タンパク質-化学物質相互作用解析システム 「ABINIT-MP BioStation」の開発

Development of Quantum Molecular Interaction Analysis System for Biomolecules "ABINIT-MP BioStation"

彳	}	森	奏一良	₿ * •1	佐 菔	秦管		<u>と</u> *・	中	田	琴	子*	*・禎	围渠	E.	薫	*•-	大河区	勺 有	3	ŧ*•
		小	谷野	和	郞*	・北	浦	和	夫	* * *	· 青	木	孝	造*	* * *	・町	部	行	伸*	•	
	愛	澤	昌	宏*"	*** .	甘	利	真	司*	* * *	・小	、野寺	賢	司	* * * *	・張		軍	衛*	* * *	•
岩	澤	義	郎	*・加	藤	昭	史	* * * :	**.	雨	宮	克	樹*	・山	\square	貴	史*	・中	野	達	也**
	So	uichire	ou TAl	NIMOF	λI, Ton	noyuk	i SAT	'O, Ko	otoko	NAK	ATA,	Kaori	FUKU	JZAW	A, Iku	o OK	OUCH	II, Kaz	uo KC	YAN	О,
	Kaz	uo Kľ	FAUR/	A, Kozo	o AOK	I, Yuk	tinobu	ı ABI	E, Ma	sahiro	o AIZ	AWA,	Shinji	AMA	RI, Ke	enji Ol	NODE	RA, J	unwei	ZHAI	NG,
		Y	oshiro	IWASA	AWA, A	Akifu	ni K.⁄	ATOU	, Kats	suki A	AMEN	AIYA,	Takasł	ni YA	MAGU	JCHI,	Tatsu	ya NA	KANO)	

1. はじめに

ゲノムの解析が急速に進展している現在,ゲノム情報を 有効に活用し, 医薬品の開発等に結びつけることは極めて 重要な課題である. DNA や主要な遺伝子産物であるタン パク質は,いずれも巨大分子系であるが,その振る舞いは 低分子の場合と同じく非相対論的量子力学で精度よく近似 できる. これまで DNA やタンパク質といった生体高分子 の機能を分子計算で解析するには,分子を構成する原子の 間に働く力を古典的なポテンシャル関数(力場)で近似し た,分子力場法や分子動力学法が用いられてきた.しかし ながら分子間の相互作用は古典的力場関数では精度よく記 述できない場合が多く,第一原理(量子力学)に基づいた 巨大分子計算手法の実現が待たれていた.

本プロジェクトの目的は、タンパク質-化学物質間の相 互作用エネルギーを高精度で予測することにより、医薬品 等の効率的な分子設計を可能にすることである.そのため に量子論に基づいた、タンパク質(受容体タンパク質等) と化学物質(リガンド分子)との分子間相互作用を in silico で解析するシステムを開発している.

2. 開発システム「ABINIT-MP BioStation」の概要

開発中のタンパク質-化学物質相互作用解析システム ABINIT-MP BioStation(略称 BioStation)は図1に示すよう に次の4つのサブシステムから構成される。

図1 タンパク質-化学物質相互作用解析システム概念図.

- In silico 詳細スクリーニング (BioStation Dock)
 分子間相互作用解析用力場およびレプリカ交換法を用いた in silico スクリーニング
- 2) 非経験的フラグメント分子軌道法による相互作用解析 (ABINIT-MP)

量子論に基づいた受容体-リガンド分子間の結合エネル ギーの予測および相互作用解析

- 3)標的データベース (Target Database) 医薬品を中心としたリガンド分子,およびリガンド分子 の標的となる生体分子 (受容体タンパク質等)の情報に 関する統合データベース
- 4) Java による可視化と統合 (BioStation Viewer および BioStation)

Java および Java 3 D を用いた,入力データの作成,計算 結果の可視化および解析のための統合環境

^{*}アドバンスソフト(株)

^{**}国立医薬品食品衛生研究所

^{***}独立行政法人産業技術総合研究所

^{****}東京大学生産技術研究所 計算科学技術連携研究センター *****(株)富士総合研究所

3. サブシステム

3.1 In silico 詳細スクリーニング BioStation Dock3.1.1 スクリーニングプログラムの開発

In silico 詳細スクリーニングシステムは,非経験的フラ グメント分子軌道法による受容体ーリガンド分子間相互作 用解析システムの初期解析構造を与えることを目的とし て,詳細な結合様式の決定に重点を置いた開発を行う.力 場計算に,後述する修正電荷平衡法¹¹を用いることによ り,既存のシステムと比較して結合状態の構造を高精度で 得ることを可能とする.平成14年度は以下の三つのプロ グラムのプロトタイプを開発した.

