

入 脀 醇 久

学 位 論 文

Quantification of Kosa（aeolian dust）contribution to the sediments and reconstruction of its flux variation at ODP Site 797， the Japan Sea during the last 200 ky

過去 20 万年間における日本海 O D P 7 9 7 地点堆積物への黄砂 （風成塵）寄与率の定量およびそのフラックス変動の復元

平成 8 年 8 月博士（理学）申請

東京大学大学院理学系研究科
地質学専攻

> 入 野 智 久

Quantification of Kosa (aeolian dust) contribution to the sediments and reconstruction of its flux variation at ODP Site 797, the Japan Sea during the last 200 ky

1996

Tomohisa Irino
Geological Institute, Faculty of Science, University of Tokyo

Abstract

Aeolian dust flux and its temporal variation have been studied intensively because of the possible importance of aeolian dust on the marine geochemical cycles and its utility as a paleoclimatic indicator. In order to reconstruct past variations in the Kosa flux to the Japan Sea, and establish the direct linkage between the terrestrial and marine climatic records, the author invented a new procedure for Q-mode factor analysis which is applied to chemical and mineral compositions of the late Quaternary hemipelagic sediments in the Japan Sea. With this procedure, it is possible to distinguish and quantify detrital subcomponents within the detrital component. Four detrital subcomponents were extracted, which are attributed to fine and coarse subcomponents of Kosa and arc-derived detritus, respectively, based on the comparison with the composition of probable source materials. Using these detrital subcomponents, Kosa fraction, Kosa grain size index (KGI), and arc-derived detritus grain size index (AGI) are defined and their variations as well as the variation in mass accumulation rate (MARs) of Kosa and arc-derived detritus during the last 200 ky are reconstructed. The results reveal millennialscale as well as glacial - interglacial scale variations in Kosa fraction, KGI, and AGI. Close examination of their interrelationships suggests that the millennial-scale variation in Kosa fraction is explained by the changes in coarse arc-derived detritus flux. The examination of Kosa MAR also suggests the importance of the variation in the extent of Kosa source area in controlling the Kosa flux.

Contents

Abstract i
Contents ii
List of Illustrations iv
Figures iv
Tables vi

1. Introduction 1
2. Geological Setting of the Studied Site 4
3. Studied Core and Materials 7
4. Sediment Age Model 10
5. Analytical Methods 13
5-1. Major Elements Composition. 13
5-2. Biogenic Silica Content 15
$5-3$. Organic and Carbonate Carbon Content 15
5-4. Mineral Composition. 16
5-5. Grain Size Separation 18
6. Estimation of Dry Bulk Density. 19
7. Estimation of Detritus Content 21
8. Q-mode Factor Analysis 23
8-1. Q-mode Factor Analysis with Varimax Rotation 24
8-2. Oblique Rotation of Factor Scores 27
9. Estimation of Mineral Composition of Subcomponents based on Multi-regression Analysis...30
10. Results 33
11-1. Grain Composition 33
11-2. Major Elements Composition 33
11-3. Biogenic Silica Content 36
11-4. Mineral Composition. 36
11-5. Result of Grain Size Separation 41
11-6. Dry Bulk Density 42
11-7. Content of Detrital Material 42
11. Partitioning of the Detrital Component 45
12-1. STEP1: Factor Analysis of All Major Elements for All Samples 45
12-2. STEP2: Factor Analysis Using "Detrital" Elements 50
12-3. Mineral Composition of the Detrital Subcomponents. 52
12-4. Silt / Clay Ratio of the Detrital Subcomponents 55
12. Origin of Detrital Subcomponents 59
13. Variation in Kosa Fraction, KGI, and AGI during the Last 200 ky 62
14. Variation in Kosa Flux during the Last 200 ky 66
15. Conclusions 70
Acknowledgments 72
References 73

List of Illustrations

Figures
Figure 1. Locality of ODP Site 797 and geological settings of surrounding area 6
Figure 2. Columnar section of ODP Site 797 Hole A and B 9
Figure 3. Comparison of the logarithmic diatom abundance curve at Site 797 with "standard" oxygen isotope curve of Martinson et al. [1987] 12
Figure 4. Flow chart of analytical methods 14
Figure 5. Relationship between GRAPE density and dry bulk density (DBD) measured onboard 20
Figure 6. Relationship between content of detritus (Detritus\%) calculated from equation (3) and total sum of detrital mineral contents 22
Figure 7. (a) Relationship between the largest grain size measurement by Tada et al. [1992] and by this work. (b) Depth profile of the largest grain size 34
Figure 8. Relationships between SiO_{2} (a), TiO_{2} (b), MgO (c), CaO (d), $\mathrm{Na}_{2} \mathrm{O}$ (e), $\mathrm{K}_{2} \mathrm{O}$ (f) and $\mathrm{Al}_{2} \mathrm{O}_{3}$ 35
Figure 9. Depth profile of biogenic silica (bioSiO 2$)$ content 37
Figure 10. Depth profiles of contents of quartz (a), feldspars (b), detrital amorphous (c), smectite (d), illite (e), chlorite + kaolinite (f), amphiboles (g), calcite (h), pyrite (i), and rhodochrosite (j) 38
Figure 11. Depth profiles of Quartz/Detritus (a), Feldspars/Detritus (b), (detrital
Amorphous)/Detritus (c), Smectite/Detritus (d), Illite/Detritus (e), and (Chlorite + Kaolinite)/Detritus (f) 40
Figure 12. (a) Depth profile of dry bulk density (DBD). (b) Relationship between biogenic silica (bioSiO $)_{2}$ content and dry bulk density (DBD) 43
Figure 13. Depth profile of content of detritus (Detritus\%) calculated from equation (3) 44
Figure 14. Flow chart of statistical analysis. 46

Figure 15. Composition scores of factors calculated by Q-mode factor analysis for all analyzed samples using all elements with varimax rotation .48

Figure 16. Multi-regression coefficients calculated by multi-regression analysis of mineral composition to the composition loadings calculated by Q-mode factor analysis for all analyzed samples using all elements with varimax rotation.49

Figure 17. Interrelationship between the content of detritus and the total sum of "detrital" elements (detSiO$O_{2}, \mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}$, and $\mathrm{K}_{2} \mathrm{O}$) 51

Figure 18. $\mathrm{DetSiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (a), $\mathrm{MgO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (b), $\mathrm{Na}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (c), $\mathrm{K}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (d) versus $\mathrm{TiO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ plots of samples and detrital subcomponents (Factors 1 through 4) estimated by Q-mode factor analysis of "detrital" elements. .53

Figure 19. Mineral composition ranges of each detrital subcomponent calculated by multiregression analysis of detrital mineral composition and composition loadings 54

Figure 20. DetSiO $/ \mathrm{Al}_{2} \mathrm{O}_{3}$ (a), $\mathrm{MgO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (b), $\mathrm{Na}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (c), $\mathrm{K}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (d) versus $\mathrm{TiO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ plots of selected 213 bulk samples and silt and clay fraction of selected 10 samples 57

Figure 21. Interrelationship between silt/clay ratio and Factor $3+$ Factor 4 (\%) for selected 10 samples .58

Figure 22. Comparison of chemical composition of each detrital subcomponent with possible source materials

Figure 23. Temporal variations of Kosa fraction (a), Kosa grain size index (KGI) (b), arcderived detritus grain size index (AGI) (c), and coarse arc-derived detritus fraction and coarse Kosa fraction (d) at ODP Site 797 . .65

Figure 24. Temporal variations in arc-derived detritus mass accumulation rate (MAR) (a), Kosa MAR (b), and KGI (c) at ODP Site 797, and their comparison with quartz grain size in loess sequence [Porter and An, 1995] (d), and loess-paleosol sequence in China [Kukla and An, 1989]. .69

Tables

Table 1. Age, grain composition, and remarks on all analyzed samples from ODP Site $797 \ldots . .78$
Table 2. Major elements composition of all analyzed samples from ODP Site 797 80
Table 3. Biogenic silica (bioSiO 2), organic carbon (Org-C), carbonate carbon (Carb-C), GRAPE density, dry bulk density (DBD), and content of detritus (Detritus\%) of all analyzed samples from ODP Site 79783
Table 4. Mineral composition of all analyzed samples from ODP Site 797 87
Table 5. Grain size compostion of bulk sample and biogenic silica contents (bioSiO 2) and major elements composition of silt and clay fraction of selected 10 samples from ODP Site 797 90
Table 6. Mineral composition of silt and clay fraction of selected 10 samples from ODP Site79791

Table 7. Composition scores of factors calculated by Q-mode factor analysis for all analyzed samples using all elements with varimax rotation, and multi-regression coefficients calculated by multi-regression analysis of mineral composition to the composition loadings ..

Table 8. Varimax composition scores and possible ranges of chemical composition for each

$$
\text { detrital subcomponent calculated by Q-mode factor analysis for } 213 \text { selected samples with } 6
$$ detrital elements with oblique rotation 93

Table 9. Mineral composition ranges of each detrital subcomponent calculated by multi- regression analysis of detrital mineral composition and composition loadings 93
Table 10. Summary of chemical and mineral compositions, the silt / clay ratio of each detrital subcomponent, and their probable origin 94
Table 11. Grain size of selected samples, chemical composition of silt and clay fractions of selected samples, and silt / clay ratio of each detrital subcomponents calculated for each sample 95
Table 12. Chemical composition of possible source materials 96

Table 13. Composition loadings of each detrital subcomponent, Kosa fraction, Kosa grain size index (KGI), and arc-derived detritus grain size index (AGI) for each sample .99

Table 14. Average linear sedimentation rate (LSR), dry bulk density (DBD), content of detritus (Detritus\%), and mass accumulation rates (MARs) of Kosa and arc-derived detritus between 12 datums .102
Appendix
I. Determination of Major Elements Composition of Fine Grained Sediments using X-rayFluoresence Analysis(1)
II. Determination of Biogenic Silica Content using Alkali Extraction Method. (13)
III. Determination of Mineral Compostion using X-ray Diffraction Analysis (21)

1. Introduction

Kosa is the aeolian dust observed in the Japanese islands and derived from the inland arid area in central Asia [Iwasaka et al., 1983]. It is suggested that higher frequency of dust storm in the arid area of central Asia results in higher flux of aeolian dust to the northwest Pacific [Gao et al., 1992], which is transported by the prevailing westerlies. Consequently, temporal and spatial distribution of aeolian dust flux to the sediments in north Pacific is thought to be controlled by the location and extent of arid source area as well as the strength and pattern of the wind system [Leinen et al., 1986].

Recent high resolution analysis of GRIP and GISP2 ice cores from central Greenland suggests that the climate in high latitude northern hemisphere during the last glacial period was oscillated drastically in millennial-scale which is known as Dansgaard-Oeschger Cycles [Dansgaard et al., 1993, Taylor et al., 1993]. Especially, Taylor et al. [1993] pointed out that the atmospheric dust concentration over Greenland changed in millennial-scale. Recently, Porter and An [1995] showed that quartz grain size within the loess sequence at the Loess Plateau of China varied in millennial-scale, and suggested the possibility of millennial-scale variation in atmospheric circulation in the northern hemisphere. On the other hand, Tada et al. [1995] reported the possible signal of the Dansgaard-Oeschger Cycles from the hemipelagic sediments of the Japan Sea. In order to directly compare such millennial-scale variation in terrestrial records with that of marine records, high resolution reconstruction of aeolian contribution to the marine sediments is necessary.

Aeolian dust flux and its temporal variation have been studied intensively during the last two decades because of the possible importance of aeolian dust on the marine biogeochemical cycles [Duce et al., 1991] and its utility as a paleoclimatic indicator of the aridity of continental interiors as well as the strength of prevailing winds [Rea et al., 1985]. During 1980's, it was believed that the detrital component of the pelagic sediments in the North Pacific is mostly composed of aeolian dust derived from the central Asia (= Kosa), and the
mass accumulation rate and median grain diameter of the detrital component have been widely used as a measure of aeolian flux and wind intensity, respectively [e.g. Rea and Leinen, 1988, Hovan et al., 1991]. However, based on the rare earth elements and isotope studies of the North Pacific sediments, it has been pointed out recently that even such pelagic sediments contain significant amount of detrital subcomponent derived from island arcs of the northwest Pacific [Olivarez et al., 1991, Nakai et al., 1993, Weber II et al., 1996]. Thus, in order to estimate Kosa flux from the sedimentary record, it is necessary to distinguish subcomponents within the detrital component, specify their origin, and estimate their contents.

Provenance studies of fine-grained siliciclastic sediments have a long history. The variation in the assemblage of heavy minerals [Krumbein and Pettijohn, 1938] and clay minerals [Chamley, 1989] has been widely used to distinguish the sources of detrital subcomponents. Rare earth elements are also used recently [Taylor and McClennan, 1985, Olivarez et al., 1991, Nakai et al., 1993, Weber II et al., 1996]. Although these methods have been successful in characterizing the detrital sources, they are not necessarily adequate for quantitative estimation of the subcomponents within the detrital component because these methods are based on the elements or minerals which constitute only a small fraction of the total detrital component. Thus, more adequate method to extract the composition and contribution of subcomponents within the detrital component of the sediment samples is required. Statistical analyses such as normative partitioning, linear programming, Q-mode factor analysis [Leinen, 1987], and total inversion method [Kyte et al., 1993] has been applied to major and minor elements composition in order to estimate contribution and / or composition of the subcomponents within the detrital component. However, since normative partitioning and linear programming requires number and composition of the subcomponents for the analysis beforehand, these methods are not adequate when composition of the subcomponents is not known or composition of the subcomponents varied with time. Total inversion method allows changes in the composition of subcomponents, but this method assumes random variation in composition. Because it is not certain whether past variation in
composition of subcomponents were random or not, total inversion method may not be adequate for our purpose. Q-mode factor analysis do not require any a priori knowledge on composition of subcomponents although the meaning of extracted subcomponents need to be confirmed by other means.

In this study, the author developed a new procedure to estimate the composition and content of subcomponents within the detrital component by Q-mode factor analysis of selected major elements followed by multi-regression analysis between mineral composition and contents of subcomponents calculated by Q-mode factor analysis, and the author applied it to chemical and mineral composition data obtained for the Japan Sea sediments. Based on the result, the author extracted subcomponents attributable to Kosa, and reconstructed temporal variation in Kosa fraction and its mass accumulation rate during the last 200 ky .

2. Geological Setting of the Studied Site

The Japan Sea is a semi-enclosed marginal sea located in the back arc side of the Japan Island Arc and has total area of approximately $1,000,000 \mathrm{~km}^{2}$. It is located only 2500 km downwind from the Taklimakan-Gobi Deserts where Kosa is derived from (Figure 1). The sea is connected to the other seas through the Mamiya (15 m water depth), Soya (55 m), Tsugaru (130 m), and Tsushima (130 m) Straits. The Tsushima Warm Current flows into the sea through the Tsushima Strait, flows along the eastern margin of the Japan Sea, and its major part flows out through the Tsugaru Strait. The Japan Sea is composed of the Japan Basin (3000 to 3500 m water depth) to the northwest and the Yamato Basin (2500 to 3000 m) to the southeast which are divided by the Yamato Rise (1000 m). The studied site, Ocean Drilling Program (ODP) Site $797\left(36.62^{\circ} \mathrm{N}, 134.54^{\circ} \mathrm{E}, 2874 \mathrm{~m}\right.$ water depth) is located on the northern rim of the Yamato Basin. It is approximately 500 km to the northeast of the Tsushima Strait, approximately 500 km to the east from the Asian continent, and approximately 250 km to the west from the Japan Arc, respectively (Figure 1).

Because the Japan Sea and Japanese islands are facing to the east margin of the Asian continent and they are the only place where dust haze due to Kosa is clearly observed [Goudie, 1983], significant contribution of Kosa to the Japan Sea sediments is expected. Detrital material could also have been transported to the sea through the riverine inputs from the Japan Arc and / or the Japan Sea side of the Asian continent. The drainage area of the Japan Sea side of the Japan Arc including Sakhalin is approximately $146,000 \mathrm{~km}^{2}$. Saito and Ikehara [1992] estimated the present average sediment yield from the Japanese islands as approximately $700 \mathrm{t} / \mathrm{km}^{2} / \mathrm{yr}$. Consequently, sediment discharge to the Japan Sea from the Japan Arc is estimated as approximately $10^{\circ} \mathrm{t} / \mathrm{yr}$. On the other hand, the drainage area of the continental side is approximately $205,000 \mathrm{~km}^{2}$ and the sediment yield is estimated as 10 to 50 $\mathrm{t} / \mathrm{km}^{2} / \mathrm{yr}$ [Milliman and Meade, 1983]. Consequently, the sediment discharge to the sea from the Asian continent is estimated as 0.2 to $1 \times 10^{8} \mathrm{t} / \mathrm{yr}$. In addition, the distance from Site 797 to the Japan Arc is approximately a half the distance from the Asian continent and the Yamato

Rise would block most of the detrital flux from the continental side to the studied site. From these reasons, the author considers that the riverine detrital flux from the continental side is negligible compared to that from the Arc side at ODP Site 797. The suspended matter discharged from the Huanghe River and transported by Tsushima Warm Current can be another detrital source to the Japan Sea [Oba et al., 1991]. However, Saito and Yang [1994], who estimated total sediment discharge of present Huanghe River as $10^{\circ} \mathrm{t} / \mathrm{yr}$, showed that more than 99% of the sediment discharge is deposited within the shelf and less than 1% is exported out of the shelf. Furthermore, present sediment discharge of the Huanghe River could have been enhanced by nearly 10 times due to human agricultural activities during the last 2000 years [Milliman et al., 1987]. Thus, sediment supplied from the Huanghe River through the Tsushima Strait should be less than $10^{7} \mathrm{t} / \mathrm{yr}$ at present and probably less than $10^{6} \mathrm{t} / \mathrm{yr}$ before 2000 years ago. Moreover, the distribution of clay minerals in the surface sediments of the Japan Sea is not controlled by the surface currents [Yin et al., 1987]. From these reasons, the author considers that the detrital flux from the Huanghe River through the Tsushima Strait have been also negligible compared to riverine detrital flux from the Japan Arc.

The present Kosa flux to Japan is estimated as 1.4 to $4.3 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}\left(1.4\right.$ to $4.3 \times 10^{7} \mathrm{t} / \mathrm{yr}$ for the whole Japan Sea area) [Suzuki and Tsunogai, 1987] which is more than thirty times larger than the flux to the central North Pacific (0.0013 to $0.045 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}$, [Suzuki and Tsunogai, 1987]). Whereas it is comparable to the average mass accumulation rate of 4.1 $\mathrm{g} / \mathrm{cm}^{2} / \mathrm{ky}$ during Quaternary at Site 797 [Shipboard Scientific Party, 1990]. Thus, a significant contribution of Kosa to the sediments is expected, although the detrital flux from the Japan Arc may not be negligible [Tada et al., 1992].

3. Studied Core and Materials

Continuous late Quaternary sedimentary sequence was recovered at Site 797 (Figure 2). The sediments are composed of clay and silty clay which are occasionally biosiliceous and / or biocalcareous, and thin volcanic ash layers are occasionally intercalated. They show centimeter to decimeter-scale alternationt of the dark and light layers which are correlatable within the Japan Sea [Tada et al., 1992]. The dark layers are mostly laminated whereas the light layers are homogeneous to bioturbated and the boundary between the dark and light layers are generally sharp [Tada et al., 1996]. The sequence is considered as continuous without any interruption by turbidite layers [Shipboard Scientific Party, 1990, Tada et al., 1992].

Apparent core recovery exceeds 100% as a result of the expansion of sediments and drilling disturbance in the sediments is minimal [Tada et al., 1992]. Core expansion was estimated as 105% for Core 797B-1H and 104% for Core 797B-2H, respectively [Tada et al., 1996]. Tada et al. [1996] also recognized a 35 cm of core gap between Cores $797-1 \mathrm{H}$ and 2 H which was recovered in Core 797A-1H. In this study, top of Core 797B-1H was set as 0 cmbsf and sample depths were corrected for core expansion and core gaps [Tada et al., 1996]. Depths of samples supplemented from Core 797A-1H were also corrected to the corresponding depths of Cores 797B-1H and 2H based on the correlation of dark and light bands between Cores 797A and 797B (Figure 2).

Approximately 230 samples obtained from the uppermost part of the sequence are used in this study. These samples cover approximately the last 200 ky . The samples are composed of two sets with different sampling dates and ways of storage. First set (50 samples, noted LR and LRA in Tables) was sampled onboard with the average sampling interval of 30 cm and frozen immediately for shipment. Second set (174 samples, noted HR in Tables) was sampled by Associate Professor Ryuji Tada with the average sampling interval of approximately 7 cm one and a half year after the cruise at the Gulf Coast Core Repository of

ODP where cores were stored at $15^{\circ} \mathrm{C}$. One and a half year of the storage caused color alteration of the sediment surface due to oxidation, but original sediment color was preserved a few mm below the cut surface.

ODP Site 797

Figure 2 Columnar section of ODP Site 797 Hole A and B.

4. Sediment Age Model

In order to calculate linear sedimentation rate, age model at Site 797 for the last 200 ky is cited from Tada et al. [1996] who adopted following 13 datums (Figure 3). Depth (cmbsf) and calendar age (ka) for each sample is listed in Table I.

Judging from the onboard observation, the top 15 to 20 cm of Core 797B-1H seemed to be originally vacant and filled afterwards with fluidized sediments flowed from top several cm of the sediment. However, the core caught the mudline because brownish oxidized layer of approximately 30 cm thick is preserved at the core top, which is comparable to the reported thickness of the oxidized layer of the Japan Sea sediments which ranges from 0 to 60 cm [Masuzawa, 1983]. Thus the horizon $18 \pm 2 \mathrm{~cm}$ below the apparent core top is set as 0 ka .

Ages of the uppermost dark layer (called TL-1) and the top and near bottom of the second dark layer (called TL-2) are estimated as $9.88 \pm 0.17 \mathrm{ka}, 14.93 \pm 0.22 \mathrm{ka}$, and 21.01 ± 0.27 ka, respectively, based on $\mathrm{AMS}^{14} \mathrm{C}$ dating of planktonic foraminifer monospecies (Globigerina umbilicata) at the core KH79-3, L-3 from Oki Ridge [Oba et al., 1995]. TL-1 and TL-2 are also recognized at Site 797 and these $\mathrm{AMS}^{14} \mathrm{C}$ ages are adopted as those of corresponding horizon.

Marker tephra layer Aira-Tanzawa (AT) is identified at 224 cmbsf [Shirai, unpublished data]. The age of AT was estimated as $24.33 \pm 0.23 \mathrm{ka}$ based on $\mathrm{AMS}^{14} \mathrm{C}$ dating of planktonic foraminifer monospecies (Neogloboquadorina dutertrei) just above and below this tephra at the core KH89-18, P-4 from off Shikoku [Murayama et al., 1993].

Tada et al. [1992] pointed out that the variation curve of the logarithm of diatom abundance (number / g) at Site 797 resembles "standard" oxygen isotope curve and there is no phase lag between them. Thus 7 datums are adopted based on tuning of the logarithmic diatom (especially warm water species) abundance curve to the oxygen isotope curve of Martinson et al. [1987] (Figure 3). Adopted datums are oxygen istope stages 5.0 (73.91 ka), 5.2 (90.95 ka), 5.4 (110.79 ka), 6.0 (129.84 ka), 6.3 (142.28 ka), 6.5 (175.05 ka), and 7.0 (189.61 ka) whose
ages are also based on Martinson et al. [1987].
Age model is constructed using above 13 datums assuming the constant linear sedimentation rate between datums. In this study, datums estimated using $\mathrm{AMS}^{14} \mathrm{C}$ dating were corrected to calendar age based on the figure 1 of Bard et al. [1993] in order to prevent mass accumulation rates from the underestimation due to the underestimation of linear sedimentation rates.

5. Analytical Methods

The samples were dried at $50^{\circ} \mathrm{C}$ in an oven immediately after arrival at our laboratory to prevent further alteration. Approximately 5 g of dried samples were washed and centrifuged twice with 50 cc of deionized filtered water to remove sea salt. The residues were dried again at $50^{\circ} \mathrm{C}$ for more than 48 hours. Dried samples were ground in an agate mortar and stored in capped glass tubes. These sample treatment and followed analytical procedures are shown in flow chart (Figure 4).

Smear slides were made for all samples and observation of grain composition was made under petrographic microscope. The largest detrital grain diameter was also measured.

5-1. Major Elements Composition

Composition of 10 major elements $\left(\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{MnO}, \mathrm{MgO}, \mathrm{CaO}, \mathrm{Na}_{2} \mathrm{O}\right.$, $\mathrm{K}_{2} \mathrm{O}$, and $\mathrm{P}_{2} \mathrm{O}_{5}$) were determined for 223 samples by X-ray fluorescence (XRF) analysis using a Rigaku 3270 spectrometer equipped with Rh tube at the Ocean Research Institute, the University of Tokyo. The measurement was carried out on a fused glass bead at the acceleration voltage of 50 kV and the current of 50 mA . To prepare fused glass beads, desalted and powdered samples were dried at $110^{\circ} \mathrm{C}$ for more than 4 hours and then ignited at $1000^{\circ} \mathrm{C}$ for 6 hours to remove volatiles. Loss on ignition (LOI) was calculated from the weight loss caused by ignition. Approximately 0.4 g of an ignited sample was mixed with approximately 4 g of $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ flux with the exact ratio of $1.000: 10.00$ and fused at $1150^{\circ} \mathrm{C}$ for 7 minutes in platinum crucible to make a glass bead. Fused glass beads were made within 8 hours after ignition so as to avoid weight changes due to absorption of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}. Calibration curve was constructed using 40 standard samples provided from the Geological Survey of Japan, the United States Geological Survey and the National Bureau of Standards. Details of calibration procedures are described in Appendix I. The reproducibility (95% reliability) of measurement in relative scale is $\pm 0.6 \%$ for $\mathrm{SiO}_{2}, \pm 0.8 \%$ for $\mathrm{TiO}_{2}, \pm 0.7 \%$ for $\mathrm{Al}_{2} \mathrm{O}_{3}, \pm 0.7 \%$ for $\mathrm{Fe}_{2} \mathrm{O}_{3}, \pm 1.4 \%$

for $\mathrm{MnO}, \pm 1.0 \%$ for $\mathrm{MgO}, \pm 0.8 \%$ for $\mathrm{CaO}, \pm 1.6 \%$ for $\mathrm{Na}_{2} \mathrm{O}, \pm 0.7 \%$ for $\mathrm{K}_{2} \mathrm{O}$, and $\pm 1.2 \%$ for $\mathrm{P}_{2} \mathrm{O}_{5}$, respectively.

5-2. Biogenic Silica Content

Biogenic silica content $\left(\mathrm{bioSiO}_{2}\right)$ was determined for all samples by alkali extraction method after Mortlock and Froelich [1989]. The extracted silica was determined by molybdate-blue method of Fanning and Pilson [1973]. The time required for complete biogenic silica dissolution was estimated as 6 hours for 40 selected samples based on the method of DeMaster [1981]. Even after complete dissolution of biogenic silica, concentration of extracted silica increases linearly as a function of time because of dissolution from soluble detrital silicate minerals and volcanic glass [DeMaster, 1981]. Detailed procedures for determination of detrital silica dessolution rate and molybdate-blue method are described in Appendix II. The dissolution rate of silica from detrital silicate minerals and volcanic glass ranges from 0.1 to $0.4 \mathrm{wt} \% \mathrm{SiO}_{2} / \mathrm{hr}$ with the average of $0.2 \pm 0.1 \mathrm{wt} \% \mathrm{SiO}_{2} / \mathrm{hr}$ for the selected samples. Based on this result, the author adopted 7 hours for the duration of alkali extraction. Seven hours of alkali extraction will cause $1.4 \pm 0.7 \mathrm{wt} \% \mathrm{SiO}_{2}$ dissolution of silica from detrital silicates. To correct this effect, the author subtract $1.4 \mathrm{wt} \% \mathrm{SiO}_{2}$ from the total amount of the extracted silica to calculate the biogenic silica content. The error of biogenic silica estimation due to the uncertainty in contribution from detrital silicate dissolution is $\pm 0.7 \mathrm{wt} \% \mathrm{SiO}_{2}$. Since the reproducibility of measurement is $\pm 0.2 \mathrm{wt} \% \mathrm{SiO}_{2}$, total error of biogenic silica estimation is $\pm 1 \mathrm{wt} \% \mathrm{SiO}_{2}$.

5-3. Organic and Carbonate Carbon Content

Evaluation of the calcium carbonate content is necessary to calculate the CaO contribution from the carbonate minerals. Organic carbon content ($=\mathrm{Org}-\mathrm{C}$) is also necessary
to chracterize subcomponents within sediments. In this study, organic and carbonate carbon contents (= Carb-C) for 224 samples are cited from Tada et al. [1996]. Carbonte carbon contents are calculated from total carbon minus organic carbon which are measured using LECO WR-12 carbon determinator based on the procedure described in Tada et al. [1992]. In order to measure total carbon content, 0.1 g of powdered sample was oxidized at $1500^{\circ} \mathrm{C}$ for 55 s and the evolved CO_{2} gas was measured. For Org-C determination, 0.1 g of powdered sample was treated with $10 \% \mathrm{HCl}$ for one day, then dried at $60^{\circ} \mathrm{C}$ in a permeable crucible. Carb-C content was calculated by the total carbon content minus the Org-C. Analytical precision is $\pm 0.02 \mathrm{wt} \%$.

5-4. Mineral Composition

Quantitative analysis of mineral composition was conducted for all the samples by a MAC Science MXP-3 X-ray diffractometer (XRD) equipped with CuK α tube and monochrometer. Measurements were conducted at tube voltage of 40 kV and tube current of 20 mA with variable slit system which automatically control 25 mm beam width on the sample. Scanning speed is $4^{\circ} 2 \theta / \mathrm{min}$ and data sampling step is $0.02^{\circ} 2 \theta$. A powdered sample was mounted on a glass holder and X-rayed from 2 to $40^{\circ} 2 \theta$. Before reading out the position and height of each reflection, two steps of data processing were applied. As a first step, original data were smoothed by 5 points averaging which is equivalent to a window width of $0.1^{\circ} 2 \theta$. This process minimize the error caused by noise. As a second step, a background including amorphous hump was estimated by the background evaluation program which uses a wider smoothing window with 30 points (equivalent to $6^{\circ} 2 \theta$) between 2 and $40^{\circ} 2 \theta$. Because the peak width of smectite is approximately $6^{\circ} 2 \theta$, a smoothing window of 100 points (equivalent to $20^{\circ} \theta$) was used between 2 and $10^{\circ} 2 \theta$. The background profile which is calculated using 30 points smoothing window is subtracted from the 5 points smoothed intensities to obtain the net peak intensities of crystalline minerals other than smectite. The
background profile which is calculated using 100 points smoothing window is subtracted in case of smectite.

Identification of minerals are based on the following diagnostic peaks; 7.2° for smectite, 8.8° for illite, 10.4° for amphiboles, 11.5° for gypsum, 12.1° for chlorite + kaolinite, 26.6° for quartz, 27.8° for feldspars, 29.3° for calcite, 30.1° for rhodochrosite, and 32.9° for pyrite. The $7 \AA$ and $14 \AA$ peaks are considered as mainly contributed by chlorite because the peak ratios between $4.8 \AA, 7 \AA$ and $14 \AA$, which are diagnostic of chlorite are nearly constant. The intensity of diagnostic peak (1) for each mineral was used to estimate the content of each mineral. Because 26.6° peak of illite overlaps the main peak of quartz, the quartz peak height at 26.6° was corrected for illite based on peak intensity of illite at 8.8°. The peak intensities of the minerals (I) were transformed to their contents (wt\%) using linear calibration equations for each mineral which were determined from meaurements of mixtures of pure reference minerals in various ratios. Detailed calibration methods are described in Appendix III. The reproducibility of measurement are within $\pm 20 \%$ for smectite, $\pm 30 \%$ for illite, $\pm 30 \%$ for chlorite + kaolinite, $\pm 60 \%$ for amphiboles, $\pm 7 \%$ for quartz, $\pm 15 \%$ for feldspars $\pm 20 \%$ for calcite, and $\pm 20 \%$ for pyrite, respectively.

The content of detrital amorphous material is estimated from the area of amorphous hump $\left(\mathrm{A}_{\text {tot }}\right)$ between 16 and 32.5° based on the following procedure. In order to evaluate the aerial contribution of detrital amorphous materials $\left(\mathrm{A}_{\text {del }}\right)$, the background area was corrected for biogenic opal of which content was determined by alkali extraction method as well as for the background of crystalline minerals as follows;

$$
\begin{equation*}
\mathrm{A}_{\mathrm{det}}=\mathrm{A}_{\text {tot }}-\frac{1.1 \times \mathrm{bioSiO}_{2}(\mathrm{wt} \%) \times \mathrm{A}_{\text {opal(100) }}}{100}-\sum_{i}\left(\frac{\mathrm{I}_{i}}{\mathrm{I}_{i(100)}} \times \mathrm{A}_{i(100)}\right) \tag{1}
\end{equation*}
$$

where I_{i} and A_{i} are peak intensity and background area of mineral i in the sample, respectively, whereas $\mathrm{I}_{(100)}, \mathrm{A}_{\text {i(100) }}$, and $\mathrm{A}_{\text {opal(100) }}$, are peak intensity and background areas of pure reference
mineral i and opal, respectively. The water content of biogenic opal is assumed as 10% [Mortlock and Froelich, 1989]. The content of detrital amorphous material is estimated by dividing $\mathrm{A}_{\text {det }}$ by $\mathrm{A}_{\text {dect(100) }}$. Background area of pure andesitic volcanic glass from Pliocene section in the northeast Japan was used for a calibration standard for transformation of $\mathrm{A}_{\text {det }}$ to weight\% because the detrital amorphous material in the samples are dominantly composed of altered volcanic glass as will be described later. The reproducibility of estimation in relative scale is within $\pm 10 \%$.

5-5. Grain Size Separation

Grain size separation was conducted for 10 selected samples to evaluate the chemical and mineral compositions of silt ($4-63 \mu \mathrm{~m}$) and clay ($<4 \mu \mathrm{~m}$) size fractions of the sediments. First, a fraction larger than $63 \mu \mathrm{~m}$ was removed by wet sieving. Then a fraction less than 63 $\mu \mathrm{m}$ was separated into silt and clay fractions by pipette method [Krumbein and Pettijohn, 1938]. Each fraction was weighed after dried, and sand / silt / clay ratio was calculated. The major elements, biogenic silica contents, and mineral compositions of silt and clay fractions were measured by XRF, alkali extraction method, and XRD, respectively. Because sand fraction was too small in amount (less than $11 \mathrm{wt} \%$), the major elements, biogenic silica contents, and mineral compositions of sand fraction were not analyzed.

6. Estimation of Dry Bulk Density

Dry bulk density (DBD) was estimated from GRAPE data which was measured onboard with 2 cm interval [Shipboard Scientific Party, 1990]. GRAPE density is an index of wet bulk density of sediment, whereas DBD is a function of wet bulk density and grain density of sediment. In case of late Quaternary sediments at Site 797, GRAPE density shows a linear relationship with DBD (Figure 5) because grain density of sediments are more or less similar between 2.44 and $2.88 \mathrm{~g} / \mathrm{cm}^{3}$. Based on this relation, the author derived the following regression equation to calculate DBD from the GRAPE density data,

$$
\begin{equation*}
\operatorname{DBD}\left(\mathrm{g} / \mathrm{cm}^{\prime}\right)=1.5 \times \text { GRAPE density }-1.6(\mathrm{r}=0.91) . \tag{2}
\end{equation*}
$$

The estimation error is $\pm 0.16 \mathrm{~g} / \mathrm{cm}^{3}$. The GRAPE density data for top 100 cm of core $797 \mathrm{~B}-1 \mathrm{H}$ show abnormally low values. This is probably because top part of the core is disturbed and fluidized during core handling on the deck. Onboard observation of core disturbance also support this idea. Although the author calculated DBDs from the above equation for the top 100 cm of the core, the estimated DBD for this part of the core could involve a large error.

