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On the Pro-p Absolute Anabelian Geometry of Proper

Hyperbolic Curves

By Yuichiro Hoshi

Abstract. In the present paper, we study the geometry of the
stable models of proper hyperbolic curves over p-adic local fields via
the study of the geometrically pro-p étale fundamental groups of the
curves. In particular, we establish functorial “group-theoretic” algo-
rithms for reconstructing various objects related to the geometry of
stable models from the geometrically pro-p étale fundamental groups.
As an application, we also give a pro-p “group-theoretic” criterion for
good reduction of ordinary proper hyperbolic curves over p-adic local
fields.

Introduction

Let p be a prime number, k a p-adic local field (i.e., a finite extension

of Qp), k an algebraic closure of k, and X a proper hyperbolic curve over k

(i.e., a proper smooth geometrically connected curve over k of arithmetic

genus ≥ 2). Write k for the residue field of the ring of integers of k, k for the

algebraic closure of k determined by k (i.e., the residue field of the ring of

integers of k), Xk
def
= X×k k for the proper hyperbolic curve over k obtained

by base changing X from k to k, and

ΠX

for the geometrically pro-p étale fundamental group of X (cf. Definition

2.2). Then it is well-known (cf. Theorem 1.3) that the hyperbolic curve X

has stable reduction over the ring of integers of k. We shall write Xk for

the stable curve over k obtained by forming the special fiber of the stable

model of Xk.

In the present paper, we study the geometry of the stable curve Xk via

the study of the profinite group ΠX . In particular, we center around the
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task of establishing functorial “group-theoretic” algorithms whose input data

consist of the abstract profinite group ΠX and whose output data consist of

objects related to the geometry of the stable curve Xk (cf. the main result

of the present paper, i.e., Theorem 3.7). By applying the functorial “group-

theoretic” algorithms of the present paper, one may reconstruct, from ΠX ,

for instance, the following objects:

• The set of irreducible components of Xk whose normalizations are

of positive p-rank (cf. Theorem 3.7, (viii)), as well as the (necessarily

positive) p-ranks of the normalizations of elements of this set (cf. Theo-

rem 3.7, (x)).

• The first Betti number of the (topological space determined by the)

dual graph of Xk (cf. Theorem 3.7, (vii)).

We shall say that the proper hyperbolic curve X is ordinary if the arith-

metic genus of X is equal to the p-rank of Xk (cf. Definition 2.6, (i)).

Moreover, we shall say that a profinite group Π satisfies the condition (†)
if there exist a prime number l and an isomorphism of Π with the geomet-

rically pro-l étale fundamental group of a proper hyperbolic curve over an

l-adic local field (cf. Definition 3.6). (So the profinite group ΠX satisfies the

condition (†).) Some of the consequences of the functorial “group-theoretic”

algorithms of the present paper may be summarized as follows (cf. Theorem

3.7, (xi), (xiii)). In the following Theorem, the term “purely group-theoretic

condition” is used to mean that “the condition in a discussion is phrased in

language that only depends on the profinite group structure of the profinite

group under consideration”:

Theorem. The following hold:

(i) There exists a purely “group-theoretic” condition for profinite groups

which satisfy (†) such that the profinite group ΠX satisfies this condition if

and only if the hyperbolic curve X is ordinary.

(ii) There exists a purely “group-theoretic” condition for profinite

groups which satisfy (†) such that the profinite group ΠX satisfies this condi-

tion if and only if the hyperbolic curve X is ordinary and has good reduction

over the ring of integers of k.

In particular, we obtain the following result (cf. Corollary 3.8, (i), (iv),

(vi)):
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Corollary. For � ∈ {◦, •}, let p� be a prime number, k� a p�-

adic local field, and X� a proper hyperbolic curve over k�. Suppose that

the geometrically pro-p◦ étale fundamental group of X◦ is isomorphic to

the geometrically pro-p• étale fundamental group of X•. Then it holds that

p◦ = p•, and, moreover, the following hold:

(i) It holds that X◦ is ordinary if and only if X• is ordinary.

(ii) Suppose, moreover, that either X◦ or X• is ordinary. Then it holds

that X◦ has good reduction over the ring of integers of k◦ if and only if X•
has good reduction over the ring of integers of k•.

Note that the above Theorem (cf. also the above Corollary) may be

regarded as a pro-p “group-theoretic” criterion for good reduction of ordinary

proper hyperbolic curves over p-adic local fields. Here, let us recall (cf.

Remark 3.8.1) that, for a nonempty set Σ of prime numbers such that p 	∈ Σ,

we have already a pro-Σ “group-theoretic” criterion for good reduction of

(not necessarily ordinary) hyperbolic curves over p-adic local fields proved

by T. Oda (cf. [19], Theorem 3.2), A. Tamagawa (cf. [21], Theorem 5.3),

and S. Mochizuki (cf. [13], Corollary 2.8).

Finally, let us discuss (cf. Remark 3.8.2) the p-adic criterion for good

reduction of curves proved by F. Andreatta, A. Iovita, and M. Kim in [1] from

the point of view of the present paper. The p-adic criterion of [1] asserts,

roughly speaking, that X has good reduction over the ring of integers of

k if and only if every member of a certain collection of finite-dimensional

representations of Gk
def
= Gal(k/k) over Qp determined by the profinite

group ΠX and a splitting of the natural surjection ΠX � Gk arising from

a k-rational point of X is crystalline (cf. [1], Theorem 1.9). Here, observe

that this criterion (is interesting even in a certain point of view of anabelian

geometry but) should be considered to be not “group-theoretic” (i.e., to

be not useful in pro-p absolute anabelian geometry) by the following two

reasons:

(1) The issue of whether or not a given finite-dimensional representation

of Gk over Qp is crystalline is not “group-theoretic”. Indeed, it follows

immediately from the discussion of [8], Remark 3.3.1, that there exist a

prime number l, an l-adic local field L, an automorphism α of the absolute

Galois group GL of L, and a crystalline representation ρ : GL → GLn(Ql)

such that the composite GL

α
∼→ GL

ρ→ GLn(Ql) is not crystalline.
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(2) It is not clear that the issue of whether or not a given splitting of the

natural surjection ΠX � Gk arises from a k-rational point of X is “group-

theoretic”. Note that it follows from [6], Theorem A, that there exist a

prime number l, an l-adic local field L, a proper hyperbolic curve C over L,

and a splitting of the natural surjection from the geometrically pro-l étale

fundamental group of C onto the absolute Galois group of L which does not

arise from an L-rational point of C.

As a consequence of this discussion, one cannot, at least in the immediate

literal sense, drop the ordinary hypothesis in the statement of the Corollary,

(ii), even if one applies the p-adic criterion of [1].

Acknowledgments. This research was supported by the Inamori Foun-

dation and JSPS KAKENHI Grant Number 15K04780.

1. Stable Models

Throughout the present paper, let p be a prime number. In the present

§1, we introduce some notations related to the geometry of the stable models

of proper hyperbolic curves over p-adic local fields. We also recall a theorem

of P. Deligne and D. Mumford (cf. Theorem 1.3 below) and a theorem of

M. Raynaud (cf. Theorem 1.6 below).

Definition 1.1. Let V be a proper variety over a field F . Then we

shall write

gV
def
= (−1)dim(V ) · (χZar(OV )− 1)

for the arithmetic genus of V . If, moreover, F is algebraically closed and of

characteristic p, then we shall write

γV
def
= dimFp H

1
ét(V,Fp)

for the p-rank of V .

In the remainder of the present §1, let k be a p-adic local field (i.e., a

finite extension of Qp), k an algebraic closure of k, and X a proper hyperbolic

curve over k (i.e., a proper smooth geometrically connected curve over k

such that gX ≥ 2) (cf. the discussion entitled “Curves” in [6], §0, for the
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definition of the term “hyperbolic curve”). Write k for the residue field of

the ring of integers of k, k for the algebraic closure of k determined by k

(i.e., the residue field of the ring of integers of k), and Xk
def
= X ×k k for the

proper hyperbolic curve over k obtained by base changing X from k to k.

Definition 1.2. Let K be a(n) (possibly infinite) algebraic extension

of k. Then we shall say that the hyperbolic curve X has stable reduction

(respectively, good reduction) over the ring of integers of K if the structure

morphism X ×k K → Spec(K) extends to a stable curve (respectively,

smooth stable curve) over the ring of integers of K (cf. [4], Definition

1.1).

