していた。本論文では、より温度勾配を緩やかにして実験を行うために、試験体寸法を150x300x8 ミリ、 150x450x8 ミリ、及び150x600x8 ミリとして溶着線に垂直な方向での温度勾配条件をを変化させた実験 を行った。

図3.10 アニーリング終了時での温度分布図と温度勾配の定義

2. ガラス表面の温度と雰囲気温度の違いを検出する実験

本論文での実験では熱電対をガラス表面から1~2cm ほど離れたところに設置して温度を測定して いる。後の4章において実験での測定データを用いてガラスの熱応力解析を行うが、この測定方法では ガラス自体の温度が分からない。そこでガラスに表面に熱電対を接触させた場合と、通常通り表面から 離して設置した場合の違いを把握するための実験を行った。

3-3-3. 試験体一覧

本論文での考察対象となる全試験体を以下の表にまとめる。本論文で実施した実験の試験体は計 10 体、参考文献[12],[13],[14]よりそれぞれ1体、6体、6体を参照し、計23体を考察対象とする。試験 体寸法及び加熱方法の違いにより試験体名称を図3.10のように定め、それぞれの分類において通し番 号を振った。

表3.4 試験体一覧

- · ·		-
試験体名称	試験体寸法	実験日
MG-1*	150x300x8	2015/10/15
MG-2**	150x300x8	2016/1/7
MG-3**	150x300x8	2016/5/9
MG-4**	150x300x8	2016/5/12
MG-5**	150x300x8	2016/5/18
MG-6**	150x300x8	2016/6/8
MG-7**	150x300x8	2016/6/16
MG-8	150x300x8	2017/1/25
MG-9	150x300x8	2017/3/23
LG-1	150x450x8	2017/4/13
LG-2	150x450x8	2017/7/19
LG-3	150x450x8	2017/8/3
LG-4	150x450x8	2017/10/19
LG-5	150x450x8	2017/10/26
LG-6	150x450x8	2017/11/2
XG-1	150x600x8	2017/10/5
XG-2	150x600x8	2017/10/12
LE-1***	150x450x8	2017/10/5
LE-2***	150x450x8	2017/10/12
LE-3***	150x450x8	2017/10/19
LE-4***	150x450x8	2017/11/2
LE-5***	150x450x8	2017/11/11
LE-6***	150x450x8	2017/11/15
	* 参考文南	犬[12]より
	** 参考文南	犬[13]より
	* * * 参考文南	犬[14]より
試験体寸法 S:150x150x8	局所加熱方法 E:電熱線ヒーター	通し番号

- M:150x300x8 G:ガスバーナー
- L : 150x450x8 X : 150x600x8
 - 30x000x8

図3.11 試験体名称

3-3-4. 応力值測定方法

溶着に成功した試験体の残留応力値の計測手順について述べる。

2章で述べたように、等色線画像からはガラスの残留応力の主応力度差($\sigma_1 - \sigma_2$)が算出できる。光 弾性定数は 2.56[nm/mm・N/mm2]、ガラス厚さは 8[mm]とした。 また鋭敏色画像からはガラスのエッ ジ付近における、エッジと平行な主応力の正負を判別することが出来る。自由端となるエッジにおいて は、エッジと垂直な応力成分は 0 であることから、エッジと平行な応力成分が主応力度となる。従って、 等色線画像と鋭敏色画像からエッジ部の主応力度が得られる。

次に、主応力方向を知るために $\theta = [0^{\circ}, 5^{\circ}, 15^{\circ}, 25^{\circ}, 35^{\circ}, 45^{\circ}, 55^{\circ}, 65^{\circ}, 75^{\circ}, 85^{\circ}]$ の10種類の 角度に対応する等傾線画像を撮影する。試験体の局所座標に対して主応力方向 θ は反時計回りを正方向 と定めるので、等傾線撮影時には、偏光板の透過軸方向に対して時計回りに θ だけ回転する必要がある (図3.12)。

図3.12 等傾線画像撮影時の光学軸関係

10 枚の等傾線画像から等傾線をトレースし、等傾線図を描く。等傾線上の点では主応力角度が θ で一定であるが、最大主応力角度は θ もしくは θ +90°であり、一意に決定できない。そこで、等傾線図を もとに主応力線図を描き、先ほど求めたエッジ部における応力の正負を元に最大主応力線を決定する。 以上により、面内の最大主応力角度を得ることが出来る。図3.16に操作の流れをまとめた。

ここからは各点における主応力度差 $|\sigma_1 - \sigma_2|$ と最大主応力角度 θ を元に、最大・最小主応力度 σ_1 ・ σ_2 を求める。自由端となるガラスの表面においては、応力の面外成分は必ず0となるので、3つの直交 する主応力方向のうちの1つはガラス面の面外方向で大きさは0である。そして残りの2つの主応力成 分はガラス面内に存在する。ここではガラス内部においても厚み方向の主応力度は0であり、面内応力 のみであると仮定する。面内の最大主応力度 σ_1 、最小主応力度 σ_2 を求めるためにせん断応力差積分法 を用いる^[7]。

まずガラス面上にグリッドを想定し、グリッドの交点でのせん断応力度を求める。本論文ではグリッド間隔を15mmに統一して応力値計算を行った。

$$\tau_{xy} = \frac{1}{2}(\sigma_1 - \sigma_2) \cdot \sin(2\theta)$$
(3.2)

ここで、最大主応力度 σ_1 は引張を正としたときに、代数的に大きい値となる主応力度とする。図3.1 3に示す応力度 σ_x ・ σ_y と σ_1 ・ σ_2 の間には以下の式が成り立つ。

$$\sigma_{\rm x} + \sigma_{\rm y} = \sigma_1 + \sigma_2 \tag{3.3}$$

$$\sigma_{\rm x} - \sigma_{\rm y} = (\sigma_1 - \sigma_2) \cdot \cos(2\theta) \tag{3.4}$$

3.11

図 3.13 主応力度とせん断応力度

図3.14 微小領域での平面応力状態

次に、図3.14のようにグリッドの交点周りの微小領域での力の釣合いを考えると、

$$\frac{\partial \tau_{xy}}{\partial y} dy + \frac{\partial \sigma_x}{\partial x} dx = 0$$

$$\frac{\partial \tau_{xy}}{\partial x} dx + \frac{\partial \sigma_y}{\partial y} dy = 0$$
(3.5)

いま、XとYに関して対称なので、説明のためにX方向について考える。dx=dyより、式(3.5)は

$$\frac{\partial \sigma_{\rm x}}{\partial \rm x} = -\frac{\partial \tau_{\rm xy}}{\partial y} \tag{3.6}$$

式(3.6)をxについて積分すると、

$$\sigma_{\rm x} = \sigma_0 - \int_0^x \frac{\partial \tau_{xy}}{dy} \cdot dx \cong \sigma_0 - \sum_{x=0}^x \frac{\Delta \tau_{xy}}{\Delta y} \cdot \Delta x \tag{3.7}$$

式(3.7)を用いてグリッド交点の主応力 $\sigma_x \cdot \sigma_y$ を求めるには、図3.15において直線 y=a に沿って逐次的に式(3.7)を適応すればよい。この場合、積分の開始点となる点 O はガラスのエッジであり、X 方向の応力成分は0 である。また、 $\Delta x=15$ mm、 $\Delta y=30$ mm なので、

$$\sigma_{\rm x} = -\frac{1}{2} \sum_{x=0}^{x} \Delta \tau_{xy} \tag{3.8}$$

例えば、図3.15中の σ_x を求めるには

$$\sigma_{\rm x} = \sigma_{\rm x-1} - \frac{1}{2}(\tau_A - \tau_B)$$

とすればよい。

図 3.15 せん断応力差積分法

最後に、主応力度とせん断応力度の関係式(3.4)より σ_y が、式(3.3)より $\sigma_1 + \sigma_2$ が即座に求まる。 以上の計算の結果、 $\sigma_1 + \sigma_2$ 及び $\sigma_1 - \sigma_2$ が得られたので、

$$\sigma_1 = \frac{(\sigma_1 + \sigma_2) + (\sigma_1 - \sigma_2)}{2}$$
(3.9)

$$\sigma_2 = \frac{(\sigma_1 + \sigma_2) - (\sigma_1 - \sigma_2)}{2}$$
(3.10)

より、最大主応力度 σ_1 と最小主応力度 σ_2 が求まる。

図3.16 主応力線図作成の過程

図3.17 主応力値計算 フローチャート

3-4. 実験結果

各試験体の主な実験結果を表3.5と表3.6に示す。各試験体の詳細な結果は付録に記載する。3-5-2 に後述する考察から、溶着線に対してほぼ左右対称であると考えられるので、左右それぞれで温度勾配 と残留応力度の値を取り出した。

≕睦≁	<u>%</u> ±	局所加熱完了時		アニーリン	ィグ終了時	アニーリング終了時	実験開始からの経過時間						
式 尚史 14 夕 4年	而	軟化範囲 L _F		軟化範囲 L _A [°C/cm]						[min]	の栓適時间		
名孙	禾	[m	m]	[mm]		※()内は温	[min]						
											ア	ア	
									局	局	=	=	
								予	所	所		-	
		左	右	左	右	左	右	熟時	加埶	加埶	リン	リン	
								間	開	完	グ	グ	
									始	了	開	終	
											始	了	
MG-1	0	-158	155	-132	130	67.0(-275~-225)	42.5(225~275)	68	-	88	139	257	
MG-2	0	-236	236	-166	158	84.9(-275~-225)	78.3(225~275)	77	-	111	140	381	
MG-3	0	-211	212	-230	172	91.1(-275~-225)	67.6(225~275)	65	-	78	100	331	
MG-4	0	-147	138	-26	226	54.3(-275~-225) 66.7(225~27		95	-	105	150	263	
MG-5	0	-154	151	-147	162	66.9(-275~-225)	53.4(225~275)	64	-	83	125	390	
MG-6	0	-99	122	-177 179		51.8(-275~-225)	48.8(225~275)	42	-	49	214	350	
MG-7	0	-84	72	-148	153	54.6(-275~-225)	37.1(175~225)	40	-	49	120	250	
MG-8	×	-84	70	-38	27	32.7(-275~-225)	29.3(225~275)	42	-	67	105	230	
MG-9	0	-66	76	-225	226	85.38(-275~-225)	89.9(225~275)	52	-	66	140	226	
LG-1	0	-72	78	-226	226	96.6(-275~-225)	89.7(225-275)	61	-	73	160	226	
LG-2	×	-123	108	-180	214	53.0(-275~-225)	64.4(225-275)	66	-	85	113	243	
LG-3	0	-74	115	-188	226	51.1(-350~-275)	29.6(350~425)	71	-	89	165	237	
LG-4	0	-101	100	-31	32	21.3(-225~-175)	30.0(125~175)	78	-	87	131	241	
LG-5	0	-95	103	-54	26	19.25(-225~-175)	24.8(125~175)	95	-	110	127	252	
LG-6	0	-97	81	-78	77	27.1(-225~-175)	31.6(125~175)	82	-	92	108	219	
XG-1	0	-71	105	-205	178	33.1(-275~-225)	23.6(225-275)	116	-	133	240	300	
XG-2	×	-79	109	-164	148	32.1(-275~-225)	37.9(225~275)	73	-	89	186	305	
LE-1	\bigtriangleup	-303	313	-190	134	18.2(-325~-225)	16.8(325~385)	76	151	181	335	390	
LE-2	×	-279	301	-144	134	17.5(-385~-325)	18.8(325~385)	71	130	147	288	360	
LE-3	0	-254	258	-122	150	24.7(-385~-325)	24.3(325~385)	118	193	204	345	400	
LE-4	0	-260	276	-100	140	18.8(-385~-325)	24.1(325~385)	72	166	194	341	407	
LE-5	\bigtriangleup	-192	157	-126	113	8.8(-385~-325)	13.5(385~450)	64	150	160	364	453	
LE-6	0	-148	148	-58	65	21.0(-385~-325)	17.4(385~450)	67	131	141	213	308	

表 3.5 実験結果 全試験体の温度勾配・軟化範囲一覧表

※結果 ○:溶着成功 △:結果確認後に遅延割れ ×:結果確認時点ですでに割れ

※電気溶着においては局所加熱時間が長いため、局所加熱開始の項目を設けた。

※軟化範囲は熱電対間を線形補完し、温度が 540℃となる位置の x 座標を求めたもの。

			左半分		右半分				
試験体名称	主応力度	х	У	応力値	x	у	応力値		
		[mm]	[mm]	[N/mm2]	[mm]	[mm]	[N/mm2]		
1	最大 σ ₁	-195	0	35.9	-	-	-		
MG-1	最小 σ ₂	-210	75	-48.8	-	-	-		
	最大 σ ₁	-225	0	28.5	-	-	-		
MG-2	最小 σ2	-225	75	-63.5	-	-	-		
	最大 σ ₁	-225	0	28	210	15	26.3		
MG-3	最小 σ ₂	-225	-75	-73.2	195	-75	-61		
	最大 σ ₁	-165	0	22.8	180	0	30.7		
MG-4	最小 σ ₂	-135	75	-31.7	165	75	-65.9		
MC 5	最大 σ ₁	-180	0	26.7	180	-15	24.5		
MG-5	最小 σ2	-195	75	-61	165	75	-53.7		
MC 6	最大 σ ₁	-165	0	22	165	0	22.2		
MG-0	最小 σ2	-195	-75	-48.8	165	-75	-41.5		
MG-7	最大 σ ₁	-150	-15	16	135	0	23		
	最小 σ2	-165	-75	-36.6	120	75	-56.2		
MG-9	最大 σ ₁	-210	0	24.1	240	0	29.8		
MG-5	最小 σ2	-210	75	-63.5	225	75	-58.6		
16-1	最大 σ ₁	-225	0	36.9	240	0	33.2		
	最小 σ2	-210	75	-63.5	210	75	-51.3		
16-3	最大 σ ₁	-180	0	15	180	0	16.4		
20.5	最小 σ2	-210	75	-24.4	195	75	-31.7		
LG-4	最大 σ ₁	-60	0	13.1	45	0	12.8		
	最小 σ2	-60	75	-17.1	0	-75	-17.1		
16-5	最大 σ ₁	-60	0	12.1	45	-15	11		
20.5	最小 σ2	-45	-75	-17.1	15	-75	-17.1		
16-6	最大 σ ₁	-75	0	12	60	0	12.9		
	最小 σ2	-90	75	-17.1	0	-75	-14.6		
XG-1	最大 σ ₁	-180	0	18.2	165	0	13.5		
	最小 σ2	-195	75	-39.1	195	75	-29.3		
I F-3	最大 σ ₁	-345	75	14.6	330	75	17.1		
	最小 σ ₂	-255	75	-17.1	195	75	-14.6		
I F-4	最大 σ ₁	-360	-75	19.5	330	75	19.5		
	最小 σ2	-330	15	-11.3	330	-15	-13.1		
LE-6	最大 σ ₁	-210	0	11.1	195	-15	13.3		
	最小 σ ₂	-165	75	-19.5	150	75	-19.5		

表3.6 実験結果 溶着成功試験体の最大・最小主応力度一覧表

※MG-1 と MG-2 は左半分しか応力値計算が出来ていない。

炉外にガラス端部が露出した状態での溶着において(ガス溶着)、既往研究と比べて残留応力値をより小さく抑えることに成功した。本論文での実験において最も残留応力が小さかった試験体 LG-6 についての実験結果例を図3.18に示す。

3-5.考察

3-5-1. ガラス表面温度と雰囲気温度の違い

ガラス表面の温度とガラス表面から離れた位置での雰囲気温度の違いを調べるため、150x150x8 ミリ のガラス板を炉内に入れ、ガラス表面に接触した熱電対(熱電対番号1)・ガラス表面から垂直に 10mm 離れた熱電対(熱電対番号2)・20mm だけ離れた熱電対(熱電対番号3)で温度を測定しながら溶着の 熱工程を行った(図3.19)。実験はガス溶着炉内にて行い、局所加熱にはガスバーナーを用いている。

図3.19 雰囲気温度-ガラス表面温度差測定セットアップ

図3.20 雰囲気温度-ガラス表面温度差

溶着実験での熱電対位置はガラス表面から 10mm~20mm 程度離れており、熱電対 2 と 3 の間と考え られる。図 3.7 に示すように、アニーリング時のガラス表面温度は雰囲気温度より 10℃程度高いこと が分かる。そこで、雰囲気温度が 540℃程度の時にガラス表面がガラス転移点である 550℃になってい ると考えられる。

また、局所加熱時に着目すると、ガラス表面の温度は雰囲気温度より 80℃から 180℃程度低いことが 分かる。ガスバーナーを用いた局所加熱であるためばらつきが大きいものの、計測した最高温度として はガラス表面(熱電対 0) で 805℃、ガラス表面+10mm(熱電対 1) で 939℃、ガラス表面+20mm(熱 電対 2) で 897℃であった。 3-5-2. ガス溶着炉の温度分布特性

本章の実験では炉の奥行方向の温度差は僅かであるという前提のもと、幅方向の温度勾配にのみ着目 してる。ここで実際の溶着工程におけるガラス表面付近の雰囲気温度がどのように分布しているかを明 らかにしておく。

ガス溶着の場合には温度計測点を奥行方向に3列設置しており、奥行方向・幅方向ともに温度勾配を 測定した。温度測定点の詳細は付録の実験詳細に示す。図3.19は、ガス溶着炉での温度分布特性を等 値線図として表したものである。ここでは例として試験体LG-4での温度分布を示した。熱工程を通し て奥行方向には温度差が小さく、幅方向の温度勾配のみに着目するのは妥当であると考えられる。

図3.21 試験体LG-4 での温度分布の等値線図

3-5-3. 温度勾配のあるガラスの冷却に伴う残留応力発生原理

ここでは、一方向に温度勾配のついたガラスが冷却する際に残留応力が発生する様子を簡易なモデル で考察する(図3.22)。簡単のため緩和現象が起こらないガラス転移点以下での温度差と残留ひずみ の関係について考える。

図 3.2.2 温度差による残留ひずみの発生

いま、距離Lに対して温度差 dT が生じているとする。この領域が常温 T_nにまで冷却された場合、辺 A と辺Bにおける収縮量 δ_A ・ δ_B は

$$\delta_{A} = \alpha (T + dT - T_{n}) \cdot h$$

$$\delta_{B} = \alpha (T - T_{n}) \cdot h$$

(\alpha \text{ \text{k}膨張係数})

と表され、辺Aと辺Bの間には温度差 dTに伴うひずみの差分

$$\Delta \varepsilon = \varepsilon_{\rm A} - \varepsilon_{\rm B} = \frac{\delta_{\rm A} - \delta_{\rm B}}{h} = \alpha \cdot dT$$

が冷却後に残ると考えられる。

ガラスのヤング係数を E とすると、辺 A と辺 B の応力度の差分は

$$\Delta \sigma = E \Delta \varepsilon = E \alpha \cdot dT \tag{3.11}$$

と表される。E=73,000 [N/mm²]、 α =90×10⁻⁷ [/°C]、dT=20 [°C]とすると、

$$\Delta \sigma = 73,000 \times 90 \times 10^{-7} \times 20 = 13.2 \, [\text{N/mm}^2]$$

ここで、内部応力状態としては辺A付近に引張応力が、辺B付近には圧縮応力が生じている。ひず みはx方向に直線的に変化しており、この内部応力による変形状態は図3.22に示すような曲げ剛性 EIの単純棒に一様曲げモーメントMを与えた状態に置き換えることが出来る。

$$M = \frac{\Delta \sigma}{2} \cdot Z = \frac{1}{12} E \alpha \Delta T \cdot t \cdot L^2$$

(Z は断面 2 次係数、t はガラスの厚み)

$$x = \frac{M}{2EI}y^{2}$$

$$I = \frac{t \cdot L^{3}}{12}$$
(3.12)

仮に辺Aに端部が固定された微小なバネが接続されているようなモデルを考えると、辺Aがバネか ら受ける反力は変形に比例するので、X方向の力が釣り合うには図3.23における面積 $A_C \ge A_T$ が等 しくないといけない。曲線は式(3.12)で与えられるので、 $\delta_e \cdot \delta_c$ が計算でき、バネ定数をkとすると反 力の圧縮および引張の最大値 $R_C \cdot R_T$ が求まる。

図3.23 温度勾配のついたガラスの冷却に伴う変形と反力

$$\delta_{\rm e} = \frac{M}{3\rm EI} \left(\frac{h}{2}\right)^2 = \frac{\frac{1}{12} E\alpha\Delta T t L^2}{Et L^3} \left(\frac{h}{2}\right)^2 = \frac{\alpha\Delta T h^2}{12L}$$
(3.13)

$$\delta_{\rm c} = \frac{M}{6\rm EI} \left(\frac{h}{2}\right)^2 = \frac{\alpha \Delta T h^2}{24L} \tag{3.14}$$

$$\sigma_e = k\delta_e = \frac{M}{3I \cdot L} \left(\frac{h}{2}\right)^2 = k \cdot \frac{\alpha h^2}{12} \cdot \frac{\Delta T}{L}$$
(3.15)

$$\sigma_c = k\delta_c = k \cdot \frac{\alpha h^2}{24} \cdot \frac{\Delta T}{L}$$
(3.16)

このような単純なモデルにおいては辺Aの中央部には引張応力が、端部では圧縮応力が発生し、その 比は1:2となる。溶着されるガラスにおいては、辺A・Bともに隣り合うガラス同士である程度拘束 し合っており、図3.24のような短冊上のガラスがバネで繋がれたようなモデルが考えられる。