Figure 5 Relationship between GRAPE density and dry bulk density (DBD) measured onboard.

7. Estimation of Detritus Content

The author estimated content of the detrital component (= Detritus\%) within the samples from LOI, bioSiO , and Carb-C, based on the following equation,

$$
\begin{equation*}
\text { Detritus } \%=100-\mathrm{LOI}-\operatorname{bioSiO}_{2}-\frac{56}{12} \times \mathrm{Carb}-\mathrm{C} \tag{3}
\end{equation*}
$$

Organic matter, water in biogenic opal, and the CO_{2} in carbonate are included in LOI. In equation (3), total carbonate is subtracted as calcite whose content is calculated from Carb-C. However, calcite fraction within Site 797 samples consist not only of biogenic calcite which is mainly composed of foraminifers but also of angular inorganic calcite grains. Since Kosa often contains several\% of calcite [Ishizaka, 1991], those inorganic carbon could be of aeolian origin. Thus, subtraction of all carbonates from the detrital component may result in underestimation of the detritus in the samples by as much as 2%. The detritus content estimated by equation (3) agrees well within $\pm 20 \%$ error with the total amount of detrital materials (smectite, illite, chlorite, amphiboles, quartz, feldspars, and detrital amorphous) estimated by XRD (Figure 6).

Figure 6 Relationship between content of detritus (Detritus\%) calculated from equation (3) and total sum of detrital mineral contents.

8. Q-mode Factor Analysis

Q-mode factor analysis was applied for the major element composition of samples in order to extract subcomponents within the detrital component and evaluate the possible range of composition of the subcomponents and their contents within individual samples. The author adopted the data transformation routine described by Miesch [1976], and used Systat ${ }^{\text {TM }}$ 5.2.1 for Macintosh ${ }^{\mathrm{TM}}$ to calculate factor loadings and factor scores. Symbols used here are listed below.

l	Number of samples
m	Number of elements
n	Number of subcomponents
$x_{k k}\left(x^{\prime \prime}{ }_{i k}\right)$	Concentration of k-th element in i-th sample (transformed)
$x_{\text {max }_{k}}$	Maximum concentation of k-th element
$x_{\text {min }_{k}}$	Minimum concentration of k-th element
$x_{\text {mean }}\left(x^{\prime \prime}\right.$ mean $\left._{k}\right)$	Average concentration of k-th element (transformed)
$a_{i j}\left(a^{\prime \prime}{ }_{i j}\right)$	Concentration of j-th subcomponent in i-th sample (transformed) based on
	varimax rotation
$f_{k}\left(f^{\prime \prime}{ }_{\mu k}\right)$	Concentration of k-th element in j-th subcomponent (transformed) based
$g_{k}\left(g^{\prime \prime}{ }_{j k}\right)$	on varimax rotation
	Concentration of k-th element in j-th subcomponent (transformed) based
$b_{i j}\left(b^{\prime \prime}{ }_{i j}\right)$	on oblique rotation
	Concentration of j-th subcomponent in i-th sample (transformed) based on
$S\left(S^{\prime \prime}\right)$	oblique rotation
$A\left(A^{\prime \prime}\right)$	Samples - elements matrix composed of $x_{i k}\left(x^{\prime \prime}{ }_{i k}\right)$
$F\left(F^{\prime \prime}\right)$	Samples - composition loadings matrix composed of $a_{i j}\left(a^{\prime \prime}{ }_{i j}\right)$
$G\left(G^{\prime \prime}\right)$	Composition score - elements matrix composed of $f_{j k}\left(f^{\prime \prime}{ }_{j k}\right)$
	Composition score - elements matrix composed of $g_{j k}\left(g^{\prime \prime}{ }_{\beta k}\right)$

$B\left(B^{\prime \prime}\right)$	Composition score -elements matrix composed of $b_{i j}\left(b^{\prime \prime}{ }_{j}\right)$
X	Transpose matrix of matrix X
X^{\prime}	Inverse matrix of matrix X
λ_{j}	Eigen value of matrix $S^{\prime \prime \prime} S^{\prime \prime}$
s_{j}	Scaling factor $[$ Miesch, 1976]
α_{j}	Constant which defines the oblique rotation angle of j-th subcomponent

8-1. Q-mode Factor Analysis with Varimax Rotation

For m elements, n subcomponents, and l samples, Q-mode factor analysis was used here to find the composition loading matrix A and the composition score matrix F from sample matrix S which satisfy

$$
\begin{equation*}
S=A F, \tag{4}
\end{equation*}
$$

where S is the $l \times m$ matrix composed of $x_{i k}$ which represent the concentration of k-th element in i-th sample, A is the $l x n$ matrix composed of $a_{i j}$ which represents concentration of j-th subcomponent in i-th sample, and F is the $n \times m$ matrix composed of f_{β} which represents concentration of k-th element in j-th subcomponent. Previous to analysis, sum of element composition for each sample was normalized to unity to prepare S. Then, re-scaling of concentrations of individual elements are conducted based on the following data transformation [Miesch, 1976] in order to equalize the variation of each element and obtain the transformed sample matrix $S^{\prime \prime}\left(=\left(x^{\prime \prime}\right)\right)$.

$$
\begin{equation*}
x_{i k}^{\prime \prime}=x_{i k}^{\prime} / \sqrt{\sum_{k} x_{i k}^{x^{2}}}, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{i k}^{\prime}=\left(x_{i k}-x_{\min _{k}}\right) /\left(x_{\max _{k}}-x_{\min _{k}}\right) \tag{6}
\end{equation*}
$$

where $x_{\max _{k}}$ and $x_{\min _{k}}$ are maximum and minimum concentrations of k-th element, respectively. For the transformed sample matrix $S^{\prime \prime}$, transformed factor loading matrix $A^{\prime \prime}\left(=\left(a_{i j}^{\prime \prime}\right)\right)$ is calculated, which satisfies

$$
\begin{equation*}
S^{\prime \prime \prime} S^{\prime \prime}=A^{\prime \prime \prime} A^{\prime \prime} \tag{7}
\end{equation*}
$$

where ' S '" and ' A " are transpose matrices of S ' and A ", respectively, and $S^{\prime \prime \prime} S^{\prime \prime}$ ' is called the matrix of cosine theta.

In the course of Q-mode factor analysis, number of subcomponents to explain the original data set should be determined. the author set criteria to determine the minimum number of subcomponent n as such that they explain more than 98.5% of the total variance. Namely,

$$
\begin{equation*}
\sum_{j=1}^{n} \lambda_{j} / \sum_{j=1}^{m} \lambda_{j} \geq 0.985 \tag{8}
\end{equation*}
$$

where $\lambda_{j}\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\mathrm{m}}\right)$ is eigen values of the matrix of cosine theta ($S^{\prime \prime \prime} S^{\prime \prime}$) which is calculated during the course of factor calculation. The number of non-zero eigen values is less than or equal to m. Because the maximum relative error for element concentrations used here is $\pm 1.5 \%$, this criteria should give enough precision for the factor analysis.

In the next step, an $l \times n$ matrix $A^{\prime \prime}$ is calculated from $S^{\prime \prime \prime} S^{\prime \prime}$ based on n -
subcomponents model to satisfy varimax criteria which is defined to make $\left.\sum_{j=1}^{n}\left(\sum_{i=1}^{1} a_{i j}\right)^{2}\right)^{2}$
maximized. Transformed factor score matrix $F^{\prime \prime}\left(=\left(f^{\prime \prime}\right)\right)$ is defined to satisfy

$$
\begin{equation*}
S^{\prime \prime}=A^{\prime \prime} F^{\prime \prime} \tag{9}
\end{equation*}
$$

and $F^{\prime \prime}$ can be calculated as

$$
\begin{equation*}
F^{\prime \prime}=\left(A^{\prime} A^{\prime \prime} A^{-11} A^{\prime \prime} S^{\prime \prime}\right. \tag{10}
\end{equation*}
$$

Row vectors of $F^{\prime \prime}$ gives characteristic chemical composition of subcomponents and are regarded as reference axes which are orthogonal in the n-dimensional space. Composition loadings ($a_{i j}$) and composition scores $\left(f_{j k}\right)$ can be calculated from factor loadings ($a^{\prime \prime}{ }_{i j}$) and factor scores $\left(f_{j k}^{\prime}\right)$ using following equations

$$
\begin{equation*}
a_{i j}=\frac{a^{\prime \prime} / s_{j}}{\sum_{j}\left(a_{i j}^{\prime \prime} / s_{j}\right)} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{j k}=s_{j} f_{j k}^{\prime \prime}\left(x_{\text {max }_{k}}-x_{\text {min }_{k}}\right)+x_{\text {min }_{k}} \tag{12}
\end{equation*}
$$

where $s_{j}=\left(1-\sum_{k} x_{\text {min }_{k}}\right) / \sum_{k}\left(f_{j}^{\prime \prime}\left(x_{\text {max }_{k}}-x_{\text {min }_{k}}\right)\right)$ [Miesch, 1976].

8-2. Oblique Rotation of Factor Scores

Some of composition loadings $\left(a_{i j}\right)$ and composition scores $\left(f_{j k}\right)$ calculated from varimax factor loadings $\left(a^{\prime \prime}\right)$ and factor scores $\left(f^{\prime}{ }_{j k}\right)$ may have negative values. However, negative composition loadings $\left(a_{i j}\right)$ and composition scores $\left(f_{j k}\right)$ could not be accepted as geologically reasonable content and composition of the subcomponents. To solve this problem, Leinen and Pisias [1984] proposed an objective criteria to re-define the reference axes (compositions of subcomponents). According to their criteria, every new reference axis $\bar{g}_{j}^{\prime \prime}=\left(g_{j 1}^{\prime \prime}, g_{j 2}^{\prime \prime}, \cdots, g_{j m}^{\prime \prime}\right)(j=1,2, \cdots, n)$ can be set on the plane made by corresponding varimax reference axis $\vec{f}_{j}^{\prime \prime}=\left(f^{\prime \prime}{ }_{j 1}, f_{j 2}^{\prime \prime}, \cdots, f_{j m}^{\prime \prime}\right)$ and mean sample vector
$\tilde{x}^{\prime \prime}$ mean $=\left(x^{\prime \prime}\right.$ mean $_{1}, x^{\prime \prime}$ mean $_{2}, \cdots, x^{\prime \prime}$ mean $\left._{m}\right)$ which is calculated from $\bar{x}_{\text {mean }}=\left(x_{\text {mean }_{1}}, x_{\text {mean }}^{2}, \cdots, x_{\text {mean }_{m}}\right)$
using equations (5) and (6). Namely,
$\vec{g}_{j}^{\prime \prime}=\frac{\left(1-\alpha_{j}\right) \bar{x}^{\prime \prime} \text { mean }+\alpha_{j} \bar{f}_{j}^{\prime \prime}}{\left|\left(1-\alpha_{j}\right) \bar{x}_{\text {mean }}^{\prime \prime}+\alpha_{j} \bar{f}_{j}^{\prime \prime}\right|}$
where α_{j} is a constant. For $n \times m$ matrix of the new reference axes $G^{\prime \prime}=\left(\begin{array}{c}\bar{g}_{1}^{\prime \prime} \\ \vdots \\ \bar{g}_{n}^{\prime \prime}\end{array}\right)$ which is
composed of the new factor scores $g^{\prime \prime}{ }_{j k}$, an $m \times m$ matrix R is defined as to satisfy

$$
\begin{equation*}
G^{\prime \prime}=R F^{\prime \prime} . \tag{14}
\end{equation*}
$$

Because $F^{\prime \prime}$ is orthogonal, R is calculated as

$$
\begin{equation*}
R=G^{\prime \prime} F^{\prime \prime} \text {, } \tag{15}
\end{equation*}
$$

where ${ }^{t} F^{\prime \prime}$ is transpose matrix of $F^{\prime \prime}$. Using the inverse matrix of R, equation (9) can be rewritten as

$$
\begin{align*}
S^{\prime \prime} & =A^{\prime \prime} F^{\prime \prime} \\
& =A^{\prime \prime} R^{-1} R F^{\prime \prime} \tag{16}\\
& =B^{\prime \prime} G^{\prime \prime}
\end{align*}
$$

where $B^{\prime \prime}\left(=\left(b^{\prime \prime}{ }_{i j}\right)\right)=A^{\prime \prime} R^{-1}$, and $b^{\prime \prime}{ }_{i j}$ are regarded as the new factor loadings. Newly defined composition loading matrix $B\left(=\left(b_{i j}\right)\right)$ and composition score matrix $G\left(=\left(g_{j k}\right)\right)$ can be calculated using transformations similar to equations (11) and (12), respectively.

Leinen and Pisias [1984] conducted oblique rotation of varimax reference axes until the negative composition scores $\left(f_{j k}\right)$ calculated from varimax factor scores $\left(f^{\prime \prime}{ }_{j k}\right)$ become zero. In this case, some of composition loadings $\left(b_{i j}\right)$ may have negative values which are not geologically acceptable. For this reason, the author adopted tighter criteria that both B and G have no negative value. Our criteria do not define unique composition loadings ($b_{i j}$) nor scores $\left(g_{\beta}\right)$ but could constrain α_{j} into certain ranges. In general, the maximum α_{j} gives the nonnegative composition score limit whereas the minimum α_{j} gives the non-negative composition loading limit. Resulted composition loadings $\left(b_{i j}\right)$ and scores $\left(g_{j k}\right)$ are interpreted as contents and element concentration of subcomponents for samples, respectively. The meaning of
subcomponents extracted by Q-mode factor analysis is explored through comparing composition loadings $\left(b_{i j}\right)$ with mineral contents, which could give further constraint on α_{j} as will be described in the next section.

9. Estimation of Mineral Composition of Subcomponents based on Multiregression Analysis

To characterize the subcomponents extracted by Q-mode factor analysis using chemical composition data, it is useful to estimate the mineral composition of these subcomponents. Multi-regression analysis between the contents (composition loadings) of the subcomponents and the mineral composition for individual samples was performed to estimate the mineral composition of each subcomponent. Symbols used here are listed below.

l	Number of samples
p	Number of minerals
$y_{i t}$	Concentration of r-th mineral in i-th sample
b_{j}	Concentration of j-th subcomponent in i-th sample based on oblique
	rotation
$h_{j r}$	Concentration of r-th mineral in j-th subcomponent
Y	Sample - mineral matrix composed of $y_{i r}$
B	Composition score -elements matrix composed of $b_{i j}$
H	Multi-regression coefficient matrix composed of $h_{j r}$

Mineral composition matrix of p minerals for l samples is defined as $Y\left(=\left(y_{i_{r}}\right)\right)$ where y_{i} is r-th mineral content of i-th sample. Total of mineral contents for individual samples are normalized to unity. Multi-regression analysis was conducted to calculate multi-regression coefficient matrix $H\left(=\left(h_{j}\right)\right)$ which satisfy

$$
\begin{equation*}
Y=B H \tag{17}
\end{equation*}
$$

where B is composition loadings calculated by Q -mode factor analysis with oblique rotation. Since H should satisfy the least square criteria, H is calculated as

$$
\begin{equation*}
H=\left({ }^{t} B B\right)^{-1 t} B Y \tag{18}
\end{equation*}
$$

where ${ }^{I} B$ is transpose matrix of B. In this $H, h_{j r}$ can be interpreted as r-th mineral content of j-th subcomponent. The calculation was performed by Systat ${ }^{\text {TM }} 5.2 .1$ for Macintosh ${ }^{\text {TM }}$. If B represents actual contents of the subcomponents, H should be zero or positive. This criteria may further constrain possible range of α.

10. Estimation of Silt / Clay Ratio of Each Subcomponent

In order to examine the grain size (silt / clay ratio) of each subcomponent (factor), the content of each factor in the clay fraction and the silt fraction is estimated as follows. First, the total of chemical composition of each selected sample is normalized to unity. Then, each composition value is transformed using equations (5) and (6). This transformed composition vector can be treated as \vec{g}_{j} and factor loadings of each selected sample is calculated using equation (15). Composition loadings (content of each factor) within silt and clay fractions of each sample can be calculated using equation (11).

Using the content of each factor in the silt and clay fractions and silt / clay ratio of the bulk samples, the silt / clay ratio of each factor is calculated as

$$
\begin{equation*}
\left(\frac{\text { Silt }}{\text { Clay }}\right)_{\text {Factor } j}=\frac{(\text { Factor } j(\%))_{\text {sil }}}{(\text { Factor } j(\%))_{\text {clay }}} \times\left(\frac{\text { Silt }}{\text { Clay }}\right)_{\text {bulk }} \tag{19}
\end{equation*}
$$

11. Results

11-1. Grain Composition

Smear slide observation shows that late Quaternary sediments at Site 797 mainly consist of a detrital component with subordinate amount of biogenic and diagenetic components. Detrital grain compositions are listed in Table 1. The detrital component in the clay size fraction consists dominantly of clay minerals, whereas that in silt and sand size fractions consist dominantly of subangular to subrounded monocrystalline quartz, feldspars, and light brownish rounded altered volcanic glass, with small amounts of flaky fresh or altered mica (biotite and/or muscovite), rutile, and amphiboles. Largest detrital grain was quartz, feldspars, or flaky mica. The reproducibility of measurement of largest grain size is $\pm 31 \mu \mathrm{~m}$ based on comparison between measurement of Tada et al. [1992] and this work (Figure 7a). The grain size is larger during Stage 2 and substage 6.2 which are glacial maxima (Figure 7b). Ten samples contain significant amount of angular transparent fresh volcanic glass shards. Inorganic calcite are clay to silt size and irregular in shape. Biogenic component consists dominantly of siliceous microfossils such as diatoms with minor amount of radiolarians and sponge spicules. Calcareous microfossils such as foraminifers and cocolith occur only sporadically. Diagenetic component consists mostly of framboidal pyrite.

11-2. Major Elements Composition

The result of XRF analysis are listed in Table 2. The range and average concentration of each element are also listed in the last four rows in Table 2. Elements such as $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}$, $\mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}$, and $\mathrm{K}_{2} \mathrm{O}$ show positive correlation with $\mathrm{Al}_{2} \mathrm{O}_{3}$ except for 10 tuffaceous samples and one sample with extremely high MgO (Figure 8). Tuffaceous samples have wide range of chemical composition suggestive of different volcanic sources. One sample with high MgO content is from a thick dark layer, and this sample contains relatively high CaO and carbonate

Figure 7a Relationship between the largest grain size measurement by Tada et al. [1992] and by this work.

Figure 7b Depth profile of the largest grain size.

Figure 8 Relationships between SiO_{2} (a), TiO_{2} (b), MgO (c), CaO (d), $\mathrm{Na}_{2} \mathrm{O}$ (e), $\mathrm{K}_{2} \mathrm{O}$ (f) and $\mathrm{Al}_{2} \mathrm{O}_{3}$.
carbon [Tada et al., 1996]. Thus high MgO is considered to be originated from Mg -carbonate. LOI and CaO show the negative correlation with $\mathrm{Al}_{2} \mathrm{O}_{3}$, and LOI shows positive correlation with the contents of organic carbon and carbonate carbon. $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{MnO}$, and $\mathrm{P}_{2} \mathrm{O}_{5}$ do not show clear correlation with $\mathrm{Al}_{2} \mathrm{O}_{3}$. Extremely high ($>1 \mathrm{wt} \%$) MnO samples occur within the stratigraphic intervals between 0 and $60 \mathrm{cmbsf}, 700$ and 790 cmbsf , and at 1108 cmbsf , respectively, and these intervals correspond to interglacial stage 1 and substage 5.5 . Almost all samples shows the $\mathrm{P}_{2} \mathrm{O}_{5}$ content between 0.076 and $0.179 \mathrm{wt} \%$, however there are 2 samples with $\mathrm{P}_{2} \mathrm{O}_{5}$ contents of 0.546 and $2.25 \mathrm{wt} \%$ at 44 and 480 cmbsf , respectively, which correspond to stage 1 and substage 5.1.

11-3. Biogenic Silica Content

Biogenic silica content is ranging from 2.5 to $18.9 \mathrm{wt} \%$ (Table 3). It is generally higher at $0-100 \mathrm{cmbsf}$ and $500-850 \mathrm{cmbsf}$ which correspond to oxygen isotope stage 1 and stage 5 (Figure 9). Samples at 224 and 239 cmbsf also show high biogenic silica contents. Samples with high biogenic silica show high abundance of diatom [Tada et al., 1996] except for a sample at 224 cmbsf . Sample at 224 cmbsf shows rare diatom frustules based on smear slide observation, however it is just below tuffaceous samples and is considered to contain extremely fine volcanic glass. Its "biogenic silica" content could be overestimation due to faster dissolution of these fine glass.

11-4. Mineral Composition

The result of XRD analysis are listed in Table 4. The range and average of content of each mineral (including detrital amorphous material) are also listed in the last four rows in Table 4. XRD analysis shows that major detrital components are clay minerals (average 36\%), detrital amorphous (av. 27%), quartz (av. 16%), and feldspars (av. 4%). Within clay minerals, smectite and illite are dominant (av. 18\% and 15\%, respectively) followed by chlorite +

Figure 10 Depth profiles of contents of quartz (a), feldspars (b), detrital amorphous (c), smectite (d), illite (e), chlorite + kaolinite (f), amphiboles (g), calcite (h), pyrite (i), and rhodochrosite (j). Corresponding oxygen isotope stages are from Tada et al. [1996].

Figure 10 (continued)

Figure 11 Depth profiles of Quartz/Detritus (a), Feldspars/Detritus (b), (detrital Amorphous)/Detritus (c), Smectite/Detritus (d), Illite/Detritus (e), and (Chlorite + Kaolinite)/Detritus (f). Corresponding oxygen isotope stages are from Tada et al. [1996].
kaolinite (av. 3%). Contents of quartz and feldspars are lower between 0 and 100 cmbsf and between 600 and 800 cmbsf which correspond to oxygen isotope stages 1 and 5 (Figure 10a, b).

Since these fluctuation patterns are mirror image of biogenic silica (Figure 9), it could be due to the dilution effect by biogenic silica. To remove this effect, the author normalized mineral contents by Detritus \%. Quartz/detritus and feldspars/detritus are higher between 100 and 450 cmbsf and between 850 and 1300 cmbsf which correspond to glacial stages 2 to 3 and 6 whereas they are lower between 0 and 100 cmbsf and between 450 and 850 cmbsf which correspond to interglacial stages 1 and 5 (Figure 11a, b). On the other hand, detrital amorphous/detritus and smectite/detritus are lower during glacial stages and higher during interglacial stages (Figure 11c, d). Illite/detritus and (chlorite+kaolinite)/detritus are higher at $80-150,500-600$, and $650-800 \mathrm{cmbsf}$ which corresponds to interglacial stage 5 and it is generally lower in other intervals (Figure 11e, f). These results show that the detrital mineral composition within detrital component tends to change in harmony with glacial - interglacial cycles.

Twenty five samples show detectable calcite peak and the content ranges from 2.4 to 34%. Other samples show no detectable calcite peak. Amphiboles and pyrite are minor but common constituents. Pyrite is of diagenetic origin and rich in dark layers. Small amount of gypsum and jarosite are found in several samples from the second sample set especially those rich in calcite and pyrite as is noted in remarks in Table 4. They were considered to be formed by oxidation of pyrite and reaction with calcite during sample storage. Some samples in the interval between 700 and 840 cmbsf and at 1108 cmbsf contain a minor amount of rhodochrosite. They correspond to MnO rich samples and are considered as of diagenetic origin.

11-5. Result of Grain Size Separation

Grain size composition of 10 selected samples are listed in Table 5. Content of sand
(>63 $\mu \mathrm{m}$) fraction ranges from 0 to 11% but most of samples contain less than 3% of sand. Silt (4 to $63 \mu \mathrm{~m}$) content ranges from 24 to 41% and varies by factor of 1.7. Clay ($<4 \mu \mathrm{~m}$) fraction show negative correlation with silt fraction and ranges from 56 to 71%. Thus the variation in silt/ clay ratio rather than the variation of sand fraction is considered as a major cause of variations in the bulk chemical composition of sediments. Biogenic silica contents and major elements composition of silt and clay fraction are also listed in Table 5 and mineral composition of these two fractions are listed in Table 6. BioSiO_{2} in the silt fraction is generally lower (0 to 6%) than that of clay fraction (3 to 10%) in spite of higher total SiO_{2} content of silt fraction than that of clay fraction (Table 5). This is because silt fraction contains more quartz than clay fraction (Table 6). Higher $\mathrm{Al}_{2} \mathrm{O}_{3}$ content of clay fraction suggests the higher clay mineral content in this fraction (Table 5). Table 6 shows that clay fraction is chracterized by higher smectite and detrital amorphous content.

11-6. Dry Bulk Density

Estimated DBD values for all samples are listed in Table 3. DBD is ranging from 0.3 to $0.85 \mathrm{~g} / \mathrm{cm}^{3}$ except for the interval between 0 and 100 cmbsf where it is abnormally low (0.2 to $0.4 \mathrm{~g} / \mathrm{cm}^{3}$) (Figure 12a). This is probably because top part of the core is disturbed and fluidized during core handling on the deck as is described previously. Below $100 \mathrm{cmbsf}, \mathrm{DBD}$ tends to be low within the interval of 500 to 850 cmbsf , moderate within 1000 to 1300 cmbsf , and high within 100 to 500 cmbsf and 850 to 1000 cmbsf . DBD at Site 797 has negative correlation $(\mathrm{r}=-0.73)$ with bioSiO 2 (Figure 12 b) which is interpreted as caused by the higher content of porous diatom frustules in higher bioSiO $\mathrm{Samples}_{2}$ [Tada and Iijima, 1983].

11-7. Content of Detrital Material

Estimated content of detrital material (=Detritus\%) for all the samples are listed in Table 3. Detritus \% in the studied samples ranges from 61 to $92 \mathrm{wt} \%$. The detritus content is higher in the intervals between 100 and 450 cmbsf and 850 and 1300 cmbsf which correspond to glacial stages 2 to 4 and 6 (Figure 13). It is a mirror image with the variation of bioSiO ${ }_{2}$.

Figure 12a Depth profile of dry bulk density (DBD). Corresponding oxygen isotope stages are from Tada et al. [1996].

Figure 12b Relationship between biogenic silica (bioSiO ${ }_{2}$) content and dry bulk density (DBD).

Figure 13 Depth profile of content of detritus (Detritus\%) calculated from equation (3).

12. Partitioning of the Detrital Component

Q-mode factor analysis of the major elements was performed in order to identify the detrital subcomponents and estimate their composition and contents in each sample. Since our major interest is focused on the quantitative estimation of Kosa contribution within the detrital component, the author conducted two step factor analysis as is described below (Figure 14).

12-1.STEP1: Factor Analysis of All Major Elements for All Samples

As a first step, Q-mode factor analysis was conducted for all samples using all 11 major elements ($\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{MnO}, \mathrm{MgO}, \mathrm{CaO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}, \mathrm{P}_{2} \mathrm{O}_{5}$, and LOI). Result of preliminary analysis shows that five factors could explain 98.8% of the total variance. Thus, the author repeated Q-mode factor analysis again based on a 5 factor model with varimax rotation. Extracted 5 factors are named as Factors A through E in descending order of variance explained by each varimax factor. After calculation of composition loadings and composition scores from varimax factor loadings and factor scores, respectively, the author conducted multi-regression analysis of the composition loadings for each sample with its content of minerals including smectite, illite, chlorite + kaolinite, amphiboles, quartz, feldspars, detrital amorphous, bioSiO ${ }_{2}$, calcite, organic carbon, pyrite and rhodochrosite. Composition loadings and multi-regression coefficients should give the contents of elements and minerals of each subcomponents (Factors A through E). In this step, the author did not apply oblique rotation to extract geologically reasonable chemical and mineral composition of subcomponents because the result obtained was enough to examine the chemical and mineralogical character of each subcomponents. Several negative composition scores and negative multi-regression coefficients suggest smaller contents of the elements and minerals whereas large positive composition scores and positive multi-regression coefficients suggests larger contents. Calculated composition scores of each elements for each factor are shown in Table 7 in which the factor with composition scores larger than the average of samples has

Figure 14 Flow chart of statistical analysis.
positive contribution to the elements (Figure 15). Multi-regression coefficients are also listed in Table 7 in which the factor with multi-regression coefficients larger than the average mineral contents of samples has positive contribution to the minerals (Figure 16). Calculated composition scores and multi-regeression coefficients are listed in Table 7.

Factor A has strong positive contribution to $\mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}, \mathrm{~K}_{2} \mathrm{O}$, and MgO , and strong negative contribution to $\mathrm{LOI}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{MnO}, \mathrm{CaO}$, and $\mathrm{P}_{2} \mathrm{O}_{5}$ (Figure 15). It shows strong positive contribution to smectite, illite, chlorite + kaolinite, amphiboles, quartz, and feldspars (Figure 16). Thus, this factor is attributable to a subcomponent characterized by detrital material. Factor B has strong positive contribution to $\mathrm{LOI}, \mathrm{CaO}$, moderate contribution to TiO_{2} and MgO , and strong negative contribution to SiO_{2} and MnO (Figure 15). It shows strong positive contribution to calcite and organic carbon, and moderate positive contribution to illite, chlorite + kaolinite, amphiboles, and quartz (Figure 16). Based on these relationships, Factor B is mainly attributable to a subcomponent characterized by calcite and organic carbon with small contribution of detrital material. Factor C has strong positive contribution to $\mathrm{SiO}_{2}, \mathrm{Na}_{2} \mathrm{O}$, and $\mathrm{K}_{2} \mathrm{O}$, moderate contribution to LOI and $\mathrm{Al}_{2} \mathrm{O}_{3}$, and strong negative contribution to TiO_{2}, MgO , and CaO (Figure 15). It shows strong positive contribution to biogenic silica and detrital amorphous, and moderate positive contribution to smectite and feldspars (Figure 16). Some of samples with high contribution of Factor C contain abundant fresh volcanic glass shards under the microscope. Thus, this factor is attributable to a subcomponent characterized by biogenic silica and volcanic glass with low TiO_{2} and MgO and high $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$ contents. Factor D has strong positive contribution to $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$, moderate contribution to LOI and $\mathrm{Na}_{2} \mathrm{O}$, and strong negative contribution to MnO and CaO (Figure 15). It shows strong positive contribution to pyrite and organic matter, and moderate positive contribution to smectite and detrital amorphous (Figure 16). Thus, this factor is attributable to a subcomponent characterized by diagenetic pyrite suggestive of reducing condition with small contribution of detrital material. Factor E has strong positive contribution to MnO and $\mathrm{P}_{2} \mathrm{O}_{5}$, and moderate contribution to MgO and $\mathrm{Na}_{2} \mathrm{O}$ (Figure 15). It shows positive contribution to rhodochrosite and biogenic silica (Figure 16). However, moderately negative contribution of this factor to

Figure 15 Composition scores of factors calculated by Q-mode factor analysis for all analyzed samples using all elements with varimax rotation.

Figure 16 Multi-regression coefficients calculated by multi-regression analysis of mineral composition to the composition loadings calculated by Q-mode factor analysis for all analyzed samples using all elements with varimax rotation.
SiO_{2} (Figure 15) suggests that positive contribution to bioSiO ${ }_{2}$ could be superficial. Thus, Factor E is attributable to a subcomponent characterized by diagenetic manganese oxihydroxide or manganese carbonate with small contribution of detrital material, and the former could have been originally precipitated as manganese oxide under oxic bottom water conditions.

These result suggests that contribution of the detrital component is largely included in Factor A and Factor C with minor inclusions in Factor B, D, and E. Consequently, it is not possible to extract the detrital component and partition it into subcomponents by Q -mode factor analysis using all major elements of all samples.

12-2.STEP2: Factor Analysis Using "Detrital" Elements

In order to extract the detrital component and partition it into subcomponents of different origin by Q-mode factor analysis, the elements which contribute mostly to "detrital" factors (Factors A and C) such as $\mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}$, and $\mathrm{K}_{2} \mathrm{O}$ are selected (Figure 15). Detrital $\mathrm{SiO}_{2}\left(\mathrm{detSiO}_{2}\right)$ is also included which are calculated by subtracting biogenic SiO_{2} from total SiO_{2}. The elements which are strongly affected either by biogenic components $(\mathrm{CaO}$, $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{LOI}$) or by diagenetic components $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{MnO}\right)$ are excluded. The sum of detSiO ${ }_{2}$, $\mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}$, and $\mathrm{K}_{2} \mathrm{O}$ accounts for approximately 90% of the detrital component. This means that detrital subcomponents partitioned from these 6 elements by themselves could explain approximately 90% of the bulk detrital materials within the samples (Figure 17).

Ten samples which contain significant amount of fresh volcanic glass were excluded because those fresh volcanic glass was probably supplied by ash fall from various volcanoes and could have a wide compositional range. The wide compositional range of volcanic glass would violate the basic assumption that each subcomponent have the specific chemical composition. One sample with high MgO content was also excluded from analysis because relatively high content of CaO and carbonate carbon of this sample suggest that the origin of MgO in this sample is magnesium-calcium carbonate although $31^{\circ} 2 \theta$ peak of dolomite is not

Figure 17 Interrelationship between the content of detritus and the total sum of "detrital" elements ($\operatorname{det} \mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}$, and $\mathrm{K}_{2} \mathrm{O}$)
clear due to overlapping with feldspars peak.
As a second step, Q-mode factor analysis was conducted again using the 6 selected "detrital" elements for 213 selected samples. Preliminary result of analysis shows that four factors explain the 98.7% of the total variance. Based on this result, the author conducted Q-mode factor analysis based on a 4 factor model with varimax rotation. Extracted factors are named Factor 1 through 4 in descending order of variance explained by each varimax factor. The result gave a negative value of MgO composition score for Factor 4. To avoid the negative value, the author applied oblique rotation of all varimax factor axes and obtain the rotation angles which satisfy the requirements that all composition scores are positive. The author calls these angles as non-negative score limits (NNSs). Then, the author rotated one factor axis at one time while another 3 factors are fixed at NNSs to find a non-negative loading limit (NNL) for each factor. The possible range (from NNS to NNL) of compositions scores of each factor are shown in Figure 18 and listed in Table 8.

Figure 18 shows the interrelationships between element ratios detSiO $/ \mathrm{Al}_{2} \mathrm{O}_{3}$, $\mathrm{MgO} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~K}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{TiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ for the selected samples. The diagrams show general trend from high detSiO$/ \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{TiO} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~K}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ ratios and low $\mathrm{Na}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio to low det $\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{TiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~K} 2 \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ ratios and high $\mathrm{Na}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio. Factor 1 represents the detrital subcomponent characterizing one end of this trend, whereas Factor 2 represents the subcomponent characterizing the other end. The major trend of compositional variation shown in Figure 18 is explained by these two factors. Factor 3 explains deviation from this major trend towards higher detSiO $/ 2 / \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ ratios, and lower $\mathrm{TiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO} / \mathrm{Al}_{2} \mathrm{O}_{3}$, and $\mathrm{K}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ ratios. Factor 4 explains the deviation toward the other side characterized by high $\mathrm{TiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio, low $\mathrm{MgO} / \mathrm{Al}_{2} \mathrm{O}_{3}$, $\mathrm{Na} \mathrm{N}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$, and $\mathrm{K}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ ratios, and moderate detSiO$/ \mathrm{Al}_{2} \mathrm{O}_{3}$ ratio.

