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Dehn Twists, Hypertwists, and Uniformization of

Twined Singularities

By Kenjiro Sasaki and Shigeru Takamura

Abstract. There are two kinds of homeomorphisms of an annu-
lus that appear as local monodromies of degenerations of Riemann
surfaces: fractional Dehn twist and Nielsen twist. In this paper, they
are “in a unified way” generalized to higher dimensions as a hypertwist,
which is the monodromy of a twined singularity (a quotient of a mul-
tiplicative A-singularity). We moreover establish the uniformization
theorem of this quotient, which generalizes the uniformization theorem
in our previous paper.
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1. Introduction

Let a and m (0 < a < m) and b and n (0 < b < n) be two pairs

of relatively prime integers. An
(
a
m, bn

)
-fractional Dehn twist is a self-

homeomorphism of an annulus [0, 1] × S1 given by (t, eiθ) �→
(t, e2πi{−(1−t)a/m+tb/n}eiθ). More generally, where κ is an integer, an(
a
m, bn, κ

)
-fractional Dehn twist is defined as the composite map of a κ-

Dehn twist and an
(
a
m, bn

)
-fractional Dehn twist (Figure 1.1). We next

introduce a Nielsen twist. First let H : [0, 1] × R → [0, 1] × R be an affine

transformation given by H(t, y) =
(
1 − t, (2t − 1) a

2m − y
)
. Then H and

H2 transform [0, 1] × R as illustrated in Figure 1.2; note that H2(t, y) =(
t, (1 − 2t) am + y

)
. Under the covering map f : [0, 1] × R → [0, 1] × S1,

f(t, y) = (t, e2πiy), H descends to an a
2m -Nielsen twist h : [0, 1] × S1 →

[0, 1]×S1, h(t, eiθ) = (1−t, e2πi(2t−1)a/2me−iθ). Note that h2 is a −
( a
m, a

m
)
-

fractional Dehn twist.

More generally, an
(
a

2m, κ
)
-Nielsen twist of h and a (−κ)-Dehn twist

(not (+κ)-Dehn twist), explicitly given by

(t, eiθ) ∈ [0, 1] × S1 �−→ (1 − t, e2πi{(2t−1)a/2m+tκ}e−iθ) ∈ [0, 1] × S1.

Note that its square is a −
( a
m, a

m, 2κ
)
-fractional Dehn twist.

A fractional Dehn twist appears as the topological monodromy of a

degeneration: Set c := gcd(m,n), m′ := m/c, n′ := n/c, and let γ : C
3 → C

3

be an automorphism defined by

γ : (z, w, t) �−→ (e2πia/mz, e2πib/nw, e2πi/m′n′ct).(1.1)

Suppose that γ preserves Ad−1 := {(z, w, t) ∈ C
3 : zw = td}; this is the case

precisely when e2πia/me2πib/n = e2πid/m′n′c, that is, a
m + b

n ≡ d
m′n′c

mod Z.

Write d = m′n′c
(
a
m + b

n + κ
)

for some integer κ such that a
m + b

n +κ > 0.

Let Γ the cyclic group generated by γ. Define a holomorphic map Φ :

Ad−1 → C by Φ(z, w, t) = tm
′n′c. Then Φ is Γ-invariant, so descends to a

holomorphic map Φ : Ad−1/Γ → C, which is a degeneration of annuli whose

topological monodromy is a −
(
a
m, bn, κ

)
-fractional Dehn twist.
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Fig. 1.1. An
(
a
m, b

n , κ
)
-fractional Dehn twist.

Fig. 1.2.

A Nielsen twist also appears as the topological monodromy of a degen-

eration: Let γ′ : C
3 → C

3 be an automorphism defined by

γ′ : (z, w, t) �−→ (e2πia/2mw, e2πia/2mz, e2πi/2mt).(1.2)

Suppose that γ′ preserves Ad−1; this is the case precisely when e2πia/m =

e2πid/2m, that is, a
m ≡ d

2m mod Z. Write d = 2a + 2mκ for some integer

κ ≥ 0. Let Γ′ be the cyclic group generated by γ′. Define a holomorphic map

Φ′ : Ad−1 → C by Φ′(z, w, t) = t2m. Then Φ′ is Γ′-invariant, so descends

to a holomorphic map Φ
′
: Ad−1/Γ

′ → C, which is a degeneration of annuli

whose topological monodromy is an
(
a

2m, κ
)
-Nielsen twist.
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Fig. 1.3. An a
2m -Nielsen twist h.

Main results

We generalize the above notions/results to higher dimensions. Fix a pos-

itive integer d and consider a complex variety (a multiplicative A-singularity)

Ad−1 = {(x1, x2, . . . , xn, t) ∈ C
n+1 : x1x2 · · ·xn = td}.

If n ≥ 3, the singular locus of Ad−1 is not isolated — the union of nC2

hyperplanes Hij = {xi = xj = t = 0} (1 ≤ i < j ≤ n). In contrast, the

additive A-singularity x2
1 +x2

2 + · · ·+x2
n = td has only an isolated singularity

at the origin. In particular if n ≥ 3, this is not biholomorphic to Ad−1. (If

n = 2, they are biholomorphic: Via x′1 = x1 + ix2 and x′2 = x1 − ix2,

x2
1 + x2

2 = td is transformed to x′1x
′
2 = td.)

Now take σ ∈ Sn (a permutation of n elements) and nonzero complex

numbers α1, . . . , αn, δ such that α1α2 · · ·αn = δd, and define an automor-

phism γ : Ad−1 → Ad−1 by

γ : (x1, x2, . . . , xn, t) �−→ (α1xσ(1), α2xσ(2), . . . , αnxσ(n), δt).

Simple Case. We first consider the case that σ is cyclic of full length

n. Take an (arbitrary) nth root β of α1α2 · · ·αn and define another auto-

morphism γ′ : Ad−1 → Ad−1 by

(∗) γ′ : (x1, x2, . . . , xn, t) �→ (βxσ(1), βxσ(2), . . . , βxσ(n), δt).

Then irrespective of the choice of β, γ′ is conjugate to γ in Aut(Ad−1)

(Lemma 2.3 (3)). Say γ′ = f−1 ◦γ ◦f , then under a coordinate change via f
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of Ad−1, γ
′ may be regarded as γ. We thus only consider an automorphism

of the form (∗).
In what follows, suppose that α1α2 · · ·αn is a root of unity (this is equiv-

alent to the finiteness of the order of γ (Corollary 2.2)). Say α1α2 · · ·αn is

an mth root of unity, and consider an automorphism

(!)
γ : (x1, x2, . . . , xn, t) ∈ Ad−1 �−→

(e2πia/mnxσ(1), e
2πia/mnxσ(2), . . . , e

2πia/mnxσ(n), e
2πi/mnt) ∈ Ad−1,

where σ is a cyclic permutation of full length n and d = an+mnκ for some

integer κ ≥ 0. This generalizes the automorphism in (1.2) given by

γ : (z, w, t) ∈ Ad−1 �−→ (e2πia/2mw, e2πia/2mz, e2πi/2mt) ∈ Ad−1,

where d = 2a+ 2mκ for some integer κ ≥ 0.

Before stating our results, we recall some terminology: A pseudo-reflec-

tion is a linear transformation conjugate to (z1, . . . , zi, . . . , zn) �→ (z1, . . . ,

ζzi, . . . , zn), where ζ �= 1 is a root of unity. By abuse of terminology, a

matrix conjugate to the diagonal matrix diag(1, . . . , ζ, . . . , 1) is also called a

pseudo-reflection. A subgroup of GLn(C) is small if it contains no pseudo-

reflections.

Result 1 (Corollary 9.9) Uniformization. Let Γ be the cyclic

group generated by the automorphism γ of Ad−1 given by (!). Then Ad−1/Γ

is isomorphic to C
n/G, where G is a small finite group generated by the

automorphisms f, g1, g2, . . . , gn−1 of C
n given by

f : (z1, . . . , zn) �→ (e2πia/mndzσ(1), . . . ,

e2πia/mndzσ(n−1), e
2πi(a+mnκ)/mndzσ(n)),

gi : (z1, . . . , zn) �→ (z1, . . . , zi−1, e
2πi/dzi, zi+1, . . . , zn−1, e

−2πi/dzn).

We remark that G is abelian only when n = 2 and d = 2 (Theorem 10.6

(2)).

Now define a holomorphic map Φ : Ad−1 → C by Φ(x1, . . . , xn, t) = tmn.

Then Φ is Γ-invariant, so descends to a holomorphic map Φ : Ad−1/Γ → C.
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Result 2 (Lemma 8.2) Correspondence of maps. Under the

isomorphism Ad−1/Γ ∼= C
n/G, Φ : Ad−1/Γ → C corresponds to the holo-

morphic map φ : C
n/G → C induced by the G-invariant holomorphic map

φ : C
n → C, φ(v1, v2, . . . vn) = (v1v2 · · · vn)mn.

In the case that σ ∈ Sn is arbitrary, decompose it into disjoint cyclic

permutations: σ = σ1σ2 · · ·σl, say the length of σi is ni. Renumbering the

indices, assume that σ1 permutes {1, 2, . . . , n1}, σ2 permutes {n1 + 1, n1 +

2, . . . , n1+n2}, σ3 permutes {n1+n2+1, . . . , n1+n2+n3} and so on. Write

C
n = C

n1 × C
n2 × · · · × C

nl ; then σi acts on C
ni as xi := (x

(i)
1 , . . . , x

(i)
ni ) �→

xσi
i := (x

(i)
σi(1), . . . , x

(i)
σi(ni)

). As in Simple Case, the following holds (Lemma

2.6): γ is via an element of Aut(Ad−1) conjugate to an automorphism γ′ :

Ad−1 → Ad−1 of the form

γ′ : (x1, . . . ,xl, t) �−→ (β1x
σ1
1 , . . . , βlx

σl
l , δt), βi ∈ C

×.

It thus suffices to consider automorphisms of this form. Note that the

condition that γ preserves Ad−1 is given by

βn1
1 βn2

2 · · ·βnl
l = δd.(1.3)

In what follows, we consider the following automorphism of Ad−1 gen-

eralizing (!) in Simple Case:

γ : (x1, . . . ,xl, t) �−→ (e2πia1/n1m1xσ1
1 , . . . , e2πial/nlmlxσl

l , e
2πi/N t),(1.4)

where

(i) ni is the length of σi, and ai, mi are positive integers such that ai is

relatively prime to nimi.

(ii) N := (m′
1)

n1 · · · (m′
l)
nlc, where c := gcd(n1m1, . . . , nlml) and m′

i :=
nimi
c .

(iii) (e2πia1/n1m1)n1(e2πia2/n2m2)n2 · · · (e2πial/nlml)nl = e2πid/N (see (1.3)),

that is, a1
m1

+ a2
m2

+ · · · + al
ml

+ κ = d
N for some integer κ.

We say that Γ is a twining automorphism group, γ is a twining automor-

phism, and the quotient Ad−1/Γ is a twined singularity. Here in case σ is
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the identity, Γ (and γ) is said to be neat. We will prove the following (if Γ

is neat, this reduces to the uniformization theorem in [SaTa]):

Result 3 (Theorems 8.1, 9.6) Uniformization of twined singu-

larity. Let Γ be the cyclic group generated by the automorphism γ of Ad−1

given by (1.4). Then there exists a small finite subgroup G of GLn(C) such

that Ad−1/Γ ∼= C
n/G. Here G = 〈f, g1, g2, . . . , gn−1〉 and

(i) f is given as the composition f = ϕψ, where (below, *k is given in

Remark 1.1){
ϕ : (X1, . . . ,X l) �−→

(
e2πia1�1/cdXσ1

1 , . . . , e2πial�l/cdXσl
l

)
,

ψ : (X1, X2, . . . , Xn) �−→ (X1, X2, . . . , e
2πim′

l�lκ/dXσ(n), . . . , Xn).

