
Chapter 7 

Conclusion 

This thesis has discussed the Open C++ MOP, our new language mechanism 
for writing better libraries . This mechanism enables better C++ libraries 
and wi ll contribute to rapid and low-cost software development, which is 
one of major issues in today's software industry. 

Contributions 

Direct contributions by this thesis are summarized as follows: 

• This thesis proposed a new language mechanism for pre-processing a 
prog ram in a context-sensitive and non-local way. This mechanism 
a llows a library to instantiate specialized code depending on how the 
library is used and substitute it for the original user code. 

• Then th is thesis presented that the proposed mechanism makes it pos­
sible to write better C++ libraries than in regu lar C++. For being 
high level and easy to use, t he implementation of some kinds of useful 
control/data abst ractions requires the ability to instantiate speciali zed 
code for the user code. The proposed mechan ism provides that ability 
for libraries to include such abstractions. 

• Also, this thesis showed that the proposed mechan ism improves effi­
ciency of C++ li braries. Some ki nds of cont rol/data abstractions are 
d ifficu lt to implement effi cient ly because t he abi lity of C++ compi lers 
to optimize the li brary code is limited due to t ime and space. The pro­
posed mechan ism allows library developers to specify specialization of 
the library code so that the implemented abstractions run efficiently. 
The library developers can specify the specialization assuming opti­
mization performed by a backend C++ compiler. This is an app roach 
integrating general optim ization by a compiler a nd ad-hoc optimiza­
t ion t hat is apparent to program mers. 
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• Compared with other reflective languages, a unique feature of the pro­
posed mechanism is that it is a compile-time MOP. It exploits static 
types to run metaobjects only at compile time. This means that the 
proposed mechanism does not imply any runtime penalties due to dis­
patching to metaobjects. 

• Furthermore, this thesis proposed the meta helix a rchitecture, which 
is an improved version of the metacircu lar architect ure of the CLOS 
MOP. It fixes a problem we call implementation level conftation, which 
is involved by the CLOS MOP, while keeping benefits of metacircular­
ity- ease of learning and ease of writing an efficient meta program. 

These contributions suggest a new design approach for programming 
languages. The proposed mechanism makes it feasible for language designers 
to keep a language simple and consistent and to implement most of desirable 
control/data abstractions as a "language extension" library. Keeping a core 
language simple and consistent has a nu mber of advantages; especially, a 
simple and consistent language is easy for programmers to learn and for 
compiler implementers to develop an optimizing compiler. 

Designing a simple and consistent language has been had a few disad­
vantages . First, a number of language extensions have been impossible to 
implement as a library and, second, language extensions provided by a libary 
have been less efficient than ones implemented as built-in features. The lat­
ter disadvantage can be solved if compilers support a special optimization 
technique for the lib rary, but this solution takes long time since compilers do 
not support it until the extensions are accepted and deployed. The proposed 
mechanism solves these disadvantages and motivates language desingers to 
avoid a rich and fat language and design a simple and consistent language. 

Future directions 

Possible future directions of this study are followings. 

Apply to other languages 

The idea of the Open C++ MOP will be ap plicable to other static-typed lan­
guages such as Java (27) . Although Java is still a simple and small lang uage, 
it will be getting complicated and difficult to understand as it is widely used 
for developing real applications, because real programmers tend to desire 
richer language mechanisms. Th is is also t he same path that other major 
languages such as Fortran (1), C (35), and Lisp (56), have followed. 13ut if 
Java has a mechanism like the OpenC++ MOP, it will be able to avoid fol­
lowing the undesirable path. Although refl ective mechanisms for Java ha,·e 
been already proposed , their capabili ty is limi ted since, like RTTJ of C++, 
they s upport only introspection about the classes and the objects (55). 
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Make meta representation richer 

Unfortunately, the OpenC++ MOP does not enable all kinds of desirable 
control/data abstractions because the meta representation provided by the 
MOP is limited. For example, the Open C++ MOP does not include metaob­
jects representing control and data flow of the processed program. The lack 
of this information makes it difficult to efficiently implement some kinds of 
abst ractions. The OpenC++ MOP should be enhanced to support such 
metaobjects . 

Real programmers program in C++ or C, 
Real pmgramm e rs demand efficiency, 

Real programmers are never happy with e~·isli11g languages. 

- Anon, A i\felaobjecl Protocol for Real Progmmmers 
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Appendix A 

B ackquote 

"backquote" is a convenient mechanism for constructing a list structure in 
Lisp. This appendix briefly introduces this mechanism for the readers who 
are not familiar to Lisp. 

A.l Quote 

We should start from the "quote" mechanism. It is used to include literal 
constants in programs. The quotes suppress evaluation; the quoted symbols 
or expressions are not evaluated: 

a 
'a 
(+ 1 2) 
'( + 1 2) 

=> (the value that the symbol a is bound to) 
=> a (symbol a) 
=> 3 (function application) 
=> (+ 1 2) (equivalent to (l ist '+ 1 2)) 

Numerical constants a nd so on need not be quoted. They evalu ate to them­
selves: 

735 => 735 (number) 
'735 => 735 (number) 

A .2 Backquote 

The backquote (') mechanism is sim ilar to the quote mechanis m but it 
allows some sub-expressions to be evaluated in a (back)quoted expression. 
It evaluates a sub-expression if it follows a comma: 

'(a ( + 1 3) 9) => (a ( + 1 3) 9) 
'(a,(+ 1 3) 9) =>(a 4 9) 
(let ((f 'a)) '(f ,f ',f , 'f)) => (f a 'a f) 
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If a sub-expression follows a comma and an at-sigh (, ~). the result of evalu­
ati ng the sub-exp ression must be a list. The opening and closing parentheses 
of the list are stripped away: 

'(a ,(list 1 2)) 
'(a .~(list 1 2)) 

=> (a (1 2)) 
=> (a 1 2) 

The backquote notations can be nested : 

'(a '(b ,(+ 1 2) .,(+ 3 4))) 
=>(a '(b ,(+ 1 2) ,7)) 

(let ((f 'x)) '(let ((x 3)) '(list .,f ,• ,f))) 
=> (let ((x 3)) '(list ,x ,'x)) 

Appendix B 

Reference Manual 

T his document is a programming guide for Open C++ version 2. It was orig­
inally published as a technical report from Xerox PARC [12]. The copyright 
of th is document and the original one belongs to the author of this thesis. 

B.l Introduction 

The goal of the Open C++ project is to make the C++ language extensible. 
The project started in 1992 at the University of Tokyo in Japan. The first 
version was released in 1993 as one of the early C++ MOPs (metaobject 
protocols) and has been used as a research platform at many sites, includ­
ing Un iversity of Newcastle upon Tyne in UK, LAAS in Tou louse, France, 
Un iversidade Federal do RGS in Brazil, and so on. After that, the project 
moved to Xerox Palo Alto Research Center (PARC) in US and joined the 
Open Implementation Group in 1994. OpenC++ met compile-time MOPs 
t here and Open C++ Version 2 was developed as the resu lt. 

T he OpenC++ language enables prog rammers to extend C++ so t hat 
t hey can use language feat ures that are not available in reg ul ar C++. These 
language features incl ude distribution, persistence, and fault-to lerance. Al­
though they are available in reg ul ar C++ with less integ rated syntax, for 
example, OpenC++ enables programmers to use the member function call 
syntax when accessing a remote object. 

Mo reover, OpenC++ makes it possible to customize an optimization 
scheme for a particular class. The OpenC++ compi ler manipulates a pro­
gram at t he source code level for optimiz ing the execution performance. Pro­
grammers can customize that prog ram manipulation on a particu lar class. 
Th is benefit got feasible in the version 2 because its MOP is a compile-time 
MOP. 

This doc ume nt shows detailed specifications of Open C++ Version 2. It 
consists of t hree parts. First, we give a brief t uto ri al of programming in 
OpenC++. It will help t he reade rs get overview of the language. Then , 

111 



112 APPENDIX B. REFERENCE MANUAL 

we mention the base-level specifications of Open C++. The difference from 
regular C++ is shown here. Last , we present t he meta-level specifications, 
that is, the OpenC++ MOP. It is an in terface to deal with the base-level 
program and customize the language. 

B.2 Tutorial 

Open C++ is an extensible language based on C++. The extended features 
of Open C++ are specified by a meta-level program given at compile time. 
For distinction , programs written in OpenC++ are called base-level pro­
grams. If no meta-level program is given, Open C++ is identical to regular 
C++. 

The meta- level program extends Open C++ through the interface called 
the Open C++ MOP. The Open C++ compiler consists of three stages: pre­
processor, source-to-source translator from OpenC++ to C++, and the 
back-end C++ compiler. The OpenC++ MOP is an interface to control 
the translato r at the second stage. It allows to specify how an extended 
feature of Open C++ is translated into regula r C++ code. 

An extended feature of OpenC++ is supplied as an add-on software 
for the compi ler. The add-on software consists of not on ly the meta-level 
program but also runtime support code. The runtime support code provides 
classes and functions used by the base-level program translated into C++. 
The base-level program in Open C++ is first translated in to C++ according 
to t he meta-level program. Then it is linked with the runtime support code 
to be executable code. This flow is illustrated by Figure B.l. 

base-level 
program 

runtime support 

meta-level program 

Figure B.l: The OpenC++ Compiler 

The meta-level program is written in C++, accurately in OpenC++ 
because Open C++ is a self-reflective langu age. It defines new metaobjects 
to cont rol source- to-source translation. The metaobjects are the meta- level 
representation of the base-level progra m and they perform the translation. 
Details of the metaobjects are specifi ed by the OpenC++ MOP. In the 
followings, we go through a few examples so th at we illustrate how the 
OpenC++ l\ !OP is used to implement la nguage extensions. 
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B.2 .1 Verbose Objects 

A MOP version of "hello world" is verbose objects, which print a message 
for every member function call. We choose them as our first example. 

The MOP programming in OpenC++ is done through three steps: {1) 
decide what the base-level program should look like, {2) figure out what it 
should be translated into and what runtime support code is needed , and 
{3) write a meta-level program to perform the translation and also write 
the runtime support code. We implement the verbose objects through these 
steps. 

What the base-level program should look like 

In the verbose objects example, we want to keep the base-level program 
looking the same as much as possible. The only change should be to put 
a n annotation that specifi es which class of objects print a message for every 
member fun ction call . Suppose that we want to make a class Person verbose. 
The base-level program should be something like: 

II person.cc 
#include <stdio.h> 

metaclass Person : VerboseClass; I I metaclass declaration 
class Person { 
public: 

Person(int age); 
int Age( ) { return age; } 
int BirthdayComes() { return ++age; } 

private: 

}; 
int age; 

main() 
{ 

} 

Person billy(24); 
printf("age 'l.d\n", billy.Age()); 
printf("age 'l.d\n", billy.BirthdayComes()); 

ate that the metaclass declaration in the first line is the on ly difference 
from regular C++ code. It specifi es that Person objects print a message for 
every member function call. 

What the base- level program s hould be translated 

In order to make the program above work as we cxpcct
1 

member function 
calls on Person objects must be app ropriately translated to print a message. 
For example, the two ex pressions: 
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billy.Age() 
billy.BirthdayComes() 

must be translated respectively into: 

(puts("Age()"), billy.Age()) 
(puts("BirthdayComes()"), billy.BirthdayComes()) 

Note that the value of the comma expression (x , y) is y. So the resulting 
values of the substituted expressions are the same as those of the original 
ones. 

Write a meta-level program 

Now, we write a meta-level program. What we should do is to translate 
only member function calls on Person objects in the way shown above. \Ve 
can easily do that if we use the MOP. 

fn OpenC++, classes are objects as in Smalltalk . We call them class 
metaobjects when we refer to their meta-level representation. A unique 
feature of OpenC++ is that a class metaobject translates expressions in­
volving the class at compile time . For example, the class metaobject for 
Person translates a member function call billy. Age() since billy is a 
Person object. 

By defa ult, class metaobjects a re identity functions; they do not change 
t he program. So, to implement our translation, we define a new metaclass ­
a new class for class metaobjects- and use it to ma ke the class metaobject 
for Person. 

The metaclass for a class is specified by the metaclass declaration at 
t he base level. For example, recall that the base-level program person. cc 
conta ins this: 

metaclass Person : VerboseClass; I I metaclass declaration 

This declaration specifi es that the class metaobject for Person is an insta nce 
of VerboseClass. 

A new metaclass must be a subclass of the defau lt metaclass Class. Here 
is the definition of our new metaclass VerboseClass: 

II verbose.cc 
#include "mop.h" 

class VerboseClass : public Class { 
public: 

}; 

VerboseClass(Ptree• d, Ptree• m) : Class(d, m) {} 
Ptree• TranslateMemberCall(Environment•, Ptree•, Ptree•, 

Ptree•, Ptree•); 
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Ptree• VerboseClass: :TranslateMemberCall(Environment• env, 
Ptree• object, Ptree• op, Ptree• member, Ptree• arglist) 

{ 

} 

return Ptree : :Make("(puts(\"'l.p()\"), 'lop)", 
member, 
Class::TranslateMemberCall(env, object, op, 

member, arglist)); 

The metaclass VerboseClass is just a regular C++ class. It inherits 
from Class and overrides one member function. TranslateMemberCall () 
t akes an expression such as billy . Age() and returns the t ranslated one. 
Both the given expression and the translated one a re represented in t he 
form of parse tree. Ptree is the data type for that representation. 

Since the class metaobject for Person is responsible only for the transla­
tion involving the class Person, TranslateMemberCall () does not have to 
care about other classes. It just constructs a comma expression: 

(puts (" member-name"), member-cal/) 

from the original expression. Ptree: :Make() is a convenience fun ction to 
construct a new parse tree . 'lop is replaced with the following a rgument. 

We do not need many concepts to write a meta-level program. As we 
saw above, t he key concepts are only three . Here, we sum marize these key 
concepts: 

class metaobject: The representation of a class at the meta level. 

metaclass : A class whose instances are class metaobjects. 

metaclass Class: The default metaclass. ft is named because its in­
stances are cl ass metaobjects. 

Compile, d eb ug, and run 

We first compile the meta-level program and extend the Open C++ compile r, 
which is used to compile the base-level program . Because OpenC++ is a 
refl ective language, the meta-level program is compiled by the OpenC++ 
com piler itself. Then, t he compiled code is linked with the original compi ler 
(opencxx.a) 1 and a new extend ed com piler is prod uced. Let's name the 
extended compi ler myocc: 

I. occ -- -g -o myocc opencxx.a verbose.cc 

1 
In the current version, the Open C++ compiler cannot dynamically load meta~ level 

program s. 
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The options following -- , such as -g, are passed to the back-end C++ 
compiler. verbose. cc is compiled with the -g option and linked with 
opencxx.a. The produced file is myocc specified by the -o option. Un­
less the -c option is given, the OpenC++ compiler produces an executable 
file. 

Next , we compile the base-level program person. cc with the extended 
compiler myocc: 

'l. myocc -- -g -o person person.cc 

Now, we got an executable file person. It prints member function names 
if they are executed: 

'l. person 
Age() 
age 24 
BirthdayComes () 
age 25 
'l. 

The OpenC++ MOP provides a few functions for debugging. First, 
programmers may use Display() on Ptree objects to debug a compiler. 
Th is function prints the parse tree represented by the Ptree object . For 
example, if the debugger is gdb , programmers may print the parse tree 
pointed to by a variable object in this way: 

'l. gdb myocc 

(gdb) print object->Display() 
billy 
$1 ; void 
(gdb) 

Similarly, the OpenC++ compiler accepts the -s option to print the whole 
parse tree of the give n program. The parse tree is printed in the form of 
nested list : 

'l. myocc -s person.cc 
[typedef [char] [• __ gnuc_va_list] ;] 

[metaclass Person : VerboseClass [] ;] 
[ [[class Person [] [ { [ 

[public :] 
[0 [Person ( [[[int] [i))] )] [{ [ 

[[age ; i] ;] 
J } J J 
[ [int] [Age ( [] ) ] [ { [ 

[return age ; ] 
J } J J 
[ [int] [BirthdayComes ( [] ) ] [ { [ 
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[return [++ age] ;] 
J } J J 
[private : ] 
[ [int] [age] ; ] 

J })]] ;] 
[ [] [main ( [) ) ] [ { 

[[Person] [billy ( [24] )] ;] 
[[printf [( ["age 'l.d\n" , [billy 
[[printf [( ["age 'l.d\n" , [billy 

] } J J 
'l. 

Age [( [] )]]] )]] ;] 
BirthdayComes .. . 
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This option makes the compiler just invoke the preprocessor and prints the 
parse tree of the preprocessed program. [] denotes a nested list. The 
compiler does not perform translation or compilation. 

B.2.2 Syntax Extension for Verbose Objects 

In the verbose object extension above, the base-level programmers have to 
write the metaclass declaration. The extension will be much easier to use 
if it provides easy syntax to declare verbose objects. Suppose that the base­
level programmers may write something like this: 

II person.cc 
verbose class Person { 
public: 

Person(int age); 
int Age() { return age; } 
int BirthdayComes() { return ++age; } 

private: 

} ; 
int age; 

Note that the class declaration begins with a new keywo rd verbose but 
there is no metaclass declaration in the code above. 

This sort of syntax extension is easy to implement with the Open C++ 
MOP. To ma ke the new keyword verbose available, the meta-level program 
must call Class: : RegisterMetaclass () during the initi a li zation phase of 
the compiler. So we add a static member function Initialize() to the 
class VerboseClass . It is auto matically invoked at beginning by the MOP. 

II verbose.cc 
class VerboseClass : public Class { 
public: 

VerboseClass(Ptree• d, Ptree• m) : Class(d, m) {} 
Ptree+ TranslateMemberCall(Environment+, Ptree+, Ptree+, 

static BDDL Initialize(); 
Ptree+, Ptree+); 

}; 

BDDL VerboseClass: :Initialize() 
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{ 
RegisterMetaclass ("verbose 11

, 
11 VerboseClass'') ; 

return Class: :Initialize(); 
} 

RegisterMetaclass () defines a new keyword verbose . If a cl ass declara­
tion begins with that keyword, then the compiler recognizes that the meta­
class is VerboseClass. Th is is all that we need for t he syntax extension. 
Now the new compi ler accepts the verbose keyword. 