12-3. Mineral Composition of the Detrital Subcomponents

The result of the multi-regression analysis between composition loadings (contribution

- Sample - Varimax Factor Score \circ NNS \triangle NNL

Figure 18 , $\mathrm{DetSiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (a), $\mathrm{MgO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (b), $\mathrm{Na}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (c), $\mathrm{K}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (d) versus $\mathrm{TiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ plots of samples and detrital subcomponents (Factors 1 through 4) estimated by Q-mode factor analysis of "detrital" elements. Possible ranges of composition for each factor is shown between non-negative score limit (NNS) and non-negative loading limit (NNL).

Figure 19 Mineral composition ranges of each detrital subcomponent calculated by multiregression analysis of detrital mineral composition and composition loadings.
of each factor) and the bulk detrital mineral contents normalized by the detrital content for each sample gives the ranges of mineral composition for each factor as is listed in Table 9 and shown in Figure 19. Mathematically possible ranges of mineral composition may include negative values which are geologically unrealistic. To eliminate such mineral compositions, rotation angles should be further adjusted within the range between NNS and NNL. Figure 19 shows that Factor 2 have negative range of quartz content between -45% and -2% which is significant even after taking into account of estimation error ($\pm 2 \%$). Accommodation of this constraint further narrow the chemical and mineral composition ranges of the factors which is listed in Table 10.

As is obvious from Figure 19, Factor 1 is characterized by high contents of quartz, feldspars, amphiboles, illite, and chlorite + kaolinite, moderate content of smectite, and low content of detrital amorphous. By contrast, Factor 2 is characterized by high contents of smectite and detrital amorphous, and low contents of quartz, feldspars, illite, chlorite + kaolinite, and amphiboles. Factor 3 is characterized by high contents of amphiboles and detrital amorphous, and low contents of other crystalline minerals. The composition of Factor 4 is similar to that of Factor 1 except its lower content of smectite.

12-4. Silt / Clay Ratio of the Detrital Subcomponents

The silt / clay ratio of 10 selected samples ranges from 0.31 to 0.71 (Table 11). Major element compositions of the clay fraction are characterized by relatively low $\mathrm{TiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\operatorname{det} \mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ ratios whereas those of the silt fraction are characterized by higher $\mathrm{TiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$, det $\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ ratios as compared with the ratios for the bulk samples (Figure 20). Figure 20 shows that chemical composition of clay fraction are approximately on the mixing line of Factor 1 and Factor 2 whereas those of silt fraction are in the mixing triangle of Factor 1, Factor 3, and Factor 4. This suggest that Factor 1 and Factor 2 largely contributed to clay fraction and Factor 3 and Factor 4 largely contributed to silt fraction. Figure 21 shows that samples with high Factor 3 and Factor 4 content tend to have higher silt/ clay ratio.

In order to evaluate this tendency, silt / clay ratio of each factor was estimated. Although the result may contain large error, the silt / clay ratios are estimated as 0.21 to 0.55 for Factor 1, 0.12 to 0.43 for Factor 2, 0.5 to 3.1 for Factor 3 and 1.0 to 5.6 for Factor 4, respectively (Table 11). The result suggests that Factor 3 and Factor 4 are composed dominantly of silt size grains whereas Factor 1 and Factor 2 are composed dominantly of clay size grains.

| . Sample O Silt Fraction Δ Clay Fraction \quad Detrital Subcomponent |
| :---: | :---: | :---: | :---: | :---: | :---: |

Figure 20 DetSiO $/ 2 \mathrm{Al}_{2} \mathrm{O}_{3}$ (a), $\mathrm{MgO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (b), $\mathrm{Na}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (c), $\mathrm{K}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (d) versus $\mathrm{TiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ plots of selected 213 bulk samples and silt and clay fraction of selected 10 samples.

Figure 21 Interrelationship between silt /clay ratio and Factor $3+$ Factor 4 (\%) for selected 10 samples

13. Origin of Detrital Subcomponents

Based on the result of examination of chemical and mineral composition and grain size of the detrital subcomponents estimated by factor analysis, the characteristics of each factor is summarized in Table 10.

In order to estimate the origin of these factors (= detrital subcomponents), chemical and mineral composition as well as silt / clay ratio of the factors are compared with those of possible source materials. Because these four factors are characterized with significantly different chemical composition, their difference is most clearly demonstrated by $x-y$ plots of $\operatorname{det} \mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~K} 2 \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{TiO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ (Figure 18). The author compares the composition of the subcomponents with those of Kosa [Inoue and Naruse, 1987, Kanamori et al., 1991], suspended dust from Gobi [Parungo et al., 1994], Pliocene neritic mudstone collected from the Northern Japan which represents fine-grained detritus derived from Japan Arc [Irino, 1992MS, Sakamoto, unpublished data], and various Quaternary tephra from Japan [Machida and Arai, 1992] on these diagrams (Figure 22). Cited data are also listed in Table 12. DetSiO ${ }_{2}$ was not available for Kosa and neritic mudstone. As is obvious from Figure 22, composition of Kosa and Gobi dust are plotted on the mixing line between Factors 1 and 4 whereas that of detritus derived from the Japan Arc fall on the mixing line between Factors 2 and 3. These relations suggest that Factors 1 and 4 are attributable to Kosa, whereas Factors 2 and 3 are attributable to the detritus derived from Japan Arc, respectively. Silt / clay ratio of each factor further suggests that Factors 1 and 4 represent fine and coarse fraction of Kosa whereas Factors 2 and 3 represent fine and coarse fraction of arc-derived detritus, respectively. In addition, Factors 1 and 4 are rich in quartz and feldspars which are main constituents of Kosa [Ishizaka, 1991] whereas Factor 2 and Factor 3 are rich in detrital amorphous and smectite which are consistent with the smear slide observation that altered volcanic glass and weathered volcanoclastics are common in the studied sediments and are most likely derived from the Japan Arc.

Based on these estimation on the origin of each factor, the author defines percentage of Kosa within the detrital component as

$$
\begin{equation*}
\text { Kosa fraction }(\%)=\text { Factor } 1(\%)+\text { Factor } 4(\%) . \tag{20}
\end{equation*}
$$

The author also defines Kosa grain size index (KGI) and arc-derived detritus grain size index (AGI) as follows,

$$
\begin{equation*}
\mathrm{KGI}=\frac{\text { Factor } 4(\%)}{(\text { Factor } 1(\%)+\text { Factor } 4(\%))}, \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{AGI}=\frac{\text { Factor } 3(\%)}{(\text { Factor } 2(\%)+\text { Factor } 3(\%))} \tag{22}
\end{equation*}
$$

Composition loadings of each detrital subcomponents, Kosa fraction, KGI, and AGI for each sample are listed in Table 13.

Figure 22 Comparison of chemical composition of each detrital subcomponent with possible source materials: The data included in Kosa category are Kosa collected in Japan ($\mathrm{n}=21$) [Inoue and Naruse, 1987, Kanamori et al., 1991], and air-suspended dust from Gobi $(\mathrm{n}=3)$ [Parungo et al., 1995], whereas the data included in arc-derived detritus category are neritic mudstones of the Japan Sea side ($\mathrm{n}=195$) [Irino, 1992MS, Sakamoto, unpublished data]. Data for various Quaternary tephra $(\mathrm{n}=8)$ is from Machida and Arai [1992]. Open circle, open triangle, and open square indicate the average composition of Kosa and Gobi dust, are-derived detritus, and tephra, respectively.

14. Variation in Kosa Fraction, KGI, and AGI during the Last 200 ky

Figure 23a shows the temporal variation in Kosa fraction at Site 797 during the last 200 ky. Variation in Kosa fraction is generally in harmony with glacial-interglacial cycles with higher fraction of up to 62% during glacial stages and lower fraction of 40% during interglacial stages. Although overall profile of Kosa fraction resembles "typical" oxygen isotope curve [e.g. Martinson et al., 1987], millennial scale fluctuation is superimposed on the glacialinterglacial changes with the magnitude almost as large as that of the latter. Kosa grain size index (KGI) shows 10 ky -scale variation with the larger values of 0.18 to 0.35 at stages 1,2 , and 4 , and substage 6.2 , and the smaller values of 0 to 0.15 at the end of stage 3 , and substages 5.5 and 6.3 to 6.5 (Figure 23b). KGI shows millennial-scale fluctuation with the amplitude as large as that for 10 ky -scale changes. Arc-derived detritus grain size index (AGI) tends to have larger values of 0.5 to 0.7 during stages 2 to 3 and substages 6.2 to 6.5 , and the smaller values of 0.2 to 0.5 during stage 1 , and substages 5.3 and 6.6 (Figure 23c). AGI also shows millennial-scale fluctuation but the amplitude tend to be smaller than that for 10 ky -scale changes.

Variation in Kosa fraction can be caused by changes either in Kosa flux or in arcderived detritus flux. In order to examine which is more important, the author compared the fluctuation pattern of Kosa fraction with those of KGI and AGI. Close inspection of the phase relationship between the millennial-scale oscillations in Kosa fraction and KGI suggests that the minima in Kosa fraction tend to agree with the millennial-scale minima in KGI although KGI minima lag by one sample behind the minima in Kosa fraction in several cases. Phase delays are less than 2 ky . On the other hand, the maxima in AGI shows excellent agreement with the minima in Kosa fraction without any phase shift. Amplitude of the millennial-scale decrease in Kosa fraction is most easily explained by relative increase in coarse arc-derived detritus (Factor 3) because its variation shows the mirror image with the variation in Kosa fraction and the amplitude of the two are approximately the same (Figure 23d). Millennialscale variation in AGI also seems to be mainly caused by variation in the fraction of coarse
arc-derived detritus. On the other hand, the millennial-scale variation in KGI tend to lag behind the variation in Kosa fraction, and the amplitude of variation in coarse Kosa does not seem enough to explain the millennial-scale variation in Kosa fraction (Figure 23d). From these reasons, the author consider changes in the flux of arc-derived detritus is more responsible for the millennial changes in Kosa fraction.

Then, what caused the millennial-scale increase in coarse are-derived detritus flux ? There are two possible explanations. First explanation is the enhanced lateral transport of suspended load along the pyenocline [Harlett and Kulm, 1973] at the time of stronger density stratification in the Japan Sea. Tada et al. [1996] suggest that dark layers were deposited in the Japan Sea when the relative contribution of the East China Sea Coastal Water (ECSCW) influx increased. Stronger density stratification in the water column caused by the influx of the ECSCW with slightly lower salinity could have enhanced lateral transport of suspended load along the pyenocline. This is consistent with general coincidence of AGI maxima with the maxima of ECSCW influx suggested by diatom assemblage [Tada et al., 1996]. The other explanation is that the increase in precipitation on the Japanese islands resulted in the increase in the total arc-derived detritus discharge to the Japan Sea including its coarser fraction. Generally speaking, increasing river discharge tend to increase the capacity of rivers to carry coarser detritus which may result in the increase in AGI [Allen, 1970]. From currently available data alone, the author cannot specify which explanation is more likely.

The decrease in KGI could be caused either by the increase in distance to the dust source area or by the weakening of wind intensity. The increase in the distance to the source area is caused by retreat of the eastern margin of the desert due to increasing vegetation cover on the Loess Plateau. Tada et al. [1996] suggested that the strong ECSCW influx to the Japan Sea during deposition of the dark layers could have been resulted from increasing precipitation within inland China and the consequent increase in discharge of Huanghe and Changjiang Rivers. If this interpretation is correct, the decrease in KGI within the dark layers suggests that the retreat of the eastern margin of the desert area occurred during these periods. Then, the phase delay of KGI minima from the start of the dark layers deposition might have reflected
the duration which was necessary for the recovery of vegetation cover. In order to further explore the possible influence of wind intensity on KGI, the author compared KGI record from Site 797 with the loess-paleosol sequences in China [Kukla and An, 1989] and their high resolution grain size record [Porter and An, 1995] (Figure 24). In 10 ky-scale, KGI at Site 797 tends to be lower during the periods of soil formation in the Loess Plateau (Figure 24). In millennial-scale, the maxima in KGI between 10 and 80 ka agree in timing, within the uncertainty of age determination, with the maxima in the quartz grain size observed in the loess sequence of China, which Porter and An [1995] believe is corresponding to Heinrich events except for $\mathrm{H}-1(15 \mathrm{ka})$. Even during the period of soil formation at the Loess Plateau, millennial-scale KGI fluctuation is observed at Site 797. These observations suggest that variation in KGI seem to have been caused at least in part by variation in wind intensity. Thus, decrease of KGI could have reflected changes both in wind intensity and in the proximity to the dust source area, the latter being controlled by changes in precipitation within inland China.
(\%) esoy
esceos

15. Variation in Kosa Flux during the Last 200 ky

In order to evaluate the Kosa flux to the Japan Sea and its variation in the past, the author calculated the mass accumulation rate (MAR) for each detrital subcomponent. The MAR of each detrital subcomponent is calculated based on the following equation.
(MAR of a subcomponent)
$=($ fraction of the subcomponent $) \times($ detrital content $) \times$ DBD \times LSR

It is not possible to calculate LSR for individual samples because number of the datums in the sediments is limited [Tada et al., 1996]. On the other hand, discussion in the previous section suggests the possibility of millennial-scale fluctuations in the fluxes of subcomponents. Thus, it is misleading to assume constant LSR between the datums and calculate MARs of subcomponents for each sample. For this reason, the author only calculates average MARs of the detrital subcomponents between the datums. Preceding the calculation of MARs, DBD, detrital content, and fraction of each detrital subcomponent were averaged for every stratigraphic interval defined by two adjacent datums. The results are listed in Table 14. The MARs for Holocene interval may have a large error because of the uncertainties involved in estimation of LSR and DBD. This error is probably caused by the underestimation of either LSR due to a slight lack of core top or DBD due to disturbance of core. Considering these uncertainties, MARs during Holocene could be as much as 1.5 times larger than described in Table 14.

Figure 24 shows the temporal variation in the MARs of Kosa and arc-derived detritus during the last 190 ky . Kosa MAR varied by factor of 3 and was high (2.5 to $3.0 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}$) during glacial stage 2 and substage 6.2 , intermediate ($1.7 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}$) during interglacial substage 5.5 and glacial substage 6.6 , and low $\left(0.8\right.$ to $\left.1.2 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}\right)$ during Holocene, glacial stages 3 and 4, and glacial substages 6.3 to 6.5 . There was no evidence of soil formation in the Loess Plateau during glacial maxima (stage 2 and substage 6.2) whereas there is an evidence of
soil formation during the other intervals [Kukla and An, 1989]. This suggest that a larger Kosa source area developed during glacial maxima, that is consistent with observed higher Kosa MAR during these periods. Figure 1 shows that, at present, Kosa event is initiated as dust storms in the Taklimakan - Gobi desert area where the area with more than 30 days of annual frequency of dust storm and floating dust is approximately $4000 \mathrm{~km}^{2}$ [Pye and Zhou, 1989]. If this dust storm area extended to whole area of the Loess Plateau during glacial maxima [Bowler et al., 1987], the Kosa source area would have increased to approximately $9600 \mathrm{~km}^{2}$ which is 2.4 times larger than the present area. This is consistent with our observation that Kosa MAR at Site 797 was three times larger during glacial maxima. On the other hand, the average Kosa MAR is nearly constant during the periods when the soil formation occurred in the Loess Plateau.

The present Kosa flux to the Japan Sea side of central to southwestern Japan is estimated as 1.4 to $3.2 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}$ based on the atmospheric dust concentration measurement [Suzuki and Tsunogai, 1987]. On the other hand, Inoue and Naruse [1989] estimated the Kosa flux as 0.5 to $1.0 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}$ based on the dust concentration within precipitation in northeastern to southwestern Japan. They also estimate the Kosa flux during the last glacial age as 1.9 to $3.2 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}$ based on the calculation of mass accumulation rate for Japanese paleosols which they believe was derived from the aeolian dust. Our estimation of Kosa MAR during Holocene is $0.8 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}$ and it could be as high as $1.2 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}$ considering the uncertainty of the estimation, whereas the MAR for the last glacial periods is estimated as $2.5 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}$. These values are consistent with the above estimation.

Arc-derived detritus MAR was high (2 to $2.3 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}$) during glacial maxima (stage 2 and substage 6.2), intermediate ($1.7 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}$) during interglacial substage 5.5 , and low (0.9 to $1.1 \mathrm{~g} / \mathrm{cm} 2 / \mathrm{ky}$) during Holocene, stage 3 to substage 5.3 and substages 6.3 to 6.6 (Figure 24). The higher arc-derived detritus MARs during glacial maxima such as stage 2 and substage 6.2 are probably related to enhanced lateral transport of suspended load due to salinity stratification in the Japan Sea during these periods rather than the increasing discharge of Japanese rivers, because there are no evidence of increased precipitation during these intervals
[Yasuda, 1987] whereas there is good evidence of density stratification caused by the development of low salinity water cap during these periods [Oba, 1991, Oba et al., 1995]. Higher AGI during the glacial maxima are also consistent with above explanation. Excluding the glacial maxima, arc-derived detritus MARs were higher during the last interglacial period. This suggests that the increase in river discharge due to enhanced precipitation on the Japanese islands during interglacial periods resulted in the increase in arc-derived detritus flux.

Relatively low MAR of arc-derived detritus during Holocene could be underestimation.

16. Conclusions

The author developed a new procedure for Q-mode factor analysis to partition the detrital component of the sediment into subcomponents using chemical composition of selected "detrital" elements. The author applied this procedure to the hemipelagic sediments from ODP Site 797 in the Japan Sea to extract subcomponents attributable to aeolian dust (Kosa). Four detrital subcomponents were extracted, their chemical and mineral compositions and silt / clay ratios were estimated, and the origin of the each subcomponent was identified by comparing the estimated compositions with actual compositions of probable source materials. The extracted 4 detrital subcomponents are attributed to fine and coarse subcomponents of Kosa and arc-derived detritus, respectively. Based on these results, the author reconstructed the temporal variations of Kosa fraction, Kosa grain size (KGI), and are-derived detritus grain size (AGI), respectively.

Reconstructed Kosa fraction is higher during glacial stages and lower during interglacial stages. Kosa fraction also shows millennial-scale variation whose amplitude is as large as that of glacial - interglacial variation. KGI tends to be larger during the periods of loess deposition and smaller during the periods of soil formation in the Loess Plateau. It also show millennial-scale variation with the amplitude as large as that of 10 ky -scale variation. AGI tend to be larger during glacial stages and smaller during interglacial stages. It also shows millennial-scale fluctuation whose amplitude is smaller than that of longer time scale variation. Millennial-scale minima in KGI coincide with the minima in Kosa fraction or lag by as much as 2 ky whereas millennial-scale maxima in AGI coincide exactly with the minima in Kosa fraction. The millennial-scale variation in Kosa fraction and AGI could be explained by the changes in coarse are-derived detritus flux considering nearly perfect in phase relationship among the three and the large amplitude of coarse arc-derived detritus variation within the detrital component which is enough to explain variations in Kosa fraction and AGI. Variation in KGI could be controlled by the changes in proximity to the source area caused by advance or retreat of the eastern margin of arid area or by changes in wind intensity. Variation in AGI
could be caused by changes in efficiency of lateral transportation of suspended load along pyenocline in response to variation in the strength of salinity stratification of the water column in the Japan Sea, or alternatively by the changes in river discharge from the Japanese islands.

The author estimated MAR of Kosa and arc-derived detritus. Kosa MARs were 2.5 to $3.0 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}$ during glacial maxima which are 2 to 3 times larger than 0.8 to $1.7 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}$ during other periods. This suggests that significantly larger extent of Kosa source area developed during glacial maxima. Arc-derived detritus MAR was high between 2 and 2.3 $\mathrm{g} / \mathrm{cm}^{2} / \mathrm{ky}$ during glacial maxima, intermediate at $1.7 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}$ during substage 5.5 , and low between 0.9 and $1.1 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{ky}$ during other periods. The high MAR during glacial maxima are probably related to enhanced lateral transport of suspended load due to salinity stratification in the Japan Sea. Relatively high MAR of arc-derived detritus during interglacial period suggests the increase in river discharge due to enhanced precipitation on the Japanese islands.

Acknowledgments. I am deeply grateful to Associate Professor Ryuji Tada for his helpful advice, many encouraging discussions, critical reading of the manuscript, providing the samples, and finacial support throughout this work. I would like to express my sincere thanks to all the participants and onboard stuffs of ODP Leg 127 and stuffs of Gulf Coast Core Repository of ODP for their assistance to take samples and associated data. I also express my thanks to Drs. Tom Pedersen, Tadamichi Oba, Itaru Koizumi, Minoru Utada, Ryo Matsumoto, Satoru Nakashima, S. Ogihara, E. Tajika, and J. Ashi for their helpful discussions and constructive review of this manuscript and Dr. Teruaki Ishii for providing an access to the XRF facility at ORI. Dr. Hidehiko Shimazaki and Masaaki Shimizu provided facilities to use mineral reference samples stored in the University Museum. Mr. Ahagon, Hyon, Yamagishi, Shirai, Takayama, and Sato kindly helped laboratory and drawing works. Dr. T. Sakamoto provided his unpublished chemical composition data.

References

Allen, J. R. L., Physical Processes of Sedimentation, 248 pp., George Allen and Unwin Ltd., London, 1970.

Bowler, J. M., K. Chen, and B. Yuan, Systematic variations in loess source areas: Evidence from Qaidam and Qinghai Basins, Western China, in Aspects of Loess Research, edited by T. Liu, pp. 39-51, China Ocean Press, Beijing, 1987.

Chamley, H., Clay Sedimentology, 623 pp., Springer-Verlag, Heidelberg, 1989.
Dansggaard, W., S. J. Johnsen, H. B. Clausen, D. Dahl-Jensen, N. S. Gundestrup, C. U.
Hammer, C. S. Hvidberg, J. P. Steffensen, A. E. Sveinbjornsdottir, J. Jouzel, and G. Bond, Evidence for general instability of past climate from a $250-\mathrm{kyr}$ ice-core record, Nature, 364, 218-220, 1993.

DeMaster, D. J., The supply and accumulation of silica in the marine environment, Geochim.
Cosmochim. Acta, 45, 1715-1732, 1981.
Duce, R. A., P. S. Liss, J. T. Merrill, E. L. Atlas, P. Buat-Menard, B. B. Hicks, J. M. Miller, J.
M. Prospero, R. Arimoto, T. M. Church, W. Ellis, J. N. Galloway, L. Hansen, T. D. Jickells, A. H. Knap, K. H. Reinhardt, B. Schneider, A. Soudine, J. J. Tokos, S. Tsunogai, R. Wollast, and M. Zhou, The atmospheric input of trace species to the world ocean, Global Biogeochem. Cycles, 5, 193-259, 1991.

Fanning, K. A. and M. E. Q. Pilson, On the spectro-photometric determination of dissolved silica in natural waters, Analytical Chemistry, 45, 136-140, 1973.

Gao, Y., R. Arimoto, M. Zhou, J. T. Merrill, and R. A. Duce, Relationships between the dust concentrations over Eastern Asia and the remote North Pacific, J. Geophys. Res., 97 , 9867-9872, 1992.

Goudie, A. S., Dust storms in space and time, Progress in physical geography; an international review of geographical work in the natural and environmental sciences, 7, 502-530, 1983.

Harlett, J. C. and L. D. Kulm, Suspended sediment transport on the Northern Oregon Continental Shelf, Geol. Soc. Am. Bull., 84, 3815-3826, 1973. Hovan, S. A. and D. K. Rea, Late Pleistocene continental climate and oceanic variability recorded in Northwest Pacific sediments, Paleoceanography, 6, 349-370, 1991. Inoue, K. and T. Naruse, Physical, chemical, and mineralogical characteristics of modern eolian dust in Japan and rate of dust deposition, Soil Sci. Plant Nutri., 33, 327-345, 1987. Irino, T. Nature of sedimentary cycles from late Miocene to Pliocene diatomaceous mudstones of Ajigasawa area, Northeast Japan, Master Thesis, University of Tokyo, 1992. Ishizaka, Y., Kosa as chemical species (In Japanese), in Kosa, edited by Institute for Hydrospheric-Atmospheric Sciences, Nagoya Univ., pp. 109-123, Kokin Shoin, Tokyo, 1991.

Iwasaka, Y., H. Minoura, and K. Nagaya, The transport and spacial scale of Asian dust-storm clouds: a case study of the dust-storm event of April 1979, Tellus, 35B, 189-196, 1983. Kanamori, S., N. Kanamori, M. Nishikawa, and T. Mizoguchi, Chemical composition of Kosa (In Japanese), in Kosa, edited by Institute for Hydrospheric-Atmospheric Sciences, Nagoya Univ., pp. 124-156, Kokin Shoin, Tokyo, 1991.

Krumbein, W. C. and F. J. Pettijohn, Manual of Sedimentary Petrography., 549 pp., Appleton-Century-Crofts, Inc., New York, 1938.

Kukla, G. and Z. An, Loess stratigraphy in central China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 72, 203-225, 1989.

Kyte, F. T., M. Leinen, G. R. Heath, and L. Zhou, Cenozoic sedimentation history of the central North Pacific: Inferences from the elemental geochemistry of core LL44-GPC3, Geochim. Cosmochim. Acta, 57, 1719-1740, 1993.

Leinen, M., The origin of paleochemical signatures in North Pacific pelagic clays: Partitioning experiments, Geochim. Cosmochim. Acta, 51, 305-319, 1987.

Leinen, M., D. Cwienk, G. R. Heath, P. E. Biscaye, V. Kolla, J. Thiede, and J. P. Dauphin, Distribution of biogenic silica and quartz in recent deep-sea sediments, Geology, 14,

199-203, 1986.
Leinen, M. and N. Pisias, An objective technique for determining end-member compositions and for partitioning sediments according to their sources, Geochim. Cosmochim. Acta, 48, 47-62, 1984.

Machida, H. and F. Arai, Atlas of Tephra in and around Japan (In Japanese), 276 pp., University of Tokyo Press, Tokyo, 1992.

Martinson, D. G., N. G. Pisias, J. D. Hays, J. Imbrie, T. C. J. Moore, and N. J. Shackleton, Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy, Quat. Res., 27, 1-29, 1987.

Miesch, A. T., Q-mode factor analysis of geochemical and petrologic data matrices with constant row-sums, U.S. Geol. Surv. Prof. Paper 574-G, 47 pp., 1976.

Milliman, J. D. and R. H. Meade, World-wide delivery of river sediment to the oceans, J. Geol., 91, 1-21, 1983.

Milliman, J. D., Y. Qin, M. Ren, and Y. Saito, Man's influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example, J. Geol., 95, 751-762, 1987.

Mortlock, R. A. and P. N. Froelich, A simple method for the rapid determination of biogenic opal in pelagic marine sediments, Deep Sea Res., 36, 1415-1426, 1989.

Nakai, S., A. N. Halliday, and D. K. Rea, Provenance of dust in the Pacific Ocean, Earth Planet. Sci. Lett., 119, 143-157, 1993.

Oba, T., Paleoenvironmental changes indicated by oxygen and carbon isotope (In Japanese), in Environment and Civilization, 1 , edited by Y. Yasuda, pp. 38-46, The International Research Center for Japanese Studies, Kyoto, 1991.

Oba, T., M. Kato, H. Kitazato, I. Koizumi, A. Omura, T. Sakai, and T. Takayama, Paleoenvironmental changes in the Japan Sea during the last 85,000 years, Paleoceanography, 6, 499-518, 1991.

Oba, T., M. Murayama, E. Matsumoto, and T. Nakamura, AMS- ${ }^{14} \mathrm{C}$ ages of Japan Sea cores
from the Oki Ridge (In Japanese with English abstract), The Quaternary Research, 34, 289-296, 1995.

Olivarez, A. M., R. M. Owen, and D. K. Rea, Geochemistry of eolian dust in Pacific pelagic sediments: Implications for paleoclimatic interpretations, Geochim. Cosmochim. Acta, 55 , 2147-2158, 1991.

Parungo, F., Z. Li, X. Li, D. Yang, and J. Harris, Gobi dust storms and the Great Green Wall, Geophys. Res. Lett., 21, 999-1002, 1994.

Porter, S. C. and Z. An, Correlation between climate events in the North Atlantic and China during the last glaciation, Nature, 375, 305-308, 1995.

Pye, K. and L. Zhou, Late Pleistocene and Holocene aeolian dust deposition in north China and the Northwest Pacific Ocean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 73, 11-23, 1989.

Rea, D. K. and M. Leinen, Asian aridity and the zonal westerlies: Late Pleistocene and Holocene record of eolian deposition in the Northwest Pacific Ocean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 66, 1-8, 1988.

Rea, D. K., M. Leinen, and R. Janecek, Geologic approach to the long-term history of atmospheric circulation, Science, 227, 721-725, 1985.

Saito, Y. and K. Ikehara, Sediment discharge of Japanese rivers, and sedimentation rate and carbon content of marine sediments around the Japanese Islands (In Japanese), Chishitsu News, 452, 59-64, 1992.

Saito, Y. and Z. Yang, The Huanghe River: its water discharge, sediment discharge, and sediment budget (In Japanese with English abstract), J. Sed. Soc. Japan, 40, 7-17, 1994. Shipboard Scientific Party, Site 797, in Proc. Ocean Drill. Program, Init. Repts., 127, edited by K. Tamaki, K. Pisciotto, J. Allan et al., pp. 71-167. College Station, TX (Ocean Drilling Program), 1990.

Suzuki, T. and S. Tsunogai, Transport of chemical species from land to sea through atmosphere (In Japanese), Marine Sciences Monthly, 19, 657-662, 1987.

Tada, R. and A. Iijima, Petrology and diagenetic changes of Neogene siliceous rocks in
northern Japan, J. Sediment. Petrol., 53, 911-930, 1983.
Tada, R., T. Irino, and I. Koizumi, Possible Dansgaard-Oeschger oscillation signal recorded in the Japan Sea sediments, in Global Fluxes of Carbon and Its Related Substances in the Coastal Sea-Ocean-Atmosphere System, edited by S. Tsunogai, K. Iseki, I. Koike, and T. Oba, pp. 517-522, M\&J International, Yokohama, 1995.

Tada, R., T. Irino, and I. Koizumi, Land - ocean linkage in association with Dansgaard Oeschger cycles recorded in the late Quaternary sediments of the Japan Sea, Paleoceanography, submitted, 1996.

Tada, R., 1. Koizumi, A. Cramp, and A. Rahman, Correlation of dark and light layers, and the origin of their cyclicity in the Quaternary sediments from the Japan Sea, in Proc. Ocean Drill. Program, Sci. Results, $127 / 128$, Ptl, edited by K. A. Pisciotto, J. C. Ingle Jr., M. T. von Breymann, and J. Barron, pp. 577-601, College Station, TX (Ocean Drilling Program), 1992.

Taylor, K. C., G. W. Lamorey, G. A. Doyle, R. B. Alley, P. M. Grootes, P. A. Mayewski, J. W. C. White, and L. K. Barlow, The 'flickering switch' of late Pleistocene climatic change, Nature, 361, 432-436, 1993.

Taylor, S. R. and S. M. McLenann, The Continental Crust: its Composition and Evolution, 312 pp., Blackwell, Oxford, 1985.

Weber II, E. T., R. M. Owen, G. R. Dickens, A. N. Halliday, C. E. Jones, and D. K. Rea, Quantitative resolution of eolian continental crustal material and volcanic detritus in North Pacific surface sediment, Paleoceanography, 11, 95-127, 1996.

Yasuda, Y., The cold climate of the last glacial age in Japan (In Japanese with English abstract), The Quaternary Research, 25, 277-294, 1987.

Yin, J., H. Okada, and L. Labeyrie, Clay mineralogy of slope sediments around the Japanese islands (In Japanese with English abstract), Geosci. Repts. Shizuoka Univ., 13, 41-65, 1987.

Table 1 Age, grain composition, and remarks on all analyzed samples from ODP Site 797. Depth is corrected for core expansion. Age is based on the age model of Tada et al. [1996].

