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Compressible magnetohydrodynamic Kelvin–Helmholtz instability
with vortex pairing in the two-dimensional transverse configuration

Akira Miuraa)

Department of Earth and Planetary Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

~Received 10 February 1997; accepted 6 May 1997!

For a two-dimensional~2-D! transverse configuration, where the plasma motion occurs in a 2-D
plane transverse to the magnetic field, the nonlinear evolution of the magnetohydrodynamic~MHD!
Kelvin–Helmholtz ~K–H! instability is investigated by means of a 2-D MHD simulation for a
convective fast magnetosonic Mach number 0.35, which is defined for the total jump of the flow
velocity. The compressibility and the nonzero baroclinic vector are shown to violate the
conservation of the enstrophy for the 2-D MHD transverse configuration and for the 2-D fluid
motion. After the nonlinear saturation of the linearly fastest growing vortices, the vortices continue
to coalesce until no more vortex pairing is allowed, owing to a finite length of the simulation system.
The plasma inside the vortex is rarefied strongly by the fast magnetosonic rarefaction and each
vortex is associated with an eddy current, which is inertia current in nature. The plasma flow
velocity is enhanced at the periphery of the vortex and the net momentum transport and shear
relaxation by the instability occur as long as the vortex pairing continues. Anomalous viscosity by
the K–H instability increases with the vortex pairing and its increase is due to the growth of
subharmonic modes. ©1997 American Institute of Physics.@S1070-664X~97!01708-4#
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I. INTRODUCTION

The Kelvin–Helmholtz~K–H! instability1–5 is driven by
the velocity shear in fluids and plasmas and is importan
understanding a variety of phenomena involving veloci
sheared flow in space plasmas,6–39 astrophysical
plasmas,40–50 laboratory plasmas,51–60 and, of course, fluid
dynamics.61–73 A notable prototype example in space pla
mas is the K–H instability excited at the magnetopause
tween the flowing solar wind plasma and the stationary m
netospheric plasma.6–15,17,18,20–24,26–36,38,39 The K–H
instability at the magnetopause has been suggested to b
sponsible for driving a plasma circulation inside the mag
toshere and for a tailward stretching of geomagnetic fi
lines17,21,24,28,35on the hypothesis that the nonlinear evo
tion of the magnetopause K–H instability provides
viscous-like drag74 or a perpendicular momentum transpo
at the magnetopause. Although the contribution of the K
instability to the plasma circulation in the magnetosph
appears to be smaller than that of the reconnection at
magnetopause,75 it is important to know quantitatively the
contribution of the K–H instability to the plasma circulatio
in the magnetosphere for a complete understanding of
dynamics of the solar wind–magnetosphere interaction. S
an understanding of the contribution of the K–H instabil
to the magnetospheric plasma circulation may also be im
tant in understanding the plasma dynamics occurring at
boundary between the magnetosphere of the neutron sta
the surrounding accretion disk.40–43,45 Observational evi-
dence supporting the occurrence of the K–H instability at
terrestrial and planetary magnetopauses has b
accumulated.76–84 Complete understanding of the nonline
evolution of magnetohydrodynamic~MHD! waves excited
by the K–H instability at the velocity shear in plasmas is a
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important in understanding the origin of MHD waves o
served in the solar wind.18,85,86In fusion plasmas, complete
understanding of theE3B shear stabilization and/or destab
lization of turbulence at the plasma boundary is also imp
tant in improving plasma confinement in tokamak87 and stel-
larator plasmas. It is important to note here that in space
astrophysical plasmas the total velocity jump across the
locity shear layer has large sonic and Alfve´nic Mach
numbers.88 Therefore, it is essentially necessary in su
cases to take into account the compressibility of the plasm

The study of the K–H instability has a long history
hydrodynamics. It is well known that in the two-dimension
~2-D! inviscid, incompressible hydrodynamics there are t
invariants of fluid motion, i.e., the total kinetic energy an
the enstrophy~mean square vorticity!. The existence of these
two invariants requires that in the 2-D inviscid, incompres
ible hydrodynamics the energy cascades to the long wa
length or the vortex with the similarly signed vorticity mu
tend to group together.89–93 This is analogous to the Bose
Einstein condensation of an ideal Boson gas in momen
space below the Bose–Einstein condensation temperartu91

Indeed, hydrodynamical experiments have shown that at
late stage of the K–H instability, two vortical structure
combine to form a single, larger vortical structure.63,65 Such
vortex pairing during the nonlinear evolution of the K–
instability has been reproduced by numerical experiment
the 2-D hydrodynamics67,71 and 2-D magnetohydro
dynamics.23,26,31

The primary objective of the present paper is to inves
gate by means of a 2-D MHD simulation the basic relatio
ship among vortex development including vortex pairin
rarefaction, and compression due to the fast magnetos
wave, flow enhancement, eddy current, and momen
transport caused by the K–H instability in a compressi
plasma, or more specifically, in a 2-D transverse configu
tion, where the plasma motion occurs in a plane transvers
28715/$10.00 © 1997 American Institute of Physics
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Down
the magnetic field. The present study enables us to ex
our understanding of the vortex pairing in incompressi
fluids61–69,89–93and plasmas23,26,31 to the 2-D compressible
MHD and hydrodynamic regimes. Although there are seve
2-D compressible simulations of the K–H instability in th
fluid dynamics,71–73 which show vortex pairing, the detaile
relationship between the fluid rarefaction, vortex develo
ment, and flow enhancement has not been clarified in th
studies. The previous 2-D MHD simulations of the K–
instability,23,26,31some of which have been done for differe
configurations including a flow parallel to the magnetic fie
have not addressed the above basic issues. Furthermo
spite of the intensive study of the K–H instability and t
vortex pairing in fluids and plasmas, the relationship betw
the vortex pairing and the momentum transport by the R
nolds stress associated with the instability have not b
fully investigated. Therefore, in order to evaluate quant
tively the momentum transport by the K–H instability wi
vortex pairing, the Reynolds stress by the K–H instability
measured and an anomalous viscosity by the instabilit
defined and measured in the present simulation.

It is well known that the 2-D inviscid, incompressib
Navier–Stokes equation is identical to the 2-D guiding c
ter description of the Vlasov equation forki50 and k'r i

!1, whereki and k' are the wave numbers parallel an
perpendicular to the magnetic field andr i is the ion Larmor
radius.94 For compressible plasmas in the 2-D transve
configuration (ki50), only the magnetic field transverse
the plasma motion is perturbed and the electric curren
induced in the plane transverse to the magnetic field. Th
fore, theJ3B force in the equation of motion arises and t
K–H instability in the 2-D transverse configuration17,18,21is
slightly different from the 2-D hydrodynamical K–H insta
bility. That is, the fast magnetosonic mode is excited18 by the
K–H instability in the 2-D compressible, transverse config
ration, whereas in the 2-D compressible hydrodynamic c
the sound wave is excited by the K–H instability. In oth
words, not only the plasma pressure but also the magn
pressure are perturbed and responsible for the plasma m
in the 2-D compressible MHD transverse configuration.

