生産研究 585

研究速報

構造物診断を目的とした非接触微動測定法

Non-contact microtremor measuring method for vibration diagnosis of railway structures

上 半 文 昭^{*} · 目 黒 公 郎^{**} Fumiaki UEHAN and Kimiro MEGURO

1. はじめに

本研究では、振動測定を利用した鉄道構造物の診断技術 への適用を目的として、微動の非接触測定技術を開発した. 構造物の振動モード形を同定する場合,構造物上の複数点 の振動を測定する必要がある.その場合、センサの接着や ケーブル類の配線、および、それらの撤去に多くの時間を 要している.また高架橋の柱上端等にセンサを設置する場 合、 危険を伴う 高所作業が発生する. これらは、作業の効 率と安全性を低下させる要因となっている. そこで,構造 物の振動測定を効率良く安全に行うために、レーザドップ ラ速度計(以下,LDV)を利用した微動の非接触測定法 を提案した.LDVは、主として精密機器などの機械振動 の測定に利用されてきた装置であるが、近年、構造物の維 持管理分野への適用も検討されはじめている¹⁾.本研究で は、著者らがこれまでに研究してきた鉄道 RC ラーメン高 架橋の微動測定による損傷度検査手法²³⁾への適用を主た る目的として、構造物の1次モードの固有振動数と振動モ ード形を LDV による非接触の微動測定で同定する手法を 検討した. LDV 本体の振動を別のセンサで測定すること により微動の測定精度を向上する手法、および、一つのレ ーザドップラ速度計を用いて構造物の振動モード形を同定 する手法を提案し、模型実験と屋外での実 RC ラーメン構 浩物測定によりその適用性を検証した.

2. レーザドップラ速度計

レーザドップラ速度計(LDV)は、運動する物体にレ ーザ光を照射してその反射光を受光し、「ドップラ効果」 を利用して物体の運動速度を非接触で検出するセンサであ る.ある一定の周波数成分f₀を持つ入射レーザ光を、ある 速度で移動している物体(図1)に当てると、移動物体の 持つ速度成分に比例して反射レーザ光の周波数が f_{D} (ドッ プラ周波数)だけ変化する.物体の速度をv,照射するレ ーザ光の波長を λ_0 ,レーザ光の照射方向と物体の移動方 向とがなす角度を θ とすると、ドップラ周波数 f_D は、次 式で得られる.

LDV で使用されるレーザ光の波長 λ_0 はきわめて安定しているため、ドップラ周波数 f_D とターゲットの移動速度vは比例関係にある.レーザ光の照射方向と物体の移動方向とのなす角 θ が得られれば、ドップラ周波数 f_D を測定することにより、物体の持つ照射方向の移動速度を求められる.

なお本検討では、グラフテック社製の LDV(AT 0023 センサと AT 3600 復調器,図2)を使用した.

図1 移動物体へのレーザ照射と反射光の周波数変化

図2 レーザドップラ速度計 (LDV)

^{*}鉄道総合技術研究所 **東京大学生産技術研究所 都市基盤安全工学国際研究センター

3. 構造物の非接触微動測定手法

3.1 LDV による微動測定の問題点

センサと測定対象間の相対速度を検出するLDVを用い て、振幅レベルの非常に小さい微動(起振機や打撃による 加振によらない常時の極微小な振動)を測定する場合、測 定記録に占めるLDV本体の振動の影響が大きくなる.屋 外での構造物測定では、LDVと三脚からなる系の固有振 動や、地盤に入力される各種ノイズ振動および風等の外乱 の影響を無視できない.特に地震後の損傷度検査に適用す る場合には、復旧工事などによる高いノイズレベル下で計 測を行う必要があり、その影響が深刻である.

3.2 LDV 本体の振動除去技術

LDV と三脚からなる系の固有振動や,地盤に入力され る各種ノイズ振動および風等の外乱による LDV 本体の振 動の影響を取り除き,より高精度な微動測定を実現するた めのアイディアとして,測定対象の振動周波数領域におい て LDV と等価な感度を有する接触型の微動センサを LDV に取り付けて,LDV 本体の振動速度を同時測定し,その 測定記録を用いて LDV 本体の振動の影響を除去する手法 を提案する(図3)

ある時刻tにおけるLDVの速度記録 $V_L(t)$ は、構造物 上の測定点とLDV間の相対速度である.LDV本体の振動 速度を微動センサで記録し、時刻tにおけるその値を $V_s(t)$ とすれば、LDV本体の振動の影響を取り除いた測定点の 絶対速度 $V_M(t)$ (=V(t))が次式で求められる.

 $V_{M}(t) = V_{L}(t) + V_{S}(t) \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (2)$

得られた時系列データをスペクトル処理すれば,構造物の振動特性 $S_{M}(f)$ が得られる(図 4).