図3.24 温度勾配のついたガラス試験体のモデル

3-5-4. 温度勾配と残留応力値の関係

溶着で一体化した試験体について、アニーリング終了時の最大温度勾配値と残留応力の最大・最小主 応力度との関係について考察する。応力値計算によってガラス面内での主応力度が得られるが、3-5-2での考察により溶着線に関してほぼ左右対称であると考えられるので、各試験体に対して左半分と右 半分からそれぞれ最大主応力度と最小主応力度を取り出して考察対象とする。いま引張応力を正として いるが、便宜的に応力度の絶対値を縦軸とし、横軸は温度測定点間での温度勾配のうち最大の値とした プロット図を図3.25に示す。

図 3.25 温度勾配と残留応力の関係

最大主応力度・最小主応力度ともに温度勾配に比例していることが読み取れる。それぞれに対して最 小二乗法により直線で近似する。温度勾配が0のとき、残留応力は生じないものと仮定して、y切片が 0となるようにすると、

$$\sigma_1 = 0.395 \cdot S \quad (R^2 = 0.465) \tag{3.17}$$

$$\sigma_2 = 0763 \cdot S \quad (R^2 = 0.762) \tag{3.18}$$

 R^2 は式(3.19)で定義される決定係数であり、回帰方程式がどれほど標本に当てはまっているかを表す尺度として使われている。f(S_i)は近似モデルを、 μ_{σ} は σ の平均値を表す。

$$R^{2} = 1 - \frac{\sum (\sigma_{i} - f(S_{i}))^{2}}{\sum (\sigma_{i} - \mu_{\sigma})^{2}}$$
(3.19)

式(3.17),(3.18)より、概ね

$$\sigma_1: \sigma_2 = 1:2$$
 (3.20)
が成り立つことが分かる。これは3-5-3での考察とよく対応している。

3.23

3-5-5. 溶着後の残留応力分布

既往研究において、アニーリング終了時の軟化範囲境界付近に残留応力のピーク値が分布しているこ とが確認されている^[12]。これを踏まえて、本研究で扱った試験体に関してもアニーリング終了時の軟化 範囲と残留応力の最大・最小主応力度の分布位置について図3.26のプロット図により改めて考察を行 う。

図3.26 アニーリング終了時の軟化範囲と主応力度分布の関係

既往研究での指摘のように、概ねアニーリングの終了時の軟化範囲境界と残留応力の最大・最小値の 位置は一致した。一方で、軟化範囲境界よりも周縁部側に残留応力のピーク値が分布する試験体も存在 した(試験体 MG-4 L、LE-3、LE-4、LE-6)。

アニーリング終了時の軟化範囲境界とはすなわち温度勾配の開始点であり、図3.23における辺A にあたる。辺Aにおいて、軟化範囲のガラスから反力を受けると考えると、軟化範囲境界と最大応力度 の発生位置が概ね一致することが説明される。ただし、このモデルでは辺Bが周縁部のエッジに相当し ており、軟化範囲境界からガラス端部まで一様な温度勾配であった場合に成立する。

ここで温度勾配が軟化範囲から周縁部にかけて一様もしくは勾配が増加するような場合を凸型と呼び、勾配が途中で減少するような場合を凹型と呼ぶことにする(図3.27)。

図 3.27

3-5-3で導入した単純な温度勾配のついたガラスの残留応力発生モデルに凸型・凹型の温度勾配を 当てはめてみる。図3.28に示すように、凸型の場合には相対的な変形の関係からエッジ部に圧縮が、 中央部に引張が働く。逆に凹型の場合にはエッジ部に引張が、中央部に圧縮が働く。

図3.28 凸型・凹型の温度勾配と残留応力分布

以上の考察を試験体の残留応力分布で確認してみると、試験体 MG-4 L、LE-3、LE-4 においてアニ ーリング終了時の温度勾配が凹型になっており、エッジ部において引張応力が存在していることが分か る。図3.29に試験体 LE-3の例を示す。2-2でも述べたように、エッジ部に引張応力が生じると割 れにつながるおそれがあり避けなければならない。実際に、試験体 LE-1、LE-2では温度勾配が凹型で あり、エッジ部から割れが発生した。われのようすからもエッジ部に引張応力が存在したことが推測さ れる。また、将来試験体がさらに大判化した際に炉の寸法を現状のままとすると温度勾配が凹型になる ことが予想される。今後の課題として挙げておきたい。

3.25

3-5-6. 局所加熱完了時とアニーリング終了時における軟化範囲と溶着の可能性

1-5 で述べたように、滝口らは局所加熱完了時での軟化範囲幅 L_F とアニーリング終了時での軟化範 囲幅 L_A に着目して、溶着に適した軟化範囲を示した^[12]。本研究で行った実験の結果を反映して、考察 を更新してみる。

既往研究での考察を踏襲して、試験体全幅 W (溶着する 2 枚のガラス板幅の合計)に対する軟化範囲 L_F,L_Aの割合の関係と、試験体の全幅によらない L_F と L_Aの関係を図 3.30に示した。今回の実験で、 これまでに溶着可能となるアニーリング終了時での軟化範囲の下限と提言されていた L_A/W \geq 0.37 もし くは L_A \geq 222 よりも狭い軟化範囲での溶着に成功した。軟化範囲を狭くしても残留応力を小さく抑えた まま溶着が可能であるならば、溶着装置の幅を小さくすることが出来る。今回の試験体のうち最も軟化 範囲が狭かったのは試験体 LG-4 で L_F=201mm,L_A=63mm であった。また、残留応力値は最大主応力度 σ_1 =13.1N/mm², σ_2 =-17.1N/mm² であり、残留応力値を小さく抑えられていることが図 3.2 5 から分 かる。

図3.30 軟化範囲と溶着可能性の関係

3-5-7. 溶着後の割れの原因

溶着の結果、割れた試験体について、割れの原因と考えられるものを列挙しておく。 (1) 溶着不全

試験体MG-8 溶着部での割れ 断面の様子

試験体XG-2 溶着線端部からの割れ

図3.31 溶着部での割れの様子

試験体 MG-8 および XG-2 は溶着部を起点に割れた。図3.31に示すようにカレットが溶 け切っていない部分で冷却途中もしくは冷却後に応力集中が起き割れにつながったと考えら れる。特に試験体 XG-2 に関しては溶着線端部付近でのみ溶着不全が確認され、それ以外では 十分にカレットが溶け込んでいた。このようにわずかな部分でも溶着不全であるとガラス全体 での割れにつながる恐れがあるため、溶着具合の管理が重要になると考えられる。

(2) アニーリング温度

図3.32に示すように試験体 LG-2 のアニーリングでの保持温度が 580°C程度であったた め、応力緩和はできているがガラスの内部構造がガラス転移点よりも高い温度での平衡状態の まま冷却され、割れにつながったと考えられる。ガラス転移点より高い温度でアニーリングを 行うと、残留ひずみ量が急激に大きくなることが知られており^[7]、アニーリングでの温度管理 が重要である。

図3.32 試験体 LG-2 でのアニーリング時の温度履歴

3-5-5において考察した。溶着部に垂直な方向での温度勾配条件においては、温度勾配が 凹型であると、冷却後のエッジ部に引張応力が生じると考えられる。

⁽³⁾ アニーリング終了時の温度勾配が凹型であること

4章 熱応力解析手法

4-1. 解析の目的・位置づけ

本解析はガラスの複雑な粘弾性挙動を簡易にモデル化し、実際にガラスを溶着する際の熱行程を少な いステップに分割して入力することで溶着後のガラスに生じる残留応力を解析することを目的とする。 3 章で行った実験で得られた温度データを入力値として解析を行い、溶着後の残留応力に関して実験結 果との比較を行う。実験での熱源からの入熱量を元にガラスの熱伝導を考慮した温度場を入力値として 解析することも考えられるが、ガラスの性質の温度依存性を的確にモデル化することが困難であること から、本解析では実験で計測された温度データを入力値としている。3-5-1での考察より、アニーリ ング中のガラス自体の温度と計測される雰囲気温度の違いは 10℃程度であるため、本解析ではガラス 転移点 Tg を 540℃と定めて解析を行った。

これまでにガラスの熱処理に伴う残留応力の解析の研究は行われてきたが^{[18][19]}、多くはガラス全体 が溶融した状態から冷却する過程を対象としており、ガラスの板厚方向の温度勾配について考慮した ものである。物性がガラスと近しい樹脂の分野においても同様の研究が見られる^{[20][21]}。一方、本研究 で扱っているガラス溶着においてはガラス面内での温度勾配に着目しているため、本解析では厚み方 向の温度勾配は無視し、ガラス面内での温度分布のみを考慮する。将来的に厚み方向を検討する場合 にも、本解析を3次元に展開していくことが可能である。 4-2.モデル化

本解析では、ガラス板を格子とブレースの線材から成るモデルに置換する。格子はX方向・Y方向 ともに10mm ピッチとする。ガラス板の厚みは、ガラス面の幅及び長さに比べて十分小さいこと、及 び現在の研究段階ではガラス面内での温度分布に着目していることから、厚み方向を考慮しない2次 元モデルとする。

図4.1 解析モデル

各部材の曲げ剛性はほぼ0とし、軸剛性のみを考慮したモデルとする。ガラスの諸係数は表4.1の 通りとする。

1(+ .1	所加ての方	/ 八 田 1/1 英人
ヤング係数 E	[kN/mm ²]	73.012
線膨張係数 α	[/°C]	90×10 ⁻⁷
比重 ρ	[kg/m ³]	0
ポアソン比 ν		0.23

表4.1 解析でのガラス諸係数

4-2-1. 剛性のモデル化

面内応力に対するモデルの剛性を実際のガラス板と合わせることを考える。線材の面内曲げ剛性をほ ぼ0としたモデルであることから、ブレース材がせん断応力を負担することになる。そこでまずせん断 応力時の変形が一致するようにブレース材の軸剛性(断面積)を決め、その後2軸引張応力時の変形が 一致するように格子材の軸剛性(断面積)を決めることとする。

メッシュ幅を 10mm とし、全体で 10 マス×10 マス (100mm×100mm) のモデルを用いて剛性の評 価を行う。実験で使用したガラス板の厚みは 8mm であることから、モデルの格子材・ブレース材とも に厚みは 8mm とし、剛性が一致するように格子材とブレース材それぞれの有効幅を求める。

ガラスは等方性材料なのでせん断剛性係数Gは

$$G = \frac{E}{2(1+\nu)} = 29.6 \ [kN/mm2]$$
(4.1)

図4.2 剛性の比較

まず、実際のガラス板に単位幅あたり1kNのせん断力が働いた時のせん断変形は、

$$\delta = \frac{Q}{A} \cdot \frac{1}{G} \cdot h = \frac{1}{10 \cdot 8} \cdot \frac{1}{29.6} \cdot 100 = 0.042 \text{ [mm]}$$

次に、実際のガラス板に 2 軸引張応力 N が作用した場合、ポワソン比を考慮すると Y 方向の引張応力 によって X 方向に歪 ε'_x が生じる。

$$\varepsilon'_{\rm x} = -\nu \varepsilon_y = -\nu \frac{{
m N}}{{
m E}{
m A}}$$

従ってこの時の X 方向のひずみは

$$\varepsilon_{\rm x} = \frac{{\rm N}}{{\rm E}{\rm A}} - \varepsilon_{\rm x}' = \frac{1-\nu}{{\rm E}} \cdot \frac{{\rm N}}{{\rm A}}$$

単位幅あたり1[kN]の2軸引張が働いた時の変形は

$$\delta = \frac{N}{A} \cdot \frac{1 - \nu}{E} \cdot h = \frac{1}{10 \cdot 8} \cdot \frac{1 - 0.23}{73.012} \cdot 100 = 0.013 \text{ [mm]}$$

と求められる。

図4.3 せん断応力状態

図4.2のようなモデルにせん断力Qを与えた場合にブレースに生じる軸力をNbとすると、

$$\frac{Q}{2} = \frac{1}{\sqrt{2}} N_b \tag{4.2}$$

また、変形量 δ とブレース材の伸び δ_b の関係は、

$$\delta = \sqrt{2}\delta_b \tag{4.3}$$

ブレース材の伸び δ_b と歪 ϵ_b の関係は、

$$\frac{\delta_b}{\sqrt{2}h} = \varepsilon_b \tag{4.4}$$

式(4.2)、(4.3)、(4.4)をせん断応力時の構成方程式

$$Q = \tau A = G\gamma \cdot bt = G \cdot \frac{\delta}{h} \cdot bt$$

に代入して整理すると

$$\frac{N_b}{\frac{1}{\sqrt{2}(1+\nu)} \cdot bt} = E \cdot \varepsilon_b \tag{4.5}$$

と表され、ブレース材の構成則が導かれる。式(4.5)よりブレースの有効幅wbは、

$$w_b = \frac{1}{\sqrt{2}(1+\nu)} \cdot b = 5.749 \text{ [mm]}$$

次に2軸引張応力に対する軸剛性が一致するように格子材の有効幅を計算する。図4.1のモデルの 一部を取り出して、図4.4のような状態を考える。図4.4のモデルにおいて、四周の格子材は隣の格 子と共有されるため、ここでは格子材の軸応力を半分として考える必要があることに注意する。

図4.4 2軸引張応力状態

格子材の有効幅を wm とし、

$$a = \frac{w_{\rm m}}{w_{\rm h}} \tag{4.6}$$

とおく。2 軸引張状態なので格子材とブレース材の応力度は等しいと仮定すると、格子材の軸力 N_m と ブレース材の軸力 N_b の関係は、

点 A における釣合いより、

$$N_m = aN_b$$

$$\frac{N}{2} = \frac{N_{\rm m}}{2} + \frac{1}{\sqrt{2}} \cdot N_{\rm b} = \left(\frac{1}{2} + \frac{1}{\sqrt{2}a}\right) N_{\rm m}$$
(4.7)

平板の構成方程式は、 $\epsilon_x = \epsilon_y$ とすると、

$$N = \frac{Eht}{1 - \nu^2} (\varepsilon_x + \nu \varepsilon_y) = \frac{Eht}{1 - \nu} \varepsilon_x$$

式(4.7)を代入し整理すると、格子材の構成則が導かれる。

$$\frac{\frac{N_m}{1}}{1+\frac{\sqrt{2}}{a}} \cdot \frac{ht}{1-\nu} = E\epsilon_x$$

上式より格子材の有効幅wmは

$$w_{\rm m} = \frac{\rm h}{(1 + \frac{\sqrt{2}}{a}) \cdot (1 - \nu)}$$

となる。ここで式(4.6)より

$$\frac{h}{\left(1+\frac{\sqrt{2}}{a}\right)(1-\nu)} = a \cdot w_b$$
$$a = \frac{h-\sqrt{2}w_b(1-\nu)}{w_b(1-\nu)} = 0.84$$

4.5

以上より、格子材の有効幅 4.857 mm、ブレース材の有効幅を 5.749 mm としたモデルを採用した。

図 4.5 格子材とブレース材の有効幅

4-2-2. ガラスの機械的性質のモデル化

2章で述べたように、ガラスの性質は温度に大きく左右される。ここではガラスのヤング係数、線膨 張係数と温度との関係を図4.6のようにモデル化した^{[18][24]}。ガラス転移点 T_s付近でヤング係数及び線 膨張係数は急激に変化することが知られている。ガラス転移点以下の温度における値は表4.1の値を用 い、ガラス転移点以上の値ではヤング係数は0.1 倍、線膨張係数は3倍になるとした。

図4.6 ヤング係数と線膨張係数の温度依存性のモデル

4-2-3. 粘弾性のモデル化

ある系が平衡状態であるときに、急激な外的作用が働くとその系は作用に応じた新たな平衡状態に 徐々に近づいていくことを緩和という。ある応力を与えてその状態を保持した場合、直ちにある程度 の歪が生ずるが、その後時間とともに少しずつ歪が大きくなる。あるいは、ある歪を与えて保持した 場合、直ちに歪に応じた応力が生じ、徐々に応力が小さくなっていく。こうした現象は緩和現象と呼 ばれる。また、非平衡状態から平衡状態へと変化するのに要する時間を緩和時間と呼ぶ。物質の緩和 時間が観測時間より十分短ければ粘性体として、十分長ければ弾性体として、同程度であれば粘弾性 体として捉えられる。ガラスは常温では弾性体であるが、ガラス転移点付近では緩和現象が無視でき ず粘弾性体となることが知られている。

粘弾性体における緩和現象について以下に述べる。まず、緩和現象を記述するために必要な粘性係 数の定義を示しておく。

図4.7 粘性係数の定義

図4.7のように、短い間隔 dxで隔てられた2枚の平板の間に液体が満たされている状態で、平板を 相対速度 dv で動かすのに必要な応力 F は、

$$F = \eta \frac{\delta v}{\delta x}$$

と表される。この時の比例定数 η を粘性係数(粘度または粘性率)と呼ぶ。この式はニュートンの粘性 法則として知られる。

次に、粘性係数とガラスの応力緩和との関係について説明する。応力をσ、歪をεとすると弾性体の 構成則は

$$\sigma = E\epsilon$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = E \frac{d\varepsilon}{dt}$$

粘弾性体では応力σ自身に比例した速さで応力が緩和されることが知られており、以下の式が成り立つ。

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = E \frac{d\varepsilon}{dt} - \frac{G}{\eta}\sigma$$

(G はガラスのせん断弾性係数、η は粘性係数)

ここで対象としているのは粘弾性体としてのガラスであり、ガラスの変形は無視できるくらいに小さい と考えられるため、式を省略して

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = -\frac{G}{\eta}\sigma\tag{4.8}$$

が成り立つ。さらに、粘性係数は緩和時間 τ をもちいて表せることが知られており、

$$\eta = G\tau \tag{4.9}$$

式(4.8)を時間 t に関して積分し、 $\sigma_{t=0} = \sigma_0$ で表すと以下の式ように表現できる。

$$\sigma = e^{-t\frac{G}{\eta}} \cdot \sigma_0 = e^{-\frac{t}{\tau}} \cdot \sigma_0 = \xi_{(t,T)} \cdot \sigma_0$$
(4.10)

4.7

これが粘性体における応力の緩和関数である。ここでは緩和係数 ξ を導入して表現する。 η は温度依存 性があるので、 ξ は時間 t と温度 T の関数である。

$$\xi_{(t,T)} = e^{-\frac{t}{\tau}}$$
(4.11)

次に、粘性係数 η の温度依存性についても考慮し、ガラスの温度に応じた緩和係数の式を明らかにしておく。粘性係数と温度の関係を示す代表的な式を以下に示す。

1. Andrade の提唱式

$$\log_{10} \eta = A + \frac{B}{T}$$
 (A, B は定数)

2. Fulcher の実験式

$$\log_{10} \eta = A + \frac{B}{T - T_0}$$
 (A, B, T₀は定数)

3. Poole の実験式

$$\log_{10}\eta = \sinh\left(\frac{A}{T}\right)\left(A \ \text{ki定数}\right)$$
 (4.12)

Poole の実験式は(η ,T)の組合せがひとつだけ分かれば、関係式を得ることができる。また、一般によい精度での計算が出来ることが知られており、ここでは Poole の実験式(4.12)を使うことにする。一般的なフロート板ガラスの徐冷点での粘度は 10¹³ [Pa·s]である。徐冷点の温度を 550℃とすると、A=2.68×10³となる。従って、緩和時間 τ は

$$\tau = \frac{\eta}{G} = \frac{1}{G} 10^{\sinh\left(\frac{2.68 \times 10^3}{T}\right)} = 3.42 \times 10^{\left\{\sinh\left(\frac{2.68 \times 10^3}{T}\right) - 11\right\}} [s]$$
(4.13)

と表される。本解析では、式(4.11)と(4.13)を用いて応力緩和を表現することとする。図4.8、図4.9 にそれぞれ式(4.11)と式(4.13)をグラフとして示す。

図 4.8 保持時間と緩和係数 図 4.9 保持温度と緩和時間 上記の緩和現象は粘弾性によるものであるが、ガラスの応力緩和には構造緩和と呼ばれる緩和現象も存 在することが知られている。本解析では構造緩和については考慮していないことを述べておく。 4-2-4. 温度分布のモデル化

溶着に伴ってガラスに生じる面内温度分布を再現するために、モデルに適当に分割した領域を割り当 て、それぞれに温度変化を入力する。それぞれの領域に属する部材は同じ温度変化をするとしたモデル になっている。溶着線方向には同一の領域とし、溶着線を中心に左右対称な領域分割をしたモデルにな っている。溶着線から格子2マス毎に領域分けをしていき、最後にマス目が余る場合は最後の3マスを 一つの領域とした(図4.10)。

各領域に入力する温度は、実験で得られた温度データのうち測定位置の x 座標の絶対値が等しいもの 同士で平均化したものを元に、領域の中心点の座標での温度を線形補完して求めたものとする。

実験での温度測定点

図 4.10 ガラスモデルの領域分割と入力温度

ここで、領域の境となる部分には、2本の格子材が配置され、それぞれは境に接する二つの領域のどち らかに別々に属している(図4.11)。このような領域の境界に位置する格子材の有効幅は4-2-1で 求めた有効幅の半分とする。

図4.11 領域境界部の部材

4-2-5. 温度履歴のモデル化

現状の熱工程は開始から終了まで約 20~30 時間かかる。この温度履歴をいくつかのステップに分割し て、増分的にステップごとの解析を行う。試験体間でのステップ刻みを統一するため、熱工程上の特異 点を定めた(表4.2)。また、ステップの刻み方によって解析結果が変わることが考えられるため、各 試験体に対して特異点を基準として3種類の異なるステップ刻みで解析を行い比較した(表4.3)。後 の4-3で述べるが、ガラス全体が 540℃未満であるステップでは線形解析を行うことになるので、特異 点1と2、及び9と10の間はそれぞれ1ステップでの解析とする。