Table 1 （continued）

Hex		102	C＊＊＊	Sel turnd	tapet	AF\％	$\begin{array}{\|l\|l\|} \hline \text { Tampen } \\ \hline \sin \\ \hline \end{array}$		Ma＊		Cricicis		amen	Cuten	｜kasis	
榾	TV1	介TI	211	T0 उ	क\％	\％为	380	Q－a｜ch								
${ }^{\text {rax }}$	13	7\％\％	23	1－8	n\％	1004	200	Quatas								
${ }_{\substack{\text { \％} \\ \text { \％}}}^{\text {\％}}$	18	Note	24 314	？a so	971	164	200	Qualad						Ore		
\％	is	Nou	21	1） 54	\％	144	2×0	Alond Mis．	Aly．Alined				H20			
${ }^{\text {a }}$	18	Nos	38	1） 31	＊5	12，	260	Atmathe	ther				H\％			
${ }_{\text {\％Kı }}^{\text {rix }}$	10	\％re	38	108	$\cdots 1$	168	10	OUaFu								
${ }^{188}$	14	切碞	23	3 82	（1）	1305	500	Quatwo	Ithaix	－	a	－				
${ }^{\text {rex }}$	142	Now	23	＊${ }^{8}$	m	1313	sat	ga ${ }^{\text {cotat }}$			∞					
${ }_{\text {lix }}^{\text {nor }}$	14	Nors	${ }_{24}^{24}$	） 10×10	vs	154	\％e	Ocista					Him？			
HK	14	NTV	24	${ }^{5} 116$ i17	m	1462	30	Gearow					Kuill			
${ }^{\text {H／8 }}$	16	701	24	3188128	1002	1586．	300	guatid								
	16	Tou	3	30	1 tax	1503	200	Quatiold								
通	10	mo	a	31610	${ }_{1621}$	16.0	63	（\％anMos					1mis			
${ }^{\text {H／}}$	180	Mo	a	＋？	1087	164	20	（2）					mas			
	191		3	${ }^{4} 919$	1034	1161	200	g－atid	｜lasor				H00			
相	153		231	1 1828	108	1094，	i11	Guated					zenom			
${ }_{18}^{18}$	193		34	$4{ }^{4} 18$	106	thy	100	guavit					150？			
${ }_{88}^{80}$	183	7xte	2π	430	1661	125	230	qualou								
\％	is	NTM	3	（is ）${ }^{1}$	${ }_{107}^{164}$	17\％	ise	Nuky Mas：	Alved							
桃	158	7n	24	454	1at	170x，	12	Quater					Hex			
${ }_{\text {lix }}^{10}$	160	NTB	20	－ 4	${ }^{1604}$	10，	20	guaich								
H＊	164	》相	21	（7） 4	1102	（xat 7	180	Gowisk	nived							
${ }_{\text {HK }}^{\text {He }}$	162	Tota	3	$\pm \approx$	Has	${ }^{1815}$	120	Abirs $\mathrm{Ma}^{\text {cos }}$	Alvend		ω		Hen Zenve			
\％	164	Nom	211	－ 0 \％ 104	117	isc3	${ }_{8}$				∞	∞				
${ }^{\text {rax }}$	163	Nom	27	－1007 100	118	1853	20	Guarta					Hen			
${ }_{108}^{108}$	167	No	2m	（17164	113	ispl	\times	nimalior	Alved							
Hik	14 A	Tv7	3	133	110	1954	3	Qualod								
${ }_{\text {Hz }}^{\text {ta }}$	109	Nvie	${ }^{24}$	A1918	1188	150．2	50	¢0 arcou								
	17	\％ome	$\stackrel{311}{ }$	\％ 1614	${ }^{1162}$	191．3	100	guialis								
${ }^{\text {Ha }}$	177	NTM	3	） 23	in	7935	\％	Guatis								
${ }_{\text {HK }}^{\text {Hex }}$	173	Nom	31	3 18 16	${ }^{166}$	1985	3	On ariou								
哭	174	Nome	314	3 ${ }^{3} 823$	100	mes	${ }^{38}$	guafor								
\％	178	The	3	，is 31	1204	1751	123	Quatom	Alvend							
${ }_{\text {rax }}$	171	776	2810	3410	1210	18.3	100	Avends．	Alked							
${ }_{\text {HK}}^{\text {\％}}$	178		竞	3）${ }^{3}$	127	16．3	150	Avmidicor	Alved							
楥	100	No	34	${ }^{3} 684$	1210	2012	13	Qualcid	Alwed				Numb			
${ }_{18}$		N78	${ }^{1 / 1 \%}$	$1 \begin{aligned} & 13 \\ & 1\end{aligned}$	13	0，	120	ALemisco	Aluw．Almed						Cown tuatume	
ix	37	Nos	${ }_{\text {in }}^{\text {in }}$	1 4.48	$\stackrel{3}{17}$	313	${ }_{0} 0$	Nimusis．								
1k		Nhe	\＃18	（134 156	128	03）	\％	（katin				$\stackrel{\square}{\circ}$				
18		Mor	${ }^{18}$	229 13 7 4	156	3	10	guator			\cdots	．	Hendinos			
－k		Nois	${ }_{\text {if }}^{\text {if }}$	${ }_{2}^{2}{ }_{24}^{4} 4$	15	22.4	${ }_{230}$		Alomd		\pm		Limen	Clensear		
${ }_{18}^{1 / 2}$	，	TVF	${ }^{18}$	2104106	26	324	250	Nivmamad	Hoser							
LR	${ }^{10}$	Tva	${ }_{\text {III }}^{11}$	31913	3	43	220	gualu	Alved				Nnoik			
${ }_{18}$	11		if	3）${ }_{31}^{4} \frac{5}{20}$	ms_{39}	S．1．	200	couls	Hixim Alved							
Ik	12	Nos	w	\％ 104106	305	613	210	¢¢ a kru	Alowd		∞		Mankuer			
LK	14		${ }_{\text {a }}^{\text {a }}$		414	838	is	cuatid			∞	－	unyan			
${ }^{18}$	13	N7	i11	＋ 414	at	N8	13	Alwatior	Alved					Clunicar		
${ }_{4}$	16	＞＞\％	${ }^{114}$	4π	\％1	${ }^{\text {NS }}$	5	Mat Mos－	Bivius		－			Cowe．ar		
Lk	18	碞	31	－104 16		2003	150 500	Maty Mos	Thatir		∞	\cdots				
${ }_{1 *}^{1 / 2}$	${ }^{3}$	708	24	1 $4{ }^{4} 4$	413	1053	350	Alom Mar．	Surix．Alowd		∞	\cdots	14 n	Chensear		
ik	21	）	3	（tice		Hiky	100	ANodMa，	Alund		∞	∞				
18	23	mos	3	2144	70	1303	0	Ocatiol					rave	Cimenien		
1 L	2	Tve	3	2102106	s）	103	\％	genarim					Ruar			
ix	13	\％ne	24	2 1946	ns	1210	${ }^{13}$	Quation								
18	26	vte	2 H	${ }^{2}$ ） 74.3	50	［173	128	gearid						Cumenser		
${ }_{18}$	27	गve	24	3146	54	1314	180	gualod					2uno			
ik	2	\％os	211	）${ }_{74}$ \％	42	10.5	${ }_{20}^{20}$	Yuty	What		$\stackrel{\square}{8}$			Cheromer		
18	\times	NTS	24	） 102100	\％	1383	13	Quatiou	naw		\pm	\cdots				
${ }_{\text {LR }}$	3		${ }^{24}$	314108	${ }^{1009}$	1462	200	Gu usteld	thas		\cdots					
\％	，	7\％	as	${ }^{1} 146$	160	1675	13	Guation								
ik	，		${ }^{24}$	${ }^{+4} 4$	kes	140	mom	Ooutiod	Mrawis				Sualk			
i＊	3	xim	21	4102104	1124	is．4	13	Qualod			\pm		1680			
ik	${ }_{5}$	Tore	${ }_{31}^{24}$	［144160	uss	1803		Nuty Mix：	Mixinis		。	－				
${ }_{\text {IR }}^{\text {IR }}$	4	TV\％	3	${ }^{3} 44.46$	${ }_{128}^{118}$	${ }^{180} 8$	${ }_{115}$	Yuatis	Hewer					Olunurim		
in	＊	Nom	24	） 192104	（ay	30．3	us	（4）	theis		\because					
15	＊	Tom	${ }^{24}$	51416	TV\％	2101	8	Ouatiol	Statar				Hes			
$\operatorname{lixk}_{1 \times \mathrm{A}}$	）	Nox	if	$\left\{\begin{array}{l}14 \\ 114 \\ 106\end{array}\right.$	－ 210	878	${ }_{\text {1080 }}$	Oualow							Cane dientuser	Oni hir hporne
LKA	3	Mra	in	2370	m	27）	220	guated	Hexisu	－		－		Glunioner		
i．kA	16	Nora	${ }^{\text {in }}$	${ }^{4} 1416$	123	1173	100	quatiou					＜mow	－		Caia Siur spormer
LRA	2	Nona	${ }_{\text {III }}^{\text {If }}$	－ 419416	S20	ixisis	${ }_{80}$	（ceadion	Alved		∞					Covie Sian Sprovie
LKA	2	Nota	＝	5 48	no	1430	13	Qucked	Alved					Cluminow		Chein Star She｜aelanan
Lika	\＄	NV1A	${ }_{\text {If }}^{\text {If }}$	（104 168	M\％	104	80	Quatis				－				Onie sier sperens
LHA	H	mos	in．	${ }_{3} 44 \times$	17）	（197）	（11）	Gothy	Alxed				成吅			Cain Sur spum

Table 2
Major elements composition of all analyzed samples from ODP Site 797.

Type		Hole	Core	Sec	23		LO. 1.	$\mathrm{SiO2}$	$\mathrm{TiO2}$	Al^{203}	Fe 203	MnO	MgO	CaO	Na 2 O	K2O	P205	Total
HR	1	797 A	1\%	1	23	25	5.61	60.1	0.716	16.9	6.11	0.061	3.17	1.22	1.81	3.41	0.119	992
HR	2	797A	IH	2	86	88	13.04	54.0	0.547	13.6	10.50	0.110	2.60	0.84	1.45	2.57	0.129	99.4
HR	3	797A	IH	2	93	95	8.80	57.0	0.660	15.7	7.02	0.122	3.02	1.91	1.76	2.86	0.124	99.0
HR	4	797A	1H	2	130	132	9.98	56.8	0.655	15.8	7.20	0.077	3.02	1.15	1.70	3.09	0.128	99.6
HR	5	797A	IH	2	137	139	14.01	49.0	0.561	13.6	6.57	0.283	2.52	6.62	1.67	2.65	0.126	97.7
HR	6	797A	1H	2	144	146	8.48	58.3	0.683	16.2	6.81	0.183	3.01	1.13	1.85	3.16	0.124	100.0
HR	7	797A	1H	3	1	3	7.59	59.3	0.689	16.3	6.81	0.093	2.98	0.99	1.81	3.22	0.117	99.9
HR	8	797A	IH	3	8	10	7.95	59.1	0.595	14.9	8.45	0.150	2.61	0.98	1.94	3.07	0.116	99.9
HR	9	797A	1H	3	18	20	7.66	59.1	0.683	16.7	6.48	0.094	2.90	0.97	1.84	3.22	0.121	99.8
HR	10	797A	1H	3	22	24	7.15	59.9	0.691	16.9	6.06	0.068	2.85	0.99	1.86	3.26	0.114	99.9
HR	11	797A	IH	3	29	31	6.53	60.5	0.682	15.7	7.20	0.078	3.05	1.09	1.87	3.32	0.121	100.1
HR	12	797A	1H	3	36	38	6.55	60.3	0.689	17.0	5.87	0.088	2.95	1.05	1.91	3.32	0.109	99.9
HR	13	797A	IH	3	71	73	7.26	59.5	0.690	17.4	5.75	0.082	2.92	1.08	1.90	3.28	0.113	99.9
HR	14	797A	1H	3	98	100	15.41	50.6	0.582	14.3	10.41	0.051	1.92	1.34	1.58	2.73	0.121	99.0
$\mathrm{HR}^{\text {P }}$	15	797A	IH	3	108	110	6.30	59.8	0.726	16.7	6.35	0.186	3.17	1.31	1.76	3.37	0.121	99.8
HR	16	797B	1H	1	17	19	6.81	60.6	0.643	16.5	5.99	0.860	2.57	0.97	1.99	3.05	0.157	100.2
HR	17	7978	1H	1	23	25	6.68	60.1	0.647	16.7	6.15	0.803	2.58	0.96	1.94	3.09	0.159	99.8
HR	18	7978	1H	1	31	33	6.89	603	0.642	16.7	6.19	1.042	2.54	0.97	1.93	3.03	0.173	100.4
HR	19	7978	1H	1	38	40	7.01	57.6	0.646	15.7	6.15	3.742	2.67	1.01	1.87	3.04	0.179	99.7
HR	20	7978	1H	I	45	47	7.87	55.0	0.575	14.4	11.45	1.299	2.64	1.05	1.89	2.81	0.546	99.5
HR	21	7978	IH	1	54	56	9.41	58.9	0.646	16.8	6.32	0.075	2.64	1.09	1.97	3.01	0.178	101.0
HR	22	7978	1H	1	59	61	9.49	57.9	0.658	17.0	5.91	0.119	2.64	1.07	1.93	3.03	0.167	99.9
HR	23	7978	IH	1	66	68	6.33	58.6	0.632	17.6	5.51	0.087	1.90	1.29	3.56	4.44	0.148	100.1
HR	24	7978	1H	I	73	75	9.02	57.8	0.633	17.0	6.21	0.108	2.61	1.06	2.01	3.08	0.156	99.7
HR	25	7978	IH	1	80	82												
HR	26	7978	1H	1	87	89	9.45	57.0	0.609	16.2	6.91	0.103	2.66	1.36	1.94	3.02	0.148	99.4
HR	27	7978	1 H	1	96	98	15.46	51.9	0.594	15.2	5.34	0.057	2.57	4.06	1.76	2.74	0,157	99.8
HR	28	797B	IH	1	101	103	9.14	55.1	0.659	15.9	5.91	0.142	2.84	4.74	1.69	3.07	0.136	99.3
HR	29	7978	1H	1	108	110	17.53	415	0.491	12.1	4.49	0.061	2.21	17.31	1.23	2.34	0.105	99.3
HR	30	7978	IH	$!$	117	119	8.78	55.5	0.664	16.2	6.05	0.078	2.99	5.12	1.63	3.10	0.128	100.2
HR	31	7978	1H	1	121	123	6.26	58.1	0.707	16.9	6.50	0.094	3.19	1.74	1.74	3.39	0,134	98.8
HR	32	7978	1H	1	131	133	5.70	59.8	0.717	16.1	6.78	0.060	3.27	1.47	1.79	3.42	0.138	99.3
HR	33	7978	1 H	1	141	143	9.10	50.6	0.624	14.1	7.19	0.088	7.15	6.57	1.52	2.78	0.122	99.9
HR	34	7978	1H	1	146	148	9.08	51.8	0.623	14.4	7.20	0.092	2.59	5.93	1.64	2.84	0.119	96.3
HR	35	7978	1H	2	0	2	8.26	53.4	0.676	14.4	6.78	0.075	2.63	5.61	1.66	2.84	0.129	96.5
HR	36	7978	IH		6	8	8.58	52.2	0.647	14.8	7.90	0.081	2.64	4.60	1.61	2.93	0.136	96.2
HR	37	7978	$1 \mathrm{H}^{\text {H }}$	2	15	17	8.23	52.3	0.673	14.9	7.98	0.072	2.73	4.75	1.64	2.92	0,123	96.3
HR $H R$	38	7978	1H	2	21	23	9.58	52.1	0.665	14.8	8.31	0.065	2.65	4.42	1.61	2.90	0.122	97.3
HR	39	7978	1H	2	29	31	9.26	53.8	0.696	15.1	6.56	0.063	2.83	4.37	1.68	2.99	0.126	97.4
HR	40	7978	IH	2	35	37	7.95	54.4	0.695	15.3	7.44	0.067	2.90	3.66	1.73	3.10	0.122	97.3
HR	41	7978	1 H	2	40	42	8.82	64.9	0.429	15.0	4.48	0.064	1.74	1.27	1.69	3.36	0.078	101.8
HR	42	7978	1H	2	49	51	8.54	63.0	0.413	15.4	4.36	0.063	1.66	1.27	1.66	3.34	0.076	99.8
HR	43	7978	1 H	2	56	58	7.66	59.2	0.621	15.4	6.69	0.057	2.96	1.34	1.81	3.27	0.130	99.1
HR	44	7978	1H	2	66	68	9.04	54.9	0.652	15.9	9.11	0.072	3.04	1.28	1.64	3.22	0.142	99.0
HR	45	7978	1H	2	70	72	8.62	56.3	0.692	16.1	7.13	0.064	3.12	1.37	1.90	3.34	0.134	98.8
HR	46	7978	1H	2	79	81	5.73	59.0	0.737	17.4	6.59	0.069	3.30	1.33	1.82	3.52	0.125	99.6
HR	47	7978	1H	2	84	86	5.16	675	0.446	15.2	4.66	0.066	1.81	1.32	2.53	3.50	0.081	102.2
HR	48	7978	1H		91	93	5.08	65.4	0.429	14.5	4.52	0.065	1.72	1.32	2.54	3.46	0.079	99.1
HR	49	7978	1H	2	100	102	8.45	58.7	0.616	16.1	6.63	0.057	2.93	1.33	1.74	3.24	0.129	99.9
HR	50	797B	1H	2	106	108	8.62	55.2	0.655	15.4	9.15	0.072	3.05	1.29	1.72	3.24	0.143	98.5
HR	51	7978	IH		112	114	7.18	57.2	0.703	16.1	7.24	0.065	3.17	1.39	1.75	3.40	0.136	98.4
HR	52	7978	1H		119	121	6.28	58.7	0.733	17.1	6.55	0.068	3.28	1.32	1.81	3.50	0.125	99.5
HR	53	797B	IH	2	127	129	7.21	57.7	0.667	15.3	8.35	0.073	3.24	1.32	1.71	3.39	0.133	99.1
HR	54	7978	IH	2	132	134	9.82	57.0	0.710	16.3	6.44	0.063	3.12	1.31	1.73	3.33	0.118	99.9
HR	55	7978	1 H	3	138	140	5.56	59.9	0.734	17.0	6.67	0.066	3.29	1.27	1.77	3.46	0.124	99.8
HR	56	7978	1 H	3	-	2	6.27	60.2	0.697	15.6	6.88	0.062	3.05	1.22	1.80	3.26	0.120	99.1
HR	57 58 58	7978	IH	3	7	9	7.92	58.1	0.673	15.8	7.34	0,080	2.93	1.20	2.06	3.34	0.133	99.6
HR	58	7978	1H	3	21	23	7.26	60.1	0.701	16.9	6.53	0.076	2.98	1.23	1.91	3.29	0.133	101.1
HR	59	7978	1H	3	25	27	10.91	55.3	0.650	15.4	8.00	0.068	3.02	1.17	1.60	3.09	0.143	99.4
HR	60	7978	1H	3	35	37	5.79 5	59.9	0.722	16.3	7.02	0.074	3.12	1.25	1.74	3.36	0.121	99.4
HR	61	7978	1H	3	40	42	5.59	62.6	0.676	15.0	6.48	0.059	2.82	1.27	1.90	3.20	0.118	99.7
HR	62	7978	1H	3	49	51	8.18	58.7	0.705	15.7	6.87	0.065	3.18	1.46	1.85	3.26	0.139	100.0
HR HR	63	7978	1 H	3	56		6.51	59.4	0.725	16.3	7.30	0.074	3.27	1.27	1.80	3.48	0.130	100.3
HR	64	79713	1H	3	63	64								1.27	180	3.48	0.130	100.3
HR	65	7978	IH	3	70	72	5.37	60.3	0.760	16.4	6.49	0.107	3.20	1.29	1.93	3.50	0.125	99.5
HR	66	7978	1H	3	78	80	5.62	59.4	0.738	16.5	7.06	0.332	3.23	1.35	1.83	3.56	0.126	99.8
HR	67	7978	1H	3	84	86	6,39	59.4	0.750	17.1	5.90	0.103	3.14	1.26	1.90	3.46	0.128	99.6
$H R$ $H R$	68	7978	1H	3	91	93	5.41	60.8 58.5	0.768	17.3	5.96	0.097	3.23	1.27	1.85	3.54	0.125	100.4
HR $H R$	69 70	7978	1H 1H	3	97 105	99 107	7.25 3.27	58.5 61.6	0.724 0.768	16.1 175	7.04 6.13	0.097 0.102	3.19 3.25	1.18	1.77 1.96	3.46 3.62	0.125	99.5 99.6
HR	70	7978	1H	3	105	107	3.27	61.6 59	0.768	17.5	6.13	0.102	3.25	1.28	1.96	3.62	0.124	99.6
HR HR	71	7978	1H	3	112	114 121	5.29	59.6	0.757	16.9	5.95	0.081	3.18	127	1.89	3.51	0.120	98.5
HR $H R$	72	7978	${ }_{\text {I }}^{\text {1 }}$		120	121 128												
HR	73	7978	1H	3	126	128	5.27	60.3	0.752	16.7	6.59	0.094	3.19	1.29	1.89	3.47	0.122	99.6
HR	74	7978	1H	3	131	133	11.23	54.6	0.691	16.0	8.15	0.048	2.54	1.03	1.79	2.99	0.132	99.2
HR	75	7978	1H		140	142	6.18	58.9	0.749	16.5	6.91	0.076	3.03	1.42	1.80	3.33	0.131	99.0
HR	76	7978	1H	3	147	149	5.66 6.86	59.6 59.5	0.770	16.7	6.24	0.092	3.22	1.80	1.89	3.47	0.125	99.6
HR	77	797B	1H	4	4	6	6.86	59.5	0.755	16.9	6.89	0.086	3.18	1.21	1.79	3.41	0.119	100.7
HR	78	797 B	${ }_{1}^{1 H}$	4	11	13	10.91	56.8	0.687	16.2	5.91	0.063	2.68	1.11	1.87	3.04	0.133	99.4
HR	79	7978	1H	4	18	20	14.78	50.8	0.626	14.8	9.95	0.051	2.28	0.91	1.63	2.78	0,126	98.7
HR	80	7978	1H	4	24	26	5.62	59.4	0.707	16.8	7.62	0.113	3.09	1.10	1.80	3.30	0.120	99.7
HR	81	7978	1H	4	32	34	6.30	57.5	0.667	15.8	9.60	0.093	2.91	0.92	1.78	3.07	0.141	98.8
HR	82	7978	IH		39	41	10.81	56.4	0.718	16.4	5.79	0.097	3.01	1.13	1.76	3.28	0.116	99.5
$H R$ $H R$	83	7978	1H	4	49	51	9.43 10.36	56.5	0.672	16.1	6.95	0.082	3.01	1.11	1.77	3.02	0.138	98.8
HR	84	7978	1H	4	53	55	10.36	51.7	0.592	14.6	7.85	0.137	2.67	4.29	1.67	2.71	2.251	98.8
HR		7978	1H	4	60	62	9.30	57.1	0.659	15.7	7.04	0.063	2.92	1.11	1.84	3.09	0.125	99.0

Table 2 (continued)

Type	No	Hole	Core	Sec	nterv		01	$\mathrm{SiO2}$	TiO2	Al^{203}	Fe 203	MnO	MgO	CaO	Na2O	K20	P205	Total
HR	86	7978	1 H	4	67	69	11.10	35.5	0.605	153	7.80	0.076	2.62	1.07	1.91	2.89	0.135	99.0
HR	87	797B	IH	4	88	90	6.09	63.3	0.714	17.7	5.50	0.097	3.07	1.25	1.96	3.41	0.113	1032
HR	88	7978	1H	4	94	96	5.84	61.4	0.730	17.2	5.62	0.098	3.14	1.31	1.97	3.44	0.119	100.9
HR	89	7978	IH	4	102	104	6.79	58.2	0.719	16.4	5.85	0,122	3.25	2.87	1.86	3.35	0.117	99.5
HR	90	797B	1H	4	109	11	5.92	59.5	0.744	16.9	6.05	0.064	3.30	1.40	1.85	3.39	0.118	99.3
HR	91	7978	2 H	1	17	19	7.54	59.2	0.688	15.6	7.16	0.065	2.88	1.17	1.93	3.20	0.120	99.6
HR	92	7978	2 H	1	24	26	7.34	56.6	0.611	16.4	7.99	0.095	2.41	1.06	2.56	3.55	0.110	98.7
HR	93	797B	2 H	1	32	34	8.23	57.4	0.667	16.9	6.96	0.092	2.85	0.97	1.84	3.09	0.117	99.2
HR	94	7978	2 H	1	39	41	8.08	57.1	0.670	15.7	7.56	0.082	3.08	1.14	1.88	3.19	0.116	98.5
HR	95	797B	2 H	1	53	55												
HR	96	797B	2 H		60	62	6.42	59.7	0.616	16.0	7.41	0.076	2.68	0.96	2.02	3.22	0.100	99.2
HR	97	7978	2 H	1	67	69	11.57	56.3	0.649	16.6	5.60	0.055	2.66	1.01	1.97	3.05	0.118	99.6
HR	98	7978	2 H	1	88	90	5.67	59.8	0,708	16.4	6.43	0.145	2.96	1.35	2.19	3.48	0.124	99.2
HR	99	797B	2 H	1	95	97	10.78	56.0	0.627	15.0	7.45	0.086	2.90	1.04	1.70	2.99	0.106	98.6
HR	100	7978	2 H	1	1104	106	17.48	42.6	0.487	11.5	6.76	0.084	2.02	10.77	1.37	2.15	0.116	95.3
HR	101	797B	2 H	1	109	111	8.42	58.0	0.676	15.3	5.72	0.089	2.84	2.93	1.80	3.18	0.114	99.0
H	102	7978	2 H	1	115	117	11.93	49.8	0.567	133	5.92	3.434	2.81	5.92	1.53	2.60	0,154	98.0
HR	103	7978	2 H		123	125	8.25	57.1	0.661	15.5	6.91	1.786	3.08	1.58	1.74	3.05	0.136	99.7
HR	104	797B	2 H		130	132	6.73	60.0	0.680	16.4	6.21	0.197	2.88	1.00	1.86	3.21	0,106	99.2
HR	105	7978	2 H	1	137	139	7.54	58.1	0.651	15.4	8.44	0.190	2.95	0.96	1.76	3.11	0.111	99.2
HR	106	7978	2 H	1	144	146	14.06	56.0	0.639	15.2	5.21	0.144	2.69	1.03	1.75	3.02	0.099	99.8
HR	107	7978	2 H	2	2	3	6.17	61.3	0,720	17.5	5.82	0.255	3.14	1.06	1.81	3.33	0.113	101.2
HR	108	797B	2 H	2		10	6.04	60.0	0.685	16.8	5.95	0.286	2.94	0.99	1.80	3.27	0.108	98.8
HR	109	7978	2 H	2	17	19	6.40	60.1	0.610	15.7	650	0.969	2.92	0.99	1.98	3.22	0,111	99.5
HR	110	797B	2 H	2	22	24	8.31	56.0	0.474	14.6	5.37	4.037	2.34	2.03	2.94	3.42	0.195	99.7
HR	111	7978	2 H	2	30	32	4.16	59.1	0.390	17.6	5.67	0.288	1.23	1.28	5.77	4.94	0.106	100.5
HR	112	797B	2 H	2	36	38	6.96	60.7	0.631	163	5.45	0.910	2.87	1.16	1.88	3.08	0.110	100.1
HR	113	7978	2 H	2	42	44	9.75	54.9	0.550	14.5	5.29	5.014	2.76	2.18	1.72	2.79	0.160	99.6
HR	114	7978	2 H	2	50	52	9.04	56.6	0.543	14.6	5.52	4.099	2.70	1.91	1.76	2.84	0.136	9.8
HR	115	7978	${ }^{2} \mathrm{H}$	2	57	59	5.90	60.3	0.680	17.5	6.02	0.159	2.88	0.89	1.93	3.30	0.102	99.6
HR	116	797B	2 H	2	64	66	6.11	59.8	0.688	17.8	5.95	0.236	2.93	0.88	1.84	3.29	0.100	99.6
HR	117	7978	2 H	2	71	73	6.05	60.3	0.690	17.7	6.30	0.096	2.90	0.88	2.00	3.27	0,108	100.3
HR	118	797B	2 H	2	79	81	6.26	59.8	0.681	17.5	5.93	0.414	2.72	0.93	2.00	3.23	0.112	99.6
HR	119	7978	2 H		84	86	5.72	59.5	0.631	17.1	7.21	0.095	259	0.85	2.48	3.57	0.105	99.9
HR	120	7978	2 H		92	94	6.33	59.2	0.733	17.1	5.85	0.893	3.20	1.33	1.74	3.38	0.126	99.9
HR	121	7978	2 H	2	. 98	100	6.00	59.4	0.742	17.1	5.83	0.633	3.27	1.29	1.81	3.45	0.125	99.7
HR	122	7978	2 H	2	106	108	5.41	60.8	0.751	17.1	6.09	0.183	3.33	1.16	1.79	3.54	0.125	100.2
HR	123	7978	$2{ }^{2 H}$	2	113	115	5.12	609	0.744	17.0	6.04	0.139	3.14	1.27	1.98	3.58	0.128	100.1
HR	124	7978	2 H	2	121	123	5.08	61.1	0.739	16.9	6.31	0.143	3.23	1.03	1.76	3.56	0.120	100.0
HR	125	797B	2 H	2	127	129	5.29	61.0	0.709	16.4	6.23	0.132	3,10	1.15	1.89	3.53	0.123	99.6
HR	126	7978	2 H		136	138	6.89	58.3	0.709	15.7	7.43	0.082	2.59	1.55	2.02	3,33	0.125	98.7
HR	127	7978	2 H		141	143	7.24	58.3	0.738	162	7.26	0.106	2.97	1.37	1.68	3.33	0.134	99.3
HR	128	7978	2 H		148	150	6.63	58.7	0.742	16.3	7.21	0.085	2.89	1.28	1.72	3.27	0.125	98.9
HR	129	797B	2 H	3	5	7	5.63	60.1	0.753	17.1	6.23	0.141	3.20	1.21	1.68	3.54	0.121	99.7
HR	130	7978	2 H	3	11	13	5.85	60.7	0.739	17.0	6.77	0.335	3.15	1.21	1.74	3.51	0.130	101.1
HR	131	7978	2 H	3	19	21	5.53	60.4	0.758	17.1	5.91	0.155	3.33	1.23	1.76	3.60	0.122	99.9
HR	132	7978	2 H	3	24	26	5.59	59.6	0.714	16.2	8.06	0.093	3.22	0.96	1.69	3.54	0.120	99.8
HR	133	7978	2 H	3	33	35	5.30	61.7	0.770	17.6	5.85	0.116	3.29	1.13	1.78	3.59	0.120	101.2
HR	134	7978	2 H	3	40	42	5.10	61.1	0.760	17.0	6.00	0.106	3,17	1.04	1.76	3.59	0.119	99.8
HR	135	7978	2 H	3	48	50	6.24	60.2	0.650	16.7	6.55	0.063	2.70	0.87	1.72	3.37	0.112	99.1
HR	136	797B	2 H		54	56	9.99	53.5	0.668	14.6	11.42	0.075	2.40	1.38	1.64	3.07	0.113	98.8
HR	137	7978	2 H		64	66	8.29	55.9	0.711	15.6	9.00	0.084	2.75	1.69	1.63	3.12	0.121	98.9
HR	138	7978	2 H	3	71	73	8.20	55.7	0.704	15.6	8.80	0.085	2.78	2.06	1.63	3.11	0.119	98.7
HR	139	797B	2 H	3	79	81	7.70	56.6	0.702	15.9	8.19	0.066	2.73	1.58	1.64	3.21	0.119	98.4
HR	140	7978	2 H	3	82	84	7.38	57.9	0.675	16.1	6.63	0.089	2.78	1.98	2.06	3.33	0.116	99.1
HR	141	7978	${ }_{2}^{2 H}$	3	92	94	9.18	52.6	0.579	15.2	9.04	0.072	1.91	2.50	2.59	3.41	0.113	97.2
HR	142	7978	2 H	3	96	98	7.06	58.5	0.735	16.2	7.44	0.178	3.14	1.33	1.74	3.41	0.120	99.9
HR	143	7978	2 H	3	103	105	6.46	58.8	0.707	15.7	853	0.112	2.94	1.14	1.86	3.38	0.117	99.7
HR	144	7978	2 H		108	110	5.49	61.4	0.763	16.8	5.80	0.093	3.18	1.25	1.88	3.50	0.125	100.3
HR	145	797B	2 H		116	117								1.25	1.88	3.50	0.125	100.3
HR	146	7978	2 H	3	126	128	5.06	61.7	0.780	16.5	5.76	0.086	3.13	1.21	1.92	3.49		99.7
HR	147	797B	2 H	3	131	133	5.31	61.1	0.761	16.6	6.37	0.086	3.22	1.18	1.82	3.52	0.124	100.1
HR	148	7978	2 H	3	138	140	6.83	60.4	0.746	16.2	6.19	0.070	3.15	1.23	1.79	3.38	0.121	100.0
HR	149	7978	${ }_{2}^{2 H}$	3	145	147	6.02	60.7	0.748	16.6	6.26	0.090	3.21	1.17	1.76	3.46	0.119	100.2
HR	150	7978	2 H	4	2	4	8.78	57.3	0.671	15.6	7.70	0.073	3.11	1.10	1.72	3.24	0.140	99.5
HR	151	7978	2 H	4	9	11	5.78	59.4	0.737	16.4	6.96	0.072	3.28	1.17	1.76	3.55	0.116	99.2
HR $H R$	152	7978	${ }_{2}^{2 H}$	4	16	18	6.42	58.8	0.708	15.9	7.62	0.075	3.25	1.17	1.76	3.43	0.121	99.3
HR HR	153	7978	2 H	4	23	25	6.70	58.6	0.731	16.2	7.56	0.071	3.25	1.14	1.71	3.46	0.124	99.6
HR HR	154	7978	2 H	4	32	34	5.49	60.0	0.759	16.5	6.50	0.083	3.28	1.26	1.79	3.52	0.125	99.2
HR HR R	155	7978	2 H	4	37	39	5.71	59.3	0.752	16.7	6.75	0.079	3.23	1.21	1.75	3.47	0.119	99.1
HR HR R	156	7978	2 H	4	46	47												
HR HR	157 158	7978	${ }_{2}^{2 \mathrm{H}}$	4	51	53	7.27 11.76	58.0	0.722	16.1	7.42	0.076	3.12	1.13	1.69	3.39	0.129	99.0
HR HR	158	7978	2 H	4	58	60	11.76	52.2	0.664	15.3	10.68	0.054	2.44	0.87	1.54	3.04	0.121	98.6
HR HR	159	797B	2 H	4	65	67	5.61	59.8	0.747	16.8	6.17	0.084	3.25	1.33	1.77	3.52	0.165	99.3
HR $H R$	160	797B	2 H	4	71	73	6.31	58.7	0.714	15.9	7.45	0.130	3.28	124	1.73	3.51	0.131	99.1
HR HR	161	797B	2 H	4	79	81	7.16	58.0	0.731	16.6	6.84	0.078	3.13	1.17	1.74	350	0.123	99.1
HR HR	162	797B	2 H	4	86	88	8.38	55.2	0.689	155	6.57	1.717	3.27	2.49	1.63	3.35	0.154	99.0
HR HR	163	7978	${ }^{2} \mathrm{H}$	4	93	95	7.62	56.8	0.701	16.1	6.76	0.358	3.33	1.81	1.67	3.47	0.125	98.8
HR	164	7978	2 H	4	99	101	6.26	58.5	0.726	16.5	7.19	0.123	3.27	1.10	1.69	3.53	0.117	99.0
HR	165	7978	${ }^{2 H}$	4	107	109	6.27	58.5	0.748	17.0	6.40	0.123	3.30	1.14	1.71	3.58	0.119	98.8
HR	166	7978	${ }^{2 \mathrm{H}}$	4	114	116	5.70	59.0	0.760	17.3	6.22	0.105	3.25	1.08	178	3.53	0.117	98.8
HR^{H}	167	7978	${ }_{2}^{2 \mathrm{H}}$	4	121	123	7.10	55.1	0.698	15.5	10.78	0.089	2.94	0.99	1.64	3.31	0.111	98.2
HR HR	168	7978	2 H		128	130	6.39	58.9	0.722	16.4	7.19	0.085	3.17	1.08	1.77	3.39	0.116	99.2
HR HR	169	7978	2 H	4	132	134	8.07	58.1	0.740	16.5	5.90	0.080	3.09	1.15	1.87	3.32	0.120	98.9
HR	170	797B	2 H		142	144	11.24	55.9	0.666	15.4	7.77	0.059	2.35	0.88	1.73	2.97	0.121	99.0

Table 2 (continued)

