

2018

VAE 	
A Variational Autoencoder Based Generative Model of Urban

Human Mobility

2018 7 13

Huang, Dou

Abstract

Recently, big and heterogeneous human mobility data inspires many revolutionary

ideas of implementing machine learning algorithms for solving some traditional so-

cial issues, such as zone regulation, air pollution, and disaster evacuation el at..

However, incomplete datasets were provided owing to both the concerns of inva-

sion of privacy and some technique issues in many practical applications, which

leads to some limitations of the utility of collected data. Inspired by the genera-

tive model used for reconstructing images in image processing domain, we want to

build a generative model which can tackle the human mobility data. Variational

Autoencoder (VAE), which uses a well-constructed latent space to capture salient

features of the training data, shows a significant excellent performance in not only

image processing, but also Natural Language Processing domain. By combining

VAE and sequence-to-sequence (seq2seq) model, a Sequential Variational Autoen-

coder (SVAE) is built for the task of human mobility reconstruction. It is the first

time that this kind of SVAE model is implemented for solving the issues about

human mobility reconstruction. We use navigation GPS data of selected greater

Tokyo area to evaluate the performance of the SVAE model. Experimental results

demonstrate that the SVAE model can e�ciently capture the salient features of

human mobility data and generate more reasonable trajectories. That indicates

the applicability of the SVAE to real-world urban computing problems.

Keywords: big data, urban computing, GPS trajectory, generative model

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisors Prof.

Shibasaki, Prof. Song and Dr. Kusakabe for the continuous support of my study

and research. Prof. Shibasaki always gives me a lot of valuable information and

advices for my research. Prof. Song’s guidance helped me in all the time of

research and presentations throughout my master’s course study in the IPUC

group. My sincere thanks also goes to Dr. Kusakabe for his patient guidance of

my master thesis. Besides, I would like to thank my labmates in IPUC group:

Zipei Fan, Quanjun Chen, Satoshi Miyazawa, Renhe Jiang, Tianqi Xia, Shuzhe

Huang. They support me for solving the technique problems in the research of my

master thesis. Last but not the least, I would like to thank Researcher Kanasugi

for data infrastructure and Researcher Ueyama for visualization tool.

iii

Contents

Abstract i

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Problem definition . 1
1.2 Scaling factor . 2
1.3 Generative model . 3
1.4 Contributions . 4

2 Related Works 5
2.1 Urban computing using human mobility data 5
2.2 Researches based on Variational Autoencoder 6
2.3 Generative model for human mobility simulation 7

3 Methodology 9
3.1 Autoencoder . 9

3.1.1 Architecture of Autoencoder 9
3.1.2 The purpose of Autoencoder 10
3.1.3 Applications of Autoencoder 10

3.2 Variational Autoencoder . 11
3.2.1 Variational Bayesian . 11
3.2.2 Architecture of Variational Autoencoder 11
3.2.3 The probability perspective of Variational Autoencoder . . . 14

3.3 Sequence-to-sequence model . 15
3.3.1 Recurrent Neural Network 16
3.3.2 Backpropagation Through Time 17
3.3.3 The Vanishing Gradient Problem 18
3.3.4 Long-Short Term Memory 19

v

Contents vi

3.3.5 Gated Recurrent Unit . 21
3.4 Sequential Variational Autoencoder 22

4 Experiment 27
4.1 Preliminary . 27

4.1.1 Description of raw data . 27
4.1.2 Data preprocessing . 30
4.1.3 Description of training data 32

4.2 Experimental settings . 32
4.3 Experimental results . 34

4.3.1 Results and Visualization 34
4.3.2 Evaluation . 37

4.4 Discussion . 39
4.4.1 Training performance . 39
4.4.2 Accuracy analysis . 41
4.4.3 Limitations . 42

5 Conclusions and Future Work 43
5.1 Conclusions . 43
5.2 Future Work . 44

Bibliography 45

List of Figures

1.1 Example of scaling factor. 2

3.1 framework of autoencoders. 9
3.2 comparison between Autoencoder and Variational Autoencoder. . . 12
3.3 architecture of Recurrent Neural Network. 16
3.4 architecture of Long-Short-Term Memory (LSTM). 20
3.5 architecture of Gated Recurrent Unit (GRU). 22
3.6 The idea of implementing generative model for trajectories of hu-

man mobility. Left penal of the figure is some examples of observed
trajectories of human mobility; middle one is a example of approx-
imate distribution of t rajectories of human mobility; right one is
reconstrcuted trajectories. 22

3.7 A graphical model visualization of proposed Sequential Variational
Autoencoder. Left penal shows a seq2seq model framework, right
penal shows a variational autoencoder framework. 23

3.8 workflow of the training procedure of the SVAE. 25

4.1 Distribution of navigation GPS points of NAVITIME 28
4.2 Daily statistics. 28
4.3 Chart of ratio of navigation distance 29
4.4 accuracy of the navigation GPS data. 30
4.5 limitations of the navigation GPS data. 30
4.6 comparison between raw data and processed data. 32
4.7 Training procedure of SVAE. 34
4.8 Training process. 35
4.9 Visualization of training data, reconstrcuted trajectories, resampled

trajectories and 10 times of resampled trajectories. 36
4.10 comparison between raw data and processed data. 37
4.11 comparison between raw data and processed data. 38
4.12 Comparison of singele true trajectory and fake generated trajectory. 39

5.1 Framework of generating trajectories from historical data. 44

vii

List of Tables

4.1 summary of daily statistics . 29
4.2 SVAE Loss . 35
4.3 Reconstruction error of generated points (/m) 39

ix

Chapter 1

Introduction

Many big cities have grown thanks for the rapid urbanization progress, which have

modernized many people’s lives but also engendered big challenges.[1] Years ago,

solving this kind of chanllenges seems to be impossible because of the complex

and dynamic settings of cities. Nowadays, some impressive methods of locational

datasets collection have shown an opportunity for the human mobility applications.

For example, human mobility in a city which occurs during some rare events like

earthquake was recorded, then how can we use this data to evaluate the situation

if the earthquake happened in another city. Although the usage of those kinds of

datasets, which owned by enterprises or government, can give us opportunities to

some potential applications, they have some limitations in two-fold: 1) it has the

risk of an invasion of privacy in some cases if used directly; 2) it will contain some

bias or the sampling rate is low.

1.1 Problem definition

Privacy is a very complex topic. To prevent some risks of invasion of privacy of

mobile device users, although many locational data is collected, the owner of such

kind of data is not willing to provide the data for researchers or other research

institutes, which leads to a limitation of the usage of this kind of locational data.

There is a trade-o↵ between the implement of collected locational data and the

concerns about invasion of privacy of users, which is often that even the owner

of the data is willing to provide the data for some research purpose, they are not

going to provide the whole data, instead, a very small part of the data will be

1

Chapter 1. Introduction 2

Figure 1.1: Example of scaling factor.

provided, such as 1% of the entire data set. Despite the privacy concerns about

protecting the privacy of users, there are some other problems which can also lead

to the low sampling rate of the collected data. An example of such situation is

that fishery data in the world. This kind of fishery data is an open data, but we

still cannot get the data reflect the real trajectory patterns of all fishing boats

since some of small fishing boats lack e�cient device to record their trajectories

and thus cannot be obtained. Both privacy concerns of mobile device users and

the lack of techniques of collection method in some cases will lead to the di�culty

to obtain the human mobility data to reflect the real trajectory patterns in real

situations. There are many research and implement based on the human mobility

data, for instance, human mobility prediction. These applications usually need

to use previous steps of trajectories to predict the human mobility in the future.

We are not talking about the accuracy or performance of such methods, what we

concern is that if we cannot get the data which can reflect the real situation of

human mobility in a target area, it is di�cult to predict the future human mobility

in a proper way.

1.2 Scaling factor

For some human mobility prediction problem which aims to predict the human

mobility in a target area, it is necessary to know the real situation about the

current human mobility. However, in reality, the provided data cannot reflect that

real situation if the data only contains 1% of entire population in real world. To

tackle this kind of problem, we can develop a scaling factor for each trajectory

sample by combining some information, such as population density, from other

data set.

Figure 1.1 shows an example of scaling factor for human mobility trajectories.

In left panel, it shows observed trajectories; middle one shows trajectories after

Chapter 1. Introduction 3

scaling factor applied; right one shows real situation of trajectories. The scaling

factor can add more trajectories based on observed trajectories to make the data

approximate the real situation of human mobility in a target area. However, its

limitations are also obvious. It can only add some trajectories based on the existed

observations, thus it is surely lack of diversity as di↵erent people is assumed to

behave in somehow di↵erent even though some of they may be in similar situation.

As shown in the most right penal of the above figure, in reality, there might be

some potential trajectories which didn’t observed. It is more reasonable to achieve

a diversity of trajectories when reconstructing the real human mobility patterns.

