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Abstract 

C++ cannot be used to implement control/data abstractions as a library 
if their implementations require specialized code for each user code. This 
problem limits programmers to write libraries in two ways: it makes some 
kinds of useful abstractions that inherently require such facilities impossi­
ble to implement, and it makes other abstractions difficult to implement 
efficiently. 

T he OpenC++ MOP addresses this problem by providing li braries the 
ability to pre-process a program in a context-sensitive and non-local way. 
That is, libraries can instantiate specialized code depending on how the 
library is used and, if needed, substitute it for the original user code. The 
basic protocol structure of the Open C++ MOP is based on that of the CLOS 
MOP, but the Open C++ MOP runs metaobjects on ly at compi le t ime. This 
means that t he OpenC++ MOP does not imply runtime penalties caused 
by dispatchi ng to metaobjects. 
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Chapter 1 

Introduction 

In computing science, elegance is not a luxury 
bul a maller of life and dealh . 

- E. W. Dijkstra 

Execution speed is the only metric in computer science. 
- Kei Hirak i 

One of today's significant concerns in software industry would be to 
decrease t ime and costs of software development. Anybody wou ld ag ree 
that good libraries promote code reuse and thereby contribute to rapid and 
low-cost software development. Th is thesis deals with a language mechanism 
for programmers to write good libraries. 

What are good libraries? Good libraries provide useful control/data al>­
stractions, which are commonly used for a number of a pplications, high-level 
to improve readabili ty of programs, and simple and intuitive to avoid lead­
ing the li brary users to mis use the li bra ries and cause serious errors. Also, 
efficiency is anot her criterion of good libraries . Since writing a good library 
is a very difficult task, the programmer is required to have not only good 
progra mming skill but also deep knowledge about th e application domain in 
that the libra ry helps prog ra mmers. For example, library developers need 
to know typical functions and data structures used in that domain. 

Development of good libraries also needs assistance of la nguage design­
ers, who should provide language mechan isms for writing good libraries. 
T his is a more realistic option for the designers th a n including a ll desirable 
control/data abst ractions in the language specifi cations, since the designers 
cannot ex pect every desirable abstraction in advance a nd because the la n­
guage would be too complex if built-in language mechanisms cover all the 
desirable abstractions, such as I / 0, persistency, distribution, concurrency, 
and so on. Programming languages shou ld have a minimum set of built-in 
mechanis ms a nd most of abstractions should be supplied by libra ri es. 
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Motivating problem 

Language mechanis ms that have been developed so far for writing libraries 
are not powerful enough to support every desirable control/data abstrac­
tions. For example, the C++ language [58] is one of languages that have 
a richest set of language mechanisms, but a number of useful abstractions 
cannot be included in a C++ library with satisfying ease-of-use and effi­
ciency. As shown in Chapter 2, C++ programmers cannot write a libra ry 
class that gives distribution extension to its subclasses. 

Our observation on this problem is that such abstractions as distribu­
tion support are used to give extended features to another abstraction, and 
thus their implementations are tightly tangled with the implementation of 
the other abst raction. Those abstractions need a different implementation 
if they are used wi t h a different abstraction. This means that those abstrac­
tions are difficult to include in a library, wh ich is an independent software 
component and can provide only a single ge neral-purpose implementation. 

There are other kinds of abstractions the implementations of which are 
tightly tangled with other parts of the progra m. Abstractions such as a 
vector data type can be provided by a library but the implementation that 
the library can supply is not efficient. An implementation specialized for 
a particular user program can improve the execution performance although 
that implementation is effective only for the pa rticular program and thus it 
cannot be included in the library. 

This problem can be avoided if programming languages provide a mech­
anis m for libra ry developers to supply specialized code through a library to 
a particular user program. Current language mechanisms, however , allow 
only limited kinds of specialization of li bra ry code. For example, C++'s 
template mechanism allows only type parameteriza tion; library developers 
can specialize only type names appearing in library code for a particu lar 
use r program . 

common part-~ 

w 
spec1ahzed part / 

8 } "''"' 

Figure 1.1 : The common part and t he s pecialized part of a library 
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Solution by this thesis 

To solve the problem mentioned above, this thesis proposes a new language 
mechanism for enabling libra ries to supply specialized code and include more 
useful control/data abst ractions. With the proposed mechanism, program­
mers can build a library consisti ng of two parts: commonly-used code and 
specialized code for every user program (Figure 1.1). The commonly-used 
code is suppl ied as is to the user program, but the specialized code is auto­
matically generated on demand for a particular user program. The special­
ized code fill s a gap between the common part and the user program. 

The generation of the special ized code is programmed by the library 
developer. The proposed mechanism allows to preprocess a program with 
interacting with a collection of code such as class defi nitions and member 
function calls . For example, it provides the ability to insert specia lized code, 
to rewrite class defi nitions, to su bstitute different code for member function 
calls, and so on . 

The language mechanism proposed by this thesis is th e Open C++ MOP 
[11], which is a metaobject protocol for C++. OpenC++ is the name of a 
version of C++ language with that metaobject protocol. This mecha nism 
provides class metaobjects, which are regular objects representing a class, so 
that library developers can program the generation of specialized code. Al­
though the class metaobjects might seem similar to Smalltalk's class objects 
[26], the class metaobjects receive sou rce code at compile time and prepro-­
cess it if needed . The programmers can define a new metaclass (i .e ., a cl ass 
for class metaobjects) a nd thereby they can program desired preprocessing 
of code involved with the class . The reason that the proposed mechanism is 
called a metaobject protocol is that it is essentially a protocol for defining 
and accessing metaobjects. Protocol is the Smalltalk terminology a nd it 
means object interface. 

The OpenC++ MOP is a more powerful mechanism than other similar 
mechanisms like Lisp macros. Unlike Lisp macros, the OpenC++ MOP 
provides contextual information of the processed code other than a abstract 
sy ntax tree. The contextual information includes the type of a variable, class 
members, a base class, and so forth. This feature makes it possible to per­
form context-sensitive preprocessing. Furthermore, implementing non-local 
processing is easy with the Open C++ MOP. Preprocessing for implementing 
abstractions often spreads out over the whole source code, but the descrip­
tion of the preprocessing involved with a single class is centra li zed in to the 
class metaobject. Since all code fragments are automatically dispatched ac­
cording to the static types to an appropriate class metaobject, programmers 
can easily specify preprocessin g that is effective only for a particular class. 

Preceding techniques known as reflection has a notable inrluence on the 
OpenC++ MOP. Especially, we took the basic st ructure of th e metaobject 
protocol from th e CLOS MOP [36], while we took the basic a rchi tect ure 
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from Lisp macros. Thus th e OpenC++ MOP is also metacircular as the 
CLOS MOP is, and it is easy to learn and to write an efficient meta-level 
program. The difference from the CLOS MOP is that the OpenC++ MOP 
employs static typing and executes class metaobjects only at compile t ime; 
this mea ns that it does not involve runtime penalties due to class metaob­
jects. Since CLOS is a dynamically-typed languge and thus the CLOS MOP 
executes metaobjects at runtime, avoiding runtime penalties in the CLOS 
MOP requires complex implementation techniques. 

The structure of this thesis 

From the next chapter, we present background, design details, and applica­
tions of the OpenC++ MOP. The st ru cture of the rest of this thesis is as 
follows: 

Chapter 2: Limitations of C++ 

We first discuss limitations of current language mechanisms provided by 
C++ for library developers. We illustrate that the inheritance mechanism 
and the template mechanism do not work for including some kinds of de­
sirable abstractions in a library. And we claim that this problem is caused 
by the lack of the capability of C++ to preprocess a program in a context­
sensitive and non-local way and instantiate specialized code for a particular 
program. 

Chapter 3: Techniques for Processing a Program 

Next, we overview existing mechanisms that other programming languages 
provide for processing a program. As the representatives, we show Lisp 
macros, 3-Lisp, and the CLOS MOP. The feature shared by the three sys­
tems is that they provide meta representation of programs for the program­
mers. We overview detailed architectures of the systems and discuss their 
pros and cons. The bottom line of the discussion is that metacircularity of 
the CLOS MOP and compile-time executability of Lisp macros are prefer­
able properties . 

Chapter 4: The OpenC++ MOP 

On the basis of the discussion in the previous chapter, we proposes a ne\\' 
C++ mechanism for processing a program. This mechanism is the Open C++ 
~lOP and it has the two preferable properties discussed in the previous chap­
ter: meta.circularity and compile-time executa.bility. The OpenC++ MOP 
allows programmers to process a program in a context-sensitive and non­
local way in order to include useful abstractions in a library that regular 
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C++ cannot handle. We also mention comparison between the OpenC++ 
MOP and other early compile-time MOPs. 

Chapter 5: Meta Helix 

Although metacircularity is a good property, pure metacircular systems can 
lead to a problem we called implementation level conflation. This problem, 
found in the CLOS MOP, confuses programmers and often causes program­
ming errors such as circular definition. To avoid this problem, we - a MOP 
designer - has adopted an improved version of metacircular architecture for 
the OpenC++ MOP. We present that this improved architecture , named 
the meta helix, preserves advantages of metacircularity and also addresses 
implementation level conftation. 

Chapter 6: Libraries in OpenC++ 

The Open C++ MOP makes it possible to include a number of control/data 
abstractions in a library. We show examples of these abstractions in th is 
chapter. The abstractions shown here include abstractions that regular C++ 
cannot handle, a metaclass library for helping write a new metaclass, ab­
stractions implemented by meta-metaclass for facilitating meta-level pro­
gramming, and abstractions that the OpenC++ MOP makes more efficient 
than in regu lar C++. 

Chapter 7: Conclusion 

Finally, we conclude this thesis in Chapter 7. We present contributions of 
this t hesis and future directions . 
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Chapter 2 

Limitations of C++ 

C++ cannot pre-process a program in a context-sensitive and non-local way. 
The lack of this capability makes it impossible to include some useful con­
trol/data abstractions in a library, or makes it difficult to implement some 
abstractions efficiently as a library. This problem is solved if C++ has a 
mechanism to process a user program and allow the library to supply special­
ized code for a particular user program . Single general-purpose codes cannot 
implement those abstractions or have difficulty in making the abstractions 
efficient . 

Existing C++ mechanisms for building a library - inheritance or tem­
plates - do not provide this capability sufficiently. This means that some 
practically important abstractions have not been included in a li brary with 
an ideal interface and efficiency. In fact, some abstractions have been even 
provided by a specialized C++ language in wh ich the abstractions are em­
bedded in, or implemented with a dedicated code generator. For example, 
in the academic world, a number of distributed C++ languages have been 
developed for making distributed objects available [48, 28]. In industry, pro­
grammers who want to use distributed objects have needed to write an extra 
program in an !DL (interface description la nguage) and combine the code 
generated from the extra program with t heir C++ programs. 

This chapter presents that C++'s inheritance mechanism or the tem­
plates mechanism do not work for including some kinds of abstractions in 
a library. Then it mentions that, to do this, C++ needs a mechanism for 
processing a user program in a context-sensitive and non-local way. This 
mechanism makes it possible to develop a li brary including the abstractions 
t hat regular C++ cannot handle. 

2.1 Inheritance 

The most basic mechanism C++ provides for library developers is instanti­
ation. The idea is that the library writer writes a reusable class, which the 

7 
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library user can instantiate. Th is mechanism is limi ted in that it enables 
only abstract data types (ADTs); t he library user have to use a library class 
as is. Even if the library class does not exactly fit her requirements, she 
cannot change the definition of the class at all , and th us she might need to 
wri te a new class even though a library provide a similar class. This means 
that the reusabi li ty of the library is significantly limited . 

Inheri tance is a more powerfu l mechanism for developing a good li brary. 
It a llows the library user to incrementally define a new class extending a cl ass 
provided by the library. Howeve r, the abi lity of the inheritance mechan ism 
to reuse part of a li brary class is significa ntly limited . The inherited code 
must be always the same; the library cannot s upply different code to different 
s u bel asses . 

This li mitation makes it impossible to develop a library that provides 
certain kinds of important abstractions such as distributed objects. These 
abstractions requ ire that the inherited code be adapted to the use r program. 
This section discusses this limitation of the inheritance mechanism and be­
gins to outline what kind of support for adaptation of reused code needs to 
be provided. 

Distributed objects 

Distributed objects are extended objects, which are accessible over t he net­
work without concern for their location. An ideal libra ry for distributed 
objects might allow t he user to write something like t his: 

class Point : public Distribution { 
public: 

int x, y; 
void Move(int nx, int ny) { x nx; y 

}; 
ny; } 

This prog ram defines a class of dis tributed objects called Point . The class 
Point inherits from the Distribution library class, and this is what gives 
makes it be a dist ributed class. The user can deal with Point objects as 
regu la r objects even if t hey are on a remote machine: 

Point• p = 
p->Move(3, 11 ); 

In th is ideal li brary, no special syntax is required to ca ll a member function 
for a Point object p that might be on a remote machine. 

Unfor tunately, this ideal class Distribut ion is not feasible in regular 
C++ because it cannot supply a ll t he member fun ctions that the subclass 
Point needs to inheri t . for example, to ma ke t he member function Move() 
call able from a re mo te machine , the class Point needs to inheri t a member 
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function for marshaling arguments to Move(). This marshaling function con­
verts the arguments into a byte stream , which lower-level network routines 
can directly ha ndle. 

With in th e confines of t he inheritance mechanism, however, the class 
Distribution cannot supply t he marshaling function to the subclass Point. 
Since the marshaling fun ction for Move() performs a kind of type conversion, 
its implementation strongly depends on the signature of Move() , such as 
the number of arguments and their types . But the inheritance mechanism 
does not allow the class Distribution to alter the implementation of the 
marshaling function to adapt to the signature of Move(). 

Named objects 

Since the example of the distributed objects is too complex to show the de­
tails here, we instead use a much simpler example and articulate li mitations 
of the inheritance mechan ism and what C++ needs to handle some kinds 
of abst ractions that it cannot currently handle. The problem we showed in 
the example of the distr ibu ted objects is that a s uper class can not supply 
some kinds of member functions to a subclass even though supplying them 
seems desirable from the library users' viewpoin t . 

To discuss th is problem, let's implement a simple library with only t he 
inheritance mechan ism. This simple li brary allows the use rs to get the class 
name of an object at runti me. This function is one of requirements of build­
ing the distributed object library. The users may write someth ing like the 
following program: 

c lass Complex : public NamedObject { 
public: 

double r, i; 
}; 

void f(Complex• x) 
{ 

cout << 11 X i s 11 << x->ClassNarne(); 
} 

If invoked, f() displays "x is Complex" . The class NamedObject is a li­
bra ry class, which supplies a member function ClassName() to Complex . 

Althoug h this pa rticu lar fun ction is already provided in regular C++ 
by the typeid operator of RTT I [59], we assume that the re is no RTTI 
(Run-Time Type Information) in C++ and t ry to implement this fun ction 
with the inheritance mechanism. Unfortu nately, th is is impossible because 
of limi tations of t he inheritance mechan ism. for example, the fol lowing 
definition of NamedObj ect works for the class Complex but not others : 

class NamedObject { 
public: 
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} ; 
virtua l char• ClassName() { return "Complex"; } 

T his version of the class NamedObj ect s up plies a member fun ction Class­
Name (), which returns a character string "Complex" , but th is implementa­
t ion of ClassName () is obviously wrong. If another class Real inherits from 
NamedDbj ect and the member fun ction ClassName() is called for a Real ob­
ject, ClassName () ret urns an inappro priate cha racter s tring "Complex". To 
make Class Name() wo rk for the class Real , th e implementa tion of ClassName() 
should be: 

virtual char• ClassName () { return "Real"; } 

However, t he cl ass NamedDbj ect cannot switch the implementat ions of Cl ass­
Name() to ma ke it work for different subclasses. It has to select either of the 
implementations and supply the selected one to all the subclasses. 

We cannot implement the ideal version of the cl ass NamedDbject in reg­
ula r C++. To make it feasible, we have to change th e specifications of th e 
libra ry, but this change also makes the libra ry less easy to use. For the new 
version of the libra ry, t he definition of the class NamedDbject is as follows : 

class NamedDbject { 
publ i c: 

virtual char• Cl assName() 
}; 

O· II not implemented 

The cl ass NamedObj ect does not supply a concrete implementation of Class­
Name() any more. ClassName() is implemented by a subclass ofNamedDbject. 
This means that the library users have to implement ClassName() by hand 
for th eir classes : 

class Complex : public NamedDbject { 
pub l ic: 

doubler, i; 
virtual char• ClassName() { return "Complex"; } 

}; 

class Real : public NamedObject { 
public: 

double value; 
virtual char• ClassName() { return "Real"; } 

}; 

T hese specifi cations of th e libra ry a re q uite unsatisfying in terms of ease of 
use. Note t hat the defini t ions of t he user classes Complex and Real now 
incl ude t he im plementation of th e member function ClassName(). In th e 
ideal s pecifi cations, this sho uld be supplied by the libra ry class NamedDbj ect. 

2.1. INHERITANCE 11 

What do es C++ n eed ? 

The example of NamedDbj ect shows us t hat C++ lacks the abil ity to al­
low li braries to s upply code customized for the user p rograms. With the 
inheritance mechan ism, the cl ass NamedDbject cannot provide an ideal in­
terface because it cannot supply a di fferent ly implemented member fu nction 
ClassName() to a subclass such as Compl ex a nd Real. 

T his problem is solved if C++ provides a mechan ism fo r programmers to 
program source-code processing and include "the program" in a li bra ry. For 
example, t he developer of t he named object libra ry would wri te a program 
to process t he user program at source-code level and automatically insert t he 
implementation of ClassName () customized fo r a subclass such as Complex 
a nd Real. Then t he libra ry user cou ld avoid implementing ClassName () by 
han d for her class . She could write somethin g like t his: 

class Complex : public NamedDbject { 
public: 

double r, i; 
}; 

Note t hat the mem ber fu nction ClassName () is not included by t he defi ni­
t ion of th e class Complex since it is autom atically suppli ed by th e libra ry. 
T he named class libra ry reads t his program before compila tion a nd t rans­
lates it in to this program : 

class Compl ex : public NamedDbject { 
public: 

double r, i; 
virtual char• ClassName() { return "Complex"; } 

}; 

The implementa ti on of ClassName() is inserted by the libra ry. Note that 
th e inse rted implement at ion is specia lized for the class Complex. It is not ef­
fective for other sibling subclasses like Real. The library class NamedDbject 
decla res th e member func tion ClassName() but it does not implement it: 

class NamedDbject { 
publi c : 

virtual char• ClassName() 0 · I I not implemented 
}; 

T his is th e same defini t ion that we presented fo r the feasible but unsatisfying 
ve rsion of the named o bject libra ry. 

T he mac ro mechanism might seem an altern ative to t he mechan ism pro­
posed above, but t he mac ro mecha nis m a llows ve ry limi ted kin ds of source­
code processing, such as simple wo rd -by- \\'ord repl acement and concatena­
t ion of wo rds. To implement t he named objec t li bra ry wit h ideal interface, 
C++ is required to have a more powerful and so ph isticated mechanism, 
which should satisfy th e followin g t wo cri teri a : 
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• Context-sensitive 

How a program is processed should be determined with referring various 
contextual information of the processed program. The contextual informa­
tion includes what RTTI (Run-Time Type Information) already provides 
but not limited. It is a class definition, type information, program text, and 
so on. Providing contextual information means that the information can 
be used even if it is defined at other locations than where the source-code 
processing happens . For example, if an assignment expression to a variable 
is processed, the type of the variable may be declared at a different location. 

Context-sensitivity is a crucial property of the proposed mechanism since 
the processing by the macro mechanism is independent of the contextual in­
formation of the processed program. Context-sensitivity gives an advantage 
against the macro mechanism to the proposed mechanism. 

In the example of the named object library, the library has to examine 
the name of the subclass that inherits from the library class NamedObject . 
This name is directly embedded in the implementation of the member func­
tion ClassName(), which are inserted in the definition of the subclass. The 
use of contextual information is more significant in the example of the dis­
tributed objects. For example, to supply a marshaling function, the library 
has to examine the signature of a member function and specialize the imple­
mentation of the marshaling function for the particular member function. 

• Non- local 

The proposed mechanism should make it easy to program not only local 
processing but also non-local one, which needs to deal with many code frag­
ments spread out in various locations of the processed program. For ease of 
programming, locations where the processing must happen should be spec­
ified in a declarative way. If the programmer has to explicitly specify every 
location, the programming would be extremely difficu lt and unrealistic . 

For the example of the named object library, the library has to read 
the whole program and insert the member function Cl assName() in the 
definitions of all the subclasses of NamedDbject. The mechanism sho uld 
help the programmer easily specify locations to insert ClassName (). For 
example, it should allow the programmer to direct something like "insert 
ClassName () in a class declaration if the class is a subclass of NamedOb j ect." 

C++'s macro functions are rather a mechanism for local processing. It 
processes only places \vhcre a macro name appears, and so programmers 

have to place the macro name by hand wherever the processing is needed. 
For example, if the named object library is developed with a macro function, 
the library users would need to write an awkward program like t he following: 
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class Complex : public NamedObject { 
public: 

}; 

doubler, i; 
EXPAND_CLASSNAME_HERE(Complex) 
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The macro function is EXPAND_CLASSNAME_HERE, which is expanded into an 
appropriate implementation of ClassName(). The library users have to ex­
plicitly insert the macro in the definition of all the subclasses ofNamedObj ect, 
but inserting it in all the places by hand is quite error-prone. 

2.2 Template 

In the previous section, we presented that a library including some kinds of 
abstractions need to supply customized code for a particular user program. 
The template mechanism of C++ achieves this ability to a certain degree, 
but it cannot be a general solution of our problem. In this section, we 
mention the ability that the template mechanism provides and then we 
present why the mechanism is not a general solution. 

Vector 

With the template mechanism, programmers can write a library that supply 
customized code for a user program although the range of customization is 
limited. For example, the template mechanism enables a library for a vector 
abstraction. With this library, the users can write a program like this: 

Vector<int> vi, v2, v3, v4; 

v1 = v2 + v3 + v4; 

The variables v1, v2, v3, and v4 are vectors of integers . Using vectors for 
other types is also easy. If the users want to deal with vectors of characters, 
they should say Vector<char> instead of Vector<int>. 

The inheritance mechan ism does not enable such a useful vector library. 
If the vector library is implemented with the inheritance mechanism, the 
library users need to define a new subclass for every vector for a different 
type. This results from the same reason why the named object library is 
not feasible; to make vectors for various types available without subclassing, 
the vector library has to alter the implementation, depending on whether 
the vector is for integers or characters. 