Type	Na	Hole	Core	Sec	nterval	L.0.1.	$\mathrm{SiO2}$	TiO2	A1203	Fe 2 O 3	MnO	MgO	CaO	Na 2 O	K2O	P205	Total
HR	171	797B	2 H	5	$0 \quad 2$	12.37	53.5	0.667	15.8	8.51	0.053	2.36	0.83	1.61	2.97	0.119	98.7
HR	172	7978	2 H	5	7	6.05	59.3	0.751	17.1	5.82	0.109	3.34	1.23	1.77	3.50	0.122	99.0
HR	173	7978	2 H	5	$16 \quad 18$	5.53	58.8	0.753	17.1	6.28	0.083	3,35	1,16	1.78	3.54	0.113	98.5
HR	174	7978	2 H	5	$21 \quad 23$	5.39	58.7	0.749	17.0	6.99	0.081	3.37	1.14	1.70	3.52	0.113	98.8
HR	175	797B	2 H	5	2931	11.22	55.7	0.658	15.9	6.37	0.093	2.76	1.09	1.85	2.99	0.154	98.8
HR	176	7978	2 H	5	$35 \quad 37$	6.63	58.9	0.721	17.1	6.23	0.092	3.09	1.08	1.86	3.35	0.114	99.1
HR	177	7978	2 H	5	$41 \quad 43$	5.64	59.2	0.764	17.4	6.32	0.103	3.32	1.14	1.80	3.50	0.111	99.3
HR	178	797B	2 H	5	$49 \quad 51$	6.88	58.3	0.687	16.6	6.45	0.117	2.94	1.06	1.91	3.26	0.110	98.3
HR	179	797B	2 H	5	56	6.77	59.6	0.684	17.0	6.28	0.091	2.86	0.98	1.84	3.15	0.104	99.4
HR	180	7978	2 H	5	62.64	6.71	59.9	0.696	17.3	5.83	0.077	2.78	1.02	1.89	3.18	0.114	99.5
LR	1	797B	1H	1	$13 \quad 15$	6.70	60.1	0.645	16.5	6.03	0.814	2.55	0.96	2.29	3.01	0.165	99.8
LR	2	7978	1H	1	$44 \quad 46$	7.50	57.7	0.627	15.3	9.17	0.625	2.73	1.01	2.14	2.85	0.265	99.9
LR	3	797B	IH	1	74.76	9.15	57.7	0.627	16.5	6,50	0.153	2.57	1.13	2.22	2.91	0.154	99.7
LR	4	7978	1H		$134 \quad 136$	9.00	52.9	0.652	14.4	7.39	0.110	2.71	5.25	1.79	2.82	0.132	97.1
LR	5	797 B	IH	2	1315	8.33	55.1	0.693	14.7	7.07	0.078	2.79	4.49	2.04	2.89	0.132	98.4
LR	6	7978	1H	2	$44 \quad 46$	8.78	54.3	0.679	15.3	8.02	0.060	2.90	3.44	1.88	3.02	0.125	98.5
LR	7	7978	1H		$74 \quad 76$	5.96	60.0	0.749	17.2	5.91	0.064	3.15	1.26	2.07	3.39	0.128	99.9
LR	8	797B	1H		104106	6.68	58.6	0.693	15.9	7.93	0.064	3.28	1.26	1.91	3.32	0.142	99.8
LR		7978	1H	3	$13 \quad 15$	5.69	60.2	0.742	17.2	6.15	0.064	3.26	1.28	2.22	3.38	0.133	100.3
LR	10	797B	IH	3	$44 \quad 46$	7.68	58.6	0.705	16.5	6.64	0.067	3.08	1.21	2.05	3.23	0.138	99.9
LR	11	797B	1H		$74 \quad 76$	5.35	60.8	0.762	17.0	6.10	0.117	3.25	1.30	2.02	3.43	0.132	100.2
LR	12	797B	IH	3	104106	19.04	51.6	0.646	14.7	5.13	0.083	2.73	1.08	1.86	2.92	0.113	99.9
LR	13	797B	1H		134136	13.02	52.5	0.661	15.4	8.85	0.064	2.67	1.68	1.88	2.82	0.131	99.7
LR	14	7978	1H	4	$\begin{array}{lll}13 & 15\end{array}$	15.16	52.5	0.637	15.0	7.88	0.059	2.60	1.12	1.91	2.71	0.134	99.7
LR	15	7978	1H	4	$44 \quad 46$	8.60	58.2	0.693	16.7	6.52	0.072	3.02	1.12	1.77	3.03	0.136	99.9
LR	16	7978	IH		71.73	12.13	55.1	0.586	14.8	8.49	0.084	2.78	1.02	1.84	2.70	0.136	99.7
LR	17	797B	1H	4	104106	15.11	52.5	0.643	14.7	5.57	0.079	2.90	3.91	1.74	2.86	0.110	100.1
LR	18	797B	2 H	1	$14 \quad 16$	6.82	58.7	0.727	17.0	6.68	0.089	3.15	1.20	2.14	3.27	0.124	99.9
LR	19	7978	2 H	1	$44 \quad 46$	8.30	57.9	0.669	17.0	6.26	0.116	2.93	1.07	2.07	3.03	0.116	99.5
LR	20	797B	2 H	1	102104	14.58	43.0	0.461	10.9	6.96	0.089	1.98	11.70	1.57	2.01	0.108	93.4
LR	21	797B	2 H	1	134136	7.42	57.5	0,664	15.6	8.59	0.303	3.17	0.95	1.92	3.07	0.108	99.4
LR	22	797B	2 H	2	1416	6.33	60.7	0.643	16.3	6.29	0.455	2.95	0.98	2.09	3.15	0.106	100.0
LR	23	797B	2 H	2	102104	5.70	60.1	0.750	17.1	5.91	0.332	3.27	1.21	1.88	3.43	0.128	99.8
LR	24	7978	2 H	2	134136	10.28	56.2	0.671	15.1	7.32	0.131	2.63	1.38	2.42	3.20	0.120	99.5
LR	25	797B	2 H	2	4446	6.96	60.7	0.622	16.3	5.79	0.367	2.87	1.00	2.02	3.03	0.109	99.8
LR	26	7978	2 H	2	$74 \quad 76$	5.84	60.2	0.670	17.4	6.81	0.136	2.87	0.88	2.23	3.10	0.108	1002
LR	27	7978	2 H	,	$14 \quad 16$	5.88	59.8	0.747	16.8	6.36	0.242	3.21	1.29	1.92	3.44	0.130	99.8
LR	28	7978	2 H	3	$44 \quad 46$	5.13	60.9	0.753	17.0	6.05	0.125	3.25	1.12	1.86	3.55	0.128	99.8
LR	29	797B	2 H	3	74.76	11.01	52.3	0.668	14.9	8.48	0.103	2.84	- 3.30	1.59	2.91	0.121	98.2
LR	30	797B	2 H	3	102104	6.59	59.4	0.744	16.0	7.12	0.100	3.06	- 1.40	1.86	3.26	0.124	99.6
LR	31	7978	2 H	3	134136	5.38	60.8	0.757	16.7	6.33	0.088	3.22	- 1.18	1.83	3.46	0.123	99.9
LR	32	797B	2 H	4	1416	6.16	59.7	0.739	16.8	6.51	0.080	3.21	1.19	1.78	3.42	0.125	99.8
LR	33	797B	2 H	4	$44 \quad 46$	7.14	59.0	0.709	16.5	6.95	0.084	3.23	1.15	1.72	3.35	0.122	100.0
LR	34	7978	2 H	4	$74 \quad 76$	6.37	59.2	0.709	16.0	7.64	0.084	3.31	1.21	1.67	3.39	0.126	99.7
LR	35	797B	2 H		102104	6.40	59.0	0.734	16.7	6.82	0.136	3.36	1.16	1.73	3.49	0.118	99.7
LR	36	7978	2 H	4	134136	7.65	59.6	0.719	15.8	6.39	0.085	2.90	1.31	1.93	3.15	0.127	99.7
LR	37	797B	2 H	5	$\begin{array}{ll}44 & 46 \\ 74\end{array}$	6.19	59.2	0.707	16.8	7.00	0.284	3.21	1.12	1.85	3.23	0.113	99.7
IR	38	797B	2 H	5	74.76	6.54	60.4	0.663	17.1	5.71	0.072	2.77	0.96	1.91	3.16	0.107	99.4
LR	39	7978	2 H	5	102104	6.55	58.9	0.709	16.4	6.97	0.146	3.09	1.09	1.83	3.32	0.131	99.1
LR	40	797B	2 H	5	134136	6.08	61.0	0.712	16.9	5.62	0.087	2.87	0.94	1.89	3.28	0.107	99.5
LRA		797A	1H		14.16	6.09	60.6	0.732	17.2	6.50	0.068	3.18	1.30	1.99	3.50	0.133	101.3
LRA	5	797A	IH	,	134136	5.57	59.8	0.744	16.7	6.51	0.092	3.20	1,31	1.82	3.49	0.125	99.3
LRA	16	797 A	1H	2	$\begin{array}{ll}74 & 76 \\ 14 & 16\end{array}$	9.53	57.6	0.674	15.3	5.75	0.071	2.85	2.09	1.85	3.11	0,134	99.0
LRA	16	797A	1H	4	$\begin{array}{rr}14 & 16 \\ 104\end{array}$	7.01	59.7	0.669	16.5	5.63	0.225	3.00	1.01	1.86	3.22	0.111	98.9
LRA	19	797A	1H	4	104106	6.09	59.2	0.670	17.3	6.87	0.181	2.87	0.93	1.92	3.17	0.112	99.2
LRA	20	797A	1H	4	$\begin{array}{rrr}134 & 136\end{array}$	5.99	59.6	0.739	17.2	5.99	0.193	3.28	1.21	1.78	3.51	0.126	99.6
LRA	23	797A	1H	5	7476	9.05	55.4	0.682	15.5	8.27	0.125	3.00	1.28	2.04	3.22	0.126	98.8
LRA	24	797A	1H	5	$\begin{array}{lll}104 & 106 \\ 134 & 136\end{array}$	8.48 5.96	56.1	0.666	15.9	6.49	0.093	2.95	2.29	2.31	3.39	0.123	98.7
LRA	30	797A	IH	7	$\begin{array}{rrr}134 & 136 \\ 44 & 46\end{array}$	5.96 8.82	59.2	0.732	16.7	7.16	0.095	3.27	1.05	1.77	3.54	0.121	99.7
LRA	32	797A	IH	7	4446	8.82	55.7	0.687	15.9	8.75	0.097	2.97	1.10	1.70	3.20	0.115	99.1
					Max	19.04	67.5	0.780	17.8	11.45	5.014	7.15	17.31	5.77	4.94	2.251	
					Min	3.27	41.5	0,390	10.9	4.36	0.048	1.23	0.83	1.23	2.01	0.076	
					Average	7.74	57.9	0.680	16.1	6.83	0.247	2.94	1.70	1.87	3.24	0.136	
					Std. Dev.	2.55	3.4	0.069	1.0	1.18	0.629	0.45	1.76	0.35	0.30	0.146	

Table 3 Biogenic silica (bioSiO $)_{2}$, organic carbon (Org-C), carbonate carbon (Carb-C), GRAPE density, dry bulk density (DBD), and content of detritus (Detritus\%) of all analyzed samples from ODP Site 797.

Table 3 (continued)

Type	No	Hole	Core	Sec	Interval		bioSiO2	Org-C	Carb-C	GRAPE	$\overline{\mathrm{DBD}}(\mathrm{g} / \mathrm{cm} 3)$	Detritus\%
HR	60	797B	1H	3	35	37	7	0.35	0.16	1.51	0.67	87
HR	61	797B	1H	3	40	42	4	0.42	0.14	1.44	0.56	90
HR	62	797B	1H		49	51	6	1.83	0.24	1.43	0.54	85
HR	63	797B	1H	3	56	58	5	0.84	0.16	1.42	0.53	87
HR	64	797B	1H	3	63	64	6			1.39	0.48	
HR	65	797B	1H	3	70	72	4	0.36	0.14	1.50	0.66	90
HR	66	797B	1H	3	78	80	5	0.32	0.22	1.50	0.65	88
HR	67	797B	1H	3	84	86	4	0.90	0.14	1.47	0.60	89
HR	68	797B	1H	3	91	93	4	0.34	0.15	1.49	0.63	90
HR	69	797B	1H	3	97	99	5	0.66	0.13	1.49	0.63	87
HR	70	797B	1H	3	10510	107	4	0.39	0.17	1.50	0.65	92
HR	71	797B	1H	3	11211	114	4	0.30	0.17	1.54	0.70	90
HR	72	797B	1H	3	$120 \quad 12$	121	4			1.42	0.53	
HR	73	797B	1H	3	12612	128	5	0.33	0.13	1.46	0.59	89
HR	74	797B	1H	3	13113	133	5	3.17	0.11	1.52	0.69	83
HR	75	797B	1H	3	14014	142	4	0.71	0.18	1.42	0.53	89
HR	76	797B	1H	3	1471	149	4	0.28	0.28	1.50	0.64	89
HR	77	797B	1H	4	4	6	5	0.34	0.14	1.46	0.59	88
HR	78	797B	1H	4	11	13	7	3.25	0.09	1.40	0.50	82
HR	79	797B	1H	4	18	20	7	4.16	0.27	1.42	0.53	77
HR	80	797B	1H	4	24	26	5	0.38	0.15	1.44	0.56	89
HR	81	797B	1H	4	32	34	7	0.49	0.11	1.35	0.43	87
HR	82	797B	1H	4	39	41	6	3.06	0.01	1.33	0.40	83
HR	83	797B	1H	4	49	51	8	2.37	0.00	1.37	0.46	83
HR	84	797B	1H	4	53	55	7	2.30	0.28	1.44	0.56	81
HR	85	797B	1H	4	60	62	7	2.18	0.18	1.43	0.55	82
HR	86	797B	1H	4	67	69	10	2.78	0.19	1.31	0.37	78
HR	87	797B	1H	4	88	90	7	0.39	0.34	1.41	0.52	85
HR	88	797B	1H	4	94	96	7	0.31	0.31	1.46	0.59	86
HR	89	797B	1H	4	10210	104	6	0.41	0.53	1.46	0.59	85
HR	90	797B	1H	4	1091	111	7	0.41	0.19	1.42	0.53	86
HR	91	797B	2 H	1	17	19	7	1.47	0.08	1.03		85
HR	92	797B	2 H	1	24	26	9	1.01	0.05	1.28		84
HR	93	797B	2 H	1	32	34	7	1.72	0.05	1.42	0.53	85
HR	94	797B	2 H	1	39	41	5	1.70	0.12	1.35	0.42	86
HR	95	797B	2 H	1	53	55	7	0.44	0.14	1.47	0.61	
HR	96	797B	2 H	1	60	62	7	0.59	0.10	1.43	0.54	86
HR	97	797B	2 H	1	67	69	10	3:72	0.15	1.36	0.44	78
HR	98	797B	2 H	1	88	90	9	0.41	0.09	1.42	0.54	85
HR	99	797B	2 H	,	95	97	9	2.04	0.10	1.40	0.50	79
HR	100	797B	2 H	1	10410	106	8	5.01	2.30	1.44	0.56	64
HR	101	797B	2 H	,	1091	111	9	1.43	0.47	1.53	0.69	81
HR	102	797B	2 H	1	1151	117	8	2.04	1.53	1.45	0.57	73
HR	103	797B	2 H	1	123125	125	9	1.08	0.34	1.43	0.55	81
HR	104	797B	2 H	1	13013	132	10	0.89	0.08	1.43	0.55	83
HR	105	797B	2 H	1	1371	139	8	1.05	0.10	1.36	0.44	84
HR	106	797B	2 H	1	1441	146	8	0.52	0.13	1.36	0.44	77
HR	107	797B	2 H	2	1	3	9	0.43	0.15	1.39	0.48	84
HR	108	797B	2 H	2	8	10	11	0.42	0.11	1.41	0.52	82
HR	109	797B	2 H	2	17	19	14	0.38	0.19	1.34	0.41	79
HR	110	797B	2 H	2	22	24	15	0.47	0.81	1.31	0.36	73
HR	111	797B	2 H	2	30	32	12	0.34	0.00	1.39	0.48	84
HR	112	797B	2 H	2	36	38	13	0.75	0.15	1.33	0.40	80
HR	113	797B	2 H	2	42	44	13	0.66	1.03	1.34	0.41	72
HR	114	797B	2 H	2	50	52	14	0.57	0.92	1.35	0.43	73
HR	115	797B	2 H	2	57	59	10	0.56	0.00	1.37	0.45	84
HR	116	797B	2 H	2	64	66	10	0.45	0.09	1.35	0.43	84
HR	117	797B	2 H	2	71	73	9	0.40	0.02	1.37	0.46	85
HR	118	797B	2 H	2	79	81	9	0.52	0.03	1.43	0.54	85

Table 3 (continued)

Type	No	Hole	Core	Sec	Interv		bioSiO2	Org-C	Carb-C	GRAPE	$\overline{\mathrm{DBD}}(\mathrm{g} / \mathrm{cm} 3)$	Detritus\%
HR	119	797B	2 H	2	84	86	9	0.44	0.01	1.35	0.43	85
HR	120	797B	2 H	2	92	94	5	0.57	0.31	1.47	0.61	87
HR	121	797B	2 H	2	98	100	5	0.46	0.24	1.45	0.57	88
HR	122	797B	2 H	2	106	108	5	0.35	0.14	1.54	0.70	89
HR	123	797B	2 H	2	113	115	7	0.30	0.14	1.48	0.62	87
HR	124	797B	2 H	2	121	123	5	0.27	0.06	1.48	0.62	89
HR	125	797B	2 H	2	127	129	6	0.35	0.09	1.49	0.63	88
HR	126	797B	2 H	2	136	138	5	1.23	0.06	1.56	0.74	87
HR	127	797B	2 H	2	141	143	5	1.19	0.09	1.47	0.61	88
HR	128	797B	2 H	2	148	150	4	1.02	0.04	1.63	0.85	89
HR	129	797B	2 H	3	5	7	5	0.41	0.14	1.56	0.74	89
HR	130	797B	2 H	3	11	13	5	0.44	0.14	1.53	0.69	88
HR	131	797B	2H	3	19	21	5	0.41	0.11	1.52	0.68	89
HR	132	797B	2 H	3	24	26	4	0.43	0.00	1.56	0.75	90
HR	133	797B	2 H	3	33	35	2	0.32	0.09	1.59	0.78	92
HR	134	797B	2 H	3	40	42	3	0.30	0.02	1.57	0.75	92
HR	135	797B	2 H	3	48	50	3	0.95	0.00	1.55	0.72	91
HR	136	797B	2 H	3	54	56	3	1.06	0.05	1.60	0.79	87
HR	137	797B	2 H	3	64	66	2	1.15	0.07	1.56	0.74	89
HR	138	797B	2 H		71	73	2	1.11	0.08	1.59	0.78	89
HR	139	797B	2H	3	79	81	2	1.24	0.00	1.53	0.69	90
HR	140	797B	2 H	3	82	84	3	1.22	0.14	1.57	0.75	89
HR	141	797B	2 H		92	94	3	1.85	0.00	1.50	0.65	88
HR	142	797B	2 H	3	96	98	2	0.87	0.13	1.64	0.85	90
HR	143	797B	2 H	3	103	105	5	0.62	0.07	1.53	0.70	88
HR	144	797B	2 H	3	108	110	2	0.51	0.10	1.54	0.71	92
HR	145	797B	2 H	3	116	117	2			1.53	0.69	
HR	146	797B	2 H		126	128	3	0.33	0.14	1.59	0.78	92
HR	147	797B	2 H	3	131	133	2	0.36	0.07	1.55	0.72	92
HR	148	797B	2 H	3	138	140	3	1.23	0.09	1.58	0.76	89
HR	149	797B	2H	3	145	147	3	0.75	0.11	1.49	0.64	91
HR	150	797B	2 H	4	2	4	3	2.38	0.05	1.39	0.48	88
HR	151	797B	2 H	4	9	11	3	0.56	0.10	1.53	0.70	91
HR	152	797B	2 H		16	18	3	0.92	0.11	1.46	0.59	90
HR	153	797B	2 H	4	23	25	4	1.15	0.08	1.44	0.56	89
HR	154	797B	2 H	4	32	34	3	0.47	0.13	1.52	0.68	91
HR	155	797B	2 H	4	37	39	2	0.41	0.09	1.46	0.58	91
HR	156	797B	2 H	4	46	47	3	-		1.50	0.65	
HR	157	797B	2 H	4	51	53	3	1.46	0.03	1.48	0.61	90
HR	158	797B	2H	4	58	60	3	2.96	0.00	1.52	0.67	85
HR	159	797B	2H	4	65	67	3	0.56	0.12	1.53	0.69	91
HR	160	797B	2 H	4	71	73	3	0.88	0.10	1.54	0.70	90
HR	161	797B	2 H	4	79	81	3	1.34	0.10	1.52	0.68	90
HR	162	797B	2 H	4	86	88	3	1.22	0.65	1.50	0.65	85
HR	163	797B	2 H	4	93	95	3	1.39	0.26	1.46	0.59	88
HR	164	797B	2 H	4	99	101	4	0.88	0,04	1.48	0.61	90
HR	165	797B	2 H	4	107	109	3	0.87	0.04	1.46	0.58	91
HR	166	797B	2 H	4	114	116	3	0.55	0.00	1.51	0.67	91
HR	167	797B	2H	4	121	123	6	0.46	0.00	1.48	0.62	87
HR	168	797B	2 H	4	128	130	4	0.91	0.00	1.57	0.76	90
HR	169	797B	2 H	4	132	134	3	1.91	0.04	1.45	0.58	88
HR	170	797B	2 H	4	142	144	4	3.09	0.00	1.45	0.58	84
HR	171	797B	2 H	5	0	2	4	3.51	0.01	1.46	0.59	83
HR	172	797B	2 H	5	7		3	0.69	0.08	1.54	0.71	90
HR	173	797B	2 H	5	16	18	3	0.40	0.08	1.52	0.68	91
HR	174	797B	2 H	5	21	23	3	0.38	0.07	1.46	0.58	91
HR	175	797B	2 H	5	29	31	6	3.94	0.01	1.38	0.48	83
HR	176	797B	2 H	5	35	37	,	1.13	0.02	1.45	0.58	90
HR	177	797B	2 H	5	41	43	4	0.46	0.02	1.53	0.69	91

Table 3 (continued)

Type	No	Hole	Core	Sec Interval	bioSiO2	Org-C	Carb-C	GRAPE	$\overline{\mathrm{DBD}}(\mathrm{g} / \mathrm{cm} 3)$	Detritus\%
HR	178	797B	2 H	$\begin{array}{llll}5 & 49 & 51\end{array}$	5	1.32	0.04	1.38	0.47	88
HR	179	797B	2 H	$\begin{array}{llll}5 & 56 & 58\end{array}$	6	1.24	0.00	1.37	0.46	87
HR	180	797B	2H	$\begin{array}{llll}5 & 62 & 64\end{array}$	6	1.22	0.00	1.41	0.51	87
LR	1	797B	1H	$\begin{array}{lll}1 & 13 & 15\end{array}$	12	0.78	0.07	1.34	0.40	81
LR	2	797B	1H	$\begin{array}{lll}1 & 44 & 46\end{array}$	14	1.10	0.08	1.26	0.30	78
LR	3	797B	1H	$\begin{array}{lll}1 & 74 & 76\end{array}$	10	2.08	0.09	1.28	0.33	81
LR	4	797B	1H	1134136	4	1.46	1.10	1.43	0.55	82
LR	5	797B	1H	$\begin{array}{llll}2 & 13 & 15\end{array}$	3	1.12	0.89	1.52	0.68	84
LR	6	797B	1H	$2 \begin{array}{lll}2 & 44 & 46\end{array}$	4	1.06	0.66	1.57	0.76	84
LR	7	797B	1H	$2 \begin{array}{lll}2 & 74 & 76\end{array}$	4	0.53	0.18	1.48	0.62	89
LR	8	797B	1H	2104106	5	0.96	0.18	1.44	0.55	87
LR	9	797B	1H	$\begin{array}{llll}3 & 13 & 15\end{array}$	4	0.49	0.19	1.44	0.57	89
LR	10	797B	1H	$\begin{array}{llll}3 & 44 & 46\end{array}$	5	1.60	0.15	1.41	0.52	87
LR	11	797B	1H	$\begin{array}{lll}3 & 74 & 76\end{array}$	4	0.35	0.17	1.57	0.76	90
LR	12	797B	1H	3104106	4	0.51	0.16	1.46	0.59	76
LR	13	797B	1H	3134136	5	3.37	0.25	1.49	0.64	80
LR	14	797B	1H	$\begin{array}{llll}4 & 13 & 15\end{array}$	7	4.32	0.12	1.40	0.50	77
LR	15	797B	1H	$\begin{array}{lll}4 & 44 & 46\end{array}$	7	1.82	0.09	1.38	0.47	84
LR	16	797B	1H	$\begin{array}{llll}4 & 71 & 73\end{array}$	9	3.43	0.10	1.33	0.40	79
LR	17	797B	1H	4104106	5	0.38	0.77	1.40	0.49	76
LR	18	797B	2 H	$1 \begin{array}{lll}1 & 14 & 16\end{array}$	5	0.76	0.14	0.90		87
LR	19	797B	2 H	$1 \begin{array}{lll}1 & 44 & 46\end{array}$	7	1.75	0.08	1.42	0.53	84
LR	20	797B	2 H	1102104	11	4.08	2.38	1.44	0.56	64
LR	21	797B	2 H	1134136	8	0.81	0.03	1.42	0.52	84
LR	22	797B	2 H	$\begin{array}{llll}2 & 14 & 16\end{array}$	12	0.42	0.10	1.38	0.47	82
LR	23	797B	2 H	2102104	4	0.38	0.20	1.47	0.61	89
LR	24	797B	2 H	2134136	5	1.47	0.20	1.50	0.64	84
LR	25	797B	2 H	$2 \begin{array}{lll}2 & 44 & 46\end{array}$	13	0.84	0.08	1.37	0.46	80
LR	26	797B	2 H	$\begin{array}{llll}2 & 74 & 76\end{array}$	7	0.40	0.00	1.33	0.40	87
LR	27	797B	2 H	$\begin{array}{lll}3 & 14 & 16\end{array}$	4	0.49	0.18	1.53	0.70	89
LR	28	797B	2 H	$\begin{array}{llll}3 & 44 & 46\end{array}$	4	0.28	0.13	1.60	0.80	90
LR	29	797B	2 H	$\begin{array}{llll}3 & 74 & 76\end{array}$	3	1.31	0.62	1.62	0.83	83
LR	30	797B	2 H	3102104	3	0.66	0.19	1.53	0.70	89
LR	31	797B	2 H		4	0.42	0.13	1.48	0.62	91
LR	32	797B	2 H	$\begin{array}{llll}4 & 14 & 16\end{array}$	4	0.73	0.11	1.49	0.64	90
LR	33	797B	2 H	$\begin{array}{lll}4 & 44 & 46\end{array}$	4	1.33	0.10	1.47	0.61	89
LR	34	797B	2 H	$\begin{array}{llll}4 & 74 & 76\end{array}$	4	0.76	0.15	1.55	0.72	89
LR	35	797B	2 H	4102104	4	0.79	0.12	1.38	0.47	89
LR	36	797B	2 H	4134136	5	1.43	0.14	1.52	0.69	87
LR	37	797B	2 H	$\begin{array}{llll}5 & 44 & 46\end{array}$	7	0.49	0.10	1.51	0.66	87
LR	38	797B	2 H	$\begin{array}{llll}5 & 74 & 76\end{array}$	9	0.95	0.00	1.44	0.56	85
LR	39	797B	2 H	5102104	6	0.70	0.11	1.51	0.67	87
LR	40	797B	2 H	5134136	8	0.79	0.00	1.46	0.59	86
LRA	1	797A	1H	$1 \begin{array}{lll}1 & 14 & 16\end{array}$	3	0.67	0.12	1.27		90
LRA	5	797A	1H	1134136	3	0.33	0.02	1.52	0.67	91
LRA	8	797A	1H	27476	6	2.29	0.35	1.42	0.53	83
LRA	16	797A	1H	$\begin{array}{llll}4 & 14 & 16\end{array}$	9	0.91	0.08	1.39	0.49	83
LRA	19	797A	1H	4104106	6	0.40	0.00	1.40	0.51	88
LRA	20	797A	1H	4134136	3	0.39	0.13	1.46	0.59	90
LRA	23	797A	1H	$\begin{array}{llll}5 & 74 & 76\end{array}$	4	1.21	0.00	1.54	0.71	87
LRA	24	797A	1H	5104106	4	1.14	0.34	1.47	0.60	86
LRA	30	797A	1H	6134136	3	0.50	0.04	1.57	0.75	91
LRA	32	797A	1H	$\begin{array}{lll}7 & 44 & 46\end{array}$	3	1.43	0.10	1.51	0.66	87
				Max	19	5.01	3.55	1.64	0.85	92
				Min	2	0.27	0.00	0.90	0.22	61
				Average	6	1.17	0.23	1.44	0.56	85
				Std. Dev.	4	0.96	0.39	0.10	0.13	6

Table 4 Mineral composition of all analyzed samples from ODP Site 797. Total $=$ total sum of mineral contents described + bioSiO $2+\mathrm{Org}-\mathrm{C}$. Detrital mineral total is sum of contents of smectite through detrital amorphous.

Table 4 (continued)

		How	Cere Ser limmal		Sanctice Uliter		Chorite Kaplanik Anphiba			Fellyan	Denilal Antrapoos	Rhade stroside Calcite Pr				$\begin{aligned} & \text { Dewital } \\ & \text { Mincral } \\ & \text { Toul } \end{aligned}$	Remuts	
\%	1037	278	28				33		13		$4{ }^{35}$	20	\bigcirc	1.2	43			Anomiac
HiR	104		2 F	${ }^{1} 130132$	19	16	14	2	13		43	00	0	as	100	\pm		
HR	105	2778	2 H	(137 130	20	is	12	1	13		6 30	00	0	is	$9 \times$	87		Amonhiak
HR	106	778	2 H	1144146	18	16	3.4	I	15		30	00	0	0.0	47	*		,
18R	103	\$78	24	$\begin{array}{llll}2 & 1 & 3\end{array}$	19	13	33	2	214		${ }^{28}$	00	0	00	96	$\times 7$		
HR	108	778	$2{ }^{2}$	$\begin{array}{lllll}2 & 8 & 10\end{array}$	19	13	34	0	913	4	426	as	0	as	93			
HR	109	7978	2 H	$\begin{array}{llll}2 & 17 & 19\end{array}$	20	15	32	!	11		2 N	00	0	0.	97			
HK	(16)	2976	2 H	$\begin{array}{llll}2 & 12 & 24\end{array}$	17	14	${ }^{11}$				23	a, 2	0	${ }^{60}$	3	73		K.Fikbour
HR	11	778	2 H	$\begin{array}{lllll}2 & 30 & 12\end{array}$	15	14	30	2	23	10	40	00	0	0.4	167	94		Anonticic
HR	112	778	${ }^{2 H}$	$\begin{array}{lllll}2 & 36 & 38\end{array}$	17	15	31	1	13		134	00	0	0.2	(0)			
HR	113	7978	2 H	2 42 44	17	14	12	0	- 9		2	9.3	0	0.1	92	\%		
HR	114	7978	2 H	$\begin{array}{llll}2 & 50 \\ 3 & 52 \\ & 57\end{array}$	17	14	1.	I	10		128	7.1	0	0.1	97	75		ADostsaik
HR	115	${ }_{\text {7 }}^{778}$	${ }_{21}^{2 H}$	$\begin{array}{llll}2 & 57 \\ 2 & 54 \\ 2 & 59\end{array}$	19	15	312	1	14		4 32	${ }_{00}$	0	0.2	9	${ }^{n x}$		Anontiaic
	119	7978	${ }_{21}^{2 H}$		18	15	32	2	213		27	${ }^{0}$	0	0.4	92	$\times 2$		
$\begin{gathered} \mathbf{H R} \\ \mathbf{H R} \end{gathered}$	$11187 ?$	${ }^{\text {7978 }} 7$	${ }_{21}^{2 H}$	2 71 7 2 7 81 8	18	15	12		2 14		${ }^{0}$	${ }^{0 a}$	0	0.2	95	45		Anontiaic
HR	119	7978	2 H	$2{ }_{2}^{2} 8480$	17	14	312	${ }_{0}$	- 11		- 27	\%os	\%	${ }_{0}$	86	7		
HR	120	778	2 H	2 9298	19	15	3.4	1	1 is		426	3.3	0	00	${ }_{6}$	87		culpar
HR	121	278	2 H	${ }_{2}^{2} 98100$	18	16	17	0	17	,	31	2.6	0	03	9)	91		
HR	122	7978	2 H	${ }^{2} 1068108$	20	16	35	2	2 18	5	$5 \quad 17$	00	0	${ }^{03}$	86	8 !		
$\begin{aligned} & \mathrm{HR} \\ & \mathrm{HR} \end{aligned}$	123	7778	${ }^{2 H}$	$\begin{array}{llll}2 & 113 & 115 \\ 2 & 121\end{array}$	18	15	35		3 18		4 25	00	0	04	${ }^{93}$	85		
HK	125	7778	${ }_{24}^{24}$		${ }_{18}^{18}$	19	15	2	2 ${ }^{18}$		${ }_{28}^{24}$	80	0	${ }_{0} 05$	${ }_{97}^{92}$	\% mo		
HR	120	7 78	24	${ }_{2}^{2} 1361138$	17	16	15	2	217		25	a 0	-	2.2	94	$\times 5$		
HR	127	7778	24	2144143	18	16	37	0	- is		5 24	${ }^{6}$	0	2.6	94	$\times 5$		
${ }_{\text {HR }}^{\text {HR }}$	128	${ }^{7} 78$	21	${ }_{2}^{2} 1488150$	18	15	36	1	19	,	$3{ }^{24}$	${ }^{0} 0$	0	21	94	* 7		
HR	130	778	${ }_{2 H}^{2 H}$	$\begin{array}{llll}3 & 3 & \\ 3 & 11 & 13\end{array}$	17	16	14	!	${ }^{18}$		$3 \quad 27$	-00	0	10	${ }_{4}^{94}$	${ }_{\text {8x }} \times$		
HR	1313	778	2 H	$\begin{array}{llll}3 & 19 & 21\end{array}$	16	16	35		20		28	00	0	0.0	9	${ }_{91}$		
HR	132	T78	2 H		17	13	34	2	17		24	${ }^{0}$	-	07	*)	84		
${ }_{\text {HR }}$	139	>7)	${ }^{2 H}$	33.35	19	16	13	2	219		30	0.0	0	00	97	94		
HR	135	7\%78	2 H	$3{ }_{3}{ }^{3} \times 18$	17	16	is	2	1 is		¢ 17	${ }_{00}$	\bigcirc	102	9	8		
HR	136	7978	211		17	16	37	2	14		426	\%0	0	63	94		G)pam	Amontac
HR	137	778	2 H	36466	18	${ }^{16}$	16	2	2.16		$5 \quad 24$	0.0	0	5.2	93	$\times 5$	G)prum	
${ }_{\text {HR }}^{\substack{\text { HR }}}$	178	>7\% 7	${ }^{2 \mathrm{H}}$	3718	17	17	16	2	217	5	5 2x	00	0	4.4	\%		Gppum	
Hk	14)	778	211		17	is	3.4		17		32	${ }_{0}^{100}$	${ }_{0}$	23	${ }_{98}$		Copuem	
HR	141	$77^{7} 78$	2 H	${ }_{3}^{3} 92930$	16	14	3	0	- 13		36	00	2	$3 \times$	97	87	Gypuem	Anorniaic
${ }_{\substack{\text { HR } \\ \text { HR }}}$	142	$7>78$	${ }_{2}^{24}$	${ }^{3} \times 80$	18	is	15	t	$1{ }^{19}$	5	3127	0.0	0	25	94	$\times 8$		
HR	144		2 H	${ }^{3} 100110$	18	15	${ }_{3}^{14}$		20		; ${ }_{20}^{24}$	008	0	${ }_{0}^{2 \times}$	${ }_{9}^{81}$			
HR	145	778	2 H	$\begin{array}{llllll}3 & 116117\end{array}$											\%	(
	146	777	2 H	312612 x	17	15	14	2	221	5	$5 \quad 24$	60	0	03	91	xs		
IR	148	278	2 H	3138140	${ }_{18}^{16}$	16	$3{ }^{3}$	1	120		4	0.0	${ }_{0}^{0}$	a, ${ }_{0}$	94	\% ${ }_{81}^{91}$		
HR	149	7778	2 H	3145147	15	Is	15	2	219		2 x	0.0	O	0	92	*		
HR	150	778	${ }^{2 \mathrm{H}}$	$4{ }^{4} 2.4$	18	15	34	${ }^{6}$	- 14	4	433	00	0	os	93	* 7		
${ }_{\text {HR }}$	151	7\%78	2 H	4.911	${ }^{18}$	15	1.4	I	18		29	${ }^{00}$	0	os	93	*		
HR	152	N78	$2{ }_{21}^{2 H}$	${ }^{4}$ is ${ }^{\text {in }}$	18	Is	14		$1{ }^{18}$		$4{ }^{27}$	00	0	0s	91	67		
${ }_{\text {HR }}$	154	778	2 H	$\begin{array}{llll}4 & 2 & \\ 4 & 32 & 34\end{array}$	17	is	13	$\frac{1}{2}$	${ }^{18}$) 27	-0,	0	$0 \times$	91	$\times 8$		
HR	135	778	${ }_{2}^{2 H}$	$\begin{array}{llll}4 & 37 & 30\end{array}$	is	15	14		- 20		4 20	0.	O	${ }_{0} 6$	${ }_{93}^{91}$	*\%		
${ }_{\text {lik }}^{\text {tig }}$	156	7478	${ }_{2 \mathrm{H}}^{2 \mathrm{H}}$	$\begin{array}{lll}4 & 46 \\ 4 & 51 \\ 5 & 57\end{array}$														
HR	158	7778	${ }_{2 H}^{2 H}$	4 48 48 80	18	15	33	I	$1 \quad 17$		$4 \quad 31$	${ }_{00}^{00}$	0	1.5	97	9		
HR	139	N78	2 H	4 ¢ 68 67	17	16	16	,	20		$6 \quad 34$	${ }_{0} 0$	${ }_{0}$	-2	102			
HR	160	778	${ }^{2 \mathrm{H}}$	473	18	13	is	2	219		126	\%	0	07	93	\%		
HR	161	7\%	27	4 \% 80	${ }_{18} 18$	15	13	I	17		433	${ }^{0} 8$	0	1.4	96	9		
HR	163		${ }_{21}^{21}$	$\begin{array}{lll}4 & 88 \\ 4 & 83 \\ 48\end{array}$	17	is	314	$\stackrel{2}{2}$	16 17		4 120	45	\bigcirc	${ }_{06}^{06}$	\%	\times		Abonlialic
HR	164	778	27	499101	18	13	33	2	217		127	40	-	1.2	92	87		
${ }_{\text {HR }}$	165	778	2 H	4107100	17	15	13	1	17		$4 \quad 32$	${ }_{0} 0$	0	0.	9	\%		
HR	167	${ }_{\text {フ778 }}^{7}$	2 H	${ }_{4}^{4} 121123$	17	is	${ }_{3}^{13}$	1	$1{ }^{14}$		4 [- 32	0.0 0.0	0	07 48	${ }_{87}$	${ }_{75}^{76}$		
IR	100	入77	2 H	+128130	is	is	33	i	17		425	0.0	${ }_{0}$	1.1	8	84		
${ }_{4 R}^{1 / 8}$	109	7	$2{ }_{3}^{24}$	412134	${ }_{17}^{18}$	15	33	2	217		527	${ }^{0} 0$	0	ox	93	87		Amentinic
HR	171	7778	${ }_{23}^{23}$	${ }_{5}^{4} 112184$	17	15	313	1	1 1 1		34	${ }_{00}^{00}$	${ }_{0}^{0}$	38	${ }_{48}^{102}$	9		
tir	172	7978	23	3.9	is	16	17	i	is		5 24	80	\%	${ }_{03}$	\% 0	86		
HR	173	7y7n	${ }_{23}^{24}$	5 5 16 18	18	16	318		176		5 24	${ }^{00}$	0	1.1	kx	84	*	
\%R	175	7978	23		18	15	3.4	$\stackrel{2}{1}$	$2 \begin{aligned} & 16 \\ & 14\end{aligned}$		4 22	00 00	${ }_{0}^{0}$	$0 \times$	${ }^{x} 7$	$\frac{\times 2}{6}$		
HR	176	7478	231	${ }_{5}{ }^{5}$ is 37	19	16	316	2	2 is		4 28	${ }_{0} 0$	0	${ }_{6}$	${ }_{94}^{98}$	x		
MR	177	7778	$2 \mathrm{2H}$	$5{ }^{5} 418$	${ }^{\text {is }}$	is	3.4	'	1 is		$4 \quad 23$	${ }^{20}$	0	10	87	$\times 2$		
${ }_{H}$	179	7978	23	$\begin{array}{llll}58 & 8 \\ 5 & 80 & 51 \\ 50\end{array}$	19	15	312	1	${ }_{2}^{1} 19$		$4 \quad 35$	${ }_{0}^{00}$	${ }_{0}$	-12	100	938		Anontaice
HR	(x)	7\%7	2 H	3 6264	19	14	12	1	13		436	a. 0	${ }_{0}$	07	9 K	\%		
${ }_{\text {LR }}^{18}$	1	7978	${ }^{1 / 1}$	$1{ }_{13}^{13} 15$	19	15	33	I	12		429	${ }^{09}$	-	0.6	47	$\times 3$		
$\stackrel{\text { LR }}{\text { LR }}$	3	7978 7778 78	III	1 44 1 74 46	20 19	14 14	32	2	212		3 35	500	${ }_{0}$	05	106	90		
LR		7778	if	1148180	16	17	3.7	2	Is		5 is	\%os	${ }^{\circ}$	4.6	${ }_{93}$	\%		
${ }_{18}$	5	7788	171	$\begin{array}{llll}2 & 13 & 15\end{array}$	16	16	14	2	217		3 22	00)	4.2	\%	$\times 2$		
$\stackrel{L R}{1 / 2}$		7978	If	${ }_{2}^{2} 444$	17	${ }^{18}$	36	2	213		321	100	4	47	93	7		
LR		${ }_{7} 778$	III	2 2 2 104104	19	15	is		- ${ }_{\text {is }}^{18}$		i ${ }^{21}$	0.0 00	${ }_{0}^{0}$	0.8 0.6	${ }^{90}$	${ }_{84} \times$		
LR		${ }^{7} 778$	$1{ }_{14}$	$3{ }^{3} 1315$	18	15	3.4		19		$3 \quad 24$	00	0	03	9	80		
LR	10	7978	1 H	$3{ }^{3} 44^{46}$	17	15	13		17		4 29	an	${ }^{\circ}$	0.4	94	87		
${ }_{\text {LR }}^{\text {LR }}$	112	7978	${ }_{\text {IH }}^{\text {If }}$	3 3 3 104 1060	17	is	${ }_{1,4}$		24 ix		${ }_{20}^{22}$	00 60	$\stackrel{0}{0}$	${ }_{11} 1$	${ }_{93}^{38}$	${ }_{\text {rs }} \times$		
LR	13	77^{728}	III	3134136	16	15	1.4		213		26	00	0	70	9	800		
LR	14	7978	1H	41319	15	14	33		214		32	${ }^{0} 0$	0	47	99			
${ }_{\text {LR }}^{\text {LR }}$	19		IH	${ }^{4} 4{ }^{4} 46$	17	15	3.4	1	15		532	00		1.4	97	x0x		
${ }_{\text {LR }}^{\text {LR }}$	177	7\%78	$\stackrel{\text { if }}{\text { I }}$	${ }_{4}^{4} 104108$	19	15	3.4	2	$\begin{array}{ll}2 & 11 \\ 20\end{array}$		$1{ }^{25}$	(1) 00	0	${ }_{8}^{81}$	${ }_{89}^{92}$	$\stackrel{76}{71}$		Amonthate
LR	18	7973	2 H	11416	17	Is	33		\% is		430	0.0	${ }_{6}$	1.6	${ }_{93}$	KS_{5}		
${ }_{18}^{L R}$	19	7ys	23	14.4	is	15	3.2	2	212		430	0.0	0	10	94	${ }_{4}$		
Lk	211	(1)	2 H	- 130	18	14	\% 3.1		${ }_{12}$		19	-08	${ }^{19}$	55 29	${ }_{102}^{102}$	${ }_{72}^{20}$		Anontiak
L*	22	7\%8	23	2 l 416	19	14	13	a	- 12) 32	20	${ }_{0}$	a)	95	$\times 3$		
Lk		7978	2 H	2102104	19	15	13	2	2.19		124	${ }^{\circ}$	0	03	92	87		
${ }_{\text {LR }}$			24	2134160	16	${ }^{14}$	12		is		$3 \times$	00	0	3	10.	921		