3.3 振動方向とレーザ照射方向のなす角度の補正

高架橋などの実構造物を測定する場合には、その立地条 件から構造物のの振動方向とは異なる方向からレーザ光を 照射しなくてはならない状況が生じる.構造物上の測定点 の振動方向と、レーザ光の照射方向とが異なる場合にも、 微動センサで LDV 本体のレーザ照射方向の振動を測定す る.時刻 t における LDV の速度記録を $V_L(t)$, LDV 本体に 取り付けた微動センサの速度記録を $V_S(t)$ とすれば、振動 方向と角度 θ だけずれた位置から測定した場合の測定対象 の絶対速度 $V_M(t)$ は次式で求まる.

 $V_{\mathcal{M}}(t) = \frac{V_{\mathcal{L}}(t) + V_{\mathcal{S}}(t)}{\cos \theta} \quad \dots \quad \dots \quad \dots \quad \dots \quad (3)$

図3 非接触微動測定とLDV本体の振動除去技術

図4 補正手法の概要

4.1台の LDV による振動モード形推定手法

構造物の振動モード形を得る場合には、構造物上の複数 点の振動測定を実施する必要がある.複数のLDV で同時 測定すれば振動モード形を容易に得られるが、現状では LDV が高価であるため、鉄道現場に普及している振動測 定装置と同程度の価格で多点測定用の非接触振動測定装置 を構成することは難しい.一方,一つの LDV で構造物を スキャニングして振動モード形を同定する手法が考えられ る.ただし、微動を用いる場合には微動の時間的な非定常 性の影響を考慮する必要がある.その解決法として、構造 物各部の微動を非接触測定する際に、構造物上のある基準 点に従来(接触型)の振動計を取り付けて微動を同時測定 し、対象とするモード成分のスペクトル振幅(各部測定時 の基準点の振動レベル)を調べ、その値で非接触測定によ る構造物各部の振動のスペクトル振幅を除し、各部測定時 の振動レベルで基準化したモード振幅を得ることにする. 基準点は、対象とするモードの振動成分を検出できる任意 の位置に設定してよい.構造が単純な構造物では、低次の 振動モード形の概形は予測可能であるので、得られたモー ド振幅値を用いて構造物の振動モード形を同定できる.

図5 LDV本体の振動の除去技術の実験概要

5. 模型実験による提案手法の検証

5.1 LDV 本体の振動の除去技術の実験

LDV で測定された微動記録から,LDV 本体の振動の影響を除去する手法の効果を模型実験で確認する.鉄道 RC ラーメン高架橋をモデルとして作成したフレーム構造模型 上の点 A の微動を三脚上に設置した LDV で測定した(図 5).また,LDV 本体の振動を振動計1,フレーム構造模型 上の点 A 付近の振動を振動計2で同時測定した.フレー ム構造模型は,4本のL字鋼で錘を載せた桁を支えた構造 を有しており,実験室の床上に固定されている.LDV は 構造物上の点 A の振動方向とずれの無い位置に設置した. 各センサで微動を約41 sec 間,時間刻み0.01 sec で測定し, データを保存した.

実験で得られた振動速度記録のフーリエスペクトルを図 6に示す.LDVの測定結果(a)は、LDV本体の振動(b) の影響を受けているが、提案手法で得られた結果(d)は、 点Aの振動特性の正解値である振動計2の測定結果(c) とほぼ等しい振動特性を与えることを確認できた.

5.2 1台の LDV による振動モード形推定の実験

微動の非接触測定により,フレーム構造模型の1次振動

図7 1台のLDVによる振動モード形推定の実験概要

図8 模型各部の振動速度のフーリエスペクトル

表1 モード振幅の推定結果

	高さ	スペクトルピーク値		1次モード振
	(m)	非接触測定	基準点	幅同定值
点A	1.17	2.00	2.00	1.000
点B	0, 90	2.66	2.99	0.878
点C	0.60	2.39	4.44	0.500
点D	0.30	0.43	1.94	0.129
点E	0.03	0. 21	1.97	0.000

モード形を推定する.図7のA~E点をLDVで,LDV本 体を振動計1で測定し,振動計2を基準点の微動センサと して用いた.LDV本体の振動の影響を除去した各点の振 動速度記録のフーリエスペクトルを図8に示す.各スペク トルの卓越振動数はいずれも模型の1次固有振動数 (4.3 Hz)を示しているが,振幅値は微動の非定常性の影 響により,予想される振動モード形には整合しないため, 各スペクトルの4.3 Hzの振幅値を同時測定で得られた振 動計2(基準点)の4.3 Hzの振幅値で除して補正した.さ らに,補正後の点Eの振幅値を模型の水平振動に含まれ る並進成分であるとみなして各点の振幅値から減じ,模型 各点の1次モード振幅を得た.得られた模型各点の1次モ ード振幅値を,点Aの振幅を1として表1に,点Aの高

さも1として理論解とあわせて図9に示す.同定された1 次振動モード形は理論値(下端固定-上端回転固定の柱の 1次振動モード形)とよく一致しており,提案手法の妥当 性を確認できた.

