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Coupled Finite Element Analysis of Magneto-Superelastic Behaviors of

Ferromagnetic Shape Memory Alloy Helical Springs

Yutaka TOI*, Jong-Bin LEE* and Minoru TAYA**

1. Introduction

Ferromagnetic shape memory alloy (abbreviated as FSMA) is
under development and is expected as a new material of SMA
actuators. The coupled finite element analysis is conducted for the
magneto-superelastic behavior of FSMA helical springs in the pre-
sent study. The commercial code ANSYS/Emag and the
superelastic analysis program developed by the authors'? are used
for the magnetic analysis and the superelastic analysis, respec-
tively. The coupled calculation is conducted by the sequential
approach (the loosely-coupled approach) as shown in Fig. 1.

2. Coupled Magneto-Superelastic Analysis of FSMA

2.1 Magnetic Analysis

The commercial code ANSYS/Emag is used for magnetic
analysis. The method of difference scalar potential is employed
with eight-noded hexahedron elements for magnetic solids and
four-noded tetrahedron elements (SOLID96) for space. Six-
noded trigonal prism elements (INFINI11) are used as infinite
elements. SOURCE36 is used to model electric source. The geo-
metrical information of the helical spring calculated by the
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Fig. 1 Coupled magneto-superelastic analysis
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superelastic deformation analysis program is transferred to the
magnetic analysis program as solid modeling information (key-
point and volume). The magnetic force increments are calculated
at each node of the helical springs.
2.2 Superelastic deformation analysis

The one-dimensional normal stress-normal strain relation is

expressed by the following equation:

0-0y=E(e—¢) +Q(&-Ey) +0(T-T,) - 1)

where 0 stress, ¢ strain, ES: martensite volume fraction, 7" tem-
perature, E: Young’s modulus, Q: transformation tensor, &:
thermal elastic coefficient. The subscript ‘0’ means the initial
value.

The following equivalent stress of Drucker-Prager type” is used
in the evolution equation for martensite volume fraction in order to

consider the asymmetry of the tensile and compressive behavior:

O, =|o|+3Bp oo (2)

where 3: material constant, p: pressure.

It is assumed that the shear stress-shear strain relation of SMA
due to torsion is qualitatively similar to eq. (1), but they are inde-
pendent with each other”. Then the shear stress-strain relation is

expressed as
T =G =7) + Q=8 3)

The evolution equation of the martensite volume fraction &, due
to torsion is assumed to be similar in form to that for the normal
deformation. The equivalent stress is v3| Ty, | .

The followings are assumed in the finite element formulation
using linear Timoshenko beam elements. The lateral deflections in
two-directions, the rotation of the cross-section, the axial dis-
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placement and the torsional angle are all linearly interpolated in
each element. The shear strain energy term due to bending is treat-
ed as a penalty term. The tangent modulus formulation by the total
Lagrangian approach is conducted, considering superelasticity and
large deformation. The nonlinear terms with respect to the axial
displacement is neglected. Details of the formulation are given in
Refs 1) and 2).
2.3 Interface program

As shown in Fig. 2, two-noded straight beam elements and
eight-noded hexahedron solid elements are used in the superelas-
tic deformation analysis and the magnetic analysis, respectively.
Therefore, the data transformation for nodes and nodal forces is
necessary in the coupled analysis.

The nodal coordinates on the N-th cross-section in Fig. 3 are

given by the following equations:

Xy=Xy_ T tay
Y=Yy ttby
ZN=ZN_1+ZCN_1 .............................. (4)

t=a,(Xy—xy_1) / (a%aN_l-l-b%belJrc%cN_l)
+hi(Yy—yy_1)/ (a%aN_l-l-b%bN_lﬁLc%cN_l)

tey(Zy—zy ) 1 lagay s byby Feen ) o (5)

ay= Xy —Xy) /Ty
by=(Yyy =Yy /T,y
ey={Zyn~Zy) /Ty
To=v/ Xy X,)7+ Yy~ X+ (Zyo =27 - (6)

(b) cross-section

(a) beam and solid element

Fig. 2 Elements and cross-section
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a, = lay+ay_,) /T%
b%= (by+by_,) /T%

cg: (CN+CN—1) / T%

T%=\/(aN +a, )V (bytby )+ eytey, )

In the equations, (X,,, Yy, Z,) is the global coordinates of the cen-
tral node on the N -th cross-section. (x,, yy, z) is the global
coordinates of the other nodes on the N -th cross-section.

The nodal forces F,, Fy,, Fy, in the x, y, z -direction of the N -

th node are calculated by the following equations:
Np Ny Nr
Fy,= 21 F,, F,, =21 F,, Fy= 21 Fiociiiiiiain. (8)

where N, is the total number of nodes on the N -th section. F,,, F, ,

F,, are the nodal forces at the i -th node in the x, y, z -direction. The

nodal moments M, My, My, in the x, y, z -direction of the N -th

-
node are calculated by the following equations:

MNx= “ (liniz.—lizFiy)

MNy=_ (lizFix"lixFiz)
M

i=1

Nz=i=1(ll. = LoF) e (9)
where
lp=xy—Xy» liy=yNi_YN’ ly=zy=Zy -ovvover (10)

In eq. (10), (Xy, Yy» Zu) are the global coordinates of the i -th node

on the N -th cross-section.

Fig. 3 Generation of nodes
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4. Numerical Example

Fig. 4 shows a FePd helical spring with a weight subjected to
magnetic force by the permanent magnet (Niodume35, 1.17,
835563A/m) and the electro-magnet (798 turns, 0~1.4A). Fig. 5
shows the dimensions of two-types of helical springs to be ana-
lyzed. Fig. 6 is B-H curves of FePd and york. The assumed
stress-strain relation for FePd is shown in Fig. 7. The material con-
stants are given in Table 1. The total number of elements for the
magnetic analysis is 57067 (7 turns) and 89245 (10.5 turns). The
total number of nodes (d. o. f.) is 10852 and 16599, respectively.
The number of elements for the superelastic analysis is 88 (7 turns)
and 130 (10.5 turns). The number of incremental steps is 8 for the
magnetic analysis and 4500 for the superelastic analysis. Figs. 8

and 9 are the calculated results for current-displacement curves and

deformations.
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Fig. 4 FePd helical spring and magnets
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Fig. 5 FePd helical springs
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Table 1 Dimensions and material constants
Dimensions (mm) Material constants (MPa)

7 turns

L =37 (Total length)

d =1.7 (diameter)
D =26 (Diameter)

10.5 turns

L =54.5 (Total length)

d =1.2 (diameter)
D =25 (Diameter)

E, =49000, E,=53000
G, =16333, G,=17667
Gy =0 +C, (T-M)=20
0,y =07 +C,(T' - M,)=560
O'Asch(T"As)zlg
0, =CAT-4,)=2

g,=y,=0001
p =015
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Fig. 7 Stress-strain curves for FePd
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Fig. 8 Total current-displacement curves for FePd helical springs

5. Concluding Remarks

The coupled finite element analysis is conducted for the mag-
neto-superelastic behaviors of ferromagnetic shape memory
alloy helical springs. Details of the constitutive equation and the
finite element formulation are given in Ref. 1), 2) and 6).
Quantitative discussion for the calculated results and experimental
verification are future works.

(Manuscript received, August 5, 2003)
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(a) helical spring with 7 turns
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(b) helical spring with 10.5 turns
Fig. 9 Deformation of FePd helical springs
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