(ii) gi is given as follows: Say Xi ∈ Xk, then

gi : (X1, X2, . . . , Xn) �−→ (X1, X2, . . . , e
2πim′

k�k/dXi, . . . , e
−2πim′

l�l/dXn).

Note: f, gi denote γ, idi in Theorem 9.6 and ϕ, ψ denote α, β1, q therein.

Remark 1.1. In Result 3, *k is the positive integer given in Lemma

7.4, that is, *k := Nc/nkmkLk, where nk = length(Xk) and Lk is given by

(below, means the omission of nkmk)

Lk :=

{
lcm(n1m1, n2m2, . . . , , . . . , nlml) if length(Xk) = 1,

lcm(n1m1, n2m2, . . . , nlml) if length(Xk) ≥ 2.

Whether G in Result 3 is abelian depends on σ, n, d. In fact:

Result 4 (Theorem 10.6).

(1) If σ = id, then G is always abelian. (If moreover n = 2, G is cyclic

([SaTa] Theorem 2.1, p.682 — originally proved in [Tak])).

(2) If σ �= id, then G is rarely abelian — in fact only when n = 2 and

d = 2 (and in which case G is cyclic generated by f in Result 3).



42 Kenjiro Sasaki and Shigeru Takamura

Result 3 is further enriched. Define a holomorphic map Φ : Ad−1 → C by

Φ(x1, · · · , xn, t) = tN . Then Φ is Γ-invariant, so descends to a holomorphic

map Φ : Ad−1/Γ → C.

Result 5 (Theorem 8.3) Correspondence of maps. As above,

let Γ be the cyclic group generated by

γ : (x1, . . . ,xl, t) �−→ (e2πia1/n1m1xσ1
1 , . . . , e2πial/nlmlxσl

l , e
2πi/N t).

For each σk, let Jk be its cycle, that is, Jk = {i : xi ∈ xk}. Then:

(1) A holomorphic map φ : C
n → C given by φ(x1, . . . , xn) =

l∏
k=1

( ∏
i∈Jk

xi

)Lk

is G-invariant.

(2) Under the isomorphism Ad−1/Γ ∼= C
n/G, Φ : Ad−1/Γ → C corre-

sponds to the descent φ : C
n/G → C.

The topological monodromy of Φ : Ad−1/Γ → C generalizes both a

fractional Dehn twist and a Nielsen twist — in a unified way! We call it a

hypertwist (more precisely,
(

a1
n1m1

, a2
n2m2

, · · · , al
nlml

, κ, σ
)
-hypertwist). Its

action on a smooth fiber of Φ will be described in our subsequent paper.

Acknowledgments. We would like to thank Professor Tadashi Ashikaga

for useful discussions.

2. Twining Automorphisms

Let d be a positive integer and consider the multiplicative A-singularity:

Ad−1 := {(x1, x2, . . . , xn, t) ∈ C
n+1 : x1x2 · · ·xn = td}.

The automorphism group Aut(Ad−1) of Ad−1 is the subgroup of GLn+1(C)

consisting of elements that map Ad−1 to itself. Now take a cyclic permu-

tation σ ∈ Sn of length n and nonzero complex numbers α1, α2, . . . , αn, δ

such that α1α2 · · ·αn = δd. Define then an automorphism γ of Ad−1 by

γ : (x1, x2, . . . , xn, t) �−→ (α1xσ(1), α2xσ(2), . . . , αnxσ(n), δt).(2.1)
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Lemma 2.1. Let k be an integer. Then γk = 1 if and only if k is a

multiple of n and (α1α2 · · ·αn)k/n = 1 and δk = 1.

Proof. Note that γk : (x1, . . . , xn, t) �→ (µ1xσk(1), . . . , µnxσk(n), νt)

for some nonzero complex numbers µ1, . . . , µn, ν. If γk = 1, then it is

necessary that σk = 1. Since σ is cyclic of length n, this implies that k is

a multiple of n. Write k = nl, then γnl = 1. Here γn : (x1, . . . , xn, t) �→
(α1α2 · · ·αnx1, . . . , α1α2 · · ·αnxn, δ

nt), thus (α1α2 · · ·αn)l = 1 and δnl = 1

(that is, δk = 1). Conversely, if k is a multiple of n and (α1α2 · · ·αn)k/n = 1

and δk = 1, then γk = 1, indeed

γk : (x1, . . . , xn, t) �−→ ((α1α2 · · ·αn)k/nx1, . . . , (α1α2 · · ·αn)k/nxn, δ
kt)

= (x1, . . . , xn, t). �

Corollary 2.2. The order of γ is finite if and only if α1α2 · · ·αn is

a root of unity.

Proof. =⇒: Say that the order of γ is k. Then from Lemma 2.1, k is

a multiple of n and (α1α2 · · ·αn)k/n = 1; so α1α2 · · ·αn is a k/nth root of

unity.

⇐=: Say that α1α2 · · ·αn is an lth root of unity: (α1α2 · · ·αn)l = 1.

This and α1α2 · · ·αn = δd yield 1 = δld. Set k := nld, then k is a multiple

of n and (α1α2 · · ·αn)k/n = 1 and δk = 1, so by Lemma 2.1, γk = 1. �

Note next the following:

Lemma 2.3. Let γ be the automorphism of Ad−1 given by (2.1). Then:

(1) For an arbitrary nth root β of α1α2 · · ·αn, γ′ : (x1, . . . , xn, t) �→
(βxσ(1), . . . , βxσ(n), δt) is an automorphism of Ad−1.

(2) Let b1, b2, . . . , bn, c be nonzero complex numbers such that b1b2 · · · bn =

cd. Define f ∈ Aut(Ad−1) by f : (x1, . . . , xn, t) �→ (b1x1, . . . , bnxn, ct).

Then

f−1 ◦ γ ◦ f : (x1, . . . , xn, t) �−→
(α1bσ(1)

b1
xσ(1), . . . ,

αnbσ(n)

bn
xσ(n), δt

)
.
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(3) γ is conjugate to γ′ in Aut(Ad−1).

Proof. (1): It suffices to show that γ′ preserves Ad−1, that is,

(βxσ(1))(βxσ(2)) · · · (βxσ(n)) = δdtd. This is seen as follows:

(βxσ(1))(βxσ(2)) · · · (βxσ(n)) = βnx1x2 · · ·xn
= δdx1x2 · · ·xn by βn = α1α2 · · ·αn = δd

= δdtd by x1x2 · · ·xn = td.

(2): This is confirmed as follows:

f−1 ◦ γ ◦ f(x1, . . . , xn, t) = f−1 ◦ γ(b1x1, . . . , bnxn, ct)

= f−1(α1bσ(1)xσ(1), . . . , αnbσ(n)xσ(n), δct)

=
(α1bσ(1)

b1
xσ(1), . . . ,

αnbσ(n)

bn
xσ(n), δt

)
.

(3): In terms of (2), it suffices to show that there exist nonzero complex

numbers b1, b2, . . . , bn, c satisfying

(i) b1b2 · · · bn = cd,

(ii) β =
αibσ(i)

bi
(i = 1, 2, . . . , n), that is, bσ(i) =

βbi
αi

(i = 1, 2, . . . , n).

Note that once we show the existence of b1, b2, . . . , bn satisfying (ii), it suf-

fices to take c as dth root of b1b2 · · · bn.

Since σ is cyclic of length n, we have {1, 2, . . . , n} = {1, σ(1), . . . ,

σn−1(1)}, so (ii) is restated as bσj(1) =
βbσj−1(1)
ασj−1(1)

(j=1, 2, . . . , n). Set b1 = 1

and inductively define bσj(1) (j = 1, 2, . . . , n − 1) by bσj(1) :=
βbσj−1(1)
ασj−1(1)

.

It then suffices to show that b1 =
βbσn−1(1)
ασn−1(1)

. Since β =
ασj−1(1)bσj(1)

bσj−1(1)
(j =

1, 2, . . . , n−1), we have βn−1 =
n−1∏
j=1

ασj−1(1)bσj(1)

bσj−1(1)
. Here

n∏
j=1

ασj−1(1)bσj(1)

bσj−1(1)
=

α1α2 · · ·αn = βn, so
n−1∏
j=1

ασj−1(1)bσj(1)

bσj−1(1)
= βn bσn−1(1)

ασn−1(1)b1
. Thus βn−1 =

βn bσn−1(1)

ασn−1(1)b1
, implying that b1 =

βbσn−1(1)
ασn−1(1)

. �
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Lemma 2.4. If α1α2 · · ·αn is an mth root of unity, then (1) δ is a root

of unity and (2) the order of γ′ (also, of γ) is the least common multiple of

nm and the order of δ. (For a kth root of unity, k is called its order.)

Proof. (1): By α1α2 · · ·αn = δd. (2): Since γ′ is a linear transforma-

tion, it is expressed as γ′ : (x, t) �→ (Bx, δt), where x = (x1, . . . , xn) and B

is an invertible n× n matrix of order nm. Then (γ′)k : (x, t) �→ (Bkx, δkt),

so the order of γ′ is the least common multiple of the orders of B and δ,

confirming the assertion. �

General Case. We have discussed the case that σ ∈ Sn is a cyclic

permutation of length n. In the sequel, σ ∈ Sn is arbitrary, for which

consider the automorphism of Ad−1 given by

γ : (x1, x2, . . . , xn, t) �−→ (α1xσ(1), α2xσ(2), . . . , αnxσ(n), δt).(2.2)

Decompose σ into disjoint cyclic permutations: σ = σ1σ2 · · ·σl, say the

length of σi is ni. Without loss of generality, we assume that σ1 permutes

{1, 2, . . . , n1}, σ2 permutes {n1 +1, n1 +2, . . . , n1 +n2}, σ3 permutes {n1 +

n2 +1, . . . , n1 +n2 +n3} and so on; these sets are cycles of σ. Write C
n+1 as

C
n1 ×C

n2 ×· · ·×C
nl ×C and (x1, x2, . . . , xn, t) ∈ C

n+1 as (x1,x2, . . . ,xl, t),

where xi ∈ C
ni . Then σi acts on C

ni as a cyclic permutation, and the

restriction of γ to C
ni is of the form:

γi : xi = (xj1 , xj2 , . . . , xjni
) �−→ (αj1xσi(j1), αj2xσi(j2), . . . , αjni

xσi(jni )
).

The order of γ is finite if and only if the orders of all γi are finite. As in

Corollary 2.2, this is restated as follows:

Lemma 2.5. The order of γ is finite if and only if for every i,
∏
j∈Ji

αj

is a root of unity, where Ji denotes the cycle of σi.

Note next the following:

Lemma 2.6. Let γ be the automorphism of Ad−1 given by (2.2). For

each i, let βi be an arbitrary nith root of
∏
j∈Ji

αj, where Ji denotes the cycle

of σi. Write Ji as {j1, j2, . . . , jni} and for xi = (xj1 , xj2 , . . . , xjni
), set

xσi
i := (xσi(j1), xσi(j2), . . . , xσi(jni )

), then:
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(1) Irrespective of the choice of βi, βn1
1 βn2

2 · · ·βnl
l is constant. In fact

βn1
1 βn2

2 · · ·βnl
l = δd.

