
Chapter 6 

PROPOSAL OF FUNCTIONS OF 

THE BASAL GANGLIA LOOPS 

6.1 Introduction 

Based on the reviews and discuss ions of the preceding chapters, the a im of thi s chapter 

is to propose the functions for t he basal ganglia-thalamocortical loops in sequentia l 

movements from a computational viewpoint . First, Lhe computational clements are 

di scussed, and, second , a general framework of Lh e function s of the loops is proposed 

in terms of the acquisition and retrieval processes in execut ion. These descriptions arc 

given in re lat ion to the 2x5 task. Third, a model implementing an a lgorithm based on 

Lhe above framework is provided in order to perform a close compar ison of the model 

with the exper imental data of the 2x5 task, which is in the next chapter. 
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6.2 Computational elements in the basal ganglia 

thalamocortical loops for sequential decision mak-

mg 

For the following di scuss ions, it may be worth introducing the distinction between the 

two kinds of memory of sequences: one depends on the sensory inpu ts (the sensory­

sequence memory) a nd the other depends on the motor outputs (the moto r-sequence 

memory). In the motor-sequence memory, the memory should really include info rmation 

represented by the kinemat ical/dynamical representat ion at least to some degree. In 

visuo-motor task such as t he 2x5 task, the motor-seq uence memory includes nonlinC'ar 

mappings, or roughly speaking, complex mappings. In cont rast, the sensory-sequence 

memory can be represented in terms of the Cartesia n representat ions, in particular, as 

a sequence depending on the spat ia l representation. For the saccade by t he oculomotor 

system, the Cartesian representation of the target in the exte rnal world can be employed. 

ote that, from a com putational viewpoint , there generally ex ists a t radeo ff between 

execution and acquisition in terms of the type of information sto red in the memory. It 

is easier a nd faster to produce the output , or movements, if the informat ion is stored 

more closely to the output , or downstream. At the same time, it is often more difficult 

to acquire the information close to the actual output but rat her easier to acqu ire the 

informat ion somewhat at a n abst ract level or upst ream. Consider the case of reaching, 

for example. The Cartes ian representation can be used to indicate a n object as a targC't of 

reaching with respect to the position of a subject. The problem of the in verse-k inematics 

and in verse-dynamics should be so lved with respect to the Cartesian representation of 

the target and the subject, to actually move a part of the body such as a hand to reach 
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the target. It wou ld be eas ier to acqui re information for the sequences of reaching by 

Cartesia n representat ion particularly in the earl y stage of acquisition, whereas it wou ld 

be faster a nd eas ier to execute the sequences of reaching by the kinemat ical/ dynami ca l 

rep resenta tions once the memory of t he sequence is acq uired. 

It can be said , thus, in the 2x5 task that the acquisition of the sequence may be much 

eas ier in terms of Cartesian representation than the kinematical/ dynamical representa­

tion because t he latter representat ion often becomes highly non linear to represent such 

sequences as employed in t he 2x5 task. At the same t ime, it shou ld be faste r to perform 

the 2x5 task if the stored informat ion in the memory is in the kinemat ical/dynamica l 

representat ion rather t han in Cartes ian representation . Thus, it is pla usible to consider 

from a com pu tational view point that t he sensory-sequence memory is more suitable in 

the acqu isit ion process, whereas the motor-sequence memory is more suitab le in the 

execution process. 

ln the case of 2x10 task in the 'color ' con dition di scussed in Sect ion 5.4.2, the memory 

of color sequences is one of the sensory-sequence memory. l n this case, the memory is 

independent of the spatial information. Though it is likely that the memory depends on 

the modality of colors, it may be possible for the memory to be stored at a somewhat 

abstract level. It is out of scope of the t hes is to in vest igate whether a memory of 

the sequence exists at an entirely abstract level, which is complete ly independent of any 

sensory modality. Generally speaking, however , it is presumed that the sensory-sequence 

memory can be somewhat more abst ract than the motor-sequence memory. 

The di st in ct ion between t he sensory-sequence a nd motor-sequence memories, how­

ever, should not be taken to imply that the sensory-sequence memory and the motor­

sequen ce memory can be regarded as completely independent but rather as a conceptu­

ally valuab le means for the in vestigation of the nature of the memory of sequences. 
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It should be a lso mentioned that, from a computational vi{'wpoint, the te rm, 'con­

text', is somewhat abused in some experimental li teratures we hav{' re,·iewed as well as 

in some computat ional models of the functions of the basal gang li a a nd related corti ca l 

areas . Roughly speaking, t he term 'context' is used to refe r to the situat ion in which 

the choice of an action taken at a state should be determined with respect to some of 

the events that happened in the past. In a se ri es of experiments done by Schultz and hi s 

colleagues, di scussed in Section 3.8, the term 'context' is used somet imes to indicate Lilf' 

procedure the monkeys engaged in and somet imes to indicate the experimental settings. 

Houk et a l. (31] argued that neurons in the st ri atum are ab le to lea rn the contcxtual 

decision, positing fun ct ion s of t hose neurons in t he actor-c ritic scheme of reinforccnw nt 

learn ing. The actor-critic scheme is ab le to take both of the immed iate and long-term 

consequences into account and , consequenlly, is ab le to learn sequ{'nces with respect to 

its value function. This is a virtue of using reinforcement learning in sequenti a l decision 

making. llowever , the actor-critic scheme by itse lf cannot be direclly applied to learn 

a multiple of sequences, each of which is occasionally presented to the system. /\s a 

simple example, when there a re two sequences each of which conta ins a particular state 

but each of whose action to be taken on the state is differen t , the acto r-criti c scheme 

will simply confuse both sequences. This kind of situation is often the case when people 

acquire skill s in daily life as discussed in Sect ion 3.1. It is so in the 2x.5 task. It cou ld 

happen that a correct order of act ions, that is, pushing two illuminat ing buttons in a 

correct order, is d ifferen t in the same set (the same sensory inpu ts) which belongs to 

different hypersets. From a computational viewpoint, thus, t he case shou ld be tak{'n into 

accoun t in which there are potentially mul t iple contexts, when t he concept of context is 

considered in relation to sequential decision making. The context, or the sequence the 

subjects/monkeys are engaging, should be ident ifi ed concurrently when they advance in 
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the context, or at least be availab le for examination. 

6.2.1 The acquisition processes in the early stage 

When the monkeys encounter a new hyperset, they must explore what act ions arc correct 

for the sets o f t he new hyperset. In other words, the mapping of the sensory input (set) 

with the motor output (act ion) must be explored in the ea rly stage of the acquisit ion. As 

seen in Sect ion 5.4.2, the pre-S MA is known to be in vo lved in the acqu isition process in 

the ear ly stage. The neurophys iologi cal findings in t he 2x5 task a lso clearly show<'d t hat 

the pre-SMA and the anterior str iatum arc much in volved in the acq ui sition proc<'ss 

in the earl y stage, di scussed in Section 5.'1. Based on di scuss ion in Sect ion .5k2, it 

is post ulated in this study t hat the pre-SMA is responsible for the mapping of t he 

sensory inpu ts to the motor outputs (the sensory-motor mapp ing), which should be 

particularly important in the earl y stage, in in teraction of the anterior stri atum (See 

also Sect ion 5.4.1). Reinforcement signals arc supposed to be prov ided by dopamine 

neurons in the substant ia nigra pars compacta(SNc). Presu mably, the monkeys wo uld 

rather react to the sensory input to produce the motor output part icu lar ly in t he ve ry 

early stage of the acqu isition, that is, at the beginning of encountering new hyperscts. 

To produce the motor output, information for an act ion to the cur rent sensory inpu t in 

the pre-S MA should be transformed to be used. It is hypothes ized in this study that 

the SMA transforms inputs from t he pre-SMA to produ ce t he motor outpu t in ongoing 

process of making sequenti a l movements in the early stage o f t he acqu isitio n. As t he 

monkeys get familiar wit h the hypersets via such explorat ion and have more successes, 

learn ing the sequence of t he sets and thei r actions begins. 

As rev iewed in Section 3.6, the anterior striatum is in volved in the dorsolateral pre­

frontal circu it and is much related to the ocu lomotor circuit. The pre-SMA is a lso known 
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to be in close interaction with the dorsolateral prefrontal circuit and to ha,·c the pro­

jection to t he anterior st ri atum. Neurons in the dorsolateral prefrontal cortex (DLPF) 

are known to be select ive to a vari ety of characteri st ics o f sensory inpu ts, particularly 

including spat ia l informat ion [17 , 18], and to have sustained act ivit ies, which can be 

considered as working memory. More importa ntly, the DLPF can be involved in dC'­

term ining sequential movements, depending upon the sensory informat ion, as discussed 

in Sect ion 3.6. In addition, as di scussed in Section 5.4.2, t he learning in the p r C'- S~ IA 

can be cons idered as more related to the sensory inputs rather t ha n the motor outputs. 

Besides t hi s ev idence, the computat ional considerat ion of the tradeo ff between t he ac­

quisit ion and execution discussed in the beginning of thi s section leads us to postulate 

that learning of the seq uence in the early stage relies on the sequence of sensory inpu ts 

(the sensory-sequence memory) rather than that of motor outputs and t hat this learning 

occurs in t he dorsolateral prefrontal circu it. In other words, the dorsolateral prefrontal 

circui t is hypot hesized to learn the sensory-sequence memory given reinfo rcement signa ls 

by dopamine (DA ) neurons in SNc. 

Informat ion of the sensory-sequence memory can be passed to t he oculomotor circuit , 

for example, in t he interact ion of the DLPF and t he supplementary eye field (SEF), 

to facilitate a nticipatory saccades. In addit ion, in format ion of the sensory-sequence 

memory in the DLPF can contribu te to t he production of t he motor output in the SMA 

through the pre-S MA. 

6.2.2 The acquisition p r ocess in the la t e s t age 

In contrast to the acqu isition of the mapping of the sensory inputs to the motor outputs 

and the acqu isit ion of the sensory-sequence memory, the nature of informat ion used in 

the late stage is considered as depending more on the motor outputs. This view is sup-

96 



ported by t he experimental ev idence such as (1) the learning measured by the number 

of errors to criterion decreases relatively faster than that measured by the performance 

time and (2) even after the 6 months interruption, by the perfo rmance time measure, 

the perfo rmance of learned hypersets is sign ificant ly better t han t hat of new hypcrscls, 

whereas there is no sign ificant d ifference in the number of error trials to criterion. In ild­

dition to t he above ev idence, information used in the late stage is rather sequent ial. This 

view is a lso supported by the experimental ev ide nce t hat t he pe rformance for reversed 

hy persets was nearly as same as t hat for new hype rsets, as discussed in Section 5.:3 . 

lt is, t hus, post ulated t hat sto red informat ion in the late stage is the memory of the 

motor-dependent sequences (the motor-sequence memory) . The Si\ IA and t he post<'rior 

putamen (P t) in t he motor circu it a re considered as respo nsible for t he acquisit ion of t he 

motor-sequence memory, wit h reinforcement signals provided by DA neurons in SNc. As 

pointed out in Sect ion 5.4.3, it may happen that the stored information in this cirru it 

may be fur t he r t ransferred to ot her corti cal areas after extensive training. 