The template mechanism can absorb the difference of implementations if 
the difference is type names . It directs the C++ compiler to automatically 
produce the implementation adapted for a particular user program. The 
following program is the definition of the vector abstraction, which should 
be included in the vector library: 
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template <class T> class Vector { 
T elements[SIZE]; 

public: 

}; 

Vector operator + (Vector& a, Vector& b) { 
Vector c; 
for(i = 0; i < SIZE; ++i) 

c.elements[i] = a.elements[i] + b.elements[i]; 

return c; 
} 

For simplicity, this example assumes that the length of a vector is always 
SIZE. In the Vector template above, Tis a type parameter. All occurrences 
ofT in the template are replaced with an actual type given by a user pro­
gram when the compiler produces the actual implementation of the vector 
abstraction. For example, the implementation that the compiler produces 
for Vector<int> is equivalent to this (pseudo) class definition: 

class Vector<int> { 
int elements[SIZE]; 

public: 

}; 

Vector<int> operator + (Vector<int>& a, Vector<int>& b) { 
Vector<int> c; 
for(i = 0; i < SIZE; ++i) 

c.elements[i] = a.elements[i] + b.elements[i]; 

return c; 
} 

Limitations of templates 

The vector abstraction can be included by a library with ideal interface if 
the template mechanism is used, but this implementation of the vector ab­
straction is not satisfying with respect to execution performance. Consider 
how this expression is executed if the vector abstraction is implemented as 
we showed above: 

v1 = v2 + v3 + v4; 

Since the + operator is overridden for Vector<int>, the execu tion of this 
expression is divided in to two function calls, each of which executes a for 
loop to compute an addition of two vectors. The called fun ct ion receives 
two vectors, executes t he for loop to compu te the addition of each vector 
element, and returns the result. 
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To compute v2 + v3 + v4, this implementation eventually needs two 
for loops from the first through the last element of the vector, but executing 
this loop twice is redundant. The whole expression should be computed by 
the following more efficient implementation: 

for(i = 0; i < SIZE; ++i) 
v1.elements[i] = v2.elements[i] + v3.elements[i] 

+ v4.element[i]; 

This implementation executes the loop only once, and it directly sets the 
summation of the three elements to v1. 

Th is inefficiency is not due to the mechanism of operator overloading. 
Rather, it should be thought that is caused by limitations of the template 
mechanism. Operator overloading is a mechanism for syntax sugar, and 
the problem is not solved even though various kinds of operators can be 
overloaded. For example, suppose that the programmer can overload the 
three-operands + operator. Then the developer of the vector library would 
include the following code in the library: 

template<class T> 
Vector<T> operator + (Vector<T>& a, Vector<T>& b, Vector<T>& c) 
{ 

} 

Vector<T> v; 
for(int i = 0; i < SIZE; ++i) 

v.element[i] a.element[i] + b.element[i] 
+ c. element [i] ; 

return v; 

This operator function executes such an expression as v2 + v3 + v4 more 
efficiently, but the library is still inefficient to deal with other kinds of expres­
sions such as v2 + v3 - v4 and v2 + v3 + v4 + v5. The library developer 
cannot overload all combinations of operators in advance . 

C++ needs a mechanism for processing a program 

The template mechanism cannot enable the efficient imp lementation, which 
executes a for loop only once. This is because of the limitations of the ability 
of the template mechanism to supply code adapted for a user program. The 
only adaptation that the template mechanism can perform is to simply fill 
out parameterized fields in the template with given type names.' This is 
not sufficient to implement the vector abstraction efficiently. 

In general, the template mechanism is not suitable for this kind of inter­
procedure optimization 1 which needs to process several operations at a time 

a nd substit utes specialized code for all the operations. To do this, C++ 
1 A template parameter may be not. only type names but a lso any constant value. 
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needs to be able to handle context of the processed operations: what the 
group of operations are computing. If C++ has a mechanism to process a 
program with that context sensit ivity, then the user program: 

Vector<int> vl, v2, v3, v4; 

v1 ; v2 + v3 + v4; 

can be translated by the vector library before compilation into: 

Vector<int> vl, v2, v3, v4; 

for(i ; 0; i < SIZE; ++i) 
vl.elernents[i] ; v2.elernents[i) + v3.elernents(i] 

+ v4.e l ernent[i]; 

After the translat ion, the efficient loop is substituted for the vector expres­
sion . The overloaded + operator function is not called any more, but the 
additions are computed by the inlined loop. 

Context-sensitivity and non-locality are also significant for this process­
ing as in the example of the named object library. First, context-sensitivity 
is needed to determine which expressions shou ld be translated. Since the 
translation is applied only to vector exp ressions, the library needs to look up 
the type of a variable in an expression and determine whether the translation 
is applied or not . Second, this processing is non local; All vector expressions 
in the whole program needs to be found and translated into efficient code. 
Without app ropri ate supports for programmers to specify places at which 
the translation should be done, programing the translation for the vector 
library \\'Ould be difficult and awkward. 

Can optimizing compilers do the same thing? 

In the example above, we merged two distinct function calls and inlined 
the resulting optimized loop. This way of performance improvement is re­
garded as optimization that regular C++ compilers can perform. As \\'e 
show in Chapter 6, however, the inter-procedure optimization seems difficult 
for practical compilers to perform within reasonable time and space. Since 
inter-procedure optimization requ ires deep flow-analysis and very clever code 
generation, \\'e s hould not expect that compilers perform all possible inter­
procedure optimization in general. What we can expect is that compilers 
may perform the optimization for some typical patterns of program. 

Although inter-procedure optimization is difficu lt for C++ compi lers, 
it is often obv ious and straightforward to perform from the programmer's 
viewpoint. Since the programmers know semantic information of the pro­
gram, they can easily find possible inter-proced ure optimization without 
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complex flow-analysis. An advantage of our proposed mechanism is that it 
allows libra ry developers to implement ad-hoc optimization which is obvi­
ous to the developers but difficult for compilers to automatically perform. 
The libra ry developers can include the program for source-code processing 
in a library so that a user program using the library is pre-processed and 
efficiently compiled by a back-end compiler. 

2.3 Summary 

This chapter mentioned that some useful abstractions cannot be included in 
a library, and others are difficult to efficiently implement within the confines 
of C++. Such abstractions require different implementations for different 
library user programs, but existing C++ mechan isms do not provide the 
ability to do that enough to implement those abstractions . 

In this chapter, first, we showed that the inheritance mechanism does not 
enable developers to implement the distributed object library or the named 
object li brary. As for the d istributed object library, the developer cannot 
define a library class Distribution so that it supplies subclasses with a 
mars haling function, which needs to be differently implemented for different 
subclasses. This is because the inheritance mechanism forces a library class 
to supply member functions to subclasses as is without any adaptation. 

Then, we presented that the template mechanism provides the limited 
ability to supply different implementations for different user programs, but 
this ability is not powerful enough to implement some abstractions such as 
the vector abstraction . Because of the ability to supply different implemen­
tations, the vector library implemented with the template mechanism allows 
the users to easily deal with vectors for various types . However , this vector 
library is not efficient because of the limitations of the ability of the template 
mechanism. If the library can su pply clevere r implementations customized 
for a particular use r program, the provided vector abstractions would be 
more efficient . 

To solve the problem above, this chapter claimed that C++ needs a 
more powerful mechan is m for processing a program at source-code level. If 
this mechan ism is amilable, programmers can develop a library that pre­
processes a user program and inserts code needed for implementing an ab­
straction in an adapted way to the user program. Through the discussion 
with the concrete examples, we presented that the proposed mechanism 
should have two important properties: context-sensitivity and non-locality. 
First, a user program should be processed in a context-sensitive way. For 
example, to produce a marshaling function, the distributed object library 
needs contextual information of a user program such as sign(l.tures of member 

functions and type information of variables. Second, the proposed mecha­
nism shou ld make it easy for developers to program non-local processing, 
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which deals with code fragments spread out over the user program. For ex­
ample, the efficient vector library has to find all vector expressions included 
in a user program and translate them into efficient loops . Without appro­
priate supports, programming such non-local processing wou ld be d ifficult 
and error-prone. 

~ --- ----- - -~-

Chapter 3 

Techniques for Processing a 
Program 

The previous chapter presented that C++ needs a more sophisticated mech­
anism for processing a program . T he existing mechanisms, the inheritance 
mechanism or the template mechan ism, do not enable context-sensitive or 
non-local processing. Th is chapter overviews currently known mechan isms 
for program processing and mentions their pros and cons. The basic idea 
shared by these mechanisms is to provide the meta representation of the 
prog rams. The meta representation gives programmers the capabi lity for 
context-sensitive and non-local processing, which we need for C++. 

As the representatives of these mechanisms, this chapter shows Lisp 
macros, 3-Lisp, and the CLOS MOP. We compare the meta representation 
they provide, and discuss pros and cons . The focus of t his chapter is on 
illustrating essential ideas behi nd t he mechanis ms rather than showing the 
exact specifications. Hence the description in th is chapter is not exactly 
faithful to t he original syntax o r specificat ions. We carefu lly alte r the syn­
tax and t he specificat ions so as to help clarify the differences a mong the 
mecha nisms but not to lose the essence of their ideas. 

3 .1 Lisp Macros 

Un li ke C++ macros, wh ich perform simple word-based replacement ignoring 
the syntax, Lisp macros allow the programmers to manipu late program text 
as data; A program is manipulated throug h an ordinary data structure. 
We ca ll this data structure a meta representatio11 of the program. In Lisp 
macros, the meta representation of a program is an abstract syntax Lree. 
T he prog ram text is represented in the form of t he tree whose leaf nodes are 
t he lexical toke ns of t he program text. 

Lisp mac ros enable programmers to implement some kinds of abstrac­
tions that Lisp functions ca nnot implement. Those abstractions are called 

19 
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special forms in the Lisp terminology. For example, the following macro 
implements a special form rbegin that sequentially evaluates expressions 
from right to left (in the reverse order of begin) and returns the resulting 
valu e of the leftmost expression : 

(define rbegin 
(macro exprs 

'(begin .~(reverse exprs)))) 

A backquote (') and .~ are convenient notation for constructing a tree 
structure. If the readers a re not familiar to this notation, see Appendix A). 

This macro is used as follows: 

(rbegin (+ 3 4) (list 1 2) C• 5 8)) 

This program is processed by the macro funct ion rbegin before being ex­
ecuted . The macro function is an ordinary Lisp function except that it 
receives and returns program text. The macro argument exprs is bound to 
a list ((+ 3 4) (list 1 2) C• 5 8)). Then the macro function returns 
this program : 

(begin (• 5 8) (list 1 2) (+ 3 4)) 

This is substituted for the original program (rbegin ( + .. . ) before the 
execution. The resulting value of the program is that of this substituted 
program, that is, 7 . 

Note that a Lisp function reverse is called during the macro expansion. 
It reverses the order of the list th at exprs is bound to. Since the processed 
program text is the first-class data represented in the tree structure, 1 this 
Lisp function can process it as it processes ordinary Lisp data. This capabi l­
ity makes Lisp macros different from other simple macros like C++ macros. 
Indeed, C++ macros cannot implement the special form rbegin since the 
give n program text is not the first-class data. They can only perform the 
limited operations on the program text. Only word-by-word replacement 
and concatenation are allowed. 

Applicability to our problem 

Lisp macros give a partial solution of the problem we discussed in the pre­
vious chapter. They allow programmers to process a piece of code following 
a macro name. An advantage of Lisp macros is that programmers can pro­

gram how the piece of code is expanded. This provides the ability to gene rate 
more specia li zed code than what the template mechanism can do by simple 

1 The first-class data are t.hc data that the program can handle as the object or the 
computation. f'or· example, numbers, symbols, lists, and vectors, are the first-class data 
in Lisp. 
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replacement of type names. On the other hand, Lisp macros cannot han­
dle context-sensitivity or non-locality and thus just porting the Lisp macro 
system to C++ does not solve our problem. 

3.2 3-Lisp 

Lisp macros provide the meta representation of programs so that they can 
implement some kinds of abstractions that Lisp functions cannot implement . 
Although the meta representation in Lisp macros is on ly program text, 3-
Lisp [54, 53] provides not only program text but also other information 
as the meta representation. This feature of 3-Lisp enhances the variety of 
abstractions that programmers can implement. 

Meta representation 

The meta representation of programs in 3-Lisp consists of program text, 
the current environment , and the current continuation. Adding the latter 
two makes it possible to implement abstractions that Lisp macros can not 
handle. Suppose that we implement a special form defined?, which returns 
true if the given variable is defined in the current environment: 

> (define x 1) 
X 

> (defined? x) 
#t 
> (defined? y) 
#f 

The specia l form defined? returns #t (true) for the variab le x, but #f (false) 
for the variable y. 

Because Lisp macros cannot examine the current environment, they can­
not deal with this special form. However, 3-Lisp can do. See the following 
program written in 3-Lisp:2 

(define defined? 
(meta (expr env cont) 

(if (is-bound? env (car expr)) 
(cont #t) 
(cont #f)))) 

The special form defined? is implemented by a meta function (originally 
called lambda reflect in 3-Lisp). Unlike macro functions, which receive only 
program tcxt 1 the meta function receives the current environment env and 
the current continuat in cent as well as the program text. expr. The cu r­

rent environment represents the bindings between symbol names and values, 
2To make it easy to read, we modify the syntax of 3-Lisp. We believe that this modi­

ficat ion docs not afrect the essential idea of 3- Lisp but rather helps articulate it,. 
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while the current continuation represents the control flow after this special 
form finishes. Note that the meta function may access and change the en­
vironment and the continuation since they are the first-class data within 
the meta function. In fact, to implement defined?, the meta function calls 
a built-in function is-bound? and looks up a symbol name obtained by 
(car expr) in the received environment env. Then it calls the received 
continuation cant with #t or #f , which is the resulting value of the special 
form. 3 

Base level and meta level 

Meta functions are not extended macro functions that receive more argu­
ments. There are significant difference between macro functions and meta 
functions. Meta functions run at runtime because they manipulate the cur­
rent environment and the current continu ation, which are only available at 
runtime. Hence a meta function directly interpret the received program text . 
The value returned by the meta function is the result of the interpretation. 
The meta function also may cause side effects on the environment as the 
result of the interpretation. On the other hand, macro functions may run 
at either runtime or compile time since they deal with on ly static informa­
tion of the program, that is, program text. They are functions that receive 
program text and transform it, but they do not directly interpret it. The 
value returned by a macro function is the transformed text. 

In 3-Lisp, both ordinary functions and meta functions run together at 
runtime. To distinguish the two kinds of functions, 3-Lisp has two execution 
levels, which are the base level and the meta level. The two execution levels 
are identical except that the objects of the computation at the meta level is 
the interpretation of the base-level program. The result of the computation 
at the meta level reflects on the computation at the base level. This relation 
between the meta level and the base level is cal led causal connectivity. For 
example, meta functions may change the environment at the base level in 
order to define a new symbol name, or to change the value that a symbol 
name is bound to. 

!\ [eta functions can use a built-in meta function if they interpret the 
received program text in the default way. For example, the program below 
is another implementation of the special form rbegin with a meta function: 

(define rbegin 
(meta (expr env cant) 

(let loop ((rest expr) 
(c cant)) 

3 1n reality, the base~le\'el value has different representation at the meta level. For 
example, #t (a boolean) becomes '#t (a sy mbol) at the meta leve l. Therefore, the meta 
function must con \'ert # t into the meta representation before passing it to the continuat ion 
cont. 
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(if (null? rest) 
(c , ???) 
(loop (cdr rest) 

(lambda (r) 
(eval-expr env 

(car rest) 
c))) 

environment 
sub-expression 
continuation 
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Note that a built-in meta function eval-expr (normalize in the 3-Lisp ter­
minology) is called to interpret each sub-expression of rbegin. According to 
the given sub-expression, eval-expr causes side effects on the environment 
and calls the continuation with the resulting value of the sub-expression . 

Self modification 

[n the examples shown so far, we have in troduced new keywords such as 
rbegin and defined?, and defined their meanings to implement new ab­
stractions. Some kinds of abstractions, however, requ ire altering the mean­
ings of the existing keywords or syntax. In other words, they need to modify 
the default behavior of the language rather than to extend it. A feature of 
this self modification is that the effects of the modification are applied to pro­
grams even though the programs are not edited. Editing them or inserting 
new keywords are not necessary. 

Some followers of 3-Lisp, such as Black [2], enables the self modification. 
They provide many built-in meta functions, which carrry out a primitive 
base-level operation, and a llow programmers to red efine them to change the 
default behavior of the operations. For example, they may alter the behavior 
of the language when reading a variable. By default, reading an undefined 
variable causes an er ror. We alter this behavior so that 'undef is returned 
if the variable is undefined: 

(def ine change- eval-read 
(meta (expr env cant) 

(set ! eval-read 
(lambda (expr env cant) 

(let ((var (car expr))) 
(if (is-bound? env var) 

(cant (lookup env var)) 
(cant 'undef))))) 

(cant #t))) 

If the meta function change-eval-read is executed, it calls set' to 
substitute a new meta function for the built-in meta function eval-read. 
Note that set ! has to be invoked at the meta level. Otherwise, set! wou ld 
rep lace a base- level function eval-read, if any, with the new one. The 
substituted meta function first checks whether the given variable is defined 
or not in the cur rent environment. If not, it uses 'undef for the value of 
t he variable: 
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> X 

ERROR: undefined symbol 
> (change-eval-read) 
#t 
> X 
UNDEF 

This sort of self modification is difficult for Lisp macros. Some imple­
mentations of the Lisp macro system a llow a macro function to override an 
existing keyword. For example, programmers may define a macro function 
named if to alter the behavior of the if special form. However, Lisp macros 
cannot handle such modification t hat we showed in t he change- eval-read 
example because the expression for read ing a variable is not preceded by 
any keyword . To process an expression by a Lisp macro, programmers have 
to explicitly place the macro name in front of the processed expression. 

To use a Lisp macro and get t he same result that change-eval-read 
provides, programmers have to use a programming convention when read­
ing a variable. For example, they may have to write (read- variable x) 
instead of just writing x, whenever reading a variable x. This program­
ming convention makes it possible for a macro read-variable to process 
t he expression x. Another approach is to su rround the whole program by a 
macro call. This techn ique is called t he code walker. The macro function 
receives the whole progra m as t he argu ment, looks up ex pressions for read­
ing variables, and translates the expressions to alter the behav ior. Writing 
the code walker is not difficu lt in Lisp because the grammar is simple, but 
it is difficult in other languages such as C++. 

Reflective languages 

3-Lisp is one of the earliest langu ages t hat can handle richer meta represen­
tation of the programs than Lisp macros.'' 3-Lisp has been followed by many 
la nguages, and this famil y of languages a re often called reflective languages 
or lang uages wit h a meta archi tect ure. For example, Brown [60], Blond 
[18], and Black [2] a re Lisp-based successors of 3- Lisp . These successors 
has been developed to stud y the semant ics a nd the implementation of the 
infini te tower of the execution levels, that is, the base level, the meta level, 
t he meta-meta level, a nd so on. This was also one of t he main issues of t he 
study of 3-Lisp. 

T he meta archi tecture developed by 3-Lisp has been also a pplied to 
object-oriented languages. Carly representatives of s uch languages are CLOS 
[56, 36] a nd 3- h:RS [38]. The two languages have been developed und er 
di fferent design strategies. Since we discuss C LOS in t he next section , we 
introduce o nly 3-KRS here. 

4 ln Art ifi cial lnteltigcncc, a similar idea was proposed earlier than 3-Lisp.[3, 25, 62) 
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3-KRS is designed mainly for custom izing the default behavior of the 
language on demands, rather than implementing new abstractions on top of 
the language . In 3-KRS, each base-level entity such as objects a nd messages 
is associated with a special object called metaobject. The metaobject is 
the meta representation of the base-level entity. Calling a method for the 
metaobject, programmers can obtain the meta information of the entity. 
For example, they can inspect what methods an object has through the 
metaobject for the object. Also, the metaobject provide similar capability 
of a bui lt- in meta function in 3-Lisp. For example, t he metaobject for an 
object has a method for invoking a method on t he object. 

As in 3-Lisp, programmers can alter the default behav ior of 3-KRS. 
Instead of redefining built-in meta functions, the programmers define a new 
metaobject to implement the new behavior. Suppose that they alter the 
default behavior of t he object creation so t hat the history of object creation 
is reco rded. Wi t h th is language customization, programmers may write 
something like this: 

> *history* 
() 
> (defclass point () 

(variable x y) :meta recorded-object) 
POINT 
> (defclass rect () 

(variable top bottom left right) :meta recorded-object) 
RECT 
> (define p (make-instance point)) 
p 
> (define q (make-instance rect :meta recorded-object)) 
Q 
> •history* 
(RECT POINT) 

If a class annotated with ":meta recorded-object" is instantiated, t he 
class name of th e insta nce is added to t he list indicated by •history•. For 
the example a bove, since a point object and a rect object a re created, th e 
class point and the class rect are added to t he list . 

To implement this language custo mization, the programmer first defines 
a new class recorded-object for metaobjects:5 

(defclass recorded-object (metaobject-for-object) 
(defmethod create-object (expr env) 

(let ((class-name (car expr)) 
(h (env-ref env '•history• ))) 

(env-set 1 env '•history• (cons class-name h)) 
(<- super create-object expr env)))) 

The class r ecorded-object inherits from the default class metaobject­
for-object and overrides a method create-object to maintain *hi story*. 

5 Again, we use an al tered version of 3- I<RS for cla1·ifying o ur argument.. 
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The method create-object is invoked when an object is created. The new 
create-object first adds the cl ass name to the list indicated by the base­
level variable +history•. Then it calls the overridden method of the super 
class metaobj ect-for-obj ect, which creates a new object in the default 
way. Note that create-object has to call bu il t-in meta functions env-ref 
and env-set 1 to access the base-level variable +history•. It cannot di­
rectly access this variable since create-object is at the meta level. Any 
base-level entity must be dealt with through built-in meta functions. 