	特異点	特記
1	開始	全領域 20℃とする
2	予熱(全領域 540℃未満)	2と3の間は1分
3	予熱(一部 540℃以上)	
4	局所加熱開始(電気加熱の場合のみ)	電熱線ヒーターでの局所加熱の場合は4を考慮
5	局所加熱終了	
6	アニーリング開始	温度の推移より判断
7	アニーリング終了	
8	冷却途中(一部 540°C以上)	8と9の間は1分
9	冷却途中(全領域 540℃未満)	
10	冷却完了	全領域 20℃とする

表4.2 熱工程上の特異点

表4.3 ステップの刻み方の違い

	ステップの刻み方	おおよそのステップ数
1	特異点で刻む	8 or 9
2	特異点間に 15 分おきに分割点を挿入	20~30
3	特異点3と8の間に3分おきに分割点を挿入	70~150

図4.13 ステップの刻み方2および3

4-3. 解析方法

4-1 でも述べたように、本解析は温度履歴をいくつかのステップに分割して、増分解析を行うもので ある。拘束されていない直線部材の温度が⊿T だけ上昇した場合、部材は膨張し、⊿L だけ伸びる(図 4.1 4 (a))。

$\Delta L = \alpha \Delta T \cdot L$ (L は部材長)

一方、両端が拘束されている部材の場合には、ひずみεに伴って軸応力Nが生じる(図4.14(b))。これは図4.14の(a)を伸びLの分だけ縮めた状態と考えるとよい。本解析の各ステップでは、モデルの 全部材に対して温度変化による熱応力を式(4.14)により求め、等価節点荷重に変換して弾性解析を行う。

$$\varepsilon = \frac{L}{\Delta L} = \alpha \Delta T$$
$$N = Ea\alpha \Delta T$$

(4.14)

(Eはヤング係数、Aは断面積)

図4.14 拘束による熱応力の発生

第iステップでの温度履歴の入力にはステップの開始時点 ($t_{s(i)}, T_{s(i)}$)、終了時点 ($t_{e(i)}, T_{e(i)}$)を用いる。 ステップ内では開始時点から終了時点まで直線的に温度履歴が進むものとする。ガラス転移の考慮に関 しては、 T_g =540°C以上ではガラスが液相であると仮定しているので、ステップ内で 540°C以上の部分で はガラスが軟化しているとみなし、4-2-2に示したヤング係数と線膨張係数の変化を適応してステッ プでの熱応力を求める。すなわち、540°C以上での温度変化を $\Delta T_{L(i)}$ 、540°C以下での温度変化を $\Delta T_{G(i)}$ とすると、熱応力 N_{therm(i)}は

$$N_{therm(i)} = EA\alpha\Delta T_{G(i)} + 0.1E \cdot A \cdot 3\alpha \cdot \Delta T_{L(i)} = EA\alpha \left(\Delta T_{G(i)} + 0.3\Delta T_{L(i)}\right)$$
(4.15)

により求める。一つ前のステップである第 i-1 ステップ終了時点での部材応力 $N_{remain(i-1)}$ と節点座標の 変位ベクトル $\{ \Delta u \}_{(i-1)}$ を引き継いで第 i ステップでの線形解析を行う。

$$N_{(i)} = N_{remain(i-1)} + N_{therm(i)}$$

$$(4.16)$$

$$\{u\}_{(i)} = \{u\}_{(i-1)} + \{\Delta u\}_{(i-1)}$$
(4.17)

$$\{F\}_{(i)} = [K]_{(i)} \{\Delta u\}_{(i)} \tag{4.18}$$

 $\{u\}_{(i)}$ は節点座標ベクトル、 $[K]_{(i)}$ は全体剛性マトリクス、 $\{F\}_{(i)}$ は各部材の軸力 $N_{(i)}$ を等価節点荷重に変換 した荷重ベクトルを表す。全体剛性マトリクスを構成する際に用いるヤング係数は $T_{s(i)}$ と $T_{e(i)}$ がともに 540°C以上の場合には 0.1E としている。式(4.18)を解いた結果得られる変位 $\{ \Delta u \}_{(i)}$ を元に部材の応力 N'_(i)を求める。 次に、4-2-3に述べた応力緩和を適用するため、ステップ内の温度が 540℃以上となる部分での経 過時間⊿t_{L(i)}と平均温度 T_{mid(i)}を求める(図4.15)。

$$\Delta t_{L(i)} = \begin{cases} \frac{T_{s(i)} - 540}{T_{s(i)} - T_{e(i)}} (t_{e(i)} - t_{s(i)}) & (T_{s(i)} > T_{e(i)}) \\ \frac{T_{e(i)} - 540}{T_{e(i)} - T_{s(i)}} (t_{e(i)} - t_{s(i)}) & (T_{s(i)} < T_{e(i)}) \end{cases}$$
$$T_{mid(i)} = \begin{cases} \frac{T_{s(i)} + 540}{2} & (T_{s(i)} > T_{e(i)}) \\ \frac{540 + T_{e(i)}}{2} & (T_{s(i)} < T_{e(i)}) \end{cases}$$

これらの値を式(4.11),(4.13)に代入することで緩和係数 ξ_(i)が求まり、式(4.10)を軸力に書き直した式 (4.19)により応力緩和を行う。

$$N_{remain(i)} = \xi_{(i)} \cdot N_i' \tag{4.19}$$

以上が第iステップにおける操作である。ここで、Ts(i)・Te(i)がともにTg以下の場合には熱応力の式 (4.15)は

$$N_{\text{therm}(i)} = EA\alpha (T_{e(i)} - T_{s(i)}) = EA\alpha\Delta T$$

で表される。また式(4.18)における全体剛性マトリクス[K]_(i)は一定であるので、温度変化⊿T に対して 線形な解析となることを明記しておく。

最終ステップ終了後に得られる各部材の応力 N_{remain(i=final)}が溶着に伴う残留応力とみなす。

図4.15 第iステップの温度履歴入力

実験結果との比較を行うために、部材応力を各節点での主応力度に変換する必要がある。同時に主応 力角度も求めることで主応力ベクトル場としての比較が可能となる。本解析のモデルでは1節点に3~ 10本の部材が接続されているが、格子状のモデルであるため節点に対する部材の軸方向は45°刻みの 8方向に限られる(図4.16)。そこで、各方向での部材軸力と部材断面積を集計し、y軸正方向から時 計回りにN₀~N₇およびA₀~A₇とする。ここで軸力Nは引張を正とする。4-2-4で述べたように領域 の境では節点間に部材が2本存在する場合があるが、この場合は部材軸力・断面積ともに足し合わせる。

主応力度及び主応力角度を求めるために、xy 座標系に対して反時計回りに θ だけ回転した uv 座標系 を考え、8 方向の軸力 N₀~N₇を uv の正負両方向に成分分解する。また、4-2-1 で定めたように格子 材の有効幅とブレース材の有効幅は異なるため、角度 θ に対する有効幅 w_{eq}を求める。これらの計算は エッジ部での部材数が異なる場合にも適応できるようになっている。

$$N_{u+} = \begin{cases} N_0 \cos\left(\frac{\pi}{2} - \theta\right) + N_1 \cos\left(\frac{\pi}{4} - \theta\right) + N_2 \cos\theta + N_3 \cos\left(\frac{\pi}{4} + \theta\right) & (0^\circ \le \theta \le 45^\circ) \\ N_0 \cos\left(\frac{\pi}{2} - \theta\right) + N_1 \cos\left(\theta - \frac{\pi}{4}\right) + N_2 \cos\theta + N_7 \cos\left(\frac{3\pi}{4} - \theta\right) & (45^\circ \le \theta \le 90^\circ) \end{cases}$$

$$\left(N_u \cos\left(\frac{\pi}{2} - \theta\right) + N_u \cos\left(\frac{\pi}{4} - \theta\right) + N_u \cos\left(\frac{\pi}{4} - \theta\right) + N_u \cos\left(\frac{\pi}{4} - \theta\right) \right) = (0^\circ \le \theta \le 45^\circ)$$

$$N_{u-} = \begin{cases} N_4 \cos\left(\frac{\pi}{2} - \theta\right) + N_5 \cos\left(\frac{\pi}{4} - \theta\right) + N_6 \cos\theta + N_7 \cos\left(\frac{\pi}{4} + \theta\right) & (0^\circ \le \theta \le 45^\circ) \\ N_3 \cos\left(\frac{3\pi}{4} - \theta\right) + N_4 \cos\left(\frac{\pi}{2} - \theta\right) + N_5 \cos\left(\theta - \frac{\pi}{4}\right) + N_6 \cos\theta & (45^\circ \le \theta \le 90^\circ) \end{cases}$$

$$N_{\nu+} = \begin{cases} N_0 \cos\theta + N_1 \cos\left(\frac{\pi}{4} + \theta\right) + N_6 \cos\left(\frac{\pi}{2} - \theta\right) + N_7 \cos\left(\frac{\pi}{4} - \theta\right) & (0^\circ \le \theta \le 45^\circ) \\ N_0 \cos\theta + N_5 \cos\left(\frac{3\pi}{4} - \theta\right) + N_6 \cos\left(\frac{\pi}{2} - \theta\right) + N_7 \cos\left(\theta - \frac{\pi}{4}\right) & (45^\circ \le \theta \le 90^\circ) \end{cases}$$

$$N_{\nu-} = \begin{cases} N_2 \cos\left(\frac{\pi}{2} - \theta\right) + N_3 \cos\left(\frac{\pi}{4} - \theta\right) + N_4 \cos\theta + N_5 \cos\left(\frac{\pi}{4} + \theta\right) & (0^\circ \le \theta \le 45^\circ) \\ N_1 \cos\left(\frac{3\pi}{4} - \theta\right) + N_2 \cos\left(\frac{\pi}{2} - \theta\right) + N_3 \cos\left(\theta - \frac{\pi}{4}\right) + N_4 \cos\theta & (45^\circ \le \theta \le 90^\circ) \end{cases}$$

$$w_{eq} = \begin{cases} \max\left(\frac{A_{1}\theta + A_{2}(45 - \theta)}{45}, \frac{A_{3}\theta + A_{4}(45 - \theta)}{45}, \frac{A_{5}\theta + A_{6}(45 - \theta)}{45}, \frac{A_{7}\theta + A_{0}(45 - \theta)}{45}\right) \\ (0^{\circ} \le \theta \le 45^{\circ}) \\ \max\left(\frac{A_{1}(\theta - 45) + A_{2}(45 - \theta)}{45}, \frac{A_{3}(\theta - 45) + A_{4}(45 - \theta)}{45}, \frac{A_{5}(\theta - 45) + A_{6}(45 - \theta)}{45}, \frac{A_{7}(\theta - 45) + A_{0}(45 - \theta)}{45}\right) \\ (45^{\circ} \le \theta \le 90^{\circ}) \end{cases}$$

上式の数値を用いて主応力度が θ であると仮定した場合の主応力度 σ_u ・ σ_v を計算する。

$$\sigma_{u} = \frac{\max(N_{u+}, N_{u-})}{w_{eq}}$$
$$\sigma_{v} = \frac{\max(N_{v+}, N_{v-})}{w_{eq}}$$

モデルの対称性及び主応力度は互いに直交することから $\theta \ge 0^\circ$ から 90° まで 1° 刻みで変化させ、 応力度差 $|\sigma_u - \sigma_v|$ が最大になるときのを $\sigma_u \cdot \sigma_v$ を主応力度とする。さらに、 $\sigma_u \cdot \sigma_v$ のうち代数的に 大きい値(引張が正)となるものを最大主応力度 σ_1 、小さい値のものを最小主応力度 σ_2 とし、 σ_1 の応 力方向を最大主応力角度 θ_{max} とする。すなわち、

$$\theta_{\max} = \begin{cases} \theta & (\sigma_u > \sigma_v) \\ \theta + 90 & (\sigma_v < \sigma_v) \end{cases}$$

図4.16 主応力状態の計算方法

最後に解析のフローチャートを図4.17に示す。

4-4.解析結果

全試験体に対して、3種類のステップ刻みで解析を行った結果を表4.4に示す。各試験体の解析結果の詳細は付録に記載する。

試験体	ステップ		主応力度	х	У		試験体	ステップ		主応力度	х	У
名称	分割方法		[N/mm2]	[mm]	[mm]		名称	分割方法		[N/mm2]	[mm]	[mm]
	1	σ1	29.4	-0.15	0		MG-2	1	σ1	57.3	-0.23	0
	T	σ2	-26.83	-0.13	-0.07			1	σ2	-77.2	-0.23	-0.07
MO 1	2	σ1	18.66	-0.16	0			2	σ1	69.17	-0.23	0
MG-1	Z	σ2	-32.32	-0.16	-0.07				σ2	-75.53	-0.22	-0.07
	2	σ1	28.09	-0.15	0			2	σ1	75.84	-0.23	0
	3	σ2	-27.96	-0.15	-0.07			3	σ2	-74.75	-0.22	-0.07
	1	σ1	34.92	-0.2	0			1	σ1	23.22	-0.16	0
	T	σ2	-46.64	-0.2	-0.07			1	σ2	-24.35	-0.16	-0.07
	2	σ1	48.04	-0.2	0			2	σ1	25.75	-0.17	0
MG-3	Z	σ2	-61.28	-0.2	-0.07		MG-4	2	σ2	-28.55	-0.17	-0.07
	2	σ1	52.58	-0.2	0			2	σ1	29.87	-0.17	0
	3	σ2	-60.08	-0.2	-0.07			3	σ2	-31.51	-0.17	-0.07
	1	σ1	33.32	-0.15	0		MG-6	1	σ1	24.63	-0.18	0
	T	σ2	-30.14	-0.15	-0.07			1	σ2	-34.81	-0.17	-0.07
	2	σ1	33.28	-0.15	0			2	σ1	24.16	-0.18	0
MG-5	2	σ2	-33.19	-0.15	-0.07			Z	σ2	-38.62	-0.17	-0.07
	2	σ1	31.55	-0.16	0			2	σ1	23.73	-0.23	0
	5	σ2	-36.94	-0.16	-0.07			3	σ2	-43.12	-0.25	0
	1	σ1	13.73	-0.14	0		MG-8	1	σ1	20.15	0	0
		σ2	-18.91	-0.13	-0.07			1	σ2	-28.86	-0.01	-0.07
	2	σ1	24.29	-0.16	0			2	σ1	18.58	0	0
MG-1		σ2	-33.36	-0.16	-0.07			Z	σ2	-26.8	-0.01	-0.07
	2	σ1	21.97	-0.16	0			2	σ1	20.02	0	0
	5	σ2	-32.48	-0.16	-0.07			5	σ2	-28.7	-0.01	-0.07
	1	σ1	50.71	-0.21	0			1	σ1	57.68	-0.21	0
	I	σ2	-64.73	-0.21	-0.07			I	σ2	-64.01	-0.21	-0.07
	2	σ1	62.96	-0.22	0			2	σ1	62.91	-0.21	0
MG-9	Z	σ2	-83.84	-0.22	-0.07		LG-1	Z	σ2	-79.95	-0.22	-0.07
	2	σ1	62	-0.22	0			2	σ1	65.66	-0.21	0
	5	σ2	-82.38	-0.22	-0.07			5	σ2	-77.46	-0.22	-0.07
	1	σ1	33.18	-0.2	0			1	σ1	12.22	-0.22	0
	Ţ	σ2	-38.2	-0.2	-0.07		10.2	T	σ2	-16.47	-0.21	-0.07
LU-Z	n	σ1	38.56	-0.2	0		LG-3	n	σ1	18.13	-0.22	0
	2	σ2	-50.25	-0.21	-0.07			۷	σ2	-23.46	-0.22	-0.07

表 4.4 解析結果 全試験体一覧

			σ1	34.39	-0.22	0				σ1	15.82	-0.22	0
		3	σ2	-50.59	-0.22	-0.07			3	σ2	-20.4	-0.22	-0.07
			σ1	12.15	0	0				σ1	7.96	0	0
		1	σ2	-17.36	-0.01	-0.07			1	σ2	-11.37	-0.01	-0.07
			σ1	13.93	-0.1	0		LG-5		σ1	8.82	-0.07	0
	LG-4	2	σ2	-17.37	-0.01	-0.07			2	σ2	-12.94	-0.1	-0.07
			σ1	25.66	-0.05	0				σ1	13.34	-0.07	0
		3	σ2	-25.41	-0.09	0			3	σ2	-11.29	-0.07	-0.07
		1	σ1	11.23	-0.07	0			1	σ1	15.8	-0.2	0
		T	σ2	-11.68	-0.07	-0.07			Ţ	σ2	-20.91	-0.19	-0.07
		0	σ1	16.92	-0.08	0		XO 1	0	σ1	15.84	-0.2	0
	LG-0	Z	σ2	-21.55	-0.08	-0.07		XG-1	Z	σ2	-27.1	-0.22	-0.07
		2	σ1	11.85	-0.08	0			2	σ1	14.02	-0.2	0
		3	σ2	-15.3	-0.07	-0.07			3	σ2	-19.99	-0.21	-0.07
		1	σ1	12.74	-0.16	0			1	σ1	17.15	-0.3	0
		T	σ2	-17.59	-0.15	-0.07			Ţ	σ2	-22.52	-0.3	-0.07
	VC 0	2	σ1	19.15	-0.19	0			0	σ1	σ1 10.75	-0.23	0
	XG-2	Z	σ2	-30.74	-0.19	-0.07		LE-I	Z	σ2	-17.91	-0.23	-0.07
		2	σ1	17.87	-0.23	0			2	σ1	9.15	-0.22	0
		3	σ2	-23.95	-0.23	-0.07			3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.23	-0.07	
		1	σ1	28.15	-0.29	0			1	σ1	8.18	-0.23	0
		T	σ2	-38.7	-0.29	-0.07			Ţ	σ2	-15.09	-0.23	-0.07
		2	σ1	13.13	-0.23	0			2	σ1 11.0	11.03	-0.28	0
	LE-Z	Z	σ2	-17.79	-0.21	-0.07		LE-3	Z	σ2	-13.12	-0.23	-0.07
		2	σ1	12.78	-0.23	0			2	σ1	10.65	-0.28	0
		3	σ2	-16.64	-0.23	-0.07			3	σ2	-10.14	-0.23	-0.07
		1	σ1	12.05	-0.23	0			1	σ1	3.44	-0.17	0
		T	σ2	-15.21	-0.23	-0.07			Ţ	σ2	-5.71	-0.17	-0.07
		2	σ1	9.05	-0.23	0			0	σ1	3.77	-0.18	0
	LE-4	Z	σ2	-14	-0.21	-0.07		LE-5	Z	σ2	-5.79	-0.17	-0.07
		2	σ1	8.1	-0.23	0			2	σ1	3.05	-0.18	0
		3	σ2	-12.02	-0.23	-0.07			3	σ2	-4.64	-0.17	-0.07
		1	σ1	3.06	-0.07	0							•
		T	σ2	-4.95	-0.07	-0.07							
		0	σ1	6.54	-0.2	0							
	LE-0	Z	σ2	-7.6	-0.19	-0.07							
		n	σ1	6.11	-0.2	0							
		3	σ2	-5.19	-0.2	-0.07	1						

実験で得られた等色線画像との比較を行うため、解析によって得られた各節点における主応力度差 $|\sigma_1 - \sigma_2|$ に面積が比例ような円としてプロットした図(主応力度差分布図)を作成した。また、各節点 の最大・最小主応力度 $\sigma_1 \cdot \sigma_2$ と主応力角度 θ を元に主応力場を作図した。これらの実験と解析との比 較例を表4.5に示す。

表 4.5 実験結果と解析結果の比較表

4-5.考察

4-5-1. ステップ刻みの違いによる影響

4-2-5に示した温度履歴のステップ刻みの違いによる解析結果の比較を図4.18に示す。概ね近い 結果が出ており、ここでも温度勾配が緩やかなほど残留応力値が小さくなる傾向が表れている。一方で、 試験体 LE-4 のステップ刻み3と LE-2 のステップ刻み1においては、他の2種類の刻み方での結果と の差異が大きい。ステップ刻み2での解析結果が他の結果との差異が小さく、また解析値がやや大きく 出る傾向があり、危険側の結果を示しているので、以降の節での実験結果との比較においてはステップ 刻み2により行った解析結果を用いることにする。

4-5-2.実験結果との比較一最大・最小主応力度

図4.19では、実験と解析のそれぞれで得られた残留応力に対して、ガラス面内全体での最大値と最 小値の比較を示す。ただし、実験結果に関しては溶着線に対して左右それぞれでの最大・最小値を示し ており、例外的に試験体 MG-1と MG-2 については左半分のみの結果を示している。

温度勾配が緩やかな場合には実験と良い対応を示しているものの、温度勾配が急峻な場合に差異が大 きいことが分かる。原因としては、炉内と炉外に設置された熱電対間において最大温度勾配が計測され ており、炉外の熱電対は外気に触れているためにガラス自体の温度と計測される雰囲気温度の差が大き いと考えられる。この場合、実際のガラス温度よりも低い温度として解析されるので、解析上の温度勾 配が急峻となり残留応力値が大きくなってしまう。今後の改善点として、電熱線ヒーター等の熱源から の入熱量を元に、ガラスの熱伝導を考慮することで得られる温度場を入力とした解析とすることが挙げ られる。