1) 結合探索プログラム

探索アルゴリズムにレプリカ交換法²⁾を適用し,交換パ ラメータとしてシミュレーション温度とともに低分子化合 物の回転可能な結合の回転角度を用いる.温度と回転角度 の2変数レプリカ交換法を実装し,パラメータの交換方法 を結合状態探索に特化させることによって,信頼性の高い スクリーニングを行う.

2) 水素原子付加プログラム

数千~数万個の低分子化合物に対してスクリーニングを 行うため、バッチ処理で低分子化合物の初期状態の自動設 定を行う機能を開発している.通常、化合物データには、 重原子の座標のみが与えられており、水素原子の情報は含 まれていない.そこで重原子の座標から水素原子の結合状 態を決定し、必要な水素原子の付加を行う.さらに、低分 子化合物の全原子に対して原子電荷を割り当てる.低分子 化合物の原子電荷、結合情報、プロトンの解離状態等につ いて考慮した水素原子を付加した分子構造を与えるプログ ラムを開発する.

3) 初期状態設定プログラム

タンパク質の結合サイト内で低分子化合物の配置や配向 の初期値を与えるプログラムを開発している.細長い活性 サイトや平たい活性サイト等,低分子化合物の形状によっ ては,一度配置されてしまうと他の配向に移るにはエネル ギー障壁が大き過ぎ,結合探索が困難となるケースが考え られる.また,活性サイトが低分子化合物に対して非常に 大きい場合,最適な結合部位に移動するまでに多くの計算 が必要である.これらの問題を事前に解決するために,低 分子化合物の活性サイトにおける可能な初期配向や配置に ついて複数探索し,結合探索システムに初期値として与え るプログラムの開発を行う.

今後,タンパク質と低分子化合物の結合サイト予測プロ グラムを作成する予定である.

3.1.2 分子間相互作用力場の開発

In silico スクリーニングにおいて,受容体-リガンド分子間の相互作用を高精度で見積もることは,スクリーニン

グの有用性を高めるために極めて重要である.分子間相互 作用は経験的に静電相互作用と van der Waals 相互作用の二 つに分割される. Amber や CHARMm といった既存の力場 は,分子間相互作用に重要な役割を果たしている静電相互 作用を,原子電荷を固定するという非常に粗い近似を用い て計算している.

今回提案する分子間相互作用解析用力場(eXtended Universal Force Field, XUFF)は,静電相互作用エネルギー の計算に中野らが開発した原子電荷を分子の3次元立体構 造に基づいて計算する修正電荷平衡(Modified QEq; MQEq)法¹⁾を採用することで,従来の力場よりも分子間 相互作用を高精度で予測することを可能にする.分子の3 次元立体構造に基づいた原子電荷の計算方法としては, Goddard らのQEq法³⁾があるが,MQEq法で得られる原子 電荷の方がQEq法で得られる原子電荷よりもHF/6-31 G(d, p)計算から得られる静電ポテンシャルを再現するように 決められた原子電荷に近いこと,連立一次方程式を反復し て解く必要がないことから,精度および計算速度の面で優 れていると考えられる.

また, XUFFでは2原子間の van der Waals 相互作用エネ ルギーには Buckingham ポテンシャル⁴⁾ を,分子内ポテン シャル関数には UFF⁴⁾の関数を使用する.