B.2.3 Matrix Library 

The next example is a mat rix library. It shows how the OpenC++ MOP 
works to specialize an optimization scheme for a particu la r class. The 
Matrix class is a popular example in C++ to show the usage of operator 
ove rloading. On the other hand , it is also famous that the typical imple­
mentation of the Matrix class is not efficient in practice. Let 's th ink about 
how this statement is executed: 

a=b+c-d; 

The variables a, b, c , and d are Matrix objects. The statement is executed 
by invoking the operator functions +,-, and =. But the best execution is to 
inline the operato r fun ctions in advance to replace the statement: 

for(int i = 0; i < N; ++i) 
a.element[i] = b . element[i] + c.element[i]- d.element[i]; 

C++'s inline specifier does not do this kind of smart inlining. It simply 
ext racts a fun ction definition bu t it does not fuse multiple ex tracted func­
tions into efficient code as shown a bove. Expecting that the C++ compiler 
a utom atically performs the fusion is not realistic. 

We use th e Open C++ MOP to implement this smart in lining specialized 
for the Matrix class. Again , we follow the three steps of the OpenC++ 
programming. 

What the base-level program should look like 

The objective of the matrix libra ry is to provide t he mat ri x data type as it 
is a built-in type . So t he base-level programmers s hould be able to write: 

Matrix a, b, c; 
double k; 

a = a * a + b - k * c; 

Note that the last line includes both a vector product a • a and a scalar 
product k * c. 
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What the base-level program should be translated 

We've already discussed this step. T he exp ressions involving Matrix objects 
are inlined as we showed above . We do not inline the expressions if they 
include more than one vector products. The gain by the inli ning is relatively 
zero against two vector products. 

Un like the verbose objects example, we need runt ime support code in 
this example. It is the class definition of Matrix. Note that the base-level 
programmers do not defi ne Matrix by themselves. Matrix must be suppl ied 
as pa rt of th e compi ler add-on for matrix arithmetics. 

Write a meta-level program 

To implement the inlining , we define a new metaclass MatrixClass. It is 
a metaclass on ly for Matrix. MatrixClass overrides a member fun ction 
TranslateAssign(): 

II matrixclass . cc 

Ptree+ MatrixClass: :TranslateAssign(Environment• env, 

{ 

} 

Ptree• object, Ptree• op, Ptree• expr) 

if(we can inline on the expression) 
return generate optimized code 

else 
return Class: :TranslateAssign(env , object, op, expr); 

This member function translates an assignment expression. object speci fi es 
t he L- value ex pression, op specifies the assignment operator such as = a nd+=, 
a nd expr specifi es the assigned expression. If the inlining is not applicable, 
this function invokes TranslateAssign() of the base class. Otherwise, it 
pa rses the given expr and generate optimized code. 

Since expr is already a parse tree , what this funct ion has to do is to 
traverse the tree a nd sort terms in the expression. It is defined as a recursive 
function that performs pattern matching for each sub-expression. Note that 
each operator makes a sub-expression . So an expression such as a + b - c 
is represented by a parser tree: 

[[a + b] - c] 

The OpenC++ MOP provides a convenience function Ptree: :Match() for 
patte rn matc hin g. So the tree traverse is described as follows: 

static BDDL ParseTerms(Environment• env , Ptree• expr, int k) 
{ 

Ptree+ lexpr; 
Ptree• rexpr; 
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if(expr->IsLeaf()){ II if expr is a variable 

} 

termTable[numDfTerms] . expr expr; 
termTable[numDfTerms] .k = k; 
++numOfTerms; 
return TRUE; 

else if(Ptree: :Match(expr, "['l. 7 + 'l. ?] ", &:lexpr, &:rexpr)) 
return ParseTerms(env, l expr, k ) 

&& ParseTerms(env, rexpr, k); 
else if(Ptree: :Match(expr, "['l.? - 'l. ?]", &:lexpr, &rexpr)) 

return ParseTerms(env, lexpr, k) 
&& ParseTerms(env, rexpr, -k) ; 

else if(Ptree::Match(expr, "[( 'l.? )]", &lexpr)) 
return ParseTerms(env, lexpr, k); 

else if (Ptree: : Match(expr, " [- 'l.?]", &:rexpr)) 
return ParseTerms(env, rexpr, -k); 

else 
return FALSE; 

T his function recursively traverses the given parse tree expr and stores the 
variables in expr into an array termTable. It also stores the fl ag (+ or - ) 
of the variable into the a rray. The returned value is TRUE if the sorting is 
successfully done. 

After ParseTerms () is successfully executed, each term in the expression 
is sto red in the a rray termTable . The rest of the work is to construct an 
inlined code from that array: 

static Ptree• DoOptimizeO(Ptree• object) 
{ 

} 

Ptree• index= Ptree::GenSym(); 
return Ptree: :MakeStatement( 

"for(int 'l.p = 0 ; 'l.p < 'l.s • 'l.s; ++'l.p)\" 
" 'l.p . element ['l.p] = 'l.p;", 
index, index, SIZE, SIZE, index, 
object, index, MakeinlineExpr(index)); 

Pt ree: :GenSym() returns a symbol name t hat has not been used. It is 
used as a loop vari able. Ptree: :MakeStatement() is a similar function to 
Ptree: :Make(). It const ru cts a parse tree representing a statement instead 
of a n expressio n. MakeinlineExpr() looks at the a rray a nd produces a n 
inlined expression: 

stat ic Ptree• MakeinlineExpr (Pt ree• index_var) 
{ 

int i; 
Ptree• expr; 
Ptree • inline _expr nil; 

for(i = numDfTerms- 1; i >= 0 ; --i){ 
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char op; 
if(termTable[i] .k > 0) 

op , +,; 
else 

op ,_,; 

expr = Ptree: :Make(" 'l. c 'l.p.element['l.p] ", 
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} 

op, termTable[i] .expr, index_var); 
i nline_expr = Ptree: :Cons(expr, inline_expr); 

} 
return inline_expr; 

The complete program of this example is matrixclass . cc, which is 
distributed togethe r with the OpenC++ compiler. See that program for 
more details. It deals with the scala r and vector products as well as simple 
+ and - operators. 

Write runtime support code 

Writing the runtime support code is stra ightforward. The class Matrix is 
defined in regular C++ except the metaclass declaration : 

I I matrix .h 
const N = 3; 

metaclass Matrix : MatrixClas s; 
class Matrix { 
public: 

Matrix(double); 
Matrix&: operator (Matrix&); 

}; 
double element[N • N]; 

Matrix& operator+ (Matrix&, Matrix&:); 
Matrix& operator- (Matrix&:, Matrix&:); 
Matrix& operator • (Matrix&:, Matrix&); 
Matrix& operator • (double, Matrix&:); 

Note that the class Mat rix is a complete C++ class . It still works if the 
metaclass declaration is erased. For more detai ls, sec th e sample program 
matrix. cc. They must be com piled by the Open C++ compiler. 

B.2.4 Syntax Extension for the M atrix Library 

lnitia lizer 

We can a lso implement sy ntax sugar for t he matrix libra ry. First of a ll , we 
enable th e foll owing sty le of initi a li zation: 
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Matrix r = { 0.5, -0.86, 0, 0.86, 0.5, 0, 0, 0, 1 }; 

Th is notation is ana logous to initial ization of a rrays. In regul ar C++, how­
ever, an object can not take an aggregate as its initia l value. So we translate 
the statement show n above by MatrixClass into th is correct C++ code: 

double tmp[] = { 0.5, -0 .86, 0 , 0.86, 0 . 5, 0, 0, 0, 1 }; 
Matrix r = tmp; 

To do th is translation, MatrixClass must override a member func tion 
Translateinitializer(): 

II matrixclass.cc 

Ptree• MatrixClass: :Translateinitializer(Environment• env, 

{ 

} 

Ptree • init, PtreeArray& before, PtreeArray& after) 

Ptree• sep = Ptree::First(init) ; 
Ptree• expr = Ptree : :Second(init); 
if(sep->Eq('=') && expr->Whatis() == PtreeBraceid){ 

Ptree• tmp = Ptree: :GenSym(); 
before .Append(Ptree: :Make("double Xp[] = Xp;\n", 

tmp, expr)); 

} 
else 

r eturn Ptree: :Make("= 'l.p 11 , tmp); 

return Class: :Translateinitializer(env, init, before, 
after); 

Th is member fun ction translates the ini t ializer of a Matrix object. For 
example , it receives, as the a rgument init , the initialize r = { 0.5, . . . } 
following tmp[]. If th e initializer is a n aggregate, this member function 
t ranslates it as we mentioned above. The temporary a rray is s tored in 
before. The Ptree objects sto red in before are inse rted before the variable 
declaration after the tra nslation . 

The forall statement 

T he second sy ntax sugar we show is a new kind of loop s tatement . For 
example, the programmer may write: 

Matrix m; 

m.forall(e){ e = 0.0; }; I I ; is a lways necessary 

e is bound to each element during the loop. The programmer may write any 
s tatements between { and } . The loop statement above assigns 0. 0 to al l 
the clements of the matrix m. This new loop statement should be translated 
into this: 
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for(int i = 0; i < N; ++i ){ 
double& e = m.element[i]; 
e = 0.0; 

} 
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The OpenC++ MOP a llows programmers to implement a new kind of 
statement such as forall . Because the new kind of statement is regarded 
as an expression in grammar, programmers can write it at any place an 
expression appears . However, they have to put a semicolon (;) at the end 
of the statement. 

To implement this statement, first we have to register a new keyword 
for all: 

II matrixclass.cc 

BDDL MatrixClass::Initialize () 
{ 

} 

RegisterNewWhileStatement ("forall "); 
return Class::Initialize(); 

Initialize() is a member function a utomatically in voked at the beginning 
of com pi lation. 

We also have to define what t he forall statement is t ranslated into. 
MatrixClass overrides a member function TranslateUserStatement (): 

Ptree• MatrixClass: :TranslateUserStatement(Environment• env, 
Ptree• object, Ptree• op, Ptree• keyword, Ptree• rest) 

{ 

} 

Ptree *tmp, *body, *index; 

Ptree: :Match(rest, "[([%?]) %?]", &tmp, &body); 
index= Ptree::GenSym(); 
return Ptree :: MakeStatement( 

"for(int Xp = 0; Xp < Xs * Xs; ++Xp){\n" 
" double& Xp = Xp%p element[Xp];\n" 

Xp }\n", 
index, index, SIZE, SIZE, index, 
tmp, object, op, index, TranslateStatement (env , body)); 

The forall s tatement is parsed so that object, op , a nd keyword are 
bound to m . forall , res pectively. res t is bound to t he rest of code 
(e){ e = 0.0; }. TranslateUserStatement() uses those argu ments to 
construct t he su bstituted code. Note that it calls MakeStatement() instead 
of Make(). This is because th e co nstructed code is not an expression but 
a s tatement. TranslateStatement () is called to recurs ively translate t he 
body part of the forall statement. 
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B.2.5 Before-Method 

CLOS provides a useful mechanism called before- and after- methods. They 
are special methods that are automatically executed before or after the 
primary method is executed. 

What the base-level program should look like 

We implement before-methods in OpenC++- For simplicity, if the name 
of a member function is before.£(), then our implementation regards this 
member function as the before-method for the member fun ction f 0. We 
don't introduce any syntax extension. For example , 

rnetaclass Queue BeforeClass; 
class Queue { 
public: 

Queue(){ i = 0; } 
void Put(int); 
void before_Put(); 
int Peek(); 

private: 
int buffer[SIZE]; 
int i; 

}; 

Put() has a before-method before.Put() whereas Peek() does not since 
before.Peek() is not defined in the class Queue. 

The before-method is automatically executed when the primary method 
is called. If the programmer say: 

Queue q; 

q.Put(3); 
int k = q.Peek(); 

The execution of q. Put(3) is preceded by that of the before-method q. before­
.Put(). Since Peek() does not have a before-method , the execution of 
q.Peek() is not preceded by any other function. 

What the base-leve l program should be translated 

In this extension, the class decla ration does not require any change. Only 
member function ca lls need to be translated. For example, 

q.Put(3) 

shou ld be translated into: 

((tmp = &q)->before_Put(), tmp->Put(3)) 
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This expression first stores the add ress of q in a temporary variable tmp 
and then calls before.Put () and Put() . The address of q shou ld be stored 
in the temporary variable to avoid evaluating q more than once. Also, the 
temporary variable must be declared in advance. 

Write a meta-level program 

The metaclass BeforeClass overrides TranslateMemberCall() to imple­
ment the translation mentioned above. The complete program ofBeforeClass 
is before. cc in the distribution package. Here, we ex pla in some key topics 
in the program. 

First of a ll , we have to decide whether there is a before-method for a 
given member function. BeforeFunction() does this work: 

Ptree* BeforeClass: :BeforeFunction(Ptree• name) 
{ 

} 

Ptree+ before = Ptree: :Make( 11 before_/.p 11 , name); 
if(IsMember(before) != 0) 

return before; 
else 

return nil; 

In the first line, this produces the name of the before-method by Ptree: :Make(). 
Then it calls IsMember() supplied by Class. IsMember() returns non-zero 
if t he class has a member that matches the given name. 

The next issue is a temporary variable. We have to appropriately insert a 
variable declaration to use a temporary variable. The name of th e temporary 
variable is obta ined by calling Ptree: : GenSym(). The difficu lty is how to 
sha re the temporary variable among member function calls. To do this, we 
record the temporary variable in the environment . We can define a subclass 
of Environment: :ClientData and record the object in an environment. 
Let's define the subcl ass: 

class TempVarName : public Environment: :ClientData { 
public: 

}; 

TempVarName(Ptree• p) { varname = p; } 
Ptree* varname; 

A TempVarName object includes a single member varname, which is the name 
of a tempora ry vari able. We record this object in th e environment when 
we first decla re the temporary variable. Then we use this object to check 
whether a temporary variable has been already declared. 

Ptree• class_name =Name(); 
TempVarName• tmpvar 

= (TempVarName•)env->LookupClientData(this, class_name); 
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if(tmpvar != nil) 
varname 

else{ 
trnpvar->varname; 

varname Ptree::GenSym(); 
tmpvar =new TempVarName(varname); 

} 

Ptree* decl = Ptree: : MakeStatement ( 11 'l.p* 'l.p; '' , 
class_narne, varname); 

env->InsertDeclaration(decl, this, class_narne, tmpvar); 

return Ptree: :Make(" ( (/.p='l.c'l.p)->'l.p(), 'l.p->'l.p/.p)", 
varname, (op->Eq(' .') ? '&' : ' '), object, 
before_func, varnarne, member, arglist); 

This is the core part of TranslateMemberCall ()supplied by BeforeClass. 
It first looks for a TempVarName object by calling LookupClientData() with 
two search keys. If it is not found , a variable declaration decl is produced by 
Make() and it is inserted into the translated program by InsertDeclaration(). 
InsertDeclaration() also records a TempVarName object for future refer­
ence. 

B.2.6 Wrapper Function 

A wrapper function is useful to implement language extensions such as con­
currency. A wrapper function is generated by the compiler and it intercepts 
the call of the original "wrapped" function. For example, the wrapper func­
tion may perform synchronization before executing the original fun ction . 
The original function is not invoked unless the wrapper function explicitly 
calls it. 

What the base-level program should be translated 

We show a metaclass WrapperClass that generates wrapper functions. If 
WrapperClass is specified, it generates wrapper functions for the member 
functions of the class. And it translates the program so that the wrap­
per functions are invoked instead of the wrapped member functions. For 
example , suppose that the program is something like this: 

metaclass Point WrapperClass; 
class Point { 
public: 

}; 

void Move(int, int); 
int x, y; 

void Point: :Move(int new_x, int new_y) 
{ 

} 
x = new_x; y = new_y; 
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void f() 
{ 

} 

Point p; 
p.Move(3, 5); 
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II call Move() 

The compiler generates a wrapper function wrapper..Move() for Move(). 
The call of Move() in f () is substituted by the call of the wrapper function. 
For simplicity, we make the wrapper function just invoke the wrapped func­
tion Move() without doing anything else. The translated program should 
be this: 

class Point { 
public: 

void Move(int, int); 
int x, y; 

public: 
void wrapper_Move(int , int); 

}; 

void Point: :Move(int new_x, int new_y) 
{ 

} 
x = new_x; y = new_y; 

void Point: :wrapper _Move ( int p 1, int p2) II generated wrapper 
{ 

} 

II should do someth ing here in a real example 
Move(pl, p2); 

void f () 
{ 

Point p; 

} 
p.wrapper_Move(3, 5); II call the wrapper 

Write a meta-level program 

WrapperClass has to do three things: (1) to insert member declarations for 
wrapper functions, (2) to generate the definitions of the wrapper functions, 
and (3) to replace a call of a member function with a call of the wrapper func­
t ion. WrapperClass overrid es TranslateBody() for (1), TranslateMember­
FunctionBody() for (2), and TranslateMemberCall () for (3). 

First, we show TranslateBody(). Its work is to translate the body of 
a class declaration. It examines a member of the class and , if the member 
is a function , it inserts the declaration of the wrapper function . To get a 
member name, we use NthMemberName() : 

Ptree• WrapperClass: :TranslateBody(Environment• env, Ptree• body) 
{ 
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Ptree+ decl = Ptree: :Make("public:\n"); 
Ptree• name; 
Typeinfo t; 
int i ::;; 1; 
while((name = NthMemberName(i++)) != nil){ 

Ptreeid whatis = name->Whatis(); 
if(whatis != LeafClassNameid 

} 

&& whatis != PtreeDestructorid) 
if (LookupMemberType(env, name, t)) 

if(t .Whatis() == FunctionType){ 

} 

Ptree+ mem = t.MakePtree(WrapperName(name)); 
decl = Ptree: :Make("'l.p 'l.p;\n", 

decl, mem); 

return Ptree: :Append(body, decl); 

Ptree+ WrapperClass: :WrapperName(Ptree• name) 
{ 

} 
return Ptree: :Make( 11 wrapper_'l.p 11

, name); 

In the while loop, we first check that the member is not a constructor or a 
destructor. If it is a constructor or a des tructor, the parse tree indicated by 
name is LeafClassNameid or PtreeDestructorid. Then we get the type of 
the member by calling LookupMemberType(). If the member is a function, 
the type is FunctionType. 