図4.19 最大・最小主応力度の比較

4-5-3.実験結果との比較-xy軸上での応力分布

残留応力の分布を簡潔なグラフで比較するために、xy 軸上における溶着線方向と溶着線に垂直な方向の応力度に着目し、図4.20に示す。溶着線に垂直な方向の応力度 σ_x の分布では実験と良い対応を示しているが、溶着線方向の主応力度 σ_y の分布ではピーク位置は対応しているものの、実験値との差異が大きい。原因と考えられることを以下に列挙する。

・温度入力を奥行方向は一定としたこと

・温度入力のために離散的な領域分割を行ったこと

・ガラスのヤング係数および線膨張係数の温度依存性が不連続となっていること

また、幅方向のエッジ部(実験では y=75mm、解析では y=70mm にあたる)における σ_x の比較も図 4.20に示した。 3-5-5 で述べたエッジ部での引張応力は解析では検出できなかった。

図 4.20 溶着線方向の応力度 σ_xと溶着線に垂直な方向の応力度 σ_yの比較
5章 溶着線方向への展開

5-1.本章の目的

1-2で述べたような走査式溶着装置で大判のガラス板を溶着する場合には、3章の実験における幅方向の温度勾配条件が溶着線方向に逐次的に展開することになる。ある時点での温度分布の想定図を図5. 1に示す。幅方向の温度分布図は3章での実験と同様であるが、奥行方向の温度分布図は3章での温度 履歴図のようになると考えられる。

図5.1 走査式溶着炉での温度分布想定図

ここでは自走式の装置を実装する前に、溶着線方向の温度勾配による溶着性状について模索すること を目的とした実験を行う。 5-2. 実験方法

試験体寸法を $400 \times 450 \times 8$ mm もしくは $600 \times 450 \times 8$ mm とし、溶着線長さを 400mm もしくは 600mm とする。本章での実験においては図 5.2、図 5.3に示す溶着炉を自作し使用した。溶着線方向 に独立に制御されるヒーターを 3 台設置し、時間差をつけてヒーターを稼働することで、溶着線方向の 温度勾配を与える。ガラス上部の炉内空間は電熱線ヒーターの寸法に合わせて約 200mm 毎に断熱材の 間仕切りで別々の空間に仕切られている。各空間での温度は概ね均一になるという想定の下、隣り合う 部屋同士での温度差が概ね 100℃から 150℃程度となるように温調器の出力を調整しながら熱工程を進めた。溶着線と垂直な方向には、3 章での実験と同様に断熱材に勾配をつけて配置することで温度勾配 を与えている。また、局所加熱は電熱線ヒーターにより行う。試験体のガラスの種類や、溶着部でのカレットのセットアップなどは 3 章での実験と同様である。

図 5.3 溶着炉 写真

5-3. 試験体一覧

試験体一覧を表5.1に示す。本章では計4体の実験を行った。試験体名称は試験体寸法に寄らず PE とし、通し番号を振った。

		26
試験体名称	試験体寸法	実験日
PE-1	600x450x8	2017/12/15
PE-2	600x450x8	2017/12/20
PE-3	600x450x8	2017/12/26
PE-4	400x450x8	2018/1/9

表 5.1 試験体一覧

5-4. 実験結果

実験結果の一覧を図5.4に示す。各実験のセットアップ詳細は付録に示す。温度履歴図は各空間での 溶着部付近の温度を示したものである。

図 5.4 実験結果一覧

奥行方向に温度勾配を与える機構での実験は前例がなく炉の設計や実験中の温度管理に関して手探 りの状態であった。ここでは実験での失敗から得られた知見を書き留めておく。

試験体 PE-1 は予熱中にガラス面内で熱割れが発生した。空間 1 の温度がガラス転移点を超えて間も なく熱割れが発生しており、その時点で空間 1 と 2 の間には 200℃程度の温度差がついていた。

試験体 PE-2 では局所加熱中に電熱線が切れてしまった。電熱線の耐熱温度は 1100℃程度であるが、 この場合それ以上の温度になっていたと考えられる。原因としては、電熱線ヒーターの上面すべてを覆 うようにアルミナ板を乗せて加熱を行ったため、熱の逃げ場がなくなってしまったためと考えられる。

試験体 PE-3 ではアルミナ板を電熱線ヒーターから 20mm 程度浮かせて設置して、隙間の空間の雰囲 気温度を測定しながら、実験を行った。この場合でもアルミナ板が上方を覆っていたため、局所加熱時 には電熱線付近の温度が 1000℃を超えた。そのためガラス表面付近の温度は 780℃程度までしか上げ られず、空間3のアニーリング終了直後に溶着不全による割れが発生した。

そこで試験体 PE-4 では溶着線長さを 400mm に変更し、溶着線方向に並ぶ2つの空間での温度勾配 をつけた実験とした。溶着線方向の断面図を図5.5 に示す。空間を2つに縮小することで電熱線ヒータ ー付近の熱が上方に逃げれるようになった。さらに溶着不全を防ぐため、炉の天面にも電熱線ヒーター を設置し、局所加熱時に稼働した。

図 5.5 溶着線長さを 400mm とした実験での溶着線方向断面図 図 5.3の温度履歴図から分かるように空間1と2の温度履歴がずれたように推移していることが分か る。冷却途中において、空間1と2の間には最大で 125℃の温度差がついていた。

空間同士を仕切っている断熱材の厚みは 50mm であるので、3 章で扱った温度勾配を考えると間仕切 り部における温度勾配は 25[℃/cm]である。図 3.2 5と照らし合せると、十分緩やかな温度勾配である と考えられるが、実際には冷却途中で割れが発生した。ガラス面の中央付近では幅方向・奥行方向とも に大きな拘束を受けていると考えられ、試験体寸法が 2 次元的に大きくなったことに起因すると考えら れる。

6章 総括

6-1.本論文での成果

本論文での成果を以下にまとめる。

1. 溶着に伴う残留応力値の低減

ガラス端部が炉外に露出した状態での実験において残留応力値を低減することが出来た。既往 研究での最も応力値が小さい試験体では、最大主応力度 σ_1 が16.0 N/mm²、最小主応力度 σ_2 が-36.6 N/mm²であった(試験体 MG-7)。本論文においては、 σ_1 が12.0 N/mm²、 σ_2 が-17.1 N/mm² とすることが出来た(試験体 LG-6)。

2. アニーリング終了時の温度勾配と残留応力値との比例関係

溶着線と垂直な方向にのみ温度勾配を与えた溶着実験において、溶着で一体化できた 17 体の 試験体を標本としたときに、アニーリング終了時の温度勾配と残留応力との間に正の相関がある ことを明らかにした。最大・最小主応力度 $\sigma_1 \cdot \sigma_2$ [N/mm2]と温度勾配 S[$^{\circ}$ C/cm]の比例定数はそ れぞれ 0.395、0.763 である。このことから、温度勾配による残留応力の低減手法を提案した。

3. アニーリング終了時温度勾配の凹凸型と残留応力分布の関係

アニーリング終了時の温度勾配が残留応力分布に及ぼす影響を簡易なモデルを用いて考察し、 特にエッジ部での応力状態に対応がみられることを示した。この考察から、温度勾配が凹型であ るとエッジ部に引張応力が発生しうると考えられ、ガラスの強度上好ましくない。

4. 増分解析による残留応力の数値解析法

ガラス転移点以上の温度におけるガラスの粘弾性を考慮した増分解析手法を構築した。実験と の比較を通して残留応力度の値や溶着線に垂直な方向での応力分布などに良い対応がみられた。 6-2. 今後の課題

本論文での成果を踏まえ、今後の研究における課題を示しておく。

・残留応力発生機構における周囲のガラスによる拘束の度合い

3章での考察において、短冊状に分割したガラスがバネで拘束し合うモデルを提示したが、バネ 定数kは隣り合うガラスによる拘束度合いを表す指標と考えられる。

・凹型の温度勾配への対応

試験体のさらなる大判化に伴い炉外に露出する領域が広がると、アニーリング終了時の温度勾配 が凹型になることは避けられない。本論文では測定点間の温度勾配の最大値にのみ着目したが、隣 り合う温度勾配の変化量、あるいは温度勾配の微分値を考察対象にすることが考えられる。

・奥行方向での温度勾配と残留応力の関係

5章での実験では、全試験体が割れてしまったため残留応力状態についての考察が出来なかった。 幅方向の温度勾配による残留応力と奥行方向の温度勾配による残留応力が干渉していると考えら れ、応力値を増幅している可能性がある。

・増分解析のモデル化

実験値との比較において差異が大きい部分がいくつか挙げられ、温度入力のための領域分割を一 方向としていること、領域分割を離散的にしていること、ガラス性質のガラス転移点における不連 続性などの問題点が原因として考えられる。

・温度測定法の改善・温度場の導入

実験での温度測定がガラス付近の雰囲気温度であるため、ガラス自体の温度との差異が大きいと 考えられ、解析での考察を困難にしている。熱源となる電熱線ヒーターからの入熱量を元に、ガラ スの熱伝導を考慮した温度場を別途計算し、その計算結果を入力値とした増分解析を行うことが考 えられる。ただし、ガラスの熱伝導にも温度依存性があり、温度場の計算の精度を上げるのも容易 ではないと思われる。熱電対以外の装置により溶着工程でのガラス自体の正確な温度分布を計測し ておく必要があると考えられる。

付録1

各試験体の実験詳細・解析詳細

実験条件 ※参考文献[11],[12]より引用・編集

実験条件 ※参考文献[11],[12]より引用・編集

12 15 18 21 24 27

50 50 50 50 50 25 25 50 50 50 50

///

30 33

50 25

69

MG-1 実験日:2015.10.15 試験体寸法:150×300×8

MG-3 実験日:2016.5.9

試験体寸法:150×300×8

試験体寸法:150×300×8

			3	ž	服大主任力度 - 限小主任力度	300 X[mm] - 最小主动力度 -	
冷却終了	1700	e				200	
冷却(弾性範囲)	278	ステップ刻み	se Xina se		0=/	0 <i>L</i> = /	
冷却(一部軟化)	277					-300200	
アニーリンゲ終了	257		immi ^y ۴۳۳۳/	Jumpa 00	- 第一部では 1000000000000000000000000000000000000	300 300 X(mm) 第 40 40 45 40 40 40 40 40 40 40 40 40 40 40 40 40	-60
アニーリング開始	139	"刻み2				100 200	
局所加熱	88	スナップ	Lum X 0- 0- 01-) A=0		
予熱完了(一部軟化)	59		ImmiY 8 8 8 8 8 8 4 4 4 5 6 4 4 4 6 4 4 8		[Smm/N] v 8 8 8 8 8 9 9 9 9 8		- 60
予熱(弾性範囲)	58				第六主任2月1日 第八百二日 第八百二日 第八日 第一日 第一日 第一日 第一日 第一日 第一日 第一日 第一日 第一日 第一	200 200 X[mm] — 最小主的力度	
主要なステップ分割点	実験開始からの経過時間 [min]	ステップ刻み 1			応力度分布図 y=0	-200 -100 0 100 y=7	
	4m7		主応力度差 ************************************	主応力度ベ	y 電子の 100 100 100 100 100 100 100 10	[Smm/N] 0 8 06 4 5 0 0 0 0 00 00 00	-60

11T 1/11/11/11

[mm]វ ខេត្តនុងដ ° ។ ដំងំនំនំនំនំ

0 [Smm\N] 0 2 0 2 4 6 1 2 0 2 4 6

-80 80 60 40

80 09 40 [Smm/N] 0 8 0 2 0 2 4 6 8

解析	結果
----	----

 -09--80

口名種寸法

炉内平面図

	2	5	8	11	14	17	20	23	26	29	32	35	
90	1	4	7	10	13	16	19	22	25	28	31	34	
9	0	3	6	9	12	15	18	21	24	27	30	33	
	25 50	D t	50 5	0 5	50 5	50 25			31	00			

口各種寸法

炉内平面図

12 15

50 25

 $\left(\right)$

25 50

-300

80 09 40 20 ò -20 -40 -09--80 80 60 40

[Smm/N] D 300

[Smm/N] v 4 v v v 4 d %

[mm]Y ៤ឧឧឧឧឧឧឧ ដង់ដំង់ង់ង់ង់ង់ង់

口各種寸法

炉内平面図

□熱電対位置 ※ □はコントローラーに接続された熱電対を表す

LC		1		2 2 2		S S		一 最大主応力度 最小主応力度	400 X[mm]
冷却終了	1700	133.3		R R R R R					200
冷却(弾性範囲)	240	ステップ					:		-200 0
冷却(一部軟化)	239			InnelY Barasarasa B		терение и станализации и стана С станализации и стана		[2mm/V] 8 8 8 5 5 0 5 6	-60 -80 -400
アニーリング終了	226			8		j j j		- 最小も応り度 - 報小も応り度	400 X[mm]
アニーリング開始	160	1 プ刻み 2		en e			C		0
局所加熱	73	スナッ							-200
予熱完了 (一部軟化)	61			Immily baraaraa abaababa		ар 1996 - 1997 - 1998 - 1999 - 1997 Натар		[Smm/V] ° 8 8 8 5 5 5 5 5 5	-60 -80 -400
予熱(弾性範囲)	60					S S R R		- #K-14070111 #A-140701111	0 400 X[mr
主要なステップ分割点	実験開始からの経過時間 [min]	ステップ刻み 1	ぎ差プロット図		ぎベクトル図)主応力度分布図		-200 0 200
			主応力度	iemir Ganarus dirbédési É	主応力度	10000 1000000	y 軸上の	[Smm/V] v 8 00 04 05 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-60 -80 -400

解析結果

200

0

-200

-400

X[mm]

400

200

0

-200

-400

X[mm]

400

200

0

-200

-400

o [Smm/N] 6 6 2 0 2 6 6 8 8 6 6 2 0 2 8

[Smm/N] 0 0 0 2 0 2 0 8 0 0 0 0 0 8

- 最大主応力度 - 最小主応力度

y=7

م [Xmm/N] ه و 1 - 1 - 2 - 4 - 6 80 80 - 2 - 2 - 2 - 4 - 5

最大主応力度 最小主応力度

y=7

X[mm] X[mm] 最大主応力度 最小主応力度 400

y=7

□熱電対位置 ※ □はコントローラーに接続された熱電対を表す

									_		解析結	课
L(3—2	2				96 - 92	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一		400 X[mm]	 一一 最大主応力度 一一 最小主応力度 		400 V[mm]
冷却終了	1700	<u>ा</u> रु 3		2 2 3 3 3 3 3 4 2 4 4 4 4 4 4 4 4 4 4 4					500			200
冷却(弾性範囲)	265	ステップな		A the second sec			y=0	K	-200 0 V-7			-200
冷却(一部軟化)	264			ImmiY 4		RAREARKA - CONSIGNAL B	80	[Smm/V] 0 0 0 0 0 0 0 0 0 0 0 0	-60 -80 -400	2] 20 80 80 80 80 80 80 80 80 80 80 80 80 80	o [N] 0	-80 -400
アニーリング終了	243			5 2 2		S a a a	截六主応力度 最小主応力度		400 X[mm]	—— 最大主动改 —— 最小主动力度		400 X[mm]
アニーリング開始	113	, プ刻み 2		Xind a to be a		a a a a a a a a a	V=0		0 200			0
局所加熱	85	ステッ		* 1 7 7 7 8 8					-200			-200
予熱完了(一部軟化)	66			tensife a na a na na na na na na na na na ti ti ti ti ti ti ti ti ti ti ti ti ti		Naka uka tabababa Kaka uka tabababa B	80	[Smm/V] 0 6 0 0 0 64	-60 -80 -400	2] 40 60 80	ттт/N] о	-80 -400
予熱(弾性範囲)	65					S B R R R	 一 現大主応力度 一 弱小主応力度 		400 X[m	—— 最大主応力度 —— 最小主応力度		400 X
ップ分割点	圣過時間 [min]	ップ刻み 1		Minut a second			y=0		0 200			0
主要なステン	実験開始からの糺	ステ	ぎ差プロット 図		ぎベクトル 図)主応力度分布		-200			-200
			主応力度	Temaily Research an	主応力度	235.848.0.2 - 238.848.87 Passa Passa	y 動上の	[Smm/N] 0 20 - 20 - 20 - 20 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	-60 -80 -400	[2] 8 6 6 8 6 9	مسار» 1 - 20 60 - 20 61 - 20	-80 -400

X[mm] 400

X[mm]

X[mm]

□熱電対位置 ※ □はコントローラーに接続された熱電対を表す

LC	<u> </u>	3				\$		400
行却終了	1700	1343						200
冷却(弹性範囲)	248	ステップな						-200
冷却(一部軟化)	247			REASTRE TO TRADUCT		аналан <u>тарарар</u> Талаларадар 1996	[2mm/N] o 8 8 6 5 5 0 5 6 6	-80 -400
アニーリング終了	237					5 2 3 3	最大主応功度	400
アニーリング開始	165	プ刻み 2		Xuala Xuala			0=	0
局所加熱	89	スナッ						-200
熱完了(一部軟化)	71			REFERENCE CONTRACTOR		त्व स्वरूप्त	[Smm/V] o 8 6 6 2 0 0 5 6 6	-80 -400
予熱(硝性範囲)	70					5 2 3 3 3	一一最大主的力度	400
主要なステップ分割点	〔験開始からの経過時間 [min]	ステップ刻み1	<u>⋛</u> プロット図		ミクトル図		:応力度分布図 y=0	-200 0 200
			主応力度差	Immily a management a a a a a a a a a a a a a	主応力度~	n Busan kan - Sopan Sop International Sopan So Sopan Sopan S	文 単上の 1 1 1 1 1 1 1 1 1 1 1 1 1	-80 -400

-200

-400

-200

-400

د الاستان الماستان الاستان الاستان الماستان الاستان الماسان الماسان الماسان الماسان الماسان الماسان الماسان الماسان الماسان الما الماسان الماسام الماسام الماسام الماما الماما الماما الماسام الماما المام الماممام المامامام الممام الممامام المماما الممام المماما المماما المم

-400

X[mm]

X[mm]

0

-400

Τſ	<u> </u>	I		1				解析术
LU	J - 4	t		8 8 9	2 2 2 2	一一般大主成功度	400 X 400 X - 東大王応力度	
冷却終了	1700	刻み 3		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			500	
冷却(弹性範囲)	244	ステップ		1 4 4 4 1		J=K	-200 0 -201 0	
冷却(一部軟化)	243		ImmiY assastssibisis	亨 亨 亨	- 20 20 20 20 20 20 20 20 20 20 20 20 20 2	[Smm/N] v 8 8 6 5 0 0 6		200 [] 200 22 4 5 200 25 4 5 200 200 200 200 200 200 200 200 200 200
アニーリング終了	241			8 8 8	9 8 8 8 8		400 X[mm] 一	
アニーリング開始	131	・プ刻み2		Xumi s m s x		y=0	y=7 200	
局所加熱	87	ステッ		市 厚 市 厚			-200	
予熱完了(一部軟化)	77		्रम्बस्यम्बरू वृत्रम्बस्य towak	4 7	р 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	[Smm/V] v 8 3 4 5 0 5 4	m] 	Smm\V] 0
予熱(弾性範囲)	76			8 8 8 8	S 5 8 8 8		0 400 X[II	
主要なステップ分割点	実験開始からの経過時間 [min]	ステップ刻み 1	琵港プロット図			注応力度分布図 >=0	-200 0 20	
			王 (maximum terms) (maximum te	主応力度	N R R R B V To a State of the s	y 軸上の 800 200 200 200 200 200 200 200 200 200	-60 -60 -400 -400	

								5	解	析結果
L(5		8		ş	小主応力度	Mm X[mn	小主応力度	0
				4 8 8		9 92 92 93		4		40
令却終了	1700	n				N 88 91		200		200
		プ刻み		A(ma) a m		R lengt	0= K	0 7=7		0
(弾性範囲	257	ステッ		81- 81- 81- 81- 81- 81- 81- 81- 81- 81-		67- 001- 661-			}	
(令却				NG- 66- 90-		905- 952- 905-		-200		-200
(→部軟化)	256			97 197 197		2 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9		- 400		-400
冷却(100017 100000 100000000		(ran)).	رم [2mm/N] 8 8 9 9 9 0 0 0 0 0	- 60	[Smm\N] - 2 6 6 2 2 6 6	0 -40 -60 -80
)ング終了	52			5		ş	代主応力度 1911年1月1日 1月1日 1月1日 1月1日 1月1日 1月1日 1月1日 1月	0 X[mm]	(小主応力度 (小主応力度	00 X[mm]
7				ă Ŗ		97 97		4		4
ング開始	27	2				2 2 2		500		500
レーニン	12	、プ刻み		fumus en		a la	Х=0	0 7=Y		0
凝	0	ステッ				6- 00- 80-				
局所办	11					007- 657- 007-		-20		-20
部軟化)				97 97		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-400		-400
熱完了(-	95			[uml]k #8###################################		Inwal	[Smm/N] 0 8 6 6 8 8	- 60 - 80 80	[Smm/N] 20 0 20 40 60	0 - 40 - 60 - 80
範囲) 予				\$		9 8	最大主応力度 最小主応力度	400 X[mm]	現へ上にJJB 義小主応力度	400 X[mm]
P熱 (弾性	94			8 9 8		95				
	[min]	<i>Ъ</i> , 1				8		500		500
プ分割点	過時間	ップ刻		a (uuu)		er en lente	N N	0 V=7		0
なステッ	からの経	スデ	ット図		ブ区		度分布[0		00
上一	実験開始		差プロ	1	ベクト	07- 987- 000-	主応力長	Ĩ		-3
L		I	応力度、	97 - 97 -	応力度	-29 -29 -29 -29 -29 -29 -29 -29 -29 -29	二日 二	-400		-400
			귀	[mm]Y sssssss	14		σ [N] 20 N =	-80	[2mm/N] - 20 20 60	0 -60 -80