Definition 1.3 (Deligne-Mumford). In the notations introduced in

the discussion preceding Definition 1.2, there exists a finite extension K

of k such that the hyperbolic curve X has stable reduction over the ring of

integers of K (cf. Definition 1.2). In particular, the hyperbolic curve X has

stable reduction over the ring of integers of k.

Proof. This follows from [4], Corollary 2.7. �

Definition 1.4.

(i) We shall write

Xk

for the stable curve over k (of arithmetic genus gX) obtained by forming

the special fiber of the stable model of Xk over the ring of integers of k (cf.

Theorem 1.3).

(ii) We shall write

GX

for the dual graph of Xk,

Irr(X)

for the set of irreducible components of Xk — i.e., the set of vertices of GX

— and

b1(X)
def
= dimQH1(GX ,Q)
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for the first Betti number of (the topological space determined by) GX .

(iii) Let v ∈ Irr(X). Then we shall write

Xv

for the proper smooth (connected) curve over k obtained by forming the

normalization of the irreducible component of Xk corresponding to v ∈
Irr(X),

gv
def
= gXv

for the arithmetic genus of Xv, and

γv
def
= γXv

for the p-rank of Xv.

(iv) We shall write

Irr(X)γ=0 def
= { v ∈ Irr(X) | γv = 0 } ⊆ Irr(X)

for the set of irreducible components of Xk (whose normalizations are) of

p-rank zero and

Irr(X)γ>0 def
= Irr(X) \ Irr(X)γ=0 = { v ∈ Irr(X) | γv > 0 } ⊆ Irr(X)

for the set of irreducible components of Xk (whose normalizations are) of

positive p-rank.

Remark 1.4.1.

(i) It is well-known (cf., e.g., the discussion following [3], Definition 1.1)

that, for each v ∈ Irr(X), it holds that gv ≥ γv ≥ 0.

(ii) It is also well-known (cf., e.g., [3], Lemma 1.3, as well as the proof

of [3], Lemma 1.3) that

gX = gXk
= b1(X) +

∑

v∈Irr(X)

gv,

γXk
= b1(X) +

∑

v∈Irr(X)

γv = b1(X) +
∑

v∈Irr(X)γ>0

γv.
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Remark 1.4.2. Let Y → X be a connected finite étale covering of X

(i.e., a finite étale morphism whose domain Y is connected).

(i) One verifies easily that Y is a proper hyperbolic curve over a finite

extension kY of k (i.e., the algebraic closure of k in the function field of Y ).

Moreover, one also verifies easily that the covering Y → X determines a

connected finite étale covering Yk
def
= Y ×kY k → Xk over k.

(ii) It follows, in light of Theorem 1.3, from [11], Lemma 8.3, that the

covering Yk → Xk of (i) extends to a uniquely determined proper (not neces-

sarily finite) surjection from the stable model of Yk over the ring of integers

of k to the stable model of Xk over the ring of integers of k. In particular,

we obtain a proper (not necessarily finite) surjection Yk → Xk over k.

(iii) One verifies immediately from the existence of the morphism Yk →
Xk of (ii) that the inequalities

b1(Y ) ≥ b1(X), �Irr(Y )γ>0 ≥ �Irr(X)γ>0

hold.

Definition 1.5. Let Y → X be a connected finite étale covering of X.

Then we shall say that the covering Y → X is a geometrically-p-covering if

the Galois closure of the connected finite étale covering Yk → Xk over k (cf.

Remark 1.4.2, (i)) is of degree a power of p (cf. Remark 2.2.1 below).

Remark 1.5.1. One verifies easily that the composite of finitely many

geometrically-p-coverings is a geometrically-p-covering. Moreover, one also

verifies easily that the connected finite étale covering obtained by the “com-

position” (i.e., obtained by considering the composite field of the func-

tion fields) of finitely many geometrically-p-coverings is a geometrically-p-

covering.

Theorem 1.6 (Raynaud). In the notations introduced in the discus-

sion preceding Definition 1.2, suppose that X has good reduction over the

ring of integers of k (cf. Definition 1.2). Then it holds that b1(Y ) = 0 (cf.

Definition 1.4, (ii)) for every geometrically-p-covering Y → X (cf. Defini-

tion 1.5) of X.

Proof. Let Y → X be a geometrically-p-covering of X. Then it

follows from Remark 1.4.2, (iii), that, to verify that b1(Y ) = 0, we may
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assume without loss of generality, by replacing Y → X by the Galois closure,

that the geometrically-p-covering Y → X is Galois. Then since the Galois

group of the Galois covering Yk → Xk (cf. Remark 1.4.2, (i)) is a p-group,

the equality b1(Y ) = 0 follows from [16], Théorème 1, (ii). �

2. Quotients of Pro-p Fundamental Groups

In the present §2, we discuss certain quotients (cf. Definition 2.3 and

Definition 2.4 below) of the pro-p geometric étale fundamental groups (cf.

Definition 2.2 below) of proper hyperbolic curves over p-adic local fields.

In the present §2, we maintain the notations introduced in the discussion

preceding Definition 1.2. Write π1(X) for the étale fundamental group of

X relative to some choice of basepoint such that the algebraic closure of

k determined by this basepoint coincides with k, Gk
def
= Gal(k/k) for the

absolute Galois group of k determined by the algebraic closure k, and Ik ⊆
Gk for the inertia subgroup of Gk.

Definition 2.1. Let K ⊆ k be a(n) (possibly infinite) algebraic ex-

tension of k. Then we shall say that X is split over K if the natural action

of GK
def
= Gal(k/K) ⊆ Gk on the dual graph GX is trivial.

Remark 2.1.1. Since the graph GX is finite, it is immediate that there

exists a finite extension K of k over which the hyperbolic curve X is split.

Definition 2.2. We shall write

∆X

for the pro-p geometric étale fundamental group of X — i.e., the maximal

pro-p quotient of the étale fundamental group π1(Xk) of Xk relative to the

basepoint which defines π1(X) — and

ΠX

for the geometrically pro-p étale fundamental group of X — i.e., the quotient

of π1(X) by the normal closed subgroup obtained by forming the kernel of

the natural surjection from π1(Xk) (⊆ π1(X)) to ∆X . Thus, we have an

exact sequence of profinite groups

1 −→ ∆X −→ ΠX −→ Gk −→ 1,
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which thus determines an outer action of Gk on ∆X .

Remark 2.2.1. Let Y → X be a connected finite étale covering of X.

Then one verifies easily that the covering Y → X (is isomorphic to the

covering which) corresponds to an open subgroup of ΠX if and only if the

covering Y → X is a geometrically-p-covering.

Definition 2.3.

(i) We shall write

∆ét
X

for the pro-p étale fundamental group of Xk — i.e., the maximal pro-p quo-

tient of the étale fundamental group π1(Xk) of Xk relative to the basepoint

determined by the basepoint which defines π1(X). Thus, the natural open

immersion from Xk into the stable model of Xk over the ring of integers of

k determines a surjection

∆X � ∆ét
X .

(ii) Let v ∈ Irr(X). Then we shall write

Dv ⊆ ∆ét
X

for the decomposition subgroup of ∆ét
X (well-defined up to conjugation)

associated to the irreducible component of Xk corresponding to v ∈
Irr(X).

(iii) We shall write

∆cmb
X

for the quotient of ∆ét
X by the normal closed subgroup topologically normally

generated by the Dv’s, where v ranges over the elements of Irr(X). Thus,

we have a natural surjection

∆ét
X � ∆cmb

X .
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Definition 2.4. We shall write

∆ab
X , ∆ét-ab

X , ∆cmb-ab
X

for the respective abelianizations of ∆X , ∆ét
X , ∆cmb

X . Thus, ∆ab
X , ∆ét-ab

X ,

∆cmb-ab
X have natural structures of Zp-modules, respectively.

Remark 2.4.1.

(i) One verifies easily that if X has stable reduction over the ring of

integers of k, then the quotients ∆ab
X � ∆ét-ab

X � ∆cmb-ab
X of ∆ab

X are Gk-

stable.

(ii) One also verifies easily from the various definitions involved that the

following hold:

• If X has stable reduction over the ring of integers of k, then the

action of Ik on the Gk-stable (cf. (i)) quotient ∆ét-ab
X is trivial.