6.2 .3 The integration of acquisit ion and retrieva l processes in 

ex ecution 

T hough onl y the acquisit ion processes in t he earl y and late stages are d iscussed in t he 

above sect ions, t he acquisit ion a nd retr ieval processes in t he long-term memory cannot 

be isolated from each other in t he execution process, as d iscussed in Sect ion 3.1. In t he 

above discuss ions, an emph as is is made on the comparison of t he acqu isit ion processes 

between t he early and late stages. lt should, t hen, be asked what wou ld happen in the 

"midd le' stage between the early and late stages. Even though the acquisition processes 

in the ea rly and late stages a re discussed separately in the above discussions, the learning 

processes of t he sensory-motor mapping, the sensory-sequence memory, and the moto r-
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sequence memory concurrent ly occur a t d ifferent learn ing speeds. The choice of il.ll 

act ion to a state may ha ppen to be different among these lea rni ng processes. In other 

words, different contex ts should be dist inguished from a com putat ional viewpoin t. ll 

is, t hen, required to integrate these learning processes, as discussed in t he beginning of 

Sect ion 6.2. 

Presumably, the sensory-sequence memory shou ld be acquired faster th an the motor­

sequence memory as di scussed in Sect ion 5.3 as well as in t he begi nning of Sect ion 6.2. It 

is postulated in thi s study th at the sensory-sequence predict ion con trols t he in teg rat ion 

of dec isions for a motor output among t he sensory- motor mapp ing, t he sensory-sequence 

memory, and t he motor sequence memory. Sensory-sequence memory info rmation ran 

be propagated to the SMA t hrough the pre-SMA , while t he pre-SMA can pass its ow n 

outpu t to t he SMA as well. 

6.3 A general framework on the acquisition and 

retrieval processes In execution 

Com putation al elements in the basal ganglia- thalamocor t ical loops for sequentia l deci­

sion mak ing are hypothes ized in the previous section. Based on thi s proposal, the aim 

of thi s sect ion is to provide a general framework describing t he fu nct ions of t he basal 

ganglia-thalamocortical loops for t he acquisition and ret rieval processes in execution. 

The emphas is is placed on ongoing processes in t he early an d late stages of learning 

sequential decision making. 

1. Explorat ion of t he correspondence of the sensory inputs w it h the motor 

outputs: In general, explorat ion to fin d opt imal act ions in relat ion to states is 

needed parti cularly in the early stage of t he learning in sequent ial decision maki ng. 
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In t he 2x5 tas k. through the process of reinforcement leaning. I he monkeys explore 

a ll poss ible pairs of current state and C1ltrcnl act ion over all states. In this learning 

process, reinforcement learning will lead to the possibly optima l pa irs of slate 

and action being chosen more often. This function mapping the sensory input to 

the motor output is called sensory-motor mapping in the t he rest of t he thesis 

for convenience (Figure 6.1 , top). The learning of the sensory-motor mapping is 

hypothes ized to occur in the pre-SMA and the anterior str iatum (Figu re 6.2) . The 

reinforcement signals arc provided by the dopamine ( DA ) neurons in the substan ti a 

nigra pars compacta (SNc). 

2. Sensory-dependent learning of the sequence: The learning of the sequences 

first occur depending upon t he sensory inputs rather t han the rnotor outputs. 

In the 2x5 task, it is part icularl y so because the learning of the sequence is much 

eas ier in Cartesian representat ions than in kinematical / dynamical representat ion s. 

The memory of the sensory-dependent sequences helps the monkey anticipate the 

coming sensory input. This fun ction is called sensory-sequence 7n·ediction in the 

rest of the thesis for conven ience (Figu re 6.1 , middle) . The learning of sensory­

sequence prediction is hypothes ized to occur in the dorsolateral prefrontal circuit 

(the dorsolateral prefronta l area (DLPF) and the anterior stri a tum ; Figure 6.2). 

The reinforcement signals are also provided by the DA neurons. We hypot hesized 

that t he memory of the sensory-sequence prediction has two functional roles in 

execution: one is to evaluate how the expected context, or the expected sequence of 

sets in hyperset, fit s well with the actual sequence of sets . The other is to ant icipate 

the correct target corresponding to the anticipated sensory inputs, possib ly in 

cooperat ion with t he oculomotor circu it. The latter fun ct ional role may facil itate 

the success of the sequence an d, consequently, facili tates the learning of the motor-
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Figure 6 .1 

Sensory-motor mapping 

States 

Actions 

Sensory-sequence prediction 

States 

Actions 

Motor-sequence prediction 

States 

---.. E ---~~~ 
Figu re 6. 1: Sensory-motor mapping (top), sensory-sequence pred ict ion (middle), motor-

sequence pred ict ion (bottom) . 
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Figure 6.2 
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Figure 6.2: Correspondence of neural circuitry with the proposed function s. The dor-

so lateral prefrontal circu it cor responds with the sensory-sequence prediction. The pre-

SMA with the anterior st ri atum corresponds with the sensory- motor mapp ing. The 

motor circu it corresponds with the motor-sequence prediction. 
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dependent sequences, which is discussed below. 

3. Motor-d e p e nde n t learning of t h e sequence: The memory of motor-dependent 

sequences helps t he monkeys anticipate the correct action to the coming sensory 

input. Th is function is called motor-sequence p1·ediclion in the rest of the thesis 

for convenience (Figure 6.1, bottom). The learning of the motor-dependent se­

quence is postu lated to occur more gradually than that of the sensory-dependent 

sequence (See the discussion in Section 6.2). The more the monkeys cxpcricncc 

successes in the 2x5 task, the more the learning of the moto r-dependent sequence 

is faci li tated. Probably this slower learning process of the motor-dependent se­

quence is t he reason t hat t he performance time decreases more gradually than 

the number of t rials in t he 2x5 task. The learning of t he sensory-motor mapping 

and the sensory-sequence pred iction increase the number of successes of comp l<'ted 

sets and t rials. In this way, the learned resu lts of the sensory-motor mapping 

a nd the sensory-sequence predict ion can be gradually t ransferred to the motor­

sequence pred ict ion. T his learn ing is hypothesized to occur in the motor circuit 

(SMA and the posterior str iatum) with reinforcement signals from the DA neurons 

(Figure 6.2), probably in interact ion with other motor-related cortical areas and 

the cerebellum. 

4. Integra tion of a cquisit ion a nd ret ri eval processes in execu t ion : In the ex­

ecution of t he 2x5 task, even though the learn ing speeds arc different, all learning 

processes simu ltaneously occu r: t he learn ing process of the sensory-motor map­

ping. t hat of the sensory-sequence prediction , and that of the motor-sequence 

pred iction. Each of these learning processes can by itself lead to the determination 

of an act ion given a state. It is requi red, therefore, to integrate decisions made 
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by t hese three learn ing processes to produce a final dec ision of LIH' action. As 

postulated in Section 6.2, the sensory-sequence prediction, hypothesized to occur 

in the dorsolateral prefronta l circui t, is respon sible for thi s integration. The deg ree 

of correctness of the decisions made by each of these three learning proccss<'s may 

vary according to how often the sequence is experienced, or how well thC' given se­

quence is already learned by t he sensory-sequence and motor-sequence predictions 

as wel l as the sensory-motor mappi ng. 

6.4 A model of functions of the basal gang lia loops 

m the 2x5 task 

Based on the general framework of the fun ct ions of the loops of the basal ganglia in the 

previous sect ion , this sect ion aims to provide a model implementing an algorithm , by 

use of which the computer simulat ion on the 2x5 task is employed in the next cha pter. 

First, several simplifications made in the construction of the model a re stated a nd , 

then, a model implement ing an a lgo rithm based on the fra mework is expla ined. 

6 .4.1 Simplifications 

Because the aim of the model in the fo llowing sect ions is intended to present a core of 

computational processes proposed in t he preceding sect ions, there a rc several simplifi ­

cations made in the construct ion of the model. The aim of th is sect ion is to state these 

simplificat ions. Figures in thi s sect ion are presented in correspondence with Figures 

in the prev ious sect ion in order to show what fun ctions are implemented in the model 

among the functions hypothesized in the prev ious sect ion. 
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Figure 6.3 

Original sequence of states and actions 

, ... ~ \/\1\AAAA 
Actions mmmmamm 
Modified sequence of states and actions 

Figure 6.3: The sequence of staLes (sensory inputs) and act ions (motor outputs) in the 

2x5 task: the original sequence (above) and the modified sequence used in the simulation 

(below). 
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J. Original Sequence of states and actions: In t he 2x5 task. or genera lly in t he 

sequential decision making, the sequences of sensory inputs, which arP a lso called 

stales in particular in the framework o[ reinforcement learning (HL), a nd of motor 

outputs, which are al so called act ion s in t he fra mework of HL , arc given as seen 

in Figure 6.3 (above) . Because it is easy to push the second bu tton in each set if 

the only one button is illuminating a nd because it is very ra re for the monkeys in 

the 2x5 task to fail to push the second button in each set, the modifi ed sequence 

of states and actions is used in the simula tion , as seen in Figure 6.3 (below). 

2. Sensory-sequence prediction: In the proposed scheme, t hough it is possible in 

general for the sensory-sequence prediction to rel y on a who!C' sensory inputs in 

the past to predict the coming one, we ass umed in the simulation as a minimal 

model that the sensory-sequence prediction uses the current and prev ious sensory 

inputs to predict the coming one (See Figure 6.4). 

3. Motor-sequence prediction: Similar to the assumption o[ the sensory-sequence 

prediction, the motor-sequence prediction is assumed to use only the current a nd 

previous motor outputs to predict the coming one (Figure 6.4 ). 

In the simulation o[ th is stud y, the functional roles of the cerebellum is very sim­

plified and the kinemati cal and dyna mical aspect of motor control is neglected, in 

order to rather focus the coordina tion of the acquisition and ret ri eval processes 

in execution . Therefore, several experimental results in t he 2x5 task mC'as ured by 

the performance time, one of measures used by Hikosaka and hi s co ll eagues, and 

other measures rel a ted to the motor control, are not examined in our simulat ion . 

