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For a two-dimensional2-D) transverse configuration, where the plasma motion occurs in a 2-D
plane transverse to the magnetic field, the nonlinear evolution of the magnetohydrodyihibi¢
Kelvin—Helmholtz (K—H) instability is investigated by means of a 2-D MHD simulation for a
convective fast magnetosonic Mach number 0.35, which is defined for the total jump of the flow
velocity. The compressibility and the nonzero baroclinic vector are shown to violate the
conservation of the enstrophy for the 2-D MHD transverse configuration and for the 2-D fluid
motion. After the nonlinear saturation of the linearly fastest growing vortices, the vortices continue
to coalesce until no more vortex pairing is allowed, owing to a finite length of the simulation system.
The plasma inside the vortex is rarefied strongly by the fast magnetosonic rarefaction and each
vortex is associated with an eddy current, which is inertia current in nature. The plasma flow
velocity is enhanced at the periphery of the vortex and the net momentum transport and shear
relaxation by the instability occur as long as the vortex pairing continues. Anomalous viscosity by
the K—H instability increases with the vortex pairing and its increase is due to the growth of
subharmonic modes. @997 American Institute of Physids$$1070-664X%97)01708-4

I. INTRODUCTION important in understanding the origin of MHD waves ob-
_ _ s served in the solar wintf®>%8|n fusion plasmas, complete

The Kelvin—HelmholtZK-H) instability" is driven by ,ngerstanding of thE xB shear stabilization and/or destabi-
the velocity shear in fluids and plasmas and is important in, ation of turbulence at the plasma boundary is also impor-
understanding a yarlety of phenomenagmvolvmg Ve_loc'ty'tant in improving plasma confinement in tokarfiénd stel-
sheared O_J(')OW In - space pl_%grrfaé, astrophysical  |arator plasmas. It is important to note here that in space and
plasma_é‘, L 7I3aboratory plasmas,™* and, of course, fluid  55trophysical plasmas the total velocity jump across the ve-
dynamics!="3 A notable prototype example in space plas'locity shear layer has large sonic and Alfie Mach
mas is the K-H instability excited at the magnetopause bejmperd® Therefore, it is essentially necessary in such
tween the flowing sola_rlgvll??s géafgmg_‘;‘g‘gsgge stationary magzases to take into account the compressibility of the plasmas.
netospheric plasnfyo1716:20-24,26736.3539 The  K-H The study of the K—H instability has a long history in
instability at the magnetopause has been suggested t0 be ig4rq4ynamics. It is well known that in the two-dimensional
sponsible for driving a plasma circulation inside the magners_p) inviscid, incompressible hydrodynamics there are two
toshere and for a tailward stretching of geomagnetic fieldpariants of fluid motion, i.e., the total kinetic energy and
lines™"#1:24253%n the hypothesis that the nonlinear evolu- e enstrophymean square vorticily The existence of these
tion of the magnetopause K-H instability provides @y, invariants requires that in the 2-D inviscid, incompress-
viscous-like drad or a perpendicular momeqtum transport jp e hydrodynamics the energy cascades to the long wave-
at the magnetopause. Although the contribution of the K~Hgnai or the vortex with the similarly signed vorticity must
instability to the plasma circulation in the magnetospherggg tq group togethd® %% This is analogous to the Bose—
appears to be smaller than that of the reconnection at thgjnstein condensation of an ideal Boson gas in momentum
magnetopaus, it is important to know quantitatively the space below the Bose—Einstein condensation temperdtture.
contribution of the K—H instability to the plasma circulation Indeed, hydrodynamical experiments have shown that at the
in the magnetosphere for a complete understanding of thgye stage of the K—H instability, two vortical structures
dynamics of the solar wind—magnetosphere interaction. Suchy mpine to form a single, larger vortical struct@?&® Such
an understanding of_the contribgtion (_)f the K—H insta_bility vortex pairing during the nonlinear evolution of the K—H
to the magnetospheric plasma circulation may also be impOfiygapility has been reproduced by numerical experiments of
tant in understanding the plasma dynamics occurring at thg,, o_p hydrodynami€&™ and 2-D magnetohydro-
boundary between the magnetosphere of the neutron star aagnamicsz_s,ze,sl
the surrounding accretion diéR-*34® Observational evi- The primary objective of the present paper is to investi-
dence s_upporting the occurrence of the K—H instability at thegate by means of a 2-D MHD simulation the basic relation-
terrestrial %r_'& planetary magnetopauses has Dbe&lhin among vortex development including vortex pairing,
accumulated®™** Complete understanding of the nonlinear 5 refaction, and compression due to the fast magnetosonic
evolution of magnetohydrodynamidViHD) waves excited wave, flow enhancement, eddy current, and momentum
by the K—H instability at the velocity shear in plasmas is alsotransport caused by the K—H instability in a compressible

plasma, or more specifically, in a 2-D transverse configura-
3Electronic mail: miura@grl.s.u-tokyo.ac.jp tion, where the plasma motion occurs in a plane transverse to
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the magnetic field. The present study enables us to exterttie thickness of the velocity shear layer is larger than the ion
our understanding of the vortex pairing in incompressibleLarmor radius, except near the subsolar regiahere the
fluids®'~%989-%%and plasmas?®*to the 2-D compressible thickness of the velocity shear layer is at times comparable
MHD and hydrodynamic regimes. Although there are severajp the ion Larmor radius is concerned, it seems that a ki-
2-D compressible simulations of the K—H instability in the netic viscosity by microscopic interactions determines only
fluid dynamics’*~"*which show vortex pairing, the detailed jimate dissipation of vorticity and energy at small scales,
relationship between the fluid rarefaction, vort(_e>_< dgvelopbut the transport of momentum and energy itself is governed
men_t, and flow enhancement has n.ot begn clarified in thosgy macroscopic processes such as the K—H instability. This
studies. EQ,EG,EIeV'OUS 2-D MHD simulations of the K-H is analogous to the ordinary hydrodynamics, wherein the ki-
nematic viscosity determines only the ultimate dissipation of

instability; some of which have been done for different
configurations including a flow parallel to the magnetic field, o
varticity and energy at small scales, but the transport of mo-

have not addressed the above basic issues. Furthermore, ‘i

spite of the intensive study of the K—H instability and the MENtUM itself is essentially due to turbulent eddies. In hy-
vortex pairing in fluids and plasmas, the relationship betweeffrodynamics such anomalous viscosity induced by eddies is
the vortex pairing and the momentum transport by the Reycalled eddy viscosity?* molar viscosity,** or turbulent
nolds stress associated with the instability have not beekiscosity? although the nature of such postulated viscosity
fully investigated. Therefore, in order to evaluate quantita-has never been clarified and quantified, except that the pos-
tively the momentum transport by the K—H instability with tulated viscosity is due to eddies. Although in a microscopic
vortex pairing, the Reynolds stress by the K—H instability ispicture the transport of momentum and energy should be
measured and an anomalous viscosity by the instability iglescribed by kinetic equations, calculation and combination
defined and measured in the present simulation. of the first-order velocity moments of the collisionless Bolt-
It is well known that the 2-D inviscid, incompressible zman equations for ions and electrons yield the momentum
Navier—Stokes equation is identical to the 2-D guiding cenconservation equation or the equation of motion in the one-
ter description of the Vlasov equation fef=0 andk, p;  fyid approximation°® Therefore, it is not necessary to use
<1, wherek, andk, are the wave numbers parallel and yjnetic equations for describing the momentum transport by
perpendicular to the magnetic field apis the ion Larmor the K—H instability, at least when the thickness of the veloc-