• If X is split over k, then the action of Gk on the Gk-stable (cf. (i))

quotient ∆cmb-ab
X is trivial.

Here, let us recall the following well-known fact:

Proposition 2.5. The following hold:

(i) The profinite groups ∆ét
X , ∆cmb

X are free pro-p of rank γXk
, b1(X),

respectively. In particular, the Zp-modules ∆ét-ab
X , ∆cmb-ab

X are free of rank

γXk
, b1(X), respectively.

(ii) Let v ∈ Irr(X). Then the profinite group Dv is free pro-p of rank

γv. In particular, the abelianization Dab
v of Dv is a free Zp-module of rank

γv.

(iii) The natural inclusions Dv ↪→ ∆ét
X — where v ranges over the ele-

ments of Irr(X) — and the natural surjection ∆ét
X � ∆cmb

X determine an

exact sequence of finitely generated free Zp-modules

0 −→
⊕

v∈Irr(X)

D
ab
v −→ ∆ét-ab

X −→ ∆cmb-ab
X −→ 0.

(iv) Let v, w ∈ Irr(X)γ>0. Then the following conditions are equivalent:
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(1) It holds that v = w.

(2) The conjugacy class of Dv coincides with the conjugacy class of

Dw.

(3) The intersection Dv ∩ Dw is nontrivial for some choices of Dv

and Dw (i.e., among their conjugates).

(v) Let v ∈ Irr(X)γ>0. Then the closed subgroup Dv ⊆ ∆ét
X is commen-

surably terminal, i.e., for δ ∈ ∆ét
X , it holds that δ ∈ Dv if and only if the

intersection Dv ∩ (δDvδ
−1) is of finite index in both Dv and δDvδ

−1.

(vi) Suppose that X has stable reduction over the ring of integers of k

(which thus implies that the quotients ∆ab
X � ∆ét-ab

X � ∆cmb-ab
X of ∆ab

X are

Gk-stable — cf. Remark 2.4.1, (i)). Then, for every open subgroup J ⊆ Gk

of Gk, there is no nontrivial torsion-free J-stable quotient of

Ker(∆ét-ab
X � ∆cmb-ab

X )

on which J acts trivially.

Proof. First, we verify assertion (i). Let us first observe that it fol-

lows immediately from the definition of ∆cmb
X that ∆cmb

X is naturally iso-

morphic to the pro-p completion of the topological fundamental group of

the (topological space determined by the) graph GX . Next, let us recall the

well-known fact that the topological fundamental group of the (topological

space determined by the) graph GX is free of rank b1(X). Thus, the profinite

group ∆cmb
X is free pro-p of rank b1(X), as desired.

Next, to verify the assertion for ∆ét
X in assertion (i), let us recall the well-

known fact that H2
ét(Xk,Z/pZ) = {0} (cf., e.g., [10], Chapter VI, Remark

1.5, (b)). Thus, it follows from [20], Corollary A.1.4, that H2(∆ét
X ,Z/pZ) =

{0}. In particular, it follows from [18], Theorem 7.7.4, that ∆ét
X is free pro-p

(of rank γk — cf. Definition 1.1). This completes the proof of assertion (i).

Next, we verify assertions (ii), (iii). For each v ∈ Irr(X), write ∆v for

the maximal pro-p quotient of the étale fundamental group of the proper

smooth curve Xv over k. Then it follows from a similar argument to the

argument applied in the proof of the assertion for ∆ét
X in assertion (i) that

(a) the profinite group ∆v is free pro-p of rank γv (which thus implies

that the abelianization ∆ab
v of ∆v is a free Zp-module of rank γv).

Next, let us observe that since Dv is a closed subgroup of a free pro-p (cf.

assertion (i)) group ∆ét
X , it follows from [18], Corollary 7.7.5, that
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(b) the profinite group Dv is free pro-p (which thus implies that the

Zp-module Dab
v is free).

Moreover, it follows from the definition of Dv that

(c) the natural finite morphism Xv → Xk over k determines a surjection

∆v � Dv (well-defined up to N∆ét
X

(Dv)-conjugation — where we write

N∆ét
X

(Dv) for the normalizer of Dv in ∆ét
X).

Thus, it follows from (a), (b), (c) that, to verify assertion (ii), it suffices to

verify the following assertion:

(A) The surjection ∆ab
v � Dab

v determined by the surjection of (c) is

injective.

Next, let us observe that one verifies easily that the various homomorphisms

appearing in the statement of assertion (iii) determine an exact sequence of

Zp-modules

⊕

v∈Irr(X)

D
ab
v −→ ∆ét-ab

X −→ ∆cmb-ab
X −→ 0.

In particular, to verify assertion (iii), it suffices to verify the following as-

sertion:

(B) The natural homomorphism
⊕

v∈Irr(X) Dab
v → ∆ét-ab

X is injective.

Thus, we conclude (cf. (A), (B)) that, to complete the verification of asser-

tions (ii), (iii), it suffices to verify the following assertion:

(C) The homomorphism
⊕

v∈Irr(X) ∆ab
v → ∆ét-ab

X determined by the

natural finite morphisms Xv → Xk — where v ranges over the elements of

Irr(X) — is injective.

On the other hand, (C) follows immediately from a similar argument to the

argument applied in the proof of [7], Lemma 1.4 (cf. also Remark 2.5.1, (ii),

below). This completes the proofs of assertions (ii), (iii).

Assertion (iv) follows immediately from assertions (ii), (iii), together

with the fact that every nontrivial closed subgroup of a free pro-p group

is infinite (cf. [18], Corollary 7.7.5). Assertion (v) is a formal consequence

of assertion (iv). Assertion (vi) follows immediately from assertion (iii)

(cf. also (A)) and [21], Proposition 3.3, (ii). This completes the proof of

Proposition 2.5. �



Pro-p Absolute Anabelian Geometry 13

Remark 2.5.1.

(i) One can also verify the equalities concerning γXk
of Remark 1.4.1,

(ii), from Proposition 2.5, (i), (ii), (iii).

(ii) The assertion (C) in the proof of Proposition 2.5 also follows, in light

of the exact sequence in the discussion preceding the assertion (B), from the

equalities concerning γXk
of Remark 1.4.1, (ii), together with Proposition

2.5, (i), and the assertions (a), (c) in the proof of Proposition 2.5.

Definition 2.6.

(i) We shall say that X is ordinary if gX (i.e., gXk
— cf. Remark 1.4.1,

(ii)) is equal to γk.

(ii) We shall say that X is rationally degenerate if gv = 0 for every

v ∈ Irr(X).

Here, let us recall the following well-known fact:

Lemma 2.7. The following hold:

(i) It holds that X is ordinary if and only if gv = γv for every v ∈
Irr(X).

(ii) It holds that X is rationally degenerate if and only if the following

condition is satisfied: The hyperbolic curve X is ordinary, and Irr(X)γ>0 =

∅.
(iii) If X is ordinary, then it holds that either b1(X) 	= 0, Irr(X)γ=0 = ∅,

or �Irr(X)γ>0 ≥ 3.

Proof. Assertion (i) follows from Remark 1.4.1, (i), (ii). Assertion

(ii) follows from assertion (i), together with Remark 1.4.1, (i). Assertion

(iii) follows immediately from assertion (i), together with the definition of

a stable curve. �

Definition 2.8. Let C be a hyperbolic curve over k. Then we shall

say that Xk is p-isogenous to C if there exist a hyperbolic curve Z over k

and finite étale coverings Z → Xk, Z → C over k such that the respective

Galois closures of Z → Xk, Z → C are of degree a power of p.

Theorem 2.9. In the notations introduced at the beginning of §2, con-

sider the following conditions:
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(1) The hyperbolic curve X has good reduction over the ring of integers

of k (cf. Definition 1.2).

(2) The hyperbolic curve Xk is p-isogenous (cf. Definition 2.8) to a hy-

perbolic curve over k which has good reduction over the ring of integers of

k.

(3) It holds that b1(Y ) = 0 (cf. Definition 1.4, (ii)) for every geometri-

cally-p-covering Y → X (cf. Definition 1.5) of X.

(4) It holds that �Irr(Y )γ>0 ≤ 1 (cf. Definition 1.4, (iv)) for every

geometrically-p-covering Y → X of X.