1.3 Generative model

In general, a generative model is a model of the conditional probability of the

observable X, given a target y, symbolically, P (X|Y = y).[2] It can be used to

generate random outcomes, either of an observation and target (x, y), or of an

observation x given a target value y. A generative model is not designed for

the transportation planning and applications directly, but we can use this kind

of model to improve the existing datasets to match the requirement of imple-

mentation of other applications. This kind of model can solve the limitations of

aforementioned scaling factor. First of all, a generative model can learn a low

dimensional feature space which can infer the travelers’ pattern from the complex

redundant collected locational datasets. Then, we can utilize the learned feature

space to transportation planning and applications. And if necessary, we can re-

sample from the learned low dimensional feature space to generate a fake dataset

that has the similar pattern with the real dataset for further use. There are two

reasons for generating fake datasets: 1) using generated fake datasets can avoid

the risk of invasion of customers’ privacy; 2) obtain enough data samples if the

dataset is too small to be used. Therefore, the problem that how to build a gen-

erative model that can capture the features from real human mobility trajectories

is a very interesting topic. Nowadays, many deep learning methods have been in-

vestigated on image processing, natural language processing and human mobility

prediction, et al. based on basic neural networks, many di↵erent neural networks

have been proposed to solve di↵erent problems in various domains. Although, dif-

ferent deep learning frameworks were proposed for solving the problems lying on

very di↵erent implementations, we can still be inspired from those deep learning

Chapter 1. Introduction 4

frameworks. Variational Autoencoders (VAE)[3] are originally proposed for image

processing, and many applications using variational autoecncoders achieved a very

good performance. However, owing to the structure of variational autoencoders,

it can only be implemented in applications using non-sequential data. To tackle

problems of human mobility, which is a kind of sequential data, we need use Re-

current Neural Networks (RNN) to build our model. Since vanilla RNNs have

di�culties on long length sequence training owing to vanishing gradient problem,

Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) have been

designed and widely used when coming to the long length sequence problem.

1.4 Contributions

In this paper, we combine these two frameworks and build a Sequential Variational

Autoencoders (SVAE) model for tackling trajectories of human mobility. In our

limited knowledge, it is the first time to implement the SVAE for trajectories of

human mobility. In the model architecture we focus on learning the hidden space

which using multivariate Gaussian distribution to approximate the real posterior

distribution of the real human mobility. Then we can resample from the learned

distribution, and using a learned decoder to reconstruct the trajectories of human

mobility. Our contributions are as follows:

1) Controlled generation. Our architecture allows us to generate more trajectories

which follows the distribution of the learned human mobility pattern. We can

control the number of trajectories we want to generate.

2) Diversity. We can obtain some reasonable trajectories, which are not contained

in the original data set, to achieve diversity.

3) We use some metrics to quantitatively evaluate the performance of SVAE model

for trajectories of human mobility.

We use real navigation GPS data to conduct the experiment. The data we used

is locational data contains trajectories of human mobility of entire Japan. Our

paper is structured as follows. In section 2, we introduce some related works. In

section 3, we present the framework of SVAE model. In section 4, experiment

design is presented. Results of experiment are shown in section 5. We make a

brief discussion in section 6. Finally conclusion and further study were given in

section 7.

Chapter 2

Related Works

2.1 Urban computing using human mobility data

A definition of Urban Computing is given by Y. Zheng[1]: it is a process of tackling

the major issues which cities face using big and heterogeneous data collected by a

diversity of sources in urban areas.

Techniques of data collection have been improved rapidly, which lead to some rev-

olutionary ideas of implementing machine learning algorithms for solving some tra-

ditional social issues, such as zone regulation[4], air pollution[5], disaster evacuation[6]

el at., since collected big and heterogeneous data makes tasks which are nearly im-

possible years ago become possible.

Recently, there are many researches conducted on human mobility data, such as

mobile phone GPS log data, taxi GPS data and navigation GPS data. These kinds

of researches often related with building intelligent city system.

R, Jiang[7] introduce a framework of predicting multiple steps of future trajectories

of human mobility. Their method is a Regions-of-Interest (ROIs) based modeling,

which is convinced to be an improvement of traditional grid based modeling. Also,

they use a multiple to multiple training strategy to achieve the goal of predicting

the multiple steps of future movement.

CityMomentum[8] is another work related to human mobility prediction. However,

the goal of building CityMomentum system is not to predict future trajectories of

5

Chapter 2. Related Works 6

human mobility using previous historical trajectories, but to transfer the informa-

tion obtained in one city to another city. It is also a very interesting work which

answers the question about how to make use of data collected in one city to guide

the development of another city.

Detecting flawed urban planning using the GPS trajectories of taxicabs[9] is one

of the most significant example of urban computing for city planning. Their work

can detect the regions with salient tra�c problems and the linking structure as

well as correlation among them.

Furthermore, some other researches about simulating human mobility when disas-

ters occur and predict their mobility in an emergency have been also conducted[10–

14]. Their works are extremely important since understanding and modeling peo-

ple’s mobility is a crucial component of transportation planning and management.

2.2 Researches based on Variational Autoencoder

In recent years, Variational Autoencoders (VAEs) have been widely used for ap-

proximate some complicated distributions.[15] The ability of VAEs has been proved

to be promise in the works of generating many kinds of complicated data in im-

age processing domain. However, some researches also using this framework in

other domains such as Natural Language Processing (NLP), which inspired its

implementation for tackling issues based on sequential data.

Y. Fan el at.[16] present a novel end-to-end partially sipervised deep learning

approach for video anomaly detection and localization using normal samples. it is

the first time that A Variational Autoencoder (VAE) framework utilized for video

anomaly detection.

Y. Pu el at.[17] developed a novel Variational Autoencoder to model images, as well

as associated labels or captions. They use a deep Convolutional Neural Network

(CNN) as an image encoder, while A Deep Generative Deconvolutional Network

(DGDN) is used as a decoder of the latent features. The proposed model achieve

a high performance on image recognition.

Besides, there are many researches using Variational Autoencoders in Natural

Language Processing (NLP). Jonas Muller el at.[18] implemented the Variational

Chapter 2. Related Works 7

Autoencoder framework for revising natural language sentences. Comparison be-

tween Variational Autoencoder and Encoder-Decoder models for short conversa-

tion is done by Shin Asakawa and Takashi Ogata.[19]

Another aspect of research based on Variational Autoencoder is improving the

VAE framework itself. Sønderby, Casper Kaae, et al. proposed a Ladder Varia-

tional Autoencoders[20] which can recursively corrects the generative distribution

by a data dependent approximate likelihood. Their moel can learn a deeper more

hierarchy of latent variables than other generative model based on Variational

Autoencoder.

A research about Infinit Variational Autoencoder is done recently.[21] They use

a mixture model where the mixing coe�cients are modeled by a Dirichlet pro-

cess, allowing to integrate over the coe�cients when performing inference. Their

work shows the flexibility for the applications which have only a small number of

available training samples.

2.3 Generative model for human mobility simu-

lation

To simulate human behavior and moving patterns, various generative models have

been developed in recent years.

Input-Output Hidden Markov Model (IO-HMM)[22] was proposed to enable ac-

tivity based travel demand models which can protect the privacy of mobile phone

users while using this cellular data to simulate synthetic agent travel patterns.

Their model achieve a reasonable accuracy when conducting an agent-based mi-

croscopic tra�c simulation. However, the limitation of the proposed model is that

if travel patterns vary greatly over the region, a single model will not be able to

capture all region with a good performance.

A Gibbs sampling based multiple hidden Markov model (GSMHMM)[10], designed

as a part of city-coupling algorithm, can generate simulated trajectories in a city-

wide scale area such as Tokyo or Osaka. However, as the model is based on Gibbs

Sampling, it needs some important prior knowledge for the GSMHMM to generate

new human mobility trajectories.

Chapter 2. Related Works 8

However, HMMs cannot completely model the temporal dependency of states. To

improve the HMMs, Baratchi et al.[23] proposed Hidden Semi-Markov Model(HSMM),

which including the duration of the state into the hidden variables. In general,

their works are all based on Hidden Markov Model, and focus on reconstruct the

trajectories of human mobility following a specific probability distribution.

Very recently, a non-Parametric generative model for human trajectories has been

proposed.[24] They use Generative Adversarial Network (GAN) to produce data

points after a simple and intuitive yet e↵ective embedding for locations traces

designed. It is the first time that deep learning methods implemented in building

a generative model for human mobility in our knowledge.

The Sequntial Variational Autoencoder we build in this research has significant

di↵erences comparing with their model. Their work is a GAN based model which

aims to generate fake data that can be recognized as true data by the trained

discriminator. While the SVAE model in this research aims to learn the approxi-

mated latent distribution of training data first, then resample the fake data from

this learned latent space. Besides, there is no need of trajectory transformation

for trajectories when using SVAE model.