This point will be di scussed later in the nex t chapter in rela tion to t he limitat ion s 
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Figure 6.4 

~x,+ l ~- a,+ 1 ~ 
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ser1~·ory · seq11ence sensory. motor motor- sequ~nce Motor 
frediction._ mapf!ing f'rt dictiOI! 
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Figure 6.4: Correspondence between neural circuitry and the proposed functions, along 

with the fun ct ional relat ionship between a sensory input (x,) and a motor output (a,) , 

which is implemented in t he model. The dorsolateral prefrontal circuit corresponds 

with the sensory-sequence prediction. The pre-SMA with the anterior stri atum cor-

responds with the sensory-motor mapping. The motor circuit co rresponds with the 

motor-sequen ce prediction. Note that the notations in this fi gure are different from the 

notations that are used la ter in this chapter to expla in an implemented a lgor it hm in 

order to keep the simplicity in th is figure. 
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Figure 6 .5 

Motor output 

Control the final motor output f 

Sensory-sequence 
prediction 

tt 

Sensory-motor 
mapping 

2 

~16,16 
ttt tt 

Motor-sequence 
prediction 

Figure 6.5: functional relationship among the sensory- motor mapping, the sensory-

sequence pred ict ion, and t he motor-sequence prediction , wh ich is implemented in the 

model. x 1 and a1 stands for a sensory input (state) and a motor output (act ion) at 

a time, t, respectively. Note that the notat ions in this figure a re different from the 

notations that a re used later in thi s chapter to expla in an implemented a lgorithm in 

order to keep the simp licity in this fi gure. 
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and future works of this study. 

We posited that both of the sensory-sequence prediction and motor-sequence pre­

d ict ion cont rib ute to the anticipat ion of an act ion for a coming input. The antici ­

pation by the sensory-sequence prediction will indirectly facilitate the learning of 

the motor-sequence prediction, if the anticipation by the sensory-sequence predic­

tion increases the number of successes of the sequences. In terms of choosing an 

act ion, t hus, t he nature of the sensory-sequence and motor-sequence predictions is 

the same as anticipating an act ion in contrast to the sensory- motor mapping that 

Teacts to a sensory input to give an action, and the fac il itation of the learning of the 

motor-sequence pred iction is only ind irectly re lated to the senso ry-sequence pr<'­

dict ion. Based on these considerat ions, for the sake of simplicity, the ant icipat ion 

of an action by the sensory-sequence prediction is only implicitly includ<'d in tlw 

a lgorithm given in t he next section by letting the learning of t he motor-sequ<'nce 

pred ict ion advance relatively fast. 

4. Integra tion of acquis it ion and ret rieval pro cesses in exec ution : Becau se 

t he ro le o f the sensory-sequence predict ion fo r ant icipat ing an act ion is implicitly 

included in t he moto r-sequence pred ict ion in the a lgorithm, the issue o f this inte­

gration is concerned on ly with the sensory-motor mapping and the motor-sequence 

prediction (Figure 6.5). 

T he foll owing sect ions exp la in a model implementing an a lgo rit hm, based on the 

aforementioned general framework, which is employed in the s imulation of the 2x.5 task 

in the next chapter. Parameter sett ings and initializations, used in the simulation, are 

explained in the next chapter, Section 7.2. 
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In the fo llowing sect ions, each hyperscl is denoted by h,. In t he 2x5 I ask, there arc 

five sets in a hyperset. A set in a hypcrset , h;, is de noted by ~· 7' . In a set , t here arc 

two illu minat ing buttons in the 4x4 mat ri x d isplay. lienee, there arc 4 x 4 = I 6 buttons 

in t he di splay. For the sa ke of simplicity, we regard a set , .r7' , as a co lumn vecto r of 

J 6 di mensions, each element of which corresponds wit h t he numbered button, and t hen 

each set can be represented as a vector of 16 d imensions wit h two J s, co rres ponding to 

the place of two illuminating buttons, an d other fourteen Os. An act ion taken in each set 

is to push e it her of two ill uminating buttons. When it is clear, we somet imes si mplify 

t he notation of a set , x~', as x, . 

6.4 .2 Se nsory-motor mapping 

T he fun ction of t he sensory-motor ma pping is modeled in the acto r-critic scheme, which 

is di scussed in Section 4.6. In the actor-crit ic scheme, t he cri t ic est im<ttes the value 

fu nct ion a nd t he actor est imates t he opt imal poli cy as t he ex plorat ion advances . In 

our scheme, t he actor corresponds to the senso ry-motor mapping, whereas the cri t ic 

correspond s to the circui t of the stria tum and SNc. 

As seen in t he d iscuss ion in Sect ion 4.5, let us ass ume that the est imated value 

fu nct ion by the cri t ic, wh ich is denoted by P , takes t he linear function of t he sta te, x,, 

wit h t he weight vector denoted by v . The fun ct ion of the cri t ic is, then, defi ned as 

16 

P(x,) = 2.>i(x,)i (6.1) 
j= l 

The temporal diffe rence(TD ) error as seen below 

will be used to update t he est imated va lue funct ion of t he cr it ic by t he method of 
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the steepest descent as follows: 

6.vj 
8P 

ex ft-
8vj 

ex 1\(x1)1, 

where 6.vj stands for change of Vj by this update. 

We assume the output of t he sensory-motor mapping, that is, the actor, is givcn by 

a probabili ty vector of 2 dimensions, given that the first clement of the vector stands 

for the probability of pushing the smaller numbcrcd button first among two illulllinaling 

buttons according to our numbered notation of 4x4 matrix display, and the sccond for 

the probability o f pushing the larger numbered button fir st (Figure 6.5). Let us denote 

the output of the sensory-motor mapping by a'. Since it is a lways true that the sum of 

the first and second elements of a' is equal to l , let us denote the first element of a' by 

Pa• · Then, 

a' = (Pa•, 1 - Pa•) (6.2) 

'vVe assume t hat two actors compete with each other and each of them supports to 

push either the smaller or larger numbered button in our notation, given the information 

of a current set (See Section 4.6). Let us denote these two actors by fa: and faJ and 

outputs of them by q, 1 and q,2 . Then, 

(6.3) 

(6.4) 

where x is the current set . For the sake of simpl icity, we defined fa~ (n = 1, 2) as 

the inner product of the vector of t he current set with the sixteen-d imensional weight 
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1·ector, termed as IVa" (n = 1. 2) . T hen, 

(6.5) 

qs2 (6.6) 

To give t he proba bili ty o f pus hing eit he r button based on outpu ts of two actors, q, , 

and q,2, we introduce t he sig moid funct ion , P, as follows: 

F (z ) = 
1 

1 + e:rp(-z)' 
(6.7) 

where z is a real number. 

Then, ]Ja• is defined as fo llows: 

Pa• = F(q, , - q.2) (6.8) 

6.4 .3 Se nsory-seque nce prediction 

To predict the coming sensory input, the sensory-sequence predict io n uses t he info rma-

t ion of the curre nt set a nd the set be fore the current . Let us denote the fun ct ion of the 

sensory-seque nce prediction and the output of t he sensory-sequence predict ion by Is a nd 

x, res pecti vely. Then, the sensory- sequence pred ict ion is defined as : 

(6.9) 

Is is a funct ion that has t he mapping: 16 x 16 --> 16. 

Because there will be used a few bil inear forms in t he proposed a lgo rithm in cl uding 

t he sensory-sequence predict ion , as seen below, let us define a bili near form with two 

vector inputs, p, q, for convenience, as follows : 

(6.10 ) 
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where T of pT represents t he transpose. 

Then we define the funct ion of tbe sensory-sequence prediction. j ., using the sigmoid 

function defined in the previous section, F, as fo llows: 

J,(x,x,_ 1 ) 

(j=1,2, ... , 16) (6. 11) 

where Cc, is 16 x 16 matrix, tak ing bili near with respect to x, and,.,_,. 

Learning of t h e sen sory -sequ en ce predi ct io n 

The sensory-sequence pred iction anticipates the coming sensory input (the coming set) 

with informat ion of t he current set and t he set before t he cur rent. T he learning of tlw 

sensory-sequence prediction occurs with respect to the coming set as the target, when 

the monkeys did not fai l to give a correct response to a current set, wh ich actually means 

that a monkey could advance to the com ing set. T he reinforcement signal is assumed 

to be provided by dopamine neurons. The learni ng procedure follows a typ ical learning 

method of art ific ial neural network , t hat is, the method of the steepest descent with 

respect to t he mean-squared error function [23]. 

fJ~((x,+di- (x,+i),)2 

fJ(Cc,)kt 
_ )fJ(x,+,)1 

ex ((xt+t)j- (xt+ t)j -fJ(C ) 
., C, kl 

fJF fJCc 
ex ((x,+di- (x,+,)J) fJCc, fJ(Cc,')k, 

ex ((xt+di- (x,+ 1)1)(xt+t),(1- (x,+t)i)(x,)k(x,_i)1, (6 .12) 

where ind ices k, l denote kth and lth element of the vectors and the kl element of 

the matr ix. 
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6.4.4 M otor-sequence prediction 

In the proposed algorithm, t he motor-sequence prediction anticipates an act ion to the 

coming sensory inputs( t he next set) based on the act ions in the previous set a nd th<' sd 

before the prev ious. There is, however, a technical problem to construct t he a lgorit hm 

in this model. The motor output in the a lgori thm is assumed to be 2 dimensional 

probabi lity vector that provides the probabilities of pushing e it her the sma ller numb<'red 

or the la rger numbered button. Because the original space of the motor output is 16 

dimension (there are 16 button s that is potentially to be pushed), the current format of 

the motor output is severe ly degenerated. This makes the learn ing of act ion sequcnccs 

much more difficult if the afo rement ioned 2 dimens ional format of motor output is a lso 

used as the input format of actions. This difTiculty is caused technically so t hat it is not 

worth in volving it in the simulation . We used. therefore, the 16 dimensional vccto r of 

act ions as inputs to the motor-sequence pred ict ion , instead o f the 2 dimensiona l vector 

which was used for the action as outputs. What are actually actions for the monkeys in 

each set in t he 2x5 task? Actions in each set a re to push the first button and then to 

push t he second button in a co rrect order. Thus, we introduce a· to represent act ions 

in each set by 16 dimension , given that the taken act ions in each set, the first button to 

push and then the second button to push. ln other words, a n action in a set, a·, is a 

16 dimensional vector with two 1s at the cor responding numbered elements for t he first 

and second buttons and other Os. 

The output o f the motor-sequence predict ion takes a form s imil ar to the sensory­

motor mapping. Let us denote the output of the motor-sequence pred ict ion by am, and 

the fir st element of the motor-sequence prediction by ]Jam· Then, 

(6.13) 
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~rhere ]iam satisfies 0 :<:;Pam :<:; ]. 