Other object-oriented reflective languages include ABCL/R [61, 41, 40], 
Ferber's language [21], RbCI [32], The MIP for C++ [9], OpenC++ ver­
sion 1 [13], AL-1/D [46, 45], CodA [42], a reflective version of BETA [6], 
and Iguana [29, 30]. They have explored various applications of the meta 
architecture. ABCL/R is a parallel language, and it allows programmers 
to customize the default schedu ling policy. OpenC++ version 1 enables 
programmers to implement language extensions such as distribution, per­
sistence [57], and fault-tolerance [20], within the confines of the language. 
AL-l/D's application is similar to ABCL/R. It allows programmers to cus­
tomize the policy of object migration. Coda employs the meta architecture 
to run the same Smalltalk program on different platforms. For example, if 
the programmer ports a program written for a si ngle processor machine to 
run on a multi-processor machine, she has only to define new metaobjects. 
Since the platform-dependent code is separated into the metaobjects, the 
programmer does not need to edit the base-level program. 

Applicability to our problem 

Reflective languages represented by 3-Lisp show us how meta representation 
of a program shou ld be exposed to the programmer. Especially, object­
oriented reflective languages s uch as 3-KH.S shows that metaobjects can be 
good abstraction to deal with complexity of the meta representation. 

However, reflection cannot be a solution of our problem since program­
mers describe interpretation of a base-level program to define a new mecha­
nism or change an existing mechanism. Although programmers can describe 
interpretation that causes the same effects that we want, describing source­
code processing is more intuitive and st raightfo rward as for our motivating 
applications. Also, runtime penalties implied by the in terpretation is an­
other problem of reflection. 

3.3 The CLOS MOP 

We claim that the reflective languages introduced in the previous section, 
such as 3-Lisp and 3- I<RS, should be call ed non-metacircular, or weakly­
metacircular, languages. T hey are metacircular in a certain sense because 
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base-level and meta-level programs are written in the same syntax, but the 
two "languages" for the base-level and meta-level programs are not identical. 

This section discusses {truly) metacircular reflective languages repre­
sented by the CLOS MOP. Unlike 3-Lisp or 3-KRS, its base level and meta 
level programs are written in an identical language. This means that the 
customization by the meta-level program affects not only the base-level lan­
guage but also the meta-level language in which the meta-level program is 
written. This feature gives some benefits to reflective languages. 

Metacircularity 

Metaobject protocols {MOPs) are anot her name to indicate a meta architec­
ture such as 3-Lisp's one. Particularly, MOPs mean programming interfaces 
for customizing the language. The word "metaobject protocol" has been 
first used in CLOS (Common Lisp Object System) [56] . The CLOS MOP 
[36] enables programmers to incrementally customize CLOS in CLOS itself 
with a meta architecture. 

A unique feature of the CLOS MOP is that the system is metacircular 
(Figure 3.1) . In 3-Lisp, meta functions and base-level functions are written 
in the same language, but the two "languages" for the meta and base-level 
functions may not be identical; they may be two distinct instances of the 
same language. At beginning, the two languages are identical and are thus 
meta-circular in some sense. But once the base language is customized, 
the meta language is left unchanged and the two languages are therefore 
different. 

Th is fact would be clear if we reason abo ut the object of language cus­
tomization; the language customized by a meta-level program is just the 
language for a base-level program. For example, a new special form defined 
by a meta function is only available for base-level functions but not available 
for other meta funct ions. The customization by meta functions reflects only 
on t he language for base- level funct ions, but it does not circularly reflect on 
the language for the meta functions. 

The reason for th is non-metacircularity would be to avoid apparent in­
finite regression caused by a circular definition. If 3-Lisp is naively made 
metacircular, programmers would easily define a meta function with using 
the special form defined by the meta function itself and the s pecial form 
would cause infinite regression. But th is problem can be avoided with keep­
ing metacircularity if another scope control mechanism is introduced. 

To keep metacircularity while letting programmers avoid a circular def­
inition , the CLOS MOP uses a class system for controlling the scope of 
language customization. l-Ienee both base- level programs and meta-level 
programs are written in the same insta nce of the language) and language 
customization by a meta-level program is also applied to the language in 
that t he meta- level program is written. The relation is circular between the 
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Figure 3.1: The CLOS MOP is metacircular 

semantics of the customized language and the meta-level program customiz­
ing the language. 

Despite of the metacircularity, CLOS programmers can avoid a wrong 
circul ar definition.6 In the CLOS MOP, customization is specifi ed on a class 
basis; it is applied only to particular classes and their instances . Thus, if 
programmers carefully distinguish classes, they can avoid a circu lar defi­
nition. Suppose that a meta-level program alters the behavior of a class 
Point. Since the CLOS MOP is metacircular, the programmer may use the 
customized class Point in the meta-level program, but she can still avoid a 
circu la r definition unless she explicitly implements the customization with 
Point to be a circular definition. 

The origin of the metacircular architecture would be found in Smalltalk-
80 [26]. In fact, Foote reported the use of the metacircularity in Small talk- · 
80 in his paper [22]. Also, CommonLoops [4] shou ld be noted as an early 
metacircular language. Furthermore, the metacircular architecture is found 
in ObjVIisp [17], Classtalk [8], EuLisp [7] and STklos [24] . 

Direct access to the base level 

The CLOS MOP provides the capability for customizing the behavior and 
implementation of the object system of Common Lisp (i.e., CLOS) . For 
example, programmers may define a new metaobject for classes to alter the 
rule of multiple inheritance. This customization makes it easy that CLOS 
runs programs written in other Lisp-based la nguages such as Loops [5] and 
Flavors [10]. 

Despite the metacircularity, the way of customization with the CLOS 
i\ IOP is quite similar to the way of custom ization in non-metacircular lan­
guages s uch as 3-1\RS. In the previous section, we s howed the 3-I<RS imple­
mentation of the language custom ization for recording object creation. In 

6
T he solution by the CLOS MOP is not.. a com plete solution. We revisit this issue in 

Chapter 5. 

3.3. THE CLOS MOP 

the CLOS MOP, this customization is implemented by this program: 7 

(defclass recorded-class (metaobject-for-class) 
(defmethod create-object (init-args) 

(let ((class-name (<- self name))) 
(set! •history• (cons class-name •history•)) 
(<- super create-object init-args)))) 

29 

Since the CLOS MOP does not provide the metaobject for an object, the pro­
gram defines a new metaclass, which means a new class for class metaobjects. 
It inherits from the default class metaobject-for-class and overrides a 
method create-object. When an object is created, the new create-object 
first calls a method name for the metaobject (self) to obtain the class 
name. Then it updates the history of object creation and calls the over­
ridden method for the super class, which creates an object in the default 
means. 

Because of metacircu la rity, there is no explicit (syntactical) distinction 
between base-level programs and meta-level programs in the CLOS MOP. 
The two kinds of programs are written in the same language and run under 
the same runtime environment. They may even coexist in a single function 
or method. Therefore, metaobjects in the CLOS MOP can directly access 
the base-level data. The metaobjects can use the base-level primitives to 
access the base-level data as the objects can do. There is no difference in 
primitives that the metaobjects and the objects can use . For example, the 
method create-object directly reads and writes the variable •history• 
with base-level primitives like set!. Recall that create-object in 3-KRS 
has to access through built-in meta function s env-ref and env-set! since 
the base-level objects and the metaobjects are run at distinct execution 
levels. 

Ease of learning 

Base and meta levels in non-metacircular systems are written in different 
languages . This separation makes access across levels be complex and tend 
to be inefficient. On the other hand, the metacircularity of the CLOS iV!OP 
avoids gratuitous differences between levels, while sti ll being effective, and 
gives a few advantages. 

First, the meta arch itecture employing metacircularity is easy to learn. 
Since programmers can use base-level primitives to access base-level data 
from the meta level , they do not have to learn built-in meta functions unless 
they need to access meta-level data, which there is no base-level primitive 
to access . 

7 Again, we use an altered sy ntax for emphasizing difference from the 3-J<RS imple­
mentation . 
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Figure 3.2: An improved implementation of 3-Lisp 

For example, a metaobject in the CLOS MOP can call a method for 
an object in the same syntax that an object calls it at the base level. The 
metaobject uses a built-in meta function only when it needs to access a meta 
representation of the program, for example, the class name of an object. 
Recall that create-object of recorded-class executes (<- self name) 
to obtain the class name. On the other hand, a metaobject in 3-KRS has to 
call a built-in meta function even when it calls a method for an object. In 
3-KRS, any object must be indirectly manipulated through the metaobject 
associated with that object. To call a method for the object, an appropriate 
built-in meta function for the metaobject has to be called. 

Ease of implementing efficiently 

Another advantage of metacircularity is execution performance. Metacir­
cu lar systems make it intuitive and straightforward for implementors to 
develop an efficient interpreter and compiler. To do the same thing in non­
metacircular systems like 3-Lisp, they need sop histicated implementation 
techniques or they need to force programmers to use advanced program­
ming techniques. 

If naively implemented, 3-Lisp is extremely slow. The typical imple­
mentation of 3-Lisp uses two interpreters for keeping two distinct execution 
levels . The first interpreter executes the second interpreter, while the second 
interpreter executes base-level functions. In this implementation, meta func­
tions are regarded as part of the program of the second interpreter. They 
are executed by the first interpreter and execute base-level functions. This 
double interpretation maintains the causa l connectivity between the base 
level and the meta level, but it sign ifi cantly decreases the execution speed 
of the base-level program even though no meta functions a re used. 

Improving the execution performance is relatively easy if the base-level 
program does not use meta functions. We can prepare the third interp reter, 
named the default interpreter, and switch to it while the base- level progra m 
runs without meta functions (Figure 3.2). Note that the first interpreter and 
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the default interpreter are not identical; at least , they arc distinct instances 
of an interpreter and they maintain different runtime environments. Because 
the default interpreter does not handle meta functions, it can achieve as good 
efficiency as an optimized interpreter for ordinary Lisp . Or, we may use a 
compiler for better efficiency instead of an interpreter . 

To use the default interpreter from a meta function , programmers need 
to call a built-in meta function like eval-expr and ex plicitly switch to it. 
Recall the implementation of create-object in 3-KRS. It can be rewritten 
to explicitly switch to the default interpreter: 

(defmethod create-object (expr env) 
(let• ((class-name (car expr)) 

(expr2 '(set! •history• 
(cons ,class-name •history•)))) 

(eval-expr env expr2) 
(<- super create-object expr env))) 

The built-in meta function eval-expr executes the expression expr2 with 
the environment env by the default interpreter, so that the expression is 
executed faster. For example, since the expression accesses the base-level 
variable •history• twice, the default interpreter may memoize the memory 
location of the variable and reuse it for the second access. However, the 
optimization that the default interpreter can do for eval-expr is limited to 
runtime optimization since eval-expr receives an expression and an envi­
ronment at runtime. Even if an compiler is used instead of the interpreter, 
no static optimization is applicable. 

On the other hand , metacircular systems naturally give more freedom 
to the default interpreter or compiler. For example, in the CLOS MOP, 
there is no explicit distinction between the base level and the meta level, so 
the default interpreter can execute both base-level a nd meta-level prog rams 
(Figure 3.3). This means that programs implicitly switch direct interpreta­
tion by the default interpreter and double interpretation via metaobjects. 
Recall the implementation of create-object in the CLOS MOP: 

(defmethod create-object (init-args) 
(let ((class-name (<- self name))) 

(set! •history• (cons class-name •history•)) 
(<- super create-object init-args))) 

This method directly accesses a base-level variable •history• with the base­
level primitive set!. Since the exp ression (set! ... ) is written in the 
sy ntax for the base- level program , it can be directly executed by the defau lt 
interpreter, and hence the system implicitly switches to direct execution by 
the default interpreter. 

This implicit switching gives a lot of room for opti mi zation especiall y 
to a compile r. Unlike the way by using eval-expr, an executed expression 



32 CHAPTER 3. TECHNIQUES FOR PROCESSING A PROGRAM 

default interpreter 

j 
,_,. switch ...._ I illterpret I compile 

interpret ' 
/compile metaobjects -------* illferpret 
r==aase-level objects~ 

Figure 3.3: An metacircular implementation 

is statically given to the default interprete r and hence various optimization 
techniques using static information are naturally applicable . 

To get equ ivalent effects in non-metacircular systems, a sophisticated 
optimizing compiler or complex programming techniques are needed . For 
example, an optimizing compiler using a technique called partial evaluation 
[19, 23) or inlining will compile the following program in 3-I<RS: 

(defmethod create-object (expr env) 
(let• ((class- name (car expr)) 

(expr2 '(set! •history• 
(cons ,class-name •history•)))) 

(eval-expr env expr2) 
(<- super create object expr env))) 

into as effici ent code as the equivalent program in the CLOS MOP. The 
compiler will statically determine the values of env and expr2 as much as 
possible, and specialize eval-expr to be more efficient. Th is approach has 
been studied by a few researchers including the author (52, 14 , 39), but 
implementing this technique is very difficult in practical languages such as 
C++; for example, no compiler using partial evaluation has been developed 
for C++ yet . 

Another approach is to provide more built-in meta functions for pro­
grammers to be able to optimize a meta function by hand: 

(defmethod create-object (expr env) 
(let ((compiled-code (lookup-hash expr))) 

(if (null? compiled-code) 
(let• ((class-name (car expr)) 

(expr2 '(begin 
(set ' •history• 

(cons ,class-name •history•)) 
,expr))) 

(set ! compiled-code (compile-expr expr2))) 
(record- hash expr compiled-code))) 

(execute env compiled-code))) 
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The underlined functions are built-in meta functions. The above imple­
mentation expl icitly compiles an expression and memoizes it when it is first 
executed, and reuses the compi led code from the second time. Although this 
implementation will run a bit faster, the built-in meta functions for opti­
mization make the language complicated and difficult to use. Programmers 
have to learn how the built-in meta functions help for optimization. 

When metaobjects run 

Normally, metaobjects in metacircular systems run at runtime as in non­
metacircular systems. Metacircularity has nothing to do with when metaob­
jects run at runtime or compile time. However, because running metaobject 
at runtime impairs execution performance, the actual CLOS MOP employs 
a technique called currying8 so that the metaobjects less frequently run at 
runtime. This technique is based on the observation that some of compu­
tation by metaobjects can be statically performed, or, once it is done, the 
resu lt can be memoized and it does not need to be performed again. So 
the currying technique explicitly splits the protocol into one for com puta­
tion that has to be done at runtime and the rest, and let the under lying 
interpreter improve performance by avoiding redundant execution of that 
computation. 

For example, if the currying technique is not adopted, a method call-method 
for class metaobjects is implemented as something like this {Note: this is 
pseudo code): 

(defmethod call-method (object method-name args) 
(let ((method (<- self lookup method-name))) 

(apply method (cons object args)))) 

(defmethod lookup (method- name) 
( l et ((entry (assq method- name 

(<- self direct-methods))) 
(if ent r y 

(cdr entry) 
(let loop ((supers (<- self super- classes))) 

(if (null? supers) 
(error ••invalid method name 11

) 

(or (<- (car supers) lookup method-name) 
(loop (cdr supers)))))))) 

The method call - method is a built-in meta function for calling the method 
specifi ed by method-name for the object. The implementation is divided 
into two parts. It first calls a helper method lookup , which finds the function 
body of the targeted method. Then call - method actuall y in vokes the found 

8 This technique should not be called the mcmoization technique. it. is a technique 
for protocol designers, who perform currying on documented functions so that protocol 
implementors can perform mcmoization. 
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method. lookup first checks methods directly supplied by the class, and, if 
not found, it searches su per classes. 

This implementation is not effici ent because the targeted method is 
looked up in th e class hierarchy for every call. It should be looked up only 
once when it is first called, and the found method s hould be memoized and 
reused for all su bsequent calls to the method. 

To avoid this inefficiency, the actual protocol has been designed with the 
cu rrying technique. In the actual design, t he compu tation by call-method 
shown above is spl it into two pa rts. The redesigned call-method receives 
only method-name, looks up the targeted method, and returns a function: 

(defmethod call-method (method-name) 
(let ((method (<- self lookup method-name))) 

(lambda (object args) 
(apply method (cons object args))))) 

If called , the function returned by call-method receives object and args 
and invokes the targeted method with them. The targeted method is not 
invoked until the returned function is called. Note that the targeted method 
is looked up only once when call-method runs. It is never looked up when 
the returned function runs. 

The CLOS interpreter and compiler can employ this curried protocol to 
improve execution performance. It should call call-method in advance at 
load t ime or at compile time, and memoize the returned function wit h the 
method name. Then, if the method is act ually called at runtime, it can 
directly call the memoized function for invoking the method. No look up 
is needed at runtime. The targeted method is looked up only once at load 
time or a t compile time. 

Applicability to our problem 

The CLOS MOP shows that there is anot her design of the meta system of 
a reflective language. Because of its metacircu larity, a meta-level program 
is not an inte rpreter of th e base-level program but can be regarded as a 
collection of base-level code substituted for parts of the original base- level 
program. Recall that a meta-level program describes base-level behavior 
with the base-level primitives instead of buil t- in meta functions. 

This fact means that mctacircular refl ection can be the basis of a solu tion 
of our problem. In the previous chapter, we presented that C++ needs 
a mecha nism for processing source code with context sensitivity and non 
locality. l\ !etacircular re fl ection a llows progra mmers to specify source-code 
su bstitution with context sensitivity and non locality. 

ll owcve r, we cannot usc metacircul a r refl ection represented by the CLOS 
MOP as is to solve our problem. It is in principle a runtime system, which 
may involve overheads, and is difficult to h;wdle optimization s uch as the 
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Table 3.1: Lisp Uacros, 3-Lisp, and the CLOS MOP 

Lisp Macros 3-Lisp CLOS MOP 

Meta rep resentation 6 0 0 
Self modifi catio n X 0 0 
Metacircular 0 X 0 
When running CT or RT RT (CT and) RT 

RT: runtime, CT: compile time 

example of the vector library in the previous chapter. It is not sui table for 
dealing with adj ace nt but independent operations at a t ime. 

3.4 Summary 

This chapter illustra ted currently known mechanisms for processing a pro­
gram . We showed the tree representative mechanisms , Lisp macros, 3-Lisp, 
and the CLOS MOP. As an object-oriented version of 3- Lisp, we also showed 
3-KRS. 

Table 3.1 sum marizes the features of the three mechanisms. All of them 
provide meta representations of the base-level programs for the program­
mers . The meta representations ena ble the programmers to process the 
programs as computable data. As the meta representations, Lisp macros 
provide program text in the form of the abstract syntax tree. 3-Lisp pro­
vides not only prog ra m text but also the current environment and th e current 
continu ation . The CLOS MOP provides classes, generic funct ions, methods, 
a nd so on. 

Although providing meta representa tions a llows to im plement a new kind 
of abstraction that are not avail a ble within the confines of the original lan­
guage, some kinds of abstractions also need to alter the default behavior 
of t he language. This self modification of the la nguage is a llowed on ly by 
3-Lisp a nd the CLOS MOP. Lisp mac ros cannot change the behav ior of the 
language when read ing a variable, for example. 3-Lisp a nd t he CLOS MOP, 
therefore, enable a la rge r number of kinds of a bstractions than Lis p macros. 

Metacircularity is a good property because metacircular systems are easy 
to lear n a nd easy to implement effi cient ly. Only Lis p mac ros and the CLOS 
!\ lOP have this prope rty. 3-Lisp is not metacircular; although the base level 
and the meta level uses the same language, t he customization by meta func­
t ions is not a pplied to the langu age for the meta level. The custom iza.t ion 
is applied only to the langu age for the base level. 

Furthermore, macro functions may run at either run time or compi le timc
1 
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whereas meta functions in 3-Lisp and metaobjects in the CLOS MOP run 
at runtime. This means that Lisp macros have an advantage in terms of 
execution performance since macro functions run at compile t ime. 3-Lisp 
has to process a program at runtime even though the processing can be 
done at compile time. To avoid the performance problem of 3-Lisp, the 
CLOS MOP employs the currying technique and performs most of meta 
computation at the load time or at compile time. 

Through this chapter, we have discussed that a meta architecture with 
metacircularity, such as the CLOS MOP, has great benefits for processing 
a program. But this architecture has a drawback with respect to execution 
performance because metaobjects normally run at runtime unless an elabo­
rate technique like currying is used. Lisp macros have an advantage for the 
performance issue; macro functions can run at compile t ime and they can 
involve no performance penalties at runtime. This feat ure of Lisp mac ros is 
significant to develop a mechan ism for processing a program in C++ since 
C++ programmers are particu lar about execution performance. 

In the next chapter, we propose a new C++ mechanism wit h both advan­
tages of the CLOS MOP and Lisp macros. It enables source-code processing 
in a context-sensitive and non-local way so that programmers can develop 
better libraries in C++. 

Chapter 4 

The OpenC++ MOP 

This chapter presents a new C++ mechanism for processing a program. 
T he proposed mechanism enables context-sensitive and non- local processing, 
which is not supported by existing C++ mechanisms, such as the inheritance 
mechan ism and the template mechanism. Because of those two features, this 
mechanism makes it possible to include some kinds of useful abstractions in a 
library and implement other abstractions efficiently. In regular C++, those 
abstractions are impossible to include in a library or, otherwise, they are 
difficu lt to implement efficiently. 

The proposed mechanism is called the OpenC++ MOP (Metaobject 
Protocol). Open C++ is an enhanced version of the C++ language for this 
mechanism .' The OpenC++ MOP has been developed by a synthesis of 
ideas of the techniques illustrated in the previous chapter. Especially, we 
took the basic protocol structure from the CLOS MOP [36], and we took the 
basic architecture from Lisp macros. The Open C++ MOP is also influenced 
by Intrigue [37], An ibus [50, 51], and MPC++ [33, 34]. 

4.1 Overview 

The OpenC++ compiler is fed with two kinds of code. One is ordinary 
source code and the other is meta code that specifies how the source code is 
processed. !3oth of them are written in Open C++. The compiler first runs 
the C++ preprocessor, and then performs source-to-source translation from 
Open C++ to regular C++. This translation is specified by the meta code. 
The trans lated code is passed to the back-end C++ compiler and processed 
into executable code. 

1To distingu ish OpenC++ version 1, lhis language is called OpcnC++ version 2. 