Chapter 3

Methodology

3.1 Autoencoder

3.1.1 Architecture of Autoencoder

Autoencoders (AE)[25] are unsupervised learning that aims to reconstruct their

outputs in a way of making the outputs as similar as the inputs. They firstly

compress the input into a latent space representation, which capture the features of

the input, and then reconstructing the output from this informative representation.

This kind of network is composed of two parts: 1) encoder: this is the part of the

network that compresses the input into a latent space representation. It can be

represented by an encoding function h = f(x). 2) decoder: this part aims to

reconstruct the input from the latent space representation. It can be represented

by a decoding function r = g(h).

The AE as a whole can thus be described by the function r = g(f(x)) where we

want the reconstructed output r as close as the original input x.

Figure 3.1: framework of autoencoders.

9

Chapter 3. Methodology 10

3.1.2 The purpose of Autoencoder

AEs will be useless if the only purpose of them was to copy the input to the output.

Actually, what we want is that by training the AEs to reconstruct the outputs as

similar as their inputs, the learned latent space representation h will take on useful

properties. This purpose can be achieved by creating constraints on the copying

task.

one way, which is called undercomplete, to obtain useful features of the inputs

when training the AE is constrain h to have smaller dimension than the original

inputs x. When training an undercomplete representation, what we actually do

is forcing the AE to learn the most salient features of the original inputs and

drop those redundant dimensionalities. However, the AE can learn to perform

the copying task without extracting any useful information if it is given too much

capacity.

It can occur if the dimension of the latent space representation is the same as the

original inputs, and in overcomplete case, where the dimension of the latent space

representation is larger than the original inputs. In these cases, it can be possible

that even a linear encoder and a linear decoder can learn to reconstruct the outputs

as similar as the original inputs without learning salient useful features about the

training data distribution. In practical, we are able to train any architecture of

AE successfully, choosing the code dimension and the capacity of the encoder and

decoder based on the complexity of distribution to be approximated.

3.1.3 Applications of Autoencoder

Nowadays, it is told that two main interesting practical applications of AEs are

Data Denoising[26] and Dimensionality Reduction[27] for data visualization. AEs

are convinced to be more e�cient in learning data projections than Principal

Component Analysis (PCA)[28] or some other basic techniques if they are trained

with appropriate dimensionality and sparsity constraints. AEs can be learned

automatically from training data, which means that it is easy to train specialized

instances of the algorithm that will give a good performance on a specific type of

inputs and no new engineering is required, but only the appropriate training data.

Chapter 3. Methodology 11

However, AEs can hardly give a good performance in image compression. Since

AEs are trained on a given set of data, a reasonable compression result will be

achieved on the data which is similar to the original training data set used. But

when the data set is not similar to the training data, it will perform bad anyway. It

can be said that AEs cannot be a good robust general purpose image compressors.

An advantage of AEs is that not only the AEs are trained to preserve as much

information as possible, but also to make the new representation have various

properties. Also, di↵erent kinds of AEs are designed to achieve di↵erent kinds of

properties.

3.2 Variational Autoencoder

3.2.1 Variational Bayesian

Variational Bayes is a particular variational method which aims to find some

approximate joint distribution Q(x, ✓) over hidden variables x to approximate

the true joint P (x), and defines the distance as the Kullback-Leibler divergence

KL(Q(x, ✓)||P (x)).[29] Kingma, Diederik P., and MaxWelling[3] introduce a stochas-

tic variational inference and leaning algorithm that scales to large datasets and,

under some mild di↵erentiability conditions, even works in the intractable case,

and propose a Variational Autoencoder framework, which is widely used in recent

years.

3.2.2 Architecture of Variational Autoencoder

Autoencoders is widely used for generation before, but its fundamental problem is

that the latent space, constructed by the Autoencoder from learning the features

of input data, may not be continuous, or allow easy interpolation. The purpose

for building a generative model is that we want to randomly sample more data

from the approximate latent space or generate variations on input data from a

continuous latent space.

When the latent space constructed has discontinuities, the decoder will simple

generate an unrealistic output if we sample or generate a variation from there.

That is because the decoder lack the ability of dealing with that region of the

Chapter 3. Methodology 12

Figure 3.2: comparison between Autoencoder and Variational Autoencoder.

latent space, since it never saw such kind of encoded vector from that region of

latent space during training. One fundamentally unique property of Variational

Autoencoders (VAEs) which separate them from vanilla Autoencoders is that their

latent space is designed to be continuous, allowing easy random sampling and

interpolation. It is also this property that makes Variational Autoencoders useful

for generative modeling.

That property is achieved by making its encoder output two vectors of size n: a

vector of means µ, and another vector of standard deviation �, instead of just

output one single encoding vector of size n. This two encoding vectors then form

the parameters of a vector of random variables of length n, with the i-th element

of µ and � being the mean and standard deviation of the i-th random variable

Xi, from which we sample to obtain the sampled encoding which we pass onward

to the decoder. This stochastic generation means, that even for the same input,

while the mean and standard deviations remain the same, the actual encoding will

somewhat vary on every single pass simply due to sampling. Figure 3.2 shows the

di↵erent strategy of constructing latent space between standard Autoencoder and

Variational Autoencoder.

Intuitively, there is a main di↵erence between the constructed latent spaces of

a standard Autoencoder and a Variational Autoencoder. In the latent space of

a Variational Autoencoder, the encoded mean vector µ and the standard devia-

tion � initialize a probability distribution, while the encoded vector of a standard

Chapter 3. Methodology 13

Autoencoder is a direct encoding coordinate. In the case of training a Varia-

tional Autoencoder, encodings can be generated randomly from the probability

distribution. Therefore, the decoder of a Variational Autoencoder can learn to

reconstruct the output from a probability distribution rather than just a group of

specific points in the latent space.

Kullback-Leibler divergence[30] is a measure of how one probability distribution

diverge from a second, expected probability distribution. The most important

metric in information theory is Entropy which is to quantify the information in

data. The definition of Entropy for a probability distribution p(x) is:

H = �
NX

i=1

p(xi)logp(xi)

Based on the formula of entropy, the Kullback-Leibler divergence which measures

the di↵erence between a probability distribution p(x) and the approximating dis-

tribution q(x) can be given:

DKL(p||q) =
NX

i=1

p(xi)(logp(xi)� logq(xi))

With Kullback-Leibler divergence we can calculate exactly how much information

is lost when we approximate one probability distribution with another one.

The encoder of a Variational Autoencoder is designed to convert the input data

point x to a hidden representation z, with weights and biases ✓. Therefore, the

encoder is denoted to be q✓(z|x). The noisy values of hidden representation z

is sampled from this distribution as the input of the decoder.The decoder of a

Variational Autoencoder has weights and biases �, denoted by p�(x|z). It get the
noisy values of the latent representation z as input, and reconstruct the output

data x.

The reconstruction log-likelihood logp�(x|z) is used to measure the information

lost in aforementioned procedure. It also gives the e�ciency of the decoder for

reconstrcuting an input data x given its latent representation z.

The loss function of the Variational Autoencoder is:

li(✓,�) = �Ez⇠q✓(z|xi)[logp�(xi|z)] +KL(q✓(z|xi)||p(z))

Chapter 3. Methodology 14

It contains two part: 1) the first term is named to be reconstruction loss; 2) the

second term is a Kullback-Leibler divergence between the probability distribution

of encoder and a unit Gaussian distribution. This loss function is well designed

as we can also treat the second term to be a regularizer just like many other loss

functions. A reconstruction loss is to force the model to give the output just as

similar as possible comparing with input. Meanwhile, the purpose of the second

term is to make sure the latent space constructed in the training process is not

so complex. When the second term is small, we can achieve the goal of using a

simple latent space to approximate the real posterior distribution of latent space.

3.2.3 The probability perspective of Variational Autoen-

coder

We begin with a dataset of observations x, which corresponding to a group of

unobservable latent variables z. It is very important that infering the unobservable

latent variables z using observations x to guess the real state of a situation. This is

a process of calculating the posterior distribution p(z|x) to infer the unobservable

latent variables. The most basic formula for calculate p(z|x) is:

p(z|x) = p(x|z)p(z)
p(x)

Since observations is denoted by x, p(x) is called evidence. Theoretically in math-

ematics, p(x) can be calculated using p(x) = intp(x|z)p(z)dz. However, situations
are very di↵erent in reality because aforementioned formula requires exponential

time to be computed. Therefore, instead of calculating the evidence directly to

obtain the real posterior distribution p(z|x), finding a apporximate distribution of

the real posterior distribution is a practical choice.

In variational inference, a Gaussian distribution is used for apporximating the real

posterior distribution p(z|x). We use q�(z|x) denote the approximate distribution.