Simila r to the sensory-motor mapping, t he value of Pam is given by use of the sigmoid 

function, F, as follows: 

(6.14) 

where qm 1 and qm2 is defi ned as follows: 

(n = 1, 2) (6. 15) 

where GA., is 16 x 16 mat ri x. 

Learning of the motor-sequence prediction 

In brief, the definition of the motor-sequence prediction is 

where 

Pam= F(GA,(a;,a;_ ,) - GA,(a;,a;_ ,)), 

When a monkey did not fail to give a correct res ponse to a set , which actually means 

that a monkey could proceed to the next set , learning of the motor-sequen ce predict ion 

occurs with respect to a finall y taken action. Though the final action probabi li ty vector 

is given by a~, where n = 1 or n = 2, after actually taking an act ion , the probability 

to take an act ion should be set as 1. The method of the steepest descent, then, can be 

emp loyed, similar to the sensory-sequence prediction, as follows: 

Dt((l - a;:')z 

o(GA .. )kt 
Oam 

ex (1- a;:') o(GA:)k, 
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For n = 1, 

For n = 2, 

<X (l-am)~ 
1 fJ(G A, )kl 

<X (l-am)~ 1 fJ(G A, )kl 

<X (1 -a;") fJF' ~ 
fJGA, fJ(GA,)kl 

<X (1 - a;")p ... (l - Pa"')(a~)k(a~_ 1 )1 

Therefore, we can summari ze for bot h n = 1, 2, 

(6 .17) 

(6.18) 

(6. 19) 

6.4.5 Integration of sensory-motor mapping and motor-seque nce 

prediction 

As di scussed in Section 6.3, the integ rat ion of the sensory- motor mapping and motor-

sequence prediction is needed. The sensory-sequence prediction is postulated to control 

this integration . The degree to which the ant icipated coming sensory inpu ts by the 

sensory-sequence pred ict ion match with the actual coming sensory inpu ts is considered 

as the cont rol of the integration. This corresponds to the situat ion in the experiment 
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of the 2x5 task such that when the monkeys can antic ipate well the coming S<' nsory 

inputs, the output of the motor-sequence pred iction is more reliable and, in con trast , 

that when the coming sensory input is different from the anticipated one, the output of 

the motor-sequence prediction is less reliable. For this reason, the concept of the biasing 

is introduced. When the value of biasing is high , the monkeys have predicted 11'<'11 the 

coming sensory inputs and vise versa. Let us denote the \'aiue of biasing by br, g iven a 

set, x, and denote the fun ction of biasing by fb· Then, 

bx, = !b(x,, x,) (6 .20) 

where x, is the output of the sensory-sequence prediction. 

We denote the fina l output by the integration of the senso ry- motor mapping and 

motor-sequence prediction and the first element of the final output by af and Pal re-

spectively. Then , we define af and Pal as fo llows: 

a1 = (Pal, 1 - Pal) (6.2 1) 

with t he probabil ity bx 
(6.22) 

with the probab il ity 1 - bx 

To make the bias ing , bx,, concrete, we deli ne the function of the biasing, fb, as follows: 

(6 .23) 

(6 .24 ) 

In the above equation, by the definition of the sensory-sequence prediction discussed 

before, the fo llowing is true: 

(j= 1,2, .. . ,16) (6.2.5) 
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Therefore, t he following a lso holds: 

(6 .26) 

6.4.6 Special cases for the first and second sets in the model 

In the simula tion of the 2x5 task, the defini t ion s of the sensory-sequence predict ion a nd 

motor-sequence prediction a re introduced to refl ect t he fact t hat the monkeys g radu ­

ally develop the an t icipation of the coming sensory inpu ts a nd its co rrespondi ng moto r 

outputs over a long period and can do so well particularly for extensively expericnced 

hypersets (l earned hypersets), as shown in Miyas hi ta e t. a!. [45) . We first ass umed that 

an ant icipation of a set, x1+1 is based on t he information of any of sets and act ions a 

monkey prev iously experienced, {xi} i= 1 and {ai} i= r· The simples t one is, then, chosen 

such that a monkey uses the information of sensory inpu ts and motor outputs in the 

prev ious set and the set before the previous, as explained in the preceding sections. In 

thi s defini t ion , there is a problem for the first and second sets so tha t we need a specia l 

trea tment for these cases . First, the case of the second set is explained , and then, the 

case of the first set is explained. 

Special case for the second set 

If we take our definition of the sensory-sequence and motor-sequence predict ions li tera lly, 

the inputs to the sensory-sequence and motor-sequence predictions should be t he sensory 

inputs and motor ou t pu ts in the fir st set and the ones in t he set before the fi rst . The 

lat ter does not exist . To avoid thi s technically, it is ass umed th at both of two inpu ts to 

the sen sory-sequence and motor-sequence predictions a re the ones in the fir st set, t hat 

is, (xr,xr) and ( a~ , a~ ), respect ively. 
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Special case for the first set 

The sensory-sequence and motor-sequence predictions, as discussed so far, anticipate the 

coming sensory inputs and its motor outputs based on the sensory and motor information 

in the current set and the set before the current. The information within a hypersel , 

thus, is used for this anticipation. In other words, the monkeys de,·elop the contextual 

decision with respect to each hyperset, using information within a hypersel. In the 

currently chosen algorithm, the monkeys cannot use the sensory-sequence and motor­

sequence predict ions to anticipate the first set and its correspond ing action inn hypcrsct . 

It is, however, very likely that there may ex ist a lnrger context by which t he monkeys can 

tell that they are going to engage a different hyperset between blocks in the experiment. 

In this case, exper iences of hypersets, in particu lnr of lea rned hypcrsets, arc likely to 

influence its decision. Thus, it is plausible to assume to some degree that thcrc may 

exist the context even for the first set. 

There can be no deci sion made by the sensory-sequence prediction/motor-sequence 

prediction in the fir st set. Furthermore, we assume in our simulation t hat ,each lime 

between blocks, the weight mal1-ices of the senso1-y-motor mapping and the critic is ini­

tialized. Therefore, there is no learning effect on the select ion of actions by the sensory­

motor mapping in any set, including the first set, before it learns. The contextual effect 

for the first set that should be taken into account, therefore, is that the monkeys should 

develop preference to choose the actions in the first set, based on the past experience of 

the 2x5 task, particularly that of learned hypersets,. 

Recall that the output of the sensory-motor mapping is defined as 

a' (Pa •, 1 - Pa•) 

Pa• F(War · x- Wa! · x) , 
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where F is the sigmoid function. 

We assume that in the first set, there is the input of 16 dimensional vecto r, which is 

the first set , x 1 , denoted by x,'""' to tell a monkey to start the first set and that this 

information is taken into account in the above formula with the 16 dimensional weight 

vector , denoted by ~V,tart, as follows: 

(6.27) 

vVhen the choice of the action was correct, that is, when a monkey succeeds to proce<'d 

to the second set, the learning of W,tart occurs, similar to that of the motor-sequence 

prediction, as follows : 

when the action, a,, is taken 
(6.28) 

when the action, a 2 , is taken 

In this way, IV,,art can reflect the contextual effect on the action select ion in the first 

set, which is based on overall experiences in the 2x5 task. 
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Chapter 7 

SIMULATION OF THE 2X5 

TASK 

7.1 Introduction 

In this chapter, by use of the model proposed in the previous chapter, the simulation of 

t he 2x5 task is perfo rmed. The resu lts of the simulation is compared closely with the 

experimental data. of T-Iikosa.ka. laboratory, followed by the discuss ion. 

7.2 Simulation methods 

7.2 .1 Param et er settings 

Init ia lizat ion of weight p aram eters 

Generally speaking , the ini t ia l weights of functions make an influence on t he learning 

progress in reinforcement learning, t hough its influence is linked with t he magn itude of 

the learning parameters. Sometimes , it happens based on the combinat ion of the initial 
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weights and learning parameters that the learning becomes severely slow. The strategy 

taken for parameter tuning in thi s stud y is, therefore, that t he initial weights are, first, 

set prior to deciding learning parameters, according to the considerat ion the monkeys 

in t he 2x5 task as explained below. Then, learning parameters a re optimized with t hose 

initial weights, as seen in the next sect ion. 

All elements of the initial weights of the sensory-motor mapping, t he sensory-sequence 

predict ion , and the motor-sequence predictions a rc set as 0. This is because we assumed 

that the monkeys do not have any prejudice to push a ny button before ex periencing any 

of hypersets . All elements of the weight of the value function is set as 0.5. The monkeys 

exhibited the long-term and sequence-non select ive learning after experiencing t he 2x5 

task to some degree . 'vVe assumed that this was because the monkeys have got some 

expectation to receive the rewards by situat ing himself/ herse lf in the 2x5 task. So 0.5 

is chosen rather than 0.0. 

For the value function , rewards should be determined for each transition of states. 

Specifically speaking, in the 2x5 task, rewards should be dete rmined in cases such that 

the monkeys succeed to proceed from the lst to the 2nd (denoted by 1·!), from the 2nd 

to the 3rd (r2 ), from the 3rd to the 4th (r3 ), from the 4th to the 5th (r4 ) and succeed 

with the 5th set (r5 ), and, in addition , when the monkeys fail to proceed at each set 

(denoted by 1'J ). Let us denote the set of rewards, { 1' 1 , 1·2, 1'3, r•, r 5 , r 1} by r . 

In the experiment of the 2x5 task, the monkeys have received a sma ll amo un t of 

rewards between sets , though the amount would vary in each transition and, the amount 

is typically the highest when the monkeys succeed a trial. The reason that a small 

amount of rewards are given in each t ransition between sets is primarily because of 

the training. Without it , the monkeys would simply lose the interest in doing t he task 

part icularly when they do not have much experience with the task. 
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\Ve tested several r such as {0.2, 0.2, 0.2, 0.2, 0.2, -0.2}, {0.2, 0.2, 0.2, 0.2, 0.2, 0.0}, 

{0.0, 0.0, 0.0 , 0.0 , 1.0, - 0.2} , and {0.0 , 0.0, 0.0, 0.0, 1.0, 0.0}. In a certain range of the 

learn ing parameters of the critic and the sensory- motor mapping (the actor) , the learning 

converged a lmost at the same rate. With the learning parameters o f those in that range, 

r = {0.2, 0.2, 0. 2, 0.2, 0.2 , - 0.2} is used in the simulation reported in this study. 