LG-6

実験日:2017.11.2 試験体寸法:150×450×8

_	_	-							[u		解析	結果
L(<u>'</u>	6		ş			- 最大主応力度 - 最小主応力度		400 X[mn	最大主応力度 最小主応力度		400 X[mn
冷却終了	1700	ह्या रू. उ				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			200			200
冷却(弹性範囲)	231	ステップ		Manager and Annual A			0=/		-200 0			-200 0
冷却(一部軟化)	230			1000 JX 1000 J		NBRB RR 2 TO BOOK	60 80	[2mm/V] 0 6 0 0 0 6 1	-60 -80 -400	[2] 09 05 05	mm/V] 20 1 - 20 40 - 20	-60 -80 -400
アニーリング終了	219			5 5 8 8		8 8 8 8 8	最大主动力度 和大主动力度		400 X[mm]	最大主応力度 最小主応力度		400 X[mm]
アニーリング開始	108	1 プ刻み 2		Manual and Anna and A		ă ă a a T	0=/		0 200 v=7			0 200
局所加熱	92	, Х							-200			-200
予熱完了 (一部軟化)	82			1000 JX		лала <u>н</u> <u>-</u> дарар - ника,	80	[Smm/V] 0 6 5 0 5 6	-60 -80 -400	[2] 60 65 61	mm\N] 0 2 0 5 6	-60 -80 -400
予熱(硝性範囲)	81			8					00 400 X[m	 		00 400 XIm
主要なステップ分割点	実験開始からの経過時間 [min]	ステップ刻み 1	送プロット図		ベクトル図		主応力度分布図 ™		-200 0 20			-200 0 20
			主応力度	fmm/r 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	主応力度	R 8 8 9 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	y 動上の 。	[Smm/N] 0 6 0 0 0 6	-60 -80 -400	[2] 09 09 04	mm/V) م 1 - 2 0 0 0	-60 -80 -400

× A−A'断面図

-250 -200 -150 -100 -50 Ó 50 100 150 200 250 300 350 400 450 500 550

-300

-500 -450 -400 -350

-550

-600

溶着線からの距離 X [mm]

X	<u> </u>	1		8 11 12		00 95	最大主応功度	赖小士后才度	600 X[mm]	聚大主応力度 最小主応力度		600 X[mm]
冷却終了	1700	ध्री छ. 3							200 400		5	200 400
冷却(弹性範囲)	313	ステップ		The second		100 10 10 10 10 10 10	∩=0		0 -200 0 y=7			0 -200 0
冷却(→部軟化)	312			famit Jenestraciónia é		ника Волосоници Волосоници Волосони Волосоници Волосоници Волосоници Волосоници Волосоници Волосоници Волосоници Волосоници Волосоници Волосони Воло	8 5	[Smm/N] 0 6 6 0 0 6 6 6 6 0 0 6 6	-60 -80 -600 -40	[Sn 6 6 6 5	mm/V] σ 0 0 0 04	-60 -80 -600 -40
アニーリング終了	300						展大主応力度	新9.1416.78 新	400 X[mm]	 一一 最大主応力度 最小主応力度 		400 X[mm]
アニーリング開始	240	・ プ刻み 2		, water and the second s		A P P P P P P P P P P P P P P P P P P P	y=0		0 2000 y=7			0
局所加熱	133	スデッ							-200			-200
5熱完了(→部軟化)	116			femaly Networkside i i i i i i i		талу жазакаса жаза жаза жаза жаза жаза жаза жаза	08	(2mm/V) 0 5 6 5 0 6 6	-60 -80 -400	[Su 8 6 6 5	am/V] ه 1 - 20 ه 1 - 1	-60 -80 -400
予熱(硝性範囲)	115					10 10 10 10 10 10	一一 最大主応功度		400 600 X[mr	 一 最大主応力度 一 最小主応力度 		400 600 X[mr
テップ分割点)経過時間 [min]	テップ刻み 1	X	an a Manal		and the second sec	 布図 y=0		0 200 y=7			0
主要なスラ	実験開始からの	K	度差プロット		度ベクトル図		の主応力度分れ		-400 -200			-400 -200
			主応力	fmmfY searcher and a feature	主応力	tenet Hönener: "Libböbbi <u>B</u>	y 軸上([Smm/N] 0 6 0 0 0 0 0	-60 -80 -600	[Su 6 6 5 7	σ [W/mm ² 0 0 0 0 1 0 0 0	-60 -80

解析結果

									_	解析	結果
X	G—	2		9 8 8 9 8		10 10 10		一 最大主応力度 最小主応力度	600 X[mm] 一 最大主応力度 一 最小主応力度		600 X[mm]
冷却終了	1700	ह्योरू उ							200 400		200 400
冷却(弾性範囲)	318	ステップ		and the second se				y=0	0 002- 0		0 -200 0
冷却(一部軟化)	317			form X here are a finite for a		here and a solution of the sol		[Smm/N] 0 8 8 6 5 5 0 6 6	-60 -80 -600 -40 -40	مر [N/mm] 20 - 1 40 - 40	-60 -80 -600 -40
アニーリング終了	305			8 8 8		9 R 9 8 8 9			400 600 X[mm] 		400 600 X[mm]
アニーリング開始	186	1 プ刻み 2		a Tana a a a a a a a a a a a a a a a a a		The second		y=0	0 200 y=7		0
局所加熱	89	メナッ				- WE WE WE WE WE WE WE			-400200		-400 -200
予熱完了(一部軟化)	73			Interior in the interior interior in the interior int		Assessing to the second s		[2mm/N] 0 8 8 6 5 5 5 6 6	m]	mm\V] 0 2 0 0 0 6 0 0	-60 -80 -600 -600
予熱(弾性範囲)	72					8 8 8 8 8 8 8			400 600 X(m #X-au5.ne #A-au5.ne		400 600 X
主要なステップ分割点	実験開始からの経過時間 [min]	ステップ刻み 1	ぎ差プロット図		ぎベクトル図)主応力度分布図		-400 -200 0 200 y=7		-400 -200 0 200
_			主応力度	(amity series and sector at a	主応力度	Sasakanasakan Pasakanasakana turak	y 軸上の	[2mm/V] 0 8 0 4 0 0 0 0 1 1 1 2 0 0 0 0	-60 -80 -600 -600 -600	0 [N/mm/20 - 1 - 20 - 20	-60 -80 -600

									解析約	結果
LE	<u> </u>	1					的主応力度 的主応力度	00 X[mm] 小主応力度		00 X[mm]
冷却終了	2000	3						200 40 		200 40
冷却 (弹性範囲)	405	ステップ刻み				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0 0 y=7		0
冷却(一部軟化)	404							-400 -20		-400 -20
/グ終了	0			۲(mm) ۲(mm) ۲(شغافغغغغغغه,			[2mm/N] 0 8 8 4 5 0 5 4	12] 12]	πm/N] σ	- 60
アニーリン	39(3		90 97 97	続人主なJA成 毎月上に2月度	400 X[mm] 最小主応力度 最小主応力度		400 X[mm]
アニーリング開始	335	<u>ଆ</u> ରୁ 2						500		200
局所加熱終了	181	ステップ					0=	-200 0 y=7		-200 0
局所加熱開始	151			я лананда с адартана (сопус		N RE REAL PROFESSION	888	-50 -80 60 60 40	20 -20 -40	-60 -80 -400
予熱完了(一部軟化)	76					8 8 8	■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	400 400 X[mm] 	nm/N] 0	400 X[mm]
予熱(弾性範囲)	75	プ刻み 1				а а а а	P	0 200 =7		500
主要なステップ分割点	実験開始からの経過時間 [min]	スゲップ	主応力度差プロット図		主応力度ベクトル図		y 動上の主応力度分布図 ^{10 10 10 10 10 10 10 10 10 10 }		2 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	-60 -80 -400 -200 (

								解析結	課
LE	<u> </u>	2			ş	人主応力度 小主応力度	00 X[mm] 大主応力度 小主応力度		0 X[mm]
冷却終了	2000	c,					200 4(200 40
冷却(弾性範囲)	367	ステップ刻み		Ama	101 101 101 101 101		0 0 V=7		0 0
冷却(一部軟化)	366						-400 -20		-400 -20
 が終了			(mm)7 #8#8#8#==##8#8#8			[2mm/N] 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[2] [2] [2] [2] [2] [2] [2] [2] [2] [2]	mm/N] σ	-80
アニーリン	360				\$ \$ 8	最大主动力度 最小士后分成	400 X[mm] 		400 X[mm]
アニーリング開始	288	i] 3, 2					500		200
局所加熱終了	147	ステップ		Nami			-200 0 y=7		-200 0
局所加熱開始	130		Immit • * * * * * * * * * * * * * * * * * * *		2 00- 00- 00-	80 60 60 -20 -20 -20 -20 -20	-60 -80 -80 60 60 -400	20 -20 -60 -60	-80 -400
予熱完了(一部軟化)	71				8 5 	MARKEN AND AND AND AND AND AND AND AND AND AN	400 X[mm]		400 X[mm]
予熱(弾性範囲)	70	プ刻み 1		low		0	0 200 =7		0 200
主要なステップ分割点	実験開始からの経過時間 [min]	ステップ	主応力度差プロット図 Ware a second and a second a sec	* 主応力度ベクトル図		y 軸上の主応力度分布図 ************************************	-60 -80 -400 -200 -200 -9: -200 -9:	иши/N 0 0	-80 -200

LF	<u>-</u>	3		3		â		注応力度	X[mm]	油芯力度 (主応力度
冷却終了	2000	co							200 400	
冷却(弾性範囲)	441	ステップ刻み		an and an and an and an and an)=0	0 0 y=7	
冷却(一部軟化)	440								-400 -2	
アニーリング終了	400			LumpY				- 最大主成力機能 - 最大主成力機能 - 報告に力能 - 報告に力能 - 報告に力能 - 初に - 初に - 初に - 初に - 初に - 初に - 初に - 初に	-40 400 X[mm] 80	
アニーリング開始	345	J <i>3</i> , 2							200	
局所加熱終了	201	ステップダ				0 H	·	A=0	-200 0 V=7	
局所加熱開始	193			ImmY B		Name Name Name Name Name Name Name Name		80 60 20 20 -20	-40 -60 -80 -400 80	60 40 20 - 20 - 40 - 40
予熱完了(一部軟化)	118					5 8 8			400 X[mm]	RALEGUAR RALEGUAR MICLORENCE MICL
予熱(弾性範囲)	117	プ刻み 1						9	0 200 =7	
主要なステップ分割点	羽始からの経過時間 [min]	ステップ	芯力度差プロット図		忘力度ベクトル図		由上の主応力度分布図	<u>n</u>	-400 -200 0	
	実験		Ĥ	Almm] Almm]	王	[uni]	y 車	0 [Nmm/N] 2 0 0 0 0 0 0 0 0 0	-40 -60 -80 80	ه [Smm/N] 1 - 2 - 2 - 6 - 6 6 - 4 - 2 - 2 - 6

解析結果

X[mm]

400

200

0

-200

-400

-80

X[mm]

400

200

0

-200

-400

-80

X[mm]

400

200

-200

-400

-80

LE	2-4					5	最大主动力度 最小主动力度		400 X[mm]	最大主応力度 最小主応力度		400																
冷却終了	2000	~				10 30 50 50 50 50 50 50 50 50 50 50 50 50 50			200			000																
冷却(弹性範囲)	461	ステップ刻み				90 A 1997	0=∕		0 0 y=7																			
冷却(一部軟化)	460					9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			-400			007																
アニーリング終了	407			1 (mm)7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		8	報公主応初載 報公主応初載 50 50 50 50 50 50 50 50 50 50 50 50 50	o [W/mm/N]	400	- 根大主応功度 - 根小主応功度 - 和山口20 - 40	α [N/m 0 [N]	- 60																
アニーリング開始	341	[3, 2						5	200			000																
局所加熱終了	194	ステップ刻		and the second sec		R 141 00 00 00 00	0= X		-200 0 y=7																			
局所加熱開始	166					лама 10 ала и 12 на 20 4 4 6 6 6 1 6 - 00- 00- 00-	80 60 40	20 0 20 40 60	-80 -400	60 60 20	-20	-60																
P熱完了(一部軟化)	72			3 		5 8 1		Zmm/V] 0	400 X[mm]		1/N] 0																	
予熱(弾性範囲)	71	ステップ刻み 1 注差プロット図	グ刻み 1																				9		200 = 7			000
ネステップ分割点	∾らの経過時間 [min]		度差プロット図 ************************************	度ベクトル図		の主応力度分布図 **		00 -200 C																				
主要な	実験開始カ		主応力	10mH *####################################	主応力	Tenery N R 26 8 W M = 4 ¹	y 動止上 c	2mm/N] σ 	-80 -40	20 40 60 5	α [N/n 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0	-60																

解析結果 X[mm]

400

200

0

-200

-400

X[mm]

400

200

0

-200

-400

X[mm]

400

200

0

-200

-400

※試験体運搬中に遅延割れが発生し、同時に試験体を落下・破損

									解析結果
LF	<u> </u>	5		ş		â	小主応力度	0 X[mm 小主応力度	0
冷却終了	2000	n				9 8 8 8 8 8 8 8 8 8 8 8 8 8		200 40	200 46
冷却(硝性範囲)	472	ステップ刻み				0=X	0 V=7	0	
冷却(一部軟化)	471							-400	-400 -200
終了			Ļ	[um]] 888882°°28888			[N/mm2] - 20 0 05 80	m2] م 2 4 6 8 8 8 6 4 6 2 4 6 8 8 7 9 6 6 4 6	م [N/m] 1 - 1 - 20 8 - 1 - 20
アニーリング	453			8		9 8 9	職大士成功者	400 X[mm] 報六主応力度 第小主応力度	400
アニーリング開始	364	<u>ा</u> रि 2				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			200
局所加熱終了	160	ステップダ				1940 (p. 10) 10) 10)) X=0	-200 0 y=7	-200
局所加熱開始	150					р 19 20 20 20 20 20 20 20 20 20 20 20 20 20	88 660 20 20 -20	-40 -60 -80 -400 -400 -20 20	0 -20 -40 -60 -40 -400
予熱完了(一部軟化)	64			8		8 6 8	「 一 一 一 一 一 一 一 一 一 一 一 一 一	400 400 200 200 200 200 200 200 200 200	00 M(N) 0
予熱 (弾性範囲)	63	プ刻み 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9	7	200
ステップ分割点	5の経過時間 [min]	メナップ	差プロット図		ベクトル図	100 (100 (100 (100 (100 (100 (100 (100	主応力度分布図	-200 -200	- 200 0
主要なシ	実験開始から		主応力度	1 2 3 3 3 4 5 4 5 7 1 2 3 5 7 1 2 5 7	主応力度	PEREKATIV PEREKATIV PEREKATIV	y 1000 10	0 20 20 20 20 20 20 20 20 20 20 20 20 20	0 [N/m - 20 - 60 - 60 - 60 - 100 - 1

									[7		解析結果
LE	<u> </u>	6		ş		9 9	数大主応力度 秋主応力度		X[mn	技大主応力度 動小主応力度	8
冷却終了	2000	3				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			200		200
冷却(弹性範囲)	323	ステップ刻み		16 10 10 10 10 10 10 10 10 10 10 10 10 10		90 00 100 100 000 000 000 000 000 000 00	0=A		0	<u></u>	•
冷却(一部軟化)	318								-400 -20		-400
終了				nm r Yandi			80	o [2mm/N] 4 2 0 2 4	-60	[Sm 8 6 6 6	ω/M) ο [0 6 6 6 ο 2 7 6 8 ο 8
アニーリング	308			5			最大主动力度最小主动力度		400 X[mm]	最大主応力度 最小主応力度	400
アニーリング開始	213	Jみ 2				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			500		50
局所加熱終了	141	ステップダ				* TER 100 -	Х=0		-200		
局所加熱開始	131			10000 JL 10000		N 9 8 8 9 8 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	80 000	20 20 -20 -40	-60 -80 -400	80 60 70	
予熱完了(一部軟化)	67			8 8 8		8 8 8 8		[Smm\V] 0	400 X[mm]		ш/N] о
予熱(弾性範囲)	66	プ刻み 1	プ刻み 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0=		0		500
主要なステップ分割点	開始からの経過時間 [min]	ステッシ	心力度差プロット図		芯力度ベクトル図		軸上の主応力度分布図 [∞]		-400 -200		-400
	実験		$\widehat{\mathbb{H}}$	Imm]Y	歪		y ⁸⁰ 60	o [Smm/N] 4 2 0 2 4	-60 -80	[Sm 8 6 6 6	m/M) م 8 60 4 0 0 0

炉内平面図

□熱電対位置

※ □はコントローラーに接続された熱電対を表す※ ---はガラス上部の間仕切り用断熱材位置を表す

炉内平面図

□熱電対位置 ※ □はコント ※ ---けヺラ

※ □はコントローラーに接続された熱電対を表す※ ---はガラス上部の間仕切り用断熱材位置を表す

炉内平面図

口熱電対位置

※ □はコントローラーに接続された熱電対を表す※ ---はガラス上部の間仕切り用断熱材位置を表す

<u>€50</u>

L-9-3

口各種寸法

炉内平面図

□熱電対位置 ※ □はコントローラーに接続された熱電対を表す ※ ---はガラス上部の間仕切り用断熱材位置を表す

付録2

熱応力解析プログラム

#include <stdio.h> #include <string.h> #include <stdlib.h> #include <math.h> #include <windows.h> #include <time.h> #include <fcntl.h> #include <errno.h> /*INPUT FILE*/ #define DIRECTORY "C:\\U00e4YUsers\\U00e4**" #define TEM "50th_olp_3.tmp" /*INPUT PARAMETER*/ #define Efact 0.1 #define afact 3 #define soften 540 #define checkelemnumber 1697 /*応力の入力・出力チェックする部材番号*/ #define span 43 /*解析の分割 */ #define INP2 "glassmesh.inp2" #define INL "glassmesh.inl" #define OTL "glassmesh.otl" #define TES "ms_iteraton.txt" #define MST "mainstress.csv" #define ELM "elemstep.txt" #define POS "takeover.txt" #define PI 3.1415926535897932384 #define GA 9.80665 #include "archg015.c" #include "makeinp01.c" int main () FILE* foutes; char non[100]; char fname[256]; char specimen[30]; char dir[]=DIRECTORY; char *tp; int i, j, step, pos, ppos, cycle0, cycle; struct organ org; struct organ1 *baseorg,*org1; double **tempmatrix; double *tempsect; double vm,eta; double *temptime; int checkpoint[]={1}; DWORD memory0, memory1; baseorg=(struct organ1*)malloc(sizeof(struct organ1)); org1=(struct organ1*)malloc(sizeof(struct organ1)); if(org1==NULL || baseorg==NULL) printf("Failed"); free(baseorg); free(org1); return NULL; strcpy(specimen, strtok(TEM, ".")); /*試験体番号*/ printf("%s\fn", specimen); step=getstepnum(); cycle0=step/span+1; ppos=0; cycle=1; ppos=checktakeover(&cycle); /*前回の終了時点を取得*/ printf("curCycle=%d/%d prevPos=%d/%d¥n", cycle, cycle0, ppos, step); printf("org1 inputed from:"); if(cycle==1) inputorgan(org1, INP); else inputorgan(org1, INP2);

```
printf("baseorg inputed from:");
inputorgan(baseorg, INP);
temptime=(double*)malloc(step*sizeof(double));
tempmatrix=(double*)malloc(step*sizeof(double));
for(i=0;i<step;i++)</pre>
   tempmatrix[i]=(double*)malloc((org1->nsect)*sizeof(double));
tempsect=(int*)malloc((org1->nsect)*sizeof(int));
inputtemp(org1, tempmatrix, temptime, tempsect, step);
                                          /*tempmatrix に温度履歴を代入*/
vm=viscom(13,550);
for(i=0;i<(sizeof(checkpoint)/sizeof(int));i++)</pre>
   printf("%d ", checkpoint[i]);
printf("¥nCONTINUE? [y || n]");
while(strncmp(non, "y", 1))
   gets(non);
   if(!strncmp(non, "n", 1)) exit(EXIT_FAILURE);
if(cycle==1)
   saveorgan(org1, tempmatrix, 0, tempsect);
   printf("passed\n");
for(pos=1;pos<step;pos++)</pre>
   if(pos==1 && cycle==1)
       foutes=fgetstofopen(dir, "w", ELM);
       if(foutes==NULL)
          printf("couldn't open the elem file\n");
          gets(non);
          exit(EXIT_FAILURE);
       i=checkelemnumber-1001;
       fprintf(foutes, "start¥n");
       fprintf(foutes, "ELEM:%d SECT;%d 入力 弾性解析出力
       [tf]¥n", checkelemnumber, (baseorg->elems+i)->sect->number);
       fprintf(foutes, "A:%.4f[m2] alpha:%f\n\n", (baseorg->elems+i)->sect-
       >figs->area, (baseorg->elems+i)->sect->figs->prop->alpha);
       fclose(foutes);
   if(pos==1 && cycle!=1) pos=ppos+1;
                                                          /*前回の続き*/
                                                             /*弾性解析*/
   inputorganization(&org, &vpdefault);
                                               /*archg の形式で読み込み*/
   printf("checkelemnumber:%d¥n", checkelemnumber);
   extractarclmfromorgan(&org, &arc, &arcx, &arcy, pos, temptime);
                                                                   /*arc
   形式に変換*/
   saveasarclm(INL,&arc);
                                                       /*inl を書き出し*/
   arclm001(&arc);
                                                        /*弾性線形解析*/
                                                             /*弾性解析*/
   printf("%d回目終了¥n",pos);
   printf("pos=%d¥n", pos);
   if(pos!=step-1)
                                                       /*E の値を初期化*/
       initializeorgan(org1, baseorg);
       otlstressrelease(org1, tempmatrix, pos, temptime, vm, tempsect);
       for(i=0;i<sizeof(checkpoint)/sizeof(int);i++)</pre>
          if(temptime[pos]==checkpoint[i])
              mainstress (org1, baseorg, pos, specimen);
             printf("Output:mainstress.csv\n");
```

saveorgan(org1, tempmatrix, pos, tempsect); /*inp 形式で保存*/ if(pos%span==0) takeover(pos,cycle,step,cycle0); /*強制終了 takeover.txt に cycle と pos を記録*/ } } pos=step-1; otlstressrelease(org1, tempmatrix, pos, temptime, vm, tempsect); mainstress(org1, baseorg, pos, specimen); deltakeover(cycle0, cycle); free(baseorg); free(org1); free(temptime); $for(i=0;i<\!step;i+\!\!+)$ free(tempmatrix[i]); free(tempmatrix); printf("Finished"); gets(non); return ;