Table 4 (continued)

Type No		Cone	Sec lakral		Smectace llias		$\begin{aligned} & \text { Chlorite } \\ & \text { Kaolinice Amphiboles Quaru/ } \end{aligned}$				Felibpan	Detrital Annorpboys		Rhado chroviac	Culicie Prias			Tasl	Decrital Mescral Toal	Remurks
LR 25		2 H	?	44 +6	18	14	3.2	0		12	3		54	0.0	0		0.6	98	84	Anarthick
LR 26	7978	2 H	?	37476	19	14	3.2	1		13	3		34	0.0	${ }^{0}$		05	96	80	Anorthitic
LR 27	7978	2 H	3	14.16	18	15	3.4	1		19	5		26	0.0			1.1	93	x	
LR 2x	7978	2 H	3	44 46	18	15	3.5	1		20			22	00	0		0.0	ss	$\times 4$	
LR 29	297	2 H	3	34.76	16	15	3.3	1		15	4		22	0.0	4		63	91	76	
LR 30	7978	2 H		102 104	16	15	3.4	2		19	5		23	00	0		3.2	91	84	
1834	7978	2 H		134136	17	15	3.4	6		20	5		27	0.0	0		05	92	8	
$1 \mathrm{~L} \quad 32$	7 7 78	2 H	4	1416	18	15	3.3	1		17	5		12	00	0		0.5	\%	91	
LR 33	7978	214	4	44.46	18	15	3.3	1		17	4		29	00	0		0.7	94	xk.	
LR 34	7978	2 H		4 7476	20	Is	3.4	2		17	5		26	0.0	0		1.3	93	87	
LR 35	7M7E	2 H		4102104	19	15	33	1		17	4		24	0.0	0		08	\%)	83	
$1 \mathrm{~K} \quad 3$	7078	2 H		4134136	Is	16	3.3	I		17	5	2	28	0.0	0		25	97	ns	
LR 37	7978	2 H		54446	17	15	3.3	1		16	4	2	28	0.0	0		1.2	93	K5	
LR 3s	7978	2 H		3 7476	19	14	3.2	1		14	4	3	38	00	0		0.5	103	93	Anorthinc
LR 39	797E	2 H) 102104	16	15	3.4	2	2	16	4		10	${ }_{0} 0$	0		1.8	95	86	Asprntitic
LR 40	7978	2 H		5134130	19	15	33	1		is	4		31	00	0		0.0	97	K8	Anorthilic
LRA I	797A	1H1		14.16	17	15	3.4	1	,	19	4	2	28	00	0		0.8	92	87	
LRA 5	7974	111		134136	$4 \times$	15	3.4	2	2	20	5	2	24	0.0	0		0.5	91	87	
LRA 8	797A	IH	2	27476	15	15	3.4	1		17	4	3	36	00	0		1.4	101	92	
LRA 16	797 A	1H		1416	18	14	3.2	2	2	14	4	2	29	0.0	0		0.4	94	83	
LRA 19	797a	iH		4 104106	19	14	3.2	1	1	13	3	13	37	00	0		0.5	97	91	Anorthitic
LRA 20	7974	1H		${ }_{4} 134136$.	16	15	3.3	1	,	18	4	4	34	0.0	0		0.0	95	91	
L.RA 23	7971	1H		3 74.76	17	15	3.3	2	2	15	4	42	28	00	0		48	93	$\times 3$	
LRA 24	797A	iH		5104106	16	14	3.3	2	2	17	3	3	32	00	2		2.7	97	87	
LRA 30	797	1H		(134136	19	15	3.3	1	1	16	4	32	32	00	0		08	94	90	
LRA 32	797A	IH		7446	17	15	15	$\frac{0}{3}$	$\frac{1}{3}$	14	4		27	00	0		3.7	8)	N0)	
				Max	22	19	4.	3	3	21	10		$6!$	9.5	34		70	120	109	
				Min	15	14	3.0	0	0	3	2	1	12	00	0		0.0	80	62	
				Average	18	15	3.4	1	,	16	4	42	28	02	!		1.4	96	s6	
				Sid Dev.	1	1	02	1	1	3	1		6.	1.0	3		1.7	5	6	

Type	No Hole	Core	Sec Interval	Sand\%	Silt\%		Clay\%	bioSiO2	L.O.1.	SiO2	TiO2	Al203	Fe203	MnO	MgO	CaO	Na 2 O	K2O	P2OS	Total
Bulk G	Srain Size C	ompos																		
LRA	1797 A	IH	$14 \quad 16$		2	40	58													
LRA	5797 A	1H	1134136		2	38	61													
LRA	8797 A	1H	27476		2	38	60													
LRA	16 797A	$1{ }^{1}$	$4{ }_{4}^{4} 1416$		1	28	71													
LRA	19797 A	1H	4104106		0	24	76													
LRA	20 797A	1H	4134136		1	34	66													
LRA	23 797A	1H	574.76		3	34	${ }_{6}^{62}$													
LRA	24797 A	1H	5104106		1	41	58													
LRA	30797A	1H	6134136			32	57													
LRA	32797 A	1H	$44 \quad 46$	11			56													
Silt Fra	action																			
LRA	1797 A	1H	14.16						3.17	68.0	0.731	13.2	4.22			1.76		2.98		99.6
LRA	5797 A	1H	1134136						2.81		0.808 0706 0.751	13.0 12.5	3.84 4.04	${ }^{0.051}$	2.18 1.87	1.90	2.89	2.69	0.333	99.4
LRA	8797 A	$1{ }^{1}$	74.76				1.	4	4.16 3.02	67.8 69.3	${ }_{0}^{0.706}$	${ }_{13.6}^{12.5}$	4.04 3.53	${ }^{0.054}$	1.77	1.69	3.81	2.61	0.356	99.7
LRA	16797 A	1H								69.3	0.747		3.53 3	${ }^{0.057}$	1.44	1.62				
LRA	19797A	1H	4104106					3	2.61	68.5	0.764	- 14.0	3.78	${ }_{0}^{0.057}$	1.44	1.82	3.24 265		0.359	
LRA	20797 A	1H	4134136					1	3.08	69.6	0.792	12.9	3.42	0.052	2.24	1.86	2.65	2.65	0.340	99.6
LRA	23 797A	1H	74.76						3.14	69.5	0.789	-13.3	3.92	0.044	1.68	1.20	2.75		0.344	
LRA	24797 A	1H	5104106					6	3.47	66.3	0.626	14.1	4.57	0.077	1.68	1.42	3.72	3.19	0.234	99.5
LRA	30797 A	1H	6134136						2.67	70.0	0.796	13.1	3.51	0.046	1.88	1.75				99.6
LRA	32 797A	1H	4446					2	7.42	63.6	0.648	11.4	12.34	0.099	1.37	1.21	2.55	2.29	0.324	
Clay F	raction																			
LRA	1797 A	1H	1416					5	6.89	56.2	0.733	$3 \quad 20.0$	7.88	0.072	3.49	0.67	2.17	3.78	0.320	102.2
LRA	5797 A	1H	1134136					3	6.16	54.6	0.738	$8 \quad 19.0$	7.75	0.096	3.42	0.69	2.27	3.79	0.560	99.1
LRA	8797 A	1H	74.76					6	10.84	52.5	0.679	1778	7.12	0.071	3.10	${ }^{0.87}$	2.42	3.26	${ }_{0}^{0.508}$	99.1
LRA	16797A	1H	$14 \quad 16$					10	7.56	57.1	0.652	$2 \quad 17.8$	6.57	0.225	3.15	0.55	2.47	3.23	0.319	
LRA	19797 A	1H	4104106					6	6.62	56.5	0.636	6 18.4	7.69	0.210	2.99	0.56	2.47	3.10 3.69	${ }_{0}^{0.330}$	99.5
LRA	20797 A	1H	4134136					5	6.60	55.1	0.729	$9 \quad 193$	7.25	0.156	3.47	0.63	2.17	3.69	0.368	
LRA	23 797A	1H	57476					5	${ }^{11.33}$	${ }_{5}^{49.6}$	0.654	$4 \quad 16.9$	$\begin{array}{r}10.47 \\ 8.95 \\ \hline\end{array}$	${ }_{0}^{0.056}$	2.41	0.40 0.67	2.40	3.64 3.63	0.690 0.518	98.7
LRA	24 797A	1H	104106					3	8.91	51.8	0.677	18.1	8.95	0.078	3.00 3.49	0.67	2.43	3.63 3.78 3	${ }_{0}^{0.518}$	
LRA	30797 A	1H	134136					3	6.40	55.5	0.741	18.7	7.71	0.104	3.49	0.60	2.26	3.78	0.355	
LRA	32 797A	1H	4446					5	8.65	53.7	0.704	$4 \quad 18.5$	7.95	0.072	3.06	0.50	2.33	3.42	0.485	99.4

Table 6 Mineral composition of silt and clay fraction of selected 10 samples from

Type	No Hole	Core	Sec Interval	Smectite		Chlorite $+$ Kaolinite	Amphib oles	Quartz	Feldspars	Detrital Amorphous	Rhodo chrosite	Calcite	Pyrite	Remarks	
Silt Fraction 0														Anorthitic	
LRA	1797 A	1H	$\begin{array}{llll}1 & 14 & 16\end{array}$	14	15	3.6	1.8	33	6.4	20	0.0	0.0	0.0		
LRA	5797 A	1H	1134136	14	16	3.5	2.0	40	8.0	10	0.0	0.0	0.0		
LRA	8797 A	1H	$2 \begin{array}{llll}2 & 74 & 76\end{array}$	14	15	3.3	3.6	33	6.7	23	0.0	0.0	1.8		
LRA	16 797A	1H	$\begin{array}{llll}4 & 14 & 16\end{array}$	16	15	3.5	1.5	33	8.1	13	0.0	0.0	0.0		
LRA	19 797A	1H	4104106	14	15	3.3	0.7	31	8.5	17	0.0	0.0	2.4		
LRA	20.797 A	1H	4134136	14	15	3.6	2.0	41	8.5	12	0.0	0.0	0.0		
LRA	23 797A	1H	$\begin{array}{llll}5 & 74 & 76\end{array}$	14	16	3.4	2.1	38	8.1	15	0.0	0.0	0.0		
LRA	24 797A	1H		14	15	3.3	2.4	32	6.9	22	0.0	0.0	1.5		
LRA	30 797A	1H	6 1 134136	14	16	3.5	1.7	41	9.8	4	0.0	0.0	1.1		
LRA	32797 A	1H	$\begin{array}{lll}7 & 44 & 46\end{array}$	16	14	3.3	2.4	24	5.0	17	0.0	0.0	9.4		
Clay Fraction				1.										Jarosite	Anorthitic
LRA	1797 A	1H	$\begin{array}{lll}1 & 14 & 16\end{array}$	21	16	3.5	1.3	9	3.1	25	0.0	0.0	0.0		
LRA	5 797A	1H	1134136	20	15	3.4	0.8	9	2.8	30	0.0	0.0	0.9		
LRA	8 797A	1H	$\begin{array}{llll}2 & 74 & 76\end{array}$	20	15	3.3	1.2	8	2.4	36	0.0	0.0	1.1		
LRA	16797 A	1H	$\begin{array}{llll}4 & 14 & 16\end{array}$	21	15	3.3	0.0	8	2.4	31	0.0	0.0	0.0		Anorthitic Anorthitic
LRA	19 797A	1H	4104106	24	15	3.2	1.2	8	2.4	28	0.0	0.0	0.5		
LRA	20 797A	1H	4134136	23	15	3.4	0.0	9	2.9	27	0.0	0.0	0.0		
LRA	23 797A	1H	$\begin{array}{llll}5 & 74 & 76\end{array}$	18	14	3.2	1.4	7	1.2	25	0.0	0.0	2.7		Anorthitic
LRA	24 797A	1H	$\begin{array}{lllll}5 & 104 & 106\end{array}$	21	14	3.2	0.0	8	1.9	35	0.0	0.0	1.7		
LRA	30797 A	1H	6134136	23	15	3.3	1.0	10	2.6	29	0.0	0.0	0.0		Anorthitic
LRA	32 797A	1H	$\begin{array}{lll}7 & 44 & 46\end{array}$	22	14	3.2	1.0	9	2.2	28	0.0	0.0	1.4		Anorthitic

Table 7 Composition scores of factors calculated by Q-mode factor analysis for all analyzed samples using all elements with varimax rotation, and multi-regression coefficients calculated by multi-regression analysis of mineral composition to the composition loadings.

	Factor A	Factor B	Factor C	Factor D	FactorE	Sample Average (wt\%)
Varimax Compostion Loading						
LOI	-12.3	25.3	11.0	11.5	5.3	8.0
SiO 2	77.3	38.8	68.7	50.0	52.8	58.0
TiO2	1.47	0.54	0.01	0.57	0.42	0.68
Al203	25.4	11.8	15.0	12.4	12.2	16.1
Fe2O3	-0.68	3.20	3.02	26.49	4.46	6.89
MnO	-2.62	-0.63	-0.98	-0.65	13.73	0.26
MgO	6.71	2.54	-1.05	1.99	3.32	2.95
CaO	-1.46	15.45	-3.27	-7.42	3.00	1.82
Na 2 O	1.10	1.08	3.93	1.95	1.98	1.87
K2O	5.11	1.82	3.50	2.76	2.45	3.24
P205	-0.11	0.11	0.04	0.46	0.39	0.14
Multi-regression Coefficient						
Smectite	20	16	18	19	17	18
Illite	20	15	12	14	12	15
Chlorite (+ Kaolinite)	4	3	3	3	3	3
Amphiboles	4	1	-1	1	-1	1
Quartz	45	12	-2	4	-1	16
Feldspars	9	3	4	2	2	4
detAmorphous	12	20	60	31	17	27
Calcite	-4	24	-4	-16	-3	1
Pyrite	-9	3	3	15	-5	1
Rhodochrosite	-7	-4	-5	-5	24	0
Org-C	-5.19	4.56	3.43	5.30	-2.47	1.18
bioSiO2	-14.5	6.0	24.5	9.0	28.7	6.8

Table 8 Varimax composition scores and possible ranges of chemical composition for each detrital subcomponent calculated by Q-mode factor analysis for 213 selected samples with 6 detrital elements with oblique rotation. Left and right side of the ranges correspond to non-negative score limit and non-negative loading limit, respectively.

Varimax Score	Factor 1	Factor 2	Factor 3	Factor 4
$\mathrm{SiO} 2 / \mathrm{Al2O3}$	3.9	1.9	3.9	
TiO2/A12O3	0.051	0.032	0.039	2.7
$\mathrm{MgO} / \mathrm{Al2O3}$	0.24	0.15	0.16	0.056 -0.03
$\mathrm{Na} 2 \mathrm{O} / \mathrm{Al2O3}$ $\mathrm{~K} 2 \mathrm{O} / \mathrm{Al2O3}$	0.08	0.13	0.17	0.05
K2O/Al2O3	0.24	0.16	0.19	0.14
Possible Range				
SiO2/A1203	5.7-4.5	0.0-1.2	8.2-4.3	
TiO2/Al2O3	0.071-0.058	0.018-0.027	0.019-0.038	$0.054-0.045$
$\mathrm{MgO} / \mathrm{Al2O3}$	0.38-0.29	0.10-0.13	0.00-0.14	0.00-0.15
$\mathrm{Na} 2 \mathrm{O} / \mathrm{Al233}$ $\mathrm{~K} 2 \mathrm{O} / \mathrm{Al2O3}$	0.00-0.05	0.16-0.14	0.49-0.20	0.07-0.10
K2O/Al2O3	0.34-0.28	0.10-0.14	0.12-0.18	0.15-0.19

Table 9 Mineral composition ranges of each detrital subcomponent calculated by multiregression analysis of detrital mineral composition and composition loadings. Left and right side of the ranges correspond to mineral composition for nonnegative score limit and non-negative loading limit, respectively, of each factor.

(\% in detritus)	Factor 1		Factor 2	Factor 3	Factor 4
Smectite	$12-15$	$93-45$	$10-17$	$11-19$	
Illite	$14-15$	$55-30$	$5-13$	$20-18$	
Chlorite + Kaolinite	$3-4$	$12-7$	$1-3$	$4-4$	
Amphiboles	$3-2$	$-9--2$	$3-2$	$3-2$	
Quartz	$34-28$	$-45--2$	$5-13$	$27-20$	
Feldspars	$8-7$	$-3-2$	$-2-3$	$9-6$	
Detrital Amorphous	$-3-9$	$105-56$	$101-58$	$36-33$	

Table 10 Summary of chemical and mineral compositions, the silt / clay ratio of each detrital subcomponent, and their probable origin. See also Table 11 for grain size data.

	Factor 1	Factor 2	Factor 3	Factor 4
Chemical Composition				
SiO2/A12O3	5.7	1.2	8.2	2.7
TiO2/A12O3	0.071	0.027	0.019	0.054
MgO/A12O3	0.38	0.13	0.00	0.00
Na2O/A12O3	0.00	0.14	0.49	0.07
K2O/A12O3	0.34	0.14	0.12	0.15
Mineral Composition (\% in detritus)				
Smectite	12	45	10	11
Illite	14	30	5	20
Chlorite (+ Kaolinite)	3	7	1	4
Amphiboles	3	-2	3	3
Quartz	84	-2	5	27
Feldspars	-3	2	-2	9
Detrital Amorphous	0.42	56	101	36
Silt/Clay Ratio		0.19	1.2	3.5
		Fine	Coarse	
Origin	Fine Kosa	arc-derived	arc-derived	Coarse Kosa

Table 11 Grain size of selected samples, chemical composition of silt and clay fractions

Type No.		Hole	Core	Sec	Interval	Silt Fraction					Clay Fraction					Sill / Clay ratio					
		detSiO2/al203				TO2/al203	MzO/AL203	Na2O/al203	K20/A1203	detSiO2/alzo3	TO2/al203	Mrolalz ${ }^{\text {a }}$	Na2O/al203	K20/A1203	Bulk	Factor1	Factor2	Factor3	Factor 4		
LRA	1		797A	1H	1	$14 \quad 16$	4.9	0.055	0.15	0.23	0.23	2.6	0.037	0.17	0.11	0.19	0.70	0.50	0.28	3.11	3.07
LRA	5	797A	1H	1	134136	5.3	0.062	0.16	0.22	0.20	2.7	0.039	0.18	0.12	0.20	0.62	0.49	0.19	2.17	2.66	
LRA	8	797A	1H	2	7476	5.1	0.057	0.15	0.23	0.22	2.6	0.038	0.17	0.14	0.18	0.64	0.55	0.23	1.62	2.24	
LRA	16	797A	1H	4	1416	4.8	0.055	0.13	0.22	0.19	2.6	0.037	0.18	0.14	0.18	0.40	0.30	0.13	0.88	5.55	
LRA	19	797A	1H	4	104106	4.7	0.055	0.10	0.23	0.20	2.7	0.035	0.16	0.13	0.17	0.31	0.21	0.12	0.50	2.80	
LRA	20	797A	1H	4	134136	5.3	0.061	0.17	0.21	0.21	2.6	0.038	0.18	0.11	0.19	0.51	0.43	0.13	2.20	2.49	
LRA	23	797A	1H	5	$74 \quad 76$	5.1	0.059	0.12	0.21	0.21	2.6	0.039	0.14	0.14	0.21	0.55	0.55	0.13	1.47	1.04	
LRA	24	797A	1H	5	104106	4.3	0.044	0.12	0.26	0.23	2.7	0.037	0.17	0.13	0.20	0.71	0.42	0.43	1.99	1.63	
LRA	30	797A	1H	6	134136	5.3	0.061	0.14	0.22	0.20	2.8	0.040	0.19	0.12	0.20	0.48	0.34	0.14	1.52	2.74	
LRA	32	797A	1H	7	4446	5.4	0.057	0.12	0.22	0.20	2.6	0.038	0.17	0.13	0.18	0.58	0.45	0.12	1.78	1.60	
					Max	5.4	0.062	0.17	0.26	0.23	2.8	0.040	0.19	0.14	0.21	0.71	0.55	0.43	3.11	5.55	
					Min	4.3	0.044	0.10	0.21	0.19	2.6	0.035	0.14	0.11	0.17	0.31	0.21	0.12	0.50	1.04	
					Average	5.0	0.057	0.14	0.23	0.21	2.7	0.038	0.17	0.13	0.19	0.55	0.42	0.19	1.72	2.58	
					Std Dev	0.4	0.005	0.02	0.02	0.01	0.1	0.001	0.01	0.01	0.01	0.13	0.11	0.10	0.72	1.22	

Table 12 Chemical composition of possible source materials. The data included in Kosa category are Kosa collected in Japan ($\mathrm{n}=21$) [Inoue and Naruse, 1987, Kanamori et al., 1991], and air-suspended dust from Gobi $(\mathrm{n}=3)$ [Parungo et al., 1995], whereas the data included in arc-derived detritus category are neritic mudstones of the Japan Sea side ($\mathrm{n}=195$) [Irino, 1992MS, Sakamoto, unpublished data]. Data for various Quaternary tephra $(\mathrm{n}=8)$ is from Machida and Arai [1992].

Category	Sample	SIO2/Al203	TiO2/A1203	Mgolal203	Na2O/A1203	K20/A1203	Dala Source
Kosa	Asalikawal	4.3	0.056	0.22	0.16	0.12	Inoue and Naruse (1987)
Kosa	Hachimntal2	3.7	0.063	0.14	0.17	0.14	lnoue and Naruse (1987)
Kosa	Morioka3	3.1	0.036	0.22	0.12	0.15	Inowe and Naruse (1987)
Kosa	Takada4	3.2	0.053	0.18	0.12	0.15	lnoue and Naruse (1987)
Kosa	Osakas	3.6	0.037	0.12	0.12	0.14	Inoue and Naruse (1987)
Kosa	Yashiro6-2	4.1	0.076	0.09	0.09	0.13	Tnoue and Naruse (1987)
Kosa	Yashirob-4	3.8	0.055	0.08	0.09	0.12	tnoue and Naruse (1987)
Kosa	Yashiro6-12	6.7	0.033	0.12	0.08	0.18	Inoue and Naruse (1987)
Kosa	Yashiro6-21	4.3	0.037	0.09	0.16	0.16	Inoue and Naruse (1987)
Kosa	Asahikawa55	4.3	0.056	0.22	0.16	0.13	Kanamori et at. (t991)
Kosa	Morioka77	3.1	0.036	0.22	0.12	0.15	Kanamori et al. (1991)
Kosa	Takada67	3.2	0.053	0.18	0.12	0.15	Kanamori et al. (1991)
Kosa	Osaka73		0.058		0.14	0.27	Kanamori et al. (1991)
Kosa	Osaka77		0.054		0.17	0.22	Kanamori et al. (1991)
Kosa	Nagoya87			0.32	0.43	0.38	Kanamori et al. (1991)
Kosa	Wajima88		0.050	0.19	0.12	0.23	Kanamori et al. (1991)
Kosa	Kanazawa88		0.046	0.20	0.06	0.22	Kanamori et al. (1991)
Kosa	Nagasaki88		0.041	0.22	0.09	0.22	Kanamori et al. (1991)
Kosa	Fukuejima88		0.045	0.24	0.02	0.22	Kanamari et al. (1991)
Kosa	Yakushimas8washed		0.040	0.24	0.07	0.16	Kanamori et al (1991)
Kosa	Yulin92	2.0	0.061	0.07	0.16	0.27	Parungo ei al. (1992)
Kosa	Beijing92	2.7	0.058	0.17	0.17	0.26	Parungo et al, (1992)
Kosa Ar-derived detritus	Lin'an92	2.7	0.046	0.17	0.10	0.20	Parungo et al. (1992)
Afc-derived detritus	SH30		0.030	0.10	0.19	0.14	Irino (1992MS)
Are-derived detritus	SH31		0.032	0.12	0.16	0.14	Irino (1992MS)
Arc-derived detritus	${ }_{\text {SH32 }}$		0.028	0.10	0.19	0.15	Irino (1992MS)
Arc-derived detrius	SH33a SH34 SH3		0.026	0.08	0.21	0.15	Irino (1992MS)
Ar-derived detrius	SH34		0.032	0.11	0.19	0.16	Irino (1992MS)
Are-derived detritus	SH35a		0.029	0.11	0.20	0.14	Irino (1992MS)
Are-derived detritus	SH36		0.035	0.17	0.18	0.14	Irino (1992MS)
Are-derived detritus	SH37		0.034	0.14	0.16	0.14	Irino (1992MS)
Arc-derived detritus	${ }_{\text {SH38 }}$		0.035	0.13	0.17	0.14	Irino (1992MS)
Arc-derived detritus	SH39		0.032	0.11	0.18	0.15	Irino (1992MS)
Arc-derived detritas	SH4O		0.034	0.11	0.18	0.14	Irino (1992MS)
Arc-derived detritus	SH4la		0.034	0.11	0.18	0.14	Irino (1992MS)
Ar-derived detritus	SH49		0.038	0.11	0.17	0.16	Irino (1992MS)
Arc-derived detritus	SH71		0.037	0.13	0.16	0.15	Irino (1992MS)
Arc-derived detrias	sh-9m		0.034	0.11	0.14	0.15	Irino (1992MS)
Are-derived detritas	shl		0.034	0.09	0.18	0.14	Irino (1992MS)
Are-derived detritus	sho		0.035	0.10	0.17	0.15	Irino (1992MS)
Arc-derived detritus	sh10m		0.035	0.09	0.17	0.14	Irino (1992MS)
Are-derived detritus	MUII3		0.035	0.14	0.11	0.14	Irino (1992MS)
Arc-derived detritus	MA1		0.037	0.11	0.13	0.14	Irino (1992MS)
Arc-derived detritus	MA2		0.037	0.13	0.13	0.15	Irino (1992MS)
Arr-derived detritus	MA3		0.037	0.13	0.13	0.14	Irino (1992MS)
Arc-derived detritus	MA4		0.037	0.12	0.14	0.15	Irino (1992MS)
Arc-derived detritus	MAS		0.038	0.13	0.18	0.15	Irino (1992MS)
Arc-derived detritus	MA6		0.035	0.12	0.26	0.16	trino (1992MS)
Are-derived detritus	MA7		0.036	0.12	0.14	0.15	trino (1992MS)
Arc-derived detritus	MA8		0.037	0.13	0.16	0.16	Irino (1992MS)
Arc-derived detritus	MA89 MA10		0.036	0.13	0.16	0.16	Irino (1992MS)
Are-derived decritus	MA11		0.036 0.036	0.12 0.14	0.20 0.26	0.16	Irino (1992MS)
Are-derived detritus	MA12		0.036	0.14 0.14	0.26 0.26	0.17 0.18	Inino (1992MS)
Arc-derived detritus	MA13		0.030	0.11	0.24	0.21	trino (1992 MS)
Are-derived detritus	MA14		0.037	0.14	0.29	0.17	Irino (1992MS)
Are-derived detritus	MA15		0.036	0.15	0.26	0.16	Irino (1992MS)
Arc-derived detritus	MA16		0.036	0.13	0.20	0.16	trino (1992MS)
Arc-derived detritus	MA17		0.037	0.15	0.25	0.17	Itino (1992MS)
Are-derived detritus	MA18		0.037	0.13	0.25	0.16	Irino (1992MS)
Arc-derived detritus	MA19		0.038	0.14	0.20	0.17	Irino (1992MS)
Arc-derived detritus	MA20		0.038	0.13	0.25	0.17	Irino (1992MS)
Are-derived detritus	MA21 MA22		0.040	0.14	0.20	0.16	Inino (1992MS)
Arc-derived detritus	MA23		0.037 0.037	0.13 0.15	0.22 0.22	0.17 0.17	Irino (1992MS)
Are-derived detritus	MA24		0.036	0.15	0.22	0.17 0.17	Irino (1992MS) Irino (1992MS)
Are-deriyed detritus	MA25		0.035	0.15	0.20	0.17	Irino (1992MS)
Are-derived detritus	MA26		0.037	0.17	0.27	0.17	Irino (1992MS)
Are-derived detritus	MA22 MA34		0.034	0.16	0.31	0.18	Irino (1992MS)
Arc-derived detritas	MA34 MA47		0.034 0.037	0.12	0.28	0.18	Irino (1992MS)
Are-derived detritus	MA48		0.037	0.15 0.15	0.12 0.13	0.14 0.15	Irino (1992MS)
Are-derived detritus	MA49		0.037	0.15	0.12	0.15 0.14	Inino (1992MS) Irino (1992MS)
Are-derived detritus	MA50		0.038	0.13	0.18	0.15	Irino (1992MS)
Arc-derived detritus	MA51		0.036	0.13	0.20	0.16	Irino (1992MS)
Arc-derived detrius	MA52		0.035	0.12	0.26	0.18	Irino (1992MS)
Arc-derived detrius	MAS3		0.036	0.13	0.41	0.18	Irino (1992MS)
Are-derived detritus	MA55 MA56		0.037	0.14	0.23	0.16	Irino (1992MS)
Are-derived detnius	MA56 MA57		0.037	0.14	0.22	0.16	Irino (1992MS)
Asc-derived detrius	MAS8		0.037 0.036	0.15 0.14	0.22 0.25	0.16	Irino (1992MS)
Are-derived detrius	MA59		0.036	0.13	0.25 0.25	0.17	Irino (1992MS) Irino (1992MS)
Are-derived detritus	MA60		0.035	0,12	0.28	0.17 0.18	Irino (1992MS) Irino (1992MS)
Arc-derived detritus	MA61		0.032	0.10	0.24	0.20	Irino (1992MS)
Are-derived detritus	MA62		0.035	0.11	0.21	0.16	Irino (1992MS)