1 should be decided to construct the temporal difference erro r. 1t is observed in the 

experiment that the monkeys receive a higher (o r at least the same) a mount of the reward 

as the monkeys advance in each tria l, an d that, as in the experimen ta l situation, the 

monkeys are interested to some degree in complet ing a trial after a certa in ex per ience of 

task. The latter fact is because t he monkeys keep doing a task for a. while even without 

the rewards, though they stop doing the ta.sk after a while if the rewards a re st ill absent. 

Therefore, it is better to keep 1 > 0, and we chose 1 = 0.5. 

Learning parameters 

In the proposed algorithm , t here are a multiple of learning processes such as for the 

value function , the sensory-motor mapping, the sensory-sequence prediction, a.nd the 

motor-sequence prediction. There, t hus, are a mult iple of learni ng parameters for each 

of t hese fun ct ions. Changi ng the magnitude of learning parameters makes an effect on 

the learning processes . 

First , wit hou t the sensory-sequence prediction and the moto r-sequence predi ct ion , 

we tested many different sets of the lea rning parameters of the value fun ct ion and the 

sensory-motor mapping. By compari ng the performance of these parameters, the learn ­

ing parameters of the value fun ct ion and t he sensory- motor mapping were then deter­

mined as near ly optimal, though it is imposs ible to determine t he precise optimal param­

eters in genera.! (See Appendix C for t he actual numbers). Secondly, with these learning 
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parameters of the va lue fun ction and t he sensory-motor mappi ng. many diffe rent sets 

of the learning parameters of t he sensory-sequence pred ict ion and t he motor-sequence 

pred iction were tested. Again, t hese learn ing parameters were determ ined as nea rl y 

opt imal (See Appendi x C fo r t he actual numbers) . 

7.2.2 Training of learned hypersets 

ln t he act ual experiment of the 2x5 tas k, from 14 up to 20 hypersets a re used to t ra in 

t he monkeys each day. Most o f hypersets are presented to t he monkeys only once, called 

new hype1·sets. Some of hyperscts a re extensively expe rienced a lmos t eve ry cl ay in a 

certain period and , then, the monkeys become very good at per forming t hese hypc rscts 

(See Sect ion 5.2.1 and Sect ion 5.3) . These hypersets a re called learned hype1·.scts afte r 

such extensive experiences a long with t he improve ment of the performance [25). The 

hypersets that a re used for such extensive experi ences and become the learned hy persets 

are chosen in advance in the experimental procedure of Hikosaka et a!. [25) . 

In the experiment of the 2x5 task, among 14 up to 20 hypersets per a cl ay, more 

t han half of t hem, at least the ha lf of them, a re learned hypersets. lt is, t herefo re, 

considered t ha t the acquired abili ty of performing the learned hypersets is not interfered 

much by the learning of new hypersets, though the in terference should ex ist at least. 

In addition , the weights of the sensory- motor mapping and t he criti c a re ini t ia li zed a t 

t he beginning of each block in the simula tion. For the sake of simpli city, t herefore, t he 

t raining procedure in t he simula tion is simplified as expla ined below . 

In the fo llowing sect ions, the pre-chosen hypersets t hat a re to become learned hy­

persets are called learned hypersets, even befo re t he t ra ining, in the expl anation of t he 

simulat ion for convenience. 10 learned hypersets a re generated by the procedu re that is 

explained in t he next section. T he model experi enced a ll of 10 learned hyperscts in a 
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randomized order each day. The training has been done for 30 days. After the train ­

ing, the weights of the sensory-sequence prediction and the motor-sequence prediction 

is preserved to test several conditions. 

7.2.3 Generation of hypersets 

10 hypersets that are used for the training of the proposed model, call ed learned hyper­

sets, are generated randomly with several constraints described below: 

1. It is assumed that there is no same set within a hyperset, following the experimental 

setting of the 2x5 task (Miyachi, personal commun icat ion). 

2. Because we use t he minimal model of the sensory-sequence and motor-sequence 

predi ct ion in that these predictions only use the information of the curren t set 

and the set before the current set to predict t he coming sensory in put and its 

corresponding action respect ively, it is assumed that among a ll hyperscts, there 

are no two same sets in the same order. 

3. Becau se the sensory-sequence and motor-sequence prediction can not be applied 

fully for the first set, as di scussed in Sect ion 6.4.6 , it is assumed that t here appears 

no same set as the fir st set among both of learned and new hyperscts. 

Fo llowing the same constraints, a few tens of other hypersets are also generated, 

called new hypersets, wh ich are used to exam ine the performance in several cond itions 

with the weights of the sensory-sequence and moto r-sequence predictions obtained after 

t he training. 

All of the learned hypersets a re shown in Figure 7.1. 
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Figure 7 .1 
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Figure 7.1: Hypersets are used in the simulat ion, a ll of which became the learned ones 

after 30 days t ra in ing. 
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7.3 Results 

7.3.1 Learning process 

As d iscussed in Sect ion 5.3 , Hikosaka et al. [25] reported three d ifferent IPvcls of learning 

as follows : 

1. short-term and sequence-selective: indicated by improved performance for a 

particu lar hyperset during a block of tl'ials. 

2. long-term and sequence-selective: indicated by improved perfo rmance for a 

particular hyperset acmss days. 

3. long-term and sequence-unselective: indicated by the improvement of perfor­

mance for new hypersets . 

In our simulation , among t hese three levels of learning , two levels, short-te rm and 

sequence-selective and long-term and sequence-selective lev els , a re exam ined. 

The learning parameters were optimized prior to the training in our simulat ion and, in 

addition , the cerebellar componen ts were also omitted in t he model used in t he sim­

ulation. It is, therefore, irrelevant to di scuss the level of long-term and sequence­

unselective learning using the present model of thi s stud y. 

1-Iikosaka et al. [25] have shown experimentally that the monkeys make more erro rs 

m the early stage of a block t han in the late stage and concluded that it indicates 

learning at the short-term and sequence-se lect ive level (Figure 7.2) . The same tendency 

is observed in the performance of the model. An example of the performance of the model 

for severa l (s imulated) days is shown in Figure 7.3 for a hyperset (No.9 in Figure 7.1; 

Refer to Appendix D to see the performance on other hype rsets.) for the lst day (top), 

the 3rd day (middle), and the 30th day (bottom). lt is clear that on each day, the 
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Figure 7.2 

(comple t ed sets) 

(completed sets) 

u_-=-1-=-o--=-2-:-0----!-3-:-o----:-4 -=-o--=-s-=-o----:-6 -=-o --=-7 -o -8 -o <trials) 

(completed sets) 

5 
4 
3 
2 
1 

___J_-,----'...---,-----:---,----,-- (tr:ialsl 
10 20 30 40 50 60 70 80 

Figure 7.2 : Experimental result of learn ing a hyperset across trials. The change in 

the number of completed sets (ordinate) across trials (abscissa) is compared among 

the 1st day (top), the 3rd day (middle) and the 30th day (bottom). Taken from 

Hikosaka et al. [25] 
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Figure 7 .3 
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Figure 7.3: Example of learn ing a hyperset (No .9) across trials by the model. The 

change in the number of completed sets (ordinate) across trials (abscissa) is compared 

among the 1st day (top), the 3rcl clay (micl cllc) and the 30th clay (bottom). 
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er rors are made more in the ea rly stage than in the later stage. This indicates t hat 

t he model exhibited the short-term and sequence-selective learn ing. Another example 

of the simulation is given in Figure 7.4 (No.2 hyperset; Refe r to Appendix D to see the 

performance on ot her hypersets). In Figure 7.4, the cumu lati ve number of successful 

t rial s is plotted against t he sequent ial number of trial s for a learned hypersct (No.7). 

Following T-Iikosaka et al. [25], the number of trial s criterion is set as I 0 success ful t rials, 

indicated by t he broken line in Figure 7.4. It can be observed in Figure 7.4 that the model 

took a greater number of trials in the first half 10 successful t rial s, which is t he number 

of tr ials (abscissa) at the crossing point with the hori zontal broken line in Pigure 7.4, 

than in the second half 10 successful trials, particularly for t he 1st and 3rd days. The 

learning at short-term and sequence-selective leve l is parti cul a rl y ev ident fo r the first 5 

days, co nfirmed as stat istically significant (p < 0.05) . Thi s resu lt coincides well wit h t he 

experimental result of 1-Iikosaka et al [25], as seen in Figure 7.5 , and indicates short-term 

and sequence-selective learning. Note that the number of tri a ls to reach criteri on (10 

successful trial s) for a block of each day will be used below to assess the learning process 

across days, as in the experimental study by 1-likosaka et al. [2.5]. 

In Figure 7.4, an improvement of the performance across days, that is, long-term 

and sequence-selective learning , can be also found by a leftward shift and steepen ing of 

the learning curve from the 1st day to the 30th day. In addition, Figure 7.6 shows t he 

number of trial s to complete a block (20 successful trials) across days and Figure 7.7 

shows the averaged number across days . It is obviou s th at the learn ing is more rapid 

in a fir st few days and, then , gradually asymptotes in both figures. This a lso indicates 

long-term and sequence-selective learning. Figure 7.8 shows the actual exper imental 

data on the time course of learning of t he monkeys, taken from Il ikosaka et a l. [2.5] with 

a s light modification. The performance of the model captures the characteristic of the 
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Figure 7.4 
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Figure 7.4: Example of learning a hyperset (No.2) across days by the model. The number 

of successful tr ia ls (o rdinate) is plotted against t he total number of trials (absc issa) for 

the 1st day, the 3rd day, the lOth day, and the 30th day from right to left. 
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Figure 7 .5 
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Figure 7.5: Experimental data on learning a hyperset across days. The number of 

successful tr ia ls (ordinate) is plotted against the total number of trials (abscissa) for the 

1st day, the 3rd day, the l Oth day, and the 30th day from right to left. Taken with a 

slight mod ificat ion from Hikosaka eta!. [25] . 
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Figure 7 .6 
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Figure 7.6: Learni ng of bypersets used in the training (learned hypersets) across 30 days . 

The number of t ri als to criterion (ordinate), that is, 10 successfu l trials, is piloted across 

days by the model (abscissa) for all 10 hypersets. 
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Figure 7.7 
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Figure 7. 7: A veragecllearning of hypersets used in the training (learned hypersets) across 

blocks over 30 clays . The mean number of trials to criterion (ordinate) for all 10 learned 

hypersets is plotted across clays by the model (abscissa). The bar at each data point 

represents t he standard error (SE). 
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Figure 7 .8 

(trials) 

70 
Number of trials to the criterion(lO successful trials) 

60 

40 

20 

10 20 30 
(days) 

F igure 7.8 : Experimental data on learning a hyperset across 30 days. The number of 

trials to criterion (10 successful trials) (ordinate) is plotted across days (abscissa) . Taken 

with a slight modification from Hikosaka et a!. [25] 
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experimental data that the number of trials rapid ly decrease in a first few days a nd , 

then, gradually asymptotes. There is a difference in the actual number of trials between 

the experimental data and that of the simulation. This difference by itself, however, is 

not the issue , because the learning parameters of the model arc opt imized prior to the 

simulation and , therefore, the model should be examined for the qualitative behavior. In 

addition, by the third level of the learning, that is, long-term and sequcncc-u nselect ive 

learni ng, the number of trials in the actual experiments tends to decrease, in particular 

for the first few blocks of each hypcrset , as the monkeys have more experiences with the 

2x5 task. 