After we make sure that the member is a function , we generates th e 
declaration of the wrapper function . We use MakePtree () to generate it. 
This mem ber function of Type Info makes a parse tree that represents the 
type name. Suppose that a Typeinfo tis the pointer type to integer. Then 
t. MakePtree () returns: 

int* 

We can also give a varia ble name to MakePtree(). For example: 

t.MakePtree(Ptree: :Make("i")) 

returns: 

int* i 

Similarly, if t is a function type, we can give a function name and get a 
parse t ree that represents the fun ction declaration. For example: 

t. MakePtree (Ptree: : Make("foo")) 

} 
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returns if t is the function type that takes two integer a rguments and returns 
a pointer to a character: 

char+ foo(int, int) 

If t is the pointer type to that function, the returned parse tree is: 

char• (+foo)(int, int) 

Next, we mention TranslateMemberFunctionBody(). It generates the 
definition of the wrapper function if the member function is not a constructor 
or a des tructor. The actual generation is done by MakeWrapper(): 

void WrapperClass: :MakeWrapper(Environment• env, Ptree• name, 
Ptree+ wrapper_name, Typeinfo& t, 
BOOL inlined) 

{ 
Typeinfo atype; 
Typeinfo rtype; 
int i; 
Ptree* wrapper; 
Ptree+ arglist = nil; 

for(i = 1; t.NthArgument(i, atype); ++i ){ 
Ptree• arg = atype.MakePtree(Ptree: :Make("p'l.d", i)); 
if(i == 1) 

} 

arglist 
else 

arglist 

arg; 

Ptree: :Make("'l.p,'l.p", arglist, arg); 

t.Dereference(rtype); 
Ptree+ body= WrapperBody(env, name, wrapper_name, i-1, t); 
Ptree• head = Ptree: :Make("'l.p: :'l.p('l.p)", 

Name(), wrapper_name, arglist); 
if(rtype.Whatis() != UndefType) 

head= rtype.MakePtree(head); 

if(inlined) 
wrapper Ptree: :Make("inline 'l.p{'l.p}\n", 

else 
head, body)); 

wrapper Ptree::Make("'l.p{'l.p}\n", head, body)); 

AppendAfterToplevel(wrapper); 

13y the first for loop, this member function constructs the a rgum ent list 
arglist . The name of the a rg uments are p1 , p2 , p3 , a nd so on. To obtain 
the argument type, we call NthArgument() of Typeinfo. Then we call 
MakePtree() to co nst ruct each argument declaration. 
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The return type of the function is attached by calling MakePtree() on 
the return type rtype , which is obtained by calling Dereference() on the 
function type t. The argument passed to MakePtree() is the rest of the 
function header s uch as X: :f(int p1, char p2) . 

The constructed definition of the wrapper function is fin ally inserted 
into the translated program by AppendAfterToplevel (). It inserts the 
constructed parse tree just after the (translated) definition of the original 
member function . This avoids unnecessary duplicated copies of the wrapper 
fun ctions. If we generate the wrapper functions when TranslateBody() 
processes the class declaration, the wrapper function s would be duplicated 
every time the class declaration is included by a different source file. 

Finally, we show TranslateMemberCall (),which substitutes the wraj>­
per function for the member function originally called. Its definition is sim­
ple. It calls the member function of t he base class Class with the wrapper 
function's name instead of the original member 's name: 

Ptree• WrapperClass: :TranslateMemberCall(Environment• env, 
Ptree• member, 

{ 

} 

Ptree• arglist) 

return Class: :TranslateMemberCall(env, WrapperName(member), 
arglist); 

Subclass of WrapperClass 

The complete program of WrapperClass is found in wrapper. cc , which is 
distributed together with the OpenC++ compiler. Although the wrapper 
functions generated by WrapperClass do not perform anything except call­
ing the original member function, we can define a subclass of WrapperClass 
to generate the wrapper functions that we need. (Note that, to make the 
su bclass effective, we also have to edit the metaclass declaration so that the 
compiler uses the s ubclass.) 

For example, s uppose that we need a wrapper fun ction that perform 
synchronization before calling the original member function. This sort of 
wrapper function is typical in concurrent programming. To implement this, 
we just define a subclass SyncClass and override WrapperBody (): 

#include 11 Wrapper.h 11 

class SyncClass : public WrapperClass { 
public: 

}; 

SyncClass(Ptree• d, Ptree• m) : WrapperClass(d, m) {} 
Ptree• WrapperBody(Env ironment•, Ptree•, Ptree+, int, 

Typeinfo&); 

WrapperBody() is a virtual function a nd it is called by MakeWrapper() 
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to construct the function body of the wrapper function. WrapperBody() 
supplied by WrapperClass retu rns a return statement such as : 

return original-function(p1, p2, ... ) ; 

So we define WrapperBody() supplied by SyncClass as s hown below: 

Ptree• SyncClass::WrapperBody(Environment* env , Ptree • name, 

{ 

} 

Ptree• wrapper_name, int nurn_of_args, 
Typeinfo& ftype) 

Ptree• ret = WrapperClass : :WrapperBody(env, name, wrapper_name, 
num_of_args, ftype) ; 

return Ptree: :Make(i 1synchronize(); 'l.p 11 , ret) ; 

This inserts synchronize(); before the return statement. 
As we see above, carefully designed metaclasses can be reused as the 

base class of another metaclass. Such metaclasses, that is, metaclass li­
braries, make it easier to write other metaclasses. Indeed, MatrixClass 
in the matrix example shou ld be re-implemented so that other metaclasses 
s uch as ComplexClass can share the code for inlining with MatrixClass. 
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B.3 Base-Level Language (OpenC++) 

T his section addresses the la nguage specifi cation of Open C++. Open C++ 
is identical to C++ except two extensions. To connect a base-level program 
and a meta-level program, Open C++ in troduces a new kind of declaration 
into C++. Also, new extended syntax is available in Open C++ if the syntax 
is defined by the meta-level program. 

B.3.1 Base-level Connection to the MOP 

OpenC++ provides a new syntax for metaclass declaration. This declara­
tion form is the on ly connection between the base level a nd the meta level. 
Although the default metaclass is Class , programmers can change it by 
using this declaration form: 

• metaclass class-name : metaclass-name [ ( meta-arguments ) J; 2 

This declares the metaclass for a class. It must appear before the class 
is defined. meta-arguments is a sequence of identifiers, type names, 
literals, and C++ expressions surrounded by (). The elements must 
be separated by commas. The identifiers appearing in meta-arguments 
do not have to be declared in advance. What should be placed at meta­
arguments is specifi ed by the metaclass . 

The code shown below is an example of metaclass declaration: 

metaclass Point : PersistentClass; 
class Point { 
public: 

int x, y; 
}; 

The metaclass for Point is PersistentClass. 

B.3.2 Syntax Extensions 

The ex tended syntax described here is effective if progra mmers define it 
by the MOP. By default, it causes a syntax erro r. To make it avail able, 
programmers must register a new keyword, which is used in one of the 
following form s: 

• Type Modifier keyword [ ( function-arg uments ) J 

The keyword registered to lead a type modifier may ap pear in front 
of type names, the nell operator, or class declarations. for example, 
these statements a rc valid: 

2
(] means an optional field. 
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distribute class Dictionary { ... }; 

remot e Point• p = remote(athos) nell Point; 

Here, distribute and remote are registered keywords. 
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• Access Specifier keyword [ ( function-arguments ) ] 

Program mers may define a keyword as a member-access specifi er. It 
appears at the same place that the built-in access specifi er such as 
public can appears. for example, if after is a registered keyword, 
then programmers may write : 

class Windoll { 
public: 

void Move() ; 
after: 

void Move() { .. . } 
}; 

• While-style Statement 

I I after method 

pointer -> keyword ( expression ){ statements} 
object . keyword ( expression ) { statements } 
class-name: :keyword ( expression ) { statements } 

A registered keyword may lead something like the llhile statement . In 
the grammar, that is not a statement but an expression. It can appear 
at any place where C++ expressions appear. expression is any C++ 
expression. It may be empty or separated by commas like function-call 
a rgum ents . Here is an example of th e while-style statement: 

Matrix m2; 
m2.forall(e){ 

e = 0; 
}; 

Note the last semicolon " ;" . It is needed because the for all statement 
is an "expressions" in the grammar. 

A registered keyword can also lead other sty les of statements. 

• For-style Statement 
pointer -> keyword ( expr ; exJH' ; expr ){ statements} 
object . keyword ( expr ; expr ; expr ){ statements } 
class-name: : keyword ( expr ; expr ; expr ){ statements } 

The for-sty le statement takes three exp ressions like the for statement. 
Except that , it is the same as the while-style statement. 
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• Closure Statement 
pointer-> keywor-d ( arg-declaration-/ist ){ statements} 
object . keyword ( arg-declaration-/ist ) { statements } 
class-name: :keyword ( arg-declaration-/ist ) { statements } 

The closure statement takes an argument declaration list instead of an 
expression . That is the only difference from the while-style statement. 
For example, programmers may write something like this : 

ButtonWidget b; 
b.press(int x, int y){ 

printf("pressed at (/.d, /.d)\n", x, y); 
}; 

B.3.3 Loosened Grammar 

Besides extended syntax, OpenC++'s grammar is somewhat loosened as 
compared with C++'s grammar. For example, the next code is semantically 
wrong in C++: 

Point p; { 1, 3, 5 }; 

The C++ compiler will report that p cannot be initialized by "{ 1, 3, 5 }". 
Such an aggregate can be used only to initi alize an array. T he OpenC++ 
compiler simply accepts such a semantically-wrong code. It ignores seman­
tical correctness expecting that the code will be translated in to valid C++ 
code. 
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B.4 Metaobject Protocol (MOP) 

At the meta level, the (base-level) programs are represented by objects of 
a few predefi ned classes (and their subclasses that programmers define). 
These objects are called metaobjects because they are meta representation 
of the programs. Source-to-source translation from OpenC++ to C++ is 
implemented by manipulating those metaobjects. 

This section shows details of such metaobjects. They reflect various 
aspects of programs that are not accessible in C++. Although most of 
metaobjects provide means of introspection, some metaobjects represent a 
behavioral aspect of the program and enables to control source-to-source 
translation of the program. Here is the list of metaobjects: 

• Ptree metaobjects: 

They represent a parse tree of the program. The parse tree is imple­
mented as a nested-linked list. 

• Typelnfo metaobjects: 

They represen t types that appear in the program. The types include 
derived types such as pointer types and reference types as well as 
built-in types and class types. 

• Environment metaobjects: 
They represent bindings between names and types. Since this MOP 
is a compile-time MOP, the runtime values bound to names are not 
available at the meta level. 

• Class metaobjects: 
As well as they represent class definitions, they control source-to­
source translation of the program. Programmers may define subclasses 
of Class in order to tailor the translation. 

Distinguishing Typeinfo metaobjects and Class metaobjects might look 
like wrong design . But this distinction is needed to handle derived types. 
Typelnfo metaobjects were in troduced to deal with derived types and fun­
damental types by using the same kind of metaobjects . 

B.4.1 Representation of Program Text 

Program text is accessible at the meta level in the form of parse tree. The 
parse tree is represented by a Ptree metaobject. It is implemented as a 
nested linked-list of lexical tokens- the S expressions in the Lisp terminol­
ogy. For example, this piece of code: 

int a ; b + c * 2; 

is parsed into: 



136 APPENDIX B. REFERENCE MANUAL 

Table 13.1: static member functions on Ptree 

- Ptree• First(Ptree• 1st) returns the first element of 1st. 

- Ptree• Rest(Ptree• 1st) returns the rest of 1st except the first element, 
that is, the cdr field of 1st. 

- Ptree• Second(Ptree• 1st) returns the second element of 1st . 

- Ptree• Third(Ptree• 1st) returns the third element of 1st . 

- Ptree• Nth(Ptree• 1st, int n) returns the n-th element of 1st. 
Nth(lst, 0) is equivalent to First(lst). 

- Ptree• Last(Ptree• 1st) returns t he last cons cell , which is a list con­
taining on ly the last elemen t of lst. 

- Ptree• ListTail (Ptree• lst, int k) ret urns a sublist of lst obta ined 
by omitting th e first k elements. ListTail(lst, 1) is equivalent to 
Rest (1st) . 

- int Length(Ptree• lst) returns the number of the elements of lst. 

- Ptree• Cons(Ptree• a, Ptree• b) returns a cons cell whose car field is 
a and whose cdr is b. 

- Ptree• List(Ptree• el, Ptree• e2, .. . ) returns a list whose ele­
ments are el, e2 , .. . List() returns a null list [ ], which is denoted by 
nil or NIL. 

- Ptree• Append(Ptree• lstl, Ptree• lst2) concatenates lstl and 
lst2. It returns t he resul t ing list. 

- Ptree• CopyList(Ptree• lst) returns a new list whose elements are the 
same as 1st's . 

- BOOL Eq (Ptree• lst, char x) 
- BOOL Eq (Ptree• 1st, char• x) 

- BOOL Eq (Ptree• lst, Ptree• x) returns TRUE if 1st a nd x are equ a l. 
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[[int] [a = [b + [c • 2]]) ;] 

Here, [ ] denotes a linked list. Note that operators such as = and + make 
sublists . The sublists and t heir elements (that is, lexical tokens such as a 
and =) are also represented by Ptree metaobjects . 

Basic Operations 

To manipu late linked lists, the MOP provides some stat ic member func­
t ions on Ptree, wh ich are familiar to Lisp programmers. Table 13.1 shows 
t hose static member functions. In addition, t he following member func­
tions a re available on Ptree metaobjects : 

• BOOL Is Leaf() 

This returns TRUE if the metaobject indicates a lexical token. 

• void Display() 

This prints the metaobject on the console for debugging. Sublists are sur­
rounded by [ and ] . 

• int Write(ostream& out) 
This writes the metaobject to the file specifi ed by out. Un like Display() , 
sublists are not sur rounded by [and ] . T his member function returns the 
number of written lines. 

• ostream& operator<< (ostream& s, Ptree• p) 
The operator« can be used to write a Ptree object to an output stream . 
It is equ ivalent to Write() in te rms of t he result. 

• Ptreeid Whatis() 

This returns a n enum constant that corresponds to the syntactical meaning 
of the code that t he metaobject represents . For example, the metaobject 
represents a class name, this member function returns LeafClassNameid. 
If it represents a if statement , PtreeifStatementid is returned. The re­
turned constants a re listed in Table 13.2. 

The parse t ree is basically a long list of the lexical tokens tha.t appear in 
the program alt hough some of t hem a re g rou ped into sublists. The orde r of 
t he elements of t ha.t list is t he same as the order in which th e lex ical tokens 
appear. 13u t if some fields such as the type fie ld are omitted in the program, 
t hen nil lists []are inserted at t hat place. For example, if the return type 
of a. function declaration is omitted as follows: 

main(int argc, char•• argv){ } 
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Table 8.2: en urn constants returned by Ptree :: Whatis () 

• Toplevel declarations 

PtreeDeclarationid, PtreeFunctionid, PtreeTemplateDeclid, 
PtreeMetaclassid, PtreeTypedefid, PtreeLinkageid 

• Statements 
PtreeExprStatementid, PtreeLabelid, PtreeCaseLabelid, 
PtreeifStatementid, PtreeSvitchStatementid, 
PtreeWhileStatementid, PtreeDoStatementid, 
PtreeForStatementid, PtreeBreakStatementid, 
PtreeContinueStatementid, PtreeReturnStatementid, 
PtreeGotoStatementid 

• Expressions 

PtreeinfixExprid, PtreeCondExprid (conditional), 
PtreeCastid, PtreeUnaryExprid, PtreePostfixExprid, 
PtreeMemberAccessExprid, PtreeSizeofExprid, 
PtreeAssignExprid, PtreeSizeofTypeid, PtreePtrToMemExprid 
(pointer to member, ->o or .•) , PtreeNevid, PtreeDeleteid, 
PtreeFstyleCastid (function-style cast), PtreeUserStatementid, 
PtreeStaticUserStatementid, PtreeActualArgsid 

• Class Decla rations 
PtreeEnumid, PtreeClassid 

• Groups 
PtreeParenid (pa renth esis), PtreeBracketid, PtreeBraceid, 
PtreeAngleid, 

• Leaf Nodes 
LeafTypeNameid, LeafClassNameid, LeafPointerid, 
LeafReferenceid, LeafConstValueid, LeafNameid, 
LeafReservedid, LeafThisid, LeafReservedModifierid, 

• Others 

PtreeTemplateNameid, PtreeQClassNameid (qualified class name), 
PtreeQnameid (qualified name), PtreePtrToMemberid (pointer to 
member, :: •), PtreeCvQualifierld (canst or volatile), 
PtreeDestructorid, PtreeOperatorFuncid, PtreeAccessCtrlid, 
PtreeUserKeyvordid 
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then a nil list is inserted at the head of the list: 

m main [( [[int] [argc]] • [[char ] [• • argv]]] )] [{ [J }]] 

Since the function body is also omitted, a nil list is inserted between {and 
}. 

Construction 

Programmers can make Ptree metaobjects. Because the MO P provides a 
conservative garbage collector, they don't need to care about deallocation 
of the metaobjects . The next static member functions on Ptree are used 
to make a Ptree metaobjects. 

• Ptree• Make(char• format, (Ptree• sublist, ... )) 
This makes a Ptree metaobject according to the format. The format is 
a null-terminated string. All occurrences of 'l.c (character), 'l.d (integer), 
'l.s (character string), and 'l.p (Ptree) in the format are replaced with the 
values following the format . 'l.'l. in the format is replaced with 'l.. 

• Ptree• MakeStatement(char• format, [Ptree• sublist, ... )) 
This is identica l to Make() except the generated Ptree metaobject represents 
not an expression but a statement. 

• Ptree• GenSym() 

This generates a unique sy mbol name (aka identifi er) and returns it. The 
returned sy mbol name is used as the name of a temporary variable, for 
example. 

The Ptree metaobject returned by Make() and MakeStatement() is not 
a real parse tree.3 It is just a unparsed chunk of characters. Although 
programmers can use Ptree metaobjects generated by Make() as they use 
othe r Ptree mctaobjects, t he structure of those metaobjccts does not refl ect 
the code they represent. 

Using Make() , programmers can easily generate any piece of code to sub­
stitu te for part of the original sou rce code. For example, su ppose array _name 
is [xpos] an d offset is 3. The followin g function call : 

Ptree: :Make("'l.p['l.d]", array_name, offset) 

makes a Ptree metaobject that represents: 

xpos [3] 

3 At least, for the time being. 
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Xp simply expand a given Ptree metaobject as a character string. Thus 
programmers may write something like: 

Ptree: :Make("char> GetName(){ return \"Xp\"; }", 
array_name); 

Note that a double quote " must be escaped by a backslash \ in a C++ 
string. \"Xp\" makes a string li teral. The function ca\1 above generates the 
code below: 

char• GetName(){ return "xpos"; } 

Although Make() and MakeStatementO fo\low the old printf() style, 
programmers can also use a more convenient style simi lar to Lisp's backquote 
notation. for example, 

Ptree: :Make("Xp[Xd]", array_name, offset) 

The expression above can be rewritten using qMake() as fo\lows: 

Ptree: :qMake("'array_name' ['offset']") 

Note that the "backqouted" C++ expressions arrayJlame and offset are 
directly embedded in the C++ string. Their occurrence are replaced with 
the value of the expression. This replacement cannot be implemented in 
regu lar C++. It is implemented by the metaclass for Ptree . 