37 
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Introductory Example 

The OpenC++ MOP is a protocol that the meta code uses for specifying 
sou rce-code processing. The protocol st ructure of the OpenC++ MOP is 
based on that of the CLOS MOP. Programmers define a new clas~ metaob­
ject to specify a new kind of so urce-code processing. For example, we show 
t he implementation of the langu age extension that records object creation. 
T his is the example t hat we repeatedly used in the previous chapter: 

class RecordedClass : public Class { 
public : 

Ptree+ TranslateNew(Environrnent• env, Ptree• header, 
Ptree• new_op, Ptree• placement, 
Ptree• type_name, Ptree• arglist) 

{ 

return Ptree: :Make(" (history [n++] =\ "'l.p\", 'l.p)", 
type_narne, 

} 
}; 

Class::TranslateNew(env, header, new_op, 
placement, type_name, 
arglist)); 

We define a new metaclass, which is a class for class metaobjects. The new 
metaclass RecordedClass corresponds to recorded-class that the previous 
chapte r s howed while mentioning the CLOS MOP. It inherits from the de­
faul t metaclass Class and overrides a member function 2 TranslateNew() as 
th e cl ass recorded-class inherits from metaobject-for-class and over­
rid es create-object. 

Although create-object in the CLOS MOP directly interprets the pro­
gram and executes the object creation, TranslateNew() in th e OpenC++ 
MOP just translates t he program at the source-code level as Lisp macros do. 
It receives program text and returns the res ult ing text of the translation. 

To use this language extension , programmers write something like this: 

metaclass Point : RecordedClass; 
class Point { 
public: 

int x, y; 
}; 

void f(){ 

Point• p 

} 

new Point; 

. 
2 

A mcm l~er fu~1ction means a method in the C++ term inology. Similarly, in C++, an 
mstancc vanablc IS called a data member, and a super class is called a base class. 
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The first line beginning with metaclass is a metaclass declaration. It de­
clares that the class metaobject for Point is an instance of RecordedClass. 
Thereby, the program above is translated by the class metaobject into this 
program: 

class Point { 
public: 

int x, y; 
}; 

void f(){ 

Point• p 

} 

(history[n++]="Point" ,new Point); 

Note th a t th e metaclass declaration is elimina ted a nd the new expression 
"new Point" is replaced with "(history[n++]= ... )" . If the function f() 
is executed, a character string "Point" is stored in a n array history. The 
variable n specifies the number of th e recorded class names. 

What Class Metaobjects do 

The translation shown above is perform ed by TranslateNew() . It receives 
the program text for the new expression and the environ ment, and returns 
the translated new expression. The environment represents the bindings 
between names and their static types. Unlike the env ironment in 3- Lisp, it 
does not represent the dyn amic bindings between names and t heir runtime 
values . The received progra m text is represented in the form of the parse 
t ree as in Lisp macros and 3-Lisp. Ptree is the type for the parse tree. 
For convenience, TranslateNew() does not receive the new ex pression as 
a s ingle tree. The tree is di vided into seve ral subtrees before passed to 
TranslateNew(). For example, the fift h a rgument type _name is bound to 
the type-name field of th e new expression, that is, Point . 

TranslateNew() constructs a new parse tree that is s ubstituted for the 
original new expression. To do this, TranslateNew() calls a built-in funct ion 
Ptree: :Make(). Here we show the function body of TranslateNewO again: 

return Ptree: :Make("(history[n++]=\"'l.p\",'l.p)", 
type_name, 
Class: :TranslateNew(env, header, new_op, 

placement, type_name, 
arglist)); 

The expressio n Class: :TranslateNew(env , . .. ) calls the overridden mem­
ber function of the base class Class. Since Class is the default metaclass, 
this member fun ction ca ll returns the new expression without a ny change. 
The fun ction Ptree:: Make() constructs a parse tree acco rding to the formal 
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given as the first argument. It substitutes given subtrees for the occurrences 
of /.p in the format. For example, the first occur rence of /.p surrounded by 
double quotes is replaced with the subt ree indicated by type_narne. 

A class metaobjects handles all kinds of expressions involved with the 
class. They can handle class declaration, the new expression , member func­
tion calls, and even data member accesses. The default metaclass Class has 
member functions for translating each kind of expression. Although these 
member functions of Class do not transform the received program text, 
programmers can define a new metaclass to override them and customize 
the translation. Note that a class metaobject handles only the expressions 
involved with the class. Hence programmers can restrict the customized 
translation to only some classes. Even though a new metaclass is defined, 
expressions are not translated unless the metaclass is specified for the class 
that the expressions are involved with . 

4.2 Context-sensitive and N on-local 

The OpenC++ MOP enables context-sensitive and non-local processing of 
programs, which the inheritance mechanism or the template mechanism can­
not do . This feature of the Open C++ MOP makes it possible for program­
mers to write libraries that they cannot do in regular C++. 

Context Sensit ive 

The Open C++ MOP provides rich meta representation of programs so that 
programmers can refer to various contextual information of the programs 
during the processing. For example, the programmers can refer to the pro­
gram text represented in a parse tree, the static type environment, and 
class definitions . The OpenC++ MOP provides different metaobjects for 
each kind of information . The programmers use these metaobjects and de­
termine how to process the programs. 

We below present brief overviews of a ll the kinds of metaobjects: Ptree, 
Environment, Type Info, and Class. The detailed specifications are shown 
in Appendix B. These metaobjects represent program text, static types, type 
definitions, class definitions, respectively. They cover information needed to 
determine the semantics of a given code fragment . 

• Ptree metaobject 

The Ptree metaobjects represent the parse tree of a program . The parse 
tree is implemented by a linked list of lexical tokens. For example, this 
program: 

int a = b + c * 2; 

- ---~ .~ .. =~= --~~~--~~-"«••··----------
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is represented by a Ptree metaobject: 

((int) (a = (b + (c • 2))) ;) 

Here, () denotes a lin ked list. We denote a parse tree with the notation that 
Lisp uses for the S expression. Note that operators such as = and + make 
su blists. 

The OpenC++ provides many functions for manipulating a parse tree. 
Most of them were taken from Lisp. For example, to obtain the second 
sublist of the list that a variable expr is bound to, the programmer writes: 

Ptree: :Second(expr) 

The function Second() is a static member function 3 of the class Ptree. It 
returns the Ptree metaobject that represents the second sublist. 

Moreover, since the grammar of C++ is relatively complex, the Ptree 
metaobjects provide a member function Whatis() for examining the kind 
of the syntax represented by the parse tree . Whatis() returns a unique 
constant according to the kind of the syntax. If the parse tree represents a 
declaration, Whatis() returns PtreeDeclarationid; if the tree represents 
a class name, WhatisO returns LeafClassNarneid. 

As we already saw, Ptree metaobjects can be constructed by calling 
Ptree : :Make(). This static member function constructs a Ptree metaob­
ject according to the given format. All occurrences of I.e (character), /.d (in­
teger), /.s (character string), and l.p (Pt ree) in the format are replaced with 
the arguments following the format. For example, suppose that array _name 
is "xpos" and offset is 3. This function call: 

Ptree: :Make("/.s [/.d]", array_narne , offset) 

constructs a Ptree metaobject that represents: 

xpos [3] 

Unfortunately, t he current implementation ofPtree: :Make() does not con­
struct a fully-capable Ptree metaobject. Since the C++ grammar is context 
sensitive, Ptree: :Make() cannot correctly parse the constructed metaobject 
without syntactic context and hence Whatis() does not work for it. Except 
this limitation, however, programmers can use the Ptree metaobject re­
turned by Ptree: :Make() at any place in a meta-level program. 

The function Ptree: :Make() makes it significantly easy to write a meta­
level program . It is a conversion function from standard C++ syntax given 
as a C++ string to a Ptree metaobject. Thus programmers can construct a 
Ptree metaobject with standard C++ syntax, which is more intui tive and 
easy to handle than bare new ope rators. 

3 A static member function is a sort of class method in C++. 

~ 
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The Open C++ MOP also provides a function for pattern matching. The 
static member function Ptree: :Match() compares the given pattern and 
the given Ptree object. If they match, it returns TRUE and binds the given 
variables to the appropriate sublists. See the following sample program: 

if (Ptree: :Match(expr, "['l.? + 'l.?]", &lexpr, &rexpr)) 
cout <<"this is addition.\n 11 ; 

else if(Ptree::Match(expr, "['l.?- 'l.?]", &lexpr, &rexpr)) 
cout << 11 th is is subtraction. \n••; 

else 
cout << "unknown\n"; 

The pattern ['l.? + 'l.?] matches a Ptree metaobject if the length of the 
linked list is three and the second element is+. If expr matches the pattern , 
lexpr gets bound to the first element of expr, and rexpr gets bound to the 
third element. Note that the type of lexpr and rexpr is Ptree. 

o Environment metaobject 

The Environment metaobjects represent bindings between names and their 
static types. Programmers can call Lookup() for the metaobjects to deter­
mine the type of a variable name. The returned type is represented by a 
Typeinfo metaobject. 

o Typeinfo metaobject 

The Typeinfo metaobjects represent types. The types are not limited to 
class types. They also include other kinds of types, such as built-in types 
like int , pointer types, function types, template types, and so on. 

The most important member function of Type Info is \lhatis () . It re­
turns a unique constant according to the kind of the type. For example, if 
the type is a class type, llhatis() returns ClassType. 

The Typeinfo metaobjects also supply member functions for obtaining 
detailed information of each kind of type: 

uint IsBuiltinType() 

This works for built-in types. It returns what the built-in type is, 
char, int , double, or others. 

Class• ClassMetaobject() 

This works for class types. It returns the Class rnetaobject for the 
class. 

void Dereference(Typeinfo& t) 
This works for derived types, s uch as pointer types, reference types, 
and function types. It returns the dereferenced type of the type. For 
example, if the type is int•, Dereference() returns the Typeinfo 
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metaobject for int. If the type is a function type, Dereference() 
returns the return type of the function. 

BOOL NthArgurnent(int nth, Typeinfo& t) 
This works for function types. It returns the type of the nth argument 
to the function. If there is not the nth argument, NthArgurnentO 
returns FALSE. 

o Class metaobject 

The Class metaobjects supply member functions for introspection. Pro­
grammers can call these functions to i~spect the class; for example, they 
can obtain the class metaobject for the base class. The followings are part 
of these member functions: 

Ptree• Name() 
This returns the name of the class. 

char• MetaclassName() 
This returns the name of the metaclass. 

Class• NthBaseClass(Environment• env, int nth) 
This returns the nth base class of the class. Recall that C++ allows 
multiple inheritance. The leftmost base class is the first, and the 
rightmost is the last. Note that this member function returns only 
immediate base classes. It does not return a base class of a base class. 

Ptree• NthMemberName(int nth) 
This returns the name of the nth member, which is either a member 
function or a data member. 

BOOL LookupMemberType(Environment• env, Ptree• name, 
Typeinfo& t) 

This returns the type of the member specified by name. 

Non Local 

The OpenC++ MOP also enables non-local processing. l3ecause a single 
class metaobject processes a ll the code fragments relevant to the class, pro­
grammers usually define only one new metaclass for implementing one ab­
st raction . Even if the processed fragaments spread out over the whole pro­
gram, they are automatic<tlly dispatched to the class metaobject. Although 
programmers have to define more than one metaclasses if the processing 
involves multiple classes, we believe that a class is good granularity for 
source-code processing in C++. This is because most of abstractions are 
usually implemented by a single class in C++. 
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For non-local processing, the Class metaobjects s upply a different mem­
ber function for each kind of program text . One of these fun ctions is 
TranslateNew() presented in Section 4.1. T hese functions receive program 
text and translate it. The t ranslated text is substituted for t he original 
text in the program. Although t he member functions supplied by Class do 
not change the received text at all , a subclass of Class ca n override them 
and implement new source-code translation. The followings are some of the 
member functions that the subclass can override (For the complete lis t , see 
Appendix B): 

- Ptree• TranslateClassName(Environment• env, 

Ptree• keyword, Ptree• name) 
This translates the class name appearin g in the program. 

Ptree• TranslateSelf(Environment• env) 
T his translates the cl ass declaration. 

Ptree• TranslateMemberFunctionBody(Environment• env, 
Ptree• name, BDD L inlined, 
Ptree• body) 

This translates the body of a member function supplied by the class. 

Ptree• TranslateUnary(Environment• env, Ptree• op, 
Ptree• object) 

This translates a n exp ression including a unary operator op . It is 
called if the object that the operator is applied to is a n instance of 
t he cl ass. 

Ptree• TranslateNew(Environmento env, Ptree• ... ) 
This translates the new expression. 

Ptree• TranslateMemberRead(Environment• env , Ptree• member) 
This translates an expression for read ing a data member of an object 
of the class . 

Ptree• TranslateMemberCall(Environment• env, Ptree• member, 
Ptree* argl ist) 

This translates a member function call on an object of the class. 

4 .3 Syntax Extension 

The OpenC++ MOP allows limited syntax extension. Because the C++ 
gram mar is heav ily contex t dependent, th e full extensibil ity fo r syntax is 
diffi cult to provide in C++. However, prog rammers can define new keywo rds 
and implement the following kinds of new sy ntax: 
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• Type Modifier 

Programmers can define a new type modifier. It may appear in front 
of type names, the new operator, or class declarations. For example, 
programmers may define new keywords, distributed and remote , 
and then t hey can write: 

distributed class Dictionary { ... }; 
remote Point• p = remote(athos) new Point; 

Here, distributed, remote , and remote(athos) are new type modi­
fiers. 

• Access Specifier 
Programmers can define a new mem ber-access specifi er, which appears 
within class declarations . public , protected, and private a re the 
built-in access specifiers. For example , if after is a keyword for a new 
access specifi er, then programmers may write : 

class Window { 
public: 

void Move() ; 
after: 

void Move() { ... } 
}; 

• Sta tement 

II after method 

Programmers can defi ne a new kind of statement that is simila r to ei­
ther the if s ta tement or the while statement. The followin g examples 
a re valid syntax extensions: 

Matrix ml; 
ml.forall(e){ e 

ButtonWidget b; 

0 .0; } II extended syntax 

b.press(int x, int y){ II extended syntax 
cout << 11 pressed at•• << x << •• •• << y; 

}; 

In these examples, forall and press a re new keywords . Like the 
while statement , they arc followed by a () expressio n and a block 
statement. 
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To make these syntax extensions available, the programmers first register 
the keywords to the parser. The Class metaobjects supply the following 
registration functions. Each one registers a keyword for a specific syntax 
extension (the followings are not all the functions. See Appendix B for 
more details): 

- void RegisterNewModifier(char• keyword) 
This registers a keyword for a new type modifier. 

- void RegisterNewAccessSpecifier(char• keyword) 
This registers a keyword for a new access specifier. 

void RegisterNewWhileStatement(char• keyword) 
This registers a keyword for a new kind of statement that is similar to 
the while statement. 

The semantics of a new syntax extension is defined by the class metaob­
ject that is involved with the extension. For example, the forall statement 
in this program: 

Matrix ml; 
ml.forall(e){ e = 0.0; } 

Should be translated into regular C++ code by the class metaobject for 
Matrix . The programmer, therefore, has to define a new class metaobject to 
handle the translation . The new class metaobject will override this member 
function: 

- Ptree* TranslateUserStatement(Environrnent* env, 
Ptree* object, Ptree* op, 
Ptree• keyword, Ptree• rest) 

This translates a new kind of statement. The default implementation 
by Class causes a syntax error. 

If the forall statement is translated , the a rguments object, op, and keyword 
are bound to ml , . (dot), and forall , respectively. The last argument rest 
is bound to the rest of the statement, that is, (e){ e = 0.0; } . The over­
ridden TranslateUserStatement() shou ld use these a rgum ents and con­
struct the parse tree for the translated statement. 

4.4 What is New? 

T he Open C++ MOP has been developed by a synthesis a nd re-engineering 
of ideas of other known techniques. Especially Lisp macros and the CLOS 
MOP influence the design of the OpenC++ MOP. This section discusses 
comparison between the OpenC++ MOP and other techniques. 
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Comparison with Lisp Macros 

In the Open C++ MOP, class metaobjects process a program as Lisp macros 
do. Their mem bcr functions receive program text and return the translated 
text, which is s ubstituted for the original text. 

However , the Open C++ provides more contextual information than Lisp 
macros when translating a program . The member functions for the trans­
lation receive the environment as well as program text. They can use it to 
examine the static types of variables. Lisp macros do not provide the envi­
ronment; macro functions have to translate a program only with syntactical 
information but without contextual information. 

The Open C++ MOP also enables self modification whereas Lisp macros 
do not. With only a simple annotation, it can alter the behavior of the 
objects of only a s pecific class. Error-prone programming conventions are 
not needed. Lisp macros require programmers to explicitly call them to 
translate programs. The expressions that a Lisp macro should process have 
to be explici tly preceded by the macro name. Hence, if programmers want 
to change the behavior of the language when reading a variable, they have 
to write something like (read-variable x) instead of just writing x. Here 
read-variable is a macro name. Otherwise, programmers have to write the 
code walker. On the other hand, the Open C++ MOP does not need such a 
programming convention. Once a metaclass is declared, all the expressions 
involved with the class are automatically processed by the class metaobject. 
Programmers can alter the behavior of the objects without editing the origi­
nal program to insert something like macro nam es . Moreover, programmers 

can restrict the range of the self modification within a specific class. The 
behavior for the other classes are kept as is. 

Comparison with the CLOS MOP 

The CLOS MOP is t he immediate a ncestor of the OpenC++ MOP. Both 
the CLOS MOP and the Open C++ MOP are metacircular , and they employ 
class metaobjects instead of the metaobjects for objects. The difference is 
that the OpenC++ MOP is special ly designed to run at compi le time. 

Although the currying technique allows metaobjects in the CLOS MOP 
to mostly run at compile time, some computation by the metaobjects is still 
performed at runtime. At least, which metaobjcct is selected for given base­
level code is determined at runtime. See Figure 3.3 in page 32 again. The 
default interpreter (or compiler) has to determine whether it executes each 
expression through a mctaobjcct or not, and which metaobject it selects if 
so . In the CLOS /\ LOP, this is done at runti me. 

The OpcnC++ performs a ll meta computation at compile time. It also 
determines which meta.object is selected at compile time. 13cca.usc of this 
feature and the metacircularity, the OpenC++ MOP docs not imply any 
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performance penalty at runtime. The Open C++ MOP uses static typing to 
select a metaobject at compile time. It stat ically types a ll variables and ex­
pressions in the program and determines which metaobject is responsible for 
the translation . Then it calls the metaobject for translating the exp ression 
and directly substitutes t he result for the original expression. This means 
that even the code for selecting a metaobject and dispatching to it does not 
run at runtime. 

The Open C++ MOP is regarded as a good synthesis of the C LOS MOP 
a nd Lisp macros. We below present the definition of RecordedClass written 
in pseudo Lisp. Comparing this defin ition with the equ ivalent defi nition in 
the CLOS MOP, the readers will intuitively understand the synthesis. First, 
we show the definition in the Open C++ MOP: 

(defclass recorded-class (metaobject-for-class) 
(defmethod create-object (env expr) 

(let ((class-name (<- self name))) 
'(begin (set! •history• (cons ,class-name •history•)) 

,(<-super create-object env expr))))) 

The next is t he definition in the CLOS MOP : 

(defclass recorded-class (metaobject-for-class) 
(defmethod create-object (init-args) 

(let ((class-name (<- self name))) 
(set ! •history• (cons class-name •history•)) 
( <- super create-object init-args)))) 

The readers can see that t he two defin itions are significantly close to each 
other. The primary difference is t hat the defi nition in the OpenC++ MOP 
retu rn s an expression instead of directly executing the expression. T his 
feature is t he influence by Lisp macros. 

Comparison with Early Compile-time MOPs 

Several MO Ps running at compile time, called compile-time MOPs, have 
been developed earlier t ha n the OpenC++ MOP. The earliest compile-time 
10Ps are Intrigue (37] and Anibus [50, 51]. They are designed for Scheme 

(16] and parallel Scheme alt hough they are written in CLOS. However, their 
design is quite different from the Open C++ MO P. They provide meta in ter­
face mainly for customizing the behavior of t he compiler rather than source­
code t ranslation . In fact , metaobjects of In trigue are intern al components of 
t he compile r, such as a parser a nd an optim izer. IVIetaobjects of Ani bus a re 
nodes of a parse tree and controls tra nslation from pa rallel Scheme to reg­
ular Scheme including low-level primitives for parallel computing. Ani bus's 
MOP might look similar to th e OpenC++ MO P since bo t h MOPs control 
program translation , bu t it docs not provide non-locality based on the class 
system (or the type system because Scheme does not include a class system). 
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Moreover, Anibus's program translation is to transform a parse tree. The 
metaobjects perform the transformation instead of generating substituted 
source code. 

CRML [31] has a compile-time MOP for ML (43]. Its MOP provides the 
capability similar to Lisp macros and makes it possible to use new syntax 
in ML. However, it also involves the same li mitations as Lisp macros. For 
example, it does not enable self modification. 

The MPC++ MOP (33, 34] is another compile-time MOP for C++. 
As in OpenC++, it allows programmers to control source-code translation. 
The most significant difference between MPC++ and Open C++ is that the 
MPC++ MOP does not provide non-locality based on the class system . 
Instead , each piece of program is dispatched to a metaobject for transla­
tion according to the kind of the parse tree, such as a declaration, an if 
statement, a + operato r, and so forth. Metaobjects of MPC++ are nodes 
of the parse tree of the processed program. If a piece of program is dec­
laration of a variable, for example, then it is dispatched to the declaration 
metaobject {corresponding to t he Ptree metaobject in OpenC++) for the 
translation, rather than the class metaobject involved with the type of the 
declared variable. 

Because of this feature, the MPC++ MOP is not suitable for custom iza­
tion that is specific to a particular class and in volves several statements and 
expressions. If the customization needs to translate declaration statements 
a nd -> expressions on a specifi c class, t hen the programmer needs to de­
fine two new metaclasses for declaration a nd the -> operator. Then the 
new metaclasses must explicitly determine the class of the processed code 
and translate t he code only if it is the specifi c class. This computation is 
implicitly performed in OpenC++ because it provides non locality. 

Moreove r, the MPC++ MOP does not provide the meta- meta level. 
Thus programmers cannot write a meta-meta level program to make it easier 
to write a meta-level program . Since the Open C++ MOP provides the meta­
meta level, for example, programmers can enjoy special syntax when wri t ing 
a meta-level program. 

4 .5 Summary 

This chapte r proposed the OpenC++ MOP, wh ich is a mechanism for pro­
cessing a program. This mechanism provides rich meta representation of 
the processed program and enables context-sensitive and non-local pro­
cessing. for context-sensitive processing , the OpenC++ MOP provides 
Ptree mctaobjects (for program text) , Environment metaobjects, Typeinfo 
mctaobjects , and Class metaobjects. These metaobjects are t he meta rep­
resentation of various as pects of the program. The Class mctaobjects also 
work for non-local processin g. They con trol t he t ranslation of a ll the ex-
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pressions that are sp read out over the whole program but involved with the 
class . 