(2) γ′ : (x1, . . . ,xl, t) �→ (β1x
σ1
1 , . . . , βlx

σl
l , δt) is an automorphism of

Ad−1.

(3) γ is conjugate to γ′ in Aut(Ad−1).

Proof. (1): βn1
1 βn2

2 · · ·βnl
l =

l∏
i=1

( ∏
j∈Ji

αj

)
= α1α2 · · ·αn = δd.

(2): It suffices to show that γ′ preserves Ad−1. Temporarily write xi

as (x
(i)
1 , x

(i)
2 , . . . , x

(i)
ni ). By x1 · x2 · · ·xl = td, we mean (x

(1)
1 · · ·x(1)

n1 )(x
(2)
1 · · ·

x
(2)
n2 ) · · · (x(l)

1 · · ·x(l)
nl ) = td. We then have to show that β1x

σ1
1 · β2x

σ2
2 · · ·

βlx
σl
l = (δt)d, that is, (β1x

(1)
σ1(1) · · ·β1x

(1)
σ1(n1))(β2x

(2)
σ2(1) · · · β2x

(2)
σ2(n2)) · · ·

(βlx
(l)
σl(1) · · ·βlx

(l)
σl(nl)

) = (δt)d, or (after reordering),

βn1
1 βn2

2 · · ·βnl
l (x

(1)
1 · · ·x(1)

n1
)(x

(2)
1 · · ·x(2)

n2
) · · · (x(l)

1 · · ·x(l)
nl

) = δdtd.

This is equivalent to βn1
1 βn2

2 · · ·βnl
l = δd, which is already shown in (1).

(3): The proof is similar to that of Lemma 2.3 (3). Construct first an au-

tomorphism fi : C
ni → C

ni , fi : xi = (x
(i)
1 , . . . , x

(i)
ni ) �→ (b

(i)
1 x

(i)
1 , . . . , b

(i)
ni x

(i)
ni )

such that f−1
i ◦ γi ◦ fi : xi �→ βix

σi
i . Set b(i) :=

ni∏
j=1

b
(i)
j and take a com-

plex number c satisfying b(1)b(2) · · · b(l) = cd. Then f : (x1, . . . ,xl, t) �→(
f1(x1), . . . , fl(xl), ct

)
is an automorphism of Ad−1 such that γ′ = f−1 ◦ γ ◦

f . �

Lemma 2.7. In Lemma 2.6, if for each i, αi :=
∏
j∈Ji

αj is an mith root

of unity, then:

(1) δ is a root of unity.

(2) The order of γ′ (and so, γ) is finite, in fact it is the least common

multiple of lcm(n1m1, n2m2, . . . , nlml) and the order of δ.

Proof. (1) follows from α1α2 · · ·αl = δd. (2):
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For simplicity, express γ′ : (x1,x2, . . . ,xl, t) �→ (β1x
σ1
1 , β2x

σ2
2 , . . . ,

βlx
σl
l , δt) as (x, t) �→ (Bx, δt), where x = (x1, . . . , xn) and B is an invertible

n× n matrix of the form

B =

B1 O
B2

. . .
O Bl

 (Bi is an invertible ni × ni matrix).

Since the order of Bi is nimi, the order of B is lcm(n1m1, n2m2, . . . , nlml).

Noting that (γ′)k : (x, t) �→ (Bkx, δkt), the order of γ′ is the least common

multiple of the orders of B and δ, so the assertion holds. �

Corollary 2.8. If the order of δ is a multiple of lcm(n1m1, n2m2, . . . ,

nlml), then the order of γ is that of δ.

Definition 2.9. Let σ ∈ Sn and α1, α2, . . . , αn, δ be nonzero complex

numbers such that α1α2 · · ·αn = δd. The automorphism of γ : Ad−1 →
Ad−1 given by (x1, . . . , xn, t) �→ (α1xσ(1), . . . , αnxσ(n), δt) is called a twining

automorphism (a twiner) if its order is finite.

3. Lifting and Descent

Let p : X → Y be a covering. For f ∈ Aut(Y ), g ∈ Aut(X) is called a

lift of f if the following diagram commutes:

X
g ��

p
��

X

p
��

Y
f �� Y.

In this case, f is called the descent of g. For a subgroup Γ of Aut(Y ), its

lift Γ̃ is a subgroup of Aut(X) consisting of all lifts of elements of Γ. In this

case, Γ is called the descent of Γ̃.

We now return to twining automorphism. Let σ ∈ Sn and decompose

it into disjoint cyclic permutations: σ = σ1σ2 · · · σl. Say that the length

of σi is ni. Without loss of generality, we may assume that the cycle of σ1

is {1, 2, . . . , n1}, the cycle of σ2 is {n1 + 1, . . . , n1 + n2}, the cycle of σ3 is
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{n1 +n2 +1, . . . , n1 +n2 +n3} and so on. Write C
n as C

n1 ×C
n2 ×· · ·×C

nl

and (x1, x2, . . . , xn) ∈ C
n as (x1,x2, . . . ,xl). Let σi act on C

ni as

σi : xi = (xj1 , xj2 , . . . , xjni
) �−→ xσi

i := (xσi(j1), xσi(j2), . . . , xσi(jni )
).

Consider the following automorphism of C
n+1 given by

γ : (x1, . . . ,xl, t) �−→ (e2πia1/n1m1xσ1
1 , . . . , e2πial/nlmlxσl

l , e
2πi/N t),(3.1)

where

(I) ai, mi are positive integers such that ai is relatively prime to nimi

(where ni is the length of σi).

(II) N := (m′
1)

n1 · · · (m′
l)
nlc, where c := gcd(n1m1, . . . , nlml) and m′

i :=
nimi
c .

Note that γ preserves Ad−1 = {(x1, . . . , xn, t) ∈ C
n+1 : x1 · · ·xn = td}

precisely when d = N
(
a1
m1

+ · · · + al
ml

+ κ
)

for some integer κ (see (iii)

subsequent to (1.4)). In what follows, we assume this. Then:

Lemma 3.1.

(1) The order of γ is N .

(2) Let Γ be the cyclic group generated by γ. Then the holomorphic map

Φ : Ad−1 → C given by Φ(x1, · · · , xn, t) = tN is Γ-invariant. Conse-

quently Φ descends to Φ : Ad−1/Γ → C.

Proof. (1): Since the order N of δ is a multiple of lcm(n1m1, . . . ,

nlml) (see (II)), this follows from Corollary 2.8.

(2): For any (x1, . . . , xn, t) ∈ Ad−1, Φ ◦ γ(x1, · · · , xn, t) = (δt)N =

δN tN = tN , so Φ ◦ γ = Φ. �

Since the order of γ is finite, γ is a twining automorphism and Γ is a

twining automorphism group. If the permutation σ is the identity, Γ (and

γ) is said to be neat, in which case xi = xi, so γ is of the form

(x1, . . . , xn, t) �−→ (e2πia1/m1x1, . . . , e
2πian/mnxn, e

2πi/N t).
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For such γ, [SaTa] showed that there exists a small finite subgroup G ⊂
GLn(C) such that Ad−1/Γ ∼= C

n/G; moreover the holomorphic map

C
n/G → C corresponding to Φ (in Lemma 3.1) under this isomorphism

is explicitly given. We will generalize these results (and more) to arbitrary

γ. The construction of G is outlined as follows:

(i) Let p : Ãd−1 (= C
n) → Ad−1 be the universal covering, and lift Γ to

a group Γ̃ acting on Ãd−1. Then Ad−1/Γ ∼= Ãd−1/Γ̃. If m′
1 = m′

2 =

· · · = m′
l = 1 (e.g. n = 2 and Γ is not neat), then Γ̃ is small. Thus Γ̃

is the desired G.

(ii) If the condition in (i) is not satisfied, let q : Ãd−1 → C
n be the covering

map given by q(X1,X2, . . . ,X l) = (X
m′

1
1 ,X

m′
2

2 , . . . , X
m′

l
l ), where

X
m′

i
i := (X

m′
i

j1
, . . . , X

m′
i

jni
), and descend Γ̃ to a group H acting on C

n.

Then Ad−1/Γ ∼= Ãd−1/Γ̃ ∼= C
n/H. If n = 2 and Γ is neat, then H is a

small finite group,

(iii) In (ii), if n ≥ 3 then H is generally not small, in which case take the

pseudo-reflection subgroup P of H (i.e. the subgroup generated by all

pseudo-reflections in H). It is normal in H and the quotient group

H/P is small and Ad−1/Γ ∼= Ãd−1/Γ̃ ∼= C
n/H ∼= (Cn/P )

/
(H/P ) ∼=

C
n
/
(H/P ) (because C

n/P ∼= C
n by Chevalley-Shephard-Todd theo-

rem). Thus H/P is the desired G.

We give some comments on the above construction:

(a) In (ii), whether H is small is numerically determined (Theorem 7.2).

(b) In (iii), the quotient map H → H/P is the descent of H with re-

spect to an explicitly-given covering map r : C
n → C

n whose covering

transformation group is P . See Lemma 7.1.

(c) Γ̃ and H are generally not abelian, which makes the above construction

much more involved than that of [SaTa].

The construction of G is systematically described in terms of lifting and
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descent with respect to the following diagram:

Ãd−1 = C
n

q
������� p

��������

C
n

r
�����

��
Ad−1.

C
n

(3.2)

4. Determination of Γ̃ and H

Consider a twining automorphism γ : Ad−1 → Ad−1 of order N :

γ : (x1, . . . ,xl, t) �−→ (e2πia1/n1m1xσ1
1 , . . . , e2πial/nlmlxσl

l , e
2πi/N t),

where σi is a cyclic permutation of length ni (n1 + n2 + · · · + nl = n) and

(x1,x2, . . . ,xl) ∈ C
n1 × C

n2 × · · · × C
nl .(4.1)

For each γj (j = 1, 2, . . . , N), we determine its lifts with respect to p :

Ãd−1 → Ad−1, first for j = 1. To that end, express γ as the product of the

x-part and the t-part: γ = γxγt (= γtγx), where

γx : (x1, . . . ,xl, t) �−→ (e2πia1/n1m1xσ1
1 , . . . , e2πial/nlmlxσl

l , e
2πi(1/N−κ/d)t),

γt : (x1, . . . ,xl, t) �−→ (x1, . . . ,xl, e
2πiκ/dt).

The lifts of γx and γt are easy to describe. In what follows, to be consis-

tent with the notation (x1,x2, . . . ,xl, t) ∈ Ad−1, write (X1, X2, . . . , Xn) ∈
Ãd−1 (= C

n) as (X1,X2, . . . , X l), where Xi ∈ C
ni .

Lemma 4.1. A lift of γx is given by an automorphism γ̃x : Ãd−1 →
Ãd−1 defined by

(X1,X2, . . . ,X l)

�→
(
e2πia1/n1m1dXσ1

1 , e2πia2/n2m2dXσ2
2 , . . . , e2πial/nlmldXσl

l

)
.