In summary, it can be concluded from the above results that the model exhib ited 

learning not only at the short-term and the sequence-select ive level but also at long-te rm 

and sequence-selective level, qualitatively similar to the learning of the monkeys in the 

actual experiments by T-Iikosaka et a l. [25]. 

7.3.2 Context dependency of memory retrieval for learned 

hypersets 

I-Iikosaka et a!. [27] have compared the performance on t he learned hypersets with that 

of reversed hype1·sets, that is, the hyperset of which all sets are the same as the learned 

hypcrsets but the sequence of the sets is reversed , as di scussed in Section 5.3 (also sec 

Figure 5.2). The results measured by the number of trials to criterion (10 successful 

trials) were that (1) the performance of the reversed hypersets was significantl y worse 

than that of the learned hypersets and (2) the performance of the reversed hypersets 

was not significantly different from that of the new hypersets, whereas the performance 

of the learned hypersets was significantly better than that of both of the reversed and 

new hypersets. 
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Figure 7.9 
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Figure 7.9: Averaged number of trails to criterion (10 successful trials) for the learned 

hypersets and the reversed hypersets : the results from the monkeys taken from 

Hikosaka et al. [27] (above) and the resu lts from the model (below). 
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Figure 7.10 

(trials) Simulated result 

40 

20 

O L-----------~L~e-a~r-n~e~d----------~Re_v_e~r-s-e~d----------~N7e~w----------------

Figure 7.10: Averaged number of t rails to cr ite ri on (1 0 successful t ri a ls) of the model 

for t he learned hypersets (left ), t he reversed hypersets (m iddle), and the new hypersets 

(right) . T he bar a t each data po in t represents t he stan dard error (SE). 
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\\"e tested the reversed hypersets for all 10 learned hyperscts with the weights of 

the sensory-sequence prediction and motor-sequence prediction that were obtained after 

the training. The results showed the same character ist ics as the actual monkeys in 

Hikosaka eta!. [27] (Figure 7.9) 1 

By the measure of the number of trials to criterion (1 0 successful trials), the per­

formance of the model for the learned hypersets (the mean: 12.4 ) was stat ist ically sig­

nificantly better t han t hat for the reversed hypersets (the mean: 32.4, p < 0.001 ) and 

that for the new hypersets (the mean: 33 .8, p < 0.0005). The performan ce for the re­

versed hypersets was not significantly different from that for the new hypersets (p > 0.3) 

(Figure 7.10). 

The performance of the model, thus , coincides with that of the monkeys in conditions 

of the learned, reversed, and new hypersets. This result indicates that for the learned 

hypersets, the model chooses a motor output for each set, not depending upon the 

current sensory input (the cur rent set) but rather depending upon the sensory inputs 

before the current sensory input. In other words, the model ant icipates an action for 

the comi ng input and , in this way, the choice of actions by the model for the learned 

hypersets exhib ited the context dependency similar to the monkeys. 

7.3.3 Blockade of the sensory-motor mapping 

Miyachi eta!. [44] have shown that when the anterior st ri atum is blocked by mu scimol (a 

GABA agonist) injection, the performance of the monkeys in the 2x5 task is significantly 

worse for new hypersets than that of the cont rol condition (See Figure 7.11; also refer 

'Because Hikosaka et al. [27] provide the actual number of the experimental data only in the con­

ditions of the learned and reversed hypersets, not in that of the new hypersets, Figure 7.9 shows the 

comparison of only these conditions between experimental and simulated results. 
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to Sect ion 5.4 .1) . In cont rast, t he performance for l carn~d hypersets is not s ig ni~ ca ntly 

different between the control and blockade conditions. !Vliyashita et al. [46, 47] ha,·e 

shown that when the pre-S MA is blocked by muscimol inject ion, the performance is 

significantly worse for new hypersets than that of t he control condition, whereas it IS 

not significantl y different for the learned hypersets between the control condition and 

t he blockade condition (See Figure 7.1 2. Also refer to Sect ion 5.4.2.) 

As postulated in Section 6.3, t he pre-SMA fun ct ions implements the sensory-motor 

mapping in interaction with t he anterior st ri at um in our proposed scheme. T he ante rior 

st riatum is ass umed to contribu te to sensory-sequence prediction as part of the dorsolat­

eral prefrontal circu it as well. It is, ho weve r, questionable to what degree t he st riatum is 

in vo lved in sto ring information of t he sensory-seq uence and motor-seq uence predictions 

for t he learned hypersets, that is, extensively experienced sequences. As di scussed in 

Section 5.4.1 , even though the posterior puta men is generall y considered to be in vo lved 

in t he process of retrieval of information from the LTM, the degree of the in vo lvement 

is questioned for t he learned hypersets in the blockade experiment of d ifferent parts of 

the striatum. In addition, t he blockade of the middle-posterior caudate did not change 

the performance of either learned or new hypersets, even tho ugh that port ion of the 

caudate const it utes a part of the oculomotor circu it and would seem to be in volved in 

producing anticipatory saccades. Thus, after (over)training in the case of the learned 

hypersets in the 2x5 task, it is likely t hat information of bo th sensory-sequence and 

motor-pred ict ions may be transferred somewhere else to be stored. In the case of new 

hypersets, the sensory-sequence predict ion presumably plays a small role in execut ion. 

\Ne tested, t herefore, whether the performance of the model decreases in the same way 

as the monkeys' performance in the pre-SMA and t he anterior striatum blockade exper­

iment under the condi t ion in which not the sensory-sequence prediction but only the 
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Figure 7.11 

Blockade of the anterior striatum 
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--------· 
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Figure 7.11: Experimental data in condition s before and afte r blockade of the anterior 

striatum, taken from Miyachi et a l. [44] : the number of error trials to cr iter ion (10 

successful tr ials) (ordinate) for the cont ro l condition and the anterior striatum blockade 

condition (abscissa) for the new hypersets (solid li ne) and the learned hyperscts (broken 

line) . 
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Figure 7.12 
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Figu re 7.12: Experimental data in conditions before and after the blockade of the pre­

SMA , taken from Miyashita et al. [46, 47]: the number of error trials to criterion (10 

successful trials) (ordinate) between the control condit ion and the preSMA blockade 

condition (abscissa) for the new hypersets (solid line) and the learned hypersets (broken 

line). 
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sensory-motor mapping is di stu rbed. 

T he blockade of an area by muscimol injection decreases overall neural activity in 

that a rea. In t he simulation , t hi s effect can be in terpreted as a decrease in the output 

gain of each unit. Recall that the definition of the sigmoid fun ction (equation 6.7) is: 

F(z)=--1-~ 
1 +exp(-z) 

To achieve the effect di scussed above as decreasing t he output gain, the factor , call ed 

temperatm·e, T, is introduced to the sigmoid fun ct ion as follows2 : 

1 
F( z T) -----

' - 1 + exp(-tz) 
(7. I) 

Figure 7.13 shows the relat ionship of the output with the input at different temper-

atures. It is clear t hat, as the temperature increases, the curve of t he sigmoid function 

becomes less steep and, consequently, the output gain decreases for t he same magnitude 

of the inpu t or becomes closer to 0.5. Recall that the probability of pushing the smaller 

numbered but ton dec ided by the sensory-motor mapping is given in Equation (6.8), us-

ing the sigmoid function. To understand the effect of the temperature on thi s equation , 

suppose the extreme such that the output is always 0.5, whatever the input is. This 

means that the probability of pushing either the smaller numbered button or t he larger 

numbered button is always 0.5, that is, equally random , whatever set is given as inpu t. 

Thus, increas ing the temperature results in decreasing the ability to classi fy inputs a nd 

consequent ly to produce the corresponding outputs. In t hi s way, it is poss ible to disturb 

the funct ion of the sensory-motor mapping. 

Wi th five different temperatures (T = 1, 3, 5, 10, 20) , we tested the performance of 

the learned hypersets and new hypersets, using the weights of t he sensory-sequence 

2T he name of this factor, temperature, originates from the fact that there ex ists to some degree an 

analogy between some aspects of neural networks and statist ical mec han ics. (24] 
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Figure 7.13 
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F igure 7.13: Sigmoid function at di fferent temperatures . As the temperature (T ) in -

creases, the cur ve of the sigmoid function becomes less steep. From top to bot tom, 

T = 1, T = 3, T = 5, T = 10, and T = 20 . 
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Figure 7.14 
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Figure 7.14: Averaged number of error t rial s to criterion (10 successful trial s) (ordi nate) 

obtained by the simulation of the model for the new hypersets (so lid line) and learned 

hypersets (broken li ne) at different temperatures (abscissa) . From left to right, T = I, 

T = 3, T = 5, T = 10, and T = 20. The error bar at each data point stands for t he 

standard error (SE) . 
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prediction and motor-sequence prediction obtained after the training. Note that the 

condition of the temperature, T = 1, is the cont rol condi tion . The results arc shown 

in Figure 7.14. As the temperature increases, that is, as the out put gain decreases, 

the performance for the new hyperscts gets worse. In contrast, the performance fo r the 

learned hypersets does not differ greatly between d iffe rent temperatures. ln compa ri son 

to the control condit ion (T = 1), the difference in performance for t he new hype rsct.s is 

stat istically significantly worse even with the temperature, T = 3 (p < 0.05) a nd T = 5 

(p < 0.005). It is, therefore, clear that decreasing t he capability of t he sensory-motor 

mapping results in interference with the performance not for the learned hyperscts but 

for the new hypersets. This result captures the experimental results for the blockade of 

the anterior st riatum and the pre-SMA. 

7.3 .4 G e nera lization of skills for learned hy p ersets 

It often happens that parts of well-acquired skill s can be app lied to learn other new 

skills, as stated in Section 3.1. In th is wa.y, the acquired skill s ca.n be genera li zed . We 

asked whether t he model can make use of the acqu ired ability of learned hypersets to 

do new hypersets with a. specific cond ition explained below. 