3.2 相互作用解析プログラム ABINIT-MP

ABINIT-MP は非経験的フラグメント分子軌道 (ab initio Fragment Molecular Orbital;以下 ab initio FMO)法⁵⁻¹⁰⁾に基づいた分子間相互作用解析プログラムである. Ab inito FMO 法は,分子や分子集合体を適当なサイズのフラグメントに分割し,フラグメント (モノマー)とフラグメントペア (ダイマー) について MO 計算を行うだけで,分子全体の エネルギーや電子密度を計算する方法である. この方法に は,

1. フラグメント間の相互作用エネルギーを計算可能

- 2. モノマーおよびダイマーの計算は独立して行うことが 可能であるため,並列処理による大幅な高速化が可能
- 3. モノマーおよびダイマーと周囲のモノマー間の静電相 互作用に近似を導入することで高速化可能
- 離れたフラグメントペアから構成されるダイマーを、 静電的に相互作用するモノマーの和として近似することで更に高速化可能

といった特徴がある. Ab initio FMO 法を用いることで, 低分子化合物で成功を収めた ab initio MO 法を,精度を落 とさずにタンパク質のような巨大分子へ適用することが可 能になる.特に,最初に挙げた特徴により,従来不可能で あった残基–リガンド分子間の相互作用等を定量的に解析 することが可能になり,医薬品などの分子設計に大きく役 立つことが期待される.

プログラム開発言語には Fortran90,並列化には MPIを

採用しているため, PC クラスタから並列スーパーコンピ ユータまで幅広い計算機で使用できる.

現在までに、500残基のタンパクであるプロゲステロン 受容体リガンド結合部位のホモダイマー (PDB ID: 1 A 28, 8237 原子) を計算した実績がある.

● 3-21 G, 4-31 G, 6-31 G 基底関数への対応

FMO計算を行う場合,基底関数には STO-3 G だけでな く 3-21 G, 4-31 G, 6-31 G といった split valence 基底関数 も使用できる. 平成 15 年度中に, 6-31 G(d), 6-31 G(d,p) のような分極関数を含む基底関数も使用できるようにする 予定である.

●フラグメント自動分割機能

分子のフラグメントへの分割方法は, FMO 法の計算精

(c)

図2 フラグメントの分割.(a) ポリペプチドの分割,(b) ジス ルフィド結合したシスティン残基の分割,(c) DNAの分 割 度に大きく影響する.一般論としてフラグメントサイズを 大きくすることで計算精度は向上するが,計算時間も増大 するため,バランスのとれた分割方法が必要となる.ポリ ペプチドの場合,ABINIT-MPはデフォルトでは図2(a)に 示すように2残基単位で分割する.残基数が奇数の場合 は,C末端の残基を1フラグメントとする.フラグメント 間相互作用解析を行う場合は,1残基で分割すると解析結 果が見やすくなる.ジスルフィド結合したシスティン残基 は図2(b),DNA は図2(c)に示すように分割する.

●高速化積分ルーチン

FMO計算を行うには、以下の四種類の積分を計算する 必要がある.

(a) 重なり積分

(c) 核引力積分

(d) 電子反発積分

$$(\mu\nu|\lambda\sigma) = \int \phi_{\mu}^{*}(\mathbf{r}_{1}) \phi_{\nu}(\mathbf{r}_{1}) \frac{1}{r_{12}} \phi_{\lambda}^{*}(\mathbf{r}_{2}) \phi_{\sigma}(\mathbf{r}_{2}) d\mathbf{r}_{1} d\mathbf{r}_{2} \dots (4)$$

特に,電子反発積分は計算量が多い(基底関数の数がNの ときO(N⁴))ため,FMO法の計算時間を短縮するためには, これらの積分計算の高速化が重要である.このために,直 交型 Gauss 関数と漸化式を用いて計算する小原 – 斎賀の方 法¹¹⁻¹³⁾を採用している.この方法は現在最も効率の良い 方法の一つと考えられる.電子反発積分については,漸化 式から無駄な演算を削除したコードを自動生成するプログ ラムを開発することで高速化を行っている.

●エネルギー勾配計算の高速化アルゴリズムの定式化

構造最適化を行うために、高速にエネルギー勾配を計算 するアルゴリズムを開発している.また、truncated Newton 法を用いた最適化アルゴリズムの組込みを行っている.

3.3 標的データベース Target Database

医薬品の標的は膜受容体,核内受容体,酵素,トランス ポーターなど様々である.この中でも核内受容体は,生体 の恒常性の維持や身体の発達に関与するホルモンの標的で あり生体内で重要な役割を演じているものが多い.