Like Lisp macros, the OpenC++ MOP also enables syntax extensions. 
Programmers can register a new keyword and define a new type modifier, an 
member-access specifier, or a new kind of statement. They are appropriately 
t ra nslated into regular C++ code by Class metaobjects as other code is 
translated. 

These features are advantages of the Open C++ MO P against other ex­
isting C++ mechanisms such as inherita nce a nd templates, and they enable 
C++ libraries that have been impossible or difficult to make them efficient. 
To enable those libraries, a n extended C++ compiler specially prepared for 
the libraries has been necessary so far . The OpenC++ MOP all ows pro­
gram mers to write a meta-level program to implement such an extension to 
C++ on top of the compi ler . 

The OpenC++ MOP has been developed by a synthesis of ideas from 
Lisp macros and the CLOS MOP shown in the previous chapter. However, 
it is not just a C++ version of Lisp macros or the CLOS MOP. It is some­
th ing considerably different from Lisp-style macros or traditional reflective 
languages . 

The basic architecture of the OpenC++ MO P was taken from Lisp 
macros. In both of them, the meta-level program receives program text 
and returns the translated one. Moreover, the meta-level program can run 
at com pile time to improve execut ion performance of the base-level program. 
On the other hand, the Open C++ MOP provides richer meta representation 
than Lisp macros. It provides not only program text but also a n environ­
ment and ty pe information . Also, it provides non-locality based on the class 
system of C++. Furthermore, self modification is possible in the Open C++ 
MOP. Programmers can alte r t he behavior of the lang uage without pro­
gramming conventions or the code walker. 

The protocol st ructure of the OpenC++ MOP is based on that of the 
CLOS MOP. The OpenC++ MOP is metacircu la r, and class metaobjects 
a re the subjects of processing a program. However, the OpenC++ MOP 
is designed so t hat metaobjects run at compile time. All t he meta compu­
tation, that is, source-code processing, is performed at compile time. Even 
which metaobject should be selected for processing is determined at com­
pile time. The CLOS MOP per form s this selection at runtime although 
other meta computation can be moved to compile time with the currying 
technique . 

Chapter 5 

Meta Helix 

Like the CLOS MOP, the OpenC++ MOP is metacircular since metacir­
cular systems are easy to learn and make it easier to write efficient meta 
programs. Unfortunately, pure metacircularity can lead to a problem we 
call implementation level con fl ation. This problem confuses programmers 
and causes errors, hence we could not adopt pure metacircularity as is for 
the OpenC++ MOP. 

Instead, to avoid the problem, we have developed an improved version of 
metacircu lar a rchitecture, named the meta helix [15]. This chapter presents 
a problem of the pure metacircular a rch itectu re, and proposes the meta heli x 
as a solution. The meta helix preserves advantages of metacircu larity but 
also addresses the problem we present. 

5.1 Implementation Level Confl.ation 

In a metacircular system like the CLOS MOP, t he language can be cus­
tomized in t he customized language itself. This means not only that the 
base-level program a nd t he meta-level program are wri tten in the same lan­
guage, but also that the customization by the meta-level program refl ects on 
the lang uage in which t he meta-level program itself is written . Th is fea ture 
gives advantages t hat we presented in Chapter 3, but it can also lead to a 
problem wh ich we call implementation level conjlation. 

Lisp macros 

First of all, we show an example of implementation level co nfl ation in Lisp 
macros, which is also metacircular. Since Lisp macros are relatively sim pler 
t han the CLOS ~ lO P, this example might look trivial. However, we be­
lieve t hat showing t his example help t he readers understand a more serious 
exam pie we show later. 

Suppose that we mod ify t he behavior of a special form define so that 
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more than one variables can be defined at the same time. With this exten­
sion, for example, we can define variables x and y with the initial value 7 by 
this single expression: 

(define x y 7) 

This expression should be expanded by a macro function named define in to 
this :' 

(begin (define x 7) (define y 7)) 

Therefore, the definition of the macro shou ld be this: 

(define-macro (define . args) 
(let ((vars (list-head args (- (length args) 1))) 

(init (car (last args)))) 
'(begin .~(map vars 

(lambda (v) '(define ,v ,init))) ))) 

Unfortunately, this macro does not wo rk; it will fall down in to an infinite 
loop. Because the symbol define is now a macro name, occurrences of 
define in the expanded expression are repeatedly processed by the macro 
function. For example, the expanded expression: 

(begin (define x 7) (define y 7)) 

Will be expanded again into: 

(begin (begin (define x 7)) (begin (define y 7))) 

And this expression also invokes macro expansion, and so on. 
Th is problem can be fixed although the way of fixing is quite imple­

mentation dependent. To fix th is problem, we have to define the macro as 
follows: 

(define define• define) I I alias 
(define-macro (define . args) 

(let ((vars (list-head args ( - (length args) 1))) 
(init (car (last args)))) 

'(begin .~(map vars 
(lambda (v) 

'(define• ,v ,init)))))) II use define• 

This program first binds a symbol define• to the original define special 
form. i\ow define• is an alias of define. Then, the program defines a 
macro define and uses define• for the expand ed expression. Using the 
alias makes th e macro funct ion avoid the infinite loop since the expanded 
ex pression does not include the macro nam e define any more. 

1 Por si mplicity, we assume that the sub-expression for the initial value docs not cause 
side-effects. 
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A More Serious Example 

The problem of the example shown above is that two distinct concepts, 
which are the define special form and the define macro, a re conflated into 
a single name. We call this problem implementation level conflation because 
the implemented level (define macro) and the implementing level (define 
special form) are confl ated into a single structure. 

This conflation becomes more serious in metacircular systems like the 
CLOS MOP. The power of the CLOS MOP is that programmers can enjoy 
metacircularity and use the existing facilities of CLOS as much as possible 
when they write meta-level programs. But this is a double-edged blade. 
It can also easily lead to conflation of a new abstraction and the facilities 
implementing that abstraction. 

To illust rate more serious implementation level conflation, we show an 
example of an extension written with the CLOS MOP. This extension records 
all accesses to slots (i.e. data members) of objects . The following program 
is an example of a program that uses th is extension :2 

> (defclass point () 
(variable x y) :meta history-class) 

POINT 
> (define p1 (make-instance point)) 
P1 
> ( <- p 1 x 3) set x to 3 
3 
> ( <- p1 y 2) set y to 2 
2 
> ( <- p1 x) read x 
3 
> (slot-history p1) show the access log 
(( GET X) (SET Y) (SET X)) 

Since the metaclass for point is history-class, all the accesses to t he slots 
of point objects a re reco rd ed, and the access log is available through the 
function slot-history. 

Slots with access history can be implemented usi ng the existing slot 
mechanism. The way this works is simply for instances of point to actually 
have three slots, the two visible slots x and y as well as a third, "hidden" 
slot history for storing the access log. The definition of history-class 
implemented in this way is as follows: 

(defclass history-class (metaobject-for-class) 
; what slots do the instances have? 
(defmethod compute-slots () 

(cons 'history (<- super compute- slots))) 

; read a s lot of an in stance 
2 Again , we use the same altered syntax that we used in Chapter 3. 
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(defmethod read-slot (object slot-name) 
(<- object history 

' ((get ,slot-name) ,10(<- object history))) 
(<- supe r read-slot ob j ect slot-name)) 

(defmethod set-slot ... )) 

This metaclass overrides three methods. First, it overrides compute-slot 
so that every history class has an extra slot to store the access log . Also 
it overrides r ead-slot and set-slot, which reads and wri tes a slot of the 
instance of history classes. They updates t he access log befo re act ually 
reading or writing . Since the access log is stored in the hidden slot history, 
they read and write the slot to update the access log. 

Unfortunately, th is example includes implementation level conftation . 
There are two distinct but confl ated concepts in this implementation. One 
is a point object t hat has extend ed slots . The accesses to the slots are 
reco rded in the access log. The oth er concept is a point object th at has 
three non-extended slots, x, y, and hidden history . This object is used to 
implement the former object. Since t he CLOS MOP is metacircular, the two 
point objects are identical - th e same object. Again we are dealing with 
the im plemented level (extended slots) and the implementing level (non­
extended slots) but the two levels are conflated into a single structure (po int 
object). 

Problems for Users of the Extension 

Implementation level con fl ation results in confusion for users of the exte n­
sion. For example, consider that a programmer uses one of th e MOP's 
introspective facili t ies to as k what slots a class has: 

> (class-slots (find-class 'point)) 
(HISTORY X Y) 

According to the specifications of the C LOS MOP, class-s lot s returns the 
lis t of the slot names that the given class has. The resu lt , ho\vever, in cl ud es 
the history slot. Is this right? Wh at does "the given class" mean in the 
specifications? Is it the implementing class o r t he implemented class? It 
s hould be t he implemented class and hence, since the history slot exists 
only for the implementation, including the slot is entirely ina ppropriate . 

This problem particu la rly s hows up whe n using browsers and debugge rs 
that rely on the introspective part of the CLOS MOP to work . Exposing 
this detail of how slots with his tory is implemented can leave progra mmers 
confused, or worse yet, can tem pt t hem to rely on this im plementation detai ls 
in ways t hat they should not. 

5.1. IMPLEMENTATION LEVEL CONFLATION 55 

Problems for the Implementor of the Extension 

Implementation level confiation also can cause problems for the im plementor 
of the extension. A careful reading of the method read-slot supplied by 
history-class provides an example of this. 

The im plementation of read-slot has a bug which manifests itself as 
in finite recursion although it is better understood as resulting from the im­
plementation level conflation . Operationally, the bug is that the body of 
the method , as part of updating the access log, must read the history slot, 
which runs th is method recu rsively, which starts to update the access log, 
wh ich reads the history slot, and so on ad infinitum. Th is bug happens 
because read-slot is im plemented with a non-extended slot hi story but 
read-slot alters the lang uage to record all the accesses to the slots, includ­
ing history. 

The standard solu tion to th is problem is to introduce a special purpose 
test that prevents the infinite rec ursion. So the revised code ends up looking 
something like this: 

(defmethod read-slot (object slot-name) 
(unless (eq slot-name 'history) 

(<- object history 
'((get ,s lot-name) ,10(<- object history)))) 

(<- super read-slot object slot-name)) 

This solution, while effective, seems ad hoc, can be difficult to reason about, 
and is not effective in general. 

The Importance of an N-to-N Correspondence 

The problems shown above can be better described as having to do wit h 
implementation level conflation. As mentioned at the beginning, there are 
two concepts of slots in pl ay : extend ed slots x a nd y, t he accesses to which 
are recorded, and non-extended slots x, y, and history, which are used to 
implement th e extended slots. But, because of the conflation , there is on ly 
one structure, or a handle to refer to the two concepts . The bug happe ns 
si nce the ha ndle always refers to the extended slots. If, somehow, the slots 
within t he body of r ead- slot cou ld refer to non-extended slots, then t he 
ad- hoc solu tion to the infinite recursion could be avoided . 

Fund amentally, if there are n distinct important views of an object- or 
any other structure - t here needs to ben distinct ha ndles to it. For exam­
ple, we need some way for instances of the class point to be viewed in terms 
of either the implemented functionality or the implementing functionality, 
not a conflation of both. The users of the extension want a view in ter ms of 
the implemented funct iona lity, bu t th e implemento r of t he extension wants 
to be able to take one view or t he other at different times. 
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5.2 Inadequate Solutions 

Implementation level conflation is a flaw of the metacircular architecture. 
Despite the advantages, this architecture makes metaobject protocols lose 
elegance; the metaobject protocols become inconsistent and difficult to use. 
Because of this fact , we could not adopt the pure metacircular arch itecture 
for the OpenC++ MOP. Instead, we have developed a improved metacir­
cular architecture since the OpenC++ MOP should be elegant, simple, and 
easy to use, as much as possible. 

Before presenting our solution to the problem of implementation level 
conflation, we first present two earlier solutions that, in different ways, fail 
to our needs. These solutions serve to further flesh out the criteria which 
the more general solution should meet. 

Change the Implementation 

One possible solution to this problem involves implementing the extension 
in a different way, specifically by storing the access log in the class metaob­
ject rather than directly in the objects themselves . The followin g program 
implements history classes in this way: 

(defclass history- class (metaobject-for-class) 
(variable history) ; place to store the access log 

(defmethod read-slot (object slot-name) 
(let ((log (assq object (<- self history)))) 

(set-cdr! log '(get ,slot-name) .~(cdr log)) 
(<- super read-slot object slot-name))) 

(defmethod set-slot ... )) 

All the access logs for the instances are stored in the slot history of the 
class metaobjects (that is, a class variable in the Small talk terminology). So 
the value of history is a list of pairs of an object and its access log. This 
association list can be searched by assq with using object as a search key. 

This solution solves the specific problems mentioned in the previous sec­
tion , but it loses advantages of metacircularity, which we would like to keep . 
This solution must manually implement the mapping from individual objects 
to their access logs , even though that basic functionality is a lready present 
in CLOS. Implementing that mapping is not needed if each access log is di­
rectly sto red in a slot of the object. This solution is not only redundant , but 
also difficult to achieve sufficient execution performance. The implementor 
of history-class has to implement as efficient a mapping mechan ism as 
the default one, which is a slot of an object. At least, the implementation 
shown above does not satisfy this performance criterion; the association li st 
is significantly inefficient. 
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Tiny CLOS MOP 

If we give up metacircularity, we can avoid implementation level confla­
tion. Non-metacircular systems such as 3-Lisp and 3-KR.S do not involve 
this problem because they have two distinct handles for implemented func­
tionality and implementing functionality. In 3-KRS, if programmers want 
a view in terms of the implemented functionality, they s hould refer to the 
base-level objects, but if they want a view in terms of the implementing 
functionality, they should refer to the associated metaobjects. Since there 
is no metacircularity, the base-level objects and the metaobjects are never 
conflated . The behavior of the metaobjects does not change depending on 
the metaobjects themselves. 

The Tiny CLOS MOP developed by Gregor Kiczales et al avoids imple­
mentation level conftation by partially giving up metacircularity. The Tiny 
CLOS MOP provides two different abstractions for per instance storage: 
slots and fields. Fields are a lower-level abstraction used to implement slots; 
they represent memory image allocated for implementing each object. The 
base-level Tiny CLOS programs never know the fields exist. 

In the specific example of the history class, the extension works bi al­
locating an extra field for each object. So, for example, point objects have 
two slots x andy; but they have three fields, for holding the x and y slots and 
the slot access log. The implementation of history-class in Tiny CLOS 
looks like: 

(defclass history-class (metaobject-for-class) 
(variable history-index) the index of the field that will 

; store the access log for instances 
; of the class 

; allocate an extra field and remember its index 
(defmethod compute-fields () 

(<- self history-index (<- self allocate-field)) 
(<- super compute-fields)) 

(defmethod read-slot (object slot- name) 
(let• ((index (<- self history- index))) 

(<- self set-field object index 
'((get ,slot-name) 

.~(<-self get-field object index)))) 
(<- super read-slot object slot-name)) 

(defmethod set-slot . . . ) ) 

Fields are accessed through the methods get -field and set-field, and 
each field· is specified by its index instead of its name. Fields have a more 
primitive naming mechanism in terms of indices. 

Again, this solution so lves the specific problems mentioned in the pre­
vious sectio n. Implementation level conflation is avoided because (1) no 
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"hidden"slot for t he accesses log is added, and (2) the access log stored 
in an object is retrieved t hrough t he lower- level methods get-field a nd 
set-field, which do not invo ke read-s lot recursively. Since t he Tiny 
CLOS MO P provides two distinct hand les, slots and fields, for implemented 
fun ctionali ty a nd im plement ing fun ctionali ty, programmers can select a n 
appropriate view by switching the handles . 

Unfortunately, this solu tion has signifi cant problems of its own which 
make it unsui table as a general solu t ion. F irst, t his solution loses ad van­
tages of metacircul arity. Because t he Ti ny C LOS MOP is not metacircul a r 
in terms of slots, progra mmers have to learn lower-level abstractions and 
wri t ing effi cient meta-level programs is diffi cult. Second , t his solution is 
only effective in t he presence of a single extension to slot fun ctionali ty. If, 
for example, someone wa nted a n additional extension (i.e. to store t he ol:>­
jects in a persistent database [47]) there would still be conflation. T his is 
because in such a situation there needs to be (at least) three views. The 
view of persistent objects with a slot access his tory, built on top of the 
view of persistent objects, buil t on top of ordinary objects. But the Tiny 
CLOS MOP provides only two levels, so there will still be some confla tion. 
To avoid implementation level confta tion in n levels of implementation, the 
MOP must provide support for n different views. 

5.3 The Meta Helix Architecture 

T he com mon idea underlying t he two unsatisfactory solutions is to distin­
g uis h t he implemented and implementing functionality by using a different 
"ha ndle" for each. In t he firs t proposed solution , the objects are th e ha ndle 
to t he implemented functionality, a nd th e cl ass metaobject is the handle to 
t he implementing functionali ty. In the second proposed solution , slots are 
th e ha ndle to the implemented fun ctionality, while fields are the hand le to 
the implementing functionality. 

Bu t the problem with both of these solu t ions is that the benefits of 
metacircul arity is destroyed by the fact that the two ha ndles are distinct 
a bstractions. The idea of our proposed solution is to address its problem by 
prov iding two ha ndles, but to reta in t he benefi ts of metacircula rity by th e 

p1• - point• 
~ ~ (x y history) 

p1 - point 
(x y) 

____,.. instance-of 

-~ implemented-by 

Figure 5.1: Two handles with th e same a bstraction 
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use of t he same a bstraction for t he two hand les. For exam pie, in the case of 
the his tory- clas s extension, our solution has two class metao bjects, point 
and point• , to represent di ffe rent implementation levels (Figure 5.1). T he 
class point corresponds to the class in t he extended language, which keeps 
slot access histories, wh ile t he class point* corresponds to t he class in t he 
non-extended language, wh ich is used to implement t he extend ed one. 

Note t hat t he two handles indicate t he same ent ity. Fo r example, the 
class poi nt and the cl ass point• corresponds to the same class. T hey 
are just han dles to distinct views of t he same entity as slots and fields are 
hand les to distinct views of per-instance sto rage in the T in y CLOS MO P. 
point is t he handle to t he implemented view a nd point • is t he ha ndle to 
t he implement ing view. 

Although t he two handles, such as point and point• , a re ofte n very sim­
ilar, the relationship between t he handles does not fi t t he usual subclass-of 
relationship. It cannot be either th e instance-of o r base-meta relation­
ships. To capture the relationship between t he two handles, we int rodu ce a n 
implemented-by rela tionship. In Figure 5.1, the class point is implemented­
by t he cl ass point• , and the object pl is implemented- by t he object pl*. 
The objects pl a nd pl* are insta nces-of point and point• , respectively. 

If th e im plemented-by relationship is used , the pro blems by implementa­
tion level co nfl ation can be easily solved . First , the programmer who want 
to ask what slots a cl ass has can obtain an appropriate res ul t : 

> (class-slots (find-class 'point)) 
(X Y) 
> (class-slots (implemented-by (find-class 'point ))) 
(HISTORY X Y) 

Second , t he method read-slot becomes more simple and easy to read . No 
ad-hoc techniques for avoiding infinite recursion a re needed any more: 

(defmethod read-slot (object slot-name) 
(let ((object• (implemented-by object))) 

(<- object• history 
'((get ,slot-name ) .~(<- object• history))) 

(<- super read-slot object slot-name))) 

Note t hat read-slot is t he method fo r not t he cl ass metaobject for point• 
but t he class metaobject for point. The behav ior of t he object pl , whi ch 
has slots wi t h histo ry, is contro lled by t he class metaobject for point . 

Our choice of t he na me meta-heli x for t his archi tect ure is best seen when 
t hinking in terms of t he rela tion between hand les t hat t he d iffe rent solu­
tions use. As s how n in Figure 5.2, in th e pure metacircul ar approach, the 
implementation loops directl y back onto itsel f- leadin g to confl atio n. In 
the Tiny CLOS approach, th e implementation ma ps between two distinct 
function alities-leading to added complexi ty. In t he meta-helical app roach, 
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plain slots 

~tory slots 

Meta Helix 

Figure 5.2: The implementation relation between interfaces 

the implementation spirals between two distinct handles of (nearly) identi­
cal functionality-preserving what is good about the metacircular approach, 
while still reifying the distinction that prevents conflation of implementation 
levels. 

Similarly, the meta hel ix works when there are more than two imple­
mentation levels . So, for example, in the case of the persistent histo ry class 
mentioned in the previous section, we can create the three levels that are 
needed to maintain separate views, and relate them using implemented-by 
relationships. This is shown in Figure 5.3, which illustrates the helical na­
ture of this architecture. 

While distinguishing implementation levels, the meta helix archi tecture 
preserves the benefits of metacircularity because the meta helix architecture 
is a super set of the metacircular architecture. Except the implemented-by 
relationship, the meta helix arch itecture is quite identical to the metacircu lar 
a rchi tecture. So, for example, unlike the Tiny CLOS MOP, programmers do 
not need to learn new abstractions such as fields to implement an extend ed 
concept of slots . Also, writing an efficient meta-level program is still easy. 

plain slots 

. history s lots 
persistent 
history slots 

A Three level Meta Helix 

Figure 5.3: The Meta l-l elix supports n implementation levels. 

5 .4 Implementing t he Meta H elix 

The OpenC++ MOP is based on the meta helix architecture. This sec­
tion first shows this fact, especially focu sing on how the OpenC++ reifies 

5.4. IMPLEMENTING THE META HELIX 61 

the implemented-by relationship. The way of realizing the implemented-by 
relationship is a main issue for implementing the meta helix architecture. 
Then this section shows how the implemented-by relationship shou ld be rei­
tied for the CLOS MOP. Through this example, we present that the meta 
helix arch itecture is applicable to not only the OpenC++ MOP but also 
other kinds of MOPs. 

The OpenC++ MOP is Meta-Helical 

In the Open C++ MOP, the implemented and implementing levels are natu­
rally separated; the implemented level is the original program before trans­
lation and the implementing level is the resulting program of the translation. 
To implement the meta helix arch itecture, therefore, we should be just able 
to distinguish classes in the original program from the classes in the result­
ing program, and relate the corresponding classes by the implemented-by 
relationsh ip. 

The implemented-by relationship in the OpenC++ MOP is reified with 
an aliasing technique, which we used to avoid implementation level con fl ation 
caused by the macro define in Section 5.1. To do this, the Open C++ MOP 
includes the following rule to be meta-helical: 

• Any class appearing in the original program must be renamed in the 
resulting program of the translation . 

