究 速 報

研 究速報

多光子共鳴イオン化法による重水素分子の回転スペクトル測定

田 代 秀 康*·伊 藤 敬 洋**·河 内 泰 三** · Markus WILDE ** · 松 本 益 明**·福 谷 克 之**·岡 野 達 雄**

Hideyasu TASHIRO, Takahiro ITO, Taizo KAWAUCHI, Markus WILDE, Masuaki MATSUMOTO, Katsuyuki FUKUTANI and Tatsuo OKANO

1. はじめに

固体表面は、固体と気相の界面接点であり、分子や光・ 電子が関与した反応を起こす場である. それらの反応を素 過程に分解して解析することは、表面での反応を定量的に 理解する上で不可欠となる. 固体表面における分子の吸着 状態は、分子と表面との相互作用で決まり、表面分析手法 で調べられている.一方,分子の動的挙動を支配するポテ ンシャルの形状は,脱離反応において,分子の内部状態に その様子を反映している。従って、脱離した気体分子の内 部状態の測定は、分子の動的過程を解明する上で有効な手 法となる. 今回,素過程研究の対象として水素分子の挙動 に注目し、それを測定するためのレーザー分光法について 研究を行った.

以前、水素分子について多光子共鳴イオン化法による回 転スペクトルの測定を行い、報告した.1)今回は、水素の 同位体である重水素分子の内部状態の測定を目的として, 多光子共鳴イオン化法による重水素分子の回転状態分布を 測定した.

2. 実験原理

多光子共鳴イオン化法 (Resonance-enhanced multiphoton ionization: REMPI) は、複数の光子を用い、共鳴励起を利 用して原子や分子をイオン化する方法であり、分子の振 動・回転状態を高感度で弁別するのに有効な手法である. 断熱近似において、分子の振動・回転運動は分子の電子状 態に対して独立とみなせるので,重水素分子の状態は分子 の振動,回転,電子状態の直積によって表すことができる.

*東京大学理科1類(全学自由研究ゼミナール、学部学生のため の研究入門コース(UROP)受講生)

分子の振動,回転,そして電子状態はそれぞれ振動量子数 v, 回転量子数J, 電子状態X, A, B, …で表現される. 図1に重水素分子の断熱ポテンシャルを表す.

重水素分子の内部エネルギー(E)は式(1)で表され る.

上式において、第1項(T.)は電子のエネルギー、第2, 3項は振動エネルギー,第4,5項は回転エネルギーであ る.ω,ω,は振動状態, B, α,は回転状態を表す定数で ある.

^{**}東京大学生産技術研究所 物質・生命部門

55巻4号(2003) 394

研	究	速	報	
---	---	---	---	--

表1	重水素分子。	の断熱ポテ、	ンシャ	ルのオ	ペテン	シャ	ル定数 ²⁾

	Te	ω _e	ω _{ex}	B _c	α
X	0	4395.2	117.99	60.80	2.993
Е	100062.8	2588.9	130.5	32.68	1.818

本実験で用いた E ← X (2+1) REMPI 法は、2 光子吸収 でX状態からE状態へ共鳴遷移する第1段階と、E状態か ら1光子吸収でイオン化する第2段階から成るイオン化法 である. ここで X, E状態におけるポテンシャル定数を表 1に表す.式(1)を用いて、励起状態へ遷移するために 必要な光のエネルギーを計算すると、各回転状態について 表2のように求められる.従って、レーザー光の波長を変 えることにより、回転状態の異なる重水素分子を選択的に イオン化することができる.

3. 実験方法

イオン化に必要なレーザー光は、色素レーザーの3倍波 をとることで発生させた. まず, Nd: YAG レーザーの2 倍波(波長=532 nm)で色素レーザーを励起し、波長~ 600 nm のレーザー光を発生させる. この出力を BBO 結晶 を用いて、第2高調波(波長~300 nm)発生させ、更に2 つ目のBBO結晶を用いて和周波(波長~200 nm)を発生 させた. この和周波をプリズムで基本波, 第2高調波か ら分離, 選別した後, 超高真空槽内で集光するようにレン ズで絞って超高真空内に導入した.

図2に超高真空槽の概略を示す. レーザー光の波長が共 鳴波長と一致する時、焦点付近で重水素分子が共鳴イオン 化される. 生じたイオンを引き込み電極によってマイクロ

チャンネルプレート (Micro channel plate: MCP) に誘導 し、電気信号として検出する.

1パルスで生じる電気信号は、励起光、重水素原子イオ ン、重水素分子イオンに起因するものからなる、イオン化 位置から MCP までの走行時間の違いにより、これらの信 号は時間的にこの順序で検出される.励起光の強度が強い 場合は MCP が飽和するため、後続するイオンの信号が正 確に測定できなくなる. 本実験ではスイッチング回路を用 いて、励起光に起因するパルスが過ぎ去った後に、MCP の電圧を1900 V~2300 Vへと変化させることによって上 記の問題を解決した.