本プロジェクトで作成する標的データベースは,国立医

55卷3号(2003)

薬品食品衛生研究所の中田らが開発・公開している受容体 データベース(Receptor Database)¹⁴⁾ および内分泌かく乱 物質のための受容体への結合親和性データベース(Binding Affinity Database)¹⁵⁾のデータ内容を再検討した上で整理 統合・拡張するものである.標的データベースは相互作用 解析をする上でベースとなるタンパク質や低分子化合物の 構造情報を提供するもので,これはWebデータベースと してインターネットで公開する予定である.

標的データベースは、「医薬品や内分泌かく乱物質など 非生体内化合物に関する情報(低分子化合物データ)」と 「受容体など生体内の標的タンパク質に関する情報(標的 データ)」の二つの大きなデータに分けられ、これらは受 容体、酵素、トランスポーターなどの結合・反応実験デー タによって結ばれている.これらのデータは次の7つのグ ループに分類されて、リレーショナルデータベースに登録 される.

医薬品や内分泌かく乱物質などの非生体内化合物情報(低 分子化合物データ、Chemical)

一般名称,分子式(組成式),分子量(式量),CAS登 録番号,構造式,三次元構造情報,使用国名(日米英), 薬効分類,使用用途などを含む.

分類情報(Classification)

低分子化合物やタンパク質を分類するためのもので,低 分子化合物は薬効および構造により分類し,タンパク質は 機能による分類を行う.

受容体などの生体内の標的に関する情報(標的データ, Protein Information)

アミノ酸配列,二次構造,三次構造,機能部位,結合親 和性情報,配列類似性情報,一遺伝子多型(SNP)情報, 転写因子情報等を含む.

受容体分類情報(受容体データ, Receptor DB)

受容体の分類は、受容体、サブタイプ、サブユニットお よび種による違いを含めた四層構造とする.これにより、 種を超えた僅かな構造の違いまで含めた、もっとも細かい 受容体の分類となる.そして、ここでの各受容体の塩基配 列、アミノ酸配列などの情報が標的データとなる.

受容体結合実験情報(結合親和性データ, Binding Assay)

結合親和性データは,核内および膜受容体と低分子化合物の結合親和性に関するもので,主として受容体結合実験 阻害試験データより構成される.

参考文献情報(文献データ Reference)

結合親和性データに使用した文献を管理し,著者名,論 文タイトル,雑誌名,巻,ページ,発行年,アブストラクト,PubMed登録番号を保持する.

リンク情報(Link)

PIR や PDB など,標的タンパク質の情報を発信してい る外部データベースへのリンクのための URL を管理する.

生 産 研 究 257

データベースの開発は核内受容体から行い, 膜受容体, 酵素, トランスポーターといった他の機能を持つ標的タン パク質へと順次広げていく.現在,標的データベースに登 録する標的タンパク質100種類について選定作業を行って いる.また,データベース管理システムとして PostgreSQL, Middleware として Tomcat, 開発言語として Java 2を採用 し,データ管理ツールの開発を進めている.

3.4 可視化システム BioStation Viewer

BioStation Viewer は ABINIT-MPで計算した結果の可視 化および解析を行うプログラムで,1) 生体高分子の分子 構造の表示,2) 電子密度,静電ポテンシャル等値面表示, 3) フラグメント間の相互作用エネルギー表示(口絵参 照),4) 電子密度等値面上の静電ポテンシャルマップ表示 (図3参照),5) 分子構造の編集などの機能がある.Java2 およびJava3Dで開発しているため,MS-Windows,UNIX などの幅広い環境上で使用できる.特に,フラグメント間 の相互作用エネルギー表示機能は,他の分子構造表示シス テムにはない本プログラムに固有の機能であり,リガンド 分子ーアミノ酸残基間の相互作用を解析する上で有用であ る.

3.5 統合環境システム BioStation

3.1~3.4で説明したサブシステムを統一的に活用でき る環境を開発し,標的データベースの検索,計算条件の入 力,スクリーニング中に生成される大量データ管理,スク リーニングの自動処理,などの機能を実現する. Viewer と同様に,開発言語としてJava 2を使用しており,幅広い システムで使用できることを目指している.