It should be noted that at the magnetopause the mom
tum transport by the ion–ion Coulomb collision is neglegib
small21 and the transport of momentum from solar wind
magnetosphere, except that due to the magnetopause r
nection, is essentially due to the anomalous transpo95

When the thickness of the velocity shear layer at the mag
topause is smaller than or comparable to the ion Larm
radius, the anomalous transport of momentum is due to
croscopic interactions.96–100 But for the velocity shear laye
with thickness larger than the ion Larmor radius, the anom
lous momentum transport is essentially due to macrosc
interactions such as the MHD K–H instability. In the MH
K–H instability, both the Reynolds stress and the Maxw
stress are responsible for the anomalous transport of mom
tum and energy.17,21 In the 2-D transverse configuration
however, the Maxwell stress vanishes and only the Reyn
stress caused by the K–H instability is responsible for
momentum transport.17,21,24,28,101–103As far as the transpor
of momentum and energy across the magnetopause, w
2872 Phys. Plasmas, Vol. 4, No. 8, August 1997
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the thickness of the velocity shear layer is larger than the
Larmor radius, except near the subsolar region~where the
thickness of the velocity shear layer is at times compara
to the ion Larmor radius!, is concerned, it seems that a k
netic viscosity by microscopic interactions determines o
ultimate dissipation of vorticity and energy at small scal
but the transport of momentum and energy itself is gover
by macroscopic processes such as the K–H instability. T
is analogous to the ordinary hydrodynamics, wherein the
nematic viscosity determines only the ultimate dissipation
vorticity and energy at small scales, but the transport of m
mentum itself is essentially due to turbulent eddies. In h
drodynamics such anomalous viscosity induced by eddie
called eddy viscosity,104 molar viscosity,104 or turbulent
viscosity,2 although the nature of such postulated viscos
has never been clarified and quantified, except that the
tulated viscosity is due to eddies. Although in a microsco
picture the transport of momentum and energy should
described by kinetic equations, calculation and combinat
of the first-order velocity moments of the collisionless Bo
zman equations for ions and electrons yield the momen
conservation equation or the equation of motion in the o
fluid approximation.105 Therefore, it is not necessary to us
kinetic equations for describing the momentum transport
the K–H instability, at least when the thickness of the velo
ity shear layer is larger than the ion Larmor radius. That
in such a macroscale the fluid description of the perpend
lar momentum transport in terms of the momentum flux
the fluid Reynolds stress is validated. This is because
locality condition of the plasma for the fluid description
well maintained in the transverse direction by the gyration
particles with a gyroradius smaller than the thickness of
velocity shear layer. Indeed, several kine
simulations22,27,29,32,36of the K–H instability, assuming the
velocity shear thickness equal to only a few ion Larmor rad
show that the main features of the MHD K–H instabilit
including the momentum transport, which have been fou
by the MHD simulations,17,21are reproduced in those kineti
simulations.

The outline of the present paper is as follows: A 2
transverse configuration for the present 2-D MHD simulat
and basic equations used in the present simulation are
scribed and the difference between the basic equations in
2-D MHD transverse configuration and the 2-D hydrod
namic equations is discussed by reducing the basic M
equations for the 2-D transverse configuration to a fo
similar to the hydrodynamic equation in Sec. II. The enst
phy ~mean square vorticity! for the 2-D transverse MHD
configuration is calculated and the conservation law of
enstrophy for the compressible 2-D plasma and fluid is
rived in Sec. III. The linear dispersion of the K–H instabili
for the 2-D MHD transverse configuration is presented
the hyperbolic tangent velocity shear profile in Sec. I
Simulation results for the 2-D MHD transverse configurati
are shown in Sec. V. Discussions and a summary are g
in Sec. VI.
Akira Miura
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II. BASIC EQUATIONS AND 2-D MHD TRANSVERSE
CONFIGURATION

The conservation equations of the ideal MHD, whi
describe the K–H instability, are

]r

]t
52“–~rv!, ~1!

]

]t
~rv!52“–S rvv2

1

m0
BBD2“S p1

B2

2m0
D , ~2!

]B

]t
5“3~v3B!, ~3!

]e

]t
52“–F S e1p1

B2

2m0
D v2

1

m0
~B–v!BG . ~4!

Here,r, v, B, and p are the plasma mass density, bulk v
locity of the plasma, magnetic field, and plasma press
ande is the energy density defined by

e5
1

2
rv21

B2

2m0
1

p

G21
, ~5!

whereG is the ratio of specific heats.
Figure 1 shows the flow velocity and the magnetic fie

in a 2-D MHD transverse configuration, which is used in t
following 2-D MHD simulation. A uniform background
magnetic fieldB0 is transverse to the simulation plane~the
x-y plane!. The background plasma flow is in they direction
and the flow velocityvy is inhomogeneous~sheared! in the
x direction. The ideal MHD equations in the 2-D transver
configuration can be reduced simply to

dr

dt
52r~“–v!, ~6!

r
dv

dt
52“pt , ~7!

dB

dt
52B~“–v!, ~8!

FIG. 1. The flow velocity~solid vectors! and the magnetic field in the 2-D
MHD transverse configuration.
Phys. Plasmas, Vol. 4, No. 8, August 1997
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d

dt
~ptr

2G!5
B2

2m0
~G22!r2G~“–v!, ~9!

wherept is the total pressure defined bypt5p1B2/2m0 ,p
being the plasma pressure, andd/dt is the total derivative
equal to]/]t1v–“. In deriving ~6!–~9! it is only assumed
that B is transverse to the simulation plane~i.e., B has the
only z component! andB is not necessarily uniform. Note in
~7! that the line bending term~B–“!B in the J3B force in
the equation of motion vanishes in the 2-D MHD transve
configuration. SinceB has the onlyz componentBz , Eqs.
~6! and ~8! yield

d

dt
lnS r

Bz
D50. ~10!

The equation~9! can be derived from~6!, ~8!, and the adia-
batic equation. When the plasma is incompressible~“–v50!,
the magnetic field and the density are not perturbed in
2-D MHD transverse configuration and the plasma beha
like an incompressible fluid. A linear analysis for this co
figuration, assuming incompressibility, is given b
Chandrasekhar1 for a discontinuous velocity shear profil
~the thickness of the velocity shear layer is zero!. When
G52, the variablesr, v, andpt are governed by a closed s
of Eqs. ~6!, ~7!, and ~9!, and the magnetic field does no
appear explicitly in the closed equations. Therefore, as fa
the evolution ofr, v, and pt in the 2-D MHD transverse
configuration is concerned, the plasma behaves like a
adiabatic pseudofluid with the gas pressure replaced by
total pressurept . Therefore, in such a case, the dynamics
the K–H instability is not essentially different from the 2-
hydrodynamic K–H instability. When the plasma is com
pressible andGÞ2, however,Bz appears explicitly in the
governing equations@Eq. ~9!#, and there is essentially a dif
ference between the K–H instability in the 2-D MHD tran
verse configuration and the K–H instability in the 2-D h
drodynamic configuration. In the 2-D MHD transvers
configuration used in the following simulation it is assum
that the initial magnetic fieldB0 in the positivez direction is
uniform, ]/]z50, the initial densityr0 is uniform, and the
ratio of specific heatsG is equal to5

3. Sincer/Bz is initially
uniform in the following 2-D MHD transverse configuration
r/Bz is an invariant of the plasma motion according to~10!,
that is,r andBz remain proportional. Although the simula
tion results only forG55

3 are presented in Sec. V, it is foun
that the results of the MHD simulation are rather insensit
to the choice ofG, as described in detail in Sec. VI.