P94 H . _
radps. Fpr compressible plasmas n the 2D transvers%ty shear layer is larger than the ion Larmor radius. That is,
configuration k;=0), only the magnetic field transverse to .

the plasma motion is perturbed and the electric current n such a macroscale the fluid description of the perpendicu-

induced in the plane transverse to the magnetic field. There?‘:’lr momentum transport in terms of the momentum flux or

fore, theJx B force in the equation of motion arises and thethe f_|Uid Re)_/r?olds stress is validated. Th_is is be(_:aL_Jse _the
K—H instability in the 2-D transverse configuratidn®2Lis locality _con_dltlor? of the plasma fo_r the_ fluid descrlpthn is
slightly different from the 2-D hydrodynamical K—H insta- well maintained in the transverse direction by the gyration of
bility. That is, the fast magnetosonic mode is excifény the ~ Particles with a gyroradius smaller than the thickness of the
K—H instability in the 2-D compressible, transverse configu-velocity ~ shear  layer.  Indeed, several  kinetic
ration, whereas in the 2-D compressible hydrodynamic casgimulation$*?"2%%3%f the K—H instability, assuming the
the sound wave is excited by the K—H instability. In other velocity shear thickness equal to only a few ion Larmor radii,
words, not only the plasma pressure but also the magnetighow that the main features of the MHD K—H instability,
pressure are perturbed and responsible for the plasma motiamcluding the momentum transport, which have been found
in the 2-D compressible MHD transverse configuration. by the MHD simulations;?*are reproduced in those kinetic

It should be noted that at the magnetopause the momeimulations.
tum transport by the ion—ion Coulomb collision is neglegibly The outline of the present paper is as follows: A 2-D
smalf* and the transport of momentum from solar wind to transverse configuration for the present 2-D MHD simulation
magnetosphere, except that due to the magnetopause recefid hasic equations used in the present simulation are de-
nection, is essentially due to the anomalous transPort. scriped and the difference between the basic equations in the
When the thickness of the velocity shear layer at the magne;_ 5 MHD transverse configuration and the 2-D hydrody-

toggusethls smallelr thatn or cortnpfarable tot the' |odn Lf[irmo,ﬁamic equations is discussed by reducing the basic MHD
racius, t ganoma}ous_lr()aonspor of momentum IS due 1o mléquations for the 2-D transverse configuration to a form
croscopic interaction¥1%°But for the velocity shear layer

with thickness larger than the ion Larmor radius, the anoma§Im|lar o the hydrodyngmlc equation in Sec. Il. The enstro-
hy (mean square vorticijyfor the 2-D transverse MHD

lous momentum transport is essentially due to macroscopie i tion | lculated and th tion | £ th
interactions such as the MHD K—H instability. In the MHD configuration IS caiculated an € conservation law of the

K—H instability, both the Reynolds stress and the Maxwell€nstrophy for the compressible 2-D plasma and fluid is de-

stress are responsible for the anomalous transport of momeHYed in Sec. lll. The linear dispers'ion of'the.K—H instability

however, the Maxwell stress vanishes and only the Reynold&e hyperbolic tangent velocity shear profile in Sec. IV.
stress caused by the K—H instability is responsible for theSimulation results for the 2-D MHD transverse configuration
momentum transpof{;?12428.101-10\g far as the transport are shown in Sec. V. Discussions and a summary are given
of momentum and energy across the magnetopause, wheireSec. VI.
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2

d B
20a §(ptp_r)=2—M(F—2)p‘F(V-V), ©)
X - wherep; is the total pressure defined py=p+B2/2u,p
- being the plasma pressure, adtt is the total derivative
. — equal tod/gt+v-V. In deriving (6)—(9) it is only assumed
0| & By (uniform) Vo (sheared) that B is transverse to the simulation plafiee., B has the
only z componentandB is not necessarily uniform. Note in
—_— (7) that the line bending ternB-V)B in the JxB force in
_ - the equation of motion vanishes in the 2-D MHD transverse
configuration. SinceB has the onlyz componentB,, Egs.
—20a - (6) and(8) yield
0 y Ly d | ) )
TRl B, =0. (10

FIG. 1. The flow velocity(solid vector$ and the magnetic field in the 2-D
MHD transverse configuration. The equation9) can be derived fron(6), (8), and the adia-
batic equation. When the plasma is incompressi%le/=0),
the magnetic field and the density are not perturbed in the
Il. BASIC EQUATIONS AND 2-D MHD TRANSVERSE 2_-D MH_D transvers_e conf_lguratl_on and the plasma pehaves
like an incompressible fluid. A linear analysis for this con-
CONFIGURATION . . . . L . .
figuration, assuming incompressibility, is given by
The conservation equations of the ideal MHD, which Chandrasekhérfor a discontinuous velocity shear profile

describe the K—H instability, are (the thickness of the velocity shear layer is 2er@/hen
I'=2, the variableg, v, andp, are governed by a closed set
&_P:_V_(pv) (1) of Egs. (6), (7), and (9), and the magnetic field does not
at ' appear explicitly in the closed equations. Therefore, as far as
) the evolution ofp, v, and p, in the 2-D MHD transverse
i (pV)=—V-(pVV— i BB) —V|p+ B_) ) configuration is con_cerr_ned, the plasma behaves like a 2-D
ot Mo 20 adiabatic pseudofluid with the gas pressure replaced by the
5 total pressurg,. Therefore, in such a case, the dynamics of
8—=Vx(vx B), (3) the K-H inst_ability is_ not egsentially different from t_he 2-D
ot hydrodynamic K—H instability. When the plasma is com-
p B2 1 pressible and’#2, however,B, appears explicitly in the
vl e+ p+ —)v— — (B-v)B|. (4)  governing equationfEq. (9)], and there is essentially a dif-
ot 2o Mo ference between the K—H instability in the 2-D MHD trans-

Here, p, v, B, andp are the plasma mass density, bulk ve-Verse configuration and the K—H instability in the 2-D hy-
locity of the plasma, magnetic field, and plasma pressurédrodynamic configuration. In the 2-D MHD transverse

and e is the energy density defined by c’onfigurgti_o_n used in _the_ folloyving simullgtion ijc is e_lssqmed
that the initial magnetic fiel®8, in the positivez direction is
1, B2 p uniform, d/9z=0, the initial densityp, is uniform, and the
€=5 puot 2_Mo+ -1’ ®)  ratio of specific heat¥ is equal to3. Sincep/B, is initially
uniform in the following 2-D MHD transverse configuration,
whereT is the ratio of specific heats. plB, is an invariant of the plasma motion according 16),