This rule relies the implemented-by relationship . For example, in the exam­
ple of history classes, the class point shou ld be renamed point•. This alias­
ing gives programmers two handles to the implemented and implementing 
functionali ty. One hand le is the class point for the implemented function­
ality, and the other is the class point• for the implementing functionality. 
By switching th e two class names, programmers can avoid implementation 
level conflation. first, t hey are not confused by the introspect ive part of the 
MOP any more:3 

> (class-of 'point) 
(X Y) 
> (class-of 'point•) 
(X Y HISTORY) 

Also, the method read-slot is implemented without confusion in an intu­
itive way (This implementation uses nested backquotes for emphasizing the 
si mil arity to othe r versions of implementations. Although nested backquotes 
might make the program look complex, the complexity does not result from 
the meta helix.): 

3 Por making: Lhc arg:umenL clearer, we usc Lisp·style syntax to show an OpenC++ 
program. 
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(defmethod read-slot (env object slot-name) 
'(begin(<- ,object history 

'((get ,',slot-name) ,0(<- ,object history))) 
,(<-super read-slot env object slot-name))) 

For example, this method translates an expression: 

(<- pl x) 

into this expression: 

(begin (<- pl history 
'((get x) ,0(<- pl history))) 

(<- pl x)) 

Note that the type ofpl is not t he class point but the class point* after the 
translation. During the translation, all occurrences of the class name point 
are replaced with point•. Therefore, after the translation, the expression 
( <- pl history) is not recursively processed by the class metaobject for 
point. Rather, it is processed by the class metaobject for point• , which is 
a distinct metaobject and would be the default one. If programmers want 
to recursively process, they can declare that the type of pl is sti ll the class 
point. 

The Open C++ MOP also supports multiple implementation levels. The 
persistent history slots shown in Figure 5.3 can be implemented by just 
specifying a non-default metaclass persistent-class for point+. If the 
metaclass is not the default one, all the expressions involved with the class 
point• are recursively translated by the class metaobject for point+. This 
process is repeated until the metaclass becomes the default one. 

A Meta-Helical Version of the CLOS MOP 

The meta helix is applicable to other kinds MOPs such as the CLOS MOP. In 
the OpenC++ MOP, the implemented and implementing function ality are 
naturally separated into the original program and the translated program. In 
the CLOS lv!OP, however, the implemented and implementing functionality 
coexist in the same runtime environment. So we need a different technique 
to reify the implemented-by relations hip. 

\Ve present that delegation works for reifying the implemented-by rela­
tionship for the CLOS MOP. In a meta-helical version of the CLOS MOP, 
a class metaobject is responsible for defining the class that will implement 
it. The class metaobject for point will produce a class point• equivalent 
to the definition: 

(defclass point• () 
(variable x y history)) 
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As in the OpenC++ MOP, the class point* is the handle to the imple­
menting functionality. The class metaobject for point delegates most of its 
work to the class metaobject for point•. For example, when an instance of 
point is created, the class point asks the class point• to create a point• 
object. The primitive function implemented-by on a point object returns 
the point• object. The slot access primitive read-slot is then specialized 
by the class metaobject for point. Its implementation is: 

(defmethod read-slot (object slot-name) 
(let ((object• (implemented-by object))) 

(<- object• history 
'((get ,slot-name) ,0(<- object• history))) 

(<- super read-slot object slot-name))) 

The method read-slot first gets the implementing object object• for that 
object and then updates its history slot . The method finally invokes 
read-slot supplied by the su per class, which delegates the actual work 
of implementation to the class metaobject for point•. 

5.5 Summary 

This chapter presented a new analysis of a problem that a rises in existing 
metacircular systems. This analysis shows how pure metacircularity causes 
confusion when there are not clearly distinguished views of the implemented 
and implementing functionality. We call this problem implementation level 
conflation. This chapter first shows an example of the confusion in Lisp 
macros1 which is a simple metacircular system. Then it shows a more serious 

example with the CLOS MOP. The confusion makes troubles for both the 
users of the language extension a nd the implementor of the extension . 

Because of implementation level conflation, we did not adopt the pure 
metacircular architecture for the OpenC++ MOP. Although implementa­
tion level confl ation does not reduce the capability of the MOP for process­
ing programs, it severely impacts the elegance of the design of the MOP. The 
elegance is a sign ifi cant matter because making it really easy for progarm­
mers to prod cess programs is one of the design goals of metaobject protocols 
in general. 

To avoid implementation level conflation while keeping benefits of metacir­
cularity, we have developed a improved metacircular architecture, named the 
meta helix , for the OpenC++ MOP. It addresses the problem by providing 
two distinct ha ndles to the implemented and implementing functionality 
while keeping benefits of metacircularity by using the same abstraction for 
the two handles. Programmers can enjoy mctacircularity and, if ncedcd

1 

switch the handles to distinguish the implementing level from th e imple­
mented level. The meta helix is not only for the OpenC++ MOP but also 
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other kinds of MOPs. To show this, th is chapter also presented a meta­
helical version of the CLOS MOP. 

Chapter 6 

Libraries In OpenC++ 

Because of the abi lity for context-sensitive and non-local processing, the 
OpenC++ MOP makes it possible to include useful control/data abstrac­
tions in a library and, if it is already possible in regular C++, to implement 
the abstractions more efficiently. This chapter illustra tes examples of li­
braries that the OpenC++ MOP ena bles but regul ar C++ does not. 

The firs t two examples show abstractions that the Open C++ MOP en­
ables, and the next example presents that we can write a class li brary for 
metaclasses and make it easier to write similar metaclasses. Then, we men­
tion that t he Open C++ MOP is also effective for meta- level programming. 
A few abstractions provided by the OpenC++ MOP for meta-level pro­
grammers are implemented by the MOP itself. Finally, we s how examples 
of abst ractions that t he Open C++ MOP can make effi cient. 

6.1 Named Object Library 

The OpenC++ MOP makes it possible to implement th e named object 
library that we presented in Chapter 2. With this libra ry, the users can get 
t he class name of a n object at runtime. For example, the use rs may write 
something like t his: 

class Complex : public NamedObject { 
public: 

double r, i; 
}; 

void f(Complex• x) 
{ 

cout << 11 X is "<< x->ClassNarne() ; 
} 

If invoked , a fun ction f() displays "x is Complex" . 
To implement this library, the developer needs to write two kinds of 

programs: a base- level program and a meta-level program . The base- level 

65 
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program defines a library class NamedObject and it is linked with the user 
program . The meta-level program defines a metaclass for processing the 
user prog ram. We first show the base-level program : 

metaclass NamedObject : NamedObjectClass; 
class NamedObject {} ; 

The base-level program defines a li brary class NamedObject. Also, th e pro­
gram declares that the metaclass of NamedObject is NamedObjectClass. 
Note that the class NamedObject does not include the member function 
ClassName(). It is automatically inserted to NamedObject and its subclasses 
by the meta-level program. For example, the subclass Complex defined by 
the library user is translated by the meta- level program into: 

class Complex : public NamedObject { 
public: 

double r, i; 
virtual char• ClassName() { return "Complex"; } 

}; 

The meta-level program defin es the metaclass NamedObjectClass, wh ich 
performs t he translation mentioned above. Since a subclass of NamedObj ect 
inherits the metaclass from NamedObject, the metaclass NamedObjectClass 
controls the translation on the class Complex as well although there is no 
ex plicit metaclass declaration. The definition of NamedObjectClass is as 
follows: 

class NamedObjectClass : public Class { 
public: 

}; 

NamedObjectClass(Ptree• d, Ptree• m) 
Ptree• TranslateBody(Environment• env, 

} 

Ptree• mf = Ptree::qMake( 
11 public: 11 

"virtual char• ClassName() {" 
'' return \'''Name()'\ 11

;
11 

n}\nu); 
return Ptree::Append(body, mf); 

Class(d, m) {} 
Ptree• body){ 

This metaclass overrides the member function TranslateBody() , which is 
invoked to translate members included in a class declaration. The overrid­
de n member function just constructs a Ptree metaobject that represents 
t he member function ClassName(), and appends it to the other members. 
Ptree: :qMake() is a member function provided by the OpenC++ MOP. 
It constructs a Ptree metaobject accord ing to the given form at. Unlike 
a similar fun ction Ptree: :Make() , it com putes an exp ression a ppearin g in 
the form at if the exp ression is s urrounded by back-q uotes ( ' ). In th e exam­
ple a bove, Name() is computed at compile time a nd the resu lt ing value is 
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embedded in the constructed Ptree metaobject . Name() returns the name 
of the class metaobject. The difference between qMake () and Make() is 
analogous to the difference between the back-quote notation a nd the quote 
notation in Lisp (As for the back-quote notation, see Appendix A). We show 
the implementation of qMake() later in th is chapter since its implementa­
tion needs the Open C++ MOP; The member function qMake () cannot be 
implemented in regular C++. 

To use this library, programmers first need to compi le the meta-level 
program by the Open C++ compiler, and then they have to link the compiled 
code wit h t he original OpenC++ compi ler. Suppose that the file name of 
the meta-level program is nameclass. cc: 

I. occ -- -o myocc opencxx .a narneclass.cc 

The resu lting executable module myocc is an extended OpenC++ compiler 
with which programmers can use the metaclass NamedObjectClass. The 
linked archive opencxx . a is a n archive including the original Open C++ 
compiler occ. 

The libra ry users compile their program by myocc. For example, to 
com pile a source fil e complex. cc, the users may say something like this: 

'l. myocc complex.cc 

This com mand compiles complex.cc by the extended OpenC++ compiler 
a nd produces a n executable module . 

6.2 Distributed Object Library 

Dist ributed objects are a nother example of data abstractions t hat reg ul ar 
C++ cannot include in a libritry. This section illustrates how the Open C++ 
MOP works for including this abstraction in a library. This example needs 
more member functions to be inserted in library users' classes by a metaclass. 
Hence, through this example, we illust rate how to usc various metaobjects 
like a Typeinfo metaobject for meta- level progra mming. 

Developing a library with the OpenC++ MOP follows three steps: (1) 
determine \\"hat a user prog ram s hould look like, (2) figure out what the user 
program should be translated into and what runtime library is needed to 
run the translated program, and (3) write a meta-level program to perform 
t he translation a nd also write the necessary run time library. We present the 
implementation of the dist ributed object library in the o rd er of the three 
steps. 
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What the user program should look like 

The distributed object library helps the users write a program with dis­
tr ibuted objects. The users shou ld be able to define a distributed object as 
easy as they define a non-distributed object. 

For example, the users write something like this code: 

metaclass Rectangle : DistributionClass; 
class Rectangle { 
public: 

}; 

Rectangle(int l, int h) { length = l; height = h; } 
int Stretch(int l, int h) { 

} 
length += l; height += h; return length * height; 

int length, height; 

Note that a class Rectangle turns to a class for distributed objects by just 
putting a metaclass declaration. 

Once putting the declaration, the user can create a Rectangle object on 
a server machine and access it from a client machine without concern of t he 
location of the object: 

I I server side 
main() 
{ 

} 

Rectangle* r =new Rectangle(3, 4); 
Export(r, ''rect", Rectangle); 
Server Loop() ; 

This program first creates a Rectangle object and then exports the object 
for clients. The (macro) func t ion Export() is a library function for exporting 
a distributed object with a global name. The first argument is the exported 
object, the second argument is the global na me, and the third argument is 
the type name of the exported object. In the example above, a Rectangle 
object r is exported with a global name "rect". The function ServerLoop () 
is another library function , which starts waiting for requ ests from a cli ent. 
The se rver program has to call this libra ry func tion after all distributed 
objects a re ready. 

After ServerLoop() is called, the client program can freely access th e 
distributed object on the se rver machine: 

I I client side 
main() 
{ 

} 

StartupClient("calvin"); 
Rectangle• obj = Import("rect", Rectangle); 
cout « "new size: " « obj->Stretch(1, 3); 
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The client program first calls a li brary function StartupClient (), which 
connects the client to the server machine specified by the argument. In the 
example above, the client con nects to the server machine named "calvin". 
Then the client program im ports a distributed object from the server by a 
library (macro) fun ction Import(). Once the distributed object is imported, 
the client program can deal with the object in the same way that it deals 
with ordinary objects . 

What the user program should be translated into 

To run the user program shown above, the meta-level program of the li­
brary needs to translate t he user program and inserts marshalling and un­
marshalling code. The marshalling code converts function arguments into 
a byte stream so t hat lower-level func tions can handle and send them to a 
remote machine. The unmarshalling code performs the reverse conversion . 

First , the member fun ction call appearing in the client program s hould 
be translated so that marshalling code is inserted . The underlined code in 
the origin al client program: 

I I client side 
main() 
{ 

} 

StartupClient(••calvin 11
); 

Rectangle* obj = Import("rect", Rectangle); 
cout <<"new size: '' << obj->Stretch(1, 3); 

should be translated in to this: 

I I client side 
main() 
{ 

} 

int i; 
StartupClient("calvin 11

); 

Rectangle* obj = Import("rect", Rectangle); 
cout << "new size: '' 

<< (i = O,•(int•)&m8uf[i]=1,i+=sizeof(int), 
•(int•)&m8uf[i]=3,i+=sizeof(int), 
CallRemote(i,obj,2)); 

The substitu ted code show n by the underline copies two integer a rguments 
1 a nd 3 into an a rray of cha racters mBuf. This co pying involves type conve r­
sion.' The variable i means t hat t he size of the co pied a rguments. T hen, 
a library function CallRemote() is ca lled for send ing the a rguments stored 

1Thc type conversion shown abo\'c assumes that all machines arc based on the same 
a•-chitcc turc. Par real systc l!l s, it. shou ld absorb difference between architectures, such as 
little cndian and big cndian. 
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in mBuf to the server machine. CallRemote() deals with the arguments in 
mBuf just as a simple byte stream. Since the implementation of the mar­
shalling code depends on the signature of Stretch(), it should be inserted 
by the meta-level program . 

At the server side, unmarshalling code needs to be inserted. The user 
program shou ld be translated into the following program: 

class Rectangle { 
public: 

} ; 

Rectangle(int 1, int h) { length = 1; height = h; } 
int Stretch(int 1, int h) { 

} 
length += 1; height += h; return length • height; 

int length, height; 
void Dispatch(int•, void•, int); 

void Rectangle::Dispatch(int• buf, void* obj, int member) 
{ 

} 

switch(member){ 

case 2 : I I if Stretch() is called 

}; 

{ 
int s 0; 
int pl = •(int•)&buf[s]; 
s += sizeof(int); 
int p2 = •(int•)&buf[s]; 
s += sizeof(int); 
•(int•)buffer = ((Rectangle•)obj)->Stretch(pl , p2); 

} 
break; 

After the translation, a member fun ction Dispatch() is appended to the 
class Rectangle. Dispatch() is used to in vo ke a member fun ction for a 
distributed object when a client program calls the member function. It 
receives a byte stream {buf), a pointer to the object {obj), a nd a n integer 
indicating the called member function (member) . It unmarshals the byte 
st rea m to function arguments according to the value of member , and in vokes 
t he called member function with the unm a rshalled arguments . Note that 
the unm a rshalling code a lso depends on the signatu re of the call ed function 
a nd hence it needs to be produced by the meta-level program. 
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Write a runtime library 

After determining what a user program should be translated into, the library 
developer writes a runtime library that the translated user program uses to 
run. It is an ordinary li brary written in regular C++ and includes such 
functions as Export(), Import(), ServerLoop(), CallRemote(), and so 
on. We show the implementation of the runtime library in Appendix C.l. 
The readers who are interested in details may see it. 

Write a meta-level program 

The rest of the work that the developer has to do is to write a meta-level 
program for the translation mentioned above. The meta-level program de­
fines the metaclass DistributionClass, which overrides member functions 
TranslateSelf () and TranslateMemberCall () inherited from the default 
metaclass Class. TranslateSelf () controls the translation of a class def­
inition and TranslateMemberCall () controls the translatio n of a member 
function call expression . Since the whole meta-level program is about a hun­
dred lines, we show it in Appendix C.l and here present just highlights of 
the program. 

The role of the overridden TranslateSelf () is to produce a member 
function Dispatch() and inserts it into the user program. This is the im­
plementation of TranslateSelf (): 

Ptree• DistributionClass: :TranslateSelf(Environment• env) 
{ 

} 

Ptree• name; 
Typeinfo t; 
int i; 
Ptree• code = nil; 
for(i = 0; (name= NthMemberName(i)) !=nil; ++i){ 

Ptreeid whatis = name->Whatis(); 

} 

if(whatis != LeafClassNameid 

{ 

} 

&& whatis != PtreeDestructorid 
&& LookupMemberType(env, name, t) 
&& t .Whatis() == FunctionType) 

code= AppendDecoder(code, name, i, t); 

AppendAfterToplevel(Ptree: :qMake( 
11 void 'Name()': :Dispatch(int* buf, void• object,'' 

"int rnember){\n 11 

"switch(member){\n 'code' }}")); 

return Class: :TranslateSelf(env); 

T his mem ber function calls AppendDecoder() for eve ry member function 
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that the translated class has. In t he whil e loo p, each member is retrieved 
by NthMemberName() and t he ty pe of th e member is examined to determine 
whether the member is a member functio n or a data member. The member 
type is represented by a Type I nfo metaobject t re turned by LookupMember­
Type(). If t he mem ber is neit her a data member, a const ructor, or a destruc­
tor, t hen the member function AppendDecoder() is called for the member. 
AppendDecoder () produces a ca s e block and appe nds it to code . For ex­
a mple, AppendDecoder () produces t he following code for t he Stretch() 
me mber funct ion: 

cas e 2 : 
{ 

} 

int s = 0; 
int pl = •Cint•)&buf[s]; 
s += s izeof(int); 
int p2 = •(int•)&buf[s]; 
s += sizeof(int); 
•(int•)buf = ((Rectangle•)obj)->Stretch(p!, p2); 

break ; 

T he code produ ced by AppendDecoder() is included by the implementa tion 
of Dispat ch() , which is event ually inserted by AppendAfterToplevel () 
just after t he t ransla ted class definition. 

Typeinfo metaobjects a re also used in AppendDecoder() . For example, 
t he following for loop is part of AppendDecoder(): 

Type info atype; 
f or ( i = 0; t . NthArgument(i, atype); ++i ) { 

Ptree• argtype = atype.MakePtree(); 
code = Ptree: :Snoc(code, Ptree: :qMake( 

"'argt ype' p'i' = •C'argtype'•)&buf [s ] ; \ n" 

} 
"s += sizeof('argtype');\n")); 

This for loo p uses Type Info metaobjects to produce th e code for retrieving 
argume nts fro m a network message s tored in buf. The va ri able t is the 
Type Info metaobject for the ty pe of the processed mem ber function . Note 
t hat the ty pe of each arg ume nt is o btained by calling NthArgument () for 
t his metaobject. MakePtree () is a nother important member fun ction of 
Typeinfo. It conve rts t he Typeinfo metaobject to a Ptree metaobject 
t hat represents t he ty pe na me. In t he code show n a bove, MakePtree() is 
used to obta in th e ty pe na me of each a rg um ent. 

T he meta class DistributionClass a lso ove rrides TranslateMemberCall (), 
which t ranslates a. member function call ex pression. For exa mple , it t rans­
lates an ex pression in the user program: 

obj->Stretch(!, 3) 
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in to someth ing li ke t his ex pression: 

int i; 

(i = O,•(int• ) &mBuf[i]=!,i+=sizeof(int ) , 
•Cint• ) &mBuf[i]=3,i+=sizeof(int ) , Ca llRemote( i, obj,2 )) 
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The implementation of TranslateMember Call() is similar to t he implemen­
tation of AppendDecoder (). It uses Type I nf o metaobjects and produces an 
ex pression t hat converts function a rgu ments to a networ k message stored in 
mBuf : 

Ptree• DistributionClass::TranslateMemberCall( 
Environment* env, Ptree• object, 
Ptree• op, Ptree• member, Ptree• arglist) 

{ 

} 

Typeinfo ftype, atype; 
int id = IsMember(member); 

Ptreeiter next(Ptree: :Second(arglist)); 
Ptree+ code = nil; 
Ptree• tmp = Ptree: :GenSym(); 

env-> InsertDeclaration(Ptree: : qMake(" int ' tmp' ; ")); 
LookupMemberType (env, member , ftype); 
for(int i = 0; ftype . NthArgument(i, atype); ++i){ 

Ptree• p = next(); 

} 

Ptree• tname = atype .MakePtree(); 
code = Ptree: :Snoc(code, Ptree: :qMake ( 

"* ( ' tname' * )&-mBuf [' tmp '] rr 

'';;;: 'Trans l ateExpression(env, p)' , 11 

11 'tmp' += sizeof('tname') , " )); 
next(); I I skip , 

return Ptree: : qMake ( 11 
( 'tmp' =0, 'code' rr 

"CallRemote('tmp', 'object', 'id'))'1 ); 

This member fun ction firs t inse rts a varia ble declaration in t he processed 
program by calling Ins ertDeclaration() for env. T his declares a tem po­
ra ry vari able used in t he t ra nslated expression. The name of t he temporary 
vari a ble is given by calling Ptree: : GenSym() . Then Translat eMemberCall ( ) 
looks up t he type of t he call ed member fun cti on and produces t he code fo r 
convertin g fun ction argum ents to a netwo rk message. The prod uced code is 
fin a lly connected with ot her code a nd retur ned as th e res ult of th e tra nsla­
t ion. 



74 CHAPTER 6. LIBRARIES IN OPENC++ 

6.3 Wrapper Library 

Since a sim il ar kind of abst raction often requires simila r code translation, 
programmers may write a library to help meta-level programming for the 
similar code translation . Such a library shou ld be called a metaclass library. 
In th is section, we present an example of metaclass libraries. 

A wrapper function is a useful technique for implementing abstractions 
such as concurrent objects . It is a function that wraps another function in 
itself and, if in voked, simply calls the wrapped function . But it may also 
performs some computation before or afte r calling it . For example: 

int f(int i) { return i + 1; } 

int wrap_f(int i) { 
cout « "f() is called. \n" 
return f(i); 

} 

Here, wrap..f() is a wrapper function fo r f(). It prints a message and then 
calls the wrapped function f (). 