• Ptree• qMake(char• text) 
This makes a Ptree metaobject that represents the text. Any C++ expres­
sion surrouned by backquotes' can appear in text . Its occurence is replaced 
with the value denoted by the expression. The type of the expression must 
be Ptree• , int, or char+. 

o Ptree• qMakeStatement(char• text) 
This is identical to qMake() except the generated Ptree metaobject repre­
sents not an expression but a statement. 

Pattern Matching 

The MOP provides a static member function on Ptree metaobjects for 
pattern matching. 

• BDDL Match(Ptree• list, char• pattern, ~tree•• sublist, .. J) 
This compares the pattern and list. If they match, this function returns 
TRUE and binds the sublists to app ropriate sublists of the list, as specified 
by the pattern. Note that the type of sublist is pointer to Ptree•. 

for example, the fun ction Match() is used as follows: 
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if(Ptree: :Match(expr, "[X? +X?]", &lexpr, &rexpr)) 
puts("this is addition."); 

else if(Ptree: :Match(expr, "[X?- X?]", &lexpr, &rexpr)) 
puts( 11 this is subtraction. 11 )j 

else 
puts( 11 unknown 11

); 
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The pattern [X? + X?] matches a linked list that consists of three elements 
if the second one is +. If an expression expr matches the pattern, lexpr 
gets bound to the first element of expr and rexpr gets bound to the third 
element. 

The pattern is a nu\1-terminated string. Since Match() does not un­
derstand the C++ grammar, lexical tokens appearing in the pattern must 
be separated by a white space. For example, a pattern a +b is regarded as a 
single token. The pattern is constructed by these rules: 

1. A word (characters terminated by a white space) is a pattern that 
matches a lexical token. 

2. X[, XJ, and XX are patterns that match [, ] , and X. 

3. [] is a pattern that matches a nu\1 list (nil). 

4. [patl pat2 ... ] is a pattern that matches a list of patl, pat2, ... 

5. X• is a pattern that matches any token or list. 

6. X? is a pattern that matches any token or list. The matched token or 
list is bound to sublist. 

7. X- is a pattern that matches the rest of the list (t he cdr part). 

8. 'l.r is a pattern that matches the rest of the list . The matched list is 
bound to sublist. 

Reifying Program Text 

If a Ptree metaobject represents a literal such as an integer constant and a 
string literal , we can obtain the value denoted by the literal. 

• BDDL Reify(unsigned int& value) 
This returns TRUE if the metaobject represents an intege r constant. The 
denoted value is stored in value. Note that the denoted value is always a 
positive number because a negative number such as -4 generates two destinct 
tokens such as - and 4. 

• BOOL Reify(char•& string) 
T his returns TRUE if the metaobject represents a string literal. A st ring 
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literal is a sequence of character surrounded by double quotes". The denoted 
null-terminated string is stored in string. The denoted string does not 
include the double quotes at the both ends. Also, the escape sequences a re 
not expanded. 

Convenience Classes Ptreeiter and PtreeArray 

The MOP provides a few convenience classes to help programmers to deal 
with Ptree objects. One of them is the class Ptreeiter. It is useful to 
perform iteration on a list of Ptree objects. Suppose that expr is a list: 

Ptreeiter next(expr); 
Ptree* p; 
while((p =next()) !=nil) 

compute on p ; 

Each element of expr is bound to p one at a t ime. The operator () on 
Ptreeiter objects returns the next element . This is the same as calling a 
member function Pop(). If the reader likes the for-loop style, she can a lso 
say: 

for(Ptreeiter i = expr; !i.EmptyO; i++) 
compute on *i ; 

Although this in terface is s lightly s low, it disting uishes the end of the list 
and a nil element . 

Another class PtreeArray is for a n unbound ed array of Ptree objects. 
It is used as follows (suppose th a t expr is a Ptree object): 

PtreeArray a; 
a.Append(expr); 
Ptree* p = a [0] ; 
Ptree* p2 = a.Ref(O); 
int n = a.Number(); 
Ptree* lst = a . All () ; 

I I a llocate an array 
I I append expr to the end of the array 
I I get the first element 
I I same as a [O] 
I I get the number of elements 
I I get a list of a ll the elements 

B.4.2 Representation of Types 

Typeinfo metaobjects rep resent types. Because C++ deals with derived 
ty pes such as pointer types and a rray types, Class metaobjects a re not 
used for primary representation of types. Typeinfo metaobjects do not treat 
typedefed types as independent types. T hey arc treated just as aliases of 
t he original types. 

The followings are member functions on Typeinfo mctaobjccts: 

o Typeinfoid What I s() 

This returns an enum constant that corresponds to the kin d of the type: 
BuiltinType, ClassType (including class, struct, and union), EnumType , 
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TemplateType,PointerType,ReferenceType, PointerToMemberType,ArrayType, 
FunctionType, TemplateFunctionType, or UndefType (the type is unknown). 

• Ptree• FullTypeName() 

This returns the fu ll name of the type if the type is a built-in type, a class 
type, an enum type, or a template class type. Otherwise, this returns nil. 
For example, if the type is a nested class Y defined within a class X, this 
returns X: : Y. 

o uint IsBuiltinType() 

This returns a bit field that represents what the built-in type is. If the 
type is not a built-in type, it simply returns 0 (FALSE). To test the bit 
field, these masks a re available: CharType, IntType, ShortType, LongType , 
SignedType, UnsignedType, FloatType , DoubleType, and VoidType. For 
example, biLfie/d & LongType is TRUE if the type is long, unsigned long, 
or signed long. 

o Class* ClassMetaobject() 

This returns a Class metaobject that represent the type. If the type is not 
a class type, it simply returns nil. 

o void Dereference(Typeinfo& t) 

This returns the dereferenced type in t . For exam ple, if the type is int** , 
then Dereference() on the ty pe returns a Typeinfo metaobject for inu. 
If a function type is dereferenced, t becomes its return type. If dereferencing 
is not possible, the Undef type is retu rned in t. 

o void Dereference() 

This is identical to Dereference(Typeinfo&) except that the Typeinfo 
metaobject itself is changed to represent the dereferenced type. 

o BDDL NthArgument(int nth, Typeinfo& t) 
If the type is FunctionType, this returns the type of the nth(?_ 0) argume nt 
at t . If the type is not FunctionType or the nth argument does not exist, 
t his fun ction retu rn s FALSE. If t he nth argument is ... (ellipses), then the 
returned type is UndefType. 

o Ptree* MakePtree(Ptree* var_name = nil) 

This makes a Ptree metaobjcct t hat represents the type name. For example, 
if the type is pointe r to in tege r, this returns [int* var_name]. va r _name 
may be nil. 
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B.4.3 Representation of Environment 

Environment metaobjects represent bindings between names and types. If 
the name denotes a var ia ble, it is bound to the type of that variable . Other­
wise, if the name denotes a type, it is bound to the type itself. Programmers 
can look up names by these member functions on Environment metaobjects: 

• BDDL Lookup(Ptree• name, BDDL& is _type_name, Typeinfo& t) 
This looks up the given name in to the environment and returns TRUE if found . 
The type of name is returned at t. If the name is a type name, is_type_name 
is changed to TRUE. If it is a variable name, is_type_name is FALSE. 

• BDOL Lookup(Ptree• name, Typeinfo& t) 
T his is an a lias of Lookup(Ptree•, BOOL&, Typeinfo&) shown above. 

• Class• LookupClassMetaobject(Ptree• name) 
This looks up the given name and returns a Class metaobject of the type. 
The name may be a variable name or a type name. If the name is not found , 
this function retu rns nil. 

Environment metaobjects are also useful to store client data. Program­
mers can record client data in any Environment metaobject and look it up 
later. The client data must be a subclass of Environment: :ClientData. 
The following member functions are for manipulating the client data: 

• BOOL AddClientData(Class• metaobject, Ptree• key, 

Environment: :ClientData• data) 
This records data in t he environment. metaobj ect and key are used to 
retrieve data late r. If another data is reco rded with the same pair of 
metaobject and key , this returns FALSE. 

• Environment: :ClientData• LookupClientData(Class• metaobject, 

Ptree• key) 
This returns the client data recorded with metaobject and key. If the data 
is not found , this returns nil. 

• BDDL DeleteClientData(Environment: :ClientData• data) 
This deallocates data reco rded in the environment . If data is not found , 
this returns FALSE. {Note t hat data is a utomatically deallocated when the 
env ironment is deallocated.) 

Environment metaobjccts are also used to insert declarations in the 
translated program. These a rc member functions for that purpose: 
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• void InsertDeclaration(Ptree• decl) 

This inserts the given code decl at the beginn ing of the function body that 
is curren tly processed. 

• BDDL InsertDeclaration(Ptree• decl, Class• metaobject, 
Ptree• key, Environment: :ClientData• data) 

This inserts the given code decl at t he beginning of the function body. T he 
difference from t he fun ction above is that it a lso records the client data in th e 
outermost environment of the function body. It guarantees that the recorded 
data last while the function body is translated. Note that AddClientData() 
records the client data in the immediate environment (aka the innermost 
block) . The client data is not visible out of that env ironment. 

To insert code in the translated program, also see InsertBeforeToplevel () 
and AppendAfterToplevel () in Section 8 .4.4. 

B.4.4 Class Metaobjects 

Class metaobjects play the key role of the MOP. They represent class defi­
nitions a nd also control source-to-source translation of the program . Their 
default class is Class , but programmers may define a subclass of Class to 
control the source-code translation. 

The class of a metaobject is selected by the metaclass declaration at the 
base level. If the metaclass for Point is PersistentClass at t he base level, 
then t he class metaobject for Point is an instance of PersistentClass . 
This semantics is natural because a metaclass means the class of a class. 

Selecting a Metaclass 

Base-level programmers may specify a metaclass in a way other than the 
metaclass declaration. The exact algorithm to select a metaclass {that is, 
the class of a class metaobject) is as shown below: 

1. The metaclass specified by the metaclass declaration. 

2. The metaclass specified by the keyword attached to th e class decla­
ration if exists (See RegisterMetaclass () in Section 8.4.4 for more 
deta ils) . 

3. Or else, the metaclass for the base classes. If the metaclass of each 
base class is different, an error is caused. 

4. Otherwise, the default Class is selected. 

If both the mcta.class declara tion and the keyword exist and they specify 
d ifferent metaclasses, then an error is caused . 
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Constructor 

Class metaobjects may receive meta a rgum ents from the base level when 
they are initialized. T he const ructor is responsible to deal with the meta 
a rguments. By default, the meta arguments are simply ignored. Here is the 
prototype of the constructor: 

• Class(Ptree• definition, Ptree• meta_args) 
This co nstructor initi alizes the data members. definition is the whole 
piece of code of the class declaration. If meta arguments are not given, 
meta_args is nil. 

Protocol for Introspection 

Since a class metaobject is the meta representation of a cl ass, programmers 
can access details of the class definition through the class metaobject. The 
followings a re member functions on class metaobjects . The subclasses of 
Class cannot override them . 

• Ptree• Name() 
This ret urns the name fi eld of the class declaration. 

• Ptree• BaseClasses () 

This retu rns t he base-cl asses field of the class decla ration. For example, if 
the class declaration is: 

class C : public A, private B { . . . }; 

Then, BaseClasses () returns: 

[ : [public A] , [private B)] 

• Ptree• Members() 

T his returns the body of the class declara tion . It is a list of member decla­
rations. It does not include {and }. 

• Ptree• Definition() 

This ret urns the whole of the class declaration. It is the Ptree metaobject 
passed to the constructor as definition. 

• char• MetaclassName() 
T his ret urns the na me of the metaclass . 

• Class• NthBaseClass(Environment• env, int n) 
This returns the n-th base class. n mus t be greater or equ a l to zero. 
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• Ptree• NthMemberName(int n) 

This returns the name of the n-th member (including data members and 
member functions). It returns nil if n-th member does not exist . n must 
be greater or equal to zero. 

• int IsMember(Ptree• name) 

This ret urns -1 if name is not a member of the class. O t herwise, it returns 
where the member is. IsMember(NthMemberName( n)) is equal to n. 

• BOOL LookupMemberType(Environment• env, Ptree• name, 

Typeinfo& t) 
This looks up the type of the member specified by name. The found type is 
stored in t. The function returns FALSE if the mem ber is not fou nd . 

Protocol for Thanslation 

Class metaobjects controls source-to-so urce translation of the program. Ex­
pressions involving a cl ass a re translated from OpenC++ to C++ by a 
member function on the class metaobject.4 Programmers may defi ne a sub­
class of Cl ass to override such a member function to tailor the translation . 

The effective class metaobject that is actua lly responsible for the transla­
tion is the static type of the object involved by the expression. For example, 
suppose: 

class Point {publ ic: int x, y; }; 
class Co l oredPoint : public Point { public: int color; }; 

Point• p = new ColoredPoint; 

Then, an expression for da ta member read, p- >x, is translated by th e class 
metaobject for Point because the variable pis a pointer to not ColoredPoint 
but Point. Although this migh t seem wrong design , it is a right way since 
only s tatic type analysis is available for compile-time MOPs. 

The virtual member functions on Class shown below control source­
to-source translation on each kind of ex pression. They take an environment 
and an expression, then returns a t rans lated ex pression . All of t hem are 
over ridable. 

• Ptree* TranslateClassName(Environrnent+ env, Ptree* keyword, 

Ptree• name) 
This translates t he name of t he class. All occurenccs of the class name 

~In the current version, the translated code is not recursively translated again. So the 
mctaobjects ha\'e to translate code from OpcnC++ to C++ rather than from OpcnC++ 
to (less-extended) OpenC++- This limitation will be fixed in future. 
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in the program are replaced with the returned name. key11ord specifies a 
user-defined keyword (type modifier) attached to the class name. If none, 
key11ord is nil. 

- Defaul t implementation by Class 
Th is does not change the name but it just returns name. If key11ord is not 
nil , it causes an error. 

• Ptree• TranslateSelf(Environment• env) 
This translates the declaration of the class. The declaration is not passed 
as an a rgument because it is avail able by Definition(). 

- Default implementation by Class 
This follows a layered subprotocol. It calls TranslateClassName() , 
TranslateBaseClasses (), and TranslateBody() so that class names in 
the declaration are correctly renamed. 

• Ptree• TranslateBaseClasses(Environment• env, Ptree• bases) 
This transla tes the base-classes field of class declaration. 

- Default implementation by Class 
This calls TranslateClassName() on each base class. A subclass of Class 
can call this with a mod ified bases. For example, it may append another 
base class to bases . 

• Ptree• TranslateBody(Environment• env, Ptree• body) 
This translates the body of cl ass declaration. body has been a lready trans­
lated except user-defined access specifiers so that a ll the class names a re 
renamed. This fun ction can only append member function s written in C++ 
to body. The class na mes ap pearing in t he appended mem ber functions must 
be already renamed. Th is function also has to properly process use r-defined 
access specifiers. 

- Defaul t implementation by Class 
This returns body. 

• Ptree• TranslateMemberFunctionBody(Environment• env, 

Ptree• name, BOOL inlined, Ptree• body) 
Th is translates the body of a member function . name is the name of the 
member fun ction. inlined is TRUE if the member fun ction is inlined. body 
is s tatements surround ed by {}. The braces a re not included by body. env 
contains the member na me and t he argume nt names . 

- Default implementation by Class 
Th is translates body by ca lling TranslateStatement () on each statemenl. 

• Ptree• Translate!nitializer(Environment* env, Ptree• expr, 
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PtreeArray& before, PtreeArray& after) 
This translates a variable initializer expr, wh ich would be "[= expression]" 
or"[( [expr·ession] )]". The two form s correspond to C++'s two different 
notations for initialization. For example: 

complex z(2.3, 4.0); 
complex z = 0.0; 

The Ptree objects stored in before a nd after a re inse rted before and after 
the declaration including the variable initializer. This is usefu l to implement, 
for exam ple, a translation from 

complex z = {2.3, 4 .0} ; 

into: 

stat ic double tmp [] 
complex z(tmp); 

{2.3, 4.0}; 

To store a Ptree object in an PtreeArray object, Append(Ptree• list) 
on PtreeArray is available. 

- Default implementation by Class 
This translates expr by calling TranslateExpression() on the in itializing 
parameter (the second element of expr) a nd returns the result . 

• Ptree* TranslateAssign( Environment • env, Ptree• object, 
Ptree+ assign_op, Ptree• expr) 

T his translates an assign ment expression such as = and +=. object is an 
instance of the class, which expr is assigned to . assign_op is an assignment 
operator . object and expr have not been translated yet . 

- Default implementation by Class 

This calls TranslateExpress ion() on object and expr and retu rns the 
translated ex pression . 

• Ptree• Trans lateSubscript(Environment+ env, Ptree• object, 

Ptree+ index) 
Th is translates a subsc rip t ex pression (array access). object is an instance 
of the cl ass, which the operator [] denoted by index is applied to. index is 
a list "[[ expression ] ]" . obj ect and expr have not been translated yet. 

- Defa ult implementation by Class 

Th is calls TranslateExpression() on object and index and returns the 
translated ex pression . 

• Ptree• TranslateFunctionCall(Environment• env, 

Ptree+ object, Ptree• args) 
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This translates a function call expression on object. Note that it is not for 
t ranslating a member function call. It is invoked to translate an application 
of t he the 0 operator. object is an instance of the class. object and args 
have not been translated yet. 

- Default implementation by Class 

This calls TranslateExpression() on object and args and returns the 
translated ex pression . 

• Ptree• TranslatePostfix(Environment• env, Ptree• object, 

Ptree• post_op) 
This translates a post fi x increment or decrement expression (++ or --) . 
object is an instance of the class, which the operator post_op is applied to. 
object has not been translated yet. 

- Default implementation by Class 
This calls TranslateExpression() on object a nd returns th e translated 
expression. 

• Ptree• TranslateUnary(Environment• env, Ptree• unary_op, 

Ptree• object) 
This translates a un a ry expression. unary_op is the operator, which are 
either* , &,+ , -, ! , -,++,or--. sizeof is not included. object is an 
instance or the cl ass, which the operator is applied to . object has not been 
translated yet. 

- Default implementation by Class 
This calls TranslateExpression() on object and returns the translated 
expression. 

• Ptree• TranslateBinary(Environment* env, Ptree* lexpr, 
Ptree• binary_op, Ptree• rexpr) 

This translates a binary ex pression. binary_op is the operator such as •, + , 

« , ==, I, &&, and , (comma). lexpr and rexpr a re the left-side expression 
a nd th e right-side ex pressio n. They have not been translated yet. The type 
or rexpr is the class. 

- Default implementation by Class 

This calls TranslateExpression() on lexpr and rexpr a nd returns th e 
t ranslated expression. 