Proof. Since p(X1, X2, . . . , Xn) = (Xd
1 , X

d
2 , . . . , X

d
n, X1X2 · · ·Xn), γ̃x

descends to an automorphism of Ad−1 that maps (x1, . . . ,xl, t) to(
(e2πia1/n1m1d)dxσ1

1 , . . . , (e2πial/nlmld)dxσl
l ,

(e2πia1/n1m1d)n1 · · · (e2πial/nlmld)nlt
)
,
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that is, to
(
e2πia1/n1m1xσ1

1 , . . . , e2πial/nlmlxσl
l , e

2πi(a1/m1+···+al/ml)/dt
)
. Here

since a1
m1

+ · · · + al
ml

= d
N − κ, e2πi(a1/m1+···+al/ml)/d = e2πi(1/N−κ/d). Thus

γ̃x descends to γx. �

Consider the set Λ of (p1, p2, . . . , pn) ∈ Z
n satisfying 0 ≤ pi < d (i =

1, 2, . . . , n) and

p1 + p2 + · · · + pn
d

≡ κ

d
mod Z.(4.2)

Observe that the number of elements of Λ is dn−1, as pn is determined from

(p1, p2, . . . , pn−1) (0 ≤ pi < d) by (4.2).

We determine the lifts of γt. To be consistent with the notation (X1,

X2, . . . ,X l) ∈ C
n, write (p1, p2, . . . , pn) as p = (p1,p2, . . . ,pl), where

pi ∈ Z
ni .

Lemma 4.2. Define an automorphism of Ãd−1 by

γ̃t,p : (X1,X2, . . . ,X l) �−→
(
γ̃t,p1(X1), γ̃t,p2(X2), . . . , γ̃t,pl

(X l)
)
,(4.3)

where γ̃t,pi : Xi = (Xj1 , . . . , Xjni
) �→ (e2πipj1/dXj1 , . . . , e

2πipjni
/dXjni

).

Then γ̃t,p is a lift of γt. Moreover {γ̃t,p : p ∈ Λ} exhausts all lifts of

γt.

Proof. Since p(X1, X2, . . . , Xn)=(Xd
1 , X

d
2 , . . . , X

d
n, X1X2 · · ·Xn), γ̃t,p

descends to an automorphism of Ad−1 that maps (x1, . . . ,xl, t) to(
(γ̃t,p1)

d(x1), . . . , (γ̃t,pl
)d(xl), (e2πip1/d)(e2πip2/d) · · · (e2πipn/d)t

)
,

that is, to
(
x1, . . . ,xl, e

2πi(p1+p2+···+pn)/dt
)
. Here by (4.2),

e2πi(p1+p2+···+pn)/d = e2πiκ/d. Thus γ̃t,p descends to γt. We next show that

{γ̃t,p : p ∈ Λ} exhausts all lifts of γt. As p is dn−1-fold, it suffices to show

that the cardinality of this set is dn−1. This is clear, as Λ consists of dn−1

elements and γ̃t,p �= γ̃t,p′ for p �= p′. �

Corollary 4.3. γ̃xγ̃t,p is a lift of γ. Moreover {γ̃xγ̃t,p : p ∈ Λ}
exhausts all lifts of γ.

Proof. γ̃xγ̃t,p descends to γxγt, i.e. γ. We show that {γ̃xγ̃t,p : p ∈ Λ}
exhausts all lifts of γ. As p : Ãd−1 → Ad−1 is dn−1-fold, it suffices to show
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that the cardinality of this set is dn−1. This is clear, as Λ consists of dn−1

elements and γ̃t,p �= γ̃t,p′ for p �= p′. �

We next determine all lifts of γj by replacing γx, γt with γjx, γ
j
t in the

above argument. First from γ = γxγt, we have γj = γjxγ
j
t . Here since γ̃x is

a lift of γx (Lemma 4.1),

Lemma 4.4. γ̃jx is a lift of γjx.

We next determine lifts of γjt . First for each j = 1, 2, . . . , N (= ord(γ)),

set

Λ(j) =
{

(p1, p2, . . . , pn) ∈ Z
n : 0 ≤ pi < d,

n∑
i=1

pi
d

≡ jκ
d

mod Z

}
.(4.4)

We write (p1, p2, . . . , pn) as p = (p1,p2 . . . ,pl) ∈ Z
n1 ×Z

n2 ×· · ·×Z
nl ; note

n1 + n2 + · · · + nl = n. As for Lemma 4.2, we can show:

Lemma 4.5. For p = (p1,p2 . . . ,pl) ∈ Λ(j), let γ̃t,pi be the automor-

phism of C
ni in Lemma 4.2 and define an automorphism of Ãd−1 by

γ̃
(j)
t,p : (X1,X2, . . . ,X l) �−→

(
γ̃t,p1(X1), γ̃t,p2(X2), . . . , γ̃t,pl

(X l)
)
.(4.5)

Then γ̃
(j)
t,p is a lift of γjt . Moreover {γ̃(j)

t,p : p ∈ Λ(j)} exhausts all lifts of

γjt .

As for Corollary 4.3, we can show:

Corollary 4.6. For p ∈ Λ(j), let γ̃
(j)
t,p : Ãd−1 → Ãd−1 be the lift of γjt

given by (4.5). Then γ̃jxγ̃
(j)
t,p is a lift of γj. Moreover {γ̃jxγ̃(j)

t,p : p ∈ Λ(j)}
exhausts all lifts of γj.

Let Γ be the cyclic group of order N generated by γ and Γ̃ be the lift

of Γ with respect to p : Ãd−1 → Ad−1. By Corollary 4.6, the set of lifts of

γj ∈ Γ is given by Lift(j) := {γ̃jxγ̃(j)
t,p : p ∈ Λ(j)}. Since Γ̃ =

N⋃
i=1

Lift(j), we

obtain the following:



Dehn Twists, Hypertwists, and Uniformization 53

Proposition 4.7. The lift Γ̃ of Γ with respect to p is given by{
γ̃jxγ̃

(j)
t,p : p ∈ Λ(j), j = 1, 2, . . . , N

}
.(4.6)

For p = (p1,p2, . . . ,pl) ∈ Z
n1 × Z

n2 × · · · × Z
nl and σ = σ1σ2 · · ·σl ∈

Sn1 × Sn2 × · · · × Snl
, set σ(p) :=

(
σ1(p1), σ2(p2), . . . , σl(pl)

)
.

Lemma 4.8. Let σ = σ1σ2 · · ·σl be the permutation appearing in the

definition of γ. For p ∈ Λ(j), set q := σ−j(p). Then q ∈ Λ(j) and γ̃
(j)
t,p γ̃

j
x =

γ̃jxγ̃
(j)
t,q .

Proof. Since q is a permutation of p, {q1, q2, . . . , qn} = {p1, p2, . . . ,

pn} as sets, so q1 + q2 + · · · + qn = p1 + p2 + · · · + pn. In particular

q1 + q2 + · · · + qn
d

=
p1 + p2 + · · · + pn

d

≡ jκ

d
mod Z.

Hence q ∈ Λ(j). We next show γ̃
(j)
t,p γ̃

j
x = γ̃jxγ̃

(j)
t,q . Note that

(
(γ̃t,qi)(Xi)

)σj
i

= (e2πiqj1/dXj1 , . . . , e
2πiqjni

/dXjni
)σ

j
i

= (e2πipj1/dX
σj
i (j1)

, . . . , e2πipjni
/dX

σj
i (jni )

) as σj
i (qi) = pi

= γ̃t,pi(Xσj
i (j1)

, . . . X
σj
i (jni )

) = γ̃t,pi(X
σj
i

i ).

Then for any X := (X1, . . . ,X l) ∈ Ãd−1,

γ̃jxγ̃
(j)
t,q (X) =

(
e2πija1/n1m1

(
(γ̃t,q1)(X1)

)σj
1
, . . . , e2πijal/nlml

(
(γ̃t,ql)(X1)

)σj
l
)

=
(
e2πija1/n1m1 γ̃t,p1(X

σj
1

1 ), . . . , e2πijal/nlml γ̃t,pl
(X

σj
l

l )
)

=
(
γ̃t,p1(e

2πija1/n1m1X
σj
1

1 ), . . . , γ̃t,pl
(e2πijal/nlmlX

σj
l

l )
)

= γ̃
(j)
t,p γ̃

j
x(X). �
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We will give a necessary condition for Γ̃ to be abelian. Recall first that

for p = (p1, . . . , pn) ∈ Λ(j), the automorphism γ̃
(j)
t,p is given by

γ̃
(j)
t,p : (X1, . . . , Xn) �−→ (e2πip1/dX1, . . . , e

2πipn/dXn).

Thus the following holds:{
(∗) γ̃

(j)
t,p γ̃

(j′)
t,p′ = γ̃

(j′)
t,p′ γ̃

(j)
t,p for any p ∈ Λ(j), p′ ∈ Λ(j′),

(∗∗) γ̃
(j)
t,p = γ̃

(j′)
t,p′ ⇐⇒ p = p′.

(4.7)

Lemma 4.9. If Γ̃ is abelian, then σ(p) = p for any p ∈ Λ(N). (Actually

the converse holds (Proposition 10.9).)

Proof. Taking auxiliary q ∈ Λ(1), set η1 := γ̃Nx γ̃
(N)
t,p , η2 := γ̃xγ̃

(1)
t,q ∈ Γ̃.

If Γ̃ is abelian, then η1η2 = η2η1. Here η1η2 = γ̃Nx
(
γ̃

(N)
t,p γ̃x

)
γ̃

(1)
t,q = γ̃Nx

(
γ̃xγ̃

(N)
t,σ−1(p)

)
γ̃

(1)
t,q by Lemma 4.8,

η2η1 = γ̃x
(
γ̃

(1)
t,q γ̃

N
x

)
γ̃

(N)
t,p = γ̃x

(
γ̃Nx γ̃

(1)

t,σ−N (q)

)
γ̃

(N)
t,p by Lemma 4.8.

Thus:

η1η2 = η2η1 ⇐⇒ γ̃N+1
x γ̃

(N)
t,σ−1(p)

γ̃
(1)
t,q = γ̃N+1

x γ̃
(1)

t,σ−N (q)
γ̃

(N)
t,p

⇐⇒ γ̃
(N)
t,σ−1(p)

γ̃
(1)
t,q = γ̃

(1)

t,σ−N (q)
γ̃

(N)
t,p

⇐⇒ γ̃
(N)
t, σ−1(p)

γ̃
(1)
t, q = γ̃

(1)
t, q γ̃

(N)
t,p as σ−N = id

⇐⇒ γ̃
(N)
t, σ−1(p)

γ̃
(1)
t, q = γ̃

(N)
t,p γ̃

(1)
t, q by (∗) of (4.7)

⇐⇒ γ̃
(N)
t, σ−1(p)

= γ̃
(N)
t,p

⇐⇒ σ−1(p) = p by (∗∗) of (4.7). �

We next determine the descent H of Γ̃ with respect to the covering

q : Ãd−1 → C
n given by q(X1,X2, . . . ,X l) = (X

m′
1

1 ,X
m′

2
2 , . . . ,X

m′
l

l ). For

simplicity, set α := γx, β := γt and α̃ := γ̃x, β̃j,p := γ̃
(j)
t,p , where p =
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(p1,p2, . . . ,pl). The latter pair is explicitly given by (see Lemma 4.1 and

(4.5)):

α̃ : (X1, . . . ,X l) �−→
(
e2πia1/n1m1dXσ1

1 , . . . , e2πial/nlmldXσl
l

)
,

β̃j,p : (X1,X2, . . . ,X l)

�−→
(
β̃j,p1(X1), β̃j,p2(X2), . . . , β̃j,pl

(X l)
)
,

(4.8)

where we set β̃j,pk
:= γ̃t,pk

. Since q(X1,X2, . . . ,X l) = (X
m′

1
1 ,X

m′
2

2 , . . . ,

X
m′

l
l ), the following holds:

Lemma 4.10. The descents α, βj,p of α̃, β̃j,p with respect to q are ex-

plicitly given by

α : (u1,u2, . . . ,ul) �−→
(
e2πia1/cduσ1

1 , e2πia2/cduσ2
2 , . . . , e2πial/cduσl

l

)
,

βj,p : (u1,u2, . . . ,ul)

�−→
(
(β̃j,p1)

m′
1(u1), (β̃j,p2)

m′
2(u2), . . . , (β̃j,pl

)m
′
l(ul)

)
.