~ Figure 1 shows the flow velocity and the magnetic fieldthat is, p and B, remain proportional. Although the simula-
in a 2-D MHD transverse configuration, which is used in thetjgn results only fo'=$ are presented in Sec. V, it is found

following 2-D MHD simulation. A uniform background  that the results of the MHD simulation are rather insensitive
x-y plane. The background plasma flow is in tigedirection

and the flow velocity,, is inhomogeneougsheareglin the . ENSTROPHY AND INVERSE ENERGY CASCADE
x direction. The ideal MHD equations in the 2-D transverse o . )
configuration can be reduced simply to In the 2-D inviscid, incompressible hydrodynamic flow,
the total kinetic energy and the enstroplmyean square vor-
dp v g licity) are two invariants of the fluid motidfi-*3 Since the
dat p(V-v), 6) conservation law of the enstrophy for the compressible

plasma(or, more generally, fluidis not trivial and its deri-
dV__V 7 vation from the equation of motion cannot be found else-
Pt Pes @ where, the conservation law of the enstrophy for the 2-D
compressible plasma in the 2-D MHD transverse configura-
d_B — _B(V-V) ) tion or the 2-D compressible fluid is derived in the following.
' The equation7) can be written as

dt

Phys. Plasmas, Vol. 4, No. 8, August 1997 Akira Miura 2873

Downloaded 19 Nov 2010 to 130.69.96.202. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



av
p E-I—(V-V)V) =-Vp;. (11
Taking the curl of this equation, we obtain
d VpxVp;
5(VXV)+VX[(V‘V)V]:T, (12

where the vector product on the right-hand sitias)
VpxVp,/p? is the baroclinic vector. Using the vector iden-

tity,

(v-V)v=3V(v?) —vXx(V xV), (13
we obtain from(12),

d VpxVp,

E (VXV)=V X[vx(VxV)]= T. (14

By expanding the second term on the left-hand $idge), we
obtain

% (VxV) +(VXV)(V-v)—[(VXV)-V]v

+(V'V)(VXV)=T (15

In the 2-D transverse configuration, wheve=v,(X,y)X
+vy(x,y)y andd/3z=0, we have

[(Vxv)-V]v=0. (16)
Therefore,(15) can be reduced to
d VpxVp,
5 (VXV)+(VXV)(V-v)+(V-V)(V XV)= T.
17

Taking the scalar product gfL7) and Vxv and using the
vector identities

(VXV)2(V-v)=V - [V(VXV)?]—(v-V)(VXV)?, (18
and
(VxV)-[(V-V)(VXV)]=%(v-V)(V xV)2, (19
we obtain from(17),
J
E(va)2+V-[v(Vxv)2]+(va)2(V-v)
(VpxVpy) (20)

=2(VXv)- 7z

Let us take a volumé/, which consists of a region with
—XpSXsX,, Osys<L,, and Osz<1.0, and a surface A
surrounding the volum¥. By taking the volume integral of
(20), we obtain

2] fawrs | e eva
+f f fvdexv)zw-v)

:fffvdvz(vxv),(vp:_zvm'
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Using Gauss’ theorem, the second term on the lhs can be
replaced by a surface integral, i.e.,

jj deVV-[V(VXv)Z]zj’jAdS,[V(VxV)Z]_

(22

As is assumed in the following 2-D MHD simulation, let us
assume thav is periodic in they direction, i.e.,v(x,y=0)
=V(x,y=L,), v,=0 at boundaries in the direction atx
==*Xp, andv is independent ofz. Then,(22) is identically
zero. Therefore, we obtain fro21),

ffdx dy(V xv)?
ffdx dy2(V xv )—(Vpprt),

where the Ihs is proportional to the time derivative of the
enstrophy(mean square vorticilyandC represents a region
in the x-y plane with —x,<x<x, and Osys<L,. This
gives the conservation law of the enstrophy@n In the
present 2-D transverse configuration, whpgeand B, are
uniform, p and B, remain proportional. Therefore, the baro-
clinic vectorVpx Vp,/p? is equal toV p X V p/p?, which is
the same as the baroclinic vector in the hydrodynamic case.
If the plasma(fluid) is uniform initially and incompressible
(V-v=0), the densityp is not perturbedsee(6)] and Vp
=0. Therefore, we recover fror(23) that in the 2-D uni-
form, incompressible plasm@dluid) the enstrophy is an in-
variant of the plasméfluid) motion. In a more general case,
where either the plasm@duid) is compressible or the baro-
clinic vector is nonzero, the enstrophy is not an invariant of
the 2-D plasmdfluid) motion.

In the 2-D transverse configuratioiBLv), taking the
volume integral of the energy conservation equatidnand
using the boundary condition lead to

f f dx dy(V XxXv)23(V.v)

(23

(24)

This is the conservation law of the total energy in {Ge
region. In the uniform, incompressible cg$e—«), B, andp
are not perturbed angl=p,. Therefore,

7 [ [ ayoeec
a nyv—

That is, the total kinetic energy or the mean square velocity
is an invariant. The existence of the two invariants, i.e., the
total kinetic energy and the enstrophy, in the 2-D incom-
pressible hydrodynamic case with a uniform density, and in
the present 2-D incompressible MHD transverse case leads
to a consequené®& 3 that the bulk of the energy concen-
trates in the small wave numbdiaverse energy cascagén
other words, the fluid elements with similarly signed vortic-
ity must tend to group together. The inverse energy cascade
or the tendency for the bulk of energy to concentrate in the

(25
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0.25 g : , wave number (Rya). The growth rate is normalized by
V,/2a, and the wave number is normalized byaj2 *. Note
that only the fast magnetosonic mode is destabilized in the
2-D transverse configuration of the K—H instability. There-
fore, the appropriate Mach number for the background flow
is the fast magnetosonic Mach number defined My
=Vo/\JCZ+VZ, where Va=By/(uopo)*® and Cg
=(T'py/po)*>. Notice that an important Mach number,

0.20

01 which characterizes the intrinsic compressibility of the flow,

5 2a is the convective Mach numb&M .= M¢/2, which is the
Vo Mach number in a frame of reference comoving with the
010 phase velocity of the unstable K—H wave. The dashed line

represents the growth rate=k,V,/2 obtained analytically
for the incompressible transverse configuration with a zero
thickness of the velocity shear layeClearly, this result is
valid only when the thickness of the velocity shear layer
2a is much smaller than the wavelength in thalirection,

i.e., X,a<1.0. The uppermost solid curveMQ1=oc) rep-
resents the growth rate obtained numerically in the incom-
pressible case. This curve was taken from a numerical calcu-
lation of Michalkel®® The growth rate for the incompressible
case reaches a maximum fok,2~0.9 and then decreases
FIG. 2. The normalized linear growth rate versus the normalized waveVith increasing Zya, reaching zero for Ba=2.0. As the
number. HereM; is the magnetosonic Mach number defined ki Mach numbermM; increases from zer¢and hence the com-
=V, //CZ+VZ. The dashed line is the growth rate for the discontinuous pressibility becomes importantthe normalized growth rate
velocity profile in the incompressible case. is reduced considerably. In addition, the wave number of the
fastest growing modekrgy, and the critical wave number
beyond which the mode is completely stabilizég,,, are
shifted toward smaller values with increasikty . This fig-

ure shows how the compressibility stabilizes the K—H insta-
pbility with an increasingM; . The fastest growing mode al-