• Ptree• TranslateNew(Environment* env. Ptree* header, 
Ptree* new _op, Ptree* placement, 

Ptree• type_name, Ptree• arglist) 
Th is translates a new ex pression . header is a user-defined keyword (type 
modifier),:: (if the expression is : :new) , or nil. new _op denotes the lexical 
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token new. type _name may include an array size surrounded by []. arglist 
is arguments to the constructor. It includes parentheses (). placement, 
tname , and arglist have not been translated yet. 

- Default implementation by Class 

Th is calls Trans lateExpression() on placement and arglist , and 
TranslateNewType 0 on type _name. Then it retu rns the translated ex pres­
sion. 

• Ptree• TranslateMemberRead(Environment• env, Ptree• object, 

Ptree• op, Ptree• member) 
This translates a member read expression on the object. The operator op 
is . (dot) or->. member specifies the mem ber name. object has not been 
translated yet. 

- Defaul t implementation by Class 

This calls TranslateExpression() on the object and returns the trans­
lated expression . 

• Ptree• TranslateMemberRead(Environment• env, Ptree• member) 
This translates a member read expression on the this object . 

- Default implementation by Class 
This returns member. 

• Ptree* TranslateMemberWrite(Environment* env, Ptree+ object, 
Ptree* op, Ptree* member, Ptree* assign_op, Ptree+ expr) 

This translates a member write expression on the object. The operator op 
is . (dot) or->. member specifies the member name. assign_op is an assign 
operator such as = and += . expr specifies the right-ha nd expression of the 
assign opera tor. object and expr have not been tra nsla ted yet . 

- Default implementation by Class 

This calls TranslateExpression() on object a nd expr and returns the 
tra nsla ted ex pression. 

• Ptree* TranslateMemberWrite(Environment+ env, Ptree* member, 
Ptree• assign _op, Ptree• expr) 

This translates a member wri te expression on the this object . member 
specifies th e mem ber na me. assign_op is an assign operator such as = a nd 
+=. expr specifi es the right-hand exp ression or the assign operator. expr 
has not been translated yet. 

- Default implementation by Class 

This calls TranslateExpression() on expr a nd returns t he translated ex­
pression. 
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• Ptree• Tr anslat eM emberCall (Environment• env, Ptree• object, 
Ptree• op, Ptree• member, Ptree• arglist) 

T his translates a member function ca ll on the object. The operator op is 
. (dot) or ->. member specifies t he member name. arglist is arguments 
to t he function . It includes parentheses (). object a nd arglist have not 
been t ranslated yet. 

- Default implementation by Class 
T his calls Trans lat eExpression() on object , a nd TranslateArgumentListO 
on arglis t . T hen it returns t he translated expression. 

• Ptree• TranslateMemberCall(Environment• env, Ptree• member, 
Ptree• arglist) 

This transla tes a member function call on the this object . member speci­
fi es the member name. arglist is arguments to the function. It includes 
pa rentheses (). arglist has not been translated yet. 

- Default implementation by Class 
This calls TranslateArgumentList () on arglist and returns the trans­
la ted expression. 

• Ptree• TranslateUserStatement(Environment• env, Ptree• object, 
Ptree• op, Ptree• keyword, Ptree• rest) 

This transla tes a. user-defined statement, which is a while-style, for-style , or 
closure statement. The firs t three elements of the statement are specified by 
object, op , a nd keyword. The rest of the sta tement, the () part and the 
[] pa rt , is specified by rest. 

- Defa ult implementation by Class 
This causes an error and returns nil. 

• Ptree• TranslateStaticUserStatement(Environrnent• env, 
Ptree+ keyword, Ptree• rest) 

This translates a user-d efined statement beginning with a class name. This 
is named after that t he syntax is similar to one for static member function 
calls. The meaning of the a rguments is the same as that of 
TranslateUserStatement(). 

The MOP does not a llow progra mmers to customize a rray access or 
pointer operations . Suppose that p is a pointer to a cl ass A. Then the 
cl ass metaobject for A cannot tra nslate expressions such as •p or p [3]. 
This design decision is based on C++'s one. !"o r exa mple, C+ + 's operator 
overloadin g on [] does not cha nge th e meanin g of a rray access. It cha nges 
t he meanin g of t he operato r [] applied to no t a n a rray of objects but a n 
object. 

If th e lviOP allows programmers to customi 2e array access and pointer 
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operations, they cou ld im plement an inconsistent extensio n. !"or exam ple, 
they wan t to t ranslate an expression p [2] into p->get ( 2), where p is a 
pointer to a cl ass X. Then, what should this expression • (p + 2) be t rans­
la ted into? Shou ld the MOP regard it as an a rray access or a poin ter 
dereference? Because C++ provides strong poin ter arit hmetic, design ing 
a n in te rface to consistently customi ze array access and poin ter operations is 
diffi cult. 

Protocol for Initialization and Finalization 

The MOP provides functions to ini t iali ze a nd finali ze cl ass metaobjects . 

• static BDOL Initialize() 

This is called only once on each metaclass right after t he compiler starts. 
It returns TRUE if t he initi a li zation succeeds. The subclasses of Class may 
defin e their own Initialize() but they have to call t heir base classes' 
Initialize(). This function is not overridable. 

- Defa ult implementation by Class 
This does nothing except returning TRUE. 

• virtual Ptree• Finalize() 
This is called on each class metaobject after all the t ra nslation is fini shed. 
The returned Ptree object is inserted at t he end of th e t ransla ted source 
fil e. 

- Default implementation by Class 
This returns nil. 

Protocol for Registering Keywords 

To make user-defined keywords available at the base level , progra mmers 
must register the keywords by the static member functions on Class s hown 
below. Those member functions are called within Initialize() in Sec­
tion 8.4.4. 

• void RegisterNewModifier(char• keyword) 
This registers keyword as a new type modifi er. 

• void RegisterNewAccessSpecifier(char• keyword) 
This registers keyword as a new access s pecifier. 

• void RegisterNewWhileStatement(char• keyword ) 
This registers keyword as a new while statement. 

• void RegisterNewForStatement(char• keyword) 
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Th is registers keyword as a new f or statement. 

• void Reg isterNewClosureStatement(char• keyword) 
T his registers keyword as a new closure statement. 

• vo id Reg i sterMeta clas s( char• keyword, char• metaclas s) 
T his registers keyword as a new type modifier and associates it wit h metaclass. 
If this keyword appears in front of a class declaratio n, then metaclass is 
selected for the decla red class . See a lso Section 8 .4.4. 

Se rvice Functions 

T hese are a lso static member functions on Class: 

• Ptree• TranslateNewType(Environment• env, Ptree• type_name) 
T his tra nsla tes the type _name field of new expressions . 

• Ptree• TranslateArgumentList (Environment• env, Ptree• arglist) 
This t ranslates a n a rgum ent list . 

• Ptree• Translateindex(Environment• env, Ptree• index) 
This transla tes t he index fi eld of subsc ript expressions. 

• Ptree• TranslateExpression(Environment* env, Ptree+ expr) 
This translates a n expression. 

• Ptree• TranslateExpression(Environment* env, 
Ptree• expr, Typeinfo& t) 

This tra nsla tes an expression and stores its type in t. 

• Ptree• TranslateStatement(Environment• env, Ptree• expr) 
This tra nsla tes a sta tement, including a block statement surrounded by {}. 

The next two member functions insert given code into th e translated 
source code. As for inse rti on, also see InsertDeclaration() in Section 8.4.3. 

• void InsertBeforeToplevel(Ptree• list) 
T his inserts list before t he toplevel declara tion , such as fun ction defini ­
t ions, th a t a re currently transla ted . 

• void AppendAfterToplevel(Ptree• list) 
T his ap pends lis t after t he toplevcl declara tion , such as fun cti on defi ni­
t ions, th a t a re currentl y tra nsla ted. 
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subclass-Df 

~' 
Metaclass "" Class .... Point .... pO 

instance-
of 

Fig ure 8.2 : Instance-of Relationship 

Template Class 

Metaclasses for templa te classes must be TemplateClass or its subclass 
programmers define. TemplateClass is a subclass of Class a nd it defines 
t he following member functions for in t rospectio n: 

• Ptree• TemplateDefinition() 

This returns th e whole defini t ion of th e template, incl ud ing t he keyword 
template a nd the template a rguments. 

• Ptree• TemplateArguments() 
This returns the template a rg ument. 

Metaclass for Class 

Since OpenC++ is a self-refl ective language, th e meta- level progra ms are 
a lso in OpenC++. They must be compiled by th e OpenC++ com piler. 
Because of this self-reflec t ion , metaclasses a lso have t heir metaclasses . T he 
metaclass fo r Class and its subcl asses must be Metaclas s. However, pro­
g rammers do not have to explicitly declare the metaclass for th eir meta­
classes because the subclasses of Class inherit the metaclass from Class. 

Metaclass makes it easy to defin e a subclass of Class . It automatically 
inserts t he defini t ion of Metacl assName () of th at s ubcl ass a nd a lso ge nerates 
ho use- keeping code intern a lly used by th e compiler. 

Since Metaclass is a s ubclass of Class , its metaclass is Metaclass itself. 
This relations hip is illus tra ted in Fig ure B.2. 

B.4.5 Error Message 

The following functions reports a n erro r t hat occ urs du ring t he so urce-to­
source translation . 

• void ErrorMessage (char• me s s age, Ptree• what =nil, 

Ptree * where 
This displays an error message "rnessage •• whal 11 in where" . 

nil ) 
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ovoid WarningMessage(char• message, Ptree• what = nil, 
Ptree• where nil) 

This displays a waning message "message "what" in where". 

B.4.6 C++ Preprocessing 

The OpenC++ programs are first preprocessed by the C++ preprocessor. 
During processing, the macro __ opencxx is predefined. 
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B.S Command Reference 

NAME 
occ - the Open C++ compiler 

SYNOPSIS 
occ [ -1] [ -s] [ -v] [ -c] [ -E] [-I include_directory] 

[ -Dname [=dej] ] [ -- C++ compiler options] source_fi/e 

DESCRIPTION 

occ compiles an Open C++ program into an object file. It first invokes 
the C++ preprocessor and generates a . occ file, then translates it into 
a . ii file according to meta-level code. The . ii file is compiled by the 
back-end C++ compiler, and finally an a.out file is produced. If occ 
is run with the -c option, it generates a .o file but suppresses linking. 

OPTIONS 

-D Define a macro name as def. 

-E Don't run the back-end C++ compiler. Stop after generating a 
. ii file. 

-I Add a directory to the search path of the #include directive. 

-c Suppress linking and produce a . o file. 

-1 Print the list of loaded metaclasses. 

-s Print the whole parse tree of the given source program. Don't 
perform translation or compilation. If no source file is given, occ 
reads from the standard input . 

-v Specify the verbose mode. 

Following options are interpreted as options for the back-end 
C++ compiler. For example, if you type 

occ -I .. -- -g foo.c 

Then the -g option is passed to the C++ compi ler. 

FILES 

file . cc 

file.occ 

file . ii 

file.o 

opencxx.a 

source file. 

output file after C++ preprocessing. 

output file after translation. 

object file. 

library to link with meta-level code. 
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NOTES 

• When the C++ processor runs, the macro _opencxx is prede­
fined. 

• The current version of the compiler can not dynamically load 
meta-level programs on demand. 

COPYRIGHT 

Copyright @1995, 1996 Xerox Corporation. All Rights Reserved. 

AUTHOR 

Shigeru Chiba, The University of Tokyo. 

Appendix C 

Programs 

C.l The Distributed Object Library 

Meta-level program (distobj. cc) 

#include "mop.h" 

metaclass DistributionClass P1 etaclass; 

class DistributionClass public Class { 
public: 

DistributionClass(Ptree• d, Ptree• m) Class(d, m) {} 

Ptree• TranslateSelf(Environment•); 
Ptree• TranslateBody(Environment•, Ptree•); 
Ptree• A.ppendDecoder(Ptree•, Ptree•, int, Typelnfot); 

); 
Ptree• TranslateP1emberCall(Environment•, Ptree • , Ptree•, Ptree • , Ptree • ); 

#define BUF _IAP! E "mBuffer" 

Ptree• DistributionClass: :T r anslateSelf(Environment • en v ) 

Ptree• name; 
Type Info t; 
int i; 

Ptree • code "" nil; 

for(i = 0; (name= lthP'IemberBame(i)) !=nil; ++i){ 
Ptreeid vhatis = name->Whatis(); 

if(vhatis != LeafClasslameid U: vhatis !• PtreeDestructorid) 
if(Loo lt upKemberType(env, name, t) U t . WhatisO == FunctionType){ 

II Unless the member is a constructor, a destructor, 
II or a data member, then 

code = AppendDecoder(code, narne, i, t); 

AppendAfterTopleve l (Ptree: : ql1ake( 

"void 1 1arne()': :Dispatch(int • buffer, void • object, int member){\n" 
"sv itch(member){\n 1 code 1 }}")); 

159 



160 APPENDIX C. PROGRAMS 

return Class: : Trans late Self(env) ; 

Ptree• DistributionClass: :TranslateBody(Environment• env, Ptree• body) 
( 

Ptree• decl = Ptree: :qMake("public:" 
"static void Dispatch(int•, void•, int) ;\n"); 

return Ptree: :Append(body, decl); 

Ptree• DistributionClass: :AppendDecoder(Ptree• code, Ptree• name, 
int nth, Typelnfol t) 

int i; 
Type Info a type; 
Type Info rtype; 

code= Ptree: :Snoc(code, Ptree: :qMake("case 4 nth 4 : {\n" 
"int s = 0;")); 

for(i ""0; t.lthA.rgument(i, atype); ++i){ 
Ptree• argtype = atype. MakePtreeO; 
code • Ptree:: Snoc(code, Ptree: :qMake( 

"'argtype' p'i' "'•('argtype'•)tbuffer[s] ;\n" 
"s += sizeof( 'argtype') ;\n")); 

t. Dereference(rtype); 
if(rtype. WhatlsO != UndefType) 

code = Ptree:: Snoc(code, Ptree: :qMake( 
"• ( inu )buffer = ( ('lame() 1 • )object)->' name' (")) ; 

else if (rtype. IsBuiltlnTypeO t VoidType) 
code"' Ptree: :Snoc(code, Ptree: :ql1ake( 

"(('lame()' •)object)-> 'name'(")); 
else 

code • Ptree: :Snoc(code, Ptree: :qKake( 
"• ( 

1 rtype. Kake Ptree () '• )buffer" 
"= ((' l ame0' • )object)->'name 1 (")); 

fodint j "'0; j < i; ++j) 
if(j+l>=i) 

code "' Ptree: :Snoc(code, Ptree: :qKake( "p 4 j'")); 
else 

code = Ptree: :Snoc(code, Ptree: :ql1 ake ("p' j', ")); 

code= Ptree: :Snoc(code, Ptree: :ql1ake(") ;}\nbreak;\n")); 

return code; 

Ptree • DistributionClass: :TranslateMemberCall(Environment• env, Ptree• object, 

Ptree • op, Ptree• member, 

Type Info ftype, atypG; 
int id = Is11embGr(member); 
if(id "'"' 0){ 

Ptree • arglist) 

Error11essage("no such a member", member); 

return Class: :TranslateKemberCall(env, object, op, member, arglist); 

Ptree• p; 

C.l. THE DISTRIBUTED OBJECT LIBRARY 

Ptreelter next(Ptree: :Second ( arglist)) ; 
Ptree• code = nil; 
Ptree• tmp = Ptree: :GenSymO; 
int i = 0; 

env->lnsertDeclaration(Ptree: :qPiake("int 'tmp' ;")); 
LookupMemberType(env, member, ftype); 
for(i = 0; ftype.lthA.rgument(i, atype); ++i){ 

p:::: next(); 

Ptree• tname = atype .P\akePtree(); 
code = Ptree: :Snoc(code, Ptree: :qP\ake( 

"• (' tname' • ).t:" BUF _lAKE " [' tmp'] = 4 TranslateExpres sion (env, p)' , " 
"'tmp' += sizeof('tname'),")); 

next(); I I skip , 

return Ptree: :qKake("('tmp'=O, 'code' CallRemote('tmp', 'objGct', 'id'))"); 

Runtime Library (remote. h) 
#ifndef __ umote_h 
#define __ remote_h 

void ExportObject(void • object, char• name, void• dispatch); 
void ServerLoopO; 
void StartupClient(char • server_name); 
int CallRemote(int numofargs, void • object, int member); 
int ImportObject(char• name); 

extern int• mBuffer; 

#define Export (object ,name, type) \ 
ExportObj ect ( (void• )object, name, (void • )ttype: :Dispatch) 

#define Import (name, type) ( type•) ImportObj ect (name) 

#endif __ remote_h 

Runtime Library (remote. cc) 
#include <string.h> 
#include "ipc.h" 
# include "remote .h" 

const int PORT = 4.002; 
const int 11A. X = 64.; 
const int LOOKUP = -1; 

typedef void ( • DispatchProc)(int • , void•, int); 

static TcpServer• tcpServer; 
static TcpClient• tcpClient; 
static int tcpBuffer[32]; 

static struct { 
char• name; 
void • object; 
void• dispatch; 

} exportTable [MAX]; 
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static struct { 
void• object; 
void• dispatch; 

} importTable(MAX]; 

static int numOfExport = 0; 
static int numOflmport = 0; 

I• 
The first four vords are for house keeping: size, member, 
dispatcher, object. 