A number of abstractions can be implemented by metaclasses that pro­
duce wrappers for all member fun ctions of a class. Suppose that a metaclass 
MyWrapperClass does such a thing. This metaclass translates the user pro­
gram shown below: 

metaclass Point MyWrapperClass; 
class Point { 
public: 

void Move(int, int); 
void rMove(int, int); 
int x, y; 

}; 

void Point: :Move(int new_x, int new_y) { 
x = new_x; y = new_y; 

} 

void Point::Move(int diff_x, int diff_y) { 
x +; diff_x; y +; diff_y; 

} 

void f(Point& p) 
{ 

} 

p.Move(3, 5); 
p.rMove(-1, 2); 

I I call Move() 
I I call rMove() 

in to the following program including wrapper functions for Move() and 
rMove(): 
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class Point { 
public: 

void Move (int, int); 
void rMove(int, int); 
int x, y; 

public: 

}; 

void wrapper_Move(int, int); 
void wrapper_rMove( int, int ); 

void Point: :Move(int new_x, int new_y) { ... } 

I I inserted wrapper function for Move() 
void Point: :wrapper_Move(int p1, int p2) 
{ 

} 

cout « "Move() is called. \n"; 
Move(p1, p2); 

void Point::rMove(int diff_x, int diff_y) { .. . } 

I I inserted wrapper function for rMove() 
void Point: :wrapper_rMove(int p1, int p2) 
{ 

} 

cout « "rMove () is called. \n"; 
rMove(p1, p2); 

void f(Point& p) 
{ 

} 

p. wrapper _Move (3, 5); I I call the wrapper 
p.wrapper_rMove(-1, 2); II call the wrapper 
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Note that a ll occurrences of member calls for Point objects are substituted 
by the call of the wrapper fun ction. For example, th e call of Move() in f () 
is s ubstituted by the call of th e wrapper function. 

This kind of wrapper metaclass is found in implementations of many 
abstractions. The translation by those wrapper metaclasses are quite s imi­
la r and the only difference is what the produced wrapper functions perform 
before or after calling the wrapped functions . For exam ple, t he wrappers 
s hown above just print a message, bu t, if they instead perfo rm synchro­
ni zation before calling the wrapped func tion , then Point objects will be 
concurrent objects. 

A meta- level program using a metaclass library 

Since \\'ra ppe r metaclasses like MyWrapperClass arc quite sim il a r to each 
other, we s hould write a base class of these metaclasses a nd provide it as a 
metaclass libra ry. Libra ry developers can make their wrapper cl asses inherit 
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from the base class and focus on what the wrapper functions perform before 
or after calling the wrapped function. 

Let the name of the base class be WrapperClass. With the metaclass 
library, MyWrapperClass shou ld be defined by the following simple code: 

class MyWrapperClass : public WrapperClass { 
public: 

}; 

MyWrapperClass(Ptree• d, Ptree• m) : WrapperClass(d, rn){} 
Ptree• WrapperBody(Environment•, Ptree•, Ptree•, int, 

Typeinfo&); 

Ptree• WrapperBody(Environment• e, Ptree• name, Ptree• wrapper, 

{ 

} 

int nargs, Typeinfo& ftype) 

Ptree• body= Class: :WrapperBody(e, name, wrapper, nargs, 
ftype); 

return Ptree::qMake( 
11 Cout << \ 11 'name'() is called.\nV•;'body'••); 

Note that the metaclass MyWrapperClass inherits from WrapperClass and 
ove rrid es only a member function WrapperBody(), which produces the body 
of a wrapper function. The base cl ass perfor ms the rest of the translation, 
which is to insert th e declarations of wrapper functions, to replace all oc­
currences of member calls with calls of the wrapper functions, and so forth. 

A metaclass library 

T he metaclass WrapperClass provided by t he metaclass library needs to 
execute three things: (1) to inse rt wra pper fun ctions in the user program , (2) 
to substitute calls of wrapper functions for calls of the wrapped functions, 
a nd (3) to provide a member function that a subclass of WrapperClass 
can override for specifying the behav ior of wrapper function s. We below 
present overviews of how the three things a re implemented. The complete 
implementation of WrapperClass is found in Appendix C.2. 

For (1), WrapperClass overrides two member functions . One is Trans­
lateBody() , which controls the translatio n of a class definition. It is over­
ridden to insert the declarations of wrapper functions in the cl ass definition. 
For example, the defi nitio n of t he cl ass Point is t ra nslated into this code: 

class Point { 
public: 

void Move (int, int ) ; 
int x, y; 

public: 
~id wrapper_Move(int, int); 
}; 
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The underlined code is the inserted declaration . To do this translation, 
TranslateBody () examines each member of the class and if the member 
is a fun ction , it inserts t he declaration of the wrapper f~nction for that 
member: 

Ptree• WrapperClass: :TranslateBody(Environment• env, Ptree• body) 
{ 

Ptree• decl = Ptree : :qMake("public: \n") ; 
Ptree* name; 
Typeinfo t; 
int i = O· 
while((n~e = NthMemberName(i++)) != nil){ 

Ptreeid whatis = name->Whatis(); 
if(whatis != LeafClassNameid 

} 
} 

&& whatis != PtreeDestructorid 
&& LookupMemberType(env, name, t) 
&& t.Whatis() == FunctionType){ 

Ptree• m = t.MakePtree(WrapperName(name)); 
decl = Ptree: : qMake ( 11 'decl' 'm' ; \n 11 ) ; 

} 
return Ptree: :Append(body, decl); 

Here, the member fu nction WrapperName() a member function of the class 
WrapperClass. It returns the name of the wrapper function for the given 
member fun ction. 

The other member function overridden by WrapperClass is Translate­
MernberFunctionBody() , which translates the body of a member function. 
It is overridd en to produce the definitions of wrapper functions. For exam­
ple, TranslateMemberFunctionBody() processes t he definition of a mem­
ber function Move() and inserts the definition of th e wrapper fun ction 
wrapper _Move() right afte r Move(): 

void Point: :Move(int new _x, int new_y) 
{ 

} 
x = new_x; y = new_y; 

void Point: :wrapper_Move(int pl, int p2) 
{ 

} 

cout « "Move() is called. \n"; 
Move(pl, p2); 

Translat eMernberFunctionBody() constr ucts t he defi ni t ion of wrapper­
_Move() frolll th e Typeinfo lll etaobject for th e type of Move(). l'irs t , it 
de rives a rgn lll ent types and the return type from that Type info llletaol>­
ject and converts th ose types to Ptree metaobjec ts by calling MakePtree(). 
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Then it assembles the converted Ptree metaobjects with the wrapper name 
and the body of the wrapper function, and const ructs t he complete definition 
of wrapper ...Move (). The overall structure of TranslateMemberFunct ionBody () 
is as follows: 

Ptree• WrapperClass::TranslateMemberFunctionBody( . . . ) 
{ 

} 

Ptree• arglist = argu ment list of the wrapper function 

Ptree• body 
Ptree• head 

WrapperBody(env, name, wrapper_name, i- 1, t); 
Ptree: : qMake ( 

'''Name()' : : 'wrapper_name ' ( 'arglist ' ''); 

AppendAfterToplevel(Ptree :: Make( " 'head'{'body'}\n")); 
return Class: :TranslateMemberFunctionBody( .. . ); 

The produced definition of wrapper ...Move() is inserted by calling Append­
AfterToplevel (). Note that Trans lateMemberFunctionBody() calls Wrap ­
perBody() to make a function body so that (3) a subclass of WrapperClas s 
can override it and specify the behavior of wrapper functions. The defaul t 
WrapperBody() s upplied by WrapperClass returns an expression that just 
calls the wrapped function. 

Finally, we show TranslateMemberCall () , which WrapperClass over­
rid es for (2). It substitutes calls of wrapper fun ctions for calls of t he wrapped 
function s. To do this substitution , it just calls TranslateMemberCall() 
s upplied by Class with the name of a wrappe r function: 

Ptree• WrapperClass::TranslateMemberCall(Environment• env, 

{ 
Ptre e• member , Ptree• arglist) 

} 

return Cl ass::TranslateMemberCall(env, WrapperName (member), 
arglist); 

Note that the second argum ent to TranslateMemberCall () supplied by 
Class is not the name of the wrapped fun ction, that is, member, but the 
name of the wrapper function. Thus a member function call for a wra pper­
class object: 

p.Move(3, 5) 

is translated into this ex pression: 

p.wrapper_Move(3, 5) 
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6.4 Implementation of qMake() 

The OpenC++ MOP provides a member function Ptree: :qMake() (quoted 
make), which constructs a Ptree metaobject according to the given format. 
Although this member function is more convenient than a simi lar mem­
ber fun ction Make() , it cannot be implemented within regu lar C++, but 
requ ires meta-level programming to be implemented. Without meta-level 
programm ing, only Make() is available. 

The implementation of qMake () is an example of meta-meta level pro­
gram ming in OpenC++. T he OpenC++ MOP uses itself to implement 
metaobjects and their member functions such as qMake (),so that t he Open C++ 
MOP provides better abstractions and programming in terface fo r program­
mers to write metaclasses. T hrough this example, we present that Open C++ 
can naturally deal with meta-meta level programming a nd it act ually uses 
meta-meta level programmi ng for implementing abstractions that make it 
easier to write metaclasses . 

What the user program should look like 

Recall the usage of qMake (). If a variables tmp is a pointer to a Ptree 
metaobject representing a variable name xyz , and a vari able i is a n in teger 
3, then programmers may write something like this: 

Ptree* exp = Ptree: : qMake ( 11 int 'tmp' = 'i' ; 11 ) ; 

Th is program constructs a Ptree metaobject "int xyz = 3" . The expres­
sions su rrounded by back-quotes are expanded when qMake() is in voked. 

The program shown above can be rewri t ten in to a prog ra m using Make (): 

Ptree• exp = Ptree: :Make("int 'l.p = 'l.d", tmp, i); 

Unlike qMake() , Make() takes a format and some parameters, which are 
substituted for the occurrences of 'l.p a nd 'l.d in the form at. This kind of 
programming interface is popular in C and C++ , but it becomes error­
prone as the number of parameters increases. Typical errors caused by this 
interface are to give a wrong number of para meters and to place parameters 
in a wrong order. 

What the u ser progra m s hould b e translate d into 

Function ca lls of qMake() a re translated in to a combin ation of several func­
tion ca lls . For example, this program : 

Pt ree• exp = Ptree: :qMake(" int 'tmp' C i C ; II); 

is translated in to: 
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Ptree• e xp ;:; (Pt r ee* ) (Pt r eeHead () +11 int 11 +tmp+ 11 = ''+i+ 11
; 11

) ; 

Note t hat t he program after t he t rans latio n is in regula r C++. For ex­
ample, t he cha racter s t ring "tmp" becomes a vari able name tmp a fte r the 
translation . Since regu la r C++ cannot convert a cha racter st ring to a va ri­
able name at ru ntime, th e con version should be done by the translation a t 
co mpile time. 

Ptr eeHead() returns a PtreeHead object, wh ich is a stream object pro­
ducing a Ptree metaobject . T he + operator is used to input a cha racter 
string, a Ptree metaobject , and so o n, to th e st ream object . The inpu tted 
data are concatenated into a Ptree metao bject, and the concatenated Pt r ee 
metaobject is obtained by explicit ly castin g t he PtreeHead object into t he 
type Ptree•. T he cast operator is overloaded to return t he conca tenated 
Ptree metaobject. 

Write a meta-level program 

Wri t ing a metaclass fo r performing th e translation ment ioned above is quite 
straightforward. To do this t ransla tion, the metaclass QuoteClass just over­
rides a member fun ction TranslateMemberCall (): 

Ptree• QuoteClass: :TranslateMemberCall(Environment• env, 

{ 

} 

Ptree• member, Ptree+ args) 

Ptree• name 
char* str; 

SimpleName(member); 

if (Ptree : : Eq (name, "qMake")) { 

} 
else 

Ptree• arg1 = Ptree: :First(Ptree : :Second(args)); 
if(arg1->Reify(str) && str != nil) 

return Pr ocessBackQuote(FALSE, str); 
e l se 

ErrorMessage("bad argument for qMake()" , arg1); 

return Class: :TranslateMemberCal l (env, member, args); 

This member fun ction translates a given fun ction-call expression if th e called 
functio n is qMake(), otherwise it delegates the tra nslation to the member 
fun ction supplied by th e base class Class . 

Since th e a rgum ent member may be not a simple member na me bu t a 
q ua lified na me such as Ptree : : qMake( ) , Transla teMemberCall 0 firs t calls 
SimpleName () to st rip t he class na me and do uble colons o iT: 

Pt r ee • QuoteClass: :SimpleName (Ptree • qualified_name) 
{ 

if(qualified_name-> I sLeaf()) 
r eturn qualified_name; 
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el s e 

} 
r etur n Ptree: :Fi rst(Ptree: :Las t( qua l ified_name)); 

After t hat, Trans l ateMemberCall () determi nes whethe r the mem ber name 
is qMak e, and if so, it converts t he first argument from a Pt re e metaobject 
to a cha racter stri ng . This conversion is done by calling Re ify () for a r g l. 
Then Transla teMemberCall () calls ProcessBackQuot e() wit h the con­
ve rted characte r st ri ng to t ra nslate the member-call expression. Pr ocess­
BackQuot e() is a me mber function of QuoteClas s. 

6 .5 Metaclass 

Only the implementation of qMake () is not an exam ple of use of meta-meta 
level programming. T he defa ul t metaclass Class and its s ubclasses a re a lso 
implemented with using meta-meta level prog rammi ng , so t ha t p rog ra mmers 
can easily define a new metaclass. For this reason , th e metaclass Class 
a nd its subcl asses a re also class metaobjects, and th ey a re ins ta nces of the 
metaclass Metaclas s . F igure 6.1 shows t his instance-of relationshi p. 

subclass- of 

·~ ~ 
Metaclass ..... .. .. .. Class ..... .. Point ...,. .... · pO 

instance-
of 

Fig ure 6.1: T he instance-of rela tionship amo ng metaclasses 

P r otocol w ithout meta-meta level p r ogramming 

T he defini t ions of metaclasses seen so fa r have not expli cit ly showed a ll t he 
protoco l that th e metaclasses must obey. They need to be translated by t he 
metaclass Metaclas s so t hat t hey satisfy a ll th e protocol. 

To obey a ll t he protocol, (i) a new metaclass has to have a member 
function MetaclassName O, a nd (ii ) a fun ction that instant iates t he meta­
class must be registe red. Fo r example, a new metaclass MyCl ass should be 
translated in to so meth in g more complex th a n wha t we have seen: 

cla ss My Cl as s publ i c Cl ass { 
public: 

MyClass (Ptree • d, Pt ree• m) : Class (d, m) {} 

char~ Met a class Name () { r eturn "MyClass" ; } 
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} ; 

static Class• CreateMyClass(Ptree• d, Ptree• m) 
{ 

return new MyClass(d, m); 
} 

static ListOfMetaclass myClassDbject("MyClass", CreateMyClass, 
MyClass::Initialize()); 

After the translation, a member function MetaclassName(), a function 
CreateMyClass(), and an object myClassObject are inserted. CreateMy­
Class () is a function that instantiates the metaclass, and the object my­
ClassObj ect is created at the beginning of runtime and registers CreateMy­
Class (). The registered fun ction is used to implement a function that 
receives a class name in the form of characte r st ring and instantiates the 
specifi ed class. This function is internally used by the OpenC++ compiler 
when instantia ting a metaclass, because the new operator does not take a 
character string to specify the instanti ated class : 

class Point { .. . }; 
Point• pO = new Point; II valid 
char* c = 11 Point"; 
Point• pl = new c· II invalid 

Note that new Point is a valid expression but new c is not since c is not a 
class name but a variable. 

The behavior implemented by the inserted functions and variable can­
not be inherited from the base class; it must be explicitly implemented by 
every new metaclass . This is because implementing the behavior needs the 
definition of the new metaclass as the exam ple of named object that we have 
shown in Chapter 2. 

Protocol with meta-meta level programming 

Since the definition obeying all the protocol is complex and error prone, 
the actual OpenC++ MOP has meta-level programmers wri te a simpler 
definition of a metaclass, and automatically translates it into the regular 
definiti on that obeys all the protocol. To do this, the OpenC++ MOP 
provides a metaclass Metaclass , which is the metaclass of all metaclasses. 

Like other metaclasses, the metaclass Metaclass is a subcl ass of Class. 
It overrides TranslateSelf () and TranslateBody (): 

Ptree• Metaclass:: TranslateSelf(Environment• env) 
{ 

Ptree• name= Name(); 
Ptree• tmpname = Ptree: :GenSym(); 
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AppendAfterToplevel(Ptree::Make( 
"static Class• 'l.p(Ptree• def, Ptree• marg){\n" 
" return new 'l,p(def, marg); }\n" 
"static ListDfMetaclass 'l.p(\"'l.p\", 'l,p,\n" 
" 'l.p:: Initialize()); \n", 
tmpname, name, 
Ptree: :GenSym(), name, tmpname, name)); 

} 
return Class::TranslateSelf(env); 

Ptree• Metaclass: :TranslateBody(Environment• env, Ptree• body) 
{ 

Ptree• mem = Ptree: :Make("public: char• MetaclassName() {\n" 
•• return \"'l.p\ 11

; }
11

, 

Name()); 

} 
return Class: :TranslateBody(env, Ptree: :Append(body, mem)); 

The member function TranslateSelf() inserts a function and a variable for 
instantiating the metaclass, and TranslateBody() inserts a member func­
tion MetaclassName () in the declaration of the metaclass. For the reason of 
bootstrapping, Metaclass uses not Ptree: : qMake() but Ptree: :Make() . 

Since a su bclass inherits the metaclass from the base class, programmers 
do not need to explicitly write a metaclass declaration for new metaclasses. 
The OpenC++ compiler automatically selects Metaclass for the new meta­
classes since they are subclasses of Class. No ad-hoc implementation is re­
quired; the OpenC++ MOP can naturally deal with this and programmers 
can enjoy a simpler protocol by this mechanism. 

6.6 Vector Library 

All the examples shown above are of abstractions that regular C++ cannot 
handle but the OpenC++ MOP can do. The OpenC++ MOP also makes 
some kinds of abstractions more efficient than in regul ar C++. From this 
section, we show a few examples of s uch abstractions. 

The first example is the vector li brary. In Chapter 2, we showed that 
the template mechanism of C++ enables a vecto r abstraction for a ny type, 
but t he implementation with t he template mechanism was not as efficient 
as an ideal implementation. If the OpenC++ MOP is used, however, the 
vecto r abstraction is implemented more efficiently. 

Vector library in regular C++ 

As we showed in Chapter 2, a vector abstraction is implemented in regular 
C++ by the following template: 

template <class T> class Vector { 
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T elements [SIZE] ; 
public: 

}; 

Vector operator + (Vector& a, Vector& b) { 
Vector c; 
for( i ; 0; i < SIZE; ++i) 

c.e l ements[i]; a.elements[i] + b.elements[i]; 

return c; 
} 

This implementation is not efficient beca use it deals with s uccessive op­
erators like v2 + v3 + v4 as separate function calls. For each operator, t he 
operator function for Vector is called and the for loop is executed from 0 
to SIZE, alt hough successive for loops can be fused into a s ingle efficient 
loop. 

Th is problem is due to the limited ability of the templa te mech anism to 
supply code adapted for the library user code. The only adaptation that 
the template mechanism can do is type paramete rization , and therefore, the 
vector abst raction needs to be implemented wit h very generic description -
overload ing primitive operators like +. No implementation techniques for a 
particu lar case can be included in the description. 

Vector library in OpenC++ 

If the O penC++ MOP is used , the vector abstraction can be implemented 
more efficiently. The library developer can define a special metaclass for 
t he template class Vector , wh ich t ra nslates successive operators in to a n 
efficient single loop instead of separate function calls . Doing this translation 
is s traightfo rward ; only one member function TranslateAssignO needs to 
be overridd en : 

#include 11 template.h 11 

class VectorClass : public TemplateClass { 
public: 

}; 

VectorClass(Ptree• d , Ptree• m) : TemplateClass(d, m) {} 
Ptree+ TranslateAssign(Environment+, Ptree•, Ptree+, 

Ptree•); 
Ptree• Inline(Environment•, Ptree+, Ptree+); 

Ptree• VectorClass: :TranslateAssign(Environment• env, 
Ptree+ object, 
Ptree• op, Ptree• expr) 

{ 
if ( !object->IsLeaf() II !op->Eq( '; ') 

II expr->IsLeaf()) // e .g. a; b; 
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return TemplateClass::TranslateAssign(env, object, 

} 

Ptree• index; Ptree : :GenSym(); 
r eturn Ptree ::qMakeStatement( 

"for(int 'index' = 0; ' index' <SIZE; 
'' 'object' . element ['index']' ' 

='Inline (env, expr, index)' ; \n" ); 

op, expr); 

++'index ') \ n11 
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The member function TranslateAss ign() t ranslates an assignment ex­
pression such as ; and +;. It translates an assignment expression into an 
effici ent for loop if the operator is ;. The right-side expression is passed to 
a member function Inline() and translated into an app ropriate expression: 

Ptree• Ve ctorClass::Inline (Environment• env Ptree• expr, 
Ptree• index) ' 

{ 

} 

Ptree* lexpr; 
Ptree* rexpr; 

if(expr->IsLeaf()) 
r~turn Ptree: : qMake ( "' expr' . element ['index'] 11 ) ; 

else lf(Ptree: :Match(expr, "['l. ? + 'l.?]", &lexpr, &rexpr)) 
return Ptree: : qMake(" 'In line (env, lexpr, index)''' 

"+ ' Inline(env, rexpr, index)'''); 
else if(Ptree::Match(expr, "['l.?- 'l.?]", &lexpr, &rexpr)) 

return Ptree: : qMake ( 11 'Inl ine ( env, lexpr, index) ''' 
"- 'In line (env, rexpr, index)'''); 

else if(Ptree::Match(expr, "[( 'l,? ) ]", &lexpr)) 
return Ptree: : qMake (" ( 'Inline ( env, l expr, index ) ') " ) ; 

else if (Ptree: :Match(expr, " [- 'l.?]", &lexpr) ) 
return Ptree : :qMake(''-'Inline(env, lexpr, index)'''); 

else if(Ptree: :Match(expr, "['l.? • 'l.?]" , &lexpr, &rexpr)) 
return Ptree: :qMake( 

else{ 
'"lexpr' * 'Inline(env, rexpr, index)' 11 ); 

} 

ErrorMessage( 11 invalid vector expression11 , expr); 
return nil; 

The member function Inline 0 tests whether th e given ex pression matches 
a pattern and , if it matc hes, calls Inline() rec ursively to process th e sub­
expressions . Inline() can deal with not only the+ operator but also the­
a nd • ope rators and parentheses (). 