0.05

small wave numbers is verified for a 2-D MHD transverse
configuration, where the compressibility is small a¥id is
parallel toV p; in the following simulation. In general, for a

compressible 2-D MHD transverse configuration or 2- h b o -
fluid, the conservation equations d&3), (24), and(10) (for ways appears at the wave num er satisfying<®kya
<1.0. Consequently, the fastest growing mode has a wave-

MHD only), and the inverse energy cascade cannot b L
proven mathematically. ?ength of the order of ZX2a~4mXx2a, which is charac-

terized by the finite thickness of the velocity shear layer

IV. LINEAR DISPERSION (22).
In the following, 2-D MHD simulations are performed in

thex-y plane perpendicular to the magnetic field. The initial

flow velocity Vo, has a shear profile, V. SIMULATION RESULTS

vo (X)=Vo/2[1—tanh(x/a)], (26) Physical parameters used in the present simulat,ion are
y the sound Mach numbdvis=V,/Cs=1.0 and the Alfva

and the other equilibrium quantitieB,py,po) are uniform.  Mach numbeM ,=V,/V,=1.0. The fast mode Mach num-
We impose a boundary condition such that there is no madser M; is M=0.71 and the convective fast magnetosonic
flow (v,=0) across the boundaries»xt =x,= *20a, and  Mach number isVi;;=0.35. We use a tim& normalized by
all quantities are periodic in thg direction}’?* A linear ~ 2a/V,. Figure 2 shows that for this configuration, the lin-
eigenmode analysis for the plasma configuration with a veearly fastest growing mode occurs ak,a~0.8, with its
locity shear profile(26) has been performed to obtain the growth rate equal to 0.Mp/2a. Therefore, the wavelength
linear growth rate as a function of the wave number andf the linearly fastest growing modérgy is equal to
Mach numbers. Since the detailed calculation of the linead5.7a. The lengthL, of the simulation system in thg di-
dispersion of the MHD K—H instability for this configuration rection is chosen equal to & g,=62.8. Since the present
is reported elsewher&, only a brief summary of the results simulation is a MHD simulation, it is necessary to give ex-
is given here. plicitly an initial seed perturbation aE=0. In the present

Since the real frequency of the K—H instability is due to simulation a superposition of the approximate linear eigen-
the Doppler shift due to the mean bulk flow, the dispersiorfunction of the fastest growing mode in the incompressible
relation givesw,=k,Vo/2, wherew, is the real part of the casé®>!and its subharmonic modes is added to the equilib-
angular frequency. Figure 2 shows normalized growth ratesum at T=0 as an initial seed perturbation. The peak am-
v of the K—H instability for the 2-D transverse configuration plitude of the initial flow velocity perturbation is 0.005.
shown in Fig. 1 ank,=0 as a function of the normalized The explicit form of the seed perturbation is as follows:
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FIG. 3. Temporal evolution of the peak of thecomponent of the flow

velocity |v,|max NOrmalized byV, as a function of the normalized time. FIG. 4. Temporal evolution of the amplitudes of the fundamental mode with
k=kggm (solid curve, the first subharmonic witlk=Kkgg\/2 (dot—dashed
curve), the second subharmonic wikh=keg\/4 (triple dot—dashed curye
and the Fourier mode with=3kgg\w/4 (dotted curve of the total kinetic

vy (X, Y)= n:zl , 2K, [ — &, (X)sin(kpy) — di(x)cogkpy) ], energy integrated along All amplitudes are normalized byad .
(27)
.3 de(x) K Figure 4 shows temporal evolution of the Fourier ampli-
vy(X,y)= nSia dx cogkny) tudes of the fastest growing modindamental modeand
its subharmonics of the total kinetic energy in the simulation
_déi(x) sin(k.y) 29) region, which is integrated along The four modes have the
dx nY) | wave numbersk equal toKkegw4, Kraw/2, 3Krow/4, and
where Keam. Wherekegy is the wave number of the fastest growing

mode. Each mode amplitude is normalized tgpg. At T

Kn=Keom/2" 1=(0.8/22)/2""1 (n=1,2,3, (299 =0 three modes wittk=kegy (fundamental kegy/2 (first
2 - x subharmoni and keg\/4 (second subharmonichave the
& ()=, exr{ — _2) cos{— sin( _) , (300 same amplitudes as a consequence of the specification of the
a 2 2a initial seed perturbation b§27) and(28). Those three modes
X2 - X grow linearly in their linear phases. The growth rates of
di(xX)=V, exy{ - 52) sir{E o sin( ﬁ) . (31) those modes were calculated from their linear slopes in the
initial growth phases. The calculated growth rates are
HereW is the arbitrary constant to determine the amplitude0.19Vy/2a, 0.104/,/2a, 0.0532/y/2a for the fundamental
of the initial perturbation and- determines the inclination of (solid curve, the first subharmoni¢dot—dashed curygand
the vortex with respect to the mean flow, which determineshe second subharmonitriple dot—dashed curyerespec-
whether the vortex is growing or decayitf}.Thatis,c=—1 tively. Figure 2 shows that growth rates obtained theoreti-
for the growing vortex an@=1 for the decaying vortex. In cally for these three modes are OVhf2a, 0.12/y/2a, and

solving the conservation equations of the ideal MKID—  0.065/y/2a, respectively. Although the observed growth
(4), the two-step Lax—Wendroff scheme is used and theates for subharmonics are slightly smaller than the predicted
number of grids is equal to 26®00. linear growth rates, there is good agreement between the

Figure 3 shows temporal evolution of the peak of ¥he predicted linear growth rates and the linear growth rates ob-
component of the flow velocitjv | ,.x Normalized by, as  tained from the simulation run. The fundamental mode, the
a function of time. In the initial stage fro=0 to T~20, first subharmonic, and the second subharmonic reach their
the peak of|v,|max iNCreases exponentially with a linear peak amplitudes af~ 30, T~55, andT~ 150, respectively.
growth rate~0.19y/2a, which is comparable to the pre- Although the fundamental mode has the largest growth rate,
dicted linear growth rate of the fastest growing mode. Thishe second subharmonic reaches the largest amplitude during
means that the initial seed perturbation specified(®§)—  the simulation run. It should be noted that a clear finite-
(31 is very close to the exact unstable eigenfunctionTAt amplitude amplitude oscillation is seen for the second sub-
~30, the peak velocity levels off and aft&r~ 30 the peak harmonic fromT=150 to T=220, although it disappears
amplitude is susceptible to a small but finite-amplitude oscil-after T~230, owing to the phase mixing among its higher
lation associated with a vortex nutatibit°%|t is seen in  harmonics. This amplitude oscillation of the second subhar-
this figure that the peak amplitude increases slightly withmonic is similar in nature to the amplitude oscillation of the
time until T~200 afterT~30. This slight increase of the fundamental mode, which is found when the growth of sub-
peak amplitude is due to the growth of the subharmonicharmonics is inhibited®:03
modes. Figure 5 shows contour lines of tlrecomponent of the
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FIG. 6. Contour lines of the component of the vorticity at six different
times fromT= 130 toT=230. In all panels the contour lines are plotted for
negative vorticity(counterclockwise rotation

FIG. 5. Contour lines of the component of the vorticity at eight different at T=170 andT=210. After a few rotations around each
times fromT=10 to T=80. In all panels the contour lines are plotted for othar the two vortices coalesce to form a single large vortex
negative vorticity(counterclockwise rotation

at T=230.