III. ENSTROPHY AND INVERSE ENERGY CASCADE

In the 2-D inviscid, incompressible hydrodynamic flow
the total kinetic energy and the enstrophy~mean square vor-
ticity! are two invariants of the fluid motion.89–93 Since the
conservation law of the enstrophy for the compressi
plasma~or, more generally, fluid! is not trivial and its deri-
vation from the equation of motion cannot be found els
where, the conservation law of the enstrophy for the 2
compressible plasma in the 2-D MHD transverse configu
tion or the 2-D compressible fluid is derived in the followin

The equation~7! can be written as
2873Akira Miura
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rS ]v

]t
1~v–“ !vD52“pt . ~11!

Taking the curl of this equation, we obtain

]

]t
~“3v!1“3@~v–“ !v#5

“r3“pt

r2 , ~12!

where the vector product on the right-hand side~rhs!
“r3“pt /r2 is the baroclinic vector. Using the vector ide
tity,

~v–“ !v5 1
2“~v2!2v3~“3v!, ~13!

we obtain from~12!,

]

]t
~“3v!2“3@v3~“3v!#5

“r3“pt

r2 . ~14!

By expanding the second term on the left-hand side~lhs!, we
obtain

]

]t
~“3v!1~“3v!~“–v!2@~“3v!•“#v

1~v–“ !~“3v!5
“r3“pt

r2 . ~15!

In the 2-D transverse configuration, wherev5vx(x,y) x̂
1vy(x,y) ŷ and]/]z50, we have

@~“3v!–“#v50. ~16!

Therefore,~15! can be reduced to

]

]t
~“3v!1~“3v!~“–v!1~v–“ !~“3v!5

“r3“pt

r2 .

~17!

Taking the scalar product of~17! and“3v and using the
vector identities

~“3v!2~“–v!5“•@v~“3v!2#2~v–“ !~“3v!2, ~18!

and

~“3v!–@~v–“ !~“3v!#5 1
2~v–“ !~“3v!2, ~19!

we obtain from~17!,

]

]t
~“3v!21“–@v~“3v!2#1~“3v!2~“–v!

52~“3v!•
~“r3“pt!

r2 . ~20!

Let us take a volumeV, which consists of a region with
2xb<x<xb , 0<y<Ly , and 0<z<1.0, and a surface A
surrounding the volumeV. By taking the volume integral o
~20!, we obtain

]

]t E E E
V
dV~“3v!21E E E

V
dV “•@v~“3v!2#

1E E E
V
dV~“3v!2~“–v!

5E E E
V
dV 2~“3v!–

~“r3“pt!

r2 . ~21!
2874 Phys. Plasmas, Vol. 4, No. 8, August 1997
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Using Gauss’ theorem, the second term on the lhs can
replaced by a surface integral, i.e.,

E E E
V
dV “•@v~“3v!2#5E E

A
dS–@v~“3v!2#.

~22!

As is assumed in the following 2-D MHD simulation, let u
assume thatv is periodic in they direction, i.e.,v(x,y50)
5v(x,y5Ly), vx50 at boundaries in thex direction atx
56xb , andv is independent ofz. Then,~22! is identically
zero. Therefore, we obtain from~21!,

]

]t E E
C
dx dy~“3v!252E E

C
dx dy~“3v!2~“–v!

1E E
C
dx dy2~“3v!–

~“r3“pt!

r2 , ~23!

where the lhs is proportional to the time derivative of t
enstrophy~mean square vorticity! andC represents a region
in the x-y plane with 2xb<x<xb and 0<y<Ly . This
gives the conservation law of the enstrophy inC. In the
present 2-D transverse configuration, wherer0 and B0 are
uniform, r andBz remain proportional. Therefore, the bar
clinic vector“r3“pt /r2 is equal to“r3“p/r2, which is
the same as the baroclinic vector in the hydrodynamic ca
If the plasma~fluid! is uniform initially and incompressible
~“–v50!, the densityr is not perturbed@see~6!# and“r
50. Therefore, we recover from~23! that in the 2-D uni-
form, incompressible plasma~fluid! the enstrophy is an in-
variant of the plasma~fluid! motion. In a more general case
where either the plasma~fluid! is compressible or the baro
clinic vector is nonzero, the enstrophy is not an invariant
the 2-D plasma~fluid! motion.

In the 2-D transverse configuration~B'v!, taking the
volume integral of the energy conservation equation~4! and
using the boundary condition lead to

]

]t E E
C
dx dyS 1

2
rv21

B2

2m0
1

p

G21D50. ~24!

This is the conservation law of the total energy in theC
region. In the uniform, incompressible case~G→`!, Bz andr
are not perturbed andr5r0 . Therefore,

]

]t E E
C
dx dy v250. ~25!

That is, the total kinetic energy or the mean square velo
is an invariant. The existence of the two invariants, i.e.,
total kinetic energy and the enstrophy, in the 2-D inco
pressible hydrodynamic case with a uniform density, and
the present 2-D incompressible MHD transverse case le
to a consequence89–93 that the bulk of the energy concen
trates in the small wave numbers~inverse energy cascade!; in
other words, the fluid elements with similarly signed vorti
ity must tend to group together. The inverse energy casc
or the tendency for the bulk of energy to concentrate in
Akira Miura
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small wave numbers is verified for a 2-D MHD transver
configuration, where the compressibility is small and“r is
parallel to“pt in the following simulation. In general, for a
compressible 2-D MHD transverse configuration or 2
fluid, the conservation equations are~23!, ~24!, and~10! ~for
MHD only!, and the inverse energy cascade cannot
proven mathematically.

IV. LINEAR DISPERSION

In the following, 2-D MHD simulations are performed i
thex-y plane perpendicular to the magnetic field. The init
flow velocity v0y

has a shear profile,

v0y
~x!5V0/2@12tanh~x/a!#, ~26!

and the other equilibrium quantities (B0 ,p0 ,r0) are uniform.
We impose a boundary condition such that there is no m
flow (vx50) across the boundaries atx56xb5620a, and
all quantities are periodic in they direction.17,21 A linear
eigenmode analysis for the plasma configuration with a
locity shear profile~26! has been performed to obtain th
linear growth rate as a function of the wave number a
Mach numbers. Since the detailed calculation of the lin
dispersion of the MHD K–H instability for this configuratio
is reported elsewhere,18 only a brief summary of the result
is given here.

Since the real frequency of the K–H instability is due
the Doppler shift due to the mean bulk flow, the dispers
relation givesv r5kyV0/2, wherev r is the real part of the
angular frequency. Figure 2 shows normalized growth ra
g of the K–H instability for the 2-D transverse configuratio
shown in Fig. 1 andkz50 as a function of the normalize

FIG. 2. The normalized linear growth rate versus the normalized w
number. HereM f is the magnetosonic Mach number defined byM f

5V0 /ACS
21VA

2 . The dashed line is the growth rate for the discontinuo
velocity profile in the incompressible case.
Phys. Plasmas, Vol. 4, No. 8, August 1997
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s

wave number (2kya). The growth rate is normalized b
V0/2a, and the wave number is normalized by (2a)21. Note
that only the fast magnetosonic mode is destabilized in
2-D transverse configuration of the K–H instability. Ther
fore, the appropriate Mach number for the background fl
is the fast magnetosonic Mach number defined byM f

5V0 /ACS
21VA

2 , where VA5B0 /(m0r0)1/2 and CS

5(Gp0 /r0)1/2. Notice that an important Mach numbe
which characterizes the intrinsic compressibility of the flo
is the convective Mach number70 M f c5M f /2, which is the
Mach number in a frame of reference comoving with t
phase velocity of the unstable K–H wave. The dashed
represents the growth rateg5kyV0/2 obtained analytically
for the incompressible transverse configuration with a z
thickness of the velocity shear layer.1 Clearly, this result is
valid only when the thickness of the velocity shear lay
2a is much smaller than the wavelength in they direction,
i.e., 2kya!1.0. The uppermost solid curve (M f