•I 
int• mBuffer = ttcpBuffer(4]; 

static int LookupExportedObject(char• name); 

void ExportObject(void • object, char• name, void• dispatch) 
( 

exportTable(numOfExport] .name = name; 
exportTable(numOfExport] .object "" object; 
exportTable(numOfExport] . dispatch "" dispatch; 
++numOfExport; 

static int LookupExportedObject(char• name) 
( 

for(int i z 0; i < numOfExport; ++i) 
if(strcmp(exportTable(i] .name, name) "'"' O) 

return i; 

return -1; 

void ServerLoop() 
( 

int size; 
tcpServer = nev TcpServer(PORT); 
for(;;){ 

BOOL is_nev_client; 
int fd • tcpServer->Wait(is_nev_client); 
if(tcpServer->Recv(fd, (char•)tsize , sizeof(size)) :::: 0) 

continue; 

tcpServer->Recv(fd, (char•)ttcpBuffer(1], size - sizeof(int)); 
int member = tcpBuffer[1]; 
if(member =::: LOOKUP) { 

int index = LookupExportedObject((char•)ttcpBuffer(2]); 
tcpBuffer[O] • (int)exportTable[index] .object; 
tcpBuffer(1] = (int)exportTable(index] .dispatch; 
t cpServer->Send(fd, (char•)tcp8uffer 1 sizeof(int) • 2); 

else{ 

( • (DispatchProc) tcpBuffer(2]) (mBuffer, ( void•) tcpBuffer(3) , 
member); 

tcpServer->Send(fd 1 (char • )mBuffer, sizeof( int)); 

void StartupClient(char• server_name) 
{ 

C.2. THE WRAPPER FUNCTION METACLASS LIBRARY 

tcpClient • nev TcpClient(server_name, PORT); 

int CallRemote(int numofargs, void • object, int member) 
( 

int size = sizeof(int) • (numofargs + 5); 
tcpBuffer[O) • size; 
tcpBuffer(1] = member; 

tcpBuffer [2) '" ( int) importTable ((int)obj ect) . dispatch; 
tcpBuffer (3] = ( int) import Table ( ( int) object) . object; 
tcpClient->Send ( (char•) tcpBuffer 

1 
size) ; 

tcpClient->Recv((char• hcpBuffer, sizeof(int)); 
return tcpBuffer(O); 

int lmportObject(char• name) 
( 

int size "" sizeof(int) • 2 + stclen(name) + 1; 
strcpy((char•)l:tcpBuffer[2), name); 
tcpBuffer(O) = size; 
tcpBuffer (1) = LOOKUP; 
tcpClient->Send((char•hcpBuffer

1 
size); 

tcpClient->Recv((char•)tcpBuffer, sizeof(int) • 2); 
importTable (numOflmport) . object :: ( void•) tcpBuffer [0) ; 
importTable (numOflmport] .dispatch = ( void•) tcpBuffer [1) ; 
return numOflmport++; 

C.2 The Wrapper Function Metaclass Library 

Included File (wrapper. h) 

# include "mop.h" 

class WrapperClass public Class { 
public: 

); 

WrapperClass(Ptree• d 1 Ptree• m) Class(d 
1 

m) {} 

Ptree• TranslateBody(Environment•, Ptree•); 
virtual Ptree• Wrapperlame(Ptree• name); 

Pt ree • Translate/'llemberFunctionBody(Environment•, Ptree• 
1 

BOOL, Ptree•) ; 
virtual void Ma.k e Wrapper(Env ironment • , Ptree•, Ptree• 

1 
Type Infol:, BOOL) ; 

virtual Ptree• WrapperBody(Environment • , Ptree•, Ptree•, int, Typelnfot); 

Ptree • Translate/'llemberCall(Environment•
1 

Ptree•
1 

Ptree•, Ptree•, 
Ptree•); 

Ptree• TranslateMemberCall (Environment• , Ptree• 
1 

Ptree•) ; 

Implementation (wrapper. cc) 

# include "vrapper.h" 

II TranslateBody() inserts declarations for vrapper functions. 

Ptree • WrapperClass: :TranslateBody(Environment • env 
1 

Ptree• body) 
( 

Ptree • decl = Ptree: :ql'ta);e("public:\n"); 
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Ptree• name; 
Typ e Info t; 
int i = 0; 
vhile ((name = lthKemberlame(i++)) ! .. nil){ 

Ptreeid vhatis = name->Whatis(); 
if(vhatis != LeafClasslameid tt vhatis != PtreeDestructorld) 

if(LookupKemberType(env, name , t) tt t. What Is() == FunctionType){ 
I I if the member is not a constructor, a destructor, 
II or a data member, inse rt the dec l ara tion for the vrapper. 
Ptree• m .. t.KakePtree(Wrapperlame(name)); 
de c l • Ptree::qMake("'decl' 'm';\n"); 

return Ptree: : Append (body, decl); 

Ptree• Wrappe rClass: : Wrapperlame (Ptree• name) 
( 

return Ptree: : q /'1ak e(" _vrap_ 1 name '"); 

I• 
TranslateKemberFunctionBody() defines vrapper functions. 
They are defined just after the vrapped function is defined. 
lote that if they are defined in the header file, their duplicated 
copies vould be unnecessarily produced. 

•I 
Ptree • WrapperClass: : TranslateMemberFunctionBody(Environment• env, 

I• 

• I 

Type Info t; 

Ptreeld vh a tis "' name ->WhatlsO; 

Ptree• name, BOOL inlined, 
Ptree• body) 

if(vhatis ! • LeafClass lameld tt vhatis ! • PtreeDestruc tor!d) 
if(LookupKemberType(env, name, t)) 

/'1ake Wrapper(env, name, Wrapperlame(name), t, inlined); 

return Class: : Translate/'1emberFunct ionBody (env, name , inl ined, body) ; 

/'1akeWrapper() generates the member function such as: 

<return type> CLASS: : WRAPPER_IA KE(<type> pl, <type> p2, ... ) 
( 

<The c ode retured by WrapperBody{)> 

void WrapperClass:: /'1ak eWrapper(En vironment • env, Ptree• name, 

Type Info a type; 
Type Info rtype; 
int i; 
Ptree• argli st :: nil ; 

Ptree • wrappe r _name, Typelnfot t, BOOL inlined) 

for(i = 0; t . lthArgument( i, atype); ++i){ 
Ptree • arg = atype.KakePtree(Ptree: :qKake("p 'i'")); 
if(i ""= O) 

arglist = arg; 

C.2. THE WRAPPER FUNCTION METACLASS LIBRARY 

I• 

else 

arglist:: Ptree: :ql'1ake("'arglist', 'a.rg'"); 

t. Dereference(rtype) ; 

Pt ree • body ,. WrapperBody(env, name, wrapper _name, i, t); 
Ptree• head = Ptree: : qP'Iake ("' lame()' : : ' vrapper_name' ( 'arglist') "); 
if(rtype.Whatls() != UndefType) 

head "" rtype. P'IakePtree(head); 

if(inlined) 

AppendAfterToplevel{Ptree: : ql'1ake (" inline ' head ' {'body'} \n")) ; 
else 

App endAfterTo plevel (Ptree: : qP'Iake (" 1 head' {'body' }\n" )) ; 

WrapperBody() returns the body of the vrapper. lAME i s the name of 
the member function wrapped by this wrapper. WRAPPER_IA/'1E is the 
name of thi s wrapper . IUM_OF_ARGS is the number of the arguments 
needed to cal l the 'ilrapped member fun c tion . The arguments are 
(pl, p2, ... , p<IUM_OF_ARGS>). 

This function r e turns a r eturn s tatement : 

•I 
return <the vrapped functi on>(p l, p2, ... ) ; 

Ptree• WrapperClass: : WrapperBody (Environment• env, Ptree• name , 

Ptree• 'ilrappe r_name, int num_of_args, 
Typelnfot ftype) 

II first mak e the argument li s t needed to call the 'ilrapped function. 

Ptree• arglist = nil; 
while(num_of_args > O){ 

if(num_of_args > 1) 

argli st"" Ptree: :qP'Iake(",p'--num_of_args' 'arglist'"); 
else{ 

arglist = Ptree: :qP'Iak e("pO 'arglist'"); 
--num_of_args; 

II then make a statement that calls the 'ilrapped member function 

ftype .DereferenceO; 
if (ftype. I sBuil tinType{) t VoidType) 

return Ptree: : q/'1ak e ("'name' ( 'argl i s t ') ; ") ; 
else 

return Ptree: :q/'1ake("return 'name' ('arglist');"); 

II Translate P'I embe r Call() replaces the cal l ed function v ith the vrappe r 
II function. 

Ptree• WrapperClass: : Translatel'l:emberCal l (Env ironme nt • env, 

Ptree • object, Ptree • op, 
Ptree • member, Ptree• a rgli s t ) 

r eturn Class: :Translate /'1emberCall(env, object, op, Wrapperlame(member), 
arglist); 
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Ptree• WrapperClass: : Translatel'lemberCall(Environment• env, 

Ptree• member, Ptree• arglist) 

return Class: :Translatel'lemberCall(env, Wr apperlame(member), arglist); 

C.3 Vector Library 

Vector library (vector. h) 

const SIZE = 8; 

#ifdef __ opencxx 

metaclass Vector : VectorClass; 
# end if 

template <class T> class Vector { 
public: 

); 

T element[SIZE); 

Vector() {} 

Vector(T t){ 

for(int i = 0; i < SIZE; ++i) 
element(i) = t; 

Vector operator + (Vector.t. a) { 
Vector<T> v; 
forOnt i = 0; i < SIZE; ++i) 

v.element(i) = element[i) + a.element[i); 

return v; 

Vector operator - (Vec tor.t. a) { 
Vector<T> v; 

fodint i = 0; i < SIZE; ++i) 
v.element[i) = element[i) - a.elemen t(i]; 

return v; 

template <class T> 
Vector<T> operator • (T k, Vecto r<T>I: a) { 

Vector<T> v; 

); 

for(int i ,.. 0; i < SIZE; ++i) 

v.element[i )::: k • a.element[i); 

return v ; 

Micro benchmark program with the vector library 
#include <iostre4111.h> 
#include "vector. h" 

C.3. VECTOR LIBRARY 

extern "C" { long clock(); 

const I = 1000000; 

main() 
( 

Vector<double> v1(2.167), v2(10.95), v3(50196), v4(44.4077); 
Vector<double> vO; 
int i; 

long tO "' clock () ; 
for(i = 0; i < I; ++i) 

vO = v1; 

long t1 = clock() ; 

for(i = 0; i < I; ++i) 
vO=vl+v2; 

long t2 = clock(); 

for(i = 0; i < I; ++i) 
vo = v1 + v2 + v3; 

long t3 = clock(); 

fodi = 0; i < I; ++i) 
vo = v1 + v2 + v3 + v4; 

long t4 = clock(); 

cout << "f:" << I << ", SIZE""" << SIZE << "\n"; 
cout « "1)" « (t1 - tO) I 1000 « "msec, 2)" « (t2 - tl) I 1000 

<< "msec, 3)" << (t3 - t2) I 1000 « "msec 4)" 
« (t4- t3) I 1000 « "msec.\n"; ' 

Micro benchmark program written by hand 

#include <iostream. h> 

extern "C" { long clock(); 

const SIZE= 8; 
const I = 1000000; 

main() 
( 

double vi [SIZE), v2[SIZE], v3[SIZE], v4[SIZE); 
double vO[SIZE); 

int i, j; 

for(i "'0; i < SIZE; ++i){ 
vi [i) "' 2. 167; 
v2[i] "' 10.95; 
v3[i) = 50196; 
v4[i) "'44.4077; 

long tO :::: clock(); 
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for(i • 0; i < I; ++i) 

for(j = 0; j < SIZE; ++j) 
vO[j] = v![j]; 

long tl • clock(); 

for(i = 0; i < I; ++i) 
for(j = 0; j < SIZE; ++j) 

vO(j) = vl(j] + v2[j]; 

long t2 • clock(); 

for(i = 0; i < I; ++i) 

for(j = 0; j < SIZE; ++j) 

vO[j] = vl[j] + v2(j) + v3(j]; 

long t3 • clock(); 

for(i = 0; i < I; ++i) 

for(j = 0; j < SIZE; ++j) 

vO[j] "'vl[j] + v2(j ] + v3(j) + v4(j); 

long t4 = clock(); 

cout <<"I="<< I<<", SIZE="<< SIZE<< "\n"; 
cout « "1)" << (tl- tO) I 1000 << "riiSec , 2)" << (t2 - t l) I 1000 

<< "msec, 3)" « (t3- t2) I 1000 << "msec, 4)" 
« (t4- tJ) I 1000 « "msec.\n"; 

C .4 The Standard Te mpla t e Library 

Meta-level program ( s t1-class. cc) 

#include " mop. h" 

II for List 

class Listlterator Cla ss public Cl ass { 
public: 

); 

List l teratorClass(Ptree • d, Ptree• m) Class(d, m) {} 
Pt r ee • Transla t eSe l f(Enviro nme nt • ); 
Ptree • TranslatePostfix(Environment • , Ptree • , Ptree • ); 
Ptree • TranslateUnary(Environment• , Ptree•, Ptree • ); 

Ptree • Lis t l t e r atorClass: :TranslateSelf(Envi r onme nt • env) 

ret u rn Ptree: : ptaJte(" t ypedef List<T>• iterator"); 

Ptree • ListlteratorClass: :TranslateUnary(Environment • e nv, Ptree • op, 
Ptree • object) 

if(op->Eq( ' • •)){ 

object"" Trans l ateExpression(env, object); 
return Ptree: :ql'lake(" 1 object 1 ->value"); 

else if(op->Eq("++")){ 

object"" TranslateExpression(env, object); 

CA. THE STANDARD TEMPLATE LIBRARY 

return Ptree. : ql'lake (" ( 1 object'=' object 1 ->next)"); 

else 

return Class: :TranslateUnary(env, op, object); 

Ptree • ListlteratorClass: : TranslatePostfix(Environment• env, Ptree • object, 
Ptree • op) 

Type Info type; 

Ptree• tmp = Ptree: :GenSymO; 

object= TranslateExpression(env, object, type); 
Ptree• decl = Ptree: :ql'lake ("'type. Full Type lame() 1 'tmp 1 ; ") ; 

env- >InsertDeclaration(decl); 

return Ptree: : ql'lake ("(' tmp 1 ='object 1 
, 'object 1 ='object 1 ->next, 'tmp 1 ) ") ; 

II for Set 

class SetlteratorCla.ss public Class { 
public: 

); 

SetlteratorClass(Ptree• d, Ptree• m) Class(d, m) {} 
Ptree• TranslateSelf(EnvironmenU); 
Ptree• TranslatePostfix(Environment• , Ptree•, Ptree • ); 
Ptree • Tr anslateUnary(Environment•, Ptree • , Ptree • ); 

Ptree • SetlteratorClass: :TranslateSelf(Environment• en v ) 
{ 

return Ptree: :ql'lake("typedef Set<T> • iterator"); 

Ptree • SetlteratorClass: :TranslateUnary(Environment • env , Ptree • op, 

Ptree • object) 

if(op- >Eq(' • ')) { 

object "" TranslateExpression(env, object); 
return Ptree: :ql'lake (" 1 obj oct 1 ->value") ; 

else if(op- >Eq("++")){ 
Type I nfo type; 

else 

object "" TranslateExpression(env , objec t, type); 
Ptree • tname = type.FullType!lame(); 

r eturn Ptree: : q l'l ake (" ('object'=( 1 tname 1 ) Tree: :Right( 1 object'))") ; 

return Class: : TranslateUnary(env, op, object); 

Ptree • SetlteratorClass: :TranslatePostfix(Environment• env, Ptree • object, 
Ptree • op) 

Typelnfo type; 

Ptree • tmp = Ptree: :GenSym(); 
object= TranslateExpression(env, object, type); 
Ptree • tname"' type.FullTypelatneO; 
Ptree • dec!= Ptree::ql'lake("'tname 1 'tmp 1 ;"); 

env->InsertDeclaration(decl); 
return Ptree: :qf'take(>'('tmp 1 = 1 object' ," 

"
1 object 1 =(' tname 1 )Tree:: Right(' object')," 

169 



170 

"
1 tmp 4 

)" ); 

Base-level library (stl.h) 

#define nil 

template <cla ss T> class List { 
public: 

List<T>• ne xt; 
T value ; 

typedef T value type; 

#ifdef __ opencxx 

metaclass iterator : List!teratorCla.ss; 
#end if 

class i terator { 
public: 

iterator(List<Th p) { ptr = p; } 
List<T>• ptr; 
int eofO { return ptr "'"' nil; } 

APPENDIX C. PROGRAMS 

int operator != Citeratort a) { return ptr ! = a.ptr; } 
T operator • 0 { return ptr->value; } 

}; 

}; 

iteratort operator++ () { ptr = ptr->next; return •this ; 
iterator operator ++ (int) { 

iterator prev = •th is; 
ptr = ptr->next; 
return prev; 

iterator begin() { return iteratodthis); } 
iterator end() { return iterator(nil); } 

class Tree { 
public: 

Tree• parent; 
Tree• right; 
Tree• left; 

inline static Tree• RightMost(Tree• p){ 
vhil e(p->right !"" nil) 

p:: p->right; 

return p; 

inline static Tree• Left"ost(Tree• p){ 
'll'hil e(p->left != nil) 

p = p->left; 

return p; 

inline stati c Tree• Right(Tree• p){ 
if(p->right !"" nil){ 

p = p->right; 
vhile(p->left != nil) 

p = p->left; 

C.4. THE STANDARD TEMPLATE LIBRARY 

}; 

return p ; 

else{ 

Tree• q = p->parent; 
'll'hile(q !=nil U p == q->right){ 

p = q; 
q = q->parent; 

return q; 

template <class T> class Set public Tree { 
public: 

T value; 

IHfdef __ opencxx 

metaclass iterator : SetiteratorClass; 
#end if 

class iterator { 
public: 

}; 

iterator(Tree• p) { ptr = (Set<T>•)p; } 
Set<T>• ptr; 

int operator != (iteratort a) { return ptr != a.ptr ; } 
T operator • () { return ptr->value; } 
iteratort operator ++ () { 

ptr,. (Set<T>•)Tr ee: :Right(ptr); 
return •this ; 

iterator operator++ (int) { 

iterator prev = •this; 
ptr = (Set<T>•)Tree: :Right(ptr); 
return prev; 

iterator begin() { return iterator(Tree : :Left" ost(this)); } 
iterator end() { return iterator(O); } 

}; 

Micro benchmark program ( stl-test. cc) 

#include <iostream.h> 
#include "stl. h" 

const I = 100000; 
cons t R ::: 100; 
const S = 10; 
const L"" 20; II 1048574 elements 

extern "C" { long clock(); } 

template <class I, c lass T> int count (I first, I last, T value) 
{ 

int n :: 0; 
vhile(first != last) 

if( • first++ z:::= value) 
++n; 
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return n ; 

int list_count(List<int>• first, List<int>• last, int value) 
{ 

int n; 
for(n = 0 ; first !=last; first: first->next) 

if(first->value == value) 
++n; 

return n; 

int set_count(Set<int>• first, Set<int>• last, int value) 
{ 

int n; 

for(n = 0; first !=last; first= (Set<int>•)Tree; :Right(first)) 
if(first->value == value) 

++n; 

return n; 

II initialize routines 

List<int>• list_initO{ 
List<int>• lst = nil; 
fodint i :a 0; i < I; ++i){ 

List<int>• node =new List<int>; 
node->value z I; 
node->next = 1st ; 
1st "" node; 

return 1st; 

Set<int> • l'll akeTree(int start, int size) 
{ 

Set<int>• node = new Set<int>; 
if(size a:::o 1){ 

node->left '" node->right = nil; 
node->value "' start; 
node->parent = nil; 
return node; 

else{ 
int size2 = (size- 1) I 2; 
node->value = start + size2; 
node->left = l'llakeTree(start, size2); 
node->left->parent • node; 
node->right "' l'llakeTree(start + size2 + 1, size2); 
node->right->parent = node; 
node->parent = nil; 
return node; 