Lemma 4.11.

(1) Γ̃ =
{
αjβj,p : p ∈ Λ(j), j = 1, 2, . . . , N

}
.

(2) H =
{
αjβj,p : p ∈ Λ(j), j = 1, 2, . . . , N

}
.

Proof. (1): Proposition 4.7. (2) follows from (1) as the induced ho-

momorphism q∗ : Γ̃ → H from q : Ãd−1 → C
n is surjective, �

Remark 4.12. If σ �= id, Γ̃ is generally not abelian (see Lemma 4.9).

Accordingly H is generally not abelian.

Lemma 4.11 (2) implies the following:

Lemma 4.13. Each element of H is of the form

(u1, u2, . . . , un) �−→ (ζ1uσj(1), ζ2uσj(2), . . . , ζnuσj(n)),

where ζ1, ζ2, . . . , ζn are roots of unity, σ is the permutation appearing in the

definition of γ, and j ∈ Z.
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5. Simple Pseudo-Reflections

To determine the pseudo-reflection subgroup of H, some technical prepa-

ration is needed. A pseudo-reflection is simple if it is of the following form

(and a general pseudo-reflection is conjugate to such):

(u1, . . . , un) �−→ (u1, . . . , ζui, . . . , un) (ζ �= 1 is a root of unity).

This is denoted by hi,ζ . In the particular case ζ = −1, it is a simple

reflection. Note that the order of a pseudo-reflection is finite (if ζ is a kth

root of unity, its order is k) and its fixed point set is an (n− 1)-dimensional

subspace (for hi,ζ , this is defined by ui = 0).

An example of a non-simple pseudo-reflection is

kij,α : (u1, . . . , ui, . . . , uj , . . . , un) �−→ (u1, . . . , αuj , . . . , α
−1ui, . . . , un),

where α �= 0. This is called an (i, j)-switching. Note kij,α is conjugate to

hi,−1, for instance if n = 3 and (i, j) = (1, 2), then via A =

−α α 0

1 1 0

0 0 1

:

A−1

 0 α 0

α−1 0 0

0 0 1

A =

−1 0 0

0 1 0

0 0 1

 .

Lemma 5.1. A linear automorphism of C
n is a pseudo-reflection if and

only if its order is finite and the dimension of its fixed point set is n− 1.

Proof. It suffices to show “if”. Suppose that a linear automorphism

f(z) = Az satisfies the condition. Then Ak = E for some positive integer

k. The minimal polynomial of A thus divides xk − 1, so its roots are dis-

tinct kth roots of unity. Hence A is diagonalizable to a matrix of the formζ1 O
ζ2

. . .
O ζn

, where ζi is a kth root of unity. Here by assumption the

dimension of the fixed point set of f is n− 1, so only one of ζ1, ζ2, . . . , ζn is

not 1 and the others are 1, implying that f is a pseudo-reflection. �
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Lemma 5.2. Let h : (u1, . . . , un) �→ (ζ1uτ(1), . . . , ζnuτ(n)) be an auto-

morphism of C
n (n ≥ 2), where ζ1, . . . , ζn are roots of unity and τ ∈ Sn is

a cyclic permutation of length n.

(1) Let Fix(h) be the fixed point set of h, then

dim Fix(h)=

{
1 if ζ1ζ2 · · · ζn=1,

0 otherwise.

(2) If h is a pseudo-reflection, n must be 2 (so τ is necessarily a transpo-

sition) and h : (u1, u2) �→ (ζ1u2, ζ
−1
1 u1) (a (1, 2)-switching).

Proof. (1): First

Fix(h) =
{
(u1, . . . , un) ∈ C

n : u1 = ζ1uτ(1), u2 = ζ2uτ(2), . . . , un = ζnuτ(n)

}
.

Without loss of generality, we assume τ = (1 2 · · · n). Then Fix(h) is

defined by u1 = ζ1u2, u2 = ζ2u3, . . . , un = ζnu1; this is equivalent to

(∗) u1 = ζ1u2 = ζ1ζ2u3 = · · · = ζ1ζ2 · · · ζn−1un = ζ1ζ2 · · · ζnu1.

We claim that setting v := (1, ζ−1
1 , ζ−1

1 ζ−1
2 , . . . , ζ−1

1 ζ−1
2 · · · ζ−1

n−1) ∈ C
n, then

Fix(h) is {cv : c ∈ C} if ζ1ζ2 · · · ζn=1, and {0} otherwise. Note that from

(∗), in particular u1 = ζ1ζ2 · · · ζnu1, whose solution is, if ζ1ζ2 · · · ζn �= 1,

unique u1 = 0, accordingly the solution of (∗) is unique u1 = u2 = u3 =

· · · = un = 0, so Fix(h) = {0}. If ζ1ζ2 · · · ζn = 1, solving (∗) with respect to

u1 yields u2 = ζ−1
1 u1, u3 = ζ−1

1 ζ−1
2 u1, . . . , un = ζ−1

1 ζ−1
2 · · · ζ−1

n−1u1. Thus set-

ting c := u1, then (u1, u2, . . . , un) = c(1, ζ−1
1 , ζ−1

1 ζ−1
2 , . . . , ζ−1

1 ζ−1
2 · · · ζ−1

n−1),

hence Fix(h) =
{
cv : c ∈ C

}
.

(2): If h is a pseudo-reflection of C
n (n ≥ 2), then by Lemma 5.1,

dim Fix(h) = n − 1 ≥ 1. This combined with (1) implies n − 1 = 1

and ζ1ζ2 · · · ζn = 1, that is, n = 2 and ζ1ζ2 = 1. Thus h : (u1, u2) �→
(ζ1u2, ζ

−1
1 u1). �

Lemma 5.2 (2) is generalized to:

Lemma 5.3. Let h : (u1, . . . , un) �→ (ζ1uτ(1), . . . , ζnuτ(n)) be an auto-

morphism of C
n (n ≥ 2), where ζ1, . . . , ζn are roots of unity and τ ∈ Sn. If

h is a pseudo-reflection, then it is either simple or switching.
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Proof. Decompose τ into disjoint cyclic permutations: τ = τ1τ2 · · · τl.
Without loss of generality, we assume that τ1 permutes {1, 2, . . . , n1}, τ2
permutes {n1 + 1, n1 + 2, . . . , n1 + n2} and so on. Write C

n as C
n1 ×C

n2 ×
· · · × C

nl and (u1, u2, . . . , un) ∈ C
n as (u1,u2, . . . ,ul), where ui ∈ C

ni .

Express then h as

h : (u1,u2, . . . ,ul) �−→
(
h1(u1), h2(u2), . . . , hl(ul)

)
,

where hi : C
ni → C

ni is a linear automorphism of finite order (as h is).

Then Fix(h) is expressed as Fix(h1) × Fix(h2) × · · · × Fix(hl), so

dim Fix(h) = dim Fix(h1) + dim Fix(h2) + · · · + dim Fix(hl).

Here if h is a pseudo-reflection, then by Lemma 5.1, dim Fix(h) = n− 1 =

n1 + n2 + · · · + nl − 1, thus

dim Fix(h1) + dim Fix(h2) + · · · + dim Fix(hl) = n1 + n2 + · · · + nl − 1.

Noting dim Fix(hi) ≤ ni, we have: For some hk, dim Fix(hk) = nk−1 (so hk
is a pseudo-reflection by Lemma 5.1) and for any other hi, dim Fix(hi) = ni

(so hi is the identity). Thus h(u1,u2, . . . ,ul) =
(
u1,u2, . . . , hk(uk), . . . ,ul

)
such that hk is a pseudo-reflection. Here if nk ≥ 2, h is switching and if

nk = 1, simple, because: in the former case, by Lemma 5.2 (2), nk must

be 2 and hk is switching and in the latter case, hk : C → C is of the form

u �→ ζu (ζ �= 1 is a root of unity). �

6. The Pseudo-Reflection Subgroup of H

Lemma 6.1. Let G be a finite subgroup of GLn(C) and Q be the pseudo-

reflection subgroup of G (i.e. the subgroup generated by all pseudo-reflections

of G). Then Q is normal in G.

Proof. By definition, any element conjugate to a pseudo-reflection is

also a pseudo-reflection, so Q is normal in G. �

The G-action on C
n naturally descends to a G/Q-action on C

n/Q.

Here:

Theorem 6.2 (Chevalley-Shephard-Todd). C
n/Q ∼= C

n and under

this isomorphism, G/Q acts on C
n linearly. So G/Q may be regarded as a



Dehn Twists, Hypertwists, and Uniformization 59

subgroup of GLn(C). (Note G/Q is a small group, as the pseudo-reflection

subgroup of G/Q is trivial.)

We return to the cyclic group Γ generated by a twining automorphism

γ : Ad−1 → Ad−1 given by

(x1, . . . ,xl, t) �→ (e2πia1/n1m1xσ1
1 , . . . , e2πial/nlmlxσl

l , e
2πi/N t).(6.1)

Recall that Γ̃ is the lift of Γ with respect to the universal covering p :

Ãd−1(= C
n) → Ad−1 and H is the descent of Γ̃ with respect to the covering

q : Ãd−1 → C
n. We apply to H the above results, to determine its pseudo-

reflection subgroup — the subgroup generated by all pseudo-reflections in

H. Note first that:

Lemma 6.3.

(1) The cyclic group Γ contains no switching that leaves t fixed.

(2) Any pseudo-reflection in H is simple.

Proof. (1): We only show that Γ contains no (1, 2)-switching (other

cases are similarly shown). Note first that from (6.1), γk ∈ Γ maps t to

e2πik/N t. If γk is a (1, 2)-switching, then e2πik/N must be 1; so k is a multiple

of N . Since the order of γ is N , this implies that γk is the identity, which

contradicts that γk is a (1, 2)-switching.

(2): Let h ∈ H be a pseudo-reflection. By Lemma 4.13, h is of the form:

h : (u1, u2, . . . , un) �→ (ζ1uσj(1), ζ2uσj(2), . . . , ζnuσj(n))(6.2)

for some j and some roots ζ1, ζ2, . . . , ζn of unity. Then by Lemma 5.3, h

is either simple or switching. The assertion is thus confirmed by showing

the latter does not occur. We only show that h cannot be a (1, 2)-switching

(other cases are similarly shown). Otherwise

h : (u1, u2, u3, . . . , un) �−→ (αu2, α
−1u1, u3, . . . , un) (α: a root of unity).

Comparing this with (6.2) yields σj = (1 2).