Table 12 (continued)

Category	Sample	SiO2/A1203 TiO2/Al203	MgO/Al203	Na2O/A1203	K20/Al203	Deta Source
Are-derived detritus	MA63	0.038	0.14	0.21	0.16	Irino (1992MS)
Are-derived detritus	MA64	0.037	0.14	0.20	0.16	Irino (1992MS)
Are-derived detritus	MA65	0.038	0.15	0.17	0.16	Irino (1992MS)
Are-derived detritus	MA66	0.037	0.15	0.18	0.16	Irino (1992MS)
Are-derived detritus	MA67	0.038	0.14	0.22	0.16	Irino (1992MS)
Are-derived detritus	MA68	0.036	0.14	0.28	0.17	Irino (1992MS)
Arc-derived detritus	MA69	0.038	0.14	0.26	0.17	Irino (1992MS)
Arc-derived detritus	MA70	0.035	0.13	0.29	0.18	Irino (1992MS)
Are-derived detritus	MA72	0.038	0.14	0.24	0.18	Irino (1992MS)
Are-derived detritus	MA73	0.037	0.13	0.24	0.18	Irino (1992MS)
Arc-derived detritus	MA74	0.040	0.14	0.28	0.18	Irino (1992MS)
Arc-derived detritus	MA75	0.039	0.14	0.26	0.17	Irino (1992MS)
Arc-derived detritus	MA76	0.035	0.15	0.19	0.18	Irino (1992MS)
Are-derived detritus	MA77	0.039	0.15	0.20	0.15	Irino (1992MS)
Are-derived detritus	MA78	0.041	0.15	0.17	0.14	Irino (1992MS)
Are-derived detritus	MA79	0.037	0.13	0.18	0.16	Irino (1992MS)
Are-derived detritus	MA80	0.036	0.11	0.23	0.17	Irino (1992MS)
Are-derived detritus	MA92	0.022	0.07	0.21	0.29	trino (1992MS)
Arc-derived detritus	MA148	0.039	0.14	0.16	0.13	Irino (1992MS)
Are-derived detritus	MAI58	0.037	0.14	0.20	0.16	Irino (1992MS)
Are-derived detritus	HIIII	0.037	0.11	0.14	0.15	Irino (1992MS)
Are-derived detritus	MZ11b	0.036	0.12	0.16	0.16	Irino (1992MS)
Are-derived detritus	MZ13	0.038	0.14	0.14	0.16	Irino (1992MS)
Are-derived detritus	MZ115	0.033	0.09	0.17	0.20	Irino (1992MS)
Are-derived detritus	YIII3	0.037	0.06	0.13	0.15	Irino (1992MS)
Are-derived detritus	YIIII	0.039	0.06	0.15	0.15	Irino (1992MS)
Are-derived detritus	MZl1-1m	0.018	0.05	0.20	0.31	Irino (1992MS)
Are-derived detritus	MZ110.3m	0.033	0.09	0.14	0.15	Irino (1992MS)
Arc-derived detritus	MZIIIm	0.040	0.11	0.15	0.15	Irino (1992MS)
Are-derived detritus	MZ112m	0.037	0.12	0.14	0.16	Irino (1992MS)
Arc-derived detritus	MZ113m	0.038	0.13	0.15	0.15	Irino (1992MS)
Are-derived detritus	MZ14m	0.036	0.12	0.15	0.15	Irino (1992MS)
Are-derived detritus	MZII5m	0.037	0.16	0.12	0.15	Irino (1992MS)
Are-derived detritus	MZ116m	0.039	0.14	0.15	0.16	Irino (1992MS)
Arc-derived detritus	MZ117m	0.042	0.11	0.15	0.14	Irino (1992MS)
Are-derived detritus	MZII8m	0.038	0.11	0.16	0.16	Irino (1992MS)
Are-derived detritus	MZ119m	0.040	0.10	0.16	0.17	Irino (1992MS)
Are-derived detritus	M21110m	0.037	0.12	0.15	0.15	Irino (1992MS)
Are-derived detritus	MZ1111m	0.037	0.10	0.15	0.15	Irino (1992MS)
Are-derived detritus	M21112m	0.034	0.12	0.15	0.18	Irino (1992MS)
Are-derived detritus	MZ1113m	0,040	0.14	0.14	0.15	Irino (1992MS)
Are-derived detritus	MZII !	0.038	0.14	0.14	0.16	Irino (1992MS)
Are-derived detritus	MZ1114m	0.038	0.12	0.15	0.15	Irino (1992MS)
Are-derived detritus	MZIII5m	0.041	0.13	0.14	0.17	Irino (1992MS)
Arc-derived detritus	MZ7116m	0.038	0.10	0.16	0.16	Irino (1992MS)
Arc-derived detritus	MZ1117m	0.036	0.12	0.14	0.16	Irino (1992MS)
Are-derived detritus	MZ1118m	0.034	0.12	0.13	0.17	Irino (1992MS)
Arc-derived detritus	MZ11 8	0.049	0.09	0.15	0.15	Irino (1992MS)
Are-derived detritus	MZ1119m	0.039	0.13	0.12	0.14	Irino (1992MS)
Arc-derived detritus	M 21120 m	0.037	0.16	0.10	0.14	Irino (1992MS)
Are-derived detritus	MZ1121m	0.037	0.15	0.10	0.15	Irino (1992MS)
Arc-derived detritus	MZ1122m	0.037	0.14	0.11	0.14	Irino (1992MS)
Are-derived detritus	MZ2113	0.037	0.14	0.11	0.13	Irino (1992MS)
Arc-derived detritus	MZ1123m	0.036	0.14	0.11	0.14	Irino (1992MS)
Arc-derived detritus	MZ1124m	0.037	0.12	0.15	0.14	Irino (1992MS)
Are-derived detritus	MZIII25m MZ1126m	0.034	0.15	0.11	0.14	Irino (1992MS)
Are-derived detritus	MZ1126m	0.035	0.15	0.09	0.14	Irino (1992MS)
Arc-derived detritus	MZIII27m	0.032	0.13	0.11	0.16	Irino (1992MS)
Are-derived detritus	MZ1128m	0.039	0.14	0.12	0.14	Irino (1992MS)
Arc-derived detritus	MZ11129m	0.038	0.15	0.12	0.14	Irino (1992MS)
Are-derived detritus	MZ1130m	0.033	0.10	0.15	0.15	Irino (1992MS)
Are-derived detritus	$\underset{\text { MZ1131m }}{\text { MZII32m }}$	0.032	0.14	0.14	0.19	Irino (1992MS)
Arc-derived detritus	MZIII32m MZZ1133m	0.029	0.13	0.14	0.19	Irino (1992MS)
Are-derived detritus	MZ11133m MZII34m	0.039	0.14	0.13	0.16	Irino (1992MS)
Afc-derived detritus	MZII134m	0.038	0.16	0.11	0.14	Irino (1992MS)
Arc-derived detritus	MZII135m	0.038	0.15	0.10	0.14	Irino (1992MS)
Are-derived detritus	MZII136m	0.043	0.11	0.11	0.15	Irino (1992MS)
Arc-derived detritus	MZ1133m	0.040	0.08	0.13	0.13	Irino (1992MS)
Arc-derived detritus	MZII138m	0.040	0.12	0.10	0.13	Irino (1992MS)
Arc-derived detritus	MZII139m	0.036	0.14	0.10	0.13	Irino (1992MS)
Are-derived detritus	MZIII40m	0.037	0.12	0.07	0.11	Irino (1992MS)
Arc-derived detritus	MZII141m	0.037	0.15	0.07	0.11	Irino (1992MS)
Arc-derived detritus	MZ11142m	0.040	0.15	0.09	0.12	Irino (1992MS)
Arc-derived detritus	MZIII43m	0.040	0.14	0.09	0.12	Irino (1992MS)
Are-derived detritus	MZIII 4 mm	0.037	0.12	0.07	0.12	Irino (1992MS)
Are-derived detritus	MZ11145m	0.045	0.12	0.08	0.11	Irino (1992MS)
Are-derived detritus	MZ11146m	0.038	0.11	0.08	0.11	Irino (1992MS)
Arc-derived detritus	MZ11147m	0.040	0.13	0.10	0.13	Irino (1992MS)
Arc-derived detritus	MZ11148m	0.038	0.15	0.08	0.12	Irino (1992MS)
Arc-derived detritus	MZ11149m	0.039	0.15	0.09	0.12	Inino (1992MS)
Arc-derived detritus	WK102	0.038	0.13	0.12	0.18	Sakamoto (1994MS)
Arc-derived detritus	WK101	0.040	0.12	0.07	0.16	Sakamoto (1994MS)
Arc-derived detritus	WK97	0.037	0.11	0.07	0.14	Sakamoto (1994MS)
Arc-derived detritus	WK94	0.037	0.11	0.07	0.13	Sakamoto (1994MS)
Are-derived detritus	WK92	0.037	0.15	0.10	0.19	Sakamoto (1994MS)

Table 12 (continued)

Category	Sample	SiO2/A/203	TiO2/Al203	MgO/Al2O3	$\mathrm{Na} 2 \mathrm{O} / \mathrm{Al} 2 \mathrm{O} 3$	$\mathrm{K} 2 \mathrm{O} / \mathrm{Al} 12 \mathrm{O} 3$	Data Source
Arc-derived detritus	WK90		0.038	0.13	0.07	0.14	Sakamoto (1994MS)
Are-derived detritus	WK88		0.038	0.11	0.06	0.14	Sakamoto (1994MS)
Arc-derived detritus	WK86		0.033	0.08	0.07	0.14	Sakamoto (1994MS)
Arc-derived detritus	WK84		0.040	0.09	0.05	0.13	Sakamoto (1994MS)
Arc-derived detritus	WK82		0.036	0.10	0.06	0.13	Sakamoto (1994MS)
Arc-derived detritus	WK80		0.037	0.11	0.05	0.12	Sakamoto (1994MS)
Arc-derived detritus	WK78		0.038	0.15	0.06	0.14	Sakamoto (1994MS)
Arc-derived detritus	WK74		0.032	0.10	0.08	0.15	Sakamoto (1994MS)
Arc-derived detritus	WK72		0.039	0.08	0.07	0.14	Sakamoto (1994MS)
Are-derived detritus	WK70		0.041	0.10	0.07	0.16	Sakamoto (1994MS)
Are-derived detritus	WK68		0.041	0.09	0.07	0.15	Sakamoto (1994MS)
Arc-derived detritus	WK66		0.035	0.09	0.05	0.11	Sakamoto (1994MS)
Are-derived detritus	WK63		0.038	0.09	0.06	0.13	Sakamoto (1994MS)
Arc-derived detritus	WK59		0.037	0.12	0.06	0.14	Sakamoto (1994MS)
Are-derived detritus	WK57		0.039	0.09	0.06	0.14	Sakamoto (1994MS)
Arc-derived detritus	WK55		0.037	0.09	0.06	0.13	Sakamoto (1994MS)
Are-derived detritus	WK53		0.035	0.10	0.05	0.11	Sakamoto (1994MS)
Arc-derived detritus	WK51		0.039	0.11	0.06	0.14	Sakamoto (1994MS)
Are-derived detritus	WK49		0.036	0.16	0.07	0.14	Sakamoto (1994MS)
Arc-derived detritus	WK47		0.036	0.15	0.06	0.14	Sakamoto (1994MS)
Arc-derived detritus	WK45		0.037	0.10	0.06	0.14	Sakamoto (1994MS)
Are-derived detritus	WK43		0.038	0.13	0.07	0.15	Sakamoto (1994MS)
Arc-derived detritus	WK41		0.040	0.10	0.05	0.12	Sakamoto (1994MS)
Are-derived detritus	WK35		0.038	0.11	0.06	0.14	Sakamoto (1994MS)
Arc-derived detritus	WK33		0.038	0.10	0.06	0.13	Sakamoto (1994MS)
Are-derived detritus	WK31		0.036	0.13	0.07	0.14	Sakamoto (1994MS)
Arc-derived detritus	WK28		0.036	0.16	0.07	0.13	Sakamoto (1994MS)
Arc-derived detritus	WK26		0.040	0.12	0.08	0.15	Sakamoto (1994MS)
Arc-derived detritus	WK24		0.037	0.15	0.08	0.13	Sakamoto (1994MS)
Are-derived detritus	WK22		0.036	0.14	0.07	0.13	Sakamoto (1994MS)
Are-derived detritus	WK20		0.038	0.19	0.09	0.15	Sakamoto (1994MS)
Are-derived detritus	WK18		0.039	0.14	0.07	0.14	Sakamoto (1994MS)
Are-derived detritus	WK16		0.040	0.13	0.07	0.15	Sakamoto (1994MS)
Are-derived detritus	WK14		0.038	0.13	0.08	0.14	Sakamoto (1994MS)
Arc-derived detritus	WK12		0.035	0.14	0.08	0.13	Sakamoto (1994MS)
Arc-derived detritus	WK10		0.037	0.14	0.10	0.13	Sakamoto (1994MS)
Are-derived detritus	WK8		0.038	0.14	0.10	0.14	Sakamoto (1994MS)
Arc-derived detritus	WK4		0.038	0.15	0.09	0.14	Sakamoto (1994MS)
Are-derived detritus	WK2		0.038	0.14	0.08	0.13	Sakamoto (1994MS)
Are-derived detritus	WKS18		0.037	0.10	0.05	0.11	Sakamoto (1994MS)
Arc-derived detritus	WKS19		0.037	0.10	0.07	0.12	Sakamoto (1994MS)
Arc-derived detritus	WKS20		0.041	0.13	0.06	0.15	Sakamoto (1994MS)
Are-derived detritus	WKS21		0.041	0.10	0.08	0.13	Sakamoto (1994MS)
Are-derived detritus	WKS22		0.040	0.14	0.06	0.14	Sakamoto (1994MS)
Arc-derived detritus	WKS23		0.036	0.10	0.07	0.13	Sakamoto (1994MS)
Are-derived detritus	WKS24		0.036	0.13	0.03	0.10	Sakamoto (1994MS)
Arc-derived detritus	WKS25		0.043	0.11	0.05	0.13	Sakamoto (1994MS)
Tephra	K-Ah	5.8	0.042	0.04	0.25	0.23	Machida \& Arai (1992)
Tephra	AT	6.4	0.011	0.01	0.30	0.29	Machida \& Arai (1992)
Tephra	Ata	5.8	0.037	0.04	0.29	0.20	Machida \& Arai (1992)
Tephra	Toya	6.2	0.004	0.00	0.34	0.20	Machida \& Arai (1992)
Tephra	Aso-3	4.7	0.043	0.04	0.30	0.27	Machida \& Arai (1992)
Tephra	$\mathrm{Kc}-\mathrm{Hb}$	6.6	0.029	0.03	0.37	0.16	Machida \& Arai (1992)
Tephra	U-Oki	3.0	0.014	0.01	0.38	0.26	Machida \& Arai (1992)
Tephra	B-Tm	6.9	0.023	0.00	0.42	0.43	Machida \& Arai (1992)

Table 13
Composition loadings of each detrital subcomponent, Kosa fraction, Kosa grain size index (KGI), and arc-derived detritus grain size index (AGI) for each sample.

Type	Na	Hole	Core	Sec	Intern		$\begin{gathered} \text { Depth } \\ \text { (cmabs } \end{gathered}$	$\begin{aligned} & \mathrm{Age}^{\mathrm{gex}} \\ & (\mathrm{ka}) \end{aligned}$	Fine Kosa (\% in detritus)	Coarse Kona (\% is detritus)	Fine arcderived detrites ($\%$ in detritus)	Coarse arcderived detritus (\% in detritus)	Kosa Fraction ($\%$ in detritus)	KG1	AGI
IR	1	7978	IH	$!$	13	15	13	00	32	9	27	3_{22}	41	0.21	0.55
HR	16	7978	1H	1	17	19	17	0.0	37	10	28	24	47	0.21	0.46
HR	17	7978	IH	1	23	25	23		38	11	30	22	49	0.22	0.42
HR	18	7978	1H	1	31	33	30	1.8	37	11	30	21	48	0.33	0.42
HR	19	7978	1H	1	38	40	37	2.9	42	9	26	22	51	0.17	0.46
LR	2	7978	1H	1	44	46	43	3.8	38	6	30	26	44	0.13	0.46
HR	20	7978	IH	1	45	47	44	4.0	42	4	29	25	46	0.18	0.46
Hk	21	7978	1H	1	54	56	52	5.2	38	10	30	23	48	0.21	0,43
HR	22	7978	1H	1	59	61	57	6.0	38	11	30	20	50	0.23	0.40
HR	23	7978	1H	1	66	68	64	7.1							
HR	24	7978	1 H	1	73	75	70	8.0	37	10	36	18	47	0.21	0.33
LR	3	7978	1 H	1	74	76	71	$\times .2$	32	8	26	34	40	0.19	0.56
HR	25	7978	1 H	1	80	82	77	9.1							
HR	26	7978	${ }^{11}$	1	87	89	84	102	30	6	27	2 x	45	0.13	6.51
HR	27	7978	III	1	96	98	92	11.4	41	7	27	24	49	0.15	0.47
HR	28	7978	IH	1	101	103	47	12.3	47	\times	22	23	55	0.14	0.52
HR	29	7978	IH	1	108	110	104	13.5	50	6	24	20	57	0.11	0.46
HR	30	7978	IH	1	117	119	112	150	so	6	22	22	57	0.11	0.50
HR	31	7978	III	1	121	123	116	15.7	51	6	22	21	57	0.10	0.49
HR	32	7978	III	1	131	133	126	17.4	52	5	20	23	57	0.09	0.54
LR	4	7978	1H1	1	134	136	128	17.7	44	8	20	28	52	0.16	0.58
HR	33	7978	1 H	1	141	143	135	1×5							
HR	34	7978	IH	1	146	148	140	19.1	46	\%	20	26	54	0.16	0.56
HR	35	7978	IH	2	0	2	144	195	45	11	18	25	57	0.20	0.58
HR	36	7978	1 H	2	6	8	149	20.1	47	10	21	23	57	0.18	0.53
LR	5	${ }_{7978}$	1 H	2	13	15	156	20.9	41	8	19	31	50	0.17	0.61
HR	37	7978	1 H	2	15	17	15 s	21.1	47	11	21	21	58	0.18	0.50
HR	38 38	7978	1 H	2	21	23	164	218	47	11	20	23	58	0.19	0.54
HR	39	7978	1 H	2	29	31	171	22.6	48	10	20	22	58	0.18	0.53
HR	40	7978	1 H	2	35	37	177	23.3	48	9	20	23	57	6.16	0.54
HR	41	7978	1 H	2	40	42	182	23.9							
LR	6	7978	1H	2	44	46	186	24.3	45	7	21	26	52	0.14	0.55
HR	42	7978	IH	2	49	51	150	24.8							
HR	43	7978	IH	2	56	58	197	25.6	48	2	17	33	50	003	0.65
HR	44	7978	III	2	66	68	206	26.5	53	4	23	20	57	o.os	0.47
HR	45	7978	1H	2	70	72	210	27.9	49	5	23	23	54	0009	050
LR	7	7978	1 H	2	74	76	214	27.4	45	8	22	26	53	0.15	0.54
HR	46	7978	1 H	2	79	81	219	28.0	52	6	23	19	58	0.11	0.46
HR	47	797B	1 H	2	84	86	224	2×5							
HR	48	7978	1 H	2	91	93	250	29.8							
HR	49	${ }^{7978}$	III	2	160	102	239	31.8	52	4	40	4	56	0.06	009
LR	8	7978	${ }_{\text {IH }}$	$\stackrel{2}{2}$	104	${ }^{106}$	243	32.6	50	3	22	25	53	0.06	0.54
HR	50 51	7978	111	$\stackrel{2}{2}$	106	108	245	33.1	51	4	21	24	55	0.07	0.52
HR	51 51	7978	IH	2	112	114	250	34.2	51	5	21	22	57	000	0.51
IRR	52	7978	1 H	2	119	121	257	35.7	51	6	22	20	58	0.11	0.48
HR	53	7978	1 H	2	127	129	265	37.4	54	2	20	24	56	0.03	0.54
HR	54	7978		2	132	134	269	383	51	7	21	20	58	0.12	0.49
HR	55	7978	IH	2	138	140	275	39.6	52	6	21	21	58	0.11	0.51
HR	56	7978	1 H	3	0	2	286	42.0	49	6	19	26	55	0.11	0.58
LRA	1	7971	${ }_{1 H}$	1	14	16 9	291	43.1	49	9	27	16	57	0.15	0.37
HR HR HR	57	7978	1H1	3	7	9	293	43.5	$\stackrel{44}{51}$	5	24	27	49	0.11	0.53
HR	1	797A 7978	1 H	1	23	25 15	297	44.4	51	7	27	14	58	0.12	0.34
LR	${ }_{5}^{9}$	7978 7978	1 H	3	13	15	299 306 3	44.8 463	44 45	6	22	28	49	0.12	0.56
HR HR HR	58 59	7978 7978	H1	3	21	23 27	306 310	463	45 52	8	22	25	53	0.15	0.54
HR HR	59 60	7978 7978	H1H	3	25 35	27 37	310 320	47.2 49.4	52 51	4	21 21 13	23	57 59	0.08	0.53
IR	61	7978	IH	3	40	42	324	50.2	44	6	21 13	20 36	59 50	0.13 0.13	0.49 0.73
LR	10	7978	1H	3	44	46	328	51.1	44	6	22	2 x	50	0.12	0.57
$\mathrm{HR}_{\text {HR }}$	62	7978	$\mathrm{IH}^{\text {H }}$	3	49	51	333	52.2	50	5	21	24	55	0.10	0.53
HR	63	7978	IH	3	56	58	340	53,7	52	6	22	20	58	0.10	0.48
HR	64	7978	III	3	63	64	345	54.8						- 10	(0)8
HR	65	7978	1 H	3	70	72	353	565	49	8	20	23	57	0.14	0.54
LR	11	7978	111	3	74	76	357	57.4	47	7	20	26	54	0.14	0.56
HR	66	7978	iII	3	78	se	361	583	52	7	22	20	58	0.12	0.48
HR	67	7978	14	3	84	86	366	59.4	48	9	21	22	56	0.15	0.52
HR	68	7978 7978	III	3	91	93	373	60.9	50	9	21	21	59	0.15	0.50
HR	69	79	IH	3	97	99	379	62.2	52	7	22	20	59	0.11	0,48
LR	12	7978	1H	3	104	106	385 3×6	63.5	44	7	23	26	51	0.15	0.54
HR HR HR	70	7978	III	3	105	107	386 343	63.7	48	8	21	22	56	0.14	0.51
HR	71	7978	IH	3	112	114	343	65.2	49	8	21	22	57	0.15	0.51
	72	7978	1H	3	120	121	400	66.8							
L.RA	5	7974	1H	1	134	136	405	678	51	10	26	13	01	0.17	033
HR	73	797B	1H	3	126	128	406	68.1	49	8	21	22	57	0.14	0.52
HR	74	7978	1 H	3	131	133	411	69.2	41	14	22	23	55	0.26	0.52
LR	13	7978	1 H	3	13	136	414.	69.8	41	10	23	26	51	0.19	0.52
HR	75	7978	111	3	140	142	420	71.4	48	10	20	22	58	0.18	0.52
HR	76 7	7978	III	3	147	149	426	72.4 739	49	9	21	21	58	0.15	0.50
HR HR	77	7978	III	4	4	6	433	739	80	9	21	20	39	0.15	0.48
HR LR R	78	7978	1 H	4	11	13	440	750	41	11	22	35	53	0.22	0.53
LR	14	7978	111	4	13	15	441	75.2	40	9	25	27	49	0.19	0.52
HR	79	7978	1H	4	18	20	446	75.9	40	15	24	20	56	0.28	0.46
HR	80	7978	${ }^{1 H}$	4	24	26	452	76.9	48	7	21	24	55	0.13	0.54
$\mathrm{HR}_{\text {HR }}$	81	7978	${ }^{1 H}$	4	32	34	460	78.1	46	7	21	25	53	0.13	0.54
${ }_{1}^{1 / R}$	82	7978	1H	4	39	41	466	79.1	49	9	24	18	59	0.16	0.43
LR	15	7978	1H	4	4	46	471	79.8	47	8	22	23	35	0.14	0.51
HR	83	7978	IH	4	49	51	476	80.6	48	7	25	21	54	0.12	246
$\mathrm{HR}_{\mathrm{HR}}$	84	7978	1H	4	53	55	480	813	45	6	25	25	51	0.11	0.50
HR L. 21 1	85	7978	1H	4	60	62	486	82.2	46	6	23	25	52	0.12	0.52
${ }_{\text {LRA }}^{\text {LR }}$	8	7974	1H	2	74	76	489	82.7	47	10	27	16	57	0.18	0.37
HR_{18}	86	${ }_{7}^{7978}$	111	4	67	69 73	493	83,3 839	40	6	26	27	47	0.3	0.51
L.R	16	7978	1H	4	7	73	497	83.9	43	3	24	31	46	006	057

Table 13 (continued)

Type	No.	Hole	Core	See	Interv		$\begin{aligned} & \text { Depth } \\ & \text { (cmbs) } \end{aligned}$	$\begin{aligned} & \text { Age } \\ & \text { (ka) } \\ & \hline \end{aligned}$	Fine Kona (5 in detritus)	Coarse Kosa ($\%$ in detritus)	Fine arcderived detritus ($\%$ in detritus)	Coarse arcderived detritus ($\%$ in detritus)	Kona Fraction (\% in detritus)	KG1	AGI
HR	2	7974	14	$?$	86	88	499	84.2	51	4	29	15	35	008	034
HR	3	797A	IH	2	93	95	505	85.2	48	6	28	17	55	0.11	0.38
HR	87	7978	IH	4	88	90	513	86.4	45	7	21	27	52	0.14	a.s6
HR	88	7978	III	4	94	96	519	87.3	47	7	23	23	54	0,14	0.51
HR	89	7978	1H	4	102	104	526	$8 \times .4$	¢0	6	24	20	5	0.10	0.46
LR	17	7978	1H	4	104	106	$52 \times$	88.8	48	6	22	24	53	9.80	-552
IR	90	7978	111	4	109	111	533	89.5	51	7	24	18	58	0.12	0.43
HR	4	7978	1H	2	130	132	542	90.8	51	6	30	13	57	0.10	0.31
HR	5	797A	111	2	137	139	549	92.1	46	6	37	11	53	0.12	0.23
HR	6	797A	1H	2	144	146	556	932	48	8	31	13	56	0.14	0.29
HR	7	7978	IH	3	1	3	563	94.3	49	9	31	11	57	0.15	8.27
HR	8	7974	1 H	3	8	10	570	95.4	42	5	26	27	46	0.10	0.51
HR	9	797A	1 H	3	18	20	579	96.8	47	9	31	13	56	0.17	0.30
HR	10	7974	1H	3	22	24	58.4	\$7.6.	45	10	29	16	55	0.19	0.35
HR	11	797A	1H	3	29	31	592	48. 8	40	6	25	210	55	0.10	0.44
HR	12	797A	1 H	3	36	38	600	100.1	46	8	30	16	54	0.15	0.35
LR	18	7978	2 H	1	14	16	604	1007	43	7	23	27	50	0.13	0.53
HR	91	7978	2 H	1	17	19	607	101.2	45	8	20	27	52	0.14	0.57
HR	92	7978	2 H	1	24	26	614	1023					52	0.14	
HR	93	7978	2 H	1	32	34	622	1035	43	8	24	25	51	0.16	0.51
HR	94	7978	2 H	1	39	41	629	1047	48	4	22	26	52	0.08	0.54
LR	19	7978	2 H	1	44	46	633	1053	40	6	35	28	46	0.14	053
HR	13	7974	III	3	71	73	634	105.4	44	9	28	19	53	8.17	0.40
HR	95	7978	2 H	1	53	55	642	106.7					5	6.	0.av
HR	96	797B	2 H	1	60	62	649	107.8	45	5	21	35	44	0.18	063
HR	97	7978	2 H	1	67	69	656	108.9	39	9	28	24	48	0.19	0.46
HR	14	797A	IH	3	98	100	659	109.4	35	19	26	19	55	035	0.42
HR	15	7974	1H	3	108	110	668	1108	52	8	24	16	59	0.13	0.40
HR	98	7978	2 H	1	88	90	676.	111.7	43	7	26	25	50	0.14	0.49
HR	99	7978	2 H	1	95	97	6×3	112.6	49	5	25	21	54	0n8	0.46
LR	20	7978	2 H	1	102	104	689	1133	38	6	28	28	44	0.15	0.50
HR	100	7978	2 H	1	104	106	691	1135	43	9	26	23	52	0.18	0.47
HR	101	7978	2 H	1	109	111	6\%	114.1	47	8	23	22	55	0.15	0.49
HR	102	7978	2 H	1	115	117	702	114.8	52	2	25	21	54	0.3	0.46
HR	103	7978	2 H	1	123	125	710	115.7	51	5	25	20	55	0ers	0.44
HR	104	7978	2 H	1	130	132	716	116.4	45	8	24	23	53	0.15	0.48
LR	21	7978	2 H	1	134	136	720	116.9	48	3	25	24	51	0.06	0.49
HR	105	7978	2 H	1	137	139	723	1173	48	5	22	24	54	0.69	0.52
LRA	16	7974	1 H	4	14	16	73	1173	47	8	32	13	55	0.14	0.29
HR	106	7978	2 H	1	144	146	730	118.1	45	8	23	24	53	0.15	0.51
HR	107	7978	2 H	2	1	3	737	118.9	49	8	25	i8	57	0.14	0.43
HR	108	7978	2 H	$\stackrel{2}{2}$	8	10	743	119.6	47	8	27	18	56	0.15	0.40
LR	22	7978	2 H	2	14	16	749	1203	42	4	27	28	46	0.08	0.51
HR	109	7978	2 H	2	17	19	752	120.7	45	2	29	24	47	6.83	0.46
HR	110	7978	211	2		24	757	121.3							
HR	111	7978	2 H	2	30	32	765	122.2							
HR	112	7978	2 H	2	36	38	77	122.9	44	5	27	24	49	0.10	0.48
HR	113	7978	2 H	2	42	44	776	123.5	47	0	30	23	47	0.00	0.43
LR	25	7978	2 H	2	4	46 58	778	123.7	41	3	27	2 k	45	008	0.51
HR	114	7978	2 H	2	50	52	7×4	124.4	45	0	29	26	45	0.00	0.48
HR	115	7978	2 H	$\frac{2}{2}$	57	59	791	125.3	43	8	28	21	51	0.17	0.43
${ }_{\text {HR }}^{\text {HR }}$	116	7978	211	2	64	66	798	126.1	45	9	27	19	54	0.17	0.41
HR	117 19	7978	2111	2	71	73	804	126.8	41	9	26	24	50	0.17	0.47
LRA	19	7971 7978	111	4	104	106	804	1268	44	10	29	17	54	019	637
LR	26 118	7978	211	$\stackrel{2}{2}$	74 79	76 81	807	127.1	37	6	24	33	43	0.15	0.58
HR	118	7978	214	2	79	81	812	127.7	39	11	26	25	49	0.21	0.50
HR	119	7978	211	$\frac{2}{2}$	84	86	817	12×3						02	\%,so
HR	120	797B	2 H	2	92	94	k 25	129.3	51	8	22	19	59	0.13	0.46
HR	121	7978	2 H	2	98	100	830	129.8	51	$7 \times$	22	19	58	0.12	0.46
LRA	20	7974	1 H	4	13	136	832	130.1	52	$\stackrel{1}{8}$	26	12	61	0.15	0.31
LR	23	7978	211	2	102	104	834	1303	49	7	21	22	56	0.13	0.52
HR	122	797B	211	2	${ }^{106}$	108	838	130.8	53	7	22	19	59	0.11	0.47
$\mathrm{HR}_{\mathrm{HR}}^{\text {HR }}$	123 124	797B 7978	211	2	113	115	845 853	131.7	48	8	24	20	56	0.14	0.46
HR	124 125	7978	211	2	121	123	853 858	132.6	52	7	21	20	59	0.12	0.49
$\mathrm{HR}_{\text {LR }}^{\text {LR }}$	125	7978	214	2	127	129	R58	133.2	49	${ }_{7}$	21	24	55	0.11	0.52
LR	24 126	7978 7978	$2 \mathrm{2H}$	2	134	136	865 867	134.1	36	7	23	34	43	0.17	0.60
$\mathrm{HR}_{\text {HR }}$	126 127	7978	$2 \mathrm{2H}$	2	136	138	867 872	134.3	40	12	20	28	52	0.23	0.58
HR	127 128	7978 7978	214	2	141	143	872	134.9 1358 1365	50	11	19	20	61	0.18	0.51
HR	128 129	7978 7978	211	2	148	150	879 885	135.8	47	12	18	22	60	0.20	0.55
HR	129 130	7978 7978	$2 \mathrm{2H}$	3	5	7	$\times 85$	136.5	53	9	21	17	62	0.15	0.45
$\mathrm{HR}_{\substack{\text { LR }}}^{\text {LR }}$	130	7978	2 H	3	11	13	891	137.2	51	\times	20	20	60	0.14	0.so
LR	27 131	7978	211	3	14	16	894 890	137.6 17×2 1388	48	7	21	23	56	0.13	0.53
$\mathrm{HR}_{\text {HR }}^{\text {HR }}$	131 132	7978	${ }_{2}^{2 H}$	3	19	21	800	138.2 13×8 139	54	7	22	17	61	012	0.44
HR HR	132 133	7978	${ }_{2}^{2 \mathrm{H}}$	3	24	26 35	${ }_{9} 94$	13888	54	5	20	21	60	0.9	asi
HR HR R	133	7978	$2 \mathrm{2H}$	3	33	35	912	139.7	51	8	18	2	59	0.14	0.55
${ }_{\text {HR }}^{\text {LR }}$	134 28 135	7978	2 LH	3	40	42	919 973	140.6	51	9	18	22	60	0.15	0.56
LR	28 135	7978	2 H	3	44	46 50	923 927	141.1	50	$?$	20	22	58	0.13	0.53
HR	135 23	7978	2H	3	48	50 76	927 930	141.6 141.9 1423	45	8	15	33	52	0.5	069
LRA	23 136	797 A 797 B	2H	5	74 54	76 56	930 933	141.9 1423	46 44	7	30	16	54	0.14	0.34
HK HR	136 137	7978 7978	2 H	3	54 64	56 66	933	142.3	44	14	17	26	5 s	0.24	0.60
HR	137 138	79978 7978	$2 \mathrm{2H}$	3	64 71	66 73	942 949	144.4	48	12	16 16	24	59 59 58	0.21 0.19	060 060
LR	29	7978	211	3	74	76	452	146.8	49	1	16 20	22	58 58 58	0.19 0.15	0.60 0.52
HR	139	7978	211	3	79	81	957	147.9	47	12	16	25	59	0.20	6.61
LRA	24	7978	1 H	5	104	106	959	$14 \times .4$	43	6	33	18	48	0.11	035
HR	140 141	7978	${ }_{2}^{2 H}$	3	82	84 94	960	1486 1508 1517	41	7	19	32	48	0.15	062
HR	141	7978	2 H	3	92	94	969	15088							
HR	142	${ }_{7}^{7978}$	2 H	3	96	98	973	151.7	51	8	18	23	59	0.13	0.56
LR	30	7978 7978 7978	21 H	3	102	104 105	979	153.1	47	9	18	26	56	0.16	0.59
HR	143	7978	2 H	3	103	105	9×0	153.4	47	8	20	25	55	0.14	0.56
HR	144	797B	211	3	108	110	985	154.5	48	8	17	26	57	0.15	0.60

Table 13 (continued)

Table 14 Average linear sedimentation rate (LSR), dry bulk density (DBD), content of detritus (Detritus\%), and mass accumulation rates (MARs) of Kosa and arcderived detritus between 12 datums. Age controlling datums are cited from Tada et al., [1996].