}

<makeinp01.c>

```
サブルーチン群をまとめたファイル
粘弾性体の応力緩和や、各節点で主応力度の計算を含む
```

```
void inputorgan(struct organ1*, const char*);
void inputtemp(struct organ1*, double**, double*, int*, int);
int getstepnum();
double visco(double, double);
double viscom(double, double);
void otlstressrelease(struct organ1*, double**, int, double*, double, int*);
void readotl(struct organ1*);
void saveorgan(struct organ1*, double**, int, int*);
void initializeorgan(struct organ1*, struct organ1*);
int takeover(int, int, int, int);
int checktakeover(int*);
void deltakeover(int, int);
void mainstress(struct organ1*, struct organ1*, int, const char*);
double equivalentarea(double***, int, double);
double viscousyoungsmodulus(double, double, double);
```

};

```
struct bond
```

```
int bond[6];
    int a, b, c, d, e, f;
{\tt struct} \ {\tt code}
    double x, y, z;
    float ksi, eta, omega;
};
struct figure
    int number, fprop;
   struct prop *prop;
    double area, ixx, iyy, ven, thick, temp1, temp2;
struct icon
    int x, y, z, xy, yz, zx;
};
struct prop
    int number;
    char pname[40];
    double hiju, E, poi, alpha;
    int pcolor[3];
};
struct sect
    int number, nfig;
    char sname[40];
    struct figure *figs;
    double exp, nz[2], qx[2], qy[2], mz[2], mx[2], my[2];
    double lload[3];
    int color[3];
};
struct time
{
    struct sect se;
};
struct vcon
    float x, y, z, xy, yz, zx;
struct node
    int number;
    struct code a;
    struct icon b;
    struct vcon c;
struct enod
    int number;
    int a, b, c, d, e, f;
    struct bond *bonds;
```

struct elem int nelem, number, esect, enods, ebans, eban, bnods; int bnod[4]; double cang; double cmq1[6], cmq2[6]; struct enod *enod; struct sect *sect; char type[8]; }; struct onodel int number; double d[3]; }; struct organ1 struct time *ti; struct node *nodes; struct onodel *onodes; struct elem *elems; struct prop *props; struct sect *sects; double base, locate, tfact, gperiod; double gfact, focus[3], angle[2], dists[2]; int nnode, nelem, nprop, nsect, a; }; void inputorgan(struct organ1* org, const char* inputfile) FILE *fin; char str[256], buf[256]; char dir[]=DIRECTORY; char *tp; fpos_t pos; int i, j, k, find, find1; printf("%s\fn", inputfile); fin=fgetstofopen(dir, "r", inputfile); if(fin==NULL) printf("couldn't open the inp file @inputorgan\n"); gets(str); exit(EXIT_FAILURE); fseek(fin, 0L, SEEK_SET); org->nnode=0; /*INITIALIZATION.*/ org->nelem=0; /*inp 冒頭引継ぎ*/ find=0; i=j=0; while(find==0) fgetpos(fin, &pos); fgets(str, 256, fin); if(!strncmp(str,"NNODE",5)) tp=strtok(str, ""); org->nnode = strtol(strtok(NULL, ""), NULL, 10); org->nodes=(struct node*)malloc((org->nnode)*sizeof(struct node)); else if(!strncmp(str, "NELEM", 5)) tp=strtok(str, " "); org->nelem = strtol(strtok(NULL, ""), NULL, 10); org->elems=(struct elem*)malloc((org->nelem)*sizeof(struct elem)); if(checkelemnumber-1000>org->nelem) printf("change checkelemnumber¥n"); gets(buf);

return;

```
else if(!strncmp(str, "NPROP", 5))
    tp=strtok(str, "");
    org->nprop = strtol(strtok(NULL, ""), NULL, 10);
    org->props=(struct prop*)malloc((org->nprop)*sizeof(struct prop));
else if(!strncmp(str, "NSECT", 5))
    tp=strtok(str, "");
    org->nsect = strtol(strtok(NULL, ""), NULL, 10);
    org->sects=(struct sect*)malloc((org->nsect)*sizeof(struct sect));
else if(!strncmp(str, "BASE", 4))
    tp=strtok(str, "");
    org->base=strtod(strtok(NULL, " "), NULL);
else if(!strncmp(str, "LOCATE", 6))
    tp=strtok(str, "");
    org->locate = strtod(strtok(NULL, " "), NULL);
else if(!strncmp(str, "TFACT", 5))
    tp=strtok(str, " ");
    org->tfact = strtod(strtok(NULL, " "), NULL);
else if(!strncmp(str, "GPERIOD", 7))
    \texttt{tp=strtok}\,(\texttt{str},\, \ensuremath{''}\ \ensuremath{''})\,\texttt{;}
    org->gperiod = strtod(strtok(NULL, ""), NULL);
else if(!strncmp(str, "GFACT", 5))
    tp=strtok(str, " ");
    org->gfact = strtod(strtok(NULL, " "), NULL);
else if(!strncmp(str, "FOCUS", 5))
    tp=strtok(str, "");
   org->focus[0] = strtod(strtok(NULL, ""), NULL);
    org->focus[1] = strtod(strtok(NULL, " "), NULL);
    org->focus[2] = strtod(strtok(NULL, " "), NULL);
else if(!strncmp(str, "ANGLE", 5))
    tp=strtok(str, " ");
   org->angle[0] = strtod(strtok(NULL, " "),NULL);
org->angle[1] = strtod(strtok(NULL, " "),NULL);
else if(!strncmp(str, "DISTS", 5))
    tp=strtok(str, "");
    org->dists[0] = strtod(strtok(NULL, " "), NULL);
    org->dists[1] = strtod(strtok(NULL, " "), NULL);
else if(!strncmp(str, "PROP", 4))
    tp=strtok(str, "");
    (org->props+i)->number = strtol(strtok(NULL, ""), NULL, 10);
    tp=strtok(NULL, "");
    strcpy((org->props+i)->pname, strtok(NULL, ""));
    while(1)
        fgets(str,256,fin);
        tp=strtok(str, " ");
       if(!strncmp(tp,"HIJU",4))
            (org->props+i)->hiju=strtod(strtok(NULL, " "), NULL);
        else if(!strncmp(tp, "E", 1))
           (org->props+i)->E =strtod(strtok(NULL, ""), NULL);
       else if(!strncmp(tp, "POI", 3))
            (org->props+i)->poi =strtod(strtok(NULL, ""), NULL);
```

```
else if(!strncmp(tp, "ALPHA", 3) | !strncmp(tp, "alpha", 3))
            (org->props+i)->alpha =strtod(strtok(NULL, ""), NULL);
       else if(!strncmp(tp, "PCOLOR", 6))
            (org->props+i)->pcolor[0]=strtod(strtok(NULL, " "), NULL);
            (org->props+i)->pcolor[1]=strtod(strtok(NULL, ""), NULL);
            (org->props+i)->pcolor[2]=strtod(strtok(NULL, ""), NULL);
           break;
   i++;
else if(!strncmp(str, "SECT", 4))
    tp=strtok(str, " ");
    (org->sects+j)->number = strtol(strtok(NULL, ""), NULL, 10);
    tp=strtok(NULL, "");
    strcpy((org->sects+j)->sname, strtok(NULL, ""));
    k=0;
    while(1)
        fgets(str, 256, fin);
        tp=strtok(str, "");
       if(!strncmp(tp, "NFIG", 4))
            (org->sects+j)->nfig=strtol(strtok(NULL, ""), NULL, 10);
            (org->sects+j)->figs=(struct figure*)malloc(((org-
           >sects+j)->nfig)*sizeof(struct figure));
       else if(!strncmp(tp, "FIG", 3))
            ((org->sects+j)->figs+k)->number=strtol(strtok(NULL,"
           "), NULL, 10);
           \operatorname{strtok}\left(\operatorname{NULL}, ""\right) ;
            ((org->sects+j)->figs+k)->fprop=strtol(strtok(NULL,"
           "), NULL, 10);
           for(i=0;i<(org->nprop);i++) /*FIND PROP.*/
               if(((org->sects+j)->figs+k)->fprop==((org->props+i)-
               >number))
                   ((org->sects+j)->figs+k)->prop=(org->props+i);
                   break;
           while(1)
               fgets(str, 256, fin);
               tp=strtok(str, "");
if(!strncmp(tp, "AREA", 4))
                   ((org->sects+j)->figs+k)->area=strtod(strtok(NULL,"
                   "), NULL);
               else if(!strncmp(tp, "IXX", 3))
                   ((org->sects+j)->figs+k)->ixx=strtod(strtok(NULL,"
                   "), NULL);
               else if(!strncmp(tp, "IYY", 3))
                   ((org->sects+j)->figs+k)->iyy=strtod(strtok(NULL,"
                   "), NULL);
               else if(!strncmp(tp, "VEN", 3))
                       ((org->sects+j)->figs+k)-
                       >ven=strtod(strtok(NULL, ""), NULL);
                       break;
               else if(!strncmp(tp, "TEMP1", 5))
                   ((org->sects+j)->figs+k)->temp1=strtod(strtok(NULL,"
                   "), NULL);
               else if(!strncmp(tp, "TEMP2", 5))
                   (({\tt org-}>{\tt sects+}j)->{\tt figs+}k)->{\tt temp2=}{\tt strtod}({\tt strtok}({\tt NULL}, "
                   "), NULL);
               else if(!strncmp(tp, "THICK", 5))
```

<makeinp01.c>

```
((org->sects+j)->figs+k)->thick=strtod(strtok(NULL,"
                          "), NULL);
                                                                                                                           (org->elems+i)->sect=(org->sects+j);
                     else break;
                                                                                                                           break;
                k++;
            else if(!strncmp(tp, "COLOR", 5))
                                                                                                              else if(!strncmp(tp, "ENODS", 5))
                 (org->sects+j)->color[0]=strtol(strtok(NULL, ""), NULL, 10);
                                                                                                                   (org->elems+i)->enods=strtol(strtok(NULL, ""), NULL, 10);
                 (org->sects+j)->color[1]=strtol(strtok(NULL, ""), NULL, 10);
                                                                                                                   (org->elems+i)->enod =(struct enod*)malloc(((org->elems+i)-
                 (org->sects+j)->color[2]=strtol(strtok(NULL, ""), NULL, 10);
                                                                                                                  >enods)*sizeof(struct enod));
                 break;
                                                                                                              else if(!strncmp(tp, "ENOD", 4))
        j++;
                                                                                                                   for(j=0;j<(org->elems+i)->enods;j++)
    else if(!strncmp(str, "NODE", 4))
                                                                                                                           ((org->elems+i)->enod+j)->number=strtol(strtok(NULL, "
                                                                                                                           "), NULL, 10);
        find=1;
        break;
                                                                                                              else if(!strncmp(tp, "BONDS", 5))
fsetpos(fin,&pos);
                                                                                                                  for (j=0; j<(org->elems+i)->enods; j++)
for (i = 0; i < org\rightarrownnode; i++)
                                                                                                                       ((org->elems+i)->enod+j)->a=strtol(strtok(NULL,"
    fgets(str, 256, fin);
                                                                                                                       "), NULL, 10);
    tp=strtok(str,"
                       ");
                                                                                                                       ((org->elems+i)->enod+j)->b=strtol(strtok(NULL,"
    (org->nodes+i)->number=strtol(strtok(NULL, ""), NULL, 10);
                                                                                                                       "), NULL, 10);
    tp=strtok(NULL, "");
                                                                                                                       ((org->elems+i)->enod+j)->c=strtol(strtok(NULL,"
    while (tp!=NULL)
                                                                                                                       "). NULL. 10);
                                                                                                                       ((org->elems+i)->enod+j)->d=strtol(strtok(NULL,"
        if(!strncmp(tp,"CORD",4))
                                                                                                                       ").NULL,10);
                                                                                                                       ((org->elems+i)->enod+j)->e=strtol(strtok(NULL,"
            (org->nodes+i)->a.x=strtod(strtok(NULL, ""),NULL);
(org->nodes+i)->a.y=strtod(strtok(NULL, ""),NULL);
(org->nodes+i)->a.z=strtod(strtok(NULL, ""),NULL);
                                                                                                                       "), NULL, 10);
                                                                                                                       ((org->elems+i)->enod+j)->f=strtol(strtok(NULL,"
                                                                                                                       "), NULL, 10);
        else if(!strncmp(tp, "ICON", 4))
                                                                                                              tp=strtok(NULL, "");
             }
             (org->nodes+i)->b.z =strtod(strtok(NULL, ""), NULL);
                                                                                                          fgets(str, 256, fin);
            (org->nodes+i)->b. xy=strtod(strtok(NULL, " "), NULL);
(org->nodes+i)->b. yz=strtod(strtok(NULL, " "), NULL);
(org->nodes+i)->b. zx=strtod(strtok(NULL, " "), NULL);
                                                                                                          tp=strtok(str, "");
                                                                                                          if(!strncmp(tp, "CANG", 4))
                                                                                                              tp=strtok(NULL, "");
        else if(!strncmp(tp, "VCON", 4))
                                                                                                              (org->elems+i)->cang=strtod(tp,NULL);
             fgets(str, 256, fin);
                                                                                                                                 ");
                                                                                                              tp=strtok(str,"
             (org->nodes+i)->c.z =strtod(strtok(NULL, ""), NULL);
                                                                                                              while (tp!=NULL)
             (org->nodes+i)->c.xy=strtod(strtok(NULL, " "), NULL);
             (org->nodes+i)->c.yz=strtod(strtok(NULL, " "),NULL);
(org->nodes+i)->c.zx=strtod(strtok(NULL, " "),NULL);
                                                                                                                   (org->elems+i)->cmq1[0]=strtod(strtok(NULL, " "),NULL);
(org->elems+i)->cmq1[1]=strtod(strtok(NULL, " "),NULL);
(org->elems+i)->cmq1[2]=strtod(strtok(NULL, " "),NULL);
                                                                                                                   (org->elems+i)->cmq1[3]=strtod(strtok(NULL, ""), NULL);
        tp=strtok(NULL, "");
                                                                                                                   (org->elems+i)->cmq1[0] strtod(strtok(NULL, " "), NULL);
(org->elems+i)->cmq1[5]=strtod(strtok(NULL, " "), NULL);
(org->elems+i)->cmq2[0]=strtod(strtok(NULL, " "), NULL);
fgets(str,256,fin);
                                                                                                                   (org->elems+i)->cmq2[1]=strtod(strtok(NULL, ""),NULL);
for (i = 0; i \langle \text{ org-}\ranglenelem; i++)
                                                                                                                   (org->elems+i)->cmq2[2]=strtod(strtok(NULL, " "), NULL);
                                                                                                                  (org->elems+i)->cmq2[3]=strtod(strtok(NULL, " "),NULL);
(org->elems+i)->cmq2[4]=strtod(strtok(NULL, " "),NULL);
(org->elems+i)->cmq2[5]=strtod(strtok(NULL, " "),NULL);
    fgets(str, 256, fin);
    tp=strtok(str, "");
    (org->elems+i)->number=strtol(strtok(NULL, ""), NULL, 10);
                                                                                                                  tp=strtok(NULL, "");
    tp=strtok(NULL, "");
                                                                                                              }
    while(tp!=NULL)
                                                                                                          else if(!strncmp(tp, "EBANS", 5))
        if(!strncmp(tp,"ESECT",5))
                                                                                                               (org->elems+i)->ebans=strtol(strtok(NULL, ""), NULL, 10);
             (org->elems+i)->esect=strtol(strtok(NULL, ""), NULL, 10);
                                                                                                              tp=strtok(NULL, "");
                                                                                                              (org->elems+i)->eban =strtol(strtok(NULL, ""), NULL, 10);
                                                                                                                                 tp=strtok(NULL, " ");
             for(j=0;j<(org->nsect);j++) /*FIND SECT.*/
                                                                                                              (org->elems+i)->bnods=strtol(strtok(NULL, ""), NULL, 10);
                 if((org->elems+i)->esect==(org->sects+j)->number)
                                                                                                              for (j = 0; j < (org->elems+i)->bnods; j++)
```

}

```
double eps=1.0E-7;
               (org->elems+i)->bnod[j]=strtol(strtok(NULL, ""), NULL, 10);
                                                                                              char non[10], str[30];
                                                                                              char filename[30];
                                                                                              char dir[]=DIRECTORY;
       fgets(str,256,fin);
       tp=strtok(str, " ");
tp=strtok(NULL, " ");
                                                                                              sprintf(filename, "gm_%d.inp2", pos);
                                                                                              fout=fgetstofopen(dir, "w", INP2);
                                                                                              if(fout==NULL)
       strcpy((org->elems+i)->type, tp);
    fclose(fin);
                                                                                                  printf("couldn't open the inp2 file @saveorgan\n");
                                                                                                  gets(non);
                                                                                                  exit(EXIT_FAILURE);
/*inputorgan*/
                                                                                              \texttt{fprintf(fout, "CREATED ORGAN FRAME. } \texttt{Yn}");
int getstepnum()
                                                                                              fprintf(fout, "NNODE %d¥n", org->nnode);
                                                                                              fprintf(fout, "NELEM %d¥n", org->nelem);
   FILE *fin;
                                                                                              fprintf(fout, "NPROP %d¥n", org->nprop);
fprintf(fout, "NSECT %d¥n", org->nsect);
   char str[2048];
   int step;
   char dir[]=DIRECTORY;
                                                                                              fprintf(fout, "¥n");
    fin=fgetstofopen(dir, "r", TEM);
                                                                                              fprintf(fout, "BASE %5.3f\u00e4n", org->base);
    if(fin==NULL)
                                                                                              fprintf(fout, "LOCATE %5.3f\n", org->locate);
                                                                                              fprintf(fout, "TFACT %5.3f\n", org->tfact);
       printf("couldn't open the temp file @getstepnum¥n");
                                                                                              fprintf(fout, "GPERIOD %5.3f\u00e4n", org->gperiod);
       exit(EXIT_FAILURE);
                                                                                              fprintf(fout, "¥n");
                                                                                              fprintf(fout, "GFACT %3.1f¥n", org->gfact);
   step=-1;
   while (fgets (str, 2048, fin) !=NULL)
                                             step++;
                                                                                              fprintf(fout, "FOCUS %3.1f %3.1f %3.1f¥n", org->focus[0], org->focus[1], org-
   printf("step:%d¥n", step);
                                                                                              >focus[2]);
   fclose(fin);
                                                                                              fprintf(fout, "ANGLE %.1f %.1f\function, org->angle[0], org->angle[1]);
   return step;
                                                                                              fprintf(fout, "DISTS %.1f %.1f\function, org->dists[0], org->dists[1]);
                                                                                              fprintf(fout, "¥n");
/*getstepnum*/
                                                                                              for (i = 0; i < org->nprop; i++)
void inputtemp(struct organ1 *org, double **matrix, double *time, int* sect, int
step)
                                                                                                  fprintf(fout,"PROP %d PNAME %s", (org->props+i)->number, (org-
                                                                                                  >props+i)->pname);
   FILE *fin, *fout;
                                                                                                  fprintf(fout,"
                                                                                                                           HIJU %13.3f¥n", (org->props+i)->hiju);
                                                                                                  fprintf(fout,'
   int i. j;
   char str[2048];
                                                                                                  E
                                                                                                      %13.3f\n", viscousyoungsmodulus(matrix[pos][i], matrix[pos+1][i], (
   char *tp;
                                                                                                  org->props+i)->E));
   char dir[]=DIRECTORY;
                                                                                                                           POI %13.3f¥n", (org->props+i)->poi);
                                                                                                  fprintf(fout,"
   double *t1,*t2;
                                                                                                  if(matrix[pos+1][i] >= soften && matrix[pos][i] >= soften)
    fpos_t fpos;
                                                                                                      (org->props+i)->alpha=(org->props+i)->alpha*afact;
   fin=fgetstofopen(dir, "r", TEM);
   if(fin==NULL)
                                                                                                                           ALPHA%13.6f\n", (org->props+i)->alpha);
                                                                                                  fprintf(fout,"
                                                                                                  fprintf(fout,"
                                                                                                                          PCOLOR %3d %3d %3d¥n", (org->props+i)-
       printf("couldn't open the temp file @inputtemp¥n");
                                                                                                  >pcolor[0], (org->props+i)->pcolor[1], (org->props+i)->pcolor[2]);
       exit(EXIT FAILURE);
                                                                                              fprintf(fout, "¥n");
    fseek(fin, 0L, SEEK_SET);
                                                                                              for (i=0 ; i < org->nsect ; i++)
    fgets(str.2048,fin);
    strtok(str, " ");
                                                                                                  fprintf(fout, "SECT %d SNAME %s", (org->sects+i)->number, (org-
                                             sect[i]=strtod(strtok(NULL,"
    for(i=0;i<org->nsect;i++)
                                                                                                  >sects+i)->sname);
    "), NULL);
                                                                                                  if((org->sects+i)->number==901) fprintf(fout,"SROLE H0J0¥n");
    fgets(str, 2048, fin);
                                                                                                  else
   for(i=0;i<step;i++)</pre>
                                                                                                      fprintf(fout,"
                                                                                                                              NFIG %d\u00e4n", (org->sects+i)->nfig);
                                                                                                      for (j = 0 ; j<(org->sects+i)->nfig ; j++)
       time[i]=strtod(strtok(str, ""), NULL);
        for(j=0;j<org->nsect;j++)
                                                                                                                                  FIG %d FPROP %d¥n",((org->sects+i)-
                                                                                                         fprintf(fout,"
           matrix[i][j]=strtod(strtok(NULL, ""), NULL);
                                                                                                         >figs+j)->number, ((org->sects+i)->figs+j)->fprop);
                                                                                                         if(((org \rightarrow sects + i) \rightarrow figs + j) \rightarrow thick > eps)
       fgets(str, 2048, fin);
                                                                                                             fprintf(fout,"
                                                                                                                                               THICK %7.5f¥n", ((org-
   fclose(fin);
                                                                                                             >sects+i)->figs+j)->area);
   return;
                                                                                                         else
/*inputtemp*/
                                                                                                             fprintf(fout,"
                                                                                                                                               AREA %6.4f¥n", ((org-
                                                                                                             >sects+i)->figs+j)->area);
void saveorgan(struct organ1* org, double **matrix, int pos, int* tempsect)
                                                                                                                                               IXX %10.8f¥n", ((org-
                                                                                                             fprintf(fout,
   FILE *fout;
                                                                                                             \geqsects+i)-\geqfigs+j)-\geqixx);
```

fprintf(fout,'