Set<int>- set_initO 
{ 

int n; 

CA. THE STANDARD TEMPLATE LIBRARY 

int level = L; 
for(n = 1; level > 1; --level) 

n=n•2+1; 

return "akeTree(1, n); 

main() 
{ 

int i; 

List<int>• 1st z: list_initO; 
Set<int>• set .. set_initO; 

int sO= list_count(lst, nil, I); 
long tO "' clock () ; 
for(i"" 0; i < R; ++i) 

sO = list_count(lst, nil, I); 

tO = clock() - tO; 

int sl = count(lst->beginO, lst->end(), I); 
long tl = clock(); 

for(i = 0; i < R; ++i) 

s1 = countOst->begin(), lst->end(), ll); 

tl "' clock() - t1; 

tHfdef __ opencxx 

int s2 "' set_count(set->begin(), nil, I); 
long t2 = clock(); 
for(i = 0; i < S; ++i) 

s2:: set_count(set->beginO, nil, I); 

t2"' clock() - t2; 
#else 

int s2 = set_count(set ->beginO .ptr, nil, I); 
long t2 = clock(); 
for(i z:: 0; i < S; ++i) 

s2 = set_count(set->beginO .ptr, nil, I ); 

t2"' clock() - t2; 
#end if 

int s3 "' count(set->beginO, set->end(), II); 
long t3 = clock(); 
for(i = 0; i < S; ++i) 

s3 :: count(set->beginO, set->end() , I); 

t3:: clock() - t3; 

cout << "B:" << I << ", R=" << R; 

cout << ", L"'" << L << ", S=" << S << "\n"; 
cout << "list_count()=" <<sO<<", time: "<<tO I 1000 << "msec\n" 
cout << "countOist) =" << s1 << ", time; " << t1 I 1000 << "msec\n" 
cout << "set_countO "'" << s2 << ", time: "<< t2 I 1000 << "msec\n" 
cout << "count(set) =" « s3 << ", time: " << t3 I 1000 << "msec\n" 
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C.s OOPACK benchmark 

The OOPACK benchmark program 

I 1====-.=======-•=======•====•=============••=========••===========-•======== 
II 
// OOPACK - a benchmark for comparing OOP vs. C-style progratl'lllling. 
/1 Copyright (C) 1995 Arch D. Robison 
II 
// This program is free softvare; you can redistribute it and/or modify 
I I it under the terms of the GIIU General Public License as published by 
// the Free Softvare Foundation; either version 2 of the License, or 
II (at your option) any later version. 
II 
// This program is distributed in the hope that it will be useful, 
II but WITH OUT A.BY WARRAITY; 'llithout even the implied varranty of 
I/ MERCHAITABILITY or FITBESS FOR A PARTICULAR PURPOSE. See the 
II GBU General Public License for more details. 
II 
I I For a copy of the GIU General Public License, vrite to the Free Softvare 
/1 Foundation, Inc., 675 " ass Ave, Cambridge, "A 02139, USA. 
II 
I 1======--=====••=====-=====••===========•-============•••=============-======= 
II 
II OOPACK: a benchmark for comparing OOP vs. C-style programming. 
II 
II Version: 1.7 

II 
II Author: Arch D. Robi son (robisonQkai. com) 
II Kuck t Associates 
II 1906 Fox Dr. 
II Champaign IL 61820 
II 
II Web Info: http:llvvv.kai.comloopackloopack.html 
II 
II Last revised: lovember 21, 1995 
II 
II This benchmar k program contains a suite of tests that measure the relative 
// performance of object-ori ented-programming (OOP) in C++ versus just vr iting 
II plain C-style code in C++. All of the tests are vri tten so that a 
II compiler can in principle transform the OOP code into the C-style code. 
II After you run this benchmark and discover just hov much you are paying to 
II use object-oriented programming, you vill probably say: OOP? ACK! 
II ( Unl ess, of course, you have Kuck .t: Associates' Photon C++ compiler 
II 
II TO CO"PILE 
II 
II 
II 
II 
II 
II 

Compile vith your favorite C++ compiler. E.g. ''CC -02 oopack.C''. 
On most machines, no special command-line options are required. 
For Suns only, you ne ed to define the symbol ''sun4''. 
E.g. ''g++ -0 -Dsun4 oopack.C''· 

II TO RUI 
II 
II 
II 
II 
II 
II 
II 
II 
II 

To run the benchmark, run ' 1 a.out " ax=SOOOO "atrix:500 Complex =20000 
Iterator=SOOOO' 1 • 

This runs the four tests for the specified number of iterations. 
E.g., the " ax test is run for 50000 iterations. You may vant to 
adjust the number of iterations to be small enough to get 
an ans~er in reasonable time, but large enough to get a reasonably 
accurate answer. 
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II IITERPRETIIG THE RESULTS 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
I I 
II 
II 
II 
II 
II 
I I 
I I 

Belov is an example command line and the program's output. 

$a. out "ax""5000 "atrix=SO Complex=2000 Iterator:SOOO 
OOPACK Version 1. 7 

For results on various systems and compilers, examine this Web Page: 
http: //vvw. kai. comloopack/oopack. html 

Report your results by sending e-mail to oopack~kai. com. 

For a run to be accepted, adjust the number of iterations for each test 
so that each time reported is greater than 10 seconds. 

Send this output, along vith: 

• your 

+ name -------------------
+ company/institution ----

• the compiler 

+ name -------------------
+ version number ---------
+ options used -----------

• the operating s ystera 

+ name - ------------------
+ version number ---------

• the machine 

Test 

+ manufacturer --- -------­
+ model number -----------
+ processor clock speed --
+ cache rnemory size ------

Seconds 
Iterations c OOP 

5000 1.3 1.3 
so 1.5 2.8 

Complex 
Iterator 

2000 
5000 

1.5 5.3 
1.1 1.6 

"flops 
c OOP Ratio 

-----------
3.8 4.0 1.0 
8.6 4.5 1.9 

10.8 3.0 3.6 
9.4 6.3 1.5 

The ''Test'' column gives the names of the four tests that are run. 
The ''Iterations'' column gives the number of iterations that a test 

The The two ' 1 Seconds'' columns give the C-style 
and COP-style running times for a test. The two 1 ' " flops 1 1 columns 
give the corresponding megaflop rates. The ''Ratio' 1 column gives 
the ratio between the times. The value of 1.5 at the bottom, for 
example, indicates that the COP-style code for Iterator ran 1 .5 times 
more slowly than the C-style code. 

Bevare that a lov 1 'Ratio'' could indicate either that the OOP-style 
code is compiled very well, or that the C-style code is compiled poorly. 
OOPACK performance figures for KAI 's Photon C++ and some other compilers 
can be found in http: //w~~. kai. com/oopac k/oopack. html. 

II Revison History 

1/ 9/17/93 Version 1.0 released 

II 10/ 5/93 Allo~ results to be printed even if checksums do not match. 
II 10/ 5/93 Increased '' Tolerance' 1 to allov 10-second runs on RS/6000. 
II 10/ 5/93 Version 1 .1 released 
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II 1/10/94 Change author's address from Shell to KAI 

II 1/13/94 Added #de-tine's for conditional compilation of individual tests 
I/ 1/21/94 Converted test functions to virtual members of class Benchmark. 
II 10/11/94 Added routine to inform user of command-line usage. 
1/ 10/11/94 Version 1.5 released. 

// 11/21/95 V1.6 Added "mail results to oopackCikai.com" message in output 
// 11/28/95 V1.7 Added company/institution to requested information 

#include <assert .h> 
#include <ctype. h> 
#include <float. h> 
#include <math .h> 
#include <stdio .h> 
#include <time .h> 
#include <string.h> 
#include <stdlib.h> 

II 
II The source-code begins vith the benchmark computations themselves and 
II ends vith code for collecting statistics. Each benchmark ''Foo'' is 
II a class FooBenchmark derived from class Benchmark. The relevant methods 
II are: 
II 
II init- Initialize the input data for the benchmark 
II 
II c_style - C-style code 
II 
II oop_style - OOP-style code 
II 
II check - computes number of floating-point operations and a checksum. 
II 
const in t BenchmarkListt1a.x"' 4; 

class Benchmark { 
public: 

void time_both( int i teration_count ) const; 
void time_one( void (Benchmark: : • function)() const, int iterations, 

doublet sec, doublet t1 flop, doublet checksum ) const; 
virtual const char • name() const :c 0; 
virtual void initO const = 0; 
virtual void c_style() const = 0; 
virtual void oop_styleO const :c 0; 

virtual void check(int iterations, doublet f l ops, doublet checksum) 
const = 0; 

static Benchmark • find( const char • name ) ; 
private: 

static Benchmark • list(BenchmarkListt1ax]; 
static int count; 

protected: 
Benchmark() {list(count++] =this;} 

); 

II Th e initialize r for Benchmark : :count •must• precede the declarations 
II of derived of class Benchmark. 
int Benchmark: :count::: 0; 
Benchmark • Benchmark: :list(BenchmarkLi s tt1 ax ] ; 

II 
II The ''iterations'' argument is the number of times that the benchmark 
II computation vas called. The computed checksum that ensures that the 
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II C-style code and OOP code are computing the same result. This 
II variable also prevents really clever optimizers from removing the 
II the guts of the computations that othendse vould be unused. 
II 

II Each of the folloging symbols must be defined to enable a test, or 
II undefined to disable a test. The reason for doing this vith the 
II preprocessor is that some compilers may choke on specific tests. 
#define HAVE_t1AX 1 
#define HAVE_t1ATRIX 1 
#define HAVE_COHPLEX 1 
#define HAVE_ITERATOR 1 

const int I = 1000; 

#if HAVE_t1AX 

II•=============-==·==========<=============-·-=========·=================·=== 
II 
II !'lax benchmark 
II 
II This benchmark measures hov vella C++ compiler inlines a function that 
II returns the result of a comparison. 
II 
II The functions C_t1ax and OOP _t1a.x compute the maximum over a ve ctor. 
II Th e only difference is that C_t1a.x vrites out the comparison operation 
II explicitly, and OOP_t1ax calls an inline function to do the comparison . 
II 
II This benchmark is included because some compilers do not compile 
II inline functions into conditional branches as vell as they might. 
II 
const int t1 "' 100; 
double U(t1]; 
doubl e t1a.xResul t; 

II Dimension of vector 
II The vector 
II Result of max compu tat ion 

class t1a.xBenchmark : public Benchmark { 
private: 

const char • name() const {return "!'lax";} 
void init() co nst; 
void c_style() cons t; 
void oop_style() const; 

void check( int iterations, doublet flops, doublet checksum) const; 
The t1a.xBenchmark; 

void t1axBenchmark: :c_styleO const II Compute max of vector (C-style) 
{ 

double max "' U(O]; 
for( int k::o:1 ; k< t1 ; k++ ) 

if( U(k] > max ) 
max=U(k]; 

t1axResult "" max; 

inline int Created double i, double j ) 

return i>j; 

void t1axB enchmark: :oop_style() const 

double max = U(O]; 
for( int k=l; k<t1; k++ ) 

if( Greater( U(k], max ) 

II Loop over vector elements 

II Compute max of vector (OOP-style) 

II Loop over vector elements 
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ma.x=U(k]; 

P!axResult =max; 

void !1axBenchmark: : ini t () const 

for( int k=O; k<M; k++ ) 
U[k] = kU ? -k : k; 

APPENDIX C. PROGRAMS 

void P!axBenchmark: :check(int iterations, doublet flops, doublet checksum) const 

flops"" (double)l'l•iterations; 
checksum = P!axResul t; 

#if HAVE_P!ATRIX 

11·--·······-=---=······••••::•••···················· .... ·······-=······=····· 
II 
I I Matrix benchmark 
II 
II 
II This benchmark measures hot~ t~ell a C++ compiler performs constant 
II propagation and strength-reduction on classes. C_Hatrix multiplies 
II tflo matrices using C-style code; OOP_,.atrix does the same vith 
I I OOP-style code. To maximize performance on most RISC processors, the 
II benchmark requires that the compiler perform strength-reduction and 
I I constant-propagation in order to simplify the indexing calculations in 
I I the inner loop. 
II 
const int L "" 50; I I Dimension of (square) matrices. 

double C[L• L], D[L•L], E[L•L]; II The matrices to be multiplied. 

class pt atrixBenchmark: public Benchmark { 
private: 

const char • name() const {return "ptatrix";} 
void init() const; 
void c_style() const; 
void oop_style() const; 

void check( int iterations, doublet: flops, doublet: checksum) const; 
} TheptatrixBenchmark; 

void ptatrixBenchmark: :c_style() const { II Compute E=C•D vith C-style code. 
for( int i-=0; i<L; i++ ) 

for( int j=O; j<L; j++ ) { 
double sum ::: 0; 
for( int k=O; k<L; k++ ) 

sum+= C[L•i+k]•D[L•k+j]; 
E[L•i+j] "' sum; 

II Class pt atrix represents a matrix stored in row-major format (same as C). 
class ptatrix { 
private: 

double • data; 
public: 

I I Pointer to matrix data 

int rows, cols; I I lumber of rovs and columns 

Matrix( int rows_, int cols _, double • data_ ) 
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}; 

{} 
rovs(rovs_), cols(cols_), data(data_) 

doublet operator() ( int i, int j ) { I I Access element at rov i, column j 
return data[cols•i+j]; 

void P!atrixBenchmark : :oop_style() const{ //Compute E=C•D vith OOP-style code. 
Matrix c( L, L, C ) ; II Set up three matrices 
Matrix d( L, L, D ) ; 
Matrix e( L, L, E); 

for( int i:Q; i<e.rovs; i++) //Do matrix-multiplication 
for( int j:•O; j<e.cols ; j++ ) 

double sum = 0; 

for( int k=O; k<e.cols; k++) 
sum+= c(i,k)•d(k,j); 

e(i,j) • sum; 

void ptatrixBenchmark: :init() const 
( 

for( int j::::O; j<L•L; j++ ) 
C[j] "' j+l; 
D[j] "" l.OI(j+l); 

void MatrixBenchmar k : :check (int iterations, doublet: flops, doublet: checksum)const 

double sum = 0; 
for( int k=O; k<L•L; k++ ) 

sum += E[k]; 
checksum = sum; 

flops = 2 .O•L•L•L•iterations; 

#endif I• HAVE_ptA.TRIX •I 

#if HAVE_ITERATOR 

11··--··············=-················-=······-.. ··-~·-·····~·-·············· II 
I I lterator benchmar k 
II 
II Iterators are a common abstraction in object-oriented programming, vhich 
II unfortunately may incur a high cost if compiled inefficiently. 
II The iterator benchmark belov computes a dot-product using C-style code 
II and OOP-style code. All methods of the iterator are inline, and in 
I I principle correspond exactly to the C-style code. 
II 
II Note that the OOP-style code uses two iterators, but the C-style 

II code uses a single index. Good common-subexpression elimination should 
II in principle, reduce the tvo iterators to a si ngle index variable, or ' 
I I conversely, good strength-reduction should convert the single index into 
I I tvo i terators ~ 

II 
double A [N]; 
double B[li]; 

double JteratorResult; 

c lass lteratorBenchmark: public Benchmark { 
private: 

179 



180 

const char • name() const {return "Iterator";} 
void initO const; 
void c_style() const; 
void oop_styleO const; 
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void check( int iterations, doublet flops, doublet checksum) const; 
} ThelteratorBenchmark; 

void IteratorBenchmark: :c_style() const // Compute dot-product vith C-style code 
( 

double sum "' 0; 
for( int i=O; i<J; H+ ) 

sum +• A[i)•B(i]; 
IteratorRe sult = sum; 

class Iterator { II lterator for iterating over array of double 
private: 

int index; 
const int limit; 

I/ Index of current element 
// 1 + index of last element 

double • const array; I I Pointer to array 
public: 

}; 

double look() {return array(index] ;} //Get current element 
void next() {index++;} //Go to next element 
int done() {return index>=limit;} II True iff no more elements 
lterator{ double • arrayl, int limitl 

(} 

array(arrayl), 
limit(limitl), 
index(O) 

II Compute dot-product vith OOP-style code 
void IteratorBenchmark: :oop_style() const 
( 

double sum = 0; 

for( lterator ai(A,I), bi(B,I); !ai.doneO; ai next{), bi.nextO) 
sum+"' ai.look O•bi.lookO; 

lteratorResult = sum; 

void IteratorBenchmark: :init() const 
( 

for( int i=O; i<l; i++ ) 
A(i) = i+l; 
B[i) = l.OI(i+l); 

void lteratorBenchmark:: check(int iterations, doublet flops, 

doublet c hecksum ) const { 
flops = 2•1•iterations; 
checks um= lteratorResult; 

lendif I • HAVE_ITERATOR • I 

#if HAVE_COI'~PLEX 

11······--···--····--·--·--·--······----··------··--·--·----·----··--···=---··· II 
I I Complex benchmark 
II 
II Complex numbers are a common abstraction in scientific programming. 
II This benchmark measures how fast they are in C+ + relative to the same 
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II calculation done by explicitly vriting out the real and imaginary parts . jj The calculation is a complex-valued ''SAXPY'' operation. 

I I The complex arithmetic is all inlined, so in principle the code should jj run as fast as the version u sing explicit real and imaginary parts. 

class ComplexBenchmark: public Benchmark { 
private: 

const char • name{) const {return "Complex";} 
void init{) const; 
void c_style () const; 
void oop_style() const; 

void check( int iterations, doublet flops, doublet checksum) const; 
} TheComplexBenchmark; 

class Complex { 
public: 

double re, im; 

Complex( doubler, double i ) re(r), im (i) {} 
Complex() {} 

}; 

inline Complex operator+( Complex a, Complex b 
( 

return Complex ( a. re+b. re, a. im+b. im ) ; 

inline Complex operator•( Complex a, Complex b 
( 

I I Complex add 

II Complex multiply 

return Complex( a.re•b.re-a.im•b .im, a.re•b.im+a.im•b .re ); 

Complex X (I) , Y (I) ; I I Arrays used by benchmark 

~oid ComplexBenchmark: :c_style() const II C-style complex-valued SAXPY operation 

double factor_re = 0.5; 

double factor_im"' 0.86602540378443864676 ; 
for( int k"'O; k<l; k++ ) { 

Y(k).re = Y[k).re + factor_re •X [k).re- factor_im •X(k) .im; 
Y(k).im • Y(k).im + factor_re•X(k).im+ factor_im•X(k).re; 

I I OOP-style complex-valued SAXPY operation 
void ComplexBenchmark: :oop_style{) const 
( 

Complex factor( 0.5, 0.86602540378443864676) · 
for( int k=O; k<B; k++ ) ' 

Y(k] = Y(k] + factor•X(k]; 

void Complex Benchmark : : ini t () const 
( 

for( int k=O; k<B ; k++ ) { 
X(k] =Complex( k+l , l.OI(k+l) ); 
Y[k] = Complex ( 0, 0 ) ; 

void ComplexBenchmark: :che c k(int iterations, doublet flops, doublet checksum) 
const{ 
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double sum "' 0; 
for( int k=O; k<J ; k++ ) 

sum += Y ( k] . re + Y (k) . im; 
checksum "' sum; 

#endif" / • HAVE_CO,.PLEX • / 

I 1========-•>==========•====-========-===--.. =========•--========•••-====== 
I I End of benchmark computat ions. 