Then the following hold:

(i) The implications

(1) =⇒ (2) =⇒ (3) =⇒ (4)

hold.

(ii) Suppose that there exists a geometrically-p-covering Y → X of X

such that Irr(Y )γ>0 	= ∅. Then the equivalence

(3) ⇐⇒ (4)

holds.

(iii) Suppose that X is ordinary (cf. Definition 2.6, (i)). Then the equiv-

alence

(1) ⇐⇒ (3)

holds.

Proof. First, we verify assertion (i). The implication (1) ⇒ (2) is

immediate. The implication (2)⇒ (3) follows, in light of Remark 1.4.2, (iii),

and Remark 1.5.1, from Theorem 1.6. Finally, we verify the implication (3)

⇒ (4). Suppose that condition (4) is not satisfied, i.e., that there exist a

geometrically-p-covering Y → X and distinct elements v1, v2 ∈ Irr(Y )γ>0.

Then it follows from Proposition 2.5, (ii), (iii), that there exists a Galois

geometrically-p-covering Z → Y of Y such that

• the surjection ∆Y � ∆Y /∆Z (cf. Remark 2.2.1) factors through

∆Y � ∆ét
Y ,
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• ∆Y /∆Z
∼= Z/pZ, and, moreover,

• for each w ∈ Irr(Y ), it holds that the image of the composite Dw ↪→
∆ét

Y � ∆Y /∆Z is nontrivial if and only if w ∈ {v1, v2}.
Then, by considering liftings in GZ — relative to the finite étale covering

Zk → Yk (cf. Remark 1.4.2, (ii)) — of a “simple path” in GY from v1 to

v2 (i.e., a connected subgraph γ of GY which is a tree such that, for each

vertex w of γ, there exist at most two branches of edges of γ that abut to w,

and, moreover, the set of vertices w of γ such that there exists precisely one

branch of an edge of γ that abuts to w coincides with the set {v1, v2}), one

verifies easily that b1(Z) 	= 0, which thus implies (cf. Remark 1.5.1) that

condition (3) is not satisfied. This completes the proof of the implication

(3) ⇒ (4), hence also of assertion (i).

Next, we verify assertion (ii). Suppose that there exists a geometrically-

p-covering Y → X of X such that Irr(Y )γ>0 	= ∅, and that condition (3)

is not satisfied. Thus, it follows from Remark 1.4.2, (iii), and Remark

1.5.1 that there exists a geometrically-p-covering Z → Y of Y such that

b1(Z) 	= 0, which thus implies that ∆cmb-ab
Z ⊗Zp Z/pZ 	= {0} (cf. Proposition

2.5, (i)). Let W → Z be a geometrically-p-covering of Z such that the open

subgroup ∆W ⊆ ∆Z (cf. Remark 2.2.1) coincides with the kernel of the

natural surjection ∆Z � ∆cmb-ab
Z ⊗Zp Z/pZ. Then it is immediate that

0 < �Irr(Y )γ>0 ≤ �Irr(Z)γ>0 < �(∆cmb-ab
Z ⊗Zp Z/pZ) · �Irr(Z)γ>0

= �Irr(W )γ>0

(cf. Remark 1.4.2, (iii)). Thus, condition (4) is not satisfied (cf. Remark

1.5.1). This completes the proof of assertion (ii).

Finally, we verify assertion (iii). Suppose that X is ordinary, and that

condition (3) is satisfied (which thus implies that condition (4) is satisfied

— cf. assertion (i)). Then it follows from Lemma 2.7, (iii), together with the

fact that b1(X) = 0 (cf. condition (3)), that it holds that either Irr(X)γ=0 =

∅ or �Irr(X)γ>0 ≥ 3. In particular, it follows from the fact that �Irr(X)γ>0 ≤
1 (cf. condition (4)) that Irr(X)γ=0 = ∅. Thus, again by the fact that

�Irr(X)γ>0 ≤ 1 (cf. condition (4)), it follows that

1 ≥ �Irr(X)γ>0 = �Irr(X)− �Irr(X)γ=0 = �Irr(X).

In particular, again by the fact that b1(X) = 0 (cf. condition (3)), it follows
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that Xk is smooth over k, as desired. This completes the proof of assertion

(iii). �

Remark 2.9.1. Suppose that we are in the situation of Theorem 2.9:

(i) In general, the implication (2) ⇒ (1) does not hold as follows: Let

us recall the well-known fact that the Zp-module ∆ab
X is free of rank 2gX

(= 2gXk
> γXk

). Thus, it follows from Proposition 2.5, (i), that the natural

surjection ∆X � ∆ét
X is not an isomorphism. Now suppose that X has good

reduction over the ring of integers of k. Thus, it follows from [21], Lemma

5.5, that there exists a geometrically-p-covering Y → X of X such that

Y does not have good reduction over the ring of integers of k. Then the

hyperbolic curve Y violates the implication (2) ⇒ (1).

(ii) It follows from (i) that, in general, the implication (3) ⇒ (1), hence

also the implication (4) ⇒ (1), does not hold.

Corollary 2.10. In the notations introduced at the beginning of §2,
let Y be an ordinary (cf. Definition 2.6, (i)) proper hyperbolic curve over k

that has good reduction over the ring of integers of k (cf. Definition 1.2).

Consider the following conditions:

(1) The hyperbolic curve X is ordinary.

(2) The hyperbolic curve X has good reduction over the ring of integers

of k.

Then the following hold:

(i) If Xk is p-isogenous (cf. Definition 2.8) to Yk, then the implication

(1) =⇒ (2)

holds.

(ii) If there exists a geometrically-p-covering X → Y (cf. Definition

1.5) over k such that the connected finite étale covering Xk → Yk over k

(cf. Remark 1.4.2, (i)) is Galois, then the equivalence

(1) ⇐⇒ (2)

holds.

Proof. First, we verify assertion (i). Suppose that X is ordinary, and

that Xk is p-isogenous to Yk. Since X satisfies condition (2) of Theorem 2.9,
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it follows from Theorem 2.9, (i), that X satisfies condition (3) of Theorem

2.9. Thus, since (we have assumed that) X is ordinary, it follows from

Theorem 2.9, (iii), that the hyperbolic curve X has good reduction over the

ring of integers of k, as desired. This completes the proof of assertion (i).

The implication (2)⇒ (1) in the case where there exists a geometrically-

p-covering X → Y over k such that the connected finite étale covering Xk →
Yk over k is Galois follows immediately from [21], Lemma 5.5, together

with the Riemann-Roch formula (for genus) and the Deuring-Shafarevich

formula (for p-rank — cf., e.g., [3], Theorem 3.1). This completes the proof

of Corollary 2.10. �

Remark 2.10.2. Note that Corollary 2.10, (ii), may be regarded as a

special case of [17], Proposition 3.

3. Pro-p Group-theoretic Algorithms

In the present §3, we establish functorial “group-theoretic” algorithms

for reconstructing various objects related to the geometry of the stable mod-

els of proper hyperbolic curves over p-adic local fields from the geometrically

pro-p étale fundamental groups of the curves (cf. Theorem 3.7 below). In

the present §3, we maintain the notations introduced at the beginning of

§2.

Definition 3.1. We shall write

ΛX
def
= HomZp

(
H2(∆X ,Zp),Zp

)

for the pro-p cyclotome associated to X. By the action of Gk on ΛX deter-

mined by the natural outer action of Gk on ∆X (cf. Definition 2.2), let us

regard ΛX as a Gk-module (cf. Remark 3.1.1 below).

Remark 3.1.1 One verifies easily (cf., e.g., [10], Chapter V, Theorem

2.1, (a)) that the Gk-module ΛX is isomorphic to the Gk-module “Zp(1)”

obtained by forming the projective limit lim←− nµpn(k) — where the projective

limit is taken over the positive integers n — of the groups µpn(k) ⊆ k× of

pn-th roots of unity in k.

Let us first recall the following well-known fact:
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Lemma 3.2. Suppose that X has stable reduction over the ring of in-

tegers of k. Then there exists a sequence of Gk-stable Zp-submodules of

∆ab
X

F0 = {0} ⊆ F1 ⊆ F2 ⊆ F3 ⊆ F4 ⊆ F5 = ∆ab
X

which satisfies the following conditions:

(1) For each 0 ≤ i ≤ 4, the quotient Fi+1/Fi is a free Zp-module.