As it is a Gaussian distribution, the latent variables can be given by the mean

and variance �xi = (µxi), �
2
xi
). Then the problem is that how can we measure

the di↵erence between the real posterior distribution p(z|x) and the approximate

distribution q�(z|x). In information theory, the Kullback-Leibler divergence is

Chapter 3. Methodology 15

often used for solving such problem:

KL(q�(z|x)||p(z|x)) = Eq[logq�(z|x)]� Eq[logp(x, z)] + logp(x)

By minimizing this divergence respect to the parameters �, we can find the optimal

approximate distribution. This process can be written as follows:

q⇤�(z|x) =� KL(q�(z|x)||p(z|x))

However, aforementioned Kullback-Leibler divergence cannot calculated directly

since the evidence p(x) appears.

To tackle this problem, the solution comes to the Evidence Lower Bound (ELBO):

ELBO(�) = Eq[logp(x, z)]� Eq[logq�(z|x)]

Combining the above Kullback-Leibler divergence and this ELBO function, we can

get the formula for the evidence:

logp(x) = ELBO(�) +KL(q�(z|x)||p(z|x))

According to the Jesen’s inequality, the result of Kullback-Leibler divergence be-

tween two probability distribution always greater than or equal to zero, and zero

can be achieved only when these two probability distribution are the same. Since

the information of the evidence is a constant value, we can know that minimizing

the Kullback-Leibler divergence is equivalent to maximizing the ELBO. As the

result, the intractable problem is solved.

3.3 Sequence-to-sequence model

Deep neural networks that are mainly feedforward fully connected neural network

are powerful but not really appropriate for sequential data such as time series

data or language. They are very good to map input data to discrete output or

continuous variable but not sequence to sequence mapping. Sequence-to-sequence

(Seq2seq) model learns from variable sequence input fixed length sequence output.

It uses two Long Short Term Memory (LSTM) model, one learns vector represen-

tation from input sequence of fixed dimensionality an another LSTM learns to

Chapter 3. Methodology 16

Figure 3.3: architecture of Recurrent Neural Network.

decode from this input vector to target sequence. LSTM is a variant of recur-

rent neural network that solves problem of handling long sequences using di↵erent

gates. Seq2seq model was recently proposed, and demonstrated excellent result

for Natural Language Processing (NLP).[31–33] This model proved to be more

e↵ective than previous methods at NMT, and is apparently now used by Google

Translate.

3.3.1 Recurrent Neural Network

Recurrent Neural Networks (RNN) are widely used in solving many sequential

problems such as Natural Language Processing (NLP) tasks.[34–36] The main

contribution of RNNs is that they can capture the sequntial information for use.

For instance, it is good idea to obtain the previous location which a data point

located in before we make a prediction of the next location where the data point

will be. A typical RNN is shown as figure 3.3.

Input data is denoted by x = (x1, ..., xt�1, xt, xt+1, ...). An observation xt in-

dicates the observed data in step t. Corresponding to the input data, a hid-

den space is denoted by s = (s1, ..., st�1, st, st+1, ...). However, a hidden space

is not only related with input data but also related with previous hidden state:

st = f(Uxt + Wst�1). The functin f(·) is nonlinear activation such as ReLU or

tanh. A hidden state st can capture the information of current observation xt and

take the previous information captured by st�1 into account. Then, the output

o = (o1, ..., ot�1, ot, ot+1, ...) can be calculated by ot = g(V st), where function g(·)
is another nonlinear activation.

Chapter 3. Methodology 17

From figure 3.3, we notice that weights U , V , and W only be changed after a

sequence be computed completely. Therefore, the total numbder of parameters

of a Recurrent Neural Network is not so big comparing with other traditional

deep neural networks. However, there is a main di↵erence between Recurrent

Neural Network and some other traditional deep neural networks, which is that

the backpropagation algorithm is used for training a traditional neural networks

while it cannot be used for training a Recurrent Neural Network. That is because

the gradient at each output depends on not only in current step, but also previous

steps. In that case, a specific backpropagation is designed for traing a Recurrent

Neural Network which is called Backpropagation Through Time (BPTT).

3.3.2 Backpropagation Through Time

Backpropagation Through Time (BPTT) is designed by Werbos, Paul J.[37] It

can be used in not only for training Recurrent Neural Networks, but also in other

networks. We will give a brief introduction about the Backpropagation Through

Time used in training Recurrent Neural Network. The most basic equations of

RNNs is as follows:

st = f(Uxt +Wst�1)

ot = g(V st)

The cross-entropy loss is often used for training a Recurrent Neural Network, the

formula is given by:

Et(ot, ôt) = �otlogôt

E(o, ô) =
X

t

Et(ot, ôt) = �
X

t

otlogôt

In above equations, ot is the ground truth at step t, while ôt is the prediction at

step t. We use the sum of cross-entropy loss of all steps to measure the loss of the

entire sequence.

The optimal results can be obtained when the cross-entropy loss is minimized,

which is the common goal of training most of neural networks. In previous part,

we have already explain the process of how a Recurrent Neural Network can output

predictions ot give input xt. If we want to reduce the error between inputs and

outputs, the key problem is to find how much contribution of parameters U , W ,

Chapter 3. Methodology 18

and V respectively for the loss. Using Stochastic Gradient Descent would be the

solution for calcaute the gradient of the loss respect to di↵erent parameters. Just

like sum up the loss in the defined cross-entropy loss functin, we can sum up the

gradient at each step:
@E

@W
=

X

t

@Et

@W

These gradient can be calculated using a chain rule of di↵erentiation. We set

zt = V st, then we can calculate the gradient:

@Et

@V
=

@Et

@ôt

@ôt
@V

=
@Et

@ôt

ôt
@zt

@zt
@V

Note that st = f(Uxt +Wst�1) depends on st�1, so when we take derivative with

respect to W and U , the formula of gradients respect to W and U is a bit di↵erent:

@Et

@W
=

tX

k=0

@Et

@ôt

@ôt
@st

@st
@sk

@sk
@W

@Et

@U
=

tX

k=0

@Et

@ôt

@ôt
@st

@st
@sk

@sk
@U

We can solve the equation use aforementioned equations.

3.3.3 The Vanishing Gradient Problem

RNNs have di�culties learning long-range dependencies. We should explain this

di�culty using aforementioned gradient calculation. The problem is caused by @st
@sk

in above equations. The formula @st
@sk

is a cahin rule in itself, which is the derivative

of a vector function with respect to a vector. the result of this formula can be

written as a Jacobian matrix, then the gradient can be written as follows:

@Et

@W
=

tX

k=0

@Et

@ôt

@ôt
@st

(
tY

j=k+1

@sj
@sj�1

)
@sk
@W

As the activation function we often use in a Recurrent Neural Network cell is tanh:

f(x) =
2

(1+�2x)
� 1

Chapter 3. Methodology 19

f 0(x) = 1� f(x)2

the tanh function maps all input x into a value ranged between -1 and 1, its

derivative is also bounded by 1. Besides, the derivative of the tanh function is 0 at

both ends, which means that a zero gradient will obtained in some specific cases.

Once a zero gradient is obtained by chance, it will drive other gradient towards

zero since the chain rule of the gradient. Therefore, the gradient vanishing problem

occurs when the values of these gradient shrinking exponential fast even start with

some small values.

There are some solutions for preventing the gradient vanishing problem. A ReLU

activation is introduced[38], of which derivate is a constant:

f(x) = max(0, x)

Moreover, Long-Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)

are also invented owing to this gradient vanishing problem.

3.3.4 Long-Short Term Memory

Long-Short-Term Memory (LSTM) was designed to combat vanishing gradients

through a gating mechanism.[39] How a LSTM calculates a hidden state st is

shown as follows:

i = �(xtU
i + st�1W

i)

f = �(xtU
f + st�1W

f)

o = �(xtU
o + st�1W

o)

g = tanh(xtU
g + st�1W

g)

ct = ct�1 � f + g � f

st = tanh(ct) � o

A LSTM layer, shown in figure 3.4, has three gates i, f , o. i is called input gate,

f is output gate, and o is output gate. The sigmoid function is used in thse gates

which has values between 0 and 1. For example, if the value of a gate is 1, then

it means that let all information pass towards, while if the value of a gate is 0, it

Chapter 3. Methodology 20

Figure 3.4: architecture of Long-Short-Term Memory (LSTM).

means that no information shall passed onwards. The function of di↵erent gates is

di↵erent. The input gate i determines the quantity of information of current input

to be passed onwards. The forget gate f determines the quantity of information

of previous state to be passed onwards. The output gate o determines the quality

of information of internal state to be passed onwards.

Besides, g is designed to be a kind of candidate hidden state which is also calculated

based on the current input xt and the previous output st�1 just like the hidden

state calculated in a vanill Recurrent Neural Network. However, This candidate

hidden state is not the final hidden state calculated in a Long-Short-Term Memory

as it should be selected by the aforementioned input gate.

ct in a Long-short-Term Memory unit is the internal memory. It is used to cap-

ture the information combining the previous internal memory ct�1 with selected

candidate hidden state g. Using a internal memory, we can completely ignore the

previous memory by set the value of the forget gate to be 0, or completely ignore

Chapter 3. Methodology 21

the new input by set the value of input gate to be 0. However, what we really

want is information between these two extremes.