Recall that σ = σ1σ2 · · ·σl, where σ1, σ2, . . . , σl are the cyclic permuta-

tions appearing in (6.1) and ni is the length of σi. From σj = (1 2), we
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have σj
1 = (1 2) and σj

2 = σj
3 = · · · = σj

l = id. Note that σj
1 = (1 2)

implies σ1 = (1 2) and n1 = 2 (see Remark 6.4 (2) below); from the latter,

X1 = (X1, X2), so the covering q : Ãd−1 → C
n is given by

q : (X1, X2, X3, . . . , Xn) �−→ (X
m′

1
1 , X

m′
1

2 , X
m′

2
3 , . . . , X

m′
l

n ).

Define a lift h̃ ∈ Γ̃ of h with respect to q by

h̃ : (X1, X2, X3, . . . , Xn) �−→ (α1/m′
1X2, α

−1/m′
1X1, X3, . . . , Xn).

The descent h ∈ Γ of h̃ with respect to p : Ãd−1 → Ad−1 is then

h : (x1, x2, x3, . . . , xn, t) �−→ (αd/m′
1x2, α

−d/m′
1x1, x3, . . . , xn, t).

This is a (1, 2)-switching, which contradicts that Γ contains no switching

(as shown in (1)). �

Remark 6.4. For a cyclic permutation τ , τ j is generally decomposable:

Say the length of τ is l and set k := gcd(j, l), then τ j is a product of k cyclic

permutations of the same length l/k (note k divides l).

(1) In case k = 1, τ j is indecomposable, and the length l/1 of τ j is the same

as that of τ .

(2) If l = 2 (i.e. τ is a transposition), then necessarily k = 1 or 2. In the

former case, by (1) the length of τ j is also 2, so τ j is a transposition —

necessarily τ j = τ and j is odd.

We turn to determine the pseudo-reflection subgroup of H.

Proposition 6.5. The pseudo-reflection subgroup P of H is a direct

product P1 × P2 × · · · × Pn, where Pi is the subgroup of H generated by ith

simple pseudo-reflections, that is, of the form

(u1, u2, . . . , un) �−→ (u1, u2, . . . , ζui, . . . , un), ζ is a root of unity.

Proof. Clearly P1P2 · · ·Pn ⊂ P . Since any pseudo-reflection in H

is contained in some Pi (from Lemma 6.3 (2)), P = P1P2 · · ·Pn. Here by

definition, Pi ∩ Pj = {1} (i �= j), thus P = P1 × P2 × · · · × Pn. �
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We next determine Pi explicitly. Recall first the following diagram with

group actions:

Ãd−1 = C
n

q
�������� p

�������� Γ̃�

H � C
n Ad−1 Γ.�

(6.3)

Here Γ is the cyclic group generated by a twining automorphism

γ : (x1, . . . ,xl, t) �−→ (e2πia1/n1m1xσ1
1 , . . . , e2πial/nlmlxσl

l , e
2πi/N t),

and Γ̃ is the lift of Γ with respect to p, and H is the descent of Γ̃ with

respect to q.

Notation 6.6. The subsequent discussion involves the following groups:

• Γ̃i ⊂ Γ̃: the subgroup generated by ith simple pseudo-reflections, that

is, of the form (X1, X2, . . . , Xn) �→ (X1, X2, . . . , ζXi, . . . , Xn), where

ζ is a root of unity.

• Γi ⊂ Γ: the subgroup generated by automorphisms of the form

(x1, . . . , xn, t) �→ (x1, . . . , µ
dxi, . . . , xn, µt), where µ is a root of unity.

• Pi ⊂ H: the subgroup generated by ith simple pseudo-reflections.

Definition 6.7. The surjective homomorphism p∗ : Γ̃ → Γ (resp. q∗ :

Γ̃ → H) induced by p (resp. q) is called a descent homomorphism.

Lemma 6.8.

(1) Γi is the descent of Γ̃i with respect to p, that is, p∗(Γ̃i) = Γi. In fact

p∗ : Γ̃i → Γi is an isomorphism.

(2) Pi is the descent of Γ̃i with respect to q, that is, q∗(Γ̃i) = Pi.

Proof. (1): Since

p : (X1, X2, . . . , Xn) �−→ (Xd
1 , X

d
2 , . . . , X

d
n, X1X2 · · ·Xn),

an ith pseudo-reflection (X1, . . . , Xn) �→ (X1, . . . , ζXi, . . . , Xn) descends to

(x1, . . . , xn, t) �→ (x1, . . . , ζ
dxi, . . . , xn, ζt). This correspondence is clearly
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surjective, so p∗(Γ̃i) = Γi. Moreover this is injective: Distinct automor-

phisms

{
(X1, . . . , Xn) �→ (X1, . . . , ζXi, . . . , Xn)

(X1, . . . , Xn) �→ (X1, . . . , ζ
′Xi, . . . , Xn)

descend to distinct auto-

morphisms

{
(x1, . . . , xn, t) �→ (x1, . . . , ζ

dxi, . . . , xn, ζt)

(x1, . . . , xn, t) �→ (x1, . . . , (ζ
′)dxi, . . . , xn, ζ ′t).

(2): Write (X1, . . . , Xn) ∈ C
n as (X1,X2, . . . ,X l) ∈ C

n1×C
n2×· · ·×C

nl

(n = n1 + n2 + · · · + nl), then

q : (X1,X2, . . . ,X l) �−→ (X
m′

1
1 ,X

m′
2

2 , . . . ,X
m′

l
l ).(6.4)

Say Xi ∈ Xk, then under q, (X1, . . . , Xn) �→ (X1, . . . , ζXi, . . . , Xn) descends

to (u1, . . . , un) �→ (u1, . . . , ζ
m′

kui, . . . , un). This correspondence is clearly

surjective. �

Recall that Γ is the cyclic group of order N generated by

γ : (x1, . . . ,xl, t) �−→ (e2πia1/n1m1xσ1
1 , . . . , e2πial/nlmlxσl

l , e
2πi/N t).(6.5)

Thus

γj : (x1, . . . ,xl, t)(6.6)

�−→ (e2πija1/n1m1x
σj
1

1 , . . . , e2πijal/nlmlx
σj
l

l , e2πij/N t).

We investigate when γj ∈ Γi, that is, γj is of the form (x1, . . . , xn, t) �→
(x1, . . . , ζ

dxi, . . . , xn, ζt) for some root ζ of unity. Say xi ∈ xk, then

γj : (x1, . . . , xn, t) �−→
(
x1, . . .︸ ︷︷ ︸
x1

. . . . . , ζdxi, . .︸ ︷︷ ︸
xk

. . . . . . , xn︸ ︷︷ ︸
xl

, ζt
)
.(6.7)

Comparing (6.6) and (6.7) yields σj
1 = 1, σj

2 = 1, . . . , σj
l = 1, accordingly

(6.6) reduces to

γj : (x1, . . . ,xl, t) �−→ (e2πija1/n1m1x1, . . . , e
2πijal/nlmlxl, e

2πij/N t).(6.8)

We then compare the coefficients in (6.7) and (6.8):

• Comparison for xs (s = 1, . . . , ǩ, . . . , l) gives e2πijas/nsms = 1, where

ǩ means the omission of k.
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• Comparison for xk gives e2πijak/nkmkxk =
(
. . . , xi−1, ζ

dxi, . . .︸ ︷︷ ︸
xk

)
, that

is,

(. . . , e2πijak/nkmkxi−1, e
2πijak/nkmkxi, . . . )=

(
. . . , xi−1, ζ

dxi, . . .
)
.

If length(xk) = 1, this reduces to (e2πijak/nkmkxi) = (ζdxi), so

e2πijak/nkmk = ζd. If length(xk) ≥ 2, then e2πijak/nkmk = 1 and

ζd = 1.

• Comparison for t gives e2πij/N = ζ.

Note. If length(xk) = 1 (resp. ≥ 2), then (ζ, ζd) = (e2πij/N ,

e2πijak/nkmk) (resp. (ζ, ζd) = (e2πij/N , 1)). Accordingly (e2πij/N )d =

e2πijak/nkmk (resp. (e2πij/N )d = 1), which also follows from the fact that

γj preserves Ad−1, that is, x1x2 · · ·xn = t.

We summarize the above results as follows:

Lemma 6.9. Let Γi be the subgroup of Γ defined in Notation 6.6. Then

γj ∈ Γi if and only if γj is of the form (say xi ∈ xk):{
(x1, . . . ,xl, t) �→ (x1, . . . , e

2πidj/Nxk, . . . ,xl, e
2πij/N t) if length(xk) = 1,

(x1, . . . ,xl, t) �→ (x1 . . . ,xl, e
2πij/N t) if length(xk) ≥ 2.

This condition is ‘more explicitly’ given by: σj
1 = 1, σj

2 = 1, . . . , σj
l = 1 and

(below, ǩ is the omission of k)

(∗)
{

e2πijas/nsms = 1 for s = 1, 2, . . . , ǩ, . . . , l if length(xk) = 1,

e2πijas/nsms = 1 for s = 1, 2, . . . , l if length(xk) ≥ 2.

Here as and nsms (s = 1, 2, . . . , l) are relatively prime, so (∗) is restated

as: j is a multiple of Lk, where (below, is the omission of nkmk)

Lk :=

{
lcm(n1m1, n2m2, . . . , , . . . , nlml) if length(xk) = 1,

lcm(n1m1, n2m2, . . . , nlml) if length(xk) ≥ 2,
(6.9)
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Here ns = length(xs) (the order of σs). Hence γj ∈ Γi if and only if j

is a common multiple of Lk and the orders of σ1, σ2, . . . , σl, that is, j is a

multiple of lcm(Lk, n1, n2, . . . , nl) = Lk. The following is thus obtained:

Corollary 6.10. In Lemma 6.9, γj ∈ Γi if and only if j is a multiple

of Lk given by (6.9).

We explicitly determine Γi and Γ̃i:

Lemma 6.11.

(1) The group Γi (in Notation 6.6) is cyclic: Say xi ∈ xk, then Γi is

generated by the following automorphism:

γLk : (x1, . . . ,xl, t) �−→ (x1, . . . , e
2πiLkd/Nxk, . . . ,xl, e

2πiLk/N t),

(Note: If nk ≥ 2, then e2πiLkd/N = 1.)

(2) The subgroup Γ̃i of Γ̃ (in Notation 6.6) is cyclic: Say Xi ∈ Xk, then

Γ̃i is generated by the following automorphism

ξi : (X1, . . . , Xn) �−→ (X1, . . . , e
2πiLk/NXi, . . . , Xn).(6.10)

Proof. (1): Γi is cyclic, because it is a subgroup of the cyclic group

Γ. Say now xi ∈ xk, then since γj ∈ Γi if and only if j is a multiple of Lk

(Corollary 6.10), Γi is generated by γLk .

(2): Γ̃i is cyclic, because Γ̃i is isomorphic to the cyclic group Γi (Lemma

6.8 (1)). Say Xi ∈ Xk. We then show that Γ̃i is generated by the ξi given

by (6.10). Since Xi ∈ Xk, xi ∈ xk, and thus by (1), Γi is generated by γLk .

Since p∗ : Γ̃i → Γi is isomorphic (Lemma 6.8 (1)) and p∗(ξi) = γLk , Γ̃i is

generated by p−1
∗ (γLk) = ξi. �

Recall that H is the descent of Γ̃ with respect to q.