6. 実構造物の振動モード形推定

鉄道高架橋などの実構造物の振動診断への適用性の検証 を目的として, RC ラーメン構造物の屋外測定を実施し た.非接触微動測定による対象構造物の1次振動モード形 を数値解析結果と比較してその精度を調べる.

図10 測定対象の2層 RC ラーメン構造物

図11 対象構造物の断面形状(数値解析モデル)

対象構造物の外観を図10に,対象とする振動方向の断 面形状を図11に示す.対象構造物は2層RCラーメン構 造であるが,手摺や壁などが設置されておらず振動モード 形の解析が容易な下層部の柱を検討の対象とした.図12 に示すように構造物から約5m離れた地盤上から接触型の 微動センサを付加したLDVで構造物上のA~E点の微動 を順番に時間刻み0.01 sec で測定した.各点測定時にR点 に設置した基準センサで微動を同時測定した.

図 13にA点の測定時に得られた各センサの記録と提案 手法で補正した点Aの微動の非接触測定結果を示す.無 補正のLDVの記録 $V_L(t)$ がLDV本体の振動 $V_s(t)$ の影響 を強く受けているのに対し,提案手法 $V_M(t)$ は,基準セ ンサの記録 $V_R(t)$ (点Aの微動の正解値.ただし,点Aよ り高い位置にセンサが設置されているため振幅はやや大き い.)に似た波形となった.図14に点A~Eで得られた 振動速度記録のフーリエスペクトルを示す. $S_L(f)$ と $S_s(f)$ から,無補正のLDVの記録はLDV本体の振動の影響(10 ~20 Hz)を強く受けていることがわかる.提案手法によ る $S_M(f)$ では基準センサのスペクトル $S_R(f)$ に見られる約 3.6 Hzの成分のみが強く現れている.この成分が構造物の 1次固有振動数に対応していると考えられる.

次に,提案手法により RC ラーメン構造物の下層部の柱 の1次振動モード形を推定する.著者らが一連の研究で用 いてきた応用要素法 (AEM)⁴⁾ による1次振動モード形の 解析結果を図15に示す. 点A~Eの $S_M(f)$ の3.6 Hzの成 分 (S_M^{max})を $S_R(f)$ の同周波数成分の値 (S_R^{max})で除して 各点測定時の振動レベルで基準化し,基準化したモード振 幅 S_n^{max} を求め,5.2と同様の手法で RC ラーメン構造物の 下層部の柱の1次振動モード形を求めた.結果を点Aの モード振幅および高さを1として,応用要素法による1次 振動モード形の数値解析結果とあわせて図16に示す.解 析値と提案手法による推定値はよく一致しており,提案手 法の妥当性が示されたものと考える.

報

図13 A 点測定時に得られた各センサの記録と提案手法による点 A の微動の非接触測定結果

図15 1次振動モード形の解析結果 (AEM)

6.まとめ

微動の高精度な非接触測定法を提案し,模型実験と実構 造物測定により,その有効性を確認した.提案手法を用い れば,構造物の振動特性を無加振かつ非接触で同定できる ようになり,構造物の劣化,地震時の損傷や復旧施工効果 などの振動診断の効率と安全性を飛躍的に向上できるもの と考える.今回は,振動特性の推定が容易なラーメン構造 物の1次モードの振動特性のみを検討の対象としたが,更 なる検討により提案手法の適用範囲の拡大を試みたい.

(2003年10月17日受理)

図16 1次振動モード形の解析値と推定値

参考文献

- Kiyoyuki Kaito, Masato Abe, Yozo Fujino and Hidenori yoda: Detection of structural damage by ambient vibration measurement using laser Doppler vibrometer, Proceedings of the fifth International Symposium on Non-Destructive Testing in Civil Engineering, pp. 127–135, 2000.
- 上半文昭,目黒公郎:非線形構造解析による RC 構造物の 即時地震損傷度判定法に関する一考察,応用力学論文集, Vol.3, pp. 621-628,2000.
- 3) 上半文昭,目黒公郎:微動測定を利用した地震時構造物損 傷度検査手法に関する実験的研究,第11回日本地震工学 シンポジウム論文集 (CD-ROM), 2002.
- Meguro K. and Tagel-Din H.: A new efficient technique for fracture analysis of structures, Bulletin of Earthquake Resistant Structure Research Center, IIS, Univ. of Tokyo, No. 30, pp. 103–116, 1997.