Figure 7 shows, from the top, contour lines of pressure,

flow velocity vectors, and current vectors &&=40. The
vorticity Q, at eight different times fronrT=10toT=80. In  pressure is normalized by the initial uniform presspgeind
the 2-D transverse configuratiofy,, is calculated from the the velocity vectors are normalized . By T=40, the

frozen-in law as linearly fastest growing mode has developed fully into the
nonlinear stage and four pairs of a low-press(narefied
o 1 Mo region and a high-pressuteompressedregion line up near
Q=2:(Vxv)=—g V-E+ Z (Jv.), (32) x~0. Figure 7a) shows that at the bottom of the low-

_ o o ) pressure region(denoted byl), the pressure becomes
whereE is the electric field satisfying the frozen-in law and 0.776, and at the peak of the high-pressure regidenoted
J is the electric current density. This shows that in the 2-Dby H), the peak pressure reaches pd4The rarefied region
incompressible plasma, whek is not perturbed and is a5 a much steeper pressure gradient than in the compressed
zero, the vorticity is propor.t|onal to the space charge_densny,.egionl TheB, component is reduced in the low-pressure
In all panels the contour lines are plotted for negative Voryegion as well, and it is enhanced in the high-pressure region,
ticity (counterclockwise rotatignIn the early phase an ini-  pacayse only the fast magnetosonic mode with the change of
tial straight vorticity layer(velocity shear laygrundulates {he magnetic pressure in phase with the thermal pressure is
(T=10) and it develops into a vortex train &t=30. Four  excited by the instability in the 2-D MHD transverse
vortices appear as predicted by the linear theory. Note tha{onfiguration® Figure Tb) shows that four vortices rotating
the fundamental Fourier mode of the total kinetic energy.qunterclockwise have developed n&ar0 by T=40. Note
reaches its peak amplitude B30 (see Fig. 4 At T=40,  nat the vortical flow appears only in the rarefied region in
two neighboring vortices begm.to rotate around each other,;ig. 7(a). Figure 7c) shows that the eddy current flowing
At T=50, two neighboring vortices begin to merge shortly o nterclockwise is associated with each vortex in Fig).7

before T~55, when the first subharmonic reaches its peakrhe electric currentl, is calculated from the equation of
amplitude(see Fig. 4. Each vortex rotates counterclockwise motion as

around each other and &t=80 two vortices are formed out

of the initial four vortices as a consequence of the vortex B dv B

pairing (coalescence of vorticgsThis process of the vortex Ji=pg2Xgi T B2 XVp. (33
pairing is very similar to that reported in the

hydrodynamic$2¢%71-73 Since the direction oBxVp is clockwise in the rarefied

Figure 6 shows contour lines of the vorticify, at six  region and thus opposite to the direction of the observed
different times fromT=130 to 230. AtT=130 again, the eddy current, the eddy current observed in the rarefied re-
two neighboring vortices begin to rotate counterclockwisegion, associated with each flow vortex, must be the inertia
around each other and the two vortices begin to merge at current[the first term on the rhs af33)] in nature. In other
=150, when the second subharmonic reaches its peak amplirords, the centrifugal force by the counterclockwise rota-
tude(see Fig. 4. The vorticity is stretched in the direction  tion, which is responsible for expelling the plasma outward
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FIG. 8. (a) Contour lines of pressurdp) flow velocity vectors, andc)

FIG. 7. (a) Contour lines of pressurdb) flow velocity vectors, andc) currgnt vectors aj" 230. HereH andL in (a) represent the posmons of
: o maximum and minimum pressures, respectively(dnthe maximum and
current vectors af=40. HereH andL in (a) represent the positions of S -
: L ) . minimum values of the pressure normalizedgyyare shown by numbers.
maximum and minimum pressures, respectively(dnthe maximum and
minimum values of the pressure normalizedggyare shown by numbers.

eddy current due to the inertia current develops in the low-
from inside the vortex, is balanced by the sum of theB pressure region in association with the large isolated vortical
force and the- V p force directed to the center of the vortex. flow.

Figure 8 shows, from the top, contour lines of pressure, Figure 9a) shows contour lines of the plasma density at
flow velocity vectors, and current vectors Tt 230. Figure  T=230, which is normalized by the initial density. The
8(a) shows that a pair of low- and high-pressure regions deequation(10) shows that in the 2-D transverse configuration
velops after the second vortex pairingTat 230. In the low-  the plasma densitg andB, remain proportional. Therefore,
pressure region the minimum pressydenoted byl) be-  this panel also shows contour lines B normalized by the
comes as low as 0.483, owing to a strong fast rarefaction initial uniform magnetic field8, at T=230. At the bottom of
(rarefaction due to the fast magnetosonic mode excited bthe low-density regioridenoted bylL) the density becomes
the instability, and in the high-pressure region the peak ofas low as 0.64,, wherep, is the initial uniform density, and
the pressurddenoted byH) reaches 1.1g,. As is true at at the peak of the high-density regiddenoted byH), the
T=40 [Fig. 7(a)], the pressure gradient is much stronger inpeak density reaches 18)y. The low-density region located
the rarefied region than in the compressed region. In that the flow vortex has a much steeper density gradient than in
rarefied region a large vortex rotating counterclockwise dethe high-density region. Figure(ly shows contour lines of
velops[Fig. 8(b)]. Figure 8b) also shows that in the com- the plasma temperatuflg, normalized by the initial uniform
pressed region between vortices, the large flow momenturtemperatureT, at T=230. At the bottom of the low-
in they direction inx<<0 is transported tax>0. As is de- temperature regiofdenoted byL) the temperature becomes
scribed in more detail in Figs. 10 and 11, it is seen in Fig.0.747,. At the peak of the high-temperature regite-

7(b) and Fig. 8b) that the flow velocity is enhanced or the noted byH), the peak temperature reaches T 7There-

plasma is accelerated at the periphery of the vortex<t®d  fore, the adiabatic cooling of the plasma occurs inside the
at T=40 and 230. The flow enhancement is strongel at flow vortex and the adiabatic heating occurs between vorti-
=230 than aff =40. Figure &) shows that a large isolated ces. The low-temperature region located at the isolated flow
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FIG. 9. Contour lines ofa) density and(b) temperature af =230. Here I \
H andL in (a) and(b) represent the positions of maximums and minimums + \4
of (a) density andb) temperature. The maximum and minimum values of
(a) the density andb) the temperature normalized py and T,, respec-
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vortex has a much steeper temperature gradient than in th 2.0 TI=20’ o o '(C) |