215`) rep-
resents the growth rate obtained numerically in the inco
pressible case. This curve was taken from a numerical ca
lation of Michalke.106 The growth rate for the incompressib
case reaches a maximum for 2kya;0.9 and then decrease
with increasing 2kya, reaching zero for 2kya52.0. As the
Mach numberM f increases from zero~and hence the com
pressibility becomes important!, the normalized growth rate
is reduced considerably. In addition, the wave number of
fastest growing mode,kFGM, and the critical wave numbe
beyond which the mode is completely stabilized,kycr , are
shifted toward smaller values with increasingM f . This fig-
ure shows how the compressibility stabilizes the K–H ins
bility with an increasingM f . The fastest growing mode al
ways appears at the wave number satisfying 0.5,2kya
,1.0. Consequently, the fastest growing mode has a wa
length of the order of 2p32a;4p32a, which is charac-
terized by the finite thickness of the velocity shear lay
(2a).

V. SIMULATION RESULTS

Physical parameters used in the present simulation
the sound Mach numberMS5V0 /CS51.0 and the Alfve´n
Mach numberMA5V0 /VA51.0. The fast mode Mach num
ber M f is M f50.71 and the convective fast magnetoson
Mach number isM f c50.35. We use a timeT normalized by
2a/V0 . Figure 2 shows that for this configuration, the li
early fastest growing mode occurs at 2kya;0.8, with its
growth rate equal to 0.17V0/2a. Therefore, the wavelength
of the linearly fastest growing modelFGM is equal to
15.7a. The lengthLy of the simulation system in they di-
rection is chosen equal to 4•lFGM562.8a. Since the presen
simulation is a MHD simulation, it is necessary to give e
plicitly an initial seed perturbation atT50. In the present
simulation a superposition of the approximate linear eig
function of the fastest growing mode in the incompressi
case13,101and its subharmonic modes is added to the equi
rium at T50 as an initial seed perturbation. The peak a
plitude of the initial flow velocity perturbation is 0.005V0 .
The explicit form of the seed perturbation is as follows:

e

2875Akira Miura
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vx~x,y!5 (
n51,3

2kn@2f r~x!sin~kny!2f i~x!cos~kny!#,

~27!

vy~x,y!52 (
n51,3

2S df r~x!

dx
cos~kny!

2
df i~x!

dx
sin~kny! D , ~28!

where

kn5kFGM/2n215~0.8/2a!/2n21 ~n51,2,3!, ~29!

f r~x!5C0 expS 2
x2

a2D cosFp2 sinS px

2a D G , ~30!

f i~x!5C0 expS 2
x2

a2D sinFp2 s sinS px

2a D G . ~31!

HereC0 is the arbitrary constant to determine the amplitu
of the initial perturbation ands determines the inclination o
the vortex with respect to the mean flow, which determin
whether the vortex is growing or decaying.101 That is,s521
for the growing vortex ands51 for the decaying vortex. In
solving the conservation equations of the ideal MHD~1!–
~4!, the two-step Lax–Wendroff scheme is used and
number of grids is equal to 2003200.

Figure 3 shows temporal evolution of the peak of thex
component of the flow velocityuvxumax normalized byV0 as
a function of time. In the initial stage fromT50 to T;20,
the peak of uvxumax increases exponentially with a linea
growth rate;0.19V0/2a, which is comparable to the pre
dicted linear growth rate of the fastest growing mode. T
means that the initial seed perturbation specified by~27!–
~31! is very close to the exact unstable eigenfunction. AT
;30, the peak velocity levels off and afterT;30 the peak
amplitude is susceptible to a small but finite-amplitude os
lation associated with a vortex nutation.61,101,103It is seen in
this figure that the peak amplitude increases slightly w
time until T;200 afterT;30. This slight increase of the
peak amplitude is due to the growth of the subharmo
modes.

FIG. 3. Temporal evolution of the peak of thex component of the flow
velocity uvxumax normalized byV0 as a function of the normalized time.
2876 Phys. Plasmas, Vol. 4, No. 8, August 1997
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Figure 4 shows temporal evolution of the Fourier amp
tudes of the fastest growing mode~fundamental mode! and
its subharmonics of the total kinetic energy in the simulat
region, which is integrated alongx. The four modes have the
wave numbersk equal to kFGM/4, kFGM/2, 3kFGM/4, and
kFGM, wherekFGM is the wave number of the fastest growin
mode. Each mode amplitude is normalized by 2ap0 . At T
50 three modes withk5kFGM ~fundamental!, kFGM/2 ~first
subharmonic!, and kFGM/4 ~second subharmonic! have the
same amplitudes as a consequence of the specification o
initial seed perturbation by~27! and~28!. Those three modes
grow linearly in their linear phases. The growth rates
those modes were calculated from their linear slopes in
initial growth phases. The calculated growth rates
0.19V0/2a, 0.104V0 /2a, 0.0532V0/2a for the fundamental
~solid curve!, the first subharmonic~dot–dashed curve!, and
the second subharmonic~triple dot–dashed curve!, respec-
tively. Figure 2 shows that growth rates obtained theor
cally for these three modes are 0.17V0/2a, 0.12V0/2a, and
0.065V0/2a, respectively. Although the observed grow
rates for subharmonics are slightly smaller than the predic
linear growth rates, there is good agreement between
predicted linear growth rates and the linear growth rates
tained from the simulation run. The fundamental mode,
first subharmonic, and the second subharmonic reach t
peak amplitudes atT;30, T;55, andT;150, respectively.
Although the fundamental mode has the largest growth r
the second subharmonic reaches the largest amplitude du
the simulation run. It should be noted that a clear fini
amplitude amplitude oscillation is seen for the second s
harmonic fromT5150 to T5220, although it disappear
after T;230, owing to the phase mixing among its high
harmonics. This amplitude oscillation of the second subh
monic is similar in nature to the amplitude oscillation of th
fundamental mode, which is found when the growth of su
harmonics is inhibited.101,103

Figure 5 shows contour lines of thez component of the

FIG. 4. Temporal evolution of the amplitudes of the fundamental mode w
k5kFGM ~solid curve!, the first subharmonic withk5kFGM/2 ~dot–dashed
curve!, the second subharmonic withk5kFGM/4 ~triple dot–dashed curve!,
and the Fourier mode withk53kFGM/4 ~dotted curve! of the total kinetic
energy integrated alongx. All amplitudes are normalized by 2ap0 .
Akira Miura
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vorticity Vz at eight different times fromT510 toT580. In
the 2-D transverse configuration,Vz is calculated from the
frozen-in law as

Vz5 ẑ–~“3v!52
1

B
“–E1

m0

B
~J–v'!, ~32!