We generated the hypersets, called th e modified-learned hypersets, from the learned 

hypersets by the following procedures. First, for each learned hypersct, one set is ran­

domly chosen from the 2nd to the 4th sets. Secondly, the chosen set is changed to a. 

new set d ifferent from the original set while obeying the const ra ints of the procedure to 

generate hypersets di scussed in Section 7.2.3. Thus, each of t he modified- learned hyper­

sets has the same four sets in the same order as one of t he learned hypersets but t he 

other one set is different from that of the learned hyperset. In the above modification 

procedure, the 1st set is not changed. It is because we need a special consideration on 
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the context for the 1st set, as discussed in Section 6.4.6. 

Figure 7.15 shows t he compar ison of the performance among the karncd hypcrsets, 

the modified-learned hyperscts, and the new hyperscts . The average numbers of er ror 

tri a ls to cr iterion (10 successful trial s) arc plotted . The performance of I he lcarnrd 

hypcrsets (mean 2.4 ) is signifi cantly better than that of the modified-learnf'd hypcrscls 

(mean 14.7, p < 0.005) and of t he new hyperscts (23.8, p < 0.001) . The performance 

of t he modified-learned hypersets is sign ifi cant ly better than that o f the new hypcrsets 

(p < 0.05). 

An exam ple of learning the modified-learned hypersets is seen in lcigurr 7.16. In 

thi s example, the 3rd set is changed from t he learned hypersct (No.2) (Sec Figure 7. 16 

top left and bottom left). Comparing the change in the number of the compkted sets 

between t he modified-learned hype rset ( Figure 7.16, top ri ght) and thr lea rned hypersct 

(Figu re 7. 16, bottom right) , it is clear that the model made most of mista kes at t he 

3rd , 4th a nd 5th sets for the modified-learned hyperset . It is because the sensory- motor 

mapping decides an action for the 3rd set by use of the information of the 3rd set 

as sensory inputs and the sensory-sequence pred ict ion and motor-sequence prediction 

anticipate the coming sensory inputs and cor res pond ing act ions fo r the 4th and 5t h set, 

pa rti a lly based on the info rmation of the 3rd set. For other sets, the acquired skill s o f 

the lea rned hyperset (No.2) can be app lied so that t here arc only a few mistakes for 

these sets . It can be concluded, t hus, t hat the model exhibits the capabil ity o f ap ply ing 

parts of t he acquired sk ill s (learned hypersets) to learning new skill s (modified-learned 

hypersets) . This condition has not been tested yet experimentall y in the 2x.5 task. It 

will be in terest ing to see how the pe rformance of the monkeys resembles or differspu 

from that of t he model. 
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Figure 7.15 
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Figure 7.15: Averaged number of error trials to criterion (l O successfu l t ri a ls) of the 

model for the learned hypersets( left ), the modified-learned hypersets (middle), and the 

new hypersets (righ t) . The error bar at each data poin t stan ds fo r t he stan dard error 

(SE) . 
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Figure 7 .16 

Figure 7.16: Comparison of the performance for the modified-learned hypersct (top, left) 

and the learned hyperset (No . 2) (bottom, left). The change in the number of completed 

sets (ordinate) across t ri a ls (abscissa) is shown for the mod ified-learned hyperset (top, 

right ) and for the learned hyperset (bottom, right) . 
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7.4 Discussion 

The basal gang lia has been known as in volved in t he acquisit ion and execution of se­

quential movements by experimental studies and empi ri cal studirs of bra in ksion s and 

diseases. Because of the st riking characteri st ic of the basal gangli a such that it rece ives 

from almost the entire cortex and projects back primarily to the frontal co rtex , it is 

conceived that there are several loops linking the basal ganglia and t he cerebral corti ­

cal areas (the basal ganglia-thalamocortical loops) a nd that the basal gang li a may be 

involved in coordinating fun ctions among these loops. ll is not, however, known much 

about how such a coord ina tion can be ac hieved from a computat ion al view point. This 

study addressed this com putat iona l question in terms of sequent ia l decision making. 

Several computat ional models have been proposed for t he function s of the basal 

ganglia and related cortical a reas, in some cases, with the function s of the cerebellum. 

These models are based on the framework of reinforcement learn ing (RL), inspired by 

the experimental results on the profile of neural activities of dopamine (DA ) neurons. 

These models shed light on some aspects of their functions as reviewed in Sect ion 4.7. 

Though some models are interest ing because they address the question of linking the 

basal ganglia, the cerebellum , a nd motor cort ical a reas, none of them has yet addressed 

the question of the relat ionship of the loops of the basal ganglia in te rms of sequential 

decision mak ing. None of these researches has done the close examination of the per­

formance of their models in comparison with the actual behavioral data, particularly in 

terms of sequential deci sion making. 

With their experimental findings in the 2x5 task, Hikosaka et a l. (26) posited that 

there a re schematically two function a l components for functions of the basal gangl ia and 

related cort ical areas: temporary storage and permanent storage. The former is assu med 

primarily to play a role in the acquisition at the early stage of experiencing the sequences 
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(the learn ing mechanism in their term), whereas the latter is assumed to play a role in 

execut ion in the late stage (the memory mechanism in their term). Their scheme fils to 

some degree with their experimental findings, but it has not been computationally clea r 

how their two functional components are integrated in both of the ea rly and late stages 

nor how the learned result in the learning mechanism can be transferred to the memory 

mechanism. 

The computational elements of functions of the loops of the basal gang li a in terms 

of sequential deci sion making (sequential movements) and a general framework on the 

acq uisition and retrieval processes in execut ion arc proposed in C hapl<'r 6. A model 

implementing an algorithm based on the general framework is also given in Chapte r 6. 

ll is postu lated in this study that ( L) the presupplcmentary motor a rea (prc-S MA) 

and anterior striatum function to associate sensory input with its optimal output in the 

sequences (the sensory- motor mapping); (2) t he dorsolateral prefrontal circuit, in partic­

ular, the dorsolateral prefronta l cortex and the a nterior striatum , fun ct ions to le<trn the 

sensory-dependent sequences (the sensory-sequence prediction ); (3) the motor circu it , in 

particular, the supplementary motor area (SMA) and the posterior st ri atum (the poste­

rior putamen), functions to learn the motor-dependent sequences (the motor-sequence 

prediction). The sensory-sequence prediction is postulated to play a role in the inte­

grat ion of acquisition and retri eval processes in execution. As discussed in Sect ion 6.1, 

the term, 'context ', has been somewhat a bu sed in the experimental and computational 

li teratures as discussed before. ln cont rast, the term, 'context', is exp li citly treated 1n 

the model by use of the sensory-sequence prediction and the concept of biasing. 

rt is shown by the simulation of the model based on the above hypotheses that the 

qual itative behavior of the model coi ncides remarkably well with that of the actual mon­

keys in several aspects : two leve ls of the learning, that is, the short-term and sequence-
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select ive, and long-term and sequence-select ive le,-els, and the context dependency, It 

is also shown that when the sensory- motor mapping is blocked in the simulatio n, the 

performance of the model resembles well that of the actual monkeys in blockade of the 

pre-S MA or the anterior st riatum. As the output gain of t he sensory-motor mapping 

is more di st urbed, the performance of the new hy persets gets worse, whereas th at of 

the learned hypersets almost remains the same, It can be concluded, th us, that the 

proposed computational elements of function s in the basa l ganglia and related cort ical 

areas capture well t hose of the actual monkeys, 

In addition , the performance of the model is tested under condition of the hy persets 

that have the same four set as one of the learned hypersets but the other set is differ<"nt 

from the learned one (the modified-learned hypersets) . The model exhibits the capability 

of applying parts of the acquired sequences of the learned hyperset to learning the 

modified-learned hypersets . Because this cond ition is not tes ted yet experimentally, it 

should be interesting to examine how the performance of the actual monkeys would 

resemble or differ from t hat of the model. 

The performance of the model exhibited interesting characterist ics of skill s at the 

behavior level , which are di scussed in Section 3.1: a multiple t ime scales of the improve­

ment of skills , context dependency, generalization of skill s because of their hierarchical 

nature, continuity of the development of ski ll s between acquisition and retrieval in exe­

cution, and a type of learning, that is, reinforcement learning. Thus, the model captures 

well the important nature of skill s. 

In t hi s stud y, the functions of the basal ganglia and re lated cort ical areas are in­

vestigated in terms of skills, one of the long-term memory (LTM ) systems in one clas­

sification as d iscussed in the beginning of Chapter 3. It is not , however, asked what 

function among investigated ones belong to the LTM or not , because of t he difficul ty of 
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cor respondence between behav ior and unde rl ying neura l mechanism in class ifications of 

t he LTJ\1. Rather, t hi s st udy invest igated how t he funct ions o f the basal gang li a loops 

can contribute to the acquisit ion and ret rieval processes in execut ion of skill s. The 

motor-sequence predi ction is pres umed to be pa rt icula rly im po rtant for the LT f\1 , as 

the findings of the 2x5 task measured by t he performa nce t ime ind ica tes . The sensory­

sequence prediction may contribu te to informat ion in t he L T f\1 as well. Experimental 

results in the 2x5 task indica tes t hat skill s as complex as that of t he 2x5 tas k acquired by 

these fun ctions can be trans ferred further to somew here else to be storcd as info rmat ion 

in the LTM. In ves tiga t ing thi s t ra nsfer is one of the fu t ure works. 

For t he simulation in thi s cha pter , there are made severa l simplifi cations for the 

proposed model in order to pinpoint the core of the proposed computat iona l c lements . 

Limi tat ions caused by such simplifi cations will be di scussed in the nex t chapter, a long 

wi t h the fu t ure works. 



Chapter 8 

CONCLUSION 

8.1 Findings 

In t hi s thesis, the first study in Chapter 2 focused on t he dynamical characte ri st ic of 

t he short-term memory (STM), or work ing memory, in sequent ia l decision making. The 

second study from Chapter 3 to Chapter 7 focused on t he funct ions of the basal gangli a 

and related cort ical areas for a particu la r sequent ia l decision mak ing, or skill s t hat are 

class ifi ed as one of the long-term memories (LTM) in one cl ass ifi cat ion, in relation to 

reinforcement learn ing. 

