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Abstract

A simple discussion is given of the appropriate proposition of boundary conditions for an
ocean-atmosphere coupled model, which we use to simulate the coastal phenomenon Ningaloo
Nifio off western Australia. Our analysis is mainly based on the basic linear algebra and
characteristic theory in mathematics.
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1 Introduction

During the austral summer of 2010-2011, an unprecedented oceanic warm event was observed
off the west coast of Australia. Sea surface temperature anomaly averaged in February-March,
2011 reached about 3 °C off the west coast of Australia, which is above four times of the standard
deviation of its interannual variation in recent 30 years. This coastal phenomenon was named
Ningaloo Nifno and has significant impacts on the precipitation over Australia (Refer to [1],[2],[4]).
Because of an analogy between the equator and the coast, it will be interesting to extend the simple
ocean-atmosphere coupled model of Yamagata (1985)[7], which made a large contribution to the
understanding of the generation mechanism of El Nifio. Here we first summarize his model. The

governing equations of motion for the ocean, linearized around a state of no motion, are

ur — fv+ ghy, = —au + U,

ve + fu+ ghy = —av ++V, (1)

hi + d(ug + vy) = —bh,
where (u, v) are the zonal and meridional oceanic velocity components, h is the surface elevation, g
is the acceleration due to gravity, and d is the equivalent depth. Also a and b are Reyleigh friction
and Newtonian cooling, respectively. The wind stress (yU,~vV) is assumed to enter the ocean as

a body force, where (U, V') satisfy the following equations as the zonal and meridional velocity of

the atmosphere:
U — fV +gH, = —AU,

Vi + fU + gH, = —AV, (2)
Hy+ DU, +V,) = —-BH + ah,
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where H is the depth, A and B are inverse time-scales for Reyleigh friction and Newtonian cooling,
respectively, D is the equivalent depth and « is the coefficient of coupling. The systems (1) and
(2) of partial differential equations give a coupled model of air-sea interaction.

In this short note, we will discuss the appropriate proposition of boundary conditions for the
above ocean-atmosphere model. When we apply Yamagata’s model to the study of Ningaloo Nino
off western Australia, the boundary coastline will be a nonnegligible factor in our case. This work
is a first step toward enhancing our understanding and improving prediction skill of Ningaloo Nino

and thus contribute to the mitigation of effects of abnormal weather.

2 Simplified oceanic model

In order to have an insight into an equatorial case, it is very useful to consider the case in which
neither the atmosphere nor the ocean is rotating. That is, we take f = 0. Also to simplify our
analysis, we neglect the wind stress (yU,vV') acting on the ocean. In our note, we assume that
the ocean motion occurs in a half plane by considering the coastline as an infinite straight line.
Thus we formulate the following simplified initial-boundary value problem of the two-dimensional

shallow water equations:

Ut + ghx = 07
vy + ghy =0, in R2_; x (0,00). (3)
hy + d(ug 4+ vy) =0,

Here R2_ := {(x,y)|z < 0,y € R} is the half plane with the boundary {z = 0}. Also, g and d are

positive constants because of their physical meanings.

3 Methods and discussion

We begin with a scalar linear equation in a quarter plane
Fi+cF,=0, =<0, t>0,

where ¢ is a constant. We suppose that we are given the initial condition F(x,0) in x < 0, and the
boundary condition F(0,¢) in ¢ > 0. We ask to what extent do these values determine F in the
full quarter plane? It is clear that I’ must be constant along the lines x — ¢t = const. We observe
that if ¢ > 0, u is determined along z = 0 by its initial value. Thus in this case, no boundary
condition can be given, while we see that the boundary condition along x = 0 must be given in

order to determine F' in the entire quarter plane if ¢ < 0. See the figure below.

t t

/ the domain that F
cannot be determined

by initial data

c>0 c<0
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We now adjust this idea to analyze our problem. The system can be written in matrix notation
as:
O + A0y + AyOyw =0,  in R2_; x (0,00),

where 10 = [u, v, h]T is the vector of unknowns, and the matrices A, and A, are of the form

Ax = and Ay =

QU O O
o O O
o O«
o O O
QU O O
o @ O

Step 1: Calculation of the eigenvalues for the matrix A,:

A= —+/gd, Ay =0 and \s = \/gd.