whereE is the electric field satisfying the frozen-in law an
J is the electric current density. This shows that in the 2
incompressible plasma, whereB is not perturbed andJ is
zero, the vorticity is proportional to the space charge dens
In all panels the contour lines are plotted for negative v
ticity ~counterclockwise rotation!. In the early phase an ini
tial straight vorticity layer~velocity shear layer! undulates
(T510) and it develops into a vortex train atT530. Four
vortices appear as predicted by the linear theory. Note
the fundamental Fourier mode of the total kinetic ene
reaches its peak amplitude atT530 ~see Fig. 4!. At T540,
two neighboring vortices begin to rotate around each oth
At T550, two neighboring vortices begin to merge shor
beforeT;55, when the first subharmonic reaches its pe
amplitude~see Fig. 4!. Each vortex rotates counterclockwis
around each other and atT580 two vortices are formed ou
of the initial four vortices as a consequence of the vor
pairing ~coalescence of vortices!. This process of the vortex
pairing is very similar to that reported in th
hydrodynamics.63,65,71–73

Figure 6 shows contour lines of the vorticityVz at six
different times fromT5130 to 230. AtT5130 again, the
two neighboring vortices begin to rotate counterclockw
around each other and the two vortices begin to mergeT
5150, when the second subharmonic reaches its peak am
tude~see Fig. 4!. The vorticity is stretched in they direction

FIG. 5. Contour lines of thez component of the vorticity at eight differen
times fromT510 to T580. In all panels the contour lines are plotted f
negative vorticity~counterclockwise rotation!.
Phys. Plasmas, Vol. 4, No. 8, August 1997
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at T5170 andT5210. After a few rotations around eac
other the two vortices coalesce to form a single large vor
at T5230.

Figure 7 shows, from the top, contour lines of pressu
flow velocity vectors, and current vectors atT540. The
pressure is normalized by the initial uniform pressurep0 and
the velocity vectors are normalized byV0 . By T540, the
linearly fastest growing mode has developed fully into t
nonlinear stage and four pairs of a low-pressure~rarefied!
region and a high-pressure~compressed! region line up near
x;0. Figure 7~a! shows that at the bottom of the low
pressure region~denoted by L!, the pressure become
0.776p0 and at the peak of the high-pressure region~denoted
by H!, the peak pressure reaches 1.14p0 . The rarefied region
has a much steeper pressure gradient than in the compre
region. TheBz component is reduced in the low-pressu
region as well, and it is enhanced in the high-pressure reg
because only the fast magnetosonic mode with the chang
the magnetic pressure in phase with the thermal pressu
excited by the instability in the 2-D MHD transvers
configuration.18 Figure 7~b! shows that four vortices rotating
counterclockwise have developed nearx50 by T540. Note
that the vortical flow appears only in the rarefied region
Fig. 7~a!. Figure 7~c! shows that the eddy current flowin
counterclockwise is associated with each vortex in Fig. 7~b!.
The electric currentJ' is calculated from the equation o
motion as

J'5r
B

B2 3
dv

dt
1

B

B2 3“p. ~33!

Since the direction ofB3“p is clockwise in the rarefied
region and thus opposite to the direction of the obser
eddy current, the eddy current observed in the rarefied
gion, associated with each flow vortex, must be the ine
current@the first term on the rhs of~33!# in nature. In other
words, the centrifugal force by the counterclockwise ro
tion, which is responsible for expelling the plasma outwa

FIG. 6. Contour lines of thez component of the vorticity at six differen
times fromT5130 toT5230. In all panels the contour lines are plotted f
negative vorticity~counterclockwise rotation!.
2877Akira Miura
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from inside the vortex, is balanced by the sum of theJ3B
force and the2“p force directed to the center of the vortex

Figure 8 shows, from the top, contour lines of pressu
flow velocity vectors, and current vectors atT5230. Figure
8~a! shows that a pair of low- and high-pressure regions d
velops after the second vortex pairing atT5230. In the low-
pressure region the minimum pressure~denoted byL! be-
comes as low as 0.481p0 , owing to a strong fast rarefaction
~rarefaction due to the fast magnetosonic mode excited
the instability!, and in the high-pressure region the peak
the pressure~denoted byH! reaches 1.14p0 . As is true at
T540 @Fig. 7~a!#, the pressure gradient is much stronger
the rarefied region than in the compressed region. In
rarefied region a large vortex rotating counterclockwise d
velops @Fig. 8~b!#. Figure 8~b! also shows that in the com-
pressed region between vortices, the large flow moment
in the y direction in x,0 is transported tox.0. As is de-
scribed in more detail in Figs. 10 and 11, it is seen in F
7~b! and Fig. 8~b! that the flow velocity is enhanced or the
plasma is accelerated at the periphery of the vortex inx,0
at T540 and 230. The flow enhancement is stronger atT
5230 than atT540. Figure 8~c! shows that a large isolated

FIG. 7. ~a! Contour lines of pressure,~b! flow velocity vectors, and~c!
current vectors atT540. HereH and L in ~a! represent the positions of
maximum and minimum pressures, respectively. In~a! the maximum and
minimum values of the pressure normalized byp0 are shown by numbers.
2878 Phys. Plasmas, Vol. 4, No. 8, August 1997
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eddy current due to the inertia current develops in the lo
pressure region in association with the large isolated vort
flow.

Figure 9~a! shows contour lines of the plasma density
T5230, which is normalized by the initial densityr0 . The
equation~10! shows that in the 2-D transverse configurati
the plasma densityr andBz remain proportional. Therefore
this panel also shows contour lines ofBz normalized by the
initial uniform magnetic fieldB0 at T5230. At the bottom of
the low-density region~denoted byL! the density becomes
as low as 0.64r0 , wherer0 is the initial uniform density, and
at the peak of the high-density region~denoted byH!, the
peak density reaches 1.07r0 . The low-density region located
at the flow vortex has a much steeper density gradient tha
the high-density region. Figure 9~b! shows contour lines of
the plasma temperatureTp normalized by the initial uniform
temperatureT0 at T5230. At the bottom of the low-
temperature region~denoted byL! the temperature become
0.747T0 . At the peak of the high-temperature region~de-
noted byH!, the peak temperature reaches 1.07T0 . There-
fore, the adiabatic cooling of the plasma occurs inside
flow vortex and the adiabatic heating occurs between vo
ces. The low-temperature region located at the isolated fl

FIG. 8. ~a! Contour lines of pressure,~b! flow velocity vectors, and~c!
current vectors atT5230. HereH and L in ~a! represent the positions o
maximum and minimum pressures, respectively. In~a! the maximum and
minimum values of the pressure normalized byp0 are shown by numbers.
Akira Miura
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vortex has a much steeper temperature gradient than in
high-temperature region.

Figure 10~a! shows profiles in they direction of pressure
p ~dot–dashed curve! normalized byp0 , temperatureTp

~double dot-dashed curve! normalized by T0 , density r
~dashed curve! normalized byr0 , and they component of
the velocityvy ~solid curve! normalized byV0 at x50 and at
T520, when the perturbation is still growing linearly~see
Fig. 3!. Note that atT520 the fundamental mode is sti
growing linearly before it levels off atT;30 ~see Fig. 4!.
The equation~10! shows that the density andBz remain pro-
portional. Therefore, the profile of the normalizedBz is the
same as the profile of the normalized densityr. As is obvi-
ous from this panel, normalizedp, r, Bz , and Tp become
less than 1.0, which is their original value atT50, at their
minima inside the vortex, owing to a rarefaction due to t
fast magnetosonic wave excited by the instability, but th
become slightly larger than 1.0 at their peaks, owing to
compression due to the fast magnetosonic wave excited
the instability. As is predicted by the linear theory, fo
minima and four peaks ofp, r, Bz , and Tp appear in the
simulation box in the linear phase atT520. The velocity
componentvy at x50 undulates, owing to a development
vortices, and there is aboutp/2 phase difference between th
peaks ofp, r, Bz , andTp and the peak ofvy . Figure 10~b!
shows the same profiles as in Fig. 10~a! at T520 and atx
525a. The periodic rarefaction and compression of t
plasma are seen in this panel as well. The profile ofvy and
those ofp, r, Bz , andTp have an almost out of phase rel
tionship ~a phase difference ofp!. That is, where thep, r,
Bz , and Tp have minima,vy has a peak larger than 1.0