Finally, we can compute the output hidden state st using the internal memory

ct. Since there is a output gate which control the quantity of information to be

passed onwards, the hidden state st could contain only part information of the

internal hidden state. The ability of modeling long-term dependencies is improved

in LSTMs thanks to the gating mechanism.

3.3.5 Gated Recurrent Unit

Gated Recurrent Unit (GRU) is another gating mechanism in RNNs, introduced

by Kyunghyun Cho el at.[40] Equations for calculating the hidden state in a Gated

Recurrent Unit is given:

z = �(xtU
z + st�1W

z)

r = �(xtU
z + st�1W

r)

h = tanh(xtU
h + (st�1 � r)W h)

st = (1� z) � h+ z � st�1

A GRU, shown as figure 3.5, has only two gates r and z. r is called reset gat, while

z is called update gate. Intuitively, the reset gate is used to guide the combination

of the input and the previous memory, and the update gate is used to guide how

much information of previous memory should keep.

Although Gated Recurrent Unit and Long-Short-Term Memory share the same

idea of using a gating mechanism, there are some important di↵erences: 1) GRUs

only have two gates while LSTMs have three; 2) there is no second nonlinear

activation applied in GRUs when computing the output.

According to evaluations conducted in some recent research,[41, 42] there is no

clear whiner when conducting a comparison between GRUs and LSTMs. It seems

to be that if we have enough data, LSTMs could have better results. Meanwhile,

GRUs can be trained faster since they have fewer parameters.

Chapter 3. Methodology 22

Figure 3.5: architecture of Gated Recurrent Unit (GRU).

Figure 3.6: The idea of implementing generative model for trajectories of hu-
man mobility. Left penal of the figure is some examples of observed trajectories
of human mobility; middle one is a example of approximate distribution of t

rajectories of human mobility; right one is reconstrcuted trajectories.

3.4 Sequential Variational Autoencoder

The idea of using generative model to handle the incomplete data is very natural

as figure 3.6 shows. When we have some trajectories of human mobility obtained

from incomplete data set, we can firstly use an encoder to encode the trajectories

into a low dimensional points in hidden space, shown as blue points in above

figure. Then we can find an approximate distribution of these points, shown as

blue line in the above figure. it is natural to sample some points from the learned

distribution, and use a decoder to reconstruct the points in the hidden space to

Chapter 3. Methodology 23

Figure 3.7: A graphical model visualization of proposed Sequential Variational
Autoencoder. Left penal shows a seq2seq model framework, right penal shows

a variational autoencoder framework.

the trajectories we want. From an intuitive view, it is easier to generate new data

from a lower dimensional distribution. Also, the generated new fake trajectories

are reasonable as they are resampled from the learned distribution based on the

real trajectories.

As discussed in the above, A Variational Autoencoder can build a hidden space

which follow Gaussian distribution to approximate the real distribution of the ob-

served trajectories. The reason for a constructing a hidden space which follows

a Gaussian distribution is that by learning the parameters of the Gaussian dis-

tribution representing the input observed trajectories, we can sample from the

distribution and generate new samples of trajectory. The ability for constructing

hidden space following a Gaussian distribution is exactly what we want in our pro-

posed Sequential Variational Autoencoder. However, the Variational Autoencoder

lack the ability of tackling sequential data, which is the main limitation.

A seq2seq model framework usually use several Recurrent Neural Networks as

encoder and decoder. Therefore, a seq2seq model can handle sequential data

without di�culties, but the hidden space C is not well constructed.

We can regard the seq2seq model as a Sequential Autoencoder. By doing that, it is

natural to consider that if we combine Variational Autoencoder and seq2seq model

as figure 3.7 shows, we can combine their advantages. That means the Sequential

Variational Autoencoder is well-designed generative model for sequential data.

Chapter 3. Methodology 24

Let x = (x1,x2, ...,xt) denote a high dimensional sequence, such as a trajectory of

human mobility wit t steps. We use a LSTM neural network as recurrent encoder

to capture the information of the input trajectory x. Then we will obtain a series

of hidden state st, and a series of output ot. In actual case, what we really care

about is the final output o rather than a sequence of output value ot. Since we

only keep the final output, we can obtain a intermediate non-sequential vector o to

represent the information captured from the input sequence using this recurrent

encoder. After intermediate vector o is obtained, we treat this vector as the input

of the Variational Autoencoder part. Then we can write the joint probability of

the model as p(o, z) = p(o|z)p(z). p(z) is a prior latent distribution, and p(o|z) is
the likelihood. Then we need to calculate the posterior latent distribution p(z|o)
given observed data:

p(z|o) = p(o|z)p(z)
p(o)

by marginalizing out the latent distribution:

p(z|o) = p(o|z)p(z)R
p(o|z)p(z)dz

This is a exponential time-consuming process. Therefore, variational inference

approximates the real posterior distribution with a family of distribution q�(z|o).
Usually, we choose q to follow a Gaussian distribution, then � would be the mean

and variance of the latent distribution � = (µ, �). Kullback-Leibler divergence

is used for measuring the information lost when using q to approximate p, the

optimal approximate posterior is thus:

q⇤�(z|o) = argmin�KL(q�(z|o)||p(z|o))

In the SVAE model, we parametrize approximate posterior q✓(z|o) using an infer-

ence network, approximate likelihood p�(o|z) using a generative network. Then

the loss of the model will be:

loss = �Eq✓(z|o)[logp�(o|z)] +KL(q✓(z|o)||p(z))

Finally, we use another LSTM neural network as recurrent decoder to reconstruct

Chapter 3. Methodology 25

Figure 3.8: workflow of the training procedure of the SVAE.

the trajectories of human mobility, x from parameters in learned latent distribu-

tion. Training of the model is shown as figure 3.8

Chapter 4

Experiment

4.1 Preliminary

4.1.1 Description of raw data

The data we used for this research is navigation locational data, which is collected

when vehicles were using navigation application. The coordinate system of this

GPS data is WGS84, and the records of the locations cover all over Japan. How-

ever, owing to some reasons, such as privacy protection, we can only use one month

records which is from Oct 1, 2015 to Oct 31, 2015. Besides, the ID of the users

were deleted, so the privacy is protected well. We can only get the information

of the ID of each navigation route to distinguish di↵erent trajectories. Our data

contains the information of:

1) Daily user ID: a random unique ID of a vehicle in a day;

2) Route ID: the unique ID of each navigation trip;

3) Timestep: the recorded time of current location;

4) Longitude and Latitude: the value of longitude and latitude after conducted

map matching;

5) Sensor longitude and Sensor latitude: the value of raw records of longitude and

latitude.

To get an intuitive image of the data we used, a visualization of the GPS data in

selected Tokyo area is given as follows:

27

Chapter 4. Experiment 28

Figure 4.1: Distribution of navigation GPS points of NAVITIME

Figure 4.2: Daily statistics.

The figure 4.1 given is drawn using the recorded locational points. Since the

records is dense and map matched, the points can shape lines and infer the road

map perfectly. Moreover, we can imagine intuitively, more vehicles drive in major

road than those drive in a small road, thus we can see that the lines of major roads

are thicker than small roads. We conduct daily statistics of the used navigation

GPS data:

In summary of the figure 4.2 shows, we get a simple table 4.1:

Chapter 4. Experiment 29

Table 4.1: summary of daily statistics

Total records 6,137,308,784
Total daily user IDs 1,168,592
Total route IDs 2,507,308
Average records 197,977,703/day

Average daily user IDs 38,632/day
Average route IDs 81,791/day

Figure 4.3: Chart of ratio of navigation distance

There is a pattern we can get from the histogram above which is that records in

weekends is less than records in weekdays. We also interested in the navigation

distance of the navigation GPS data shown in figure 4.3.

We can see that about the distance of 85% of navigation trips is shorter than 50,000

meters, so we can conclude that most navigation can be regarded as short trip nav-

igation. Therefore, this navigation GPS data is suitable for some researches tackle

city-scale problem. Another point of the navigation GPS data is the accuracy,

shown in figure 4.4:

The blue rectangles present the sensor longitude and latitude which is the original

position data and the yellow triangles present the longitude and latitude which

is the position data after map matching. Both raw records and map matched

records are very accurate. Besides, from right panel of the figure, some locational

point is drawn. We can see a perfect trajectory with clear origin and destination,

Chapter 4. Experiment 30

Figure 4.4: accuracy of the navigation GPS data.

Figure 4.5: limitations of the navigation GPS data.

moreover, we can even get an intuitive driving speed by the distribution of the

points. However, the data is not always so accurate.