IYY %10.8f¥n", ((org-

int i, j, k;

```
>sects+i)->figs+j)->iyy);
                         fprintf(fout,
                                                                                 VEN %10.8f¥n", ((org-
                         >sects+i)->figs+j)->ven);
                             //if(matrix[pos+1][i]>soften && matrix[pos][i]>soften)
                         ((org->sects+i)->figs+j)->temp=0.0;
                         /*else*/
                         k=0;
                         while(tempsect[k]!=(org->sects+i)->number) k++;
                         ((org->sects+i)->figs+j)->temp1=matrix[pos][k];
                         ((org->sects+i)->figs+j)->temp2=matrix[pos+1][k];
                         fprintf(fout, "
                                                                                TEMP1 %-10.3f¥n", ((org-
                         >sects+i)->figs+j)->temp1);
                         fprintf(fout,
                                                                                 TEMP2 %-10.3f¥n", ((org-
                         >sects+i)->figs+j)->temp2);
      fprintf(fout,"
                                               COLOR %d %d %d¥n", (org->sects+i)-
      >color[0], (org->sects+i)->color[1], (org->sects+i)->color[2]);
fprintf(fout, "¥n");
for (i = 0; i < org\rightarrownnode; i++)
      fprintf(fout, "NODE %d CORD %8.5f %8.5f %5.3f ICON %d %d %d %d %d %d
      VCON %5.1f %5.1f %5.1f %5.1f %5.1f %5.1f %7.
      (org->nodes+i)->number, (org->nodes+i)->a.x, (org->nodes+i)->a.y, (org-
      >nodes+i)->a.z, (org->nodes+i)->b.x, (org->nodes+i)->b.y, (org-
      >nodes+i)->b.z, (org->nodes+i)->b.xy, (org->nodes+i)->b.yz, (org-
      >nodes+i)->b.zx,
      (org->nodes+i)->c.x, (org->nodes+i)->c.y, (org->nodes+i)->c.z, (org-
      >nodes+i)->c.xy, (org->nodes+i)->c.yz, (org->nodes+i)->c.zx);
fprintf(fout, "¥n");
for (i = 0; i < org->nelem; i++)
      if(!strncmp((org->elems+i)->type,"WALL",4) || !strncmp((org-
      >elems+i)->type,"SLAB",4))
            fprintf(fout, "ELEM %5d ESECT %d ENODS %d ENOD %d %d %d %d
            %d %d %d %d %d¥n".
             (org->elems+i)->number, (org->elems+i)->esect, (org->elems+i)-
            >enods ,((org->elems+i)->enod+0)->number,
                                                                                               ((org->elems+i)-
            >enod+1)->number, ((org->elems+i)->enod+2)->number, ((org->elems+i)-
             >enod+3)->number.
             (({\tt org-}>{\tt elems+}i)->{\tt enod+}0)->a,\;(({\tt org-}>{\tt elems+}i)->{\tt enod+}0)->b,\;(({\tt org-}>{\tt elems+}i)->{\tt enod+}0)->b,\;({\tt enod+}0)->b,\;({\tt org-}>{\tt elems+}i)->{\tt enod+}0)->b,\;({\tt enod+}0)
             >elems+i)->enod+0)->c, ((org->elems+i)->enod+0)->d, ((org->elems+i)-
            >enod+0)->e,((org->elems+i)->enod+0)->f,
             ((org->elems+i)->enod+1)->a, ((org->elems+i)->enod+1)->b, ((org-
            >elems+i)->enod+1)->c,((org->elems+i)->enod+1)->d,((org->elems+i)-
            >enod+1)->e, ((org->elems+i)->enod+1)->f,
             ((org->elems+i)->enod+2)->a, ((org->elems+i)->enod+2)->b, ((org-
            >elems+i)->enod+2)->c, ((org->elems+i)->enod+2)->d, ((org->elems+i)-
             >enod+2)->e, ((org->elems+i)->enod+2)->f,
             ((org->elems+i)->enod+3)->a, ((org->elems+i)->enod+3)->b, ((org-
             >elems+i)->enod+3)->c, ((org->elems+i)->enod+3)->d, ((org->elems+i)-
            \geqenod+3)-\geqe, ((org-\geqelems+i)-\geqenod+3)-\geqf);
            fprintf(fout,"
                                                                           EBANS %d EBAN %d BNODS %d
            BNOD %d %d %d %d¥n",
             (org->elems+i)->ebans, (org->elems+i)->eban, (org->elems+i)-
            >bnods, (org->elems+i)->bnod[0], (org->elems+i)->bnod[1], (org-
            >elems+i)->bnod[2], (org->elems+i)->bnod[3]);
      else
            fprintf(fout, "ELEM %5d ESECT %d ENODS %d ENOD %d %d
            (org->elems+i)->number, (org->elems+i)->esect
                                                                                                    ,(org->elems+i)-
            >enods ,((org->elems+i)->enod+0)->number,
                                                                                                ((org->elems+i)-
             >enod+1)->number,
             ((org->elems+i)->enod+0)->a, ((org->elems+i)->enod+0)->b, ((org-
            >elems+i)->enod+0)->c, ((org->elems+i)->enod+0)->d, ((org->elems+i)-
            >enod+0)->e, ((org->elems+i)->enod+0)->f,
```

```
((org->elems+i)->enod+1)->a, ((org->elems+i)->enod+1)->b, ((org-
          >elems+i)->enod+1)->c, ((org->elems+i)->enod+1)->d, ((org->elems+i)-
           >enod+1)->e, ((org->elems+i)->enod+1)->f);
          fprintf(fout,
                                    CANG %f\fyn", (org->elems+i)->cang);
          fprintf(fout,"
                                    CMQ %-
          10.8f %3.1f %3.1f %3.1f %3.1f %3.1f %-
          10.8f %3.1f %3.1f %3.1f %3.1f %3.1f %3.
           (org->elems+i)->cmq1[0], (org->elems+i)->cmq1[1], (org->elems+i)-
          >cmq1[2], (org->elems+i)->cmq1[3], (org->elems+i)->cmq1[4], (org-
          >elems+i)->cmq1[5],
           (org->elems+i)->cmq2[0], (org->elems+i)->cmq2[1], (org->elems+i)-
          >cmq2[2], (org->elems+i)->cmq2[3], (org->elems+i)->cmq2[4], (org-
           >elems+i)->cmq2[5]);
       fprintf(fout,"
                                 TYPE %s", (org->elems+i)->type);
   fclose(fout);
/*saveorgan*/
void initializeorgan(struct organ1* org.struct organ1* base)
   int i, j;
   for(i=0;i<org->nprop;i++)
       (org->props+i)->E=(base->props+i)->E;
       (org->props+i)->alpha=(base->props+i)->alpha;
   return;
/*initializeorgan*/
int takeover(int pos, int cycle, int step, int cycle0)
   FILE *fout;
   char dir[]=DIRECTORY;
   char non[10];
   fout=fgetstofopen(dir, "w", POS);
   if (fout==NULL)
       printf("couldn't open takeover file @takeover");
       return;
   fprintf(fout, "For taking over the Anaylysis\n");
   fprintf(fout, "pos %d¥n", pos);
   fprintf(fout, "cycle %d¥n", cycle);
   fclose(fout);
   printf("STEP=%d/%d CYCLE=%d/%d Finished", pos, step, cycle, cycle0);
   gets(non);
   exit(EXIT_FAILURE);
/*takeover*/
int checktakeover(int* cycle)
   FILE *fin;
   int i,j;
   char *tp;
   char str[256];
   char dir[]=DIRECTORY;
   fin=fgetstofopen(dir, "r", POS);
   if(fin==NULL)
       printf("there isn't a left work\n");
       return 0;
   else
       printf("Continue the Previous work¥n");
       fseek(fin, 0L, SEEK_SET);
       fgets(str, 256, fin);
```

{

fgets(str, 256, fin);

<makeinp01.c>

```
tp=strtok(str, "");
       i=strtol(strtok(NULL, ""), NULL, 10);
       fgets(str, 256, fin);
       tp=strtok(str,"
                        ");
       *cycle=strtol(strtok(NULL, ""), NULL, 10)+1;
       printf("ppos=%d cycle=%d@checktakeover¥n", i, *cycle);
   fclose(fin);
   return i;
/*checktakeover*/
void deltakeover(int cycle0, int cycle)
    if(cycle0==cycle && cycle!=1)
       if(remove(POS)!=0) printf("couldn't delete takeover.txt");
   return;
/*deltakeover*/
void mainstress(struct organ1* org, struct organ1* baseorg, int pos, const
char* specimen)
   FILE *fout, *fout2;
   int i, j, code1, code2;
   double dx, dy, a, b;
   double ***ms, **MS, **MS2, eq, Aeq;
   double ens=1e-5;
   double deg, sig, sigma1, sigma2, sigma3, sigma4, rad, dif;
   double stress, stress1, stress2, stress3, stress4;
   double ST1, ST2;
   char str[256], filename[32];
   char dir[]=DIRECTORY;
   char *tp=&specimen;
                               /*初期化*/
   struct tm *local;
   struct tm *utc;
       time_t timer;
    sprintf(filename, "%s_mainstress_%dstep.csv", specimen, pos);
   fout=fgetstofopen(dir, "w", filename);
                                                       /*OPEN OUTPUT FILE*/
   if(fout==NULL)
       printf("failed");
       gets(str);
       return;
   fout2=fgetstofopen(dir, "w", TES);
                                                    /*OPEN OUTPUT FILE*/
   if (fout2==NULL)
       printf("close iteration file\n");
       gets(str);
       return;
   }
   ms =(double*)malloc((org->nnode)*sizeof(double));
   MS =(double*)malloc((org->nnode)*sizeof(double));
   MS2=(double*)malloc((org->nnode)*sizeof(double));
   for(i=0; i<org->nnode;i++)
       ms[i] =(double*)malloc(8*sizeof(double));
       for(j=0; j<8; j++)ms[i][j]=(double*)malloc(6*sizeof(double));</pre>
       MS[i] =(double*)malloc(3*sizeof(double));
       MS2[i]=(double*)malloc(4*sizeof(double));
   if(ms==NULL || MS==NULL)
       printf("ms or MS =NULL\n");
       return;
```

```
for(j=0;j<8;j++)
       ms[i][j][0]=0.0;
       ms[i][j][1]=0.0;
for(i=0;i<org->nelem;i++)
   code1=((org->elems+i)->enod+0)->number;
   for(j=0;j < org->nnode;j++)
       if(code1==(org->nodes+j)->number)
          a=(baseorg->nodes+j)->a.x;
          b=(baseorg->nodes+j)->a.y;
   code2=((org->elems+i)->enod+1)->number;
   for(j=0;j < org->nnode;j++)
       if(code2==(org->nodes+j)->number)
                                                     /*dy, dy 各部材のべ
          dx=(baseorg->nodes+j)->a.x-a;
          クトル*/
          dv=(baseorg->nodes+i)->a.v-b;
   if(fabs(dx)<eps && fabs(dy-0.01)<eps)
       ms[code1-101][0][0]-=(org->elems+i)->cmq1[0]*GA*1000;
          /*引張を正 単位[N] Hogan は始点が正のとき圧縮*/
       ms[code1-101][0][1]+=(org->elems+i)->sect->figs->area*10;
          /*inp での断面積を 10000 倍しているので、mm2 にするために 10 倍す
           5*/
       ms[code2-101][4][0]+=(org->elems+i)->cmq2[0]*GA*1000;
       ms[code2-101][4][1]+=(org->elems+i)->sect->figs->area*10;
   else if(fabs(dx-0.01)<eps && fabs(dy-0.01)<eps)
       ms[code1-101][1][0]-=(org->elems+i)->cmq1[0]*GA*1000;
       ms[code1-101][1][1]+=(org->elems+i)->sect->figs->area*10;
       ms[code2-101][5][0]+=(org->elems+i)->cmq2[0]*GA*1000;
       ms[code2-101][5][1]+=(org->elems+i)->sect->figs->area*10;
   else if(fabs(dx-0.01)<eps && fabs(dy)<eps)
       ms[code1-101][2][0]-=(org->elems+i)->cmq1[0]*GA*1000;
       ms[code1-101][2][1]+=(org->elems+i)->sect->figs->area*10;
       ms[code2-101][6][0]+=(org->elems+i)->cmq2[0]*GA*1000;
       ms[code2-101][6][1] += (org -> elems + i) -> sect -> figs -> area *10;
   else if(fabs(dx-0.01)<eps && fabs(dy+0.01)<eps)
       ms[code1-101][3][0]-=(org->elems+i)->cmq1[0]*GA*1000;
       ms[code1-101][3][1]+=(org->elems+i)->sect->figs->area*10;
       ms[code2-101][7][0]+=(org->elems+i)->cmq2[0]*GA*1000;
       ms[code2-101][7][1]+=(org->elems+i)->sect->figs->area*10;
   else if(fabs(dx)<eps && fabs(dy+0.01)<eps)
       ms[code1-101][4][0]-=(org->elems+i)->cmq1[0]*GA*1000;
       ms[code1-101][4][1]+=(org->elems+i)->sect->figs->area*10;
       ms[code2-101][0][0]+=(org->elems+i)->cmq2[0]*GA*1000;
       ms[code2-101][0][1]+=(org->elems+i)->sect->figs->area*10;
   else if(fabs(dx+0.01)<eps && fabs(dy+0.01)<eps)
       ms[code1-101][5][0]-=(org->elems+i)->cmq1[0]*GA*1000;
       ms[code1-101][5][1] += (org -> elems + i) -> sect -> figs -> area * 10;
       ms[code2-101][1][0]+=(org->elems+i)->cmq2[0]*GA*1000;
       ms[code2-101][1][1]+=(org->elems+i)->sect->figs->area*10;
   else if(fabs(dx+0.01)<eps && fabs(dy)<eps)
```

```
ms[code1-101][6][0]-=(org->elems+i)->cmq1[0]*GA*1000;
      ms[code1-101][6][1] +=(org->elems+i)->sect->figs->area*10;
      ms[code2-101][2][0]+=(org->elems+i)->cmq2[0]*GA*1000;
      ms[code2-101][2][1]+=(org->elems+i)->sect->figs->area*10;
   else if (fabs(dx+0.01) <eps && fabs(dy-0.01) <eps)
      ms[code1-101][7][0]-=(org->elems+i)->cmq1[0]*GA*1000;
      ms[code1-101][7][1] +=(org->elems+i)->sect->figs->area*10;
      ms[code2-101][3][0]+=(org->elems+i)->cmq2[0]*GA*1000;
      ms[code2-101][3][1] +=(org->elems+i)->sect->figs->area*10;
sprintf(tp, "%d", pos);
strcpy(tp, "NODE CODE");
fprintf(fout, "%s, ", tp);
strcpy(tp, "X");
fprintf(fout, "%s, ", tp);
strcpy(tp, "Y");
fprintf(fout, "%s, ", tp);
strcpy(tp, "主応力度差");
fprintf(fout, "%s, ", tp);
strcpy(tp, "最大主応力度");
fprintf(fout, "%s, ", tp);
strcpy(tp, "最小主応力度");
fprintf(fout, "%s, ", tp);
strcpy(tp, "最大主応力角度(deg)");
fprintf(fout, "%s, ", tp);
strcpy(tp, "[N/mm2]、引張が正");
fprintf(fout, "%s, ", tp);
strcpy(tp, "各部材応力[N], 上, 右上, 右下, 下, 左下, 左, 左上");
fprintf(fout, "%s, ", tp);
strcpy(tp, "Inp file:");
strcat(tp, INP);
fprintf(fout, "%s, ", tp);
strcpy(tp,"Temp file:");
strcat(tp,TEM);
fprintf(fout, "%s, ", tp);
fprintf(fout,"軟化温度:%d,",soften);
timer = time(NULL);
                         /* 現在時刻を取得 */
local = localtime(&timer); /* 地方時に変換 */
/* 地方時 変換後表示 */
sprintf(tp,"解析時刻 %4d/%2d/%2d:%2d:%2d", local->tm_vear +
1900, local->tm_mon+1, local->tm_mday, local->tm_hour, local->tm_min, local-
>tm sec);
fprintf(fout, "%s¥n", tp);
fprintf(fout2, "主応力方向に関するイテレーション¥n¥n");
for(i=0;i<org->nnode;i++)
   fprintf(fout2, "NODE:%d X=%4.2f Y=%4.2f\n", i+101, (baseorg->nodes+i)-
   >a.x, (baseorg->nodes+i)->a.y);
   MS2[i][2]=0.0;
   /*Aeq でイテレーション*/
   if(fabs(ms[i][0][0])<eps && fabs(ms[i][1][0])<eps &&
   fabs(ms[i][2][0])<eps && fabs(ms[i][3][0])<eps &&
   fabs(ms[i][4][0])<eps && fabs(ms[i][5][0])<eps &&
   fabs(ms[i][6][0])<eps && fabs(ms[i][7][0])<eps)
      for(j=0;j<4;j++) MS2[i][j]=0.0;
   else
   for (deg=0.0 ; deg<45.0 ; deg=deg+1.0)
      rad=deg*PI/180;
      stress1=ms[i][0][0]*cos(PI/2-rad)+ms[i][1][0]*cos(PI/4-
      rad)+ms[i][2][0]*cos(rad)+ms[i][3][0]*cos(PI/4+rad); /*U正方向
      */
      stress2=ms[i][0][0]*cos(rad)+ms[i][1][0]*cos(PI/4+rad)+ms[i][6][0]
      *cos(PI/2-rad)+ms[i][7][0]*cos(PI/4-rad); /*V正方向*/
      stress3=ms[i][4][0]*cos(PI/2-rad)+ms[i][5][0]*cos(PI/4-
      rad)+ms[i][6][0]*cos(rad)+ms[i][7][0]*cos(PI/4+rad); /*U 負方向
      */
```