high-temperature region. X = —10a
Figure 1@a) shows profiles in thg direction of pressure I
p (dot-dashed curyenormalized byp,, temperatureT,
(double dot-dashed curyenormalized by T,, density p
(dashed curyenormalized byp,, and they component of
the velocityv, (solid curve normalized by, atx=0 and at \
T=20, when the perturbation is still growing linear{gee i
Fig. 3). Note that atT=20 the fundamental mode is still
growing linearly before it levels off al ~30 (see Fig. 4
The equatior(10) shows that the density ar8}, remain pro-
portional. Therefore, the profile of the normalizBd is the ) L
same as the profile of the normalized dengityAs is obvi- 0'00 -y 62.8a
ous from this panel, normalizeg, p, B,, and T, become
le.SS. tha_n 1.'0’ which is their (_)r|g|nal value ﬁt:. 0, at their FIG. 10. Profiles in the direction of pressur@ (dot—dashed curyenor-
minima inside the vortex, owing to a rarefaction due to themalized byP,, temperatureT, (double dot—dashed curveormalized by
fast magnetosonic wave excited by the instability, but theer, densityp (dashed curvenormalized byp,, and they component of the
become slightly larger than 1.0 at their peaks, owing to avelocity v, (solid curvg normalized byV, at (8) x=0, (b) x=—5a, (0)
compression due to the fast magnetosonic wave excited by~ — 10, and afT=20.
the instability. As is predicted by the linear theory, four
minima and four peaks op, p, B,, and T, appear in the
simulation box in the linear phase &t=20. The velocity  Since the peak of the initial, is 1.0, this means that there is
componenv, atx=0 undulates, owing to a development of a slight acceleration of plasma or enhancement of the flow
vortices, and there is abow{2 phase difference between the velocity, preferentially in they direction atx= —5a, where
peaks ofp, p, B,, andT, and the peak ob,. Figure 1Qb)  the plasma is rarefied. Figure (tD shows the same profiles
shows the same profiles as in Fig.(d0at T=20 and atx as in Fig. 10a) at T=20 and atx=—10a. All quantities
=—b5a. The periodic rarefaction and compression of theremain almost the same as their initial values. This means
plasma are seen in this panel as well. The profilepnd  that the periphery of the vortices excited by the instability
those ofp, p, B,, andT, have an almost out of phase rela- has not yet reachexi= — 10a by this time.
tionship (a phase difference of). That is, where the, p, Figure 11a) shows the same profiles as in Fig. 10xat
B,, and T, have minima,v, has a peak larger than 1.0. =0 and atT=230, when the four vortices have merged to
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FIG. 12. (a) Temporal evolution of the normalized Reynolds stresx at
=0 averaged over thg direction(upper pangland(b) temporal evolution
of the normalized time integral of the averaged tangential stress-&,
which is equal to the total flow momentum in the positivelirection inx
>0.

difference between the minima of p, B,, andT, and the
maximum ofv, . Figure 11b) shows the same profiles as in
Fig. 10 atT=230 and atx= —5a, which is off the vortex
center. Herep, p, B,, andT, have minima inside the vortex
aty~10a and they have broad maximayt 40a. Inside the
vortex the flow component, is strongly accelerated locally
and it exceeds 1.0, which was equal to the original peak flow
0.0 , . ) . . . . ‘ . velocity in the simulation box. Figure(B) shows that at the
0 y 62.8a maximum ofv,, there is also ax component of the flow
velocity vy . So, the accelerated flow is a part of the rota-
tional flow around the vortex center. Figure(d¢lshows the
FIG: 11. Profiles in the direction of pressur@ (dot—dashed cur\)mor— same profiles at=—10a and atT=230. Thep, p. B, and
malized pypo, temperatureT (dogble dot—dashed curyeormalized by T, have minima aly~10a, owing to a fast magnetosonic
Ty, densityp (dashed curyenormalized byp,, and they component of the p ’ ! -
velocity v, (solid curve normalized by, at (a) x=0, (b) x=—5a, (c) X rarefaction, and they have almost flat broad maxima at
=—10a, and atT=230. ~45a. The flow is accelerated strongly ak¥<20a and
the peak of the normalizeg, component reaches as large as
1.4. Since the original flow speed®t0 did not exceed 1.0,
form a single isolated large vortex. At this time, p, B, this is strong evidence that the compressible K—H instability
and T, have deep minima a¢~10a and they have broad in the transverse configuration leads to a plasma flow accel-
peaks neay~40a. The normalized pressupbecomes less eration or the flow enhancement near the periphery of the
than half of the original valu€l.0) aty~10a due to the fast vortex, owing to the fast magnetosonic rarefaction. In other
magnetosonic rarefaction. The temperature also decrease®rds, where the perturbed vortex motion associated with
considerably within this rarefied region located inside thethe excited fast wave is in the same direction as the back-
vortex, owing to an adiabatic cooling. Originally the normal- ground flow, the flow velocity is enhanced or the plasma is
ized velocity component, is equal to 0.5 ak=0, butitis  accelerated.
slightly accelerated inside the vortex and is nearly equal to  Figure 12a) shows temporal evolution of the Reynolds
0.6 atT=230. As we have seen in Fig. 10, there is a phasétangential stress(momentum flux r=(pv,v,) at x=0,
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where the angular brackets denote the spatial average ovel 2.0
the y direction. The Reynolds stress is normalized by
povg. In the present 2-D transverse configuration, we obtain  vang

from (2), (x2aVy)

- LY.
at <va>_ X <pvxvy>- (39 0.0 r - \//\
Therefore, the Reynolds stress is responsible for the momen- [ \/

tum transport>1721:10L199yring the initial linear phase the

Reynolds stress grows exponentially and after reaching a
peak it decreases toward zero. The Reynolds stress become

T T T O D T T T T T T O T T T T T T T N O T

zero atT~ 30, when the amplitude of the fundamental mode 2 0
reaches its peaksee Fig. 4 When the vortices begin to -0 100 200 300 35
coalesce or when the amplitude of the first subharmonic ex- TIME ( x 2a/Vp)

ceeds the amplitude of the fundamental mdsiee Fig. 4,

the Reynolds stress begins to increase agai-a40. After  FIG. 13. Temporal evolution of the normalized anomalous viscosity at
reaching a peak amplitude &t~ 50 the Reynolds stress de- =0 as a function of the normalized time.