FIG. 9. Contour lines of~a! density and~b! temperature atT5230. Here
H andL in ~a! and~b! represent the positions of maximums and minimum
of ~a! density and~b! temperature. The maximum and minimum values
~a! the density and~b! the temperature normalized byr0 and T0 , respec-
tively, are shown by numbers.
Phys. Plasmas, Vol. 4, No. 8, August 1997
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Since the peak of the initialvy is 1.0, this means that there
a slight acceleration of plasma or enhancement of the fl
velocity, preferentially in they direction atx525a, where
the plasma is rarefied. Figure 10~c! shows the same profile
as in Fig. 10~a! at T520 and atx5210a. All quantities
remain almost the same as their initial values. This me
that the periphery of the vortices excited by the instabil
has not yet reachedx5210a by this time.

Figure 11~a! shows the same profiles as in Fig. 10 atx
50 and atT5230, when the four vortices have merged

FIG. 10. Profiles in they direction of pressurep ~dot–dashed curve! nor-
malized byP0, temperatureTp ~double dot–dashed curve! normalized by
T0 , densityr ~dashed curve! normalized byr0 , and they component of the
velocity vy ~solid curve! normalized byV0 at ~a! x50, ~b! x525a, ~c!
x52 10a, and atT520.
2879Akira Miura
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form a single isolated large vortex. At this time,p, r, Bz ,
and Tp have deep minima aty;10a and they have broad
peaks neary;40a. The normalized pressurep becomes less
than half of the original value~1.0! at y;10a due to the fast
magnetosonic rarefaction. The temperature also decre
considerably within this rarefied region located inside
vortex, owing to an adiabatic cooling. Originally the norma
ized velocity componentvy is equal to 0.5 atx50, but it is
slightly accelerated inside the vortex and is nearly equa
0.6 atT5230. As we have seen in Fig. 10, there is a ph

FIG. 11. Profiles in they direction of pressurep ~dot–dashed curve! nor-
malized byp0 , temperatureTp ~double dot–dashed curve! normalized by
T0 , densityr ~dashed curve! normalized byr0 , and they component of the
velocity vy ~solid curve! normalized byV0 at ~a! x50, ~b! x525a, ~c! x
5210a, and atT5230.
2880 Phys. Plasmas, Vol. 4, No. 8, August 1997
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difference between the minima ofp, r, Bz , andTp and the
maximum ofvy . Figure 11~b! shows the same profiles as
Fig. 10 atT5230 and atx525a, which is off the vortex
center. Here,p, r, Bz , andTp have minima inside the vortex
at y;10a and they have broad maxima aty;40a. Inside the
vortex the flow componentvy is strongly accelerated locally
and it exceeds 1.0, which was equal to the original peak fl
velocity in the simulation box. Figure 8~b! shows that at the
maximum ofvy , there is also anx component of the flow
velocity vx . So, the accelerated flow is a part of the ro
tional flow around the vortex center. Figure 11~c! shows the
same profiles atx5210a and atT5230. Thep, r, Bz , and
Tp have minima aty;10a, owing to a fast magnetosoni
rarefaction, and they have almost flat broad maxima ay
;45a. The flow is accelerated strongly at 0,y,20a and
the peak of the normalizedvy component reaches as large
1.4. Since the original flow speed atT50 did not exceed 1.0
this is strong evidence that the compressible K–H instabi
in the transverse configuration leads to a plasma flow ac
eration or the flow enhancement near the periphery of
vortex, owing to the fast magnetosonic rarefaction. In ot
words, where the perturbed vortex motion associated w
the excited fast wave is in the same direction as the ba
ground flow, the flow velocity is enhanced or the plasma
accelerated.

Figure 12~a! shows temporal evolution of the Reynold
~tangential! stress ~momentum flux! t5^rvxvy& at x50,

FIG. 12. ~a! Temporal evolution of the normalized Reynolds stress ax
50 averaged over they direction~upper panel! and~b! temporal evolution
of the normalized time integral of the averaged tangential stress atx50,
which is equal to the total flow momentum in the positivey direction inx
.0.
Akira Miura
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where the angular brackets denote the spatial average
the y direction. The Reynolds stress is normalized
r0V0

2. In the present 2-D transverse configuration, we obt
from ~2!,

]

]t
^rvy&52

]

]x
^rvxvy&. ~34!

Therefore, the Reynolds stress is responsible for the mom
tum transport.13,17,21,101,102During the initial linear phase the
Reynolds stress grows exponentially and after reachin
peak it decreases toward zero. The Reynolds stress bec
zero atT;30, when the amplitude of the fundamental mo
reaches its peak~see Fig. 4!. When the vortices begin to
coalesce or when the amplitude of the first subharmonic
ceeds the amplitude of the fundamental mode~see Fig. 4!,
the Reynolds stress begins to increase again atT;40. After
reaching a peak amplitude atT;50 the Reynolds stress de
creases and becomes zero atT;55, when the amplitude o
the first subharmonic reaches its peak. Thereafter, the R
nolds stress oscillates back and forth across zero. The R
nolds stress begins to increase when the amplitude of
second subharmonic exceeds that of the first subharmon
T;120 ~see Fig. 4!. After reaching a peak atT;140 the
Reynolds stress becomes zero atT;150, when the second
subharmonic amplitude reaches its peak~see Fig. 4!. Figure
12~b! shows the time integral of the averaged Reyno
stresst at x50, which is equal to the increase of the tot
flow momentum in the positivey direction in x.0 and is
normalized by 20aLyr0V0 . As long as the perturbation i
growing or the vortex pairing continues, the total flow m
mentum in they direction inx.0 increases. Therefore, th
net momentum transport fromx,0 to x.0 occurs by the
instability. But after the completion of the second vort
pairing atT;230, the Reynolds stress becomes very sm
and the total flow momentum inx.0 stays nearly at a con
stant value. This means that after the completion of the s
ond vortex pairing the net momentum transport vanish
because no more vortex pairing or no more growth of a s
harmonic withk5kFGM/8 is allowed in the system, owing t
the finite Ly . Notice that the total flow momentum in th
positivey direction inx.0 has peaks atT;30, 60, and 150,
when the amplitudes of the fundamental mode, the first s
harmonic, and the second subharmonic have their peak
ues, respectively~see Fig. 4!, and when the Reynolds stres
becomes zero@see Fig. 12~a!#.

In order to measure quantitatively the momentum tra
port by the K–H instability, an anomalous viscosity is d
fined by the following equation:

nano52^rvxvy&S d

dx
^rvy& D 21

. ~35!