Corollary 6.12. The subgroup Pi of H generated by ith pseudo-re-

flections is actually cyclic: Say ui ∈ uk, when we write (u1, . . . , un) ∈ C
n as

(u1, . . . ,ul) ∈ C
n1 × · · · × C

nl. Then Pi is generated by

hi : (u1, . . . , un) �−→ (u1, . . . , e
2πinkmkLk/Ncui, . . . , un).(6.11)
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Proof. Since q∗(Γ̃i) = Pi (Lemma 6.8 (2)) and Γ̃i is generated by ξi
(Lemma 6.11 (2)), Pi is generated by q∗(ξi). Here q∗(ξi) = hi, confirming

the assertion. �

Let P be the pseudo-reflection subgroup of H. Then P = P1 × P2 ×
· · · × Pn (Lemma 6.5), thus from Corollary 6.12 the following holds:

Proposition 6.13. The pseudo-reflection subgroup P of H is gener-

ated by the automorphisms h1, h2, . . . , hn in Corollary 6.12.

7. Numerical Criterion of Smallness

That is, its pseudo-reflection subgroup P is nontrivial. Consider the

quotient map r : C
n → C

n/P . By Chevalley-Shephard-Todd theorem,

C
n/P ∼= C

n and under this isomorphism, H/P acts on C
n linearly. So H/P

may be regarded as a subgroup of GLn(C) and r as a map r : C
n → C

n.

Since the covering transformation group of r is P , the following is obvious:

r : C
n → C

n is the identity map ⇐⇒ P = {1}
⇐⇒ H is small.

(7.1)

We explicitly give r. We begin with observation. Let Z� := 〈e2πi/�〉 act

on C by multiplication, then the quotient map C → C/Z�
∼= C is given

by z �→ z�. More generally let Z�1 × · · · × Z�n = 〈e2πi/�1〉 × · · · × 〈e2πi/�n〉
act on C

n = C × · · · × C by multiplication, then the quotient map C
n →

C
n/(Z�1 × · · · × Z�n) ∼= C

n is given by

(z1, . . . , zn) �−→ (z�11 , . . . , z�nn ).(7.2)

Similarly the quotient map r : C
n → C

n/P ∼= C
n may be explicitly given.

Recall first that P = 〈h1〉 × 〈h2〉 × · · · × 〈hn〉 (Proposition 6.13), where hi
is an automorphism of C

n given by (6.11): Set *k := Nc/nkmkLk, where

Lk is the positive integer given by (6.9) and N := (m′
1)

n1 · · · (m′
l)
nlc and

c := gcd(n1m1, . . . , nlml) and m′
k = nkmk

c (*k is an integer by Lemma 7.4

below), then explicitly

hi : (u1, . . . , un) �−→ (u1, . . . , e
2πi/�kui, . . . , un),
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As for (7.2), r : C
n → C

n/P ∼= C
n is then given by

(u1, . . . , un) �→
(
u�11 , . . .︸ ︷︷ ︸

u1

. . . . . , u�ki , . .︸ ︷︷ ︸
uk

. . . . . . , u�ln︸ ︷︷ ︸
ul

)
.

We formalize this result as follows:

Lemma 7.1. Write (u1, u2, . . . , un) ∈ C
n as (u1,u2, . . . ,ul) ∈ C

n1 ×
C
n2 × · · · × C

nl, where uk := (uj1 , . . . , ujnk
). Then the covering map r :

C
n → C

n is explicitly given by r(u1,u2, . . . ,ul) = (u�1
1 ,u

�2
2 , . . . ,u

�l
l ), where

u�k
k := (u�kj1 , . . . , u

�k
jnk

).

The following is immediate from Lemma 7.1:

r is the identity map ⇐⇒ *1 = *2 = · · · = *l = 1

(i.e. Nc/n1m1L1 = · · · = Nc/nlmlLl = 1)

⇐⇒ m′
1L1 = · · · = m′

lLl = N.

This combined with (7.1) yields the following:

Theorem 7.2. The following are equivalent:

(1) H is small.

(2) The covering r : C
n → C

n is the identity map.

(3) m′
1L1 = m′

2L2 = · · · = m′
lLl = N .

Corollary 7.3. If n = 2, then H is small.

Proof. From Theorem 7.2, it suffices to show m′
1L1 = m′

2L2 = · · · =

m′
lLl = 1. Note first that the permutation σ ∈ Sn appearing in the def-

inition of γ is, if n = 2, either the identity or a transposition (1 2). We

separate into two cases:

(i) If σ is the identity, then n1 = n2 = 1, c = gcd(m1,m2), m
′
1 = m1

c , m′
2 =

m2
c , N = m′

1m
′
2c, L1 = m′

2c, and L2 = m′
1c. Thus m′

1L1 = m′
2L2 = N .

(ii) If σ is the transposition (1 2), then n1 = 2, c = 2m1, m
′
1 = 2m1

c = 1,

N = (m′
1)

2c = 2m1, and L1 = n1m1 = 2m1. Thus m′
1L1 = N . �

Supplement. We show that *k := Nc/nkmkLk is an integer. Recall

that N := (m′
1)

n1 · · · (m′
l)
nlc, where c := gcd(n1m1, . . . , nlml) and m′

k =
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nkmk
c and Lk is given by (6.9):

Lk =

{
lcm(n1m1, n2m2, . . . , , . . . , nlml) if nk = 1,

lcm(n1m1, n2m2, . . . , nlml) if nk ≥ 2.

Lemma 7.4. *k := Nc/nkmkLk is an integer.

Proof. Rewrite Lk as

Lk =

{
lcm(m′

1,m
′
2 . . . , m̌

′
k, . . . ,m

′
l)c if nk = 1,

lcm(m′
1,m

′
2, . . . ,m

′
l)c if nk ≥ 2.

Here {
lcm(m′

1,m
′
2 . . . , m̌

′
k, . . . ,m

′
l) divides m′

1m
′
2 · · · m̌′

k · · ·m′
l,

lcm(m′
1,m

′
2, . . . ,m

′
l) divides m′

1m
′
2 · · ·m′

l.

In either case Lk divides m′
1 · · · (m′

k)
nk−1 · · ·m′

lc, so nkmkLk (= m′
kLkc)

divides m′
1 · · · (m′

k)
nk · · ·m′

lc
2, in particular, divides Nc = (m′

1)
n1 · · ·

(m′
l)
nlc2. �

8. Uniformization of Twined Singularities

8.1. Uniformization theorem

In what follows, set G := H/P . Consider the diagram expanding (6.3):

Ãd−1 = C
n

q
�������� p

�������� Γ̃�

H � C
n

r
		��

��
��

Ad−1 Γ.�

G := H/P � C
n

(8.1)

Then

Ad−1/Γ ∼= Ãd−1/Γ̃ ∼= C
n/H ∼= C

n/G.(8.2)

Here G is a small finite subgroup of GLn(C) (Theorem 6.2). We thus proved

(1) of the following:
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Theorem 8.1 (Uniformization theorem). Let Γ be the cyclic group

generated by a twining automorphism γ : Ad−1 → Ad−1 given by

γ : (x1, . . . ,xl, t) �−→ (e2πia1/n1m1xσ1
1 , . . . , e2πial/nlmlxσl

l , e
2πi/N t).

Then:

(1) There exists a small finite group G ⊂ GLn(C) such that Ad−1/Γ ∼=
C
n/G; this isomorphism is the composition r ◦ q ◦ p−1, where

p : Ãd−1/Γ̃
∼= �� Ad−1/Γ , q : Ãd−1/Γ̃

∼= �� Cn/H , r : C
n/H

∼= �� Cn/G

are induced from p, q, r.

(2) The isomorphism Ψ := r ◦ q ◦ p−1 : Ad−1/Γ
∼= �� Cn/G in (1) is ex-

plicitly given by

Ψ
(
[x1, . . . ,xl, t]

)
=

[
x
�1m′

1/d
1 , . . . ,x

�lm
′
l/d

l

]
,

where [x1, . . . ,xl, t] ∈ Ad−1/Γ and
[
x
�1m′

1/d
1 , . . . ,x

�lm
′
l/d

l

]
∈ C

n/G de-

note the images of (x1, . . . ,xl, t) ∈ Ad−1 and
(
x
�1m′

1/d
1 , . . . ,x

�lm
′
l/d

l

)
∈

C
n respectively.

Proof. It remains to show (2). Since

p
(
[X1,X2, . . . ,X l]

)
= [Xd

1,X
d
2, . . . ,X

d
l ,X1X2 · · ·X l],

we have p−1
(
[x1,x2, . . . ,xl, t]

)
=

[
x

1/d
1 , x

1/d
2 , . . . ,x

1/d
l

]
. Thus

Ψ
(
[x1,x2, . . . ,xl, t]

)
= r ◦ q ◦ p−1

(
[x1,x2, . . . ,xl, t]

)
= r ◦ q

(
[x

1/d
1 , x

1/d
2 , . . . ,x

1/d
l ]

)
= r

(
[x

m′
1/d

1 , x
m′

2/d
2 , . . . ,x

m′
l/d

l ]
)

=
[
x
�1m′

1/d
1 ,x

�2m′
2/d

2 , . . . ,x
�lm

′
l/d

l

]
. �

Correspondence between maps

We keep the notation above: Γ is the cyclic group of order N generated

by the automorphism of Ad−1 given by

γ : (x1, . . . ,xl, t) �−→ (e2πia1/n1m1xσ1
1 , . . . , e2πial/nlmlxσl

l , e
2πi/N t).
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Define a holomorphic map Φ : Ad−1 → C by

Φ(x1, x2, . . . , xn, t) = tN .(8.3)

This, being Γ-invariant, descends to a holomorphic map Φ : Ad−1/Γ → C

(which is a local model of a degeneration of compact complex manifolds).

We shall explicitly give the corresponding map C
n/G → C under the iso-

morphism Ad−1/Γ ∼= C
n/G in Theorem 8.1.

Consider first the case l = 1, that is, γ : (x1, t) �→ (e2πia1/nm1x1, e
2πi/N t).

Explicitly γ is of the form (below, write a1,m1, L1 as a,m,L etc):

γ : (x1, . . . , xn, t) �−→ (e2πia/nmxσ(1), . . . , e
2πia/nmxσ(n), e

2πi/N t),

where σ ∈ Sn is a cyclic permutation of length n. In this case, c = nm,

m′ = 1, L = nm, N = (m′)nc = nm. Accordingly * := Nc/nmL = 1 and

d = N( am + κ) = na+ nmκ. The following then hold:

Lemma 8.2.

(i) Let G ⊂ GLn(C) be the small finite group in Theorem 8.1. Then the

holomorphic map φ : C
n → C given by φ(v1, . . . , vn) = (v1 · · · vn)nm is

G-invariant. (So φ descends to a holomorphic map φ : C
n/G → C.)

(ii) Let Φ : Ad−1 → C be the Γ-invariant map given by (8.3). Under the

isomorphism Ψ : Ad−1/Γ
∼= �� Cn/G in Theorem 8.1, Φ : Ad−1/Γ →

C corresponds to φ, that is, Φ = φ ◦ Ψ.

Proof. (i): As seen in Theorem 9.1 (3) below, G = {gj,p : p ∈
Λ(j), j = 1, 2, . . . , N}, where gj,p is α

j
βj,p therein. Explicitly

gj,p : (v1, . . . , vn) �−→(e2πi(ja+nmp1)/nmdvσ(1), . . . , e
2πi(ja+nmpn)/nmdvσ(n)).

For simplicity, set ζi := e2πi(ja+nmpi)/nmd, then

gj,p : (v1, v2, . . . , vn) �−→ (ζ1vσ(1), ζ2vσ(2), . . . , ζnvσ(n)).