(2) The submodule F3 (respectively, F4) coincides with the kernel of the

natural surjection ∆ab
X � ∆ét-ab

X (respectively, ∆ab
X � ∆cmb-ab

X ). In particu-

lar, we obtain Gk-equivariant isomorphisms

F5/F3
∼→ ∆ét-ab

X , F5/F4
∼→ ∆cmb-ab

X .

(3) There exist Gk-equivariant isomorphisms

F1
∼= HomZp(∆

cmb-ab
X ,ΛX), F2

∼= HomZp(∆
ét-ab
X ,ΛX).

(4) For every open subgroup J ⊆ Ik of Ik, there is no nontrivial torsion-

free J-stable quotient of F3/F2 on which J acts trivially.

Proof. This follows immediately, in light of Remark 3.1.1, from, for

instance, the discussion preceding [11], Lemma 8.1, together with [11],

Lemma 8.1. �

Lemma 3.3. The following hold:

(i) Let V be a finite-dimensional representation of Gk over Qp. Suppose

that the restriction of V to Ik is isomorphic to an extension of the direct

product of finitely many copies of the trivial representation Qp by the direct

product of finitely many copies of the representation ΛX ⊗Zp Qp. Then the

representation V of Gk is semistable.

(ii) Suppose that X is ordinary. Then it holds that X has stable re-

duction over the ring of integers of k if and only if the finite-dimensional

representation ∆ab
X ⊗Zp Qp of Ik over Qp (i.e., obtained by considering the

restriction to Ik of the natural action of Gk on ∆ab
X ⊗Zp Qp) is isomorphic to

an extension of the direct product of gX copies of the trivial representation

Qp by the direct product of gX copies of the representation ΛX ⊗Zp Qp.



Pro-p Absolute Anabelian Geometry 19

Proof. First, we verify assertion (i). Let us first observe that it fol-

lows from [5], Proposition of §5.1.5, that the representation V of Gk is

semistable if and only if the restriction of V to Ik is semistable. Thus, to

verify assertion (i), we may assume without loss of generality that the rep-

resentation V of Gk is isomorphic to an extension of the direct product of

finitely many copies of the trivial representation Qp by the direct product

of finitely many copies of the representation ΛX ⊗Zp Qp. Then the assertion

that the representation V of Gk is semistable follows immediately from the

second comment following the table in the final discussion of [2], §16. This

completes the proof of assertion (i).

Next, we verify assertion (ii). First, we verify the necessity. Suppose

that X has stable reduction over the ring of integers of k. Then since (we

have assumed that) X is ordinary, it follows from Proposition 2.5, (i), that

the Zp-module ∆ét-ab
X is free of rank gX . Thus, since (it is well-known that)

the Zp-module ∆ab
X is free of rank 2gX , the necessity follows immediately,

in light of Remark 2.4.1, (ii), from Lemma 3.2. This completes the proof of

the necessity.

Finally, we verify the sufficiency. Suppose that the representation

∆ab
X ⊗Zp Qp of Ik is isomorphic to an extension of the direct product of

gX copies of the trivial representation Qp by the direct product of gX copies

of the representation ΛX ⊗Zp Qp. Then it follows from assertion (i) that the

representation ∆ab
X ⊗Zp Qp of Gk is semistable. In particular, it follows from

[2], Theorem 14.1, that the Jacobian variety of X has semistable reduction

(i.e., over the ring of integers of k). Thus, it follows from [4], Theorem 2.4,

that X has stable reduction over the ring of integers of k. This completes

the proof of assertion (ii), hence also of Lemma 3.3. �

Lemma 3.4. The following hold:

(i) The closed subgroup ∆X ⊆ ΠX of ΠX may be characterized as the

uniquely determined maximal nontrivial pro-l — for some prime number l

— topologically finitely generated normal closed subgroup of ΠX .

(ii) The quotient ∆ab
X � ∆ét-ab

X (respectively, ∆ab
X � ∆cmb-ab

X ) of ∆ab
X

may be characterized as the uniquely determined maximal torsion-free quo-

tient of ∆ab
X which satisfies the following condition: There exists an open

subgroup J ⊆ Gk of Gk such that this quotient is J-stable, and, moreover,

the resulting action of J ∩ Ik (respectively, J) on this quotient is trivial.
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Proof. First, we verify assertion (i) (cf. Remark 3.4.1 below). Let l

be a prime number and N ⊆ ΠX a maximal nontrivial pro-l topologically

finitely generated normal closed subgroup of ΠX . Then it is immediate that

the image N ⊆ Gk of N in Gk is a pro-l topologically finitely generated

normal closed subgroup of Gk. Now let us recall from [14], Theorem 1.7,

(ii), that Gk is elastic. (Here, let us recall that a profinite group is elastic

if a topologically finitely generated closed subgroup of this profinite group

is normal in an open subgroup of this profinite group, then this closed

subgroup is either trivial or of finite index — cf. [14], Definition 1.1, (ii).)

In particular, the closed subgroup N is either trivial or open in Gk (cf. also

[9], Proposition 1.2). Thus, since (one verifies easily — by considering, for

instance, the quotient determined by the maximal unramified extension —

that) every open subgroup of Gk is not pro-l, we conclude that N = {1},
i.e., that N ⊆ ∆X . Thus, since ∆X is pro-p, and (we have assumed that) N

is nontrivial and pro-l, it holds that l = p. Moreover, since (it is immediate

from the well-known structure of the étale fundamental groups of hyperbolic

curves over algebraically closed fields of characteristic zero that) ∆X is a

nontrivial pro-p topologically finitely generated normal closed subgroup of

ΠX , it follows from the maximality of N that N = ∆X , as desired. This

completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that, to verify assertion

(ii), we may assume without loss of generality, by replacing k by a suitable

finite extension of k contained in k, that X has stable reduction over the ring

of integers of k (cf. Theorem 1.3) and is split over k (cf. Remark 2.1.1), which

thus implies that (the quotients ∆ab
X � ∆ét-ab

X � ∆cmb-ab
X are Gk-stable —

cf. Remark 2.4.1, (i) — and, moreover)

(a) the action of Ik (respectively, Gk) on ∆ét-ab
X (respectively, ∆cmb-ab

X )

is trivial (cf. Remark 2.4.1, (ii)).

Thus, in light of Proposition 2.5, (i), to complete the verification of assertion

(ii), it suffices to verify the following assertion:

If ∆ab
X � Q is a torsion-free Gk-stable quotient of ∆ab

X on which

Ik (respectively, Gk) acts trivially, then the surjection ∆ab
X �

Q factors through the surjection ∆ab
X � ∆ét-ab

X (respectively,

∆ab
X � ∆cmb-ab

X ).

To this end, let ∆ab
X � Q be a torsion-free Gk-stable quotient of ∆ab

X . Now
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let us recall the sequence of Gk-stable Zp-submodules of ∆ab
X

F0 = {0} ⊆ F1 ⊆ F2 ⊆ F3 ⊆ F4 ⊆ F5 = ∆ab
X

as in Lemma 3.2.

To verify the non-resp’d portion of assertion (ii), suppose that the action

of Ik on Q is trivial. Then it follows from (a), together with condition (3)

of Lemma 3.2, that we have an Ik-equivariant isomorphism of F2 with the

direct product of finitely many copies of ΛX . Now let us recall that the

character Ik → Z×
p determined by the action of Ik on ΛX coincides with

the p-adic cyclotomic character (cf. Remark 3.1.1), which thus implies that

the image of this character Ik → Z×
p is open in Z×

p . Thus, the image of the

composite F2 ↪→ ∆ab
X � Q is zero. Moreover, it follows from condition (4)

of Lemma 3.2 that the image of F3/F2 ⊆ ∆ab
X /F2 via the resulting surjection

∆ab
X /F2 � Q is zero. Thus, the surjection ∆ab

X � Q factors through the

surjection ∆ab
X � ∆ab

X /F3 = ∆ét-ab
X (cf. condition (2) of Lemma 3.2). This

completes the proof of the non-resp’d portion of assertion (ii).