creases and becomes zerolat55, when the amplitude of

the first subharmonic reaches its peak. Thereafter, the Rey-

nolds stress oscillates back and forth across zero. The Reyomentum transport, is actually measured from the simula-
nolds stress begins to increase when the amplitude of thgon results, and it depends both on time and on space. Figure
second subharmonic exceeds that of the first subharmonic QB shows the temporai evolution of the anomalous Viscosity
T~120 (see Fig. 4 After reaching a peak af~140 the ,_ at x=0 defined by(35). The anomalous viscosity is
Reynolds stress becomes zeroTat 150, when the second normalized by 2V,. At T~ 20, just before the linearly fast-
subharmonic amplitude reaches its pésie Fig. 4 Figure  est growing (fundamental mode saturatesy,,, reaches
12(b) shows the time integral of the averaged Reynoldsghout 0.032aV,. But atT~50, when the first vortex pair-
stresst at x=0, which is equal to the increase of the total |ng begins and the first subharmonic is grow(isge F|g 4'
flow momentum in the positivg direction inx>0 and is it becomes much larger than thatTat 20 and reaches about
normalized by 28LypoVo. As long as the perturbation is 0.5.2aV,. At T~140, when the second vortex pairing be-
growing or the vortex pairing continues, the total flow mo- gins and when the second subharmonic is still growing, it
mentum in thQ/ direction inx>0 increases. Therefore, the reaches~2avo, which is twice as |arge as the anomalous
net momentum transport from<0 to x>0 occurs by the yiscosity at the beginning of the first vortex pairing. Since
instability. But after the completion of the second vortextihe anomalous viscosity is defined (86) and the Reynolds
pairing atT~230, the Reynolds stress becomes very smalsress(pv,v,) atx=0 becomes negative during the course
and the total flow momentum x>0 stays nearly at a con- of the evolution of the instability, as shown in Fig.(&® the
stant value. This means that after the Completion of the S€GEnomalous Viscosity becomes negative when the Reynoids
ond vortex pairing the net momentum transport vanishesstress is negative. During this time the steepeningugh
because no more vortex pairing or no more growth of a Subrather than the relaxation @b,) occurs. After the comple-
harmonic withk=kec/8 is allowed in the system, owing to tjon of the second vortex pairing by~ 250, the anomalous
the finite L, . Notice that the total flow momentum in the yiscosity fluctuates around zero with a small amplitude and
positivey direction inx>0 has peaks a~ 30, 60, and 150, there is no net momentum transport affer 250. It is obvi-
when the amplitudes of the fundamental mode, the first subgys from this figure that af~ 140, the anomalous viscosity
harmonic, and the second subharmonic have their peak vak about twice as large as that &t-50. Since Fig. 1@)
ues, respectivelysee Fig. 4, and when the Reynolds stress shows that the peaks of the Reynolds stresg=ab at T
becomes zergsee Fig. 129)]. ~50 andT~ 140 are comparable, the difference of the peak
In order to measure quantitatively the momentum transyajues of the anomalous viscosity &t-50 andT~140 is
port by the K—H instability, an anomalous viscosity is de-due to the difference of the gradient of the flow momentum
fined by the following equation: or d/dx({pv,) atx=0 in (35). That is, the mean shear of the
-1 flow velocity at T~50 is twice as large as that @t-140.
(35 Therefore, the mean shear of the flow velocity is reduced
with time or the shear of the flow velocity is relaxed with
This expression for the anomalous viscoSif§t is analogous  time.
to the definition of the eddy viscosif§ in the hydrodynam- Figure 14 shows, from the top, profiles &t 20 [Fig.
ics. But the eddy viscosity is a semi-empirical constant relat14(a)] and T=220 [Fig. 14b)] acrossx of the Reynolds
ing the Reynolds stress to the gradient of the flow momenstress normalized byOVS, the x component of the electric
tum linearly, and it is assumed to be constant both in timdield (E,) normalized byWyB,, which is responsible for the
and in space. Here, the anomalous visco&f), whichis so ExB drift in the y direction, the flow momentum profile
called because the vortices excited by the instability rathe¢pv,) normalized byp,V,, and the flow velocity profile
than the ion—ion Coulomb collision are responsible for the(v,) normalized byV,. The dotted profiles ifpv,) and

Vano— — <pvxvy><& <va>
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0.1 0.1 — the K—H instability in the 2-D transverse configuration for a
rT=20 (@1 1 T=220 ®) much higher convective Mach number requires simulation
i vl 1 vy runs for higher convective Mach numbers. It should be
0.0 0.0 noted, however, that hydrodynamic experiments of the spa-
I 1 ] tial evolution of the K—H instabilit$ " show that, although
0.0 for a small Mach number, coherent, ordered large-scale
—11-8 vortex-like structures appear in the flow, these structures be-
t come less noticeable in a high sonic Mach number flow.
0.0 ) . .
1.0 Those experiments also show that for a high sonic Mach
0.0F . number flow, the widening of the turbulent region with the
—20a 0 20a —20a 0 20a distance in the spatial evolution of the K—H instability is
X x much smaller than that in the small Mach number flow.

_ These experimental results seem to be consistent with the
FIG. 14. Profiles afa) T=20 and(b) T=220 acrossx of the averaged alvsis in Sec. Il which sho that the enstrophv is not an
Reynolds stresgpv,v,), the x component of the averaged electric field fan YSIS I_ - I, which s YVS . strophy 1sn
(E,), the averaged flow momentutpv,), and the averaged flow velocity ~Invariant in the 2-D compressible fluid.
(vy) from the top. The dotted profiles show their initidl£0) profiles. Figures 10 and 11 show that the plasma flow velocity
vy is enhancedthe bulk velocity of the plasma is acceler-
ated at the periphery of the flow vortex. AT=20, when

(vy) show their initial profiles. Although the net momentum ¢, - vortices appeared, the flow enhancement is sfsal
is transported fronx<<0 to x>0 by the growth of the fastest Fig. 10. But at T=230 (see Fig. 11, after four vortices

: _ H 17,21
growing mo_de aff =20 [Fig. 14a)], much larger flow oajesced to form a single isolated large vortex, the flow
momentum is transported across 0 by the coalescence of onancementin v,) in the fast rarefaction region inside the

the fastest growing modes or by the growth of the secong, ey pecomes as large ast0% and the flow velocity , is
subhar.m0|c a1f=220[_F|g. 14b)]. Therefore, a much larger reduced considerably in the fast magnetosonic compression
relaxation of the gradient of the average of the flow momen'region between the vorticd&ig. 11(c)]. These observations
tum (pvy) and(uy) oceurs atT=220 [Fig. 14b)] Nopce suggest that the flow enhancement at the periphery of the
that §1th220 [F|.g. 14b)] there. s a large pepetraﬂon of flow vortex inside the fast rarefaction region becomes larger
(E) into the region ofx>0, which is responsible for the with the coalescence of vortices. They also suggest that the
momentum transport frork<<0 to x>0. decrease of the pressure, dens8y, and temperature in the
fast rarefaction region inside the vortices becomes larger

V1. DISCUSSION AND SUMMARY with the coalescence of vortices. Such strong plasma accel-

Throughout the simulation run presented in Sec. V, theeration or the flow enhancement at the periphery of the vor-
ratio of specific heats was fixed tol. In order to investigate tex by the K—H instability, which was first noted by MHD
the dependence of the simulation results Ignsimulation simulation}”?* has also been found in a hybrid simulatin.
runs forl'=4% and § (=2) were performed. Those simulation In their hybrid simulation for the 2-D transverse configura-
runs for differentl’ have shown that the temporal evolution tion, the accelerated flow speed becomes almost twice as
of the instability, including vortex pairing, and the propertieslarge as the original flow velocity when more than eight
of the anomalous momentum transport such as the evolutiovortices were accommodated initially in the simulation box.
of the Reynolds stress and the anomalous viscosity, are irAlthough their simulation did not clarify the reduction of the
sensitive to the change df from 3 to 2. Only a slightly ~ density, magnetic field strength, temperature, and the pres-
noticeable change is that the spatial variation of the temperssure inside the flow vortex due to the fast magnetosonic rar-
ture due to the development of the instability is smaller forefaction, the appearance of a strong enhancement of the flow
smallerT". This is easily expected, because 1 corresponds velocity in their simulation occurs at the periphery of the
to the isothermal equation of state. Therefore the main revortex and is possibly due to the fast rarefaction process,
sults presented in the present paper are rather insensitive tehich is clarified in the present study. Since the sound speed
the equation of state. Furthermore, in order to see the effe@nd the Alfvan speed decrease and the plasma flow velocity
of changing the boundary position in tRedirection, a simu- increases in the fast rarefaction region with the development
lation run was performed fox,=40a, that is, by doubling of the K—H instability, the flow velocity eventually becomes
the length of the simulation box in thedirection. The tem- larger than the fast magnetosonic mode speed in the fast
poral evolution of|v,|max, the vorticity contours, and the rarefaction region and a fast shock discontinuity will be
Reynolds stress at=0 was found to be almost the same asformed in the fast rarefaction region. Such a formation of the
the case withx,=20a presented in the present paper. There-fast shock discontinuity in the fast rarefaction region formed
fore, the boundary position in the present simulation run forby the K—H instability was demonstrated for the flow with
Xp=20a is considered to be far enough from the velocity larger Mach numbersM¢=M,=2.0 or M;=1.41 (M«
shear region to allow the unrestricted growth of the vortex. =0.705) 2! We expect that such a fast shock is formed for