This expression for the anomalous viscosity17,21 is analogous
to the definition of the eddy viscosity104 in the hydrodynam-
ics. But the eddy viscosity is a semi-empirical constant re
ing the Reynolds stress to the gradient of the flow mom
tum linearly, and it is assumed to be constant both in ti
and in space. Here, the anomalous viscosity~35!, which is so
called because the vortices excited by the instability rat
than the ion–ion Coulomb collision are responsible for
Phys. Plasmas, Vol. 4, No. 8, August 1997
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momentum transport, is actually measured from the simu
tion results, and it depends both on time and on space. Fi
13 shows the temporal evolution of the anomalous visco
nano at x50 defined by~35!. The anomalous viscosity is
normalized by 2aV0 . At T;20, just before the linearly fast
est growing ~fundamental! mode saturates,nano reaches
about 0.03•2aV0 . But at T;50, when the first vortex pair-
ing begins and the first subharmonic is growing~see Fig. 4!,
it becomes much larger than that atT;20 and reaches abou
0.5•2aV0 . At T;140, when the second vortex pairing b
gins and when the second subharmonic is still growing
reaches;2aV0 , which is twice as large as the anomalo
viscosity at the beginning of the first vortex pairing. Sin
the anomalous viscosity is defined by~35! and the Reynolds
stresŝ rvxvy& at x50 becomes negative during the cour
of the evolution of the instability, as shown in Fig. 12~a!, the
anomalous viscosity becomes negative when the Reyn
stress is negative. During this time the steepening of^vy&
rather than the relaxation of^vy& occurs. After the comple-
tion of the second vortex pairing byT;250, the anomalous
viscosity fluctuates around zero with a small amplitude a
there is no net momentum transport afterT;250. It is obvi-
ous from this figure that atT;140, the anomalous viscosit
is about twice as large as that atT;50. Since Fig. 12~a!
shows that the peaks of the Reynolds stress atx50 at T
;50 andT;140 are comparable, the difference of the pe
values of the anomalous viscosity atT;50 andT;140 is
due to the difference of the gradient of the flow momentu
or d/dx^rvy& at x50 in ~35!. That is, the mean shear of th
flow velocity at T;50 is twice as large as that atT;140.
Therefore, the mean shear of the flow velocity is reduc
with time or the shear of the flow velocity is relaxed wi
time.

Figure 14 shows, from the top, profiles atT520 @Fig.
14~a!# and T5220 @Fig. 14~b!# acrossx of the Reynolds
stress normalized byr0V0

2, the x component of the electric
field ^Ex& normalized byV0B0 , which is responsible for the
E3B drift in the y direction, the flow momentum profile
^rvy& normalized byr0V0 , and the flow velocity profile
^vy& normalized byV0 . The dotted profiles in̂ rvy& and

FIG. 13. Temporal evolution of the normalized anomalous viscosity ax
50 as a function of the normalized time.
2881Akira Miura
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^vy& show their initial profiles. Although the net momentu
is transported fromx,0 to x.0 by the growth of the fastes
growing mode atT520 @Fig. 14~a!#,17,21 much larger flow
momentum is transported acrossx50 by the coalescence o
the fastest growing modes or by the growth of the sec
subharmoic atT5220 @Fig. 14~b!#. Therefore, a much large
relaxation of the gradient of the average of the flow mom
tum ^rvy& and ^vy& occurs atT5220 @Fig. 14~b!#. Notice
that at T5220 @Fig. 14~b!# there is a large penetration o
^Ex& into the region ofx.0, which is responsible for the
momentum transport fromx,0 to x.0.

VI. DISCUSSION AND SUMMARY

Throughout the simulation run presented in Sec. V,
ratio of specific heatsG was fixed to5

3. In order to investigate
the dependence of the simulation results onG, simulation
runs forG5 4

3 and 6
3 ~52! were performed. Those simulatio

runs for differentG have shown that the temporal evolutio
of the instability, including vortex pairing, and the properti
of the anomalous momentum transport such as the evolu
of the Reynolds stress and the anomalous viscosity, are
sensitive to the change ofG from 4

3 to 2. Only a slightly
noticeable change is that the spatial variation of the temp
ture due to the development of the instability is smaller
smallerG. This is easily expected, becauseG51 corresponds
to the isothermal equation of state. Therefore the main
sults presented in the present paper are rather insensitiv
the equation of state. Furthermore, in order to see the e
of changing the boundary position in thex direction, a simu-
lation run was performed forxb540a, that is, by doubling
the length of the simulation box in thex direction. The tem-
poral evolution ofuvxumax, the vorticity contours, and the
Reynolds stress atx50 was found to be almost the same
the case withxb520a presented in the present paper. The
fore, the boundary position in the present simulation run
xb520a is considered to be far enough from the veloc
shear region to allow the unrestricted growth of the vorte

The present simulation shows that the vortex pairing
deed occurs in the nonlinear stage of the K–H instabi
when the convective fast magnetosonic Mach number is
to 0.35. To know whether the vortex pairing occurs or not

FIG. 14. Profiles at~a! T520 and ~b! T5220 acrossx of the averaged
Reynolds stresŝrvxvy&, the x component of the averaged electric fie
^Ex&, the averaged flow momentum̂rvy&, and the averaged flow velocity
^vy& from the top. The dotted profiles show their initial (T50) profiles.
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the K–H instability in the 2-D transverse configuration for
much higher convective Mach number requires simulat
runs for higher convective Mach numbers. It should
noted, however, that hydrodynamic experiments of the s
tial evolution of the K–H instability64,70 show that, although
for a small Mach number, coherent, ordered large-sc
vortex-like structures appear in the flow, these structures
come less noticeable in a high sonic Mach number flo
Those experiments also show that for a high sonic Ma
number flow, the widening of the turbulent region with th
distance in the spatial evolution of the K–H instability
much smaller than that in the small Mach number flo
These experimental results seem to be consistent with
analysis in Sec. III, which shows that the enstrophy is not
invariant in the 2-D compressible fluid.

Figures 10 and 11 show that the plasma flow veloc
vy is enhanced~the bulk velocity of the plasma is accele
ated! at the periphery of the flow vortex. AtT520, when
four vortices appeared, the flow enhancement is small~see
Fig. 10!. But at T5230 ~see Fig. 11!, after four vortices
coalesced to form a single isolated large vortex, the fl
enhancement~in vy! in the fast rarefaction region inside th
vortex becomes as large as;40% and the flow velocityvy is
reduced considerably in the fast magnetosonic compres
region between the vortices@Fig. 11~c!#. These observations
suggest that the flow enhancement at the periphery of
flow vortex inside the fast rarefaction region becomes lar
with the coalescence of vortices. They also suggest that
decrease of the pressure, density,Bz , and temperature in the
fast rarefaction region inside the vortices becomes lar
with the coalescence of vortices. Such strong plasma ac
eration or the flow enhancement at the periphery of the v
tex by the K–H instability, which was first noted by MHD
simulation,17,21 has also been found in a hybrid simulation32

In their hybrid simulation for the 2-D transverse configur
tion, the accelerated flow speed becomes almost twice
large as the original flow velocity when more than eig
vortices were accommodated initially in the simulation bo
Although their simulation did not clarify the reduction of th
density, magnetic field strength, temperature, and the p
sure inside the flow vortex due to the fast magnetosonic
efaction, the appearance of a strong enhancement of the
velocity in their simulation occurs at the periphery of th
vortex and is possibly due to the fast rarefaction proce
which is clarified in the present study. Since the sound sp
and the Alfvén speed decrease and the plasma flow velo
increases in the fast rarefaction region with the developm
of the K–H instability, the flow velocity eventually become
larger than the fast magnetosonic mode speed in the
rarefaction region and a fast shock discontinuity will
formed in the fast rarefaction region. Such a formation of
fast shock discontinuity in the fast rarefaction region form
by the K–H instability was demonstrated for the flow wi
larger Mach numbersMS5MA52.0 or M f51.41 (M f c