Experiments 

The metaclass VectorClass t ransla tes an assignment exp ression on a vecto r 
into an effi cient for loop. for exam ple, th is program: 
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Table 6.1: Execution performance of the vector library (psec .) 

length 8 length 64 
#of vectors 2 3 4 2 3 

Sun C++ 0.5 1.5 3.0 4.4 3.3 10.1 20.0 

GNU C++ 0.3 1.7 3.1 4.5 6.9 21.7 36.2 

Open C++ 0.3 0.9 1.3 1.7 6.9 6.5 9.8 

Hand-coded 0.9 0.9 1.3 1.7 6.5 6.5 9.8 

Average of 1,000,000 (size 8} or 300,000 (size 64) iterations. 

SPARC Station 20/61, SunOS 4.1.3 

Vector<double> vi, v2, v3, v4; 

vl = v2 + v3 + v4; 

is translated into this: 

Vector<double> vl, v2, v3, v4; 

for(i = 0; i < SIZE; ++i) 
vl.elements[i] = v2.elements[i) + v3.elements[i] 

+ v4.element(i]; 

4 

30.1 

51.1 

13.1 

13.0 

This translation drastically improves execution performance. To show 
the improvement, we ran a micro benchmark program a nd measured execu­
tion time of Vector expressions. The micro benchmark program computes 
the sum of various numbers of vectors of double. First, we ran the program 
with the vector li brary written in regular C++, then ran the same program 
with the vector li brary written in OpenC++. Since different compi lers per­
form different optimization techn iques, we used GNU C++ 2.7.2.1 (with 
option -03) and Sun C++ 3.0.1 (with option -fast) for regular C++. The 
OpenC++ compiler uses GNU C++ for th e backend compiler. Moreover , 
we ran a program that is eq ui valent to the micro benchmark but optimized 
by hand without the vector library. This hand-coded program uses a rrays 
of double instead of objects and was compiled by GNU C++. When mea­
su ring the execution time, we changed the length of each vector between 8 
and 64, and also the number of the vectors in the assigned expression from 
1 to 4. \Vh cn the number of the vectors is 1, the expression is vO = vl; 1\o 
addition is executed. All t he benchmark programs used in this experiment 
are in Appendix C.3. 
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The results of the experiment are listed in Table 6.1. The vector library 
implemented with the Open C++ MOP achieved as good performance as the 
hand-coded program. Although the OpenC++ program is s lightly slower 
than the hand-coded program when the number of vectors is 1 and the 
vector length is 64, this fact is caused by the implementation difference in 
copying a vector. The hand-coded program copies a vector by explicitly 
copying each element, but the OpenC++ program copies it by using the 
default object copy mechanism, which is compiled into a call of memcpy(). 
The implementation strategy of copying a vector is a lso the reason that Sun 
C++ achieved the best performance when the number of vectors is 1 and 
the length of each vector is 64. The Sun C++ compiler inlines memcpy() 
when an object is copied . 

This experiment also shows that real C++ compilers do not perform the 
optimization that the metaclass VectorClass performs. Although an ideal 
compiler shou ld automatically perform the optimization, it seems difficult 
for real compilers to do that within reasonable space and time. Our claim 
is that such an optimization shou ld be done by a metaclass rather than a 
compi ler's optimizer. Such an optimization is difficult for a general-purpose 
optimizer as our experiment showed, but on the other hand, it is not difficult 
for a metaclass because the metaclass is written by the library developer, 
who knows semantic information about the library code. We believe that a 
compiler's optimizer should focus on general optimizations and metaclasses 
shou ld perform a special optimization that is effective on ly for a particu­
lar class. Although forcing end-programmers to write a metaclass is not 
realistic, we believe that it is acceptable that library programmers write 
metaclasses since they are usually experienced programmers and their code 
is reused by many end programmers. 

6. 7 The Standard Template Library 

The Standard Template Library (STL) [44) is another example of abstrac­
tions that The OpenC++ MOP can implement more efflciently. STL is a 
C++ li brary included by the ANS I standard of C++. Despite of the high­
level abstractions that STL provides, a program using STL is often slower 
than an eq ui valent program written without STL. The OpenC++ MOP 
con tribu tes to avoid performance drawbacks caused by STL with keeping 
its high-level abstractions . 

Brief Ove rview of STL 

;\ unique feature of STL is that the library consists of independent com­
ponents and the users can flexibly combine the components to obtain the 
functionality they need. T he main components of STL a rc containers and 
generic algorithms. The containers arc objects that store a collection of 
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other objects, and the generic algorithms are functions that process con­
tainers. Since type names are parameterized wit h using t he template mech­
an ism, STL use rs may use a generic a lgorit hm with a ny kind of containers. 
They do not have to use a different version of the generic algorithm for a 
different kind of containers. 

For example, STL users may write someth ing like this: 

list<double> a1 = ... ; 
set<double> a2 = ... ; 
n1 = count(a1.begin(), a1.end(), 3.14); 
n2 = count(a2.begin(), a2.end(), 3.14); 

This program computes the number of 3.14 sto red in containers a1 and a2 , 
respectively. a1 is a list container a nd a2 is a set container. count is a 
generic algorithm to determine the number of elements in a container that 
are eq ual to a given value. It takes pointers to the first and the last element 
in the container and the value that it counts the number of. Note that the 
same generic algorithm count is used for two different kinds of containers 
list and set . The single generic algorithm serves a ll kinds of containers. 

The connectivity between containers and generic algorithms is enabled 
by anothe r kind of STL component called iterato rs. In the progra m a bove, 
iterators are the values returned by a1.begin0 and a1.end(). They a re 
pointer-like components t hat all kinds of containers provide as common 
interface to access the elements. Generic algorithms use the iterators to 
traverse elements stored in a container. For example, iterators for list 
containers a re defined as follows: 

class iterator { 
public: 

}; 

iterator(list<T>• p) { ptr = p; } 
list<T>* ptr; 
int eof() { return ptr == 0; } 
int operator 1 = (iterator& a) { return ptr != a.ptr; } 
T operator * () { return ptr->value; } . 
iterator& operator ++ (){ptr = ptr->next; return •thls;} 
iterator operator ++ (int) { 

} 

iterator prev = •this; 
ptr = ptr->next; 
return prev; 

lterators a re objects for which pointer operators such as * a nd ++ are over­
loaded. Generic a lgorithms usc the iterato rs as if t hey are C++ pointers to 
a rrays; for example, the next template function is an implementation of the 
generic count algorith m: 

template <class I, class T> 
int count(I first, I last, T value) 
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{ 

} 

int n = 0; 
while(first 1= last) 

if (•f irst++ == value) 
++n; 

return n · 

89 

The template argument I is the type of iterators and Tis the type of con­
tainer elements. Note that the variables first and last are used as if they 
are pointers to an array of the type T. 

Performance improvement by the OpenC++ MOP 

Although iterators give great fl exibility to STL, they also involve perfor­
mance drawbacks if compared with an equ ivalent program written without 
iterators. Since a generic algorithm must indirectly accesses elements in a 
container through an iterator, its execution performance tends to be slower. 
If programmers give up generality of t he generic algorithm and specialize 
the algorithm to work only for a particular kind of container, then the spe­
cial ized algorit hm will be more efficient because iterato rs are not needed any 
more. For example, the following function is a specia lized count algorithm 
for counting elements only in a list<int> container: 

int count(List<int>• first, List<int>• last, int value) 
{ 

} 

int n = 0 · 
while(fir~t != last){ 

if(first->val ue value) 
++n; 

first = first->next; 
} 

return n· 

Note that now the variables first and last are not iterators but actual 
pointers to list<int> objects. Hence reading an element is done by the-> 
operator instead of the * operator . Also, the ++ operator is replaced with 
the expression first = first->next. 

The OpenC++ MOP redu ces the overheads by iterato rs . In OpenC++, 
th e STL implemento r can write a metaclass that specia li zes a generic a l­
gorithm for a particu lar kind of container a nd translates a program to use 
that specialized algorithm. Suppose t hat a program uses t he generic count 
algorithm with a list<int> container . The metaclass converts iterators 
for list<int> into actual pointers to list<int> a nd it replaces calls of 
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the gene ric count algorit hm with calls of a count algorit hm specia lized for 
li s t <int >. F irst, the defin it ion of iterators for list containers: 

class iter ator { ... } ; 

is translated from a class type into this pointer type: 

typedef li s t <T>* iterator ; 

T hen the tem plate function shown below is derived as a speciali zed algo rithm 
fro m t he ge neric count algori t hm. It is substit uted for the generi c count 
algorithm called wit h list containers : 

t emplate <class I, class T> 
int count_for_list_int(I first, I last, T value) 
{ 

} 

list<int>* trnp; 
int n = o· 
while(fir~t != last) 

if ( (trnp=first,first=first->next,trnp)->value == value) 
++n; 

return n ; 

This tem plate function s upposes that I is bound to list<int>* . 
The t ranslation mentioned above is easily implemented with about 40 

lines of meta-level progra m. The metaclass for this tra nslation is effecti ve 
not o nl y for the generic count algo ri t hm . It deals wi t h combin ations of 
list containers and a ny ge neric algorit hm . For t he complete defini tion of 
the metaclass, see in Appendi x C.4 . We also s how a metaclass for s et 
containe rs in the same place. 

Experiment 

To illust ra te t he perform ance improvemen t by the metaclasses, we measured 
t he execution t ime of t he ge neric count algorit hm with /wit hou t t he meta­
classes. As for t he containers, we used list<int> a nd set<int>. When the 
metaclasses were not used , t he measured progra m was compiled by G NU 
C++ 2.7.2 wit h option -0 3 a nd Sun C+ + 4.1 with option -fas t . When th e 
metaclasses are used, the prog ram was compiled by the OpenC++ com­
piler, which uses GNU C++ for t he backend compiler. Also, we measured 
t he execut ion t ime of ha nd-optimized count algo ri t hms for list<int> a nd 
s et<int >. T hese algorit hms we re compiled by G U C++. All the prog rams 
used in t his expe riment a re s hown in Appendix C.4. 

T he resul ts of this experiment is listed in Ta ble 6.2. As fo r li s t con­
tainers, th e ge neric count algo ri t hm involves 73% (S un C++) o r 36% (GNU 
C++) ove rheads against the hand -optimized ve rsion, but wi t h t he O pen C++ 

6.8. THE OOPACK BENCHMARK TEST 91 

Table 6.2: Execution performance of STL (msec.) 

list (ratio) s et (ratio) 

Sun C++ 57 (1.73) 860 (1.39) 

GNU C++ 45 (1.36) 750 (1.21) 

Open C++ 36 (1.09) 680 (1.10) 

Hand-coded 33 (1.00) 620 (1.00) 

Average of 100 (l ist) or 10 (set) iterations. 

SPARC Station 20/514, Solari s 5.3 

MOP, the overheads are redu ced to only 9%. As for s et containers, th e 
generic count algori t hm involves 39% (Su n C++) or 21% (G NU C++) ove r­
heads . Bu t t he OpenC++ MOP redu ces t he ove rheads to 10%. These re­
su lts show t hat generic algori t hms ofSTL work for a ny ki nd of containers bu t 
t his adaptability causes se rious perfo rmance degradation. T he OpenC++ 
MOP recovers t his perform ance deg radation from one half to one fourt h 
while kee ping t he adaptabili ty of STL. 

6 .8 The OOPACK Benchmark Test 

The last exa mple is the OOPAC I< benchmark test [49) . This benchma rk 
test is a progra m for testing the ability of a C++ compiler for compili ng a 
prog ram wri t ten in object-oriented programming (OOP) as effi ciently as a 
progra m in non-OOP. T he prog ram con tains a s ui te of tests, each of which 
consists of two eq ui valent ro utines wri tten in OOP a nd non-OOP. T he OO P 
rout ines a re writte n with higher-level abstractions, whereas t he non-OOP 
routines are wri t ten in C style for effi ciency. In ot her words, t he non-OO P 
rou t ines a re hand-optimized versions of the corresponding OOP rout ines. 

If th e OOP routines a re slower th a n t he non-OOP routines, t hat perfo r­
mance degradation means costs to use higher-level abstractions implemented 

wit h objects under the compiler. A C++ compile r should be able to com­
pile t he OOP rout ines as effi cient as th e no n-OOP routines since it can in 
principle t ransform t he OOP routi nes into t he no n-OO P rout in es by inlin­
ing member fun ctions and performing constant pro pagation and st rength 
reduction. 
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Improvem ent with the OpenC++ MOP 

Real C++ compilers have di ffic ul ty in compiling th e OOP routin es effi ciently 
as we show later, but this inefficiency is fa irly recovered by the OpenC++ 
MOP. Altho ugh the OpenC++ MOP cannot im prove the execution speed 
wit hout changing the benchma rk prog ra m, it can extend the lang uage sy ntax 
to allow the programmer to write more effi cient OOP code th a n t he OOP 
routines in the original benchmark program . T he extended syntax is used for 
annotating com pilation hin ts wi t hout directly describing lower-level details 
of th e implementa tion. It does not affect the level of abstraction of the OOP 
routines. 

For example, the following code is the Matrix test in the benchmark. It 
compu tes mul t iplication of two matrices in OOP style: 

void MatrixBenchmark: :oop_style() const 
{ 

} 

Matrix c(L, L, C); 
Matrix d(L, L, D); 
Matrix e(L, L, E); 
for(int i = 0; i < e.rows; i++) 

for(int j = 0; j < e.cols; j++){ 
double sum= 0; 

} 

for(int k=O; k<e . cols; k++) 
sum += c(i,k) • d(k,j); 

e(i,j) = sum; 

The OpenC++ MOP extends th e syntax to make a foreach statement 
ava il able for this test and improve the execution perform ance wi t h the new 
sta tement. The next is th e code rewritten using the foreach statement: 

void MatrixBenchmark: :oop_style() const 
{ 

} 

Matrix c(L, L, C); 
Matrix d(L, L, D); 
Matrix e(L, L, E); 

c . foreach(i){ 

}; 

for(int j = 0; j < e.cols; ++j){ 
double sum = 0; 
d. foreach(k){ 

} ; 
sum+= c(k) • d(j); 

e(i,j) = sum; 
} 
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Here, c. f or each( i ) means ite rating the following block statement for each 
row of t he matri x c. i is bound to the index of t he row currently processed. 
In th e block s tatement, c(k) ind icates th e k-th colu mn in th e row. Unl ike 
th e for statement , the for each statement explicit ly indicates that the loop 
is executed for trave rsing th e rows of a matri x, so that t he statement can 
be translated in to optimized code fo r the t raversing. In fact, t he metaclass 
for Matrix t ra nslates t he program above into t his efficient one: 

void MatrixBenchmark: :oop_style ( ) canst 
{ 

} 

Matrix c(L, L, C); 
Matrix d(L, L, D); 
Matrix e(L, L, E); 

for ( int i=c.rows, t1=c .cols, t2=(c.rows -1 ) •c.cols; 
--i >= 0; 

{ 

}; 

t2 -= t1) 

double canst• t3 = &(c.Data())[t2]; 
for(int j = 0; j < e.cols; ++j){ 

double sum = 0; 

} 

for(int k=d.rows, t4=d.cols, t5=(d.rows-1)•d.cols; 
--k >= 0; 

{ 

} ; 

t5 -= t4) 

double const• t6 = &(d.Data())[t5]; 
sum += t3 [k] • t6 [j] ; 

e(i,j) = sum; 

Note that the foreach statements a re translated in to for statements . 
The second test in the benchmark prog ram is Iterator. It computes 

dot-product of two vectors implemented by arrays of double . The Iterator 
objects in t his test is s imilar to STL 's iterator, but t hey a lso con tain t he 
length of a vector and provide a member fun ction done() to check whether 
th ere are no more elements: 

void IteratorBenchmark: :oop_style() const 
{ 

double sum = 0; 
for(Iterator ai(A,N), bi(B,N); 

!ai. done(); 

{ 

} 

ai . next(), bi .next()) 

sum+= ai.look() • bi.look(); 
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IteratorResult sum; 
} 

Here, A and B are arrays of double, and N is the length of the a rrays . 
The Open C++ MOP provides a statement for each for the class Iterator. 

With the foreach statement, the program above is rewritten in to this: 

void IteratorBenchmark: :oop_style() const 
{ 

} 

double sum ; 0; 
Iterator ai(A,N), bi(B,N); 
ai.foreach(v){ 

}; 

sum+; v • bi.look(); 
bi .next(); 

IteratorResult sum; 

The foreach statement for It era tor provides a control abstraction simila r 
to foreach for Matrix. It iterates the following block statement for each 
element of the vector. In the block statement, a specified variable (v in the 
program above) indicates the element currently processed. However, the 
foreach statement for Iter a tor is translated differently way from Matrix. 
This is oop...style() after the translation: 

void IteratorBenchmark : :oop_style() const 
{ 

} 

double sum ; 0; 
Iterator ai(A,N), bi(B,N); 
for(int t7; 0, t8; ai.Limit(); t7 < t8; ++t7){ 

const double& v; ai . Array(t7); 
sum+; v • bi.look(); 
bi.nextO; 

} ; 

IteratorResult sum; 

The length of the vector that ai points to is stored in a local variable before 
starting iteration. This eliminates accesses to ai when the loop-termination 
cond ition is checked . 

The last test in the benchmark is Complex. This test computes a complex­
valued "SAXPY" operation, and measures how efficien tly a C++ compil er 
compiles a Complex object, which represents a complex number and is very 
popular in scientific computing: 

void ComplexBenchmark: :oop_style() const 
{ 

Complex factor(0.5, 0.86602540378443864676); 
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for(int k ; 0; k < N; k++) 

} 
Y [k] ; Y [k] + factor • X [k] ; 

Here, X and Y are arrays of Complex objects. 

The execution performance of this test can be improved by a similar 
technique that we showed for the vector library in Section 6.6 . No extended 
syntax is needed . The program shown above is translated by a metaclass 
into this: 

void ComplexBenchmark::oop_style() const 
{ 

} 

double factor_re ; 0.5; 
double factor_im; 0.86602540378443864676; 
for(int k ; 0; k < N; k++){ 

Y[k] .re Y[k].re+factor_re•X[k].re-factor_im•X[k].im; 
Y[k] .im; Y[k] .im+factor_re•X[k] .im+factor_im•X[k].re; 

} 

Note that a Complex object factor is broken down into two double vari­
ables, factor..re and factor_im. This leads a C++ compiler to allocate 
factor on registers rather than a stack frame, and eventually contributes to 
performance improvement. Without this translation, C++ compi lers such 
as GNU C++ and Sun C++ do not allocate objects on registers even though 
allocating them is possible in principle. 

Experiments 

We measured execution time of the OOPACK benchmark test under differ­
ent settings. \Ve first ran the benchmark program compiled by Sun C++ 
4.1 with -fast option, and t hen the program compiled by GNU C++ 2.7.2 
with -03 option. We also compiled the program by the OpenC++ compiler 
with metaclasses for the translation shown above, and measured the exe­
cution time of the compiled code. When compi ling with those metaclasses, 
the benchmark program was rewritten to utilize the extended syntax. The 
OpenC++ compi ler used GNU C++ 2.7.2 with option -03 for the back­
end compi ler. All the programs used for the experiment are presented in 
Appendix C.5 . 

The resu lts of the experiment are listed in Table 6.3. The OOPACK 
benchmark consists of four tests: Max , Matrix , Complex, and Iterator. We 
did not develop a metaclass for the Max test, which is for measuring how 
well a C++ compiler inlines a function . !3ut for the remaining three tests, 
OpenC++ showed better performance than Sun C++ and GNU C++. If 
OpenC++ is used, the OOP routines involves only 10% to 20% overheads 
against the non-OOP routines written in C sty le. On the other hand, the 
OOP routines compiled by Sun C++ is twice or three times slower than the 
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Table 6.3: Execution time of the OOPACK benchmark (sec.) 

Sun C++ GNU C++ Open C++ 

Max (C-style) 8.1 9.0 9.0 

(OOP) 8.5 12.0 12 .0 

Ratio 1.1 1.3 1.3 

Matrix (C-style) 10.9 9.8 9.8 

(OOP) 31.3 80.7 11.2 

Ratio 2.9 8.2 1.1 

Complex (C-style) 13 .2 11.2 11 .2 

(OOP) 23.3 18.2 13 .1 

Ratio 1.8 1.6 1.2 

lterator (C-style) 7.1 7.1 7.1 

(OOP) 15.2 8.2 8 .1 

Ratio 2.1 1.2 1.1 

50000 (Max), 500 (Matrix) , 20000 (Complex), 50000 (lterator) iterations. 
SPARC Station 20/514, Solaris 5.3 

non-OOP routines . The OOP routines compiled by GNU C++ also involves 
60% or 20% overheads for Complex and Iterator, but the Matrix test is 
more than 8 times slower. 

6.9 Summary 

This chapter presented eight examples of libraries th at the Open C++ MOP 
enables. The first two examples, named objects and distributed objects, pre­
sented useful data abstractions that regular C++ cannot hand le. Through 
the examples, we also illust rated how various metaobjccts like Type Info are 
used in meta-level programming. 

The next example, wrapper library, is an exam ple of metaclass libraries. 
Implementing abstractions like named objects and distributed objects is 
facilitated if there is a metaclass library which provides typical meta code 
for metaclass writers . This example showed a metaclass WrapperClass , 
which helps programmers write a metaclass handling wrapper functions. 

qMake() and Metaclass are examples of meta-meta level programming. 
The OpenC++ ~ fOP natura ll y allows meta-meta level programming in or­
der to make useful abstractions available at meta level as well as base level. 
qMake() is a meta-level function providing convenient interface for meta-
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class writers . Its interface cannot be implemented without the OpenC++ 
MOP. Metaclass is a meta-metaclass for all metaclasses. It simplifi es the 
protocol for writing a new metaclass. 

The remaining three examples showed that the Open C++ MOP can be 
used to improve execution performance of some kinds of abstractions . The 
OpenC++ MOP makes it possible to specialize library code for user code 
and improve execution performance. This specialization includes elimination 
of unnecessary indirection and encapsu lation and it helps C++ compilers 
to generate more efficient object code. Furthermore, the OpenC++ MOP 
allows syntax extension, which is used for putting annotations for efficient 
compilation. In the example of the OOPACK benchmark, we showed that 
such syntax extensions actually improve execution performance while keep­
ing the level of abstraction . 