The present simulation shows that the vortex pairing in-smaller Mach numbers when the vortex pairing is allowed
deed occurs in the nonlinear stage of the K—H instabilityand hence the flow enhancement and the fast rarefaction in-
when the convective fast magnetosonic Mach number is upide the vortex become much stronger than the case without
to 0.35. To know whether the vortex pairing occurs or not inthe vortex pairing.
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Although a notion that the magnitude of the turbulentamplitudes of subharmonics reached in the development of
viscosity due to turbulent eddies is of the orderAdf- AV, the instability are larger for a longer waveleng#iee Fig. 4,
where AL is the characteristic scale length of the flow andand this is responsible for the increase of the anomalous
AV is the variation of the mean velocity over the distanceviscosity with the vortex pairing. Also, the present simula-
AL, which is nearly equal to the size of the largest eddy intion clearly shows that the vortex pairing begins and ends in
the turbulence, is not nefvthe present simulation measures a finite time interval.
guantitatively the magnitude of the anomalous viscosity In practical problems the spatial growth of the K-H
Vano Dy the K—H instability and its increase with the vortex instability?®31326470is more common than the temporal
pairing and the growth of the subharmonic modsse Fig. growth as treated here. In such spatial growth of the K—H
13). Figure 13 shows that when the linearly fastest growingnstability, the large momentum transport by the K—H insta-
mode (vortex) is growing the anomalous viscosiiy,, at X bility and the vortex pairing is expected in the downstream
=0 reaches-0.03 2aV,. But when the first vortex pairing region of the sheared plasma flow. Let us transform the
begins it reaches-0.5-2aV,, owing to the growth of the present results of the widening of the velocity shear layer
first subharmonic, and when the second vortex pairing begingbtained in the temporal growth of the K—H instability into a
it reaches~2aV,, owing to the growth of the second sub- spatial growth. Figure 14 shows thatTat 220 the thickness
harmonic. If a further vortex pairing and a growth of a sub-of the velocity shear layeb,g, is ~24a. Since the phase
harmonic with a longer wavelength is allowed, the anomaxvelocity of the K—H vortex isVy/2, the distanceD, over
lous viscosity will become larger than 2aV,. Therefore, which the wave or the vortex traverses during the time inter-
the momentum transport and the anomalous viscosity by theal of 220<2a/V, is D,=(220X2a/Vy) X V/2=220a.

K—H instability become larger and larger with the vortex Therefore, in the spatial development of the K—H instability
pairing and the growth of subharmonics, and the velocitythe ratio Dyg /Dy would be nearly equal to 24220a
shear layer becomes wider and wider with the vortex pairing=0.109. Notice that this ratio in the scaling law is irrespec-
and the growth of subharmonics. Such tendency of the widtive of the initial thickness of the velocity shear layer. This is
ening of the velocity shear layer with the vortex pairing andbecause when the initial thickness of the velocity shear layer
the growth of subharmonics is apparent in a hydrodynamiés smaller, the growth rate of the K—H instability is larger
experiment of the shear instabili§,although their experi- (see Sec. Iy, and the widening of the velocity shear layer
ment showing a spatial development of the K—H instabilityoccurs more rapidly. Therefor®.s /D, does not depend
did not show explicitly a widening of the velocity shear on the initial thickness of the velocity shear layer. But in
layer. For a different MHD configuration, wherein the mag- order to get a more accurate valuelbfs /Dy a much larger
netc field is parallel to the flow, the widening of the velocity simulation run, which may accommodate, for example, eight
shear layer by the K—H instability with the vortex pairing vortices in the linear stage, is necessary.

has been demonstrated by MHD simulatiéhié although In summary, for the 2-D MHD transverse configuration
their simulations did not measure quantitatively the anomain a compressible plasma or in a 2-D fluid, the conservation
lous viscosity. The anomalous momentum transport by théaw of the enstrophy is derived and 2-D MHD simulations
K—H instability evaluated in the present simulation up tohave been performed. The present study shows that when the
when the fundamental mode saturates is essentially a quagitasma(fluid) is compressible or when the baroclinic vector
linear momentum transport due to the fastest growing vortiis nonzero, the enstrophy is not an invariant of the 2-D
ces, which are inclined with respect to the zeroth-order flowplasma(fluid) motion. The 2-D MHD simulations have been
This has been formulated previousit®~1%Even after the performed for the fast magnetosonic convective Mach num-
inverse energy cascade or the vortex pairing in the 2-D K—Hoer 0.35. The simulation results show that after the linear
instability, a larger momentum transport and a larger anomagrowth and the subsequent nonlinear saturation of the fastest
lous viscosity than the quasilinear transport seems to be dugrowing (fundamentgl mode (vortex) the vortex train

to the coherent inclination of the largest vortex in the flowformed by the K—H instability is further susceptible to the
and the growth of the corresponding subharmonic. Therevortex pairing, which continues as long as the length of the
fore, a coherent transport of the flow momentum demonsimulation system allows it, and the vortex pairing occurs
strated in the present simulations may be the real nature afue to the growth of subharmonics. In the 2-D transverse
the anomalous momentum transport in the 2-D shear flow. Itonfiguration the eddy current, which is inertia current in
should be noted in the present simulation run that the vortexature, is associated with each flow vortex and the current
pairing begins with the substantial growth of the correspondeddies also coalesce to form a large isolated current eddy.
ing subharmonic. Therefore, although the vortex pairing in-Inside the vortex or the current eddy the plasma is rarefied by
volves essentially nonlinear interactions, it is closely relatedhe fast magnetosonic rarefaction. That is, the centrifugal
to the growth of subharmonic modes, as has been discusséatce due to the vortex rotation is balanced with the sum of
by Ho®" That is, the subharmonic can be viewed as a catathe JxB force and the— Vp force. In the fast rarefaction
lyst of the vortex pairing. In his conceptual subharmonicregion the pressure, density, magnetic field strength, and
evolution modelsee Fig. 30 of Ho and Huaf{, however, temperature decrease and the plasma flow velocity inside the
he assumed that the final amplitudes of all subharmonicfast rarefaction region near the periphery of the vortex in-
were equal and also that the vortex pairing occurred whereases due to a superposition of the perturbed vortex motion
the corresponding subharmonic reached a peak amplitudassociated with the fast magnetoso(rarefaction wave to
However, according to the present simulation results the finahe zeroth-order flow. The rarefaction of the plasma and the
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