Datum	Depth (cmbsf)	$\begin{gathered} \text { AMS14C Age } \\ (\mathrm{ka}) \end{gathered}$	$\begin{aligned} & \text { Calender Age } \\ & (\mathrm{ka}) \end{aligned}$	$\begin{gathered} \text { LSR } \\ (\mathrm{cm} / \mathrm{ky}) \\ \hline \end{gathered}$	$\begin{gathered} \text { DBD } \\ (\mathrm{g} / \mathrm{cm} 3) \\ \hline \end{gathered}$	Detritus\%	Kosa MAR ($\mathrm{g} / \mathrm{cm} 2 / \mathrm{ky}$)	Are-derived detritus MAR ($\mathrm{g} / \mathrm{cm} 2 / \mathrm{ky}$)
Top	18		0.0					
				6.50	0.320	78.9	0.8	0.9
TL1	92	9.9 ± 0.2	11.4					
				5.62	0.472	80.3	1.2	0.9
Top TL2	127	14.9 ± 0.2	17.6					
				8.75	0.629	83.3	2.5	2.1
Bottom TL2	190	21.0 ± 0.2	24.8					
				9.16	0.652	86.1	2.7	2.3
A-T	224	24.3 ± 0.2	28.5					
				4.60	0.584	86.4	1.3	1.0
Stage 5.0	433		73.91					
				6.40	0.480	81.1	1.4	1.2
Stage 5.2	542		90.95					
				6.35	0.459	80.7	1.2	1.1
Stage 5.4	668		110.79					
				8.50	0.491	79.8	1.7	1.7
Stage 6.0	830		129.84					
				8.28	0.706	88.5	3.0	2.2
Stage 6.3	933		142.28	4.24	0.684	89.3	1.5	1.1
Stage 6.5	1072		175.05					
				5.29	0.646	88.6	1.8	1.2
Stage 7.0	1149		189.61					

Appendix

I. Determination of Major Elements Composition of Fine Grained

Sediments using X-ray Fluorescence Analysis

Introduction

X-ray fluorescence analysis is conducted on fused glass bead which contain the particular fraction of sample. Sample - flux ratio of glass bead is adopted to be 0.1000 which result in the almost constant mass absorption effect in spite of the compositional variation of samples [Goto and Tatsumi, 1991]. However, sediment samples have much wider compositional variation than igneous rocks used by Goto and Tatsumi because marine sediment often contains siliceous and / or calcareous fossils and diagenetic products such as carbonate and phosphate which are rich in calcium, magnesium, manganese, and phosphorous. Thus the calibration method which is effective for wide range of element composition should be established to analyze sediment samples. In addition, sediments usually contains a lot of volatiles such as structural water of minerals, carbonate, and organic carbon. So special care is needed for sample preparation.

Sample Preparation

Analyzed samples are recommended to be desalted and powdered.
As the first step, sample is dried and ignited in order to remove volatiles to prevent concentration change of sample during glass bead fusion. Approximately 0.6 g of powdered sample is put in a ceramic crucible whose weight is exactly known. Sample in crucible is covered and dried in an oven set at $50^{\circ} \mathrm{C}$ overnight. After dried, sample in crucible is put in a desiccator immediately after taking out of the oven and is cooled to room temperature. After cooling, sample is weighed with ceramic crucible. Then sample in crucible is covered and
dried in an oven at $110^{\circ} \mathrm{C}$ longer than 4 hours. After dried, sample in crucible is put in a desiccator immediately after taking out of the oven and is cooled to room temperature. After cooling, sample is weighed with ceramic crucible.

Sample in crucible is covered and ignited in an oven at $1000^{\circ} \mathrm{C}$ for 6 hours. Ignition longer than 6 hours does not result in the further weight loss and, in many case, sample is sintered. Thus 6 hours ignition is best. After ignition, sample in crucible is put in a desiccator immediately after taking out of the oven and the desiccator is vacuumed using vacuum pump in order to prevent rehydration and recarbonatization of lime (CaO) in calcareous sample. Sample is cooled to room temperature. After cooling, sample is weighed with ceramic crucible. Loss on ignition (LOI) is defined here as,

LOI $=\left\{\left(110^{\circ} \mathrm{C}\right.\right.$ dried sample + crucible weight $)-\left(1000^{\circ} \mathrm{C}\right.$ ignited sample + crucible weight $)\} /\left\{\left(110^{\circ} \mathrm{C}\right.\right.$ dried sample + crucible weight $)$ ((crucible weight) $\} * 100$.

If sample is sintered, sample is powdered using back of spoon or agate mortar which depends on the hardness of sintering.

Bead Sampling

Approximately 0.4 g of powdered ignited sample is mixed with $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ flux in exact ratio of $0.1000: 1.000 . \mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ flux was dried at $110^{\circ} \mathrm{C}$ for longer than 48 hours and cooled down to room temperature in a desiccator. Ignited sample and flux are well-mixed in platinum crucible and then three drops of $2 \% \mathrm{LiBr}$ solution are added to sample - flux mixture in order to easily rip up glass bead from platinum crucible after fusion.

Sample - flux mixture in platinum crucible is fused approximately at $1150^{\circ} \mathrm{C}$ using a radio-frequency induction furnace. Ignition time is 7 minutes and sample - flux mixture in platinum crucible is agitated during last 3 minutes in order to remove bubble in the fused glass. Cooled glass bead is used for XRF analysis and the side which faced to the bottom of platinum crucible is used for measurement. So the bottom of platinum crucible should be clean and polished up.

The glass bead is weighed to check the ignition loss of flux and it should be approximately 0.5%. Sample identification is described on the side which is not used for measurement and glass bead is kept in sealed small bag.

Calibration Method

Reference materials

Geochemical reference samples provided by Geological Survey of Japan, US Geological Survey and National Bureau of Standards and their mixtures were used as calibration standards. In addition, pure silica, pure calcium carbonate, and pure manganese carbonate are mixed with a geochemical reference sample (JB-1a) and used as calibration standards to verify a wide compositional range. All used standards $(\mathrm{n}=40)$ and their composition are listed in Table I-1. All composition values are cited from Potts et al. [1992] and recalculated as dry base values for igneous rock standards and ignited base values for sedimentary rock standards. Fe content is calculated to total ferric form $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$.

Glass bead sampling of reference materials

Geochemical standards used here include various igneous rocks and sedimentary rocks. To make glass bead of them, pre-treatments fitted for each standard was conducted.

For igneous rocks, standard samples were not pre-ignited at $1000^{\circ} \mathrm{C}$ because all divalent iron (FeO) was not oxidized to trivalent iron $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$, which makes it impossible to estimate appropriate loss on ignition. They are only dried at $110^{\circ} \mathrm{C}$ and used for bead sampling.

For sedimentary rock standards except for phosphate standard (NBS-120c), the same pre-treatment including pre-ignition described above was conducted. Carbonate fluoro-apatite contained in NBS-120c is not decomposed at $1000^{\circ} \mathrm{C}$, which makes it impossible to estimate appropriate loss on ignition of this sample. Thus NBS-120c was used for bead sampling after dried at $110^{\circ} \mathrm{C}$.

Measurement condition

Rigaku 3270 X-ray Spectrometer of Ocean Research Institute was used for measurement. It is equipped with Rh tube and acceleration voltage 50 kV and current 50 mA was adopted. Measurement condition for each element was determined. Adopted condition is listed in Table I-2. Under these condition, 40 reference samples are measured and the intensity of characteristic X-ray of each element for each sample was collected.

Calibration curve

Calibration which convert the intensity of characteristic X-ray of each element to weight $\%$ of oxide form of the element was conducted by best fit linear or quadratic equation. Because mass absorption by Ca could not neglected for $\mathrm{TiO}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}$, and MnO , calibration which is proportional to the Ca X-ray intensity of each sample was conducted (matrix calibration). Matrix calibration of element i for element j is calculated as
(Calibrated intensity of i$)$
$=($ Raw intensity of i$) \times[1+($ Matrix calibration coefficient for j$) \times($ Raw intensity of j$)]$

Calibration for mass absorption by other elements was not necessary. All calibration coefficient are listed in Table I-3.
SiO_{2} and $\mathrm{P}_{2} \mathrm{O}_{5}$ calibration were conducted by quadratic equation (Figures I-a, n, o). One quadratic calibration equation can be used for 0 to $35 \mathrm{wt} \% \mathrm{P}_{2} \mathrm{O}_{5}$ (Figure I-n), which is shown in Figure I-o as good fitness of curve with in the 0 to $0.5 \mathrm{wt} \% \mathrm{P}_{2} \mathrm{O}_{5}$ range.

Calibration for $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO}, \mathrm{CaO}, \mathrm{Na}_{2} \mathrm{O}$, and $\mathrm{K}_{2} \mathrm{O}$ were conducted by simple linear equation (Figures I-d, j, k, I, m).

Calibration for $\mathrm{TiO}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}$, and MnO were conducted by linear equation (Figures I-c. f, h). Because the intensity of these elements were systematically low for mass absorption
effect for Ca (Figures I-b, e, g), matrix calibration for Ca was conducted. Within the range of I to $6 \mathrm{wt} \% \mathrm{MnO}$, intensity of prepared samples were systematically lower than general trend of other samples (Figure I-i). The author prepared high Mn sample as mixture of JB-1a and pure manganese carbonate. When manganese carbonate was heated at temperature higher than 110 ${ }^{\circ} \mathrm{C}, \mathrm{Mn}$ was oxidized to unknown oxidized form. Thus the author used pure manganese carbonate without drying. This may have resulted in the lower intensity of Mn for mixture standards by loss of adsorbed water. Although these high Mn standards could not be used for calibration, Figure I-i shows that the linearity between intensity and content of Mn is guaranteed approximately to $5 \mathrm{wt} \% \mathrm{MnO}$.

Calibration of measurement condition

One glass bead of JB-1a which was named CALIB is measured to check and calibrate the measurement condition every time when unknown sample is measured. To prevent counting error, measurement time of CALIB for each element is set as twice as described in Table I-2. Collected intensity of CALIB for each element are used to calculate the correction factor to the intensity when calibration curve were made. Correction factor for element i is defined as

Correction factor $=\frac{\text { Intensity of } \mathrm{i} \text { for CALIB measured when calibration curve was made }}{\text { Intensity of } \mathrm{i} \text { for CALIB measured when unknown sample is measured }}$.

The intensity of i for unknown sample is used after being multiplied by the correction factor.
When correction factor become larger than 1.02 or smaller than 0.98 , calibration curve should be revised. Na and P in sweat of people easily pollute the surface of glass beads. When the correction factors for Na and P calculated using CALIB become systematically larger, pollution of glass bead surface by people's sweat is probable. In this case, measurement surface of CALIB is polished using less than $1 \mu \mathrm{~m}$ diamond paste and CALIB is measured
again. Only when the intensity of Na and P cannot be better, calibration curve should be revised.

Precision of Measurement

Analytical errors of measurement are estimated by 9 times repetition of glass bead making and their measurement by the spectrometer using the geological standard JB-1a of the Geological Survey of Japan.

The reproducibility (95% reliability) of measurement is $52.4 \pm 0.3 \%$ for SiO_{2}, $1.32 \pm 0.01 \%$ for $\mathrm{TiO}_{2}, 14.2 \pm 0.1 \%$ for $\mathrm{Al}_{2} \mathrm{O}_{3}, 9.16 \pm 0.06 \%$ for $\mathrm{Fe}_{2} \mathrm{O}_{3}, 0.144 \pm 0.002 \%$ for MnO , $7.85 \pm 0.08 \%$ for $\mathrm{MgO}, 9.34 \pm 0.07 \%$ for $\mathrm{CaO}, 2.56 \pm 0.04 \%$ for $\mathrm{Na}_{2} \mathrm{O}, 1.41 \pm 0.01 \%$ for $\mathrm{K}_{2} \mathrm{O}$, and $0.244 \pm 0.003 \%$ for $\mathrm{P}_{2} \mathrm{O}_{5}$. They correspond to relative error of $\pm 0.6 \%$ for $\mathrm{SiO}_{2}, \pm 0.8 \%$ for $\mathrm{TiO}_{2}, \pm 0.7 \%$ for $\mathrm{Al}_{2} \mathrm{O}_{3}, \pm 0.7 \%$ for $\mathrm{Fe}_{2} \mathrm{O}_{3}, \pm 1.4 \%$ for $\mathrm{MnO}, \pm 1.0 \%$ for $\mathrm{MgO}, \pm 0.8 \%$ for CaO , $\pm 1.6 \%$ for $\mathrm{Na}_{2} \mathrm{O}, \pm 0.7 \%$ for $\mathrm{K}_{2} \mathrm{O}$, and $\pm 1.2 \%$ for $\mathrm{P}_{2} \mathrm{O}_{5}$, respectively.

References

Goto, A. and Tatsumi, Y., Quantitative analysis of rock sample using X-ray fluorescence analyzer, The Rigaku-Denki Journal, 22, 28-44, 1991.

Potts, P. J., Tindle, A. G., and Webb, P. C., Geochemical Reference Material Compositions: Rocks, Minerals, Sediments, Soils, Carbonates, Refractories and Ores in Research and Industry, 313 pp., Whittles Publishing, U. K., 1992.

O.

Table I-2 Measurement condition for each element.

$\overline{\text { Element }}$	Filter	Diafrum	Attainator	Slit	Crystal	Detector	PHA	Background1		Peak		Background2	
								2 theta (degree)	Time (second)	2 theta (degree)	Time (second)	2 theta (degree)	Time (second)
$\stackrel{\text { SiO2 }}{ }$	out	30 mm	none	coarse	PET	PC	100-300	107.00	25	109.04	50	111.00	25
TiO2	out	30 mm	none	coarse	LiF	SC	100-300	85.00	50	86.14	100	88.00	50
$\mathrm{Al2O}^{2}$	out	30 mm	none	coarse	PET	PC	100-300	141.00	25	144.78	50		
Fe203	out	30 mm	none	coarse	LiF	SC	100-300	56.50	25	57.50	50	58.50	25
MnO	out	30 mm	none	coarse	LiF	SC	100-300	61.50	25	62.95	50	64.50	25
MgO	out	30 mm	none	coarse	TAP	PC	100-300	42.93	50	45.19	100	47.45	50
CaO	out	30 mm	none	coarse	TAP	SC	100-300	111.50	25	113.09	50	114.50	25
Na 2 O	out	30 mm	none	coarse	TAP	PC	100-300	52.50	50	55.15	100	58.50	50
K20	out	30 mm	none	coarse	PET	PC	100-300	49.00	25	50.59	50	51.84	25
P205	out	30 mm	none	coarse	Ge	PC	100-300	139.50	40	141.03	80	143.20	40

Table I-3 Coefficients for calibration equations and matrix calibration.

Element	Coefficient (Intensity=X)			Accuracy	Matrix calibration coefficient	
	$\mathrm{X}^{\wedge} 2$	$\mathrm{X}^{\wedge} 1$	X ${ }^{\wedge} 0$		Element	Coefficient
SiO2	-0.0016165	1.3889	-1.2171	0.4598		
$\mathrm{TiO2}$		0.7552	0.0025	0.0085	Ca	0.0071828
Al2O3		1.2812	0.0197	0.1805		
Fe2O3		0.0862	-0.0478	0.1125	Ca	0.0074968
MnO		0.1097	0.0017	0.0057	Ca	0.0096351
MgO		3.7592	0.0570	0.1098		
CaO		1.1252	0.0380	0.0814		
Na 2 O		10.4530	0.0313	0.0518		
K2O		0.3830	-0.0243	0.0392		
P2O5	-0.0005976	0.4664	0.0004	0.0123		

Figure I Calibration curves for $\mathrm{SiO}_{2}(\mathrm{a}), \mathrm{TiO}_{2}(\mathrm{~b}, \mathrm{c}), \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~d}), \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{e}, \mathrm{f}), \mathrm{MnO}(\mathrm{g}, \mathrm{h}$,
i), $\mathrm{MgO}(\mathrm{j}), \mathrm{CaO}(\mathrm{k}), \mathrm{Na}_{2} \mathrm{O}(\mathrm{l}), \mathrm{K}_{2} \mathrm{O}(\mathrm{m})$, and $\mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{n}, \mathrm{o})$.

Figure I (continued)

Figure I (continued)

II. Determination of Biogenic Silica Content using Alkali Extraction Method

Manual for Measurement

In order to establish the procedure for determination of biogenic opal content, the author modified the procedure described in Mortlock and Froerich [1989].

Pre-treatment of samples

Approximately 100 mg of sample is desalted with 50 ml of doubly distilled water (DDW) in a 75 ml polypropylene tube and sample with DDW in the tube is centrifuged at 3500 rpm for 1 to 2 hours until supernatant becomes clear. Clear supernatant is decanted and sample is dried at $50^{\circ} \mathrm{C}$ overnight. Sample is moved to small glass crucible and dried at $110^{\circ} \mathrm{C}$ for longer than 2 hours and sample in glass crucible is moved to desiccator to be cooled down to room temperature. Approximately 50 mg of desalted and $110^{\circ} \mathrm{C}$ dried sample is exactly weighed into 75 ml polypropylene tube.

Approximately $5 \mathrm{ml}\left(10 \mathrm{ml}\right.$ if sample is organic rich) of $10 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution (1:2 solution of first grade $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ and DDW) is added to sample in 75 ml tube to remove organic matter, the tube is capped with a polypropylene cap with a small hall to allow gas expansion, and left for 30 minutes. Then sample with $\mathrm{H}_{2} \mathrm{O}_{2}$ in the tube is moved to $50^{\circ} \mathrm{C}$ water bath and left until babbling stop. Approximately 10 ml of 1 N HCl solution (1:9 solution of super grade 10 N HCl and DDW) is added to sample to remove carbonates and sample with the solution in tube is sonified for 30 minutes. Approximately 20 ml of DDW is added and sample is left for approximately 1 hour until babbling stop. Then sample in the tube is centrifuged at 3500 rpm for 30 minutes. Supernatant is decanted. Sample is rinsed with approximately 50 ml of DDW again and centrifuged at 3500 rpm for 1 to 2 hours until
supernatant become clear. Supernatant is decanted and sample in the tube is dried at $50^{\circ} \mathrm{C}$ overnight.

Alkali extraction

Alkali extraction is time consuming and busy work. If all work is done by one person, he can treat maximum 24 samples per day. If there is one more helper, he can treat 48 samples per day. Procedure described below is the manual for one person.

Exactly 50 ml of $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution is added to sample in 75 ml tube, capped with polypropylene cap with a small hole. Sample with alkali solution in the tube is swirled and then sonified for 5.5 minutes in supersonic vibrator with $85^{\circ} \mathrm{C}$ water. This step is repeated every 1 minute for analyzed samples. After sonified, sample in the tube is moved to $85^{\circ} \mathrm{C}$ water bath. Sample is swirled every 1 hour.

After $\mathrm{n},(\mathrm{n}+1),(\mathrm{n}+2), \cdots$ hours since $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution was added to first sample, 0.500 ml of alkaline supernatant which contains Si from sample is sampled using micropipette and moved to small plastic cell. This step is also repeated every 1 minute for analyzed samples.

After n (also $(\mathrm{n}+1),(\mathrm{n}+2), \cdots$.$) hours 25$ minutes since $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution was added to first sample, preparation for Si determination by molybdate-blue spectrophotometry starts. This step should be finished within 35 minutes. The procedure is described later.

Calibration standards

The author used commercially sold silica standard solution ($1000 \mathrm{ppm}(=35.606 \mathrm{mM}$ Si) in $0.4 \mathrm{~N} \mathrm{Na}_{2} \mathrm{CO}_{3}$) as calibration standard. In order to check the quality, two kinds of standards (produced by Wako Chemical Co. Ltd. and Junsei Chemical Co. Ltd.) are used every time. $3 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution is also prepared to adjust the matrix solution of calibration standards.

In order to make standard silica solution of various concentration, commercial silica solution, $3 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, and DDW are mixed in ratios below;
7.01 mM Si standard
4.98 mM Si standard
2.99 mM Si standard
1.00 mM Si standard
0.00 mM Si standard
$1.97 \mathrm{ml}: 6.54 \mathrm{ml}: 1.49 \mathrm{ml}$
$1.40 \mathrm{ml}: 6.57 \mathrm{ml}: 2.03 \mathrm{ml}$
$0.84 \mathrm{ml}: 6.61 \mathrm{ml}: 2.55 \mathrm{ml}$
$0.28 \mathrm{ml}: 6.65 \mathrm{ml}: 3.07 \mathrm{ml}$ $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution for alkali extraction was used.

Preparation of reagents

Preparation of reagents should be finished until the day before alkali extraction. All reagents are adjusted using DDW and stored in plastic bottle.

Molybdate reagent: 16.731 g of super grade $\left(\mathrm{NH}_{4}\right) 6 \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ is dissolved in DDW and adjusted to 1000 ml into mesflask.

Hydrochloric acid reagent: 48 ml of super grade 10 N HCl is added to approximately 900 ml of DDW in a plastic beaker. The solution is cooled down to room temperature, moved to mesflask and adjusted to 1000 ml .

Metol-sulfite reagent: 12.000 g of super grade $\mathrm{Na}_{2} \mathrm{SO}_{3}$ is dissolved in DDW and adjusted to 1000 ml of mesflask. The solution is moved to plastic beaker, 20 g of metol (paramethylaminophenl sulfate) is added and stirred well. This solution is filtered using no. 1 filter paper and stored in brown bottle.

Oxalic acid reagent: 60 g of super grade $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is dissolved in DDW and adjusted to 1000 ml of mesflask.

Sulfuric acid reagent: 30 ml of super grade $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to approximately 700 ml of DDW in a plastic beaker. The solution is cooled down to room temperature, moved to mesflask and adjusted to 1000 ml .

Adjustment of working solution

Adjustment of working solution should be conducted during the waiting time of alkali extraction procedure which is from 2 to 3 hours after addition of alkali solution to first sample. Working solutions can be stored approximately 6 hours.

Molybdate working solution: Molybdate reagent, hydrochloric acid reagent, and DDW are mixed exactly in a ratio of $1: 1: 5$.

Reducing working solution: Metol-sulfite reagent, oxalic acid reagent, and sulfuric acid reagent are mixed exactly in a ratio of $1: 1: 1$.

Measurement of Si in alkali solution
Si in alkali solution extracted from sample is measured by molybdate-blue photospectrometry. Blue coloring process should conducted during wating time of alkali extraction.

Exactly 14.00 ml of molybdate working solution is dipensed in a clean dried 30 ml polypropylene tube. This should be done before first sampling of sample Si solution. Exactly 0.100 ml of sample Si solution is pippeted to prepared molybdate working solution, the 30 ml tube is capped with polypropylene cap and the solution is swirled. This step is repeated every 30 seconds for all analyzed sample. Exactly after 20 minutes, 6.00 ml of reducing working solution is dispenced to the mixture of sample solution and molybdate working solution, the 30 ml tube is capped with polypropylene cap and the solution is swirled. This step is also repeated every 30 seconds for all analyzed sample. Blue coloring takes longer than 12 hours. Prepared Si standards are reacted with working solutions using this procedure before sampling of sample Si solution.

On next day, colored solution is measured by spectrophotometer. The solution is put in a 1 cm cell, and the absorbance at 812 nm is measured. The absorbance at 812 nm of DDW is set to zero.

First, Si standards of are measured and calibration curve is calculated. The absorbance of 0 mM Si standard should be less than 0.004 . Correlation coefficient of respctive set of Si standards of the two should be larger than 0.99 and correlation coefficient calculated using both sets should also be larger than 0.99 .

After calculation of calibration curve, sample solutions are measured with same condition.

Dissolution of Silica from Sediment Samples as a Function of Time

The author checked the mode of dissolution of silica from sediment samples as a finction of time using 2 samples from the pelagic sediment core KH92-1, 5bPC (Euaripik Rise; $3^{\circ} 31.94^{\prime} \mathrm{N}, 141^{\circ} 51.40^{\circ} \mathrm{E}$). Samples are Sec $1-2$ and Sec $1-22$ of the core. Extracted silica from samples at $2,4,6,8,10$, and 12 hours since alkali extraction started were measured in duplicate, which also enabled the estimation of reproducibility of extraction procedure.

Figure II-1 shows the extracted SiO_{2} wt \% from samples as a fuction of time. During first 6 hours, silica dessolved to alkali solution rapidly. Whereas after 8 hours, silica dissolved slowly at a constant rate. Smear slide observation of dissolution residue showed that radioralian fragments could not be noted after 8 hours. This suggests that biogenic opal dissolution was finished during first 8 hours and dissolved silica after 8 hours originated from detrital fraction in the sediments [DeMaster, 1981].

Figure II-2 shows the x - y plots of dissolved silica for one aliquot vursus the other of duplication. 1:1 line shown in Figure II-2 indicate perfect agreement between two aliquots. Deviation around 1:1 line can be used as reproducibility of alkali extraction procedure. The result shows that the reproducibility of the procedure is $\pm 0.2 \mathrm{wt} \% \mathrm{SiO}_{2}$.

Determination of Time Needed for Biogenic Opal Dissolution for ODP Site 797 Sediments

To determine the reaction time required to perfect dissolution of biogenic silica for ODP Site 797 sediments, a smear slides of alkali treated samples for $0.5,1,2,4,6$ hours are observed by optical microscope at the magnification of 40 powers. Diatom remains are observed in the samples treated for $0.5,1$, and 2 hours and no silica remains are noticed in those treated for 4 and 6 hours. Thus 4 hours alkali treatment are enough for dissolution of biogenic opal for the Japan Sea hemipelagic sediments.

Determination of Detrital Silica Dissolution Rate for ODP Site 797 Sediments

To check the dissolution rates of soluble detrital silicate minerals plus volcanic glass, dissolved silica extracted from samples after $5,6,7,8$, and 9 hours treatment were determined for 40 selected samples. As a result, 25 samples show that the correlation coefficient between dissolved SiO_{2} vursus time was larger than 0.95 (Figure II-3). Although after perfect dissolution of biogenic silica, Figure II-3 shows that extracted silica increased linearly as the function of time which are caused by the dissolution of soluble detrital silicate minerals plus volcanic glass [DeMaster, 1981]. For these 25 samples, frequency of silica dissolution rate was examined (Figure II-4). Figure II-4 shows that silica dissolution rate of Site 797 sediments are deviated around $0.2 \mathrm{wt} \% \mathrm{SiO}_{2} / \mathrm{hr}$ and the 2σ is $0.1 \mathrm{wt} \% \mathrm{SiO}_{2} / \mathrm{hr}$. Thus the author considers that average dissolution rate of silica from detritus is $0.2 \pm 0.1 \mathrm{wt} \% \mathrm{SiO}_{2} / \mathrm{hr}$ for Site 797 sediments.

$\underline{\text { Simplified method }}$

According to the results above, dissolution rate of silica from samples are constant at around 7 hours from starting of alkali treatment. Thus 7 hours alkali extraction of silica and the correction of $1.4 \mathrm{wt} \%(=0.2 \mathrm{wt} \% / \mathrm{hr} \times 7$ hours $)$ for silica extracted from silicates could give a reasonable value for biogenic silica content of other samples. In this case, the error of estimation is within $\pm 0.7 \mathrm{wt} \%$ ($0.1 \mathrm{wt} \% / \mathrm{hr} \times 7$ hours).

Figure II-1 Dissolved silica from sediment samples (KH92-1, 5bPC, Sec1-2 and 22) as a function of time.

Figure II-2 Reproducibility of dissolved silica during the procedure of alkali extraction. Data are same as Figure II-1. 1:1 line indicates the perfect agreement between first aliquot and second of duplication.

Figure II-3 Dissolved silica from selected sediment samples from ODP Site 797 as a function of time.

Figure II-4 Frequency distribution of dissolution rate of silica from detrital fraction of ODP Site 797 Sediments.

III. Determination of Mineral Composition using X-ray Diffraction Analysis

Introduction

In order to quantify the contens of minerals of ODP Site 797 sediments, X-ray diffraction analysis (XRD) was conducted. Diffraction intensity of minerals are calibrated to weight percent within the sample by calibration curve established using reference pure minerals.

Measurement Condition

Measurement was conducted by a MAC Science MXP-3 X-ray diffractometer (XRD) equipped with $\mathrm{CuK} \alpha$ tube and monochrometer. Tube voltage and current are 40 kV and 20 mA , respectively. Scattering slit and divergent slit system is automatically controled as to obtain 25 mm beam width on the sample. Recieving slit is 0.15 mm . Scanning speed is 4 ${ }^{\circ} 2 \theta / \mathrm{min}$ and data sampling step is $0.02^{\circ} 2 \theta$.

Desalted powdered sample was finely ground in an agate mortar with approximately 5 ml of ethyl alchol for 5 minutes. Then, finely powdered sample is randomly mounted on a glass holder which has a circle deprresion with 25 mm diameter and 0.5 mm depth. Mounted sample is X-rayed from 2 to $40^{\circ} 2 \theta$.

Data processing

Before reading out the position and height of each reflection, two steps of data processing were applied.

As a first step, original data were smoothed by 5 points averaging which is equivalent to a window width of $0.2^{\circ} 2 \theta$. Smoothing calculation include noise removal by adaptive
smoothing followed by quadratic polynomial fitting. Noise level coefficient for adaptive smoothing is 1 . This process minimize the error caused by noise.

As a second step, a background including amorphous hump is estimated by the background evaluation program using Sonneveld method which uses a wider smoothing window with 30 points (equivalent to $6^{\circ} 2 \theta$) between 2 and $40^{\circ} 2 \theta$. Because the peak width of smectite is approximately $6^{\circ} 2 \theta$, a smoothing window of 100 points (equivalent to $20^{\circ} \theta$) was used between 2 and $10^{\circ} 2 \theta$.

The background profile which is calculated using 30 points smoothing window is subtracted from the 5 points smoothed intensities to obtain the net peak intensities of crystalline minerals other than smectite. The background profile which is calculated using 100 points smoothing window is subtracted for smectite.

Diffraction Peak Identification

Identification of minerals are based on the following diagnostic peaks; 7.2° for smectite, 8.8° for illite, 10.4° for amphiboles, 11.5° for gypsum, 12.1° for chlorite + kaolinite, 26.6° for quartz, 27.8° for feldspars, 29.3° for calcite, 30.1° for rhodochrosite, and 32.9° for pyrite. The $7 \AA$ and $14 \AA$ peaks are considered as mainly contributed by chlorite because the peak ratios between $4.8 \AA, 7 \AA$ and $14 \AA$, which are diagnostic of chlorite are nearly constant (Figure III-1). The intensity of diagnostic peak (I) for each mineral was used to estimate the content of each mineral. Because 26.6° peak of illite overlaps the main peak of quartz, the quartz peak height at 26.6° was corrected for illite based on subtraction of twice of peak intensity of illite at 8.8° from the peak height at 26.6°.

Background area from 16° to 32.5° is used as measure for amorphous materials. Background of sample profile is considered to be contributed by volcanic glass and / or its altered products, biogenic opal, and the background of other crystalline minerals. The author especially estimated the contribution from volcanic glass and / or its altered products by the method described later.

Standard Materials

As reference minerals for calibration of diffraction intensity to weight percent, montmorillonite (smectite) and serisite (illite) standards provided by Clay Mineral Society of Japan, chlorite, hornblende, and albite provided by University Museum of University of Tokyo, commercial quartz sand, andesitic volcanic glass from Pliocene section in the northeast Japan collected by the author, and biogenic opal extracted from diatomite of the Monterey Fromation provided by Associate Professor Ryuji Tada were used. Dignostic peak intensity and background intensity of these minerals were measured. The results are listed in Table III.

Calibration Curve

The peak intensities of the minerals (I) were transformed to their contents (wt\%) using linear calibration equations for each mineral which were determined from meaurements of mixtures of pure reference minerals in various ratios. Calibration for calcite, pyrite, and rhodochrosite were performed by comparison between the peak intensity of these minerals and carbonate carbon content and total sulfur content.

The content of detrital amorphous material is estimated from the area of amorphous hump ($\mathrm{A}_{\text {to }}$) between 16 and 32.5° based on the following procedure. In order to evaluate the aerial contribution of detrital amorphous materials ($\mathrm{A}_{\mathrm{dec}}$), the background area was corrected for biogenic opal of which content was determined by alkali extraction method as well as for the background of crystalline minerals as follows;

$$
\mathrm{A}_{\mathrm{det}}=\mathrm{A}_{\text {toc }}-\frac{1.1 \times \mathrm{bioSiO}_{2}(\mathrm{wt} \%) \times \mathrm{A}_{\text {opal(100) }}}{100}-\sum_{i}\left(\frac{\mathrm{I}_{i}}{\mathrm{I}_{i(100)}} \times \mathrm{A}_{i(100)}\right)
$$

where I_{i} and A_{i} are peak intensity and background area of mineral i in the sample, respectively, whereas $\mathrm{I}_{(100)}, \mathrm{A}_{(100),}$, and $\mathrm{A}_{\text {opat(100) }}$ are peak intensity and background areas of pure reference mineral i and opal, respectively. The water content of biogenic opal is assumed as 10% [Mortlock and Froelich, 1989]. Background area of pure andesitic volcanic glass from Pliocene section in the northeast Japan was used for a calibration standard for transformation of $\mathrm{A}_{\text {det }}$ to weight\% because the detrital amorphous material in the samples are dominantly composed of altered volcanic glass.

Resulted calibration curves and equations are shown in Figure III-2.

Estimation Error

The reproducibility of measurement are within $\pm 20 \%$ for smectite, $\pm 30 \%$ for illite, $\pm 30 \%$ for chlorite + kaolinite, $\pm 60 \%$ for amphiboles, $\pm 7 \%$ for quartz, $\pm 15 \%$ for feldspars, $\pm 10 \%$ for detrital amorphous, $\pm 20 \%$ for calcite, and $\pm 20 \%$ for pyrite, respectively.

Table III Intensities of main peak and background of reference minerals.

Mineral	Main Peak (cps)	Background $($ counts $)$	BG/Peak
Montmorillonite (Smectite)	375	15595	42
Serisite (Illite)	861	7784	9.0
Chlorite	3728	8874	2.4
Hornblende	901	6547	7.3
Quartz	10547	3096	0.3
Albite	8324	5851	0.7
Pumice		29304	
Opal		37332	

Figure III-1 Interrelationships beween diagnostic peaks of chlorite. a) $14 \AA$ versus $7 \AA$, and b) $4.8 \AA$ versus $7 \AA$.

Figure III-2 Calibration curves and equations for smectite(a), illite (b), chlorite (c), amphiboles (d), quartz (e), feldspars (f), detrital amorphous (g), calcite (f), pyrite (g), and rhodochrosite (h).

Figure III-2 (continued)