図3 BioStation Viewer で描いた等電子密度面上の静電ポテンシャルマップの例. 半透明の等電子面を通して,分子のモデル構造が見える.

計算例:エストロゲン受容体とエストロゲン類似化合物の結合強度

エストロゲン受容体は核内受容体スーパーファミリーの 1種であり,創薬ターゲットとして重要なタンパク質で ある.また,核内受容体はリガンド依存的に転写活性を制 御することが知られており,リガンドとの相互作用の解析 はその機能を理解するための第一歩としても興味深い.こ こでは,エストロゲン受容体と種々のリガンド分子との結 合エネルギーを理論的に計算することで,リガンド候補化 合物のエストロゲン受容体への結合能を予測した.分子間 の相互作用解析を精度良く行うためには,従来生体系に用 いられてきた経験的手法に加えて量子化学的なアプローチ が不可欠である.ここでは ab initio FMO法プログラム ABINIT-MPを用いて、リガンド分子の受容体タンパク質 に対する結合性解析を量子化学的に行った.

計算対象としたのは、エストロゲン受容体 α と図4に示 す 11種のリガンド分子である.リガンド結合ドメイン全 体を含む複合体(モデル1,241残基),およびリガンド周 辺部位の約50残基からなる複合体(モデル2)の2種類の 分子モデルを用いて計算した.エストロゲン受容体の3次 元立体構造データは、Protein Data Bank(PDB)¹⁶⁾に登録さ れているもの(PDB ID:1ERE,1ERR,3ERD,3ERT)を ダウンロードした.これらのデータに対し、MSI社の CHARMm, Insight II および Gaussian, Inc.の Gaussian98等の 商用ソフトを用いて分子モデリングを行った.さらに、

図4 エストロゲン受容体との結合エネルギー計算を行ったリガンド分子

ABINIT-MPを用いて HF/STO-3 G レベルの結合エネルギ ーを計算した.得られたエネルギー値から,17 β – エス トラジオール (EST)を基準とした相対結合エネルギー ($\Delta\Delta$ E)を求め,実験的に知られている相対結合能¹⁷⁾との 比較を行った.モデル2では11種全てのリガンドに対し て計算を行ったが,モデル1ではEST,DES,OHT,RAL の4リガンドに対してのみ計算を行った.計算機には,二 種類のPC クラスタを用いた.

分子間の結合エネルギー (ΔE_{iigand}) は, 受容体のエネ ルギー ($E_{receptor}$) とリガンド分子のエネルギー (E_{iigand}) の和と複合体のエネルギー ($E_{complex}$) とのエネルギー差と して表現できる. すなわち;

 $\Delta E_{\text{ligand}} = E_{\text{complex}} - E_{\text{receptor}} - E_{\text{ligand}}$

次に,実験的に知られている相対結合能(RBA)と比較 するために,ESTが結合した複合体を基準とした相対結合 エネルギーΔΔEを以下のように定義した;

図5 モデル2(50残基)を用いた ERaとリガンドとの結合性の 比較.●は実験値から RBA が得られている化合物,■は RBA が不明の化合物に対する予測値を表す. $\Delta \Delta E_{\text{ligand}} = \Delta E_{\text{ligand}} = \Delta E_{\text{EST}}$

FMO 計算によりモデル2に対して得られたエネルギー 値を用いて、図5に相対結合能(log(RBA/100))対計算 値(ΔΔE)の点をプロットした.●は実験値から RBA が 得られている化合物を表し、図中の直線はこれらの分子に 対する相関直線である.■は RBA が不明の化合物に対し て相対結合エネルギーから得られる予測値を表す.

図5に示すように、モデル2に対して8化合物を用いて 引いた相関直線は高い相関係数を示しており($r^2 = 0.837$), 特に TAM 以外の7化合物においては、実験値と計算値が 非常によく一致している. TAM がよく合わない理由の1 つとして、モデリングする際に殆どの重原子の座標を固定 しているためにひずみが生じている可能性がある. このこ とを回避するためには、リガンド周辺の構造を最適化し、 最も安定なリガンドの位置を決定する必要がある.