Step 2: Calculation of the corresponding eigenvectors:

Eigenvectors r; corresponding \; are of the form

V9 0 v

ry = 0 , o= | 1 and 73 = 0

Vd 0 Vd

We thus set matrix T := [ry,mo, 73], and T~! be its inverse matrix. Then it is easy to see that

—Vgd 0 0
T YA4,T = 0 0 0
0 0 yd

Step 3: Change of variables to get a diagonalized system:

Denote
' U
= v | =T'd=T""| v |, thatis, & =T,
h h

then we obtain the equations of &' = (u’,v’, h’)T of the form
9, + Diag(—+/gd, 0,/ gd)0,&" + (T A,T) 9, =0,

and it can be written in the form of components ' = (u/,v", h')T:

uf ~Vgd 0 0 u 0 Y 0 o
0 0 7]
=\ v |+ 0 0 0 — | v |==10 0 gd |=— ]| v
a\ oz | | Vi aw\
h 0 0 Vod h 0 ¥ 0 h

Note that the terms involving y derivatives of &' do not contribute to the analysis. Refer to
Thompson [6].

Step 4: Write the boundary conditions in terms of the original variables:

From the analysis at the beginning of this section, since we just have one negative eigenvalue A1, we
need to prescribe one boundary condition at the outlet corresponding to the characteristic variable

u’. Let us come back to the change of variables ' = T~ '@, that is,

/ -1 0 L

u 2\/§ 2\/& u
Tl = 0 1 0 v
/ 1 1

h s 0 o)\

If the boundary data for the original variable w is prescribed, then we can solve the problem in the

following steps
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e v’ and A’ are completely solvable only by using the initial data;

Compute the boundary value of v’ by using those of u, v’ and h';

u' is then solvable;

e Recover u,v and h from u’,v" and h' by the above transformation.

4 Result

Theorem 1 For the two-dimensional shallow water equations (3) in the half space Ri@ , it can
be solvable with the continuous initial data (u,v,h)|i=0 = (ug,vo, ho), provided that the boundary

value u(z,y,t)|z—0 = b(y,t) is given for some continuous function b(y,t).

This theorem says that the initial-boundary value problem is solvable provided that the normal
velocity at the boundary is given as well as the initial velocity is given. We emphasize that this
note only concerns with the simplified oceanic model. It will be interesting to extend the discussion

to the ocean-atmosphere coupled model.

Acknowledgement The authors would like to express their heartfelt gratitudes to Professor

Yoshikazu Giga for his useful discussion and two anonymous reviewers for their helpful comments.

References

[1] Doi T., Behera S. K. and Yamagata T., Predictability of the Ningaloo Nino/Nina, Sci. Rep.,
3, 2892, 2013.

[2] Feng M., McPhaden M. J., Xie S. P. and Hafner J., La Nina forces unprecedented Leeuwin
Current warming in 2011, Sci. Res., 3, 1277, 2013.

[3] Guaily A. G. and Epstein M., Boundary conditions for hyperbolic systems of partial differential
equations, J. Adv. Res., Vol. 4, pp. 321-329, 2013.

[4] Kataoka T., Tozuka T., Behera S. and Yamagata T., On the Ningaloo Niflio/Nina, Clim.
Dynam., Vol. 43, pp. 1463-1482, 2014.

[5] Smoller J., Shock waves and reaction-diffusion equations. Second edition. Grundlehren Math.
Wiss. 258. Springer-Verlag, New York, 1994. xxiv+632 pp.

[6) Thompson K. W., Time-dependent boundary conditions for hyperbolic system II, J. Comp.
Phys., 89(2), pp. 439-461, 1990.

[7] Yamagata T., Stability of a simple Air-Sea coupled model in the Tropics. Coupled Ocean-
Atmosphere Models. In: Nihoul J. C. J., Elsevier Oceanogr. Ser., Vol. 40, Elsevier Science,
Amsterdam, pp. 637-657, 1985.