Next, to verify the resp’d portion of assertion (ii), suppose that the

action of (not only Ik but also) Gk on the quotient Q is trivial. Thus,

it follows from the above proof of the non-resp’d portion of assertion (ii)

that, to verify the resp’d portion of assertion (ii), it suffices to verify that the

image of F4/F3 via the resulting surjection ∆ab
X /F3 � Q is zero (cf. condition

(2) of Lemma 3.2). On the other hand, this follows from Proposition 2.5,

(vi), together with condition (2) of Lemma 3.2. This completes the proof

of the resp’d portion of assertion (ii), hence also of assertion (ii). �

Remark 3.4.1. Note that Lemma 3.4, (i), is a special case of [14],

Theorem 2.6, (iv). Note, moreover, that the assertion for ∆ét-ab
X in Lemma

3.4, (ii), may be considered to be essentially the same as [11], Lemma 8.2.

Lemma 3.5. The following hold:

(i) Let N ⊆ ∆ét
X be a normal open subgroup of ∆ét

X . Write Z → Xk for

the finite étale Galois covering corresponding to N ⊆ ∆ét
X and b1(Z) for the

first Betti number of the (topological space determined by the) dual graph of

Z. Then the following conditions are equivalent:

(1) There exists an element v ∈ Irr(X) such that Z ×Xk
Xv is con-

nected, and, moreover, for each w ∈ Irr(X) \ {v}, the restriction of the
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covering Z → Xk to the generic point of the irreducible component corre-

sponding to w is trivial.

(2) It holds that

b1(Z) = [∆ét
X : N ] · b1(X).

(ii) Consider the following set IX and the following equivalence relation

∼IX :

• Write IX for the set of minimal normal open subgroups N ⊆ ∆ét
X

of ∆ét
X such that ∆ét

X/N is abelian and annihilated by p, and, moreover, the

subgroup N satisfies conditions (1), (2) of (i).

• For two elements N1, N2 of IX , write N1 ∼IX N2 if Im(N1 ↪→
∆ét

X � ∆ét-ab
X ) ∩ Ker(∆ét-ab

X � ∆cmb-ab
X ) = Im(N2 ↪→ ∆ét

X � ∆ét-ab
X ) ∩

Ker(∆ét-ab
X � ∆cmb-ab

X ).

Then there exists a bijection

Irr(X)γ>0 ∼−→ IX/ ∼IX

which satisfies the following condition: Let N be an element of IX . Write

v ∈ Irr(X) for the element corresponding, via the bijection, to (the class

determined by) N . Then it holds that Ker(∆ét
X � ∆cmb

X ) ⊆ N ·Dv. (Note

that since ∆ét
X/N is abelian, the subgroup N ·Dv ⊆ ∆ét

X does not depend on

the choice of Dv among the conjugates.)

Proof. First, we verify assertion (i). Write Irr(Z) for the set of irre-

ducible components of Z. Write, moreover, Nd(X), Nd(Z) for the sets of

nodes of the stable curves Xk, Z, respectively. Then let us first observe that

since the covering Z → Xk is Galois and of degree a power of p, one verifies

easily that condition (1) is equivalent to the following condition (1′) (cf. also

the discussion of [15], Remark 1.2.3, (iii), related to the term “verticially

purely totally ramified”):

(1′) The equality

�Irr(Z) = [∆ét
X : N ] · (�Irr(X)− 1) + 1

holds.
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Next, let us observe that it follows from a well-known fact concerning the

first Betti numbers of (the topological spaces determined by) connected

graphs that condition (2) is equivalent to the following condition (2′):

(2′) The equality

1− �Irr(Z) + �Nd(Z) = [∆ét
X : N ] · (1− �Irr(X) + �Nd(X))

holds.

On the other hand, since the covering Z → Xk is finite étale, it holds that

�Nd(Z) = [∆ét
X : N ] · �Nd(X).

Thus, assertion (i) holds. This completes the proof of assertion (i).

Assertion (ii) follows immediately from assertion (i), together with

Proposition 2.5, (i), (ii), (iii). This completes the proof of Lemma 3.5. �

Remark 3.5.1. Note that Lemma 3.5, (i), may be regarded as a “pro-p

variant” of the discussion of [15], Remark 1.2.3, (iii), related to the term

“verticially purely totally ramified”. Note, moreover, that Lemma 3.5, (ii),

may be regarded as a “pro-p variant” of the discussion of [15], Remark 1.2.3,

(iv), related to the “functorial characterization of the set of vertices of G”.

Definition 3.6. We shall say that a profinite group Π satisfies the

condition (†) if there exist a prime number l and an isomorphism of Π with

the geometrically pro-l étale fundamental group of a proper hyperbolic curve

over an l-adic local field.

Remark 3.6.1. One verifies easily (cf. Remark 1.4.2, (i)) that if a profi-

nite group satisfies the condition (†), then every open subgroup of this profi-

nite group satisfies the condition (†).

Theorem 3.7. In the notations introduced at the beginning of §3, let

Π

be a profinite group which satisfies the condition (†) (cf. Definition 3.6).

Suppose that Π is isomorphic to the geometrically pro-p étale fundamental

group ΠX of X (cf. Definition 2.2). Let

α : Π
∼−→ ΠX
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be an isomorphism of profinite groups. Then the following hold:

(i) We shall write

∆Π ⊆ Π

for the (uniquely determined) maximal nontrivial pro-l — for some prime

number l — topologically finitely generated normal closed subgroup of Π.

Then α restricts to an isomorphism of profinite groups

α∆ : ∆Π
∼−→ ∆X

(cf. Definition 2.2).

(ii) We shall write

GΠ
def
= Π/∆Π

for the quotient of Π by ∆Π. Then α determines an isomorphism of profinite

groups

αG : GΠ
∼−→ Gk.

(iii) The profinite group GΠ is of MLF-type (i.e., a profinite group iso-

morphic to the absolute Galois group of a finite extension of Ql for some

prime number l — cf. [9], Definition 1.1; also [9], Proposition 1.2, (i)).

Thus, by applying the functorial “group-theoretic” algorithm of [9], Theo-

rem 1.4, (3), to GΠ, we obtain a normal closed subgroup

IΠ
def
= I(GΠ) ⊆ GΠ.

Then the isomorphism αG of (ii) restricts to an isomorphism of profinite

groups

αI : IΠ
∼−→ Ik.

(iv) We shall write

pΠ

for the (uniquely determined) prime number such that ∆Π is pro-pΠ. Then

it holds that

pΠ = p.
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(v) We shall write

∆ét
Π

def
= ∆Π/J

ét
Π (respectively, ∆cmb

Π
def
= ∆Π/J

cmb
Π )

for the quotient of ∆Π by the normal closed subgroup

J ét
Π ⊆ ∆Π (respectively, Jcmb

Π ⊆ ∆Π)

obtained by forming the intersection of the normal open subgroups N ⊆ ∆Π

of ∆Π which satisfy the following condition: Let

N0 = N ⊆ N1 ⊆ · · · ⊆ Nr−1 ⊆ Nr = ∆Π

be a finite sequence of normal open subgroups of ∆Π such that Ni+1/Ni is

abelian for each 0 ≤ i ≤ r − 1 (note that since ∆Π is pro-pΠ, one verifies

easily that such a sequence always exists) and

P0 ⊆ P1 ⊆ · · · ⊆ Pr−1 ⊆ Pr = Π

a finite sequence of open subgroups of Π such that Pi∩∆Π = Ni (which thus

implies that Pi/Ni may be regarded as an open subgroup of GΠ) for each

0 ≤ i ≤ r. Then, for each 0 ≤ i ≤ r−1, the surjection Ni+1 � Ni+1/Ni fac-

tors through the surjection onto the (uniquely determined) maximal abelian

torsion-free quotient of Ni+1 which satisfies the following condition: There

exists an open subgroup Ji+1 ⊆ Pi+1/Ni+1 of Pi+1/Ni+1 such that this

quotient is Ji+1-stable, and, moreover, the resulting action of Ji+1 ∩ IΠ
(respectively, Ji+1) on this quotient is trivial. Then the isomorphism α∆ of

(i) determines a commutative diagram of profinite groups

∆Π −−−→ ∆ét
Π −−−→ ∆cmb

Π

α∆

�	 αét
∆

�	 αcmb
∆

�	

∆X −−−→ ∆ét
X −−−→ ∆cmb

X

(cf. Definition 2.3, (i), (iii)) — where the horizontal arrows are the natural

surjections, and the vertical arrows are isomorphisms of profinite groups.