There is also some map matching error or some GPS data records lose in a nav-

igation trip shown as figure 4.5. But those small errors will have small influence

on experiment results since we will conduct data preprocessing rather than just

use the raw data.

4.1.2 Data preprocessing

The navigation GPS data we used in this research is a really big data and contains

a wealth of sequential information. However, it is very di�cult to handle such big

data, we must do some data preprocessing for this raw data then get a data

set we want to utilize in our experiment. The aforementioned basic statistics of

Chapter 4. Experiment 31

the navigation GPS data is all done by coding using python. Since the whole

data is as huge as 1.2 terabyte, divided into 938 common-separated values (csv)

files, conducting statistics on such big data is very hard time-consuming work. To

improve the e�ciency of basic statistics, we use parallel computing to make full use

of central processing units of my machine. Thus, the computing time is reduced

to one sixth and save lots of time. We use the “haversine” formula to calculate

the great-circle distance between two points, which is the shortest distance over

the earth’s surface.

a = sin2(��/2) + cos�1 cos�2 sin
2(��/2)

c = 2a tan(
p
a
p

(1� a))

d = Rc

Where � is latitude, � is longitude, R is earth’s radius (mean radius is 6,371 km).

Then, we get distance delta between each two points using above algorithm. By

summarizing the distance delta of the same navigation trip, we can finally get the

traveling distance of all trajectories in the navigation GPS data.

Another processing is that we also compute the time interval between each two

points, although it is not used in aforementioned basic statistics, but it will be

useful for the experiment. As the time interval of the raw data is not fixed, which

means that it will lead to some potential di�culties to further use.

To simplify the data structure of the data which we will use in the experiment, we

conduct a linear interpolation to the navigation GPS data to make the time interval

of the records fixed. The reason for a linear interpolation is two-fold: 1) simplify

the data structure; 2) obtain trajectories in a specific length. The navigation GPS

data is not intuitive for those who are not familiar with trajectory data, so the

visualization of the navigation GPS data is necessary. The visualization tool is

called mobmap developed by Satoshi Ueyama, a researcher from our laboratory.

In this paper, we use mobmap to visualize both the raw GPS data and the output

results of our proposed model to make the data and result more intuitive.

Chapter 4. Experiment 32

Figure 4.6: comparison between raw data and processed data.

4.1.3 Description of training data

For creating the data set used in our experiment, not all raw data is necessary as

the size of the raw navigation GPS data is too big. Instead, we choose a selected

Tokyo area, longitude from 135.5 to 139.9 and latitude from 35.5 to 35.8. Also,

it is not necessary to use the whole month GPS data since the most navigation

distance is shorter than 50,000 meters and will be ended in one single day. Since

most of navigation trip will last hours, it is natural to get one hour’s data to

conduct the experiment.

We select the records of from 10 am to 11 am October 1, 2015. The data set con-

tains more than 2,000 trajectories, which has fixed time interval. The visualization

of the data set is shown as figure 4.6.

4.2 Experimental settings

The experiment is conducted as figure 4.7 shows. We make a brief description

about the general process of how to train the SVAE model. The first step is

Chapter 4. Experiment 33

preparing training data. The input data we used in the experiment is navigation

GPS data which contains trip ID, longitude, latitude, and timestamp. However,

the raw data should be preprocessed before the training process. The data pre-

processing of linear interpolation is done to simplify the input data, by forcing

the trajectories have fixed timestamp. Therefore, the input only contains infor-

mation about longitude and latitude but can still represent the dynamics of the

trajectories.

We then use several LSTMs as a recurrent encoder which aims to capture the

salient features of the input sequential data. LSTMs return an output in every

step, which means that the output could also be a sequential output. However,

in the SVAE model, a non-sequential output, which we make it a intermediate

vector, is better. This intermediate vector captures the salient features of the input

trajectories while keeps a non-sequential data structure. We want the intermediate

vector to be non-sequential since the custom variational autoencoder has no ability

to handle the sequential data.

After the intermediate vector is given by the recurrent encoder, it will be the input

of the custom variational autoencoder. This layer aims to build the latent space

which can capture the features of the input and follow a Gaussian distribution at

the same time. The output of this layer is mean and logarithm variance which

are used for constructing the latent space which follows the Gaussian distribution.

The final output of this layer is sampled from this latent space, and it will be the

input of next recurrent decoder.

The latent vector should be repeated several times to match the length of the

output trajectories. Then the recurrent decoder consisted of several LSTMs will

reconstruct the output trajectories using aforementioned latent vector. Recon-

structed trajectories should be as similar as possible comparing with input original

trajectories by minimizing the loss function. At the same time, the latent Gaus-

sian distribution should also be as simple as possible to make the SVAE model

robust.

We use aforementioned data to conduct experiment. Mean Distance Error (MDE)

between real trajectories and generated trajectories is used for evaluating the per-

formance of the SVAE model with di↵erent parameter settings:

(1) Short sequence and long sequence, of which length is 6 and 20 respectively,

as input of the SVAE model to test the ability for tackling long sequence of the

Chapter 4. Experiment 34

Figure 4.7: Training procedure of SVAE.

model;

(2) The dimensionality of hidden space is set to be 8, 12, 16 respectively to test

the performance of the model for di↵erent dimensionality of hidden space;

(3) Three kinds of input (values of coordinate only, grid ID only and combination

input of values of coordinate and grid ID) are tested.

The results are given in next section.

4.3 Experimental results

4.3.1 Results and Visualization

We use two datasets as our training set of SVAE model. One dataset is 2,000

trajectories of which length is all set to be 6, and the other one is 2,000 trajectories

of which length is all set to be 20. The two data set is all chosen from the same

Chapter 4. Experiment 35

Figure 4.8: Training process.

Table 4.2: SVAE Loss

Loss both input coordinate input grid ID input
6 steps, 8 latent dimension 0.017318176 0.018159691 0.017484304
20 steps, 8 latent dimension 0.027957876 0.02932067 0.027624224
6 steps, 12 latent dimension 0.017548803 0.018433879 0.01732461
20 steps, 12 latent dimension 0.027994325 0.030799899 0.029310457
6 steps, 16 latent dimension 0.017232143 0.018182858 0.017890416
20 steps, 16 latent dimension 0.029631174 0.031207314 0.03502047

raw dataset, but with di↵erent length of every sequence. Respectively, we train

the SVAE model using these two datasets, changing the parameters which controls

the dimensionality of the constructed latent space, and inputs.

Training processes of di↵erent parameter settings of model have been recorded as

figure 4.8. The left part of the figure is the training process using both coordinate

values and grid ID as input of the SVAE model. The middle part is records of

training just using coordinate values as input. The right part is records of training

just using grid ID as input. We set the training epochs of all di↵erent models as

1,000, which aims to make sure the all di↵erent raining process were finished.

The values of loss in di↵erent SVAE models have been summarized in the table

4.2. The values of the loss is calculated using aforementioned formula:

loss = �Eq✓(z|o)[logp�(o|z)] +KL(q✓(z|o)||p(z))

The values in the table is given by the loss of final step’s training. The smaller

the value is, the better the results of the trained SVAE should give theoretically.

Chapter 4. Experiment 36

Figure 4.9: Visualization of training data, reconstrcuted trajectories, resam-
pled trajectories and 10 times of resampled trajectories.

To make the results be understood easier, the figure 4.9 is given. This figure

contains four rows and four columns of pictures because that we need show the

visualization of dynamics of trajectory of human mobility. The first row of figure

is four pictures about the training data, which is also the ground truth; the second

row is reconstructed results, which reflects the performance of copying the original

input training data to output data; the third row is resampled trajectories of

human mobility, of which number is the same as the training data but generated

from learned hidden space directly; the fourth row is the ten times resampled

trajectories, which has more trajectories than original input training data.

Intuitively, we have confidence to say that the SVAE model has a good perfor-

mance of modeling the input trajectories and reconstructing them. The patterns

of resampled trajectories is a little di↵erent comparing with training data but still

Chapter 4. Experiment 37

Figure 4.10: comparison between raw data and processed data.

reasonable as the figure shows. Moreover, when we check the patterns of generated

trajectories, it looks reasonable from visualization.

4.3.2 Evaluation

The results of SVAE is shown in previous section. We give a quantitatively eval-

uation of our results in this section.

Owing to the lackness of exited generative model for trajectories of human mobility,

we evaluate our results just using the designed Mean Distance Error (MDE).

Ej =

PN
i=1 dis(lij, l̂ij)

N

where dis(a, b) calculate the distance of point a and point b using their coordinate

values; lij is the groundtruth, and l̂ij is the outputs of the SVAE model.

Chapter 4. Experiment 38

Figure 4.11: comparison between raw data and processed data.

In figure 4.10, we aim to give a brief comparison of the performance of the SVAE

model of di↵erent dimensionality of latent space in di↵erent parameter settings.