<makeinp01.c> stress4=ms[i][4][0]*cos(rad)+ms[i][5][0]*cos(PI/4+rad)+ms[i][2][0] *cos(PI/2-rad)+ms[i][3][0]*cos(PI/4-rad); /*V 負方向*/ eq=equivalentarea(ms, i, deg); if(fabs(stress1)>fabs(stress3)) ST1=stress1/eq; ST1=stress3/eq; else if(fabs(stress2)>fabs(stress4)) ST2=stress2/eq; else ST2=stress4/eq; stress=fabs(ST1-ST2); fprintf(fout2, "deg=%2.0f stress1=%f stress2=%f stress3=%f stress4=%f sig=%f Aeq=%f", deg, stress1, stress2, stress3, stress4, stress, eq); if(stress > MS2[i][2]) if(ST1>ST2) MS2[i][0]=ST1; /*引張を正 [N]*/ MS2[i][1]=ST2; MS2[i][3]=deg; else MS2[i][0]=ST2; MS2[i][1]=ST1; MS2[i][3]=deg+90; Aeq=eq; MS2[i][2]=stress; fprintf(fout2, " h\u00e4n"); else fprintf(fout2, "¥n"); fprintf(fout2, "1-3=%f 2-4=%f total:%f\n",fabs(stress1stress3), fabs(stress2-stress4), sqrt(pow(fabs(stress1stress3),2)+pow(fabs(stress2-stress4),2))); for(deg=45.0; deg<91.0; deg=deg+1.0) rad=deg*PI/180; stress1=ms[i][0][0]*cos(PI/2-rad)+ms[i][1][0]*cos(rad-PI/4)+ms[i][2][0]*cos(rad)+ms[i][7][0]*cos(3*PI/4-rad); stress2=ms[i][0][0]*cos(rad)+ms[i][5][0]*cos(3*PI/4rad)+ms[i][6][0]*cos(PI/2-rad)+ms[i][7][0]*cos(rad-PI/4); stress3=ms[i][4][0]*cos(PI/2-rad)+ms[i][5][0]*cos(rad-PI/4)+ms[i][6][0]*cos(rad)+ms[i][3][0]*cos(3*PI/4-rad); stress4=ms[i][4][0]*cos(rad)+ms[i][1][0]*cos(3*PI/4rad)+ms[i][2][0]*cos(PI/2-rad)+ms[i][3][0]*cos(rad-PI/4); eq=equivalentarea(ms, i, deg); if(fabs(stress1)>fabs(stress3)) ST1=stress1/eq; else ST1=stress3/eq; if(fabs(stress2)>fabs(stress4)) ST2=stress2/eq; else ST2=stress4/eq; stress=fabs(ST1-ST2); fprintf(fout2, "deg=%2.0f stress1=%f stress2=%f stress3=%f stress4=%f sig=%f Aeq=%f", deg, stress1, stress2, stress3, stress4, stress, eq); if(stress > MS2[i][2]) if (ST1>ST2) MS2[i][0]=ST1; /*引張を正 [N]*/ MS2[i][1]=ST2; MS2[i][3]=deg; else MS2[i][0]=ST2; MS2[i][1]=ST1; MS2[i][3]=deg+90; Aea=ea; MS2[i][2]=stress;

```
<makeinp01.c>
```

```
fprintf(fout2, " h\u00e4n");
           else fprintf(fout2, "¥n");
           fprintf(fout2, "1-3=%f 2-4=%f total:%f¥n", fabs(stress1-
           stress3), fabs(stress2-stress4), pow(stress1-stress3, 2)+pow(stress2-
           stress4, 2));
       fprintf(fout2, "¥n");
       fprintf(fout, "%d, %. 2f, %. 2f, %. 2f, %. 2f, %. 2f, %4. 1f, %. 1f, , %f, %f, %f, %f, %f,
       , i+101, (baseorg->nodes+i)->a.x, (baseorg->nodes+i)-
       >a.y, MS2[i][2], MS2[i][0], MS2[i][1], MS2[i][3], Aeq
        , ms[i][0][0], ms[i][1][0], ms[i][2][0], ms[i][3][0] \\
        ,ms[i][4][0],ms[i][5][0],ms[i][6][0],ms[i][7][0]
        , ms[i][0][1], ms[i][1][1], ms[i][2][1], ms[i][3][1]
        ,ms[i][4][1],ms[i][5][1],ms[i][6][1],ms[i][7][1]);
   free(ms);
   free(MS);
    fclose(fout);
/*mainstress*/
void otlstressrelease(struct organ1* org, double** matrix, int pos, double*
temptime, double vm, int* tempsect)
   FILE *fin, *fout;
   char dir[]=DIRECTORY;
   int i, j, find;
   double midtemp, time, eta, tau, beta;
   char str[256],*tp;
   int number, esect, nodenum;
   double cmq1[6], cmq2[6];
   double d[3];
    fin=fgetstofopen(dir,"r",OTL);
   if(fin==NULL)
       printf("couldn't open otl file @otlstressrelease\n");
       gets(str);
       exit(EXIT_FAILURE);
   fseek(fin, 0L, SEEK_SET);
   fgets(str, 256, fin);
   find=0;
   while(find==0)
       fgets(str,256,fin);
       if(!strncmp(str, "** FORCES OF MEMBER", 19))
           for(i=0;i<3;i++) fgets(str, 256, fin);</pre>
           for(i=0;i<org->nelem;i++)
              fgets(str, 256, fin);
              number=strtol(strtok(str, ""), NULL, 10);
esect=strtol(strtok(NULL, ""), NULL, 10);
              nodenum =strtol(strtok(NULL, ""), NULL, 10);
              for(i=0;i<6;i++)
                                            cmq1[j]=strtod(strtok(NULL,"
               "), NULL);
               fgets(str, 256, fin);
              number =strtol(strtok(str, ""), NULL, 10);
               for(j=0;j<6;j++)
                                            cmq2[j]=strtod(strtok(NULL,"
               "), NULL);
               i=0;
               while(esect!=tempsect[j]) j++;
              if(matrix[pos][j]>=soften && matrix[pos-1][j]>=soften)
                  midtemp=(matrix[pos][j]+matrix[pos-1][j])/2;
                  time=(temptime[pos]-temptime[pos-1])*60;
                  eta=pow(10, sinh(pow(10, 3)*vm/(midtemp+273.15)));
                  tau=eta/(2.967*9.8*pow(10,9));
                  beta=exp(-time/tau);
```

```
else if(matrix[pos][j]>=soften)
                  midtemp=(soften+matrix[pos][j])/2;
                  time=(temptime[pos]-temptime[pos-1])*60*(matrix[pos][j]-
                  soften)/fabs(matrix[pos][j]-matrix[pos-1][j]);
                  eta=pow(10, sinh(pow(10, 3)*vm/(midtemp+273.15)));
                  tau=eta/(2.697*9.8*pow(10,9));
                  beta=exp(-time/tau);
              else if(matrix[pos-1][j]>=soften)
                  midtemp=(soften+matrix[pos-1][j])/2;
                  time=(temptime[pos]-temptime[pos-1])*60*(matrix[pos-1][j]-
                  soften)/fabs(matrix[pos][j]-matrix[pos-1][j]);
                  eta=pow(10, sinh(pow(10, 3)*vm/(midtemp+273.15)));
                  tau=eta/(2.697*9.8*pow(10,9));
                  beta=exp(-time/tau);
              else
                             beta=1;
              if(i==checkelemnumber-1001)
                  fout=fgetstofopen(dir, "a", ELM);
                  if(fout==NULL)
                      printf("couldn't open elm file @otlstressrelease\n");
                      gets(str);
                      exit(EXIT_FAILURE);
                                                     midtemp:%.1f time:%.0f
                  fprintf(fout.
                  eta:%.0f tau:%.2f beta:%.2f
                  @otlstressrelease\n\n", midtemp, time, eta, tau, beta);
                                    -----¥n");
                  fprintf(fout, "---
                  fclose(fout);
               (org \rightarrow elems+i) \rightarrow cmq1[0]=cmq1[0]*beta;
              (org->elems+i)->cmq2[0]=cmq2[0]*beta;
       else if(!strncmp(str, "** DISPLACEMENT OF NODE", 23))
           for(i=0;i<4;i++)
                              fgets(str, 256, fin);
           for(i=0;i<org->nnode;i++)
              number=strtol(strtok(str, ""), NULL, 10);
d[0] =strtod(strtok(NULL, ""), NULL);
              d[1] =strtod(strtok(NULL, ""), NULL);
              d[2] =strtod(strtok(NULL, ""), NULL);
              (org->nodes+i)->a.x+=d[0];
              (org->nodes+i)->a.y+=d[1];
              (org->nodes+i)->a.z+=d[2];
              fgets(str, 256, fin);
          find=1;
      }
   fclose(fin);
/*otlstressrelease*/
void readotl(struct organ1* org)
   FILE *fin;
   char dir[]=DIRECTORY;
   int i, j, find;
   double midtemp, time, eta, tau, beta;
   char str[256],*tp;
   int number, esect, nodenum;
   double cmq1[6], cmq2[6];
   double d[3];
   fin=fgetstofopen(dir, "r", OTL);
   if(fin==NULL)
       printf("couldn't open otl file @readotl\n");
```

```
gets(str);
        exit(EXIT_FAILURE);
    fseek(fin, OL, SEEK SET);
    fgets(str, 256, fin);
    find=0;
    while(find==0)
        fgets(str, 256, fin);
        if(!strncmp(str,"** FORCES OF MEMBER",19))
            for(i=0;i<3;i++) fgets(str, 256, fin);</pre>
            for(i=0;i<org->nelem;i++)
                fgets(str, 256, fin);
                number=strtol(strtok(str, ""), NULL, 10);
esect=strtol(strtok(NULL, ""), NULL, 10);
                nodenum =strtol(strtok(NULL, ""), NULL, 10);
                for(j=0;j<6;j++)
                                                cmq1[j]=strtod(strtok(NULL,"
                "), NULL);
                fgets(str,256,fin);
                number =strtol(strtok(str, ""),NULL,10);
                for(j=0;j<6;j++)
                                                cmq2[j]=strtod(strtok(NULL,"
                "), NULL);
                (org \rightarrow elems+i) \rightarrow cmq1[0]=cmq1[0];
                (org \rightarrow elems+i) \rightarrow cmq2[0]=cmq2[0];
        else if(!strncmp(str, "** DISPLACEMENT OF NODE", 23))
            for(i=0;i<4;i++) fgets(str, 256, fin);</pre>
            for(i=0;i<org->nnode;i++)
                number=strtol(strtok(str, ""), NULL,10);
d[0] =strtod(strtok(NULL, ""), NULL);
                d[1] =strtod(strtok(NULL, " "), NULL);
                d[2] =strtod(strtok(NULL, ""), NULL);
                (org->nodes+i)->a.x+=d[0];
                (org->nodes+i)->a.y+=d[1];
                (org->nodes+i)->a.z+=d[2];
                fgets(str, 256, fin);
            find=1;
    fclose(fin);
/*readotl*/
double viscom(double visco, double temp)
    double m;
    m=(temp+273.15)/pow(10,3)*log(visco+sqrt(pow(visco,2)+1));
                                                                            /*底は e*/
   return m;
/*viscom*/
double visco(double temp, double m)
    double x;
    x=sinh(pow(10,3)*m/(temp+273.15));
   return x;
/*visco*/
double equivalentarea(double*** ms, int i, double deg)
    double ea;
    double eps=1e-5;
    double eq1, deg1;
```

if (0<=deg && deg<45)

```
eq=max((ms[i][1][1]*(deg-0)+ms[i][2][1]*(45-
      deg))/45 , (ms[i][5][1]*(deg-0)+ms[i][6][1]*(45-deg))/45);
       if(fabs(eq)<eps)
                             /*エッジ部の処理*/
          deg1=deg+90;
          eq1=max((ms[i][7][1]*(deg1-90)+ms[i][0][1]*(135-
          deg1))/45 , (ms[i][3][1]*(deg1-90)+ms[i][4][1]*(135-deg1))/45);
          ea=eal;
      }
   else if (45<=deg && deg<90)
       eq=max((ms[i][0][1]*(deg-45)+ms[i][1][1]*(90-
      deg))/45 , (ms[i][4][1]*(deg-45)+ms[i][5][1]*(90-deg))/45);
      /*エッジ部の処理*/
       if(fabs(eq)<eps)
                              /*エッジ部の処理*/
          deg1=deg+90;
          eq1=max((ms[i][6][1]*(deg1-135)+ms[i][7][1]*(180-
          deg1))/45 , (ms[i][2][1]*(deg1-135)+ms[i][3][1]*(180-deg1))/45);
          eq=eq1;
      }
   else if(90<=deg && deg<135)
       eq=max((ms[i][7][1]*(deg-90)+ms[i][0][1]*(135-
      deg))/45 , (ms[i][3][1]*(deg-90)+ms[i][4][1]*(135-deg))/45);
       if(fabs(eq)<eps)
                              /*エッジ部の処理*/
       {
          deg1=deg-90;
          eq1=max((ms[i][1][1]*(deg1-0)+ms[i][2][1]*(45-
          deg1))/45 , (ms[i][5][1]*(deg1-0)+ms[i][6][1]*(45-deg1))/45);
          eq=eq1;
   else if(135<=deg && deg<=180)
       eq=max((ms[i][6][1]*(deg-135)+ms[i][7][1]*(180-
      deg))/45 , (ms[i][2][1]*(deg-135)+ms[i][3][1]*(180-deg))/45);
      if(fabs(eq)<eps)
                             /*エッジ部の処理*/
          deg1=deg-90;
          eq1=max((ms[i][0][1]*(deg1-45)+ms[i][1][1]*(90-
          deg1))/45 , (ms[i][4][1]*(deg1-45)+ms[i][5][1]*(90-deg1))/45);
          eq=eq1;
      }
   return eq;
/*equivalentarea*/
double viscousyoungsmodulus (double ts. double te. double E)
   double viscousrate;
   if( ts>=soften && te>=soften)return E*Efact;
   else return E;
};
```

```
参考文献[25]より引用・編集したもの
ここでは筆者が新たに組み込んだ熱応力の導入部分を抜粋・掲載する
void therm(struct organ *org, int i, int pos)
    int m.n;
   FILE* fout, *foutes;
   double eps=1.0E-04;
   char dir[]=DIRECTORY;
   for (m = 0; m < 2; m++)
       for (n = 0; n < 6; n++) {
           (org->elems+i)->thermalstress[m][n]=0.0;
                                                                          /*初期
           化*/
   }
   if((((org->elems+i)->sect)->figs)->temp1 < -eps || eps < (((org-
   >elems+i)->sect)->figs)->temp1)
       #if 1
       if( ((((org->elems+i)->sect)->figs)->temp1 < soften && (((org-
       >elems+i)->sect)->figs)->temp2 > soften))
           ((org \rightarrow elems+i) \rightarrow thermalstress[0][0]) = (((org \rightarrow elems+i) \rightarrow sect) - 
           >E)*(((org->elems+i)->sect)->area)*(((((org->elems+i)->sect)-
           >figs)->prop)->alpha)*((soften-(((org->elems+i)->sect)->figs)-
           >temp1)+((((org->elems+i)->sect)->figs)->temp2-soften)*Efact);
           /*単位 tf*/
       else if(((((org->elems+i)->sect)->figs)->temp1 > soften && (((org-
       >elems+i)->sect)->figs)->temp2 < soften))
           ((org \rightarrow elems+i) \rightarrow thermalstress[0][0]) = (((org \rightarrow elems+i) \rightarrow sect) - 
           >E)*(((org->elems+i)->sect)->area)*(((((org->elems+i)->sect)-
           >figs)->prop)->alpha)*((soften-(((org->elems+i)->sect)->figs)-
           >temp1)*Efact+((((org->elems+i)->sect)->figs)->temp2-soften));
       else
           ((org->elems+i)->thermalstress[0][0])=(((org->elems+i)->sect)-
           >E)*(((org->elems+i)->sect)->area)*(((((org->elems+i)->sect)-
           >figs)->prop)->alpha)*((((org->elems+i)->sect)->figs)->temp2-
           (((org \rightarrow elems+i) \rightarrow sect) \rightarrow figs) \rightarrow temp1);
       if(i = checkelemnumber-1001)
           fout=fgetstofopen(dir, "a", ELM);
           if(fout==NULL)
               printf("couldn't open elm file @otlstressrelease\n");
               exit(EXIT_FAILURE);
           fprintf(fout,"
                                              E:%5.3f alpha:%.6f
           dT:%5.1f(%5.1f %5.1f) @therm(extractarclm therm)\mbox{\sc herm},((org-
           >elems+i)->sect)->E, ((((org->elems+i)->sect)->figs)->prop)->alpha,
             (((org->elems+i)->sect)->figs)->temp2-(((org->elems+i)->sect)-
           >figs)->temp1,
             (((org->elems+i)->sect)->figs)->temp1,
             (((org->elems+i)->sect)->figs)->temp2);
           fclose(fout);
           printf("elemnumber=%d(sect:%d) E=%.3f A=%f alpha=%f T1=%.1f
           T2=%.1f N=%f\n", checkelemnumber, ((org->elems+i)->sect)-
           >code, ((org->elems+i)->sect)->E, ((org->elems+i)->sect)-
           >area, ((((org->elems+i)->sect)->figs)->prop)->alpha, (((org-
           >elems+i)->sect)->figs)->temp1, (((org->elems+i)->sect)->figs)-
           >temp2, ((org->elems+i)->thermalstress[0][0]));
        ((org \rightarrow elems+i) \rightarrow thermalstress[1][0]) = -((org \rightarrow elems+i) - 
       >thermalstress[0][0]);
   return;
```

弾性解析を行うサブルーチンをまとめたファイル

```
}
```

参考文献

- 1. 旭硝子板ガラス建材総合カタログ 技術資料編, AGC グラスプロダクツ株式会社, 2003
- フロート板ガラス すり板ガラス,旭硝子株式会社 ビルディング・産業ガラスカンパニー https://www.asahiglassplaza.net/products/mainglass/%E3%83%95%E3%83%AD%E3%83%BC%E3%83%88%E6%9D%BF%E3%82%AC%E3%83
 %A9%E3%82%B9%E3%80%80%E3%81%99%E3%82%8A%E6%9D%BF%E3%82%AC%E3%83%A9%E3%82%B9-2/
- 3. ガラス建築, 鹿島出版会, 1999
- 4. ガラス方立構法技術指針(案),日本建築学会, 2011
- 5. 山根正之:はじめてガラスを作る人のために、内田老鶴圃、1989
- 6. 三宅理一:サンゴバン-ガラス・テクノロジーが支えた建築のイノベーション, ランダムハウスジ ャパン, 2010
- 7. 山根正之,安井至,和田正道,国分可紀,寺井良平,近藤敬,小川晋永:ガラス工学ハンドブック 普及版,朝倉書店,1999
- 8. Boyce Lundstrom, Daniel Schwoerer: グラスフュージング Book One (黒木利佳 訳), 十條商 事, 1986
- 9. 寺崎俊夫: 溶接変形と残留応力, 溶接学会誌, pp55-62, 2009
- 10. 村川英一, 溶接力学 II (溶接変形と残留応力), 大阪大学接合科学研究所,

http://www.marine.osakafu-u.ac.jp/osakafu-

content/uploads/sites/360/%E6%BA%B6%E6%8E%A5%E5%A4%89%E5%BD%A2%E3%83%BB%E6%AE%8B%E7%95%99%E5%BF%9C%E5%8A%9B%E6%9D%91%E5%B7%9D%E5%85%88%E7%94%9F%E3%83%BB%E5%A4%8F%E5%AD%A3%E5%A4%A7%E5%AD%A6%E8%B3%87%E6%96%99.pdf

- 11. 西村祐哉,佐藤淳:局所加熱によるフロート板ガラスの溶着法における温度勾配条件と熱応力解析 手法の提案,東京大学工学部建築学科,2015年度卒業論文
- 12. 滝口雅之,佐藤淳:局所加熱によるフロート板ガラスの溶着法における温度勾配と残留応力の関係,東京大学大学院新領域創成学科研究科社会文化環境学専攻 2016 年度修士論文
- 13. 藤本月穂,佐藤淳:局所加熱によるフロート板ガラスの溶着法における電気炉を用いた温度条件の 制御法,東京大学工学部 2017 年度卒業論文
- 14. タンブンチュウ,佐藤淳:普通板ガラスの縁部の局所加熱による溶着性状,東京大学工学部建築学 科,2012 年度卒業論文
- L.H.Adams, E.D.Williamson : The Annealing of Glass, Journal of The Franklin Institute, Vol.190 No.5 pp597-631, 1920
- 16. 新津 泰、一瀬 謙輔、五味健二:レーザー光弾性法を用いたせん断応力差積分法によるガラス板 内応力分布の実験応力解析、日本機械学会論文集(A編) pp 152-158, 1998.3
- 17. 梅崎栄作,玉木保,高橋賞:光弾性画像解析(第3報 主応力線の自動作図),日本機械学会論文 集,pp1665-1669,1987
- O.S.Narayanaswamy : Stress and Structural Relaxation in Tempering Glass, Journal of The American Ceramic Society, Vol.64 No.3-4 pp146-152, 1978
- O.S.Narayanaswamy : A Model of Structural Relaxation in Glass, Journal of The American Ceramic Society, Vol.54 No.10 pp491-498, 1971
- 20. 上田幸雄,山川武人:有限要素法による熱弾塑性挙動の解析,溶接学会誌 pp587-577, 1973
- 21. 中村省三, 宮野靖, 杉森勝, 金田愛三: 熱硬化性樹脂と金属から成る積層はりを冷却した場合に生じる残留応力の熱粘弾性解析, 日本機械学科論文集, pp1813-1818, 1973
- 22. 岸井貫: 徐冷域におけるガラスの歪の緩和と粘性係数(1), 東芝レビュー, pp1057-1067, 1957
- 23. 岸井貫:徐冷域におけるガラスの歪の緩和と粘性係数(2),東芝レビュー, pp1286-1295, 1957
- 24. D.A.McGraw : A Method for Determining Young's Modeulus of Glass at Elevated Temperatures, Journal of The American Ceramic Society, Vol.35 No.1 pp22-27, 1952
- 25. 佐藤淳: 佐藤淳構造設計事務所のアイテム, INAX 出版, 2010

謝辞

指導教員である佐藤淳先生には、このような刺激的な研究内容を与えていただき、主体的に研究を進める中で研究の方針を決めるうえで的確な助言をして頂いた。本研究だけでなく佐藤研での活動に携われたことに感謝したい。

副指導を引き受けてくださった清家剛先生には論文としての構成に始まり、最終的な表現に至るまで 様々な助言を頂いた。提出直前まで親身になって修正を指導していただいた。

佐藤研究室の荒木美香さん、古市渉平さん、XU YING さんには普段から研究内容の相談に乗っていただき、大変お世話になった。特に荒木さんのご尽力なしでは本論文は執筆できなかった。

後輩の張耕嘉君と藤本月穂さんには実験での手伝いや研究内容の相談など常にお世話になった。知恵 を出し合いながらともに研究を進めれたことに感謝したい。

そして、筆者を支えていただいた研究室の同期、後輩、構法系研究室の方々、家族にも感謝したい。

この場を借りて、本論文の執筆にあたりお世話になったすべての方々に改めて感謝申し上げたい。

西村祐哉