In Chapter 2, because neural acti vities are required for both of loading a nd maintain­

ing (storing) in working memory, it is asked what type of dynamics of neural act ivities 

is sui table for the sequentia l decis ion making. Several researchers had proposed that t he 

fixed point attractors enables working memory to robustly sto re informat ion as neural 

activities . However , cons iderat ions were not given much in the case of the sequential 

decision making. It is postulated in thi s study t hat the long-te rm maintenance and quick 

tran sition of neural activities is a crucial requirement in sequent ial decision mak ing. We 

a nalyzed, fir st, the dynamics of a a single sigmoidal fun ct ion t hat has a self-connect ion 
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and bias, and. then. the dynamics of a recurrent network that has the uniform sel f­

connect ion s and bias. It was mathematically shown that the specific parameter region, 

that is, the near sadd le- node bifurcation region , can realize the hypothesized crucial 

dynamics for sequential decision making. The plausibility of thi s dynamics for sequen­

tial decision making is exam ined in the simu lat ion of foraging ta sks. It was shown by 

evolutionary programming that the near sadd le-node bifurcation dynamics emerged to 

improve the performance in tasks as the environment became severe. lienee. it can be 

concluded that the proposed dynamics in this study, the near saddle-node bifurcation 

dynamics , can be a cand idate of the dynamics in working memory for sequential deci sion 

making, in part icular in severe non-stationary environments. 

Chapter 3, 4, 5, 6, and 7 a re devoted to stu dy the fun ct ions of the basa l ganglia­

thalamocortical loops in sequent ia l decision making. C hapter 3, 4, and 5 provided 

t he reviews and discussions of the basal ganglia, the framework of re inforcement learn­

ing, a nd the behavioral and neurophysiological findings in rel ation to the basal ganglia 

loops, respectively. Based on the in vestigation of these chapters, it is postulated in 

Chapter 6 that the dorsolateral prefrontal circu it and the motor circu it gradually ac­

quire the sensory-dependent and motor-depen dent sequences resp ·ctively, that is, the 

sensory-sequence and motor-sequence predictions, wh ile the pres upplementary motor 

area (pre-SMA) and the anterior st riatum map the sensory inputs with the motor out­

puts (the sensory-motor mapping). The dopamine (DA) neurons in the substantial nigra 

pars compacta (SNc) are assumed to play a role of providing reinforcement signals for 

a ll these three learning processes . A general framework on the acquisition and ret rieval 

processes in execution is, then , provided. Consequently, a model implementing an al­

gorithm based on this framework is given in order to examine t he hypothesis in close 

com par ision of the se ri a l button press task (the 2x5 task) developed by ll ikosaka and 
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his colleagues. 

In Chapter 7, the performance of the model in simulations is compared with se1·era l 

exper imental findings in the task. It is shown that the qualitati1·c behaviors of the 

model replicate these of the monkeys in the experiments in several aspects. It is a lso 

shown that when the part of the model that should correspond to th<' pre-Sl\ IA and 

the anterior st riatum in the monkeys arc disturbed, the change in tlw performance 

of the model resembles the change in the performance of the monkeys. These results 

may be considered to support our hypothesis of function s in the basa l ganglia a nd 

related cortical areas both at the behavior and neurophysiological levels. The model 

exhib ited the capabi li ty of app lying the acqu ired information to new tasks (modified­

learned hypersets), whose condition is not yet tested in the actual experiment of the 2x5 

task. The comparison of the simulated results with the experimental results is a future 

work and may contribute to the direct ion of future experiments. 

8.2 Limitations and future works 

Limitations and future works of the stud ies in th is thesis can be listed as follows: 

1. Multiple working m e m ory system s? cen t ra l controlle r ? 

It has been argued in the psychological literature that there may be several fun c­

tional components in working memory. Baddeley [5], for example, proposed 'cen­

tral executive' that controls the select ion and manipulat ion of information to sto re 

in working memory and 's lave system' that is a sto rage of information in working 

memory. In t he present in vest igat ion of working memory, these two fun ct ions, 

manipu lating and sto ring in formation, are treated as in one system, t hough t he 

funct ion of manipulation is simplified as only selecting informat ion to sto re. We 
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im·estigate how these two functions, which are opposing demands to each other 

from a view of dynamical systems, can be realized in a single system. It is shown 

t hat even without such a. centra l contro ller, t he proposed dynamics of this st ud y 

serves well as working memory in non -stat ionary environment. As the tasks be­

come more complicated , a. contro lle r may be needed. To address th is question is 

one of future works. 

In t his study, it is not asked whether there is on ly one single working memory sys­

tem or there a re multiple work ing memory systems, for example, visuospa.tia.l one 

and phonological one, each of which ca n be co nsidered as onc of 's lave systems' [5]. 

As t he sensory information becomes more ri ch and various, multiple working mem­

ory systems may be needed other than one single sys tem. In addit ion, it is oftcn 

t he case that biological systems need to communicate to each other in sequent ia l 

decision making, for example, a group of people for hunting. It is interest ing to see 

what dynamics would emerge in neu ral network of t he creatu res under cond it ions 

of multimodal sensory informat ion and/or other creatures. A future wo rk should 

address t his quest ion. 

2. Refinement of the model of functions of the basal ganglia loops 

In the second study of function s of t he basal ganglia loops in sequenti a l decis ion 

making, the fun ct ion of the oculomotor circuit is neglected in the simul ation of 

the 2x5 task , even though t he fun ct ional relat ionsh ip between t he dorsolateral pre­

frontal and oculomotor circuits were brieOy di scussed. It is important to integrate 

the function s of oculomotor circui t wit h the cu rrently proposed scheme. There 

are several experimental findings in the 2x5 task regarding the ocu lomotor circu it 

such as ant icipatory saccade. The performance of the integrated model should 
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be compared with those t>xperimental findings. In the simulation of t lw :2x5 task, 

the representations of the sensory in puts and motor outputs w!'rc much simplified. 

Using more reali st ic representations, for example, reprcscntat ions including t he 

spati a l relationship shou ld be needed for futher in vest igat ion. Such representa­

tions would help to develop more refi ned model that includes more of the motor 

cont rol aspects , which is di scussed below. 

3. Motor con tro l aspects: integrat ion of functions of the basa l ganglia and 

the cerebellum 

The aspects of motor contro l is much simplified in the current simulation of this 

thesis. Consequently, the function s of the cerebellum and ot her motor cort ical 

a reas such as the primary motor area are not considered in detail. It is importan t to 

synthes ize t he proposed cu rrent scheme of fun ctions of the basal gang li a and related 

cort ical areas with t hose portions of the brain. In this aspect, it would be a good 

starting point to invest igate a way of in-cooperating t he proposed scheme with the 

hypothes is proposed by llouk a nd Wise [30,31,80] at the theoretical level and with 

that proposed by Doya [14,15] at the compu tat ional leve l. In experimenta l findings 

of the 2x5 task , there a re a lread y available several experimental findin gs for the 

aspects of motor control , for example, results meas ured by the performance time 

and results obtained after the blockade of the dentate nucleus in the cerebell um [37, 

38]. 

It will be very in terest ing to examine furth er whet her the extens ion of the current 

scheme including t he motor cont rol aspects would fit well wit h those experimental 

res ults. This extens ion for t he aspects of motor control can cont ribu te to a better 

understanding of functions of the brain, includ ing the basal gangli a, the cerebellum , 
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and other cortical a reas. in sequentia l decision making, particularly in seq uential 

movements. 

4. Integration with other neural mechanisms 

Though the second study of the thesi s focused fun ct ions of thC' basal gangl ia and 

related cortical areas in relation to skill s, other neura l mC'chanisms, cor respondi ng 

to other types of the LT 1, can not be completely neglected even in the lea rning 

of skill s. For example, t he declarative memory system, one of the LTi\1 , may 

contribute to the acquisition of seq uences particularly in the ea rl y stage. The 

extension of the current scheme wit h other neural mechani sms or other types of 

LTM is another direct ion of future work. 

Several researchers in machine learning (and reinforcement learning) have in vest i­

gated the synthes is of a kind of gradual , iterati ve-based, and stati stical learning 

with a kind of more quick and declarat ive learning. For example, Thrun (76] in ves­

tigated to integrate reinforcement learning (RL) with explanat ion-based learn ing, 

which is more rule-based a nd , thus , similar to the declarat ive memory to some 

degree. This kind of synthes is of the proposed scheme with other memory sys tems 

should be in terest ing from a computational viewpoin t. 

From a neuroscientifi c viewpoint , several port ions of the bra in can be in terest ing for 

such synthes is. Amygdala and hippocam pus are of pa rti cu la r inte rest. Amygdala 

is known as related to associat ing sensory inputs with emot ions and can be a lso 

a good candidate to provide primary reinforcement signals to dopamine neurons. 

The hippocampus has been considered as associating sensory inpu ts (9] a nd as 

being in vo lved in the format ion of the declara ti ve memory, in contrast to the 

striatum t hat is considered as more grad ual and in cremental in learning (3-5] . The 
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sy nt hes is of t he cu rre nt scheme on the fun ct ions of tlw basa l ga nglia ll'ilh these 

portions of the brain will be a good future work. 
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Appendix A 

Range of initial parameters 

The range of initial parameters were set as follows: [5.0, 10.0] for a , [-8 .0, -2.0] [orb, 

[-2 .0 , 0.50] [or c1 , c2 , c3 , [- 1.5, 0.50] for c4 , c5 , [1.0 , 6.0] for d, [- 1.0, 0.0] for e, [3.0, 6.0] 

for j 1 , ]3 , [5 .0, 9.0] fo r f 2 , J.. 
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Appendix B 

Abbreviation 

C D = caudate nucleus 

DA = dopamine neuron 

D LP F = dorsolateral prefron tal cortex 

F'EF = fron tal eye fi eld 

frvl Rl = fun ct ional Magnet ic Resona nce Imaging 

GP = globus pallidus 

GPi = the internal segment of globus pallid us 

GPe =the external segment of globus pallidus 

LTM = long-term memory 

MJ = primary lvlotor Cortex 

PMC = premotor Cortex 

pre-SMA = presupplementary Motor Cortex 

Pt =putamen 

rCMA = rostral cingulate motor a rea 

RL = reinforcement learning 

S1 = primary somatosensory cortex 
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SC = superior colliculus 

S8F = supplementary eye field 

SMA = supplementary Motor Cortex 

SN = substantia nigra 

SNc = substant ia nigra pars compacta 

SNr =substantia nigra pars rcticulata 

ST I = subthalamic nuclues 

STM = short-term memory 
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Appendix C 

Parameters for the model of the 

basal ganglia and related cortical 

areas 

Learning parameters 

learning parameters for the criti c(value function), the sensory-motor mapping, the 

sensory-sequence prediction , the motor-sequence prediction, and the specia l weight for 

the first set are set as 0.4 , 0.8, 0.75,0.5, 0.05 , respect ively. 
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Appendix D 

Complementary figures for the 

simulation of the 2x5 task 

From t he next page, complementary figures are shown for t he simul ation of t he 2x5 tas k. 

Figures a re given for a ll 10 learned hypersets, each of which is numbered on the top. 

Sec Figure 7.1 for the information of numbered learned hyperscts . See the caption of 

Figure 7.3 and of Figure 7.4 fo r the informat ion of t he format of fi gures. 
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