The first row is the MDE of short sequences using di↵erent inputs, and the second

row is the MDE of long sequences.

In figure 4.11, we aim to compare the performance of di↵erent input strategies.

Figures in first row give a comparison between di↵erent dimensionality of latent

space using short sequences, while the second row give a comparison using long

sequences.

In figure 4.12, we also give a visualization of a single true trajectory chosen from

groundtruth and its corresponding reconstrcuted trajectory. From the figure, we

can see that the driver moves from south-east to north-west in about 20 minutes.

Therefore, the locations of true record and reconstrcuted record in every 5 minutes

is given to show accuracy of the results in a intuitive way.

Chapter 4. Experiment 39

Figure 4.12: Comparison of singele true trajectory and fake generated trajec-
tory.

Table 4.3: Reconstruction error of generated points (/m)

Longitude 1391 496 215 522 342 849 1100 341 110 134
Latitude 54 394 456 372 125 414 417 138 37 4
Distance 1392 633 504 641 364 945 1176 368 116 134

Longitude 285 312 319 335 250 66 65 92 67 48
Latitude 5 7 7 9 13 17 19 20 20 19
Distance 285 312 319 335 250 68 68 94 70 52

Instead of just giving a visualization of the single trajectory, a quantitative mea-

surement is given by calcaluting the distance of two points in every step. The units

of the distance error is meter. We will use this result for explaining the limitation

of the SVAE model.

4.4 Discussion

4.4.1 Training performance

Two features of the training processes can be found in the figure 4.8: (1) the start

points of long sequences (20) are larger than these of short sequences (6); (2) the

process of minimizing loss function when just using grid ID as input is not as

stable as using coordinate values or combination of both.

Besides, it should be mentioned that training the SVAEmodel using long sequences

as inputs is more time-consuming. Therefore, The epochs of iterations should be

carefully considered to reduce the computation. We set epochs of iterations to be

1,000, which make sure that the model is trained fully. By adding regularizers in

our neural network layers, we can avoid overfitting.

Chapter 4. Experiment 40

Table 4.2 indicates three points: (1) in general, the loss values of training using

both coordinate values and grid ID as input is smallest, follows training using grid

ID as input and using coordinate values as input; (2) the loss values of higher

dimensional latent space is often larger than those of lower dimensional latent

space; (3) the loss values of long sequences is larger than those of short sequences.

A reasonable explanation of aforementioned phenomenon is that the loss func-

tion of this SVAE model is designed as the combination of reconstruction errors

and Kullback-Leibler divergence of approximated posterior distribution and unit

Gaussian distribution. Therefore, the phenomenon of that the loss value of train-

ing long sequences with a higher dimensional latent space is larger than others can

be easily explained. Since long sequences have 20 steps, it is likely that the sum of

20 small loss is greater than the sum of 6 small loss of short sequences, which have

6 steps. That will cause the greater reconstruction error of loss function when

training long sequences. The situation for higher dimensional latent space is al-

most the same. Higher dimensional latent space is likely to have greater values of

Kullback-Leibler divergence, which is also a part of loss when training the SVAE.

From figure 4.10, we can see that models using the lowest dimensional latent

space give worst performance in most cases. However, when dimensionality of

latent space is setted to be 12 or 16, it is hard to say which one can lead to a

better performance.

The aforementioned phenomenon could have a reasonable explanation. Since that

the approximated posterior distribution constructed in latent space of SVAE model

is aimed to capture as many features of input training data as possible while in a

limited capacity. When the input data is very complex, then the capacity of the

latent space should be larger to be able to learn the features. If the dimensionality

of the latent space is limited to be small, then it will lead to the lackness of ability

of learning most of the features of training data. However, when we increase the

dimensionality of latent space, the ability for learning features of the SVAE model

is increased indeed. But it could not be always the right strategy to increase the

dimensionality of latent space since the information contained in training data is

finite, which means a proper SVAE model can learn most of the salient information

contained in training data using a finite dimensional latent space. Therefore, when

the dimensionality of latent space is too high, the story becomes to be that part

of the latent space capture the most salient features, and rest of the latent space

is used to deal with the redundant trivial information. In that case, a higher

Chapter 4. Experiment 41

dimensional latent space achieve a performance just like a lower dimensional latent

space or even worse.

4.4.2 Accuracy analysis

In figure 4.11, we aim to compare the performance of di↵erent input strategies.

From the figure, we can say that just using coordinate values as inputs of the

SVAE model is not a good choice in most cases. However, we cannot point out

the advantage of using grid ID as inputs in this figure. The comparison could be

clear when we conduct more training process of the SVAE model, which is very

time-consuming. Anyway, we can point out that using both coordinate vaules and

grid ID as inputs can achieve a more stable results according to our daily practical

experience.

Comparison pf single true trajectory and fake generated trajectory is given by

figure 4.12 and table 4.3.2. According to the figure, the driver’s moving in the first

20 minutes, and keep staying in the rest of time. Also, we calculate the distance

error in every 3 minutes, which is shown as the table. The tendency of the distance

error is reducing with time, which means that reconstructing a moving trajectory

is harder than reconstructing a staying object.

In general, the results of evaluation using MDE shows that the reconstruction

error of SVAE model is smaller than 800 meters. Considering that the selected

experiment area is about 33,000 m
Q

36,000 m, we think that the accuracy of

results of the SVAE model is enough to tackle the city scale problems.

Actually, there is a trade-o↵ between the accuracy of the reconstruction trajec-

tories and the robustness of the ability to generate resampled trajectories. As

mentioned before, the loss function of the SVAE model is consist of reconstruction

error and Kullback-Leibler divergence. In practical training process, minimizing

the reconstruction error will increase the accuracy of reconstructing input trajecto-

ries, while minimizing the Kullback-Leibler divergence will reduce the complexity

of learned latent space.

The goal of training the SVAE model is to minimizing both reconstruction error

and Kullback-Leibler divergence. However, there can be a trade-o↵ between them

as we usually add weight, smaller than 1, to one of them. When we want our model

achieve higher accuracy in reconstructing trajectories, we add a small weight to

Chapter 4. Experiment 42

Kullback-Leibler divergence to reduce the contribution of Kullback-Leibler diver-

gence for the whole loss. Therefore, the training process become that we care less

about the complexity of the learned latent space, just make sure the output recon-

structed trajectories are as accurate as possible. In that case, we can get a model

of which has a very good performance of reconstructing input trajectories but a

very poor performance of generate resampled trajectories. In the other hand, if we

add a big weight to Kullback-Leibler divergence, we aim to train a robust model

of which latent space is as simple as possible. Therefore, we are likely to get a

robust model which has a poor performance of reconstructing input trajectories.

Both of the aforementioned model is not the ideal model we want. In overall, as

discussed above based on the evaluation and visualization of the results, we think

our model is trained in a balance way.

4.4.3 Limitations

We also want to make a brief discussion about the limitation of the current SVAE

model when handling the trajectories of human mobility. As shown in figure 4.12,

a real trajectory and its corresponding reconstructed trajectory is given. The real

trajectory is tortuous while the reconstrcuted trajectory is smooth. Although the

reconstruction error is small, the output reconstrcuted trajectories of the SVAE

model seems to be a smooth approximation of tortuous real trajectories.

A main limitation is that many points of reconstrcuted trajectories don’t located in

road network. implementing map matching to the generated trajectories may solve

the problem, but we believe a better choice is that change the current coordinate

and grid based model to a node based model. Another idea for this problem is

changing the current resampling from Gaussian distribution strategy to resampling

from historical trajectories. We will describe this idea more detail in next section.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this research, we make a brief introduction about Variational Autoencoder and

Sequence-to-sequence model, then combine these two frameworks to build a Se-

quential Variational Autoencoder. It is believed that this Sequential Variational

Autoencoder is first time implemented in modeling trajectories of human mobility.

We use navigation GPS data of cars in Tokyo to evaluate the performance of SVAE

model. The performance of SVAE with di↵erent parameter settings and its expla-

nation have been discussed. In general, the SVAE model can capture the salient

features of input trajectories using a latent space constructed by following Gaus-

sian distribution, then reconstruct the input trajectories. As a generative model,

the ability of generating fake resampled trajectories of SVAE is also proved. Us-

ing this SVAE model, we can generate more trajectories of human mobility which

have similar pattern with training data to solve the low sampling rate problem.

Besides, it is a good choice for preventing the risk of privacy invasion by imple-

menting SVAE model to learn the salient features of confidential data. Then we

can reconstruct the dataset which has similar patterns but has no privacy informa-

tion. In addition, this model can improve the performance of practical applications

by improve the dataset on which they based.

We also note the limitation of SVAE model when implemented in trajectories of

human mobility, which is that many points of reconstructed trajectories is not

located in road network. A solution for that problem is improving the accuracy

43

Chapter 7. Conclusions and Future Work 44

Figure 5.1: Framework of generating trajectories from historical data.

of the reconstructed trajectories which is impossible since that will reduce the

robustness of the SVAE model.