(vi) We shall write

∆ab
Π � ∆ét-ab

Π � ∆cmb-ab
Π
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for the respective abelianizations of ∆Π, ∆ét
Π , ∆cmb

Π . Then the diagram of

(v) determines a commutative diagram of profinite groups

∆ab
Π −−−→ ∆ét-ab

Π −−−→ ∆cmb-ab
Π

αab
∆

�	 αét-ab
∆

�	 αcmb-ab
∆

�	

∆ab
X −−−→ ∆ét-ab

X −−−→ ∆cmb-ab
X

(cf. Definition 2.4) — where the horizontal arrows are the natural surjec-

tions, and the vertical arrows are isomorphisms of profinite groups.

(vii) We shall write

gΠ
def
=

1

2
· rankZpΠ

(∆ab
Π ), γΠ

def
= rankZpΠ

(∆ét-ab
Π ),

b1(Π)
def
= rankZpΠ

(∆cmb-ab
Π ).

Then it holds that

gΠ = gX , γΠ = γXk
, b1(Π) = b1(X)

(cf. Definition 1.1; Definition 1.4, (ii)).

(viii) We shall write

IΠ

for the set of minimal normal open subgroups N ⊆ ∆Π of ∆Π such that

N contains J ét
Π , ∆X/N is abelian and annihilated by pΠ, and, moreover,

there exists an open subgroup P ⊆ Π of Π such that P ∩ ∆Π = N and

b1(P ) = [∆Π : N ] · b1(Π), where we write b1(P ) for the integer obtained

by applying the “group-theoretic” algorithm “b1(−)” of (vii) to the profinite

group P (which satisfies the condition (†) — cf. Remark 3.6.1);

∼IΠ

for the equivalence relation on the set IΠ defined as follows: For two el-

ements N1, N2 of IΠ, we write N1 ∼IΠ
N2 if Im(N1 ↪→ ∆Π � ∆ét-ab

Π ) ∩
Ker(∆ét-ab

Π � ∆cmb-ab
Π ) = Im(N2 ↪→ ∆Π � ∆ét-ab

Π )∩Ker(∆ét-ab
Π � ∆cmb-ab

Π );

Irr(Π)γ>0 def
= IΠ/ ∼IΠ

.
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Then the isomorphism αét
∆ of (v) determines — relative to the bijection of

Lemma 3.5, (ii) — a bijection

αIrr : Irr(Π)γ>0 ∼−→ Irr(X)γ>0

(cf. Definition 1.4, (iv)).

(ix) Let vΠ ∈ Irr(Π)γ>0. Then we shall write

DvΠ ⊆ ∆ét
Π

for the (uniquely determined, up to conjugation) maximal closed subgroup

of ∆ét
Π such that

• for each normal open subgroup P ⊆ Π of Π such that J ét
Π ⊆ P , the

closed subgroup DvΠ ⊆ ∆ét
Π is contained in the stabilizer (with respect to

the action induced by the action by conjugation) of an element of the set

Irr(P )γ>0 obtained by applying the “group-theoretic” algorithm “Irr(−)γ>0”

of (viii) to the profinite group P (which satisfies the condition (†) — cf.

Remark 3.6.1), and, moreover,

• if N ⊆ ∆Π is an element of IΠ which determines the class vΠ ∈
Irr(Π)γ>0, then it holds that Ker(∆ét

Π � ∆cmb
Π ) ⊆ Im(N ↪→ ∆Π � ∆ét

Π)·DvΠ.

(Note that since ∆Π/N is abelian, the subgroup Im(N ↪→ ∆Π � ∆ét
Π) ·DvΠ

does not depend on the choice of DvΠ among the conjugates.)

Then the isomorphism αét
∆ of (v) determines a bijection between the set of

conjugates of DvΠ ⊆ ∆ét
Π and the set of conjugates of DαIrr(vΠ) ⊆ ∆ét

X (cf.

Definition 2.3, (ii)).

(x) Let vΠ ∈ Irr(Π)γ>0. Then we shall write

γvΠ

def
= rankZpΠ

(Dab
vΠ

)

— where we write Dab
vΠ

for the abelianization of DvΠ. Then it holds that

γvΠ = γαIrr(vΠ)

(cf. Definition 1.4, (iii)).

(xi) We shall say that the profinite group Π is ordinary if the equality

gΠ = γΠ holds. We shall say that the profinite group Π is rationally degen-

erate if Π is ordinary, and, moreover, Irr(Π)γ>0 = ∅. Then it holds that Π
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is ordinary (respectively, rationally degenerate) if and only if X is ordinary

(cf. Definition 2.6, (i)) (respectively, rationally degenerate (cf. Definition

2.6, (ii))).

(xii) Suppose that Π is ordinary (which thus implies that X is ordinary

— cf. (xi)). Then we shall say that the profinite group Π has stable reduction

if the representation ∆ab
Π ⊗ZpΠ

QpΠ of IΠ is isomorphic to an extension of

the direct product of gΠ copies of the trivial representation QpΠ by the direct

product of gΠ copies of the representation

HomZpΠ

(
H2(∆Π,ZpΠ),QpΠ

)
.

Then it holds that Π has stable reduction if and only if X has stable reduc-

tion over the ring of integers of k (cf. Definition 1.2).

(xiii) Suppose that Π is ordinary (which thus implies that X is ordinary

— cf. (xi)). Then we shall say that the profinite group Π has good reduction

if Π has stable reduction, and, moreover, b1(P ) = 0 for every open subgroup

P ⊆ Π of Π, where we write b1(P ) for the integer obtained by applying the

“group-theoretic” algorithm “b1(−)” of (vii) to the profinite group P (which

satisfies the condition (†) — cf. Remark 3.6.1). Then it holds that Π has

good reduction if and only if X has good reduction over the ring of integers

of k (cf. Definition 1.2).

Proof. Assertions (i), (ii) follow from Lemma 3.4, (i). Assertion (iii)

follows from [9], Theorem 1.4, (ii), together with assertion (ii). Assertion

(iv) follows from assertion (i). Assertions (v), (vi) follow from Lemma 3.4,

(ii), together with assertions (i), (ii), (iii). The assertion for gΠ in assertion

(vii) follows from assertions (iv), (vi), together with the well-known fact

that the Zp-module ∆ab
X is free of rank 2gX . The assertion for γΠ and b1(Π)

in assertion (vii) follows from Proposition 2.5, (i), together with assertion

(iv), (vi). Assertions (viii), (ix) follow, in light of the finiteness of Irr(−)γ>0,

from Lemma 3.5, (ii), together with assertions (i), (iv), (v), (vii). Assertion

(x) follows from Proposition 2.5, (ii), together with assertions (iv), (ix).

Assertion (xi) follows from Lemma 2.7, (ii), together with assertions (vii),

(viii). Assertion (xii) follows, in light of Definition 3.1, from Lemma 3.3,

(ii), together with assertions (i), (iii), (iv), (vi), (vii), (xi). Assertion (xiii)

follows from Theorem 2.9, (iii), together with assertions (vii), (xi), (xii).

This completes the proof of Theorem 3.7. �
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Corollary 3.8. For � ∈ {◦, •}, let p� be a prime number, k� a p�-

adic local field, and X� a proper hyperbolic curve over k�; write ΠX�
for the geometrically pro-p� étale fundamental group of X� (cf. Definition

2.2). Let

α : ΠX◦
∼−→ ΠX•

be an isomorphism of profinite groups. Then the following hold:

(i) It holds that p◦ = p•, gX◦ = gX• (cf. Definition 1.1), and b1(X◦) =

b1(X•) (cf. Definition 1.4, (ii)).

(ii) The isomorphism α determines a commutative diagram of profinite

groups

∆X◦ −−−→ ∆ét
X◦ −−−→ ∆cmb

X◦

α∆

�	 αét
∆

�	 αcmb
∆

�	

∆X• −−−→ ∆ét
X• −−−→ ∆cmb

X•

(cf. Definition 2.3, (i), (iii)) — where the horizontal arrows are the natural

surjections, and the vertical arrows are isomorphisms of profinite groups.