50.705).17,21We expect that such a fast shock is formed
smaller Mach numbers when the vortex pairing is allow
and hence the flow enhancement and the fast rarefaction
side the vortex become much stronger than the case wit
the vortex pairing.
Akira Miura
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Although a notion that the magnitude of the turbule
viscosity due to turbulent eddies is of the order ofDL•DV,
whereDL is the characteristic scale length of the flow a
DV is the variation of the mean velocity over the distan
DL, which is nearly equal to the size of the largest eddy
the turbulence, is not new,2 the present simulation measur
quantitatively the magnitude of the anomalous viscos
nano by the K–H instability and its increase with the vorte
pairing and the growth of the subharmonic modes~see Fig.
13!. Figure 13 shows that when the linearly fastest grow
mode~vortex! is growing the anomalous viscositynano at x
50 reaches;0.03•2aV0 . But when the first vortex pairing
begins it reaches;0.5•2aV0 , owing to the growth of the
first subharmonic, and when the second vortex pairing be
it reaches;2aV0 , owing to the growth of the second sub
harmonic. If a further vortex pairing and a growth of a su
harmonic with a longer wavelength is allowed, the anom
lous viscosity will become larger than;2aV0 . Therefore,
the momentum transport and the anomalous viscosity by
K–H instability become larger and larger with the vort
pairing and the growth of subharmonics, and the veloc
shear layer becomes wider and wider with the vortex pair
and the growth of subharmonics. Such tendency of the w
ening of the velocity shear layer with the vortex pairing a
the growth of subharmonics is apparent in a hydrodyna
experiment of the shear instability,64 although their experi-
ment showing a spatial development of the K–H instabi
did not show explicitly a widening of the velocity she
layer. For a different MHD configuration, wherein the ma
netc field is parallel to the flow, the widening of the veloci
shear layer by the K–H instability with the vortex pairin
has been demonstrated by MHD simulations,23,26 although
their simulations did not measure quantitatively the anom
lous viscosity. The anomalous momentum transport by
K–H instability evaluated in the present simulation up
when the fundamental mode saturates is essentially a q
linear momentum transport due to the fastest growing vo
ces, which are inclined with respect to the zeroth-order flo
This has been formulated previously.13,101–103Even after the
inverse energy cascade or the vortex pairing in the 2-D K
instability, a larger momentum transport and a larger ano
lous viscosity than the quasilinear transport seems to be
to the coherent inclination of the largest vortex in the flo
and the growth of the corresponding subharmonic. The
fore, a coherent transport of the flow momentum dem
strated in the present simulations may be the real natur
the anomalous momentum transport in the 2-D shear flow
should be noted in the present simulation run that the vo
pairing begins with the substantial growth of the correspo
ing subharmonic. Therefore, although the vortex pairing
volves essentially nonlinear interactions, it is closely rela
to the growth of subharmonic modes, as has been discu
by Ho.67 That is, the subharmonic can be viewed as a ca
lyst of the vortex pairing. In his conceptual subharmon
evolution model~see Fig. 30 of Ho and Huang67!, however,
he assumed that the final amplitudes of all subharmo
were equal and also that the vortex pairing occurred w
the corresponding subharmonic reached a peak amplit
However, according to the present simulation results the fi
Phys. Plasmas, Vol. 4, No. 8, August 1997
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amplitudes of subharmonics reached in the developmen
the instability are larger for a longer wavelength~see Fig. 4!,
and this is responsible for the increase of the anomal
viscosity with the vortex pairing. Also, the present simu
tion clearly shows that the vortex pairing begins and ends
a finite time interval.

In practical problems the spatial growth of the K–
instability23,31,32,64,70 is more common than the tempor
growth as treated here. In such spatial growth of the K
instability, the large momentum transport by the K–H ins
bility and the vortex pairing is expected in the downstrea
region of the sheared plasma flow. Let us transform
present results of the widening of the velocity shear la
obtained in the temporal growth of the K–H instability into
spatial growth. Figure 14 shows that atT5220 the thickness
of the velocity shear layerDVSL is ;24a. Since the phase
velocity of the K–H vortex isV0/2, the distanceDy over
which the wave or the vortex traverses during the time int
val of 22032a/V0 is Dy5(22032a/V0)3V0/25220a.
Therefore, in the spatial development of the K–H instabil
the ratio DVSL /Dy would be nearly equal to 24a/220a
50.109. Notice that this ratio in the scaling law is irrespe
tive of the initial thickness of the velocity shear layer. This
because when the initial thickness of the velocity shear la
is smaller, the growth rate of the K–H instability is larg
~see Sec. IV!, and the widening of the velocity shear lay
occurs more rapidly. Therefore,DVSL /Dy does not depend
on the initial thickness of the velocity shear layer. But
order to get a more accurate value ofDVSL /Dy a much larger
simulation run, which may accommodate, for example, ei
vortices in the linear stage, is necessary.

In summary, for the 2-D MHD transverse configuratio
in a compressible plasma or in a 2-D fluid, the conservat
law of the enstrophy is derived and 2-D MHD simulatio
have been performed. The present study shows that whe
plasma~fluid! is compressible or when the baroclinic vect
is nonzero, the enstrophy is not an invariant of the 2
plasma~fluid! motion. The 2-D MHD simulations have bee
performed for the fast magnetosonic convective Mach nu
ber 0.35. The simulation results show that after the lin
growth and the subsequent nonlinear saturation of the fas
growing ~fundamental! mode ~vortex! the vortex train
formed by the K–H instability is further susceptible to th
vortex pairing, which continues as long as the length of
simulation system allows it, and the vortex pairing occu
due to the growth of subharmonics. In the 2-D transve
configuration the eddy current, which is inertia current
nature, is associated with each flow vortex and the curr
eddies also coalesce to form a large isolated current e
Inside the vortex or the current eddy the plasma is rarefied
the fast magnetosonic rarefaction. That is, the centrifu
force due to the vortex rotation is balanced with the sum
the J3B force and the2“p force. In the fast rarefaction
region the pressure, density, magnetic field strength,
temperature decrease and the plasma flow velocity inside
fast rarefaction region near the periphery of the vortex
creases due to a superposition of the perturbed vortex mo
associated with the fast magnetosonic~rarefaction! wave to
the zeroth-order flow. The rarefaction of the plasma and
2883Akira Miura
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flow enhancement inside the vortex become stronger
stronger with the development of the vortex pairing. The
transport of momentum across the initial velocity shear la
occurs when the fundamental mode or the subharmoni
growing and when the vortex pairing continues. The mom
tum transport resulting in a velocity shear relaxation by
vortex pairing is much larger than that due to the growth
the fundamental mode. The anomalous viscosity by the K
instability is defined using the Reynolds stress and is m
sured quantitatively from the simulation result. The anom
lous viscosity becomes larger and larger with the vortex p
ing and this is due to the growth of subharmonics. After t
consecutive vortex pairings the anomalous viscosity reac
as large as 2aV0 , where 2a is the initial thickness of the
velocity shear layer andV0 is the total jump of the flow
velocity across the velocity shear layer. It is found that
simulation results are rather insensitive to the choice of
ratio of specific heatsG ~at least from4

3 to 2!. In order to
check whether or not the vortex pairing~vortex condensation
in real space! is inhibited for a higher Mach number she
flow, more simulation runs for higher Mach numbers a
necessary.
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