5.2 Future Work

For the purpose of solving the limitation of SVAE model, there could be several

future works for improving the performance of SVAE model. A road network based

generative model should be built, which makes sure the reconstructed trajectories

can all located in the road network.

Also, we have another idea for the aforementioned problem, of which framework is

shown as figure 5.1. This framework contains two parts: 1) a fixed discriminator

trained using real trajectories; 2) a generator which can generate trajectories from

historical data. The model should be trained by minimizing the distance of hidden

spaces of real trajectories and generated trajectories. Overall, we will continue the

work about generative model for human mobility.

Bibliography

[1] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. Urban computing:

concepts, methodologies, and applications. ACM Transactions on Intelligent

Systems and Technology (TIST), 5(3):38, 2014.

[2] S PERMISSION. Generative and discriminative classifiers: Naive bayes and

logistic regression. 2005.

[3] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[4] Jing Yuan, Yu Zheng, and Xing Xie. Discovering regions of di↵erent functions

in a city using human mobility and pois. In Proceedings of the 18th ACM

SIGKDD international conference on Knowledge discovery and data mining,

pages 186–194. ACM, 2012.

[5] Yu Zheng, Furui Liu, and Hsun-Ping Hsieh. U-air: When urban air quality

inference meets big data. In Proceedings of the 19th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pages 1436–1444.

ACM, 2013.

[6] Xuan Song, Quanshi Zhang, Yoshihide Sekimoto, Teerayut Horanont, Satoshi

Ueyama, and Ryosuke Shibasaki. Modeling and probabilistic reasoning of

population evacuation during large-scale disaster. In Proceedings of the 19th

ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 1231–1239. ACM, 2013.

[7] Renhe Jiang, Xuan Song, Zipei Fan, Tianqi Xia, Quanjun Chen, Qi Chen,

and Ryosuke Shibasaki. Deep roi-based modeling for urban human mobility

prediction. Proceedings of the ACM on Interactive, Mobile, Wearable and

Ubiquitous Technologies, 2(1):14, 2018.

45

Bibliography 46

[8] Zipei Fan, Xuan Song, Ryosuke Shibasaki, and Ryutaro Adachi. Citymomen-

tum: an online approach for crowd behavior prediction at a citywide level.

In Proceedings of the 2015 ACM International Joint Conference on Pervasive

and Ubiquitous Computing, pages 559–569. ACM, 2015.

[9] Yu Zheng, Yanchi Liu, Jing Yuan, and Xing Xie. Urban computing with

taxicabs. In Proceedings of the 13th international conference on Ubiquitous

computing, pages 89–98. ACM, 2011.

[10] Zipei Fan, Xuan Song, Ryosuke Shibasaki, Tao Li, and Hodaka Kaneda.

Citycoupling: bridging intercity human mobility. In Proceedings of the 2016

ACM International Joint Conference on Pervasive and Ubiquitous Comput-

ing, pages 718–728. ACM, 2016.

[11] Xuan Song, Quanshi Zhang, Yoshihide Sekimoto, and Ryosuke Shibasaki. In-

telligent system for urban emergency management during large-scale disaster.

In AAAI, pages 458–464, 2014.

[12] Xuan Song, Quanshi Zhang, Yoshihide Sekimoto, and Ryosuke Shibasaki.

Prediction of human emergency behavior and their mobility following large-

scale disaster. In Proceedings of the 20th ACM SIGKDD international con-

ference on Knowledge discovery and data mining, pages 5–14. ACM, 2014.

[13] Xuan Song, Quanshi Zhang, Yoshihide Sekimoto, Ryosuke Shibasaki,

Nicholas Jing Yuan, and Xing Xie. A simulator of human emergency mobil-

ity following disasters: Knowledge transfer from big disaster data. In AAAI,

pages 730–736, 2015.

[14] Quanjun Chen, Xuan Song, Harutoshi Yamada, and Ryosuke Shibasaki.

Learning deep representation from big and heterogeneous data for tra�c ac-

cident inference. In AAAI, pages 338–344, 2016.

[15] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint

arXiv:1606.05908, 2016.

[16] Yaxiang Fan, Gongjian Wen, Deren Li, Shaohua Qiu, and Martin D Levine.

Video anomaly detection and localization via gaussian mixture fully convolu-

tional variational autoencoder. arXiv preprint arXiv:1805.11223, 2018.

[17] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew

Stevens, and Lawrence Carin. Variational autoencoder for deep learning of

Bibliography 47

images, labels and captions. In Advances in neural information processing

systems, pages 2352–2360, 2016.

[18] Jonas Mueller, David Gi↵ord, and Tommi Jaakkola. Sequence to better se-

quence: continuous revision of combinatorial structures. In International

Conference on Machine Learning, pages 2536–2544, 2017.

[19] Shin Asakawa. Comparison between variational autoencoder and encoder-

decoder models for short conversation. 2017.

[20] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby,

and Ole Winther. Ladder variational autoencoders. In Advances in neural

information processing systems, pages 3738–3746, 2016.

[21] M Ehsan Abbasnejad, Anthony Dick, and Anton van den Hengel. Infinite

variational autoencoder for semi-supervised learning. In 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), pages 781–790.

IEEE, 2017.

[22] Mogeng Yin, Madeleine Sheehan, Sidney Feygin, Jean-François Paiement,

and Alexei Pozdnoukhov. A generative model of urban activities from cellular

data. IEEE Transactions on Intelligent Transportation Systems, 19(6):1682–

1696, 2018.

[23] Mitra Baratchi, Nirvana Meratnia, Paul JM Havinga, Andrew K Skidmore,

and Bert AKG Toxopeus. A hierarchical hidden semi-markov model for mod-

eling mobility data. In Proceedings of the 2014 ACM International Joint

Conference on Pervasive and Ubiquitous Computing, pages 401–412. ACM,

2014.

[24] Kun Ouyang, Reza Shokri, David S Rosenblum, and Wenzhuo Yang. A non-

parametric generative model for human trajectories.

[25] Cheng-Yuan Liou, Wei-Chen Cheng, Jiun-Wei Liou, and Daw-Ran Liou. Au-

toencoder for words. Neurocomputing, 139:84–96, 2014.

[26] Xugang Lu, Yu Tsao, Shigeki Matsuda, and Chiori Hori. Speech enhancement

based on deep denoising autoencoder. In Interspeech, pages 436–440, 2013.

[27] Zhuotun Zhu, Xinggang Wang, Song Bai, Cong Yao, and Xiang Bai. Deep

learning representation using autoencoder for 3d shape retrieval. Neurocom-

puting, 204:41–50, 2016.

Bibliography 48

[28] Ian Jolli↵e. Principal component analysis. In International encyclopedia of

statistical science, pages 1094–1096. Springer, 2011.

[29] Charles W Fox and Stephen J Roberts. A tutorial on variational bayesian

inference. Artificial intelligence review, 38(2):85–95, 2012.

[30] Solomon Kullback and Richard A Leibler. On information and su�ciency.

The annals of mathematical statistics, 22(1):79–86, 1951.

[31] Ron J Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui Wu, and Zhifeng Chen.

Sequence-to-sequence models can directly translate foreign speech. arXiv

preprint arXiv:1703.08581, 2017.

[32] Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and Zhifang Sui.

Table-to-text generation by structure-aware seq2seq learning. arXiv preprint

arXiv:1711.09724, 2017.

[33] Sunyan Gu and Fei Lang. A chinese text corrector based on seq2seq model.

In Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC),

2017 International Conference on, pages 322–325. IEEE, 2017.

[34] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev

Khudanpur. Recurrent neural network based language model. In Eleventh

Annual Conference of the International Speech Communication Association,

2010.

[35] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černockỳ, and Sanjeev

Khudanpur. Extensions of recurrent neural network language model. In

Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International

Conference on, pages 5528–5531. IEEE, 2011.

[36] Tomas Mikolov and Geo↵rey Zweig. Context dependent recurrent neural

network language model. SLT, 12(234-239):8, 2012.

[37] Paul J Werbos. Backpropagation through time: what it does and how to do

it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

[38] Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rodney J

Douglas, and H Sebastian Seung. Digital selection and analogue amplification

coexist in a cortex-inspired silicon circuit. Nature, 405(6789):947, 2000.

Bibliography 49

[39] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[40] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-

danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase

representations using rnn encoder-decoder for statistical machine translation.

arXiv preprint arXiv:1406.1078, 2014.

[41] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.

Empirical evaluation of gated recurrent neural networks on sequence model-

ing. arXiv preprint arXiv:1412.3555, 2014.

[42] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical ex-

ploration of recurrent network architectures. In International Conference on

Machine Learning, pages 2342–2350, 2015.

VA
E