(iii) There exists a bijection

αIrr : Irr(X◦)
γ>0 ∼−→ Irr(X•)

γ>0

(cf. Definition 1.4, (iv)) such that, for each v ∈ Irr(X◦)γ>0,

(1) the isomorphism αét
∆ (cf. (ii)) determines a bijection between the

set of conjugates of Dv ⊆ ∆ét
X◦ (cf. Definition 2.3, (ii)) and the set of con-

jugates of DαIrr(v) ⊆ ∆ét
X•, and

(2) it holds that γv = γαIrr(v) (cf. Definition 1.4, (iii)).

(iv) It holds that X◦ is ordinary (cf. Definition 2.6, (i)) (respectively,

rationally degenerate (cf. Definition 2.6, (ii))) if and only if X• is ordinary

(respectively, rationally degenerate).

(v) Suppose, moreover, that either X◦ or X• is ordinary. Then it holds

that X◦ has stable reduction over the ring of integers of k◦ (cf. Definition

1.2) if and only if X• has stable reduction over the ring of integers of k•.

(vi) Suppose, moreover, that either X◦ or X• is ordinary. Then it holds

that X◦ has good reduction over the ring of integers of k◦ (cf. Definition

1.2) if and only if X• has good reduction over the ring of integers of k•.
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Proof. Assertion (i) follows from Theorem 3.7, (iv), (vii). Assertion

(ii) follows from Theorem 3.7, (v). Assertion (iii) follows from Theorem 3.7,

(viii), (ix), (x). Assertion (iv) follows from Theorem 3.7, (xi). Assertion (v)

follows, in light of assertion (iv), from Theorem 3.7, (xii). Assertion (vi)

follows, in light of assertion (iv), from Theorem 3.7, (xiii). This completes

the proof of Corollary 3.8. �

Remark 3.8.1.

(i) Note that Theorem 3.7, (xiii), may be regarded as a pro-p “group-

theoretic” criterion for good reduction of ordinary proper hyperbolic curves

over p-adic local fields. As a consequence of the “group-theoreticity”, The-

orem 3.7, (xiii), implies in fact Corollary 3.8, (vi).

(ii) Let Σ be a nonempty set of prime numbers such that p 	∈ Σ. Then

we have a pro-Σ “group-theoretic” criterion for good reduction of (not nec-

essarily ordinary) hyperbolic curves over p-adic local fields in the following

sense: Let C be a (not necessarily proper) hyperbolic curve over the p-adic

local field k (cf. the discussion entitled “Curves” in [6], §0, for the definition

of the term “hyperbolic curve”) and Π a profinite group which is isomorphic

to the geometrically pro-Σ étale fundamental group of C (i.e., the quotient

of the étale fundamental group of C obtained by replacing “pro-p” in the

definition of the “geometrically pro-p étale fundamental group ΠX” in Def-

inition 2.2 by pro-Σ). Then it follows from [14], Theorem 2.6, (iv), that

one may define a normal closed subgroup ∆Π ⊆ Π of Π which corresponds

to the pro-Σ geometric étale fundamental group of C (i.e., the quotient of

the étale fundamental group of C ×k k obtained by replacing “pro-p” in the

definition of the “pro-p geometric étale fundamental group ∆X” in Defini-

tion 2.2 by pro-Σ). Thus, one may also define a normal closed subgroup

IΠ ⊆ Π/∆Π of Π/∆Π which corresponds to the inertia subgroup Ik of Gk

(cf., e.g., Theorem 3.7, (iii)). Then [19], Theorem 3.2, and [21], Theorem

5.3, assert that

it holds that C has good reduction over the ring of integers of k

(cf. [21], Definition 5.1) if and only if the image of the restric-

tion of the action Π → Aut(∆Π) by conjugation to the closed

subgroup Π×Π/∆Π
IΠ ⊆ Π is contained in the subgroup of inner

automorphisms of ∆Π.
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(iii) Note that, by (the proof of) [13], Corollary 2.8, in the situation

of (ii), one may establish a functorial “group-theoretic” algorithm for re-

constructing, from Π, the dual semi-graph of the special fiber of the stable

model of C ×k k over the ring of integers of k.

Remark 3.8.2. Let us discuss the p-adic criterion for good reduction

of curves proved by F. Andreatta, A. Iovita, and M. Kim in [1] from the

point of view of the present paper:

(i) In [1], F. Andreatta, A. Iovita, and M. Kim proved a p-adic criterion

for good reduction of curves. Here, let us recall [1], Theorem 1.9, briefly

from the point of view of the present paper:

In the notations introduced at the beginning of §3 of the present

paper, by considering (neutral tannakian) categories of certain

finite-dimensional unipotent representations of the profinite

group ∆X over Qp, one may define, for each positive integer

n, a finite-dimensional representation E ét
n of ΠX over Qp. Let

b ∈ X(k) be a k-rational point of X. Then, by restricting

the representation E ét
n to the splitting (well-defined up to ∆X -

conjugation) of the natural surjection ΠX � Gk induced by

b, one obtains, for each positive integer n, a finite-dimensional

representation E ét
n,b of Gk over Qp. Then [1], Theorem 1.9, as-

serts that X has good reduction over the ring of integers of k if

and only if the representation E ét
n,b of Gk is crystalline for every

positive integer n.

(ii) The p-adic criterion of (i) (is interesting even in a certain point of

view of anabelian geometry but) should be considered to be not “group-

theoretic” (i.e., to be not useful in pro-p absolute anabelian geometry) by

the following two reasons:

(1) The issue of whether or not a given finite-dimensional representa-

tion of Gk over Qp is crystalline is not “group-theoretic”. Indeed, it follows

immediately from the discussion of [8], Remark 3.3.1, that there exist a

prime number l, an l-adic local field L, an automorphism α of the absolute

Galois group GL of L, and a crystalline representation ρ : GL → GLn(Ql)

such that the composite GL

α
∼→ GL

ρ→ GLn(Ql) is not crystalline.
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(2) It is not clear that the issue of whether or not a given splitting

of the natural surjection ΠX � Gk arises from a k-rational point of X is

“group-theoretic”. Note that it follows from [6], Theorem A, that there exist

a prime number l, an l-adic local field L, a proper hyperbolic curve C over

L, and a splitting of the natural surjection from the geometrically pro-l étale

fundamental group of C onto the absolute Galois group of L which does not

arise from an L-rational point of C.

(iii) As a consequence of the discussion of (ii), the p-adic criterion of

(i) does not, at least in the immediate literal sense, imply the following

assertion:

(3) In the situation of Corollary 3.8, it holds that X◦ has good reduc-

tion over the ring of integers of k◦ if and only if X• has good reduction over

the ring of integers of k•.

Note that it is not clear to the author at the time of writing whether or

not the above assertion (3) is valid (without ordinary assumption).

(iv) In an attempt to apply the p-adic criterion of (i) to the study of

assertion (3), in order to avoid the problem arising from the fact that the

issue of whether or not a given finite-dimensional representation of Gk over

Qp is crystalline is not “group-theoretic” (i.e., (1) of the discussion of (ii)),

one may consider the following assumption:

(4) In the situation of Corollary 3.8, if we write p
def
= p◦ = p• (cf.

Corollary 3.8, (i)) and αG : Gal(k◦/k◦)
∼→ Gal(k•/k•) — where k◦, k• are

respective appropriate algebraic closures of k◦, k• — for the isomorphism

induced by α (cf. Theorem 3.7, (ii)), then, for every finite extension k′• of

k• in k• and every crystalline representation ρ : Gal(k•/k′•) → GLn(Qp) of

Gal(k•/k′•), the composite Gal(k◦/k′◦)
αG∼→ Gal(k•/k′•)

ρ→ GLn(Qp) — where

we write k′◦ for the finite extension of k◦ in k◦ corresponding, via αG, to k′•
— is a crystalline representation of Gal(k◦/k′◦).

On the other hand, it follows immediately from a similar argument to the

argument applied in the proof of [8], Theorem, that assumption (4) implies

that the isomorphism αG arises from an isomorphism of fields k•
∼→ k◦

which restricts to an isomorphism of fields k•
∼→ k◦. In particular, it follows

immediately from [12], Theorem A, that α arises from an isomorphism of

schemes X◦
∼→ X•, which thus implies the equivalence discussed in assertion
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(3). That is to say, assertion (3) under assumption (4) may be verified

without the p-adic criterion of (i).
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