実験では、イオン信号強度の励起光波長依存性、励起光 強度依存性の測定データを基にして,共鳴イオン化が生じ るか、回転状態が弁別できるか、回転状態分布が測定でき るか、回転状態はボルツマン分布に従うか、を考察した.

4. 実験結果

図3にイオン強度の励起光強度依存性を示す. 測定は励 起光の波長 201.594 nm で行った. これは J = 4の状態に相 当する.励起光強度(L)に対して、イオン強度(I)は非 線形に増大することが分かる.A.bをパラメータとして $I = AL^{b}$ の関数に当てはめたところ、 $b = 2.7 \pm 0.03$ と求まっ た. これより、イオン信号強度は励起光強度の2.7 乗に比 例することが分かった.本実験における(2+1) REMPI法 では、重水素分子が3光子を吸収してイオン化する3光子 吸収過程であることから、イオン信号強度が励起光強度の 3乗に比例することが期待される.図3は確かにこの事実 が成り立つことを示している.以後の実験ではこの関係を 用いてイオン信号強度の励起光強度に対する規格化を行っ た.

λ~201nm Extractor (~-200V) 15x10 [on signal [V*s] MCI Digital B; Cryostat Oscilloscope D₂ dosag Radiation shield Photo Diode 120 140 160 180 200 220 240 Laser Intensity [µ J/p]

図2 超高真空槽におけるイオン測定部の概略図

図4に励起光波長を掃引した時のイオン信号強度の変化 をプロットしたものを示す. 実線はピーク近傍をガウス関

おける第4項の振動状態による補正と、第5項を省略し た.またg_Nは核スピンの縮重度で,Jが偶数の時6,Jが 奇数の時3である.図5は、回転ピークの強度を、核スピ ンと回転の縮重度で除した値を片対数表示したものであ る、図5の傾きから回転温度を計算すると299Kとなり、 実験室内の温度295.1Kと実験誤差の範囲内でほぼ一致す ることが分かった.

5.ま 2 め

重水素分子の多光子共鳴イオン化法の開発を行った.色 素レーザーの3倍波発生により、201-201.6 nm の紫外光を 発生させ、E,F励起状態を利用した共鳴イオン化を行っ た. 300 K において J = 0~4の回転状態の検出に成功し、 それらの状態分布が回転温度300Kのボルツマン分布に従 うことを明らかにした.また、イオン強度がレーザー光強 度の2.7 乗に比例することを見出した.

謝 辞

本研究は、著者の一人(田代)が、「全学自由研究ゼミ ナール 学部学生のための研究入門コース (UROP)」を 受講した際、その一環として行われたものです. 受講にあ たってお世話いただいた大島まり先生に感謝します. (2003年5月2日受理)

参考文献

- 馬込 保,福谷克之, 岡野達雄:生産研究, 50, 169 1) (1998).
- T. E. Sharp, ATOMIC DATA, 2, 119 (1971). 2)

3) G. Herzberg, Molecular Spectra and Molecular Structure I, 2 nd Ed, (Krieger, Florida, 1950) p. 532.

表2 重水素分子の E,F ← X(2+1) REMPI における波長とエネルギー

遷移経路(ΔJ=0:Q branch)	λ [nm]	E [eV]
$X(v = 0, J=0) \rightarrow E(0, 0)$	201.081	6.166
X(v "=0,J=1)→E(0, 1)	201.137	6.164
$X(v = 0,J=2) \rightarrow E(0, 2)$	201.250	6.161
$X(v = 0, J=3) \rightarrow E(0, 3)$	201.420	6.156

数で当てはめた曲線である. 波長が, 201.037 nm, 201.093 nm, 201.206 nm, 201.373 nm のところにピークが あることがわかる. 各ピーク波長間の間隔は, 1:2:3:4 となっており、表2の値との比較から、これらのピークは それぞれ重水素分子の (v"=0, J"=0) と (v"=0, J"=1) と (v"=0, J"=2) と (v"=0, J"=3) に対応するピークで あることがわかる.

それぞれのピークの面積を積分することによって、ピー ク強度を求めた.温度Tにおける重水素分子の回転状態 の分子数N(J)は、 E_{mt} を回転エネルギーとして、式(2) のボルツマン分布に従うことが期待される.

上式において g_N , J, k_B , B_e はそれぞれ原子核の縮重度, 回転量子数,ボルツマン定数,回転定数である. Em につ いて、v"=0で、 α_{e} とJの値が小さいことから、式(1)に

67