I 1======== .... = .. =======•====•-=========--=== .. ============-==========-====-=== 

II All the code belov i s for running and timing the benchmarks. 
#if defined(sun4) tl !define d (CLOCKS_PER_ SEC) 
II Sunl4 inc l ude-fi les seem to be missing CLOCKS _PER_ SEC. 
#d ef ine CLOCKS_PER_SEC 1000000 
#end if 

II 
II TimeOne 
II 
II Time a single benchmark computation. 
II 
I I Inputs 

II fun ction :c pointer to function to be run and timed . 
II iterations= numb e r of times to call function . 
II 
II Outputs 

I I sec "' Total number of seconds for cal ls of fun ction. 
II Jllflop "" Jll egaflop rate of function. 
I I checksum = checksum computed by function. 
II 
void Benchmark :: time_one(void (Benchmark:: • function) () co nst, int iterations, 

doubl e t sec, doublet Jllf lop, doublet checksum ) const 

II 

II Initialize and run code once to load caches 
ini tO; 
( this-> •function) 0; 

II lni tialize and run code. 
initO ; 
c lock_ t tO = clock(); 
for( int k:O; k<iterations; k++) 

(this->•function) 0; 
clock_t tl z: clock (); 

II Update checksum and compute number of floating-point operations. 
double flop s; 
check ( iterat ions, flops , c hecksum); 

sec "' (tl-tO) I (double)C LOCKS_PER_ SEC; 
Jllfl op "" flopslsec •le-6; 

II Th e variable ''C_Seconds'' is the time in seconds in whi ch to run the 
II C-style benchmarks. 
II 
double C_Seconds = 1; 

II 
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II Th e variable 
1 1

Tolerance'' is the maximum alloved relative difference 
II betwe en the C and OOP checksums. "ac hines vith multiply-add 
II instructions may produce different answers vh e n they use those 
II instructions rather than sepa r ate instructions. 
II 
~j There is nothing ma gic about the 32, it 's just the result of tweaking. 

const double Tolerance = 64•DBL_EPSILOI; 

Benchmark • Benchma rk: :find( const cha.r • name ) { 
for( int i=O; i<count; i++ ) 

II 

if ( s tr cmp( name, list[i]->name() )=z 0) 
return list[i] ; 

return lULL; 

II Benchmark: :time_both 
II 
II Run s the C and Oop versions of a benchmark computation, and print the 
II results. 
II 
I I Inputs 
II name • name of the benchmark 
II 
II 
II 
II 

c_style '"' benchmark vritten in C-style code 
oop_style = benchmark vritten in OOP-style code 
check z routine to compute checksum on ansver 

void Benchmark: :time_both ( int iterations) const { 
I I Run the C- style code. 
double c_sec , c_JIIflop, c_chec ks um; 

time_one( tB enchmark : :c_style, iterations, c _sec , c_ JIIflop, c_checksum ) ; 

I I Run the OOP-style code. 
double oop_sec, oop_ JII flop, oop_checksum; 

t ime_one (tBenchmark: : oop_style, iterations, oop_sec, oop_ JII flop, oop_checks um) ; 

II Compute execution- time r at io of OOP to C. This is also the 
I I reciprocal of t he Jll egaflop ratios. 
do uble ratio • oop_seclc_sec; 

II Compute the absolute and relative differences betveen the checksums 
I I for the two codes. 
double diff = c_c hecksum- oop_checksum; 

double min '" c_ checksum < oop_chec ksum? c_checksum : oop_c he c ksum; 
doubl e rel ""difflmin; 

II If the relative difference exceeds the tolerance, print an error-message, 
II otherwise print the statistics. 
if( rel > Tolerance ll rel < -Tolerance ) { 

printf("%- 10s: varning : r e lative checksum error of X.g" 
" betveen C (%g) and oop (%g)\n", 
name(), rel, c_checksum , oop_checksum); 

printf( "%-lOs Y.lOd %S.1f %5 . 1f Y.S.lf %5 .1f Y.S . lf\n", 

name(), iterations, c _sec , oop_sec, c _JIIflop, oop_l1flop, ratio ) ; 

const c har • Version= "Vers i on 1.7"; II Th e OOPACK version numbe r 

void Usage( int l • argc • l, char • argv (] ) { 

print!( "Usage:\t%s testt:iterationsl test2"'iterat i ons2 ... \n'', argv(O] ); 
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printf( "E.g. :\ta. out Pllax=SOOO " atrix:o::SQ Complex=2000 Iterator=SOOO\n" ) ; 
exit(1); 

int ma in( int argc, char • argv[] 
{ 

II The available benchmarks are automatically put into the list of available 
II benchmarks by the constructor for Benchmark. 

I I Chec k if user does not kno9 command-line format. 
if( argc""=l ) { 

Usage( argc, a rgv ) ; 

int i; 
for( i•l; i<argc; i++) { 

if( ! isalpha(argv[i] [0)) 
Usage ( argc, argv ) ; 

II Print the request for results 
printf("\n"); 

printf("OOPACK Xs\n",Version); 
printf("\n"); 

printf("For results on various systems and compilers, examine this Web"); 
pr intf("Page: \n http: //1n1i1 .ltai. com/oopack/oopack. html \n") ; 
printf("\n"); 

printf("Report your results by sending e-mail to oopackCikai. com. \n"); 
printf("For a run to be accepted, adjust the number of iterations for"); 
printf(" eac h test\nso that each time reported is greater than 10 seconds "); 
printf("\n\n"); 

printf("Send this output, along vith :\n"); 
printf("\n"); 
printf(" • your\n"); 

printf(" + nMte ------------------- \n"); 
printf(" + company/institution ---- \n"); 
printf("\n"); 

printf(" • the compiler\n"); 

printf(" + name ------------------- \n"); 
printf(" + version number --------- \n"); 
printf(" + options used -------- --- \n"); 
printf("\n"); 

printf(" • the operating system\n"); 

printf(" + name -------- - ---------- \n"); 
printf(" + version number --------- \n"); 
printf("\n"); 

printf(" • the machine\n"); 

printf(" + manufacturer ----------- \n"); 
printf(" + model number ----------- \n"); 
printf(" + processor clock speed -- \n"); 
printf(" + cache memory size ------ \n"); 
printf("\n"); 

I/ Print header . 

printf("t-tOs Y.tOs Y.lts %11s Y.Ss\n", "" ,"","Sec onds ", " P1flops " '"' ); 
printf("Y.-10s Y.tOs 't.Ss Y.Ss 't.Ss Y.Ss Y.Ss\ n", 

" Te st " 1 "Iterations", " C " , "OOP", " C ", "OOP"
1 

" Ratio" ) ; 
printf("Y.-tOs Y.10s Y.lts %11s 7.Ss \ n"

1 
"----"

1 
"----------" 

··-----------··' ··-----------··' ··-----·· ) ; 

for( imt; i<argc; i++ ) { 

co nst char • test_name ::: strtok( argv[i] 
1 

const c har • rhs z: strtok ( lULL, "" ) ; 
) ; 
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if( rhs:::=JULL ) { 

printf("missing iteration count for test 'Y.s '\n" 
1 

test_name ) ; 
} else { 

int test_count .. (i nt )strtol( rhs
1 

0
1 

0 ); 
Benchmark • b =Benchmark: :find( test_name ) ; 
if( b=::JULL ) { 

printf ("skipping non-exi s tent test= 'Y.s'\n"
1 

test_name ); 
} else { 

b->time_both( test_count ) ; 

I• Print blank line . • I 
printf("\n"); 

return 0; 

The benchmark program for OpenC++ (only difference) 
I I P1 atr ix benchmark 

metaclass Matrix · P1atrixClass; 

II Class Matrix represents a ma trix stored in rov-major format (same as C). 
class Matrix { 
private: 

double •data; 
public: 

I I Pointer to matrix data 

}; 

int rovs , cols; I I lumb e r of rolls and columns 

Matrix( int rov s _ 1 int cols_, double • data_ ) 
rovs ( rovs_) 1 cols(cols_), data(data_) 

{) 

double• Data() { return data; } 

doublet operator()( inti, int j) { II Access element at rov i
1 

column j 
return data[cols • i+j]; 

void MatrixBenchmark : :oop_styleO const {II Compute E=C•D with OOP-style code. 
Matrix c( L 1 L, C ) ; II Set up three matrices 
Matrix d( L, L

1 
0 ) ; 

P! atrix e( L, L, E ) ; 

c.foreach(i){ 

}; 

for(int j:::: 0; j < e.cols; ++j){ 
double sum :::: 0; 
d . foreac h(k){ 

sum+= c(k) • d(j); 
} ; 

e(i,j) =sum; 

I/ Iterator benchmark 
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metaclass Iterator : IteratorClass; 

class Iterator { 
II lterator for iterating over array of double private: 

int index; 
const int limit; 

II Index of current element 
II 1 + index of last element 

double • const array; I I Pointer to array 
public: 

); 

double look() {return array[index] ;} //Get current element 
void next() {index++;} // Go to next element 

int done() {return index>=limit;} // True iff no more elements 
lterator( double • array!, int limit! ) 

{) 

array (array 1) , 

li~r~itClimitl), 
index(O) 

const int Limit() { return limit; 
double Array(int i) { return array[i]; } 

II Compute dot-product vith OOP- style code 
void IteratorBenchmark : : oop_styl e () const 
{ 

doubl e sum "" 0; 
Iterator ai(A ,I ), b i(B,I); 
ai. foreac h ( v) { 

); 

sum += v • bi look(); 
bi .next(); 

IteratorResult = sum; 

Meta-level progra m 

#include " .. /mop. h" 

I I Max benchmark 

I I I need a function template. 

I I Matrix be nchmark 

class MatrixClass public Class { 
public: 

); 

MatrixClass(Ptree • d, Ptree • m) Class(d, m) {} 
static BOOL Initialize(); 

Ptree • TranslateUser Statement(En vironment• , Ptree • , Ptree • , Ptree• , 
Ptree • ); 

Ptree • TranslateFunctionCall(Environment • , Ptree • , Ptree • ); 

class ForeachOata 

public Environment: :ClientData { 
public: 

ForeachOata(Ptree • p) { tempname = p; 
Ptree • tempname; 

); 

BOOL P1atrixClass:: Ini tializeO 

C.5. OOPACK BENCHMARK 

RegisterlevWhileStatement ("foreach ") ; 
return TRUE; 

Ptree• MatrixClass: :TranslateUserStatement (Env ironment• env, Ptree • object, 

Ptree• op , 
Ptree• keyvord, Ptree • rest) 

Ptree •index, •body , • tmp, • tmp2, •tmp3, •body2; 

if(! Ptree: : Eq( keyvord, "foreach")) 

return Class: :TranslateUserStatement(env, object, op, keyvord, 
rest) ; 

if(object- >Whatls() !== Leaflameld){ 

ErrorPil essage("sorry, the object field must be a variable name", 
key vord); 

r eturn nil; 

if(!Ptree:: P1 atch(rest, "[((1.?] ) Y.?] ", tindex, tbody)){ 
Error P1 essage("invalid foreach statement"); 
return ni l ; 

t mp "' Ptree: : GenSym() ; 
tmp2 "' Pt ree; :GenSymO; 
tmp3 = Ptree: : GenSym() ; 

ForeachData• data = nev ForeachData( tmp3); 

env->AddClientData( this, object, data) ; 
body2"' TranslateStatement(env, body); 
env->DeleteClientData(data); 

return Ptree: : f'!akeStatement( 

"for(int Y.p"' Y.p.rovs, Y.p = Y.p.cols , Y.p = (Y,p.ro vs- 1) • Y.p.cols; " 

"--Y.p >= 0; Y.p -= Y.p){\n" 
d oub l e const • Y. p • t(Y.pY.pDataO)[Y.p] ;\n" 
7.p ) \n""' 

i ndex, object, tmp , object, tmp2 , object, object, 
i ndex, t mp2 , tmp , 

tmp3 , obj ect, op , tmp2, body2); 

Ptree • P1 atr ixClass: :TranslateFunctionCall (En vironment• env, Ptree• object, 

Ptree • args) 

ForeachData• ent "' (ForeachData• )env->LookupClie ntDat a(this, object); 
if(ent '"'"' nil ) 

return Class: : TranslateFunctionCall (env, object, args) ; 
else 

return Ptree: : P1ake("X.p(Y.p]", ent->tempname, 

Ptree: :First(Ptree: :Second(args))); 

I I Iterator benchmark 

class IteratorClass public Class { 
public: 

IteratorCl ass(Ptree • d, Ptree • m) Class(d, m) {} 
static BOOL Initialize(); 
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}; 

Ptree• TranslateUserStatement(Environment•, Ptree•, Ptree•, Ptree•, 

Ptree•); 

BOOL IteratorClass:: Initialize() 
{ 

RegisterlevWhileStatement ( "foreach") · 
return TRUE; ' 

Ptree• I teratorClass: : TranslateUserStatement (Environmen t• env, Ptree• object, 

Ptree• op, 

Ptree• keyvord, Ptree• rest) 

Ptree •arg, •body, •index, •limit; 

if(! Ptree: : Eq(keyvord, "foreach")) 

return Class: :TranslateUserStatement(env, object, op, keyword, 

rest); 

if(object->Whatis() != Leaflameld){ 

Error" essage("sorry, the object field must be a variable name", 
keyvord); 

return nil; 

if(!Ptree: : " atch(rest, "(([%?)) ~?)", targ, t body)){ 
Error" essage("invaJ.id foreach statement"); 
return nil; 

index = Ptree: :GenSym(); 
limit= Ptree: :GenSymO; 

return Ptree: : " ak.eStatement( 

"for(int Xp = 0, Y.p = Xp.LimitO; Y.p < Y.p; ++Y.p){\n" 
" const doublet Y.p = Y.p.Array(Y.p) ;\n" 

Xp }In", 

index, limit, object, index, limit, index, 
arg, object, index, 

TranslateStatemen t(env, body)) ; 

I I Complex benc hmark 

class ComplexClass : public Cl ass { 
public: 

ComplexClass(Ptree • d, Ptree • m) Class(d , m) {} 

Ptree • TranslateAssign(Environment • 
1 

Ptree • 
1 

Ptree • 
1 

Ptree • ); 
BOOL lsComplex(Environment•, Ptree • ); 
BOOL l.sArray(Ptree • ); 

Ptree • TransEachPart (Env ironment • , Ptree • , BOOL) ; 

private: 

}; 
BOOL giveUp; 

Ptree • ComplexCla5s: : TranslateAssign (En vi ronment • env 
1 

Ptree • object, 

Ptree • op, Ptree • expr) 

Ptree • repart 1 • impart 
1 

• array; 

C.5. OOPACK BENCHMARK 

if(!op->Eq ( 1 :c:')) 

goto giveup_opt; 

if(! object-> Is Leaf() U ! IsArray(object)) 
go to giveup_opt; 

if(expr-> Is Leaf()) 

go to gi veup_opt; 

giveUp = FALSE; 

//e.g.a=b; 

repart = TransEachPart(env, expr, TRUE); 
impart = TransEachPart(env, expr, FALSE); 

if( !giveUp) 

return Ptree: : Plak e ("Y.p. re "' Y.p, \nY.p. im :: Y.p", 

object, repart, object, impart); 

giveup_opt: I I give up optimization 

return Class: :TranslateAssign(env, object, op, expr); 

BOOL ComplexClass: : lsComplex(Env ironment• env, Ptree• var) 
{ 

Class• metaobj z:: env->LookupClass"etaobject(var); 
return BOOL(metaobj :c::: this); 

BOOL ComplexClass: : IsArray (Ptree• expr) 
{ 

Ptree • array; 

return BOOL(Ptree :: "atch (expr, "('/.? ('/.( '!.• %]]]", tarray) 
tt array->IsLeaf()); 

Ptree • ComplexClass: : TransEachPart (Env ironment • env, Ptree • expr, 

BOOL real_part) 

Ptree • lexpr; 
Ptree• rexpr; 

Ptree •l_re, • l_im, • r_re, •r_im; 

if(expr->lsLeaf() ){ 

ifOsComplex(env, expr)) 
if(real_part) 

else 
return Ptree: :"ake("Y.p.re", expr); 

else 
return Ptree: : "a.ke("Y.p. im" 

1 
expr); 

return expr; 

else ifOsArray(expr)){ 
Typelnfo t; 

Ptree • expr2 = TranslateE xpression(e nv, expr, t); 
if(t .Class"etaobject() =:: this) 

if(real_part) 

return Ptree: : "a.ke("Y.p.re", expr2); 
else 

else 
return Ptree: : "ake ("Y.p.im", expr2); 

return expr2; 
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else if(Ptree: : f'latch(expr, "[%? + X?]", llexpr, l:rexpr)) 

return Ptree: : f'lak e("Y.p+Xp", TransEachPart(env, lexpr, real_part), 

TransEachPart(env, rexpr, real_part)); 
else if(Ptree: : llllatch(expr, "[Y.?- i.?]", tlexpr, trexpr)) 

return Ptree: : l"'ake("i:p-Y.p", TransEachPart ( env, lexpr, real_part) , 
TransEachPart (env, rexpr, real_part)) ; 

else if(Ptree::f'latch(expr, "[( 7.? )]", tlexpr)) 

return Ptree: : !'fake(" (Y,p)", TransEachPart(env, lexpr, real_part)); 
else if(Ptree: : Match (expr, "[-X?]", trexpr)) 

return Ptree: : f'l ake("-Y.p", TransEachPart(env, rexpr, real_part)); 
else if(Ptree::l'!atch(expr, "(Y.? • Y.?]", tlexpr, .trexpr)){ 

l_re = TransEachPart (env , lexpr, TRUE); 
l_im = TransEachPart(env, lexpr, FALSE); 
r_re = TransEachPart(env, rexpr, TRUE); 
r_im = TransEachPart(env, rexpr, FALSE); 
if(real_part) 

else 
return Ptree: :l'lake("Y.p•Xp-Xp• Y.p", l_re, r _re, l_im, r_im); 

return Ptree: : l'lake("Xp•Xp+Xp•%p", l_re, r_im, l_im, r_re); 

else { 

giveUp:: TRUE; 
return expr; 