次に、モデル1とモデル2の結果を比較する.表1は、 結合エネルギー (ΔE)、計算時間 (CPU time)、使用した CPU 数(NPUs) をまとめたものである. 計算時間は、モ デル1はモデル2の7~10倍程度の時間がかかっている. 次に結合エネルギー(ΔE)を比較すると、2つのモデルの 間の差は EST. OHT. DES の3 化合物に対して~3 kcal/mol 程度であり、殆ど違いがないことがわかる. この ことは、エストロゲン受容体とリガンドとの結合が、活性 ポケット周辺の環境のみに依存する局所的なものであるこ とを示している.エストロゲン受容体(ER)のリガンド 結合能について、相対結合能 RBA と相対結合エネル ギーΔΔEがほぼ比例関係を示した.これらにより実験に 先駆けた定性的な理論予測が可能となった。このことは生 体分子系に対する FMO 法の有用性を示しており、今後さ らに高精度・大規模な計算を行うことによって定量的な予 測が可能になると期待される.

5.謝辞

本研究は, 文部科学省 IT プログラム「戦略的基盤ソフ トウェアの開発|, 科学技術振興事業団計算科学技術活用

表1 モデル間の比較.計算には2種類のPCクラスタ(16ノードDual Pentium III (1 GHz), 8ノードDual Xeon (2.2 GHz). ネットワーク は 100 Base-TX である)を用いた.表中の*は後者を用いた結果である.

	モデル	~2(50残基)		モデル1 (241残基)					
リガンド	ΔE / kcal/mol	CPU time/s	NPUs	ΔE / kcal/mol	CPU time/s	NPUs			
EST	-37.80	6285.7	32	-37.65	50995.3	32			
RAL	-35. 30	6956.5	32	-26.13	105551.1*	14^{*}			
OHT	-41. 73	7661.4	32	-38.19	271543.4*	7*			
DES	-26. 70	5294. 3	32	-28.33	51936. 3	32			

260 55卷3号(2003)

型特定研究開発推進事業「DNA-ナノ領域ダイナミクス の第一原理解析」および医薬品副作用被害救済・研究振興 調査機構 タンパク質科学研究による疾病対策・創薬等推進 事業「タンパク質科学による創薬研究」の支援を受けた. (2003年3月24日受理)

参考文献

- 1) T. Nakano, T. Kaminuma, M. Uebayasi and Y. Nakata; Chem-Bio Info. J. 1, 35 (2001).
- 小西健三,瀧 和男,木村宏一;情報処理学会論文誌, 36, 797 (1995).
- A. K. Rappé and W. A. Goddard III; J. Phys. Chem. 95, 3358 (1991).
- A.K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III and W. M. Skiff; J. Am. Chem. Soc. 114, 10024 (1992).
- 5) K. Kitaura, T. Sawai, T. Asada, T. Nakano and M. Uebayasi; Chem. Phys. Lett., **312**, 319 (1999).
- 6) K. Kitaura, E. Ikeo, T. Asada, T. Nakano and M. Uebayasi;

Chem. Phys. Lett., **313**, 701 (1999).

- T. Nakano, T. Kaminuma, T. Sato, Y. Akiyama, M. Uebayasi and K. Kitaura; Chem. Phys. Lett., 318, 614 (2000).
- 8) K. Kitaura, S. Sugiki, T. Nakano, Y. Komeiji and M. Uebayasi; Chem. Phys. Lett., **336**, 163 (2001).
- T. Nakano, T. Kaminuma, T. Sato, K. Fukuzawa, Y. Akiyama, M. Uebayasi and K. Kitaura; Chem. Phys. Lett., 351, 475 (2002).
- Y. Inadomi, T. Nakano, K. Kitaura and U. Nagashima; Chem. Phys. Lett. 364, 139 (2002).
- 11) S. Obara and A. Saika; J. Chem. Phys. 84, 3963 (1986).
- 12) S. Obara and A. Saika; J. Chem. Phys. 89, 1540 (1988).
- 13) M. Honda, K. Sato and S. Obara; J. Chem. Phys. 94, 3790 (1991).
- 14) http://impact.nihs.go.jp/RDB.html
- 15) http://moldb.nihs.go.jp/eddb/afdb/
- 16) http://www.rcsb.org/pdb/
- Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B and Gustafsson JA; Endocrinology 139, 4252 (1998).