It suffices to show φ ◦ gj,p(v1, v2, . . . , vn) = φ(v1, v2, . . . , vn). Note first that

(ζ1ζ2 · · · ζn)nm = 1, indeed

(ζ1ζ2 · · · ζn)nm = e2πi{jna+nm(p1+···+pn)}/d

= e2πi(jna+nmjκ)/d as (p1, . . . , pn)∈Λ(j)

= e2πij = 1.
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Then

φ ◦ gj,p(v1, v2, . . . , vn) = φ(ζ1vσ(1), ζ2vσ(2), . . . , ζnvσ(n))

= (ζ1ζ2 · · · ζn)nm(vσ(1)vσ(2) · · · vσ(n))
nm

= (vσ(1)vσ(2) · · · vσ(n))
nm as (ζ1ζ2 · · · ζn)nm = 1

= (v1v2 · · · vn)nm = φ(v1, v2, . . . , vn).

(ii): From Theorem 8.1 (2), Ψ
(
[x1, . . . , xn, t]

)
= [x

1/d
1 , . . . , x

1/d
n ]. Thus

φ ◦ Ψ
(
[x1, . . . , xn, t]

)
= φ

(
[x

1/d
1 , . . . , x1/d

n ]
)

= (x1 · · ·xn)nm/d

= tnm as x1 · · ·xn = td

= tN as N = nm

= Φ
(
[x1, . . . , xn, t]

)
by definition. �

We turn to the general case:

(∗) γ : (x1, . . . ,xl, t) �−→ (e2πia1/n1m1xσ1
1 , . . . , e2πial/nlmlxσl

l , e
2πi/N t).

As for Lemma 8.2, we can show the following:

Theorem 8.3. Write (v1, . . . , vn) ∈ C
n as (v1, . . . ,vl) ∈ C

n = C
n1 ×

· · ·×C
nl. For each permutation σk appearing in (∗), let Jk be its cycle, that

is, Jk = {i : vi ∈ vk}. Then:

(1) Let G ⊂ GLn(C) be the small finite group in Theorem 8.1 and

φ : C
n → C be a holomorphic map given by φ(v1, . . . , vn) =

l∏
k=1

( ∏
i∈Jk

vi

)Lk

, where Lk is the integer given by (6.9). Then φ is

G-invariant.

(2) Let Φ : Ad−1 → C be the Γ-invariant map given by (8.3). Under the

isomorphism Ψ : Ad−1/Γ
∼= �� Cn/G in Theorem 8.1, Φ : Ad−1/Γ →

C corresponds to the descent φ : C
n/G → C.
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9. Explicit Forms of Elements of Γ̃, H, G

We subsequently deal with many notations — to reduce the burden of

memorizing them, H, G are denoted by Γ, Γ. Recall:

• Express γ = αβ, where
α : (x1, . . . ,xl, t)

�−→ (e2πia1/n1m1xσ1
1 , . . . , e2πial/nlmlxσl

l , e
2πi(1/N−κ/d)t),

β : (x1, . . . ,xl, t) �−→ (x1, . . . ,xl, e
2πiκ/dt).

• Set Λ(j) :=
{
p = (p1, . . . , pn) ∈ Z

n : 0 ≤ pi ≤ d,
n∑

i=1

pi
d

≡ jκ
d

mod Z
}

(see (4.4)).

• For p ∈ Λ(j), let α̃, β̃j,p be the lifts of α, β given by (4.8), and α, βj,p

be their descents with respect to q. Let α, βj,p be the descents of

α, βj,p with respect to r.

The following then holds:

Theorem 9.1.

(1) Γ̃ =
{
α̃j β̃j,p : p ∈ Λ(j), j = 1, 2, . . . , N

}
, where{

α̃ : (X1, . . . ,X l) �−→
(
e2πia1/n1m1dXσ1

1 , . . . , e2πial/nlmldXσl
l

)
,

β̃j,p : (X1, . . . ,X l) �−→
(
β̃j,p1(X1), . . . , β̃j,pl

(X l)
)
.

(2) Γ =
{
αjβj,p : p ∈ Λ(j), j = 1, 2, . . . , N

}
, where{

α : (u1, . . . ,ul) �−→
(
e2πia1/cduσ1

1 , . . . , e2πial/cduσl
l

)
,

βj,p : (u1, . . . ,ul) �−→
(
(β̃j,p1)

m′
1(u1), . . . , (β̃j,pl

)m
′
l(ul)

)
.

(3) Γ =
{
α
j
βj,p : p ∈ Λ(j), j = 1, 2, . . . , N

}
, where{

α : (v1, . . . ,vl) �−→
(
e2πia1�1/cdvσ1

1 , . . . , e2πial�l/cdvσl
l

)
,

βj,p : (v1, . . . ,vl) �−→
(
(β̃j,p1)

m′
1�1(v1), . . . , (β̃j,pl

)m
′
l�l(vl)

)
.
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Namely

Γ̃ = {α̃j β̃j,p}q∗


������ p∗

��								

Γ = {αjβj,p}
r∗










Γ = {γj = αjβj}.

Γ = {αj
βj,p}

(9.1)

Proof. (1) and (2) are already shown in Lemma 4.11. (3) follows

from (2), as the descent homomorphism r∗ : Γ → Γ is surjective and the

covering r : C
n → C

n is given by r : (u1,u2, . . . ,ul) �→ (u�1
1 ,u

�2
2 , . . . ,u

�l
l )

(see Lemma 7.1). �

Note:

α, β /∈ Γ α̃, β̃j,p /∈ Γ̃ α, βj,p /∈ Γ α, βj,p /∈ Γ

αβ ∈ Γ α̃j β̃j,p ∈ Γ̃ αjβj,p ∈ Γ α
j
βj,p ∈ Γ

Here explicitly:

Lemma 9.2. Setting ζk := e2πim′
k/d, then for p = (p1, p2, . . . , pn) ∈

Λ(j),

(1) β̃j,p : (X1, X2, . . . , Xn) �−→ (e2πip1/dX1, e
2πip2/dX2, . . . , e

2πipn/dXn).

(2) βj,p : (X1, X2, . . . , Xn) �−→ (Y1, Y2, . . . , Yl), where

Y1 = (ζp1
1 X1, ζ

p2
1 X2, . . . , ζ

pn1
1 Xn1︸ ︷︷ ︸

n1

)

Y2 = (ζ
pn1+1

2 Xn1+1, ζ
pn1+2

2 Xn1+2, . . . , ζ
pn1+n2
2 Xn1+n2︸ ︷︷ ︸

n2

)

Y3 = (ζ
pn1+n2+1

3 Xn1+n2+1, ζ
pn1+n2+2

3 Xn1+n2+2, . . . , ζ
pn1+n2+n3
3 Xn1+n2+n3︸ ︷︷ ︸

n3

)

· · · .
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(3) βj,p : (X1, X2, . . . , Xn) �−→ (Z1, Z2, . . . , Zl), where

Z1 = (ζ�1p1
1 X1, ζ

�1p2
1 X2, . . . , ζ

�1pn1
1 Xn1︸ ︷︷ ︸

n1

)

Z2 = (ζ
�2pn1+1

2 Xn1+1, ζ
�2pn1+2

2 Xn1+2, . . . , ζ
�2pn1+n2
2 Xn1+n2︸ ︷︷ ︸

n2

)

Z3 = (ζ
�3pn1+n2+1

3 Xn1+n2+1, ζ
�3pn1+n2+2

3 Xn1+n2+2, . . . , ζ
�3pn1+n2+n3
3 Xn1+n2+n3︸ ︷︷ ︸

n3

)

· · · .

Proof. (1): Write p = (p1, p2, . . . , pn) as (p1,p2, . . . ,pl) ∈ Z
n1×Z

n2×
· · · × Z

nl . Note that (see Theorem 9.1 (1))

β̃j,p : (X1,X2, . . . ,X l) �−→
(
β̃j,p1(X1), β̃j,p2(X2), . . . , β̃j,pl

(X l)
)
,

where β̃j,pi : Xi = (Xj1 , . . . , Xjni
) �→ (e2πipj1/dXj1 , . . . , e

2πipjni
/dXjni

). In

the cooridinates (X1, X2, . . . , Xn),

β̃j,p : (X1, X2, . . . , Xn) �−→ (e2πip1/dX1, e
2πip2/dX2, . . . , e

2πipn/dXn).

(2): Note that (see Theorem 9.1 (2))

βj,p : (X1, . . . ,X l) �−→
(
(β̃j,p1)

m′
1(X1), . . . , (β̃j,pl

)m
′
l(X l)

)
.

Writing this in the cooridinates (X1, X2, . . . , Xn) yields the assertion.

(3): Note that (see Theorem 9.1 (3))

βj,p : (X1, . . . ,X l) �−→
(
(β̃j,p1)

m′
1�1(X1), . . . , (β̃j,pl

)m
′
l�l(X l)

)
.

Writing this in the cooridinates (X1, X2, . . . , Xn) yields the assertion. �

Remark 9.3. If σ �= id, Γ (= H) is generally not abelian — this is also

the case for Γ (= G). We will determine when Γ̃ (and G) is abelian. See

Theorem 10.11.

9.1. Generators of Γ̃, Γ (= H) and Γ (= G)

The covering maps p, q, r induce surjective homomorphisms (descent

homomorphisms) p∗ : Γ̃ → Γ, q∗ : Γ̃ → Γ, r∗ : Γ → Γ (see (9.1)). As q∗ and

r∗ are surjective, generators of Γ̃ descend to those of Γ, and then, to those

of Γ. Subsequently we will explicitly give generators of Γ̃ and descend them

to Γ, and then to Γ.
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First take a lift γ̃ := α̃β̃1,p of γ (recall α̃j β̃j,p is a lift of γj ; Corollary

4.6). To simplify discussion, for p we take q := (0, . . . , 0,
σ(n)

κ̌ , 0 . . . , 0):

α̃ : (X1, . . . ,X l) �−→
(
e2πia1/n1m1dXσ1

1 , . . . , e2πial/nlmldXσl
l

)
,(9.2)

β̃1, q : (X1, X2, . . . , Xn) �−→ (X1, X2, . . . , e
2πiκ/dXσ(n), . . . , Xn).(9.3)

We next take lifts ĩd1, ĩd2, . . . , ĩdn−1 of id ∈ Γ as follows:

ĩdi : (X1, . . . , Xn) �−→ (X1, . . . , Xi−1, e
2πi/dXi, Xi+1, . . . , e

−2πi/dXn).(9.4)

Recall that Γ̃ =
{
α̃j β̃j,p : p ∈ Λ(j), j = 1, 2, . . . , N

}
(Theorem 9.1 (1)).

Lemma 9.4. Set δ := (β̃1, σ(q))
j (note in general δ /∈ Γ̃), and for sim-

plicity write γ̃, ĩdi as ϕ, ψi. Then:

(1) ϕj
(
ψσ(n)ψσ2(n) · · ·ψσj(n)

)−κ
= α̃jδ.

(2) For p = (p1, . . . , pn) ∈ Λ(j), (ψ1)
p1(ψ2)

p2 · · · (ψn−1)
pn−1 = δ−1β̃j,p .

(3) For p = (p1, . . . , pn) ∈ Λ(j),

ϕj
(
ψσ(n)ψσ2(n) · · ·ψσj(n)

)−κ
(ψ1)

p1(ψ2)
p2 · · · (ψn−1)

pn−1 = α̃j β̃j,p .

Proof. (1): Note first that

ϕj = (α̃β̃1,q )j

= α̃j β̃1,σ−j+1(q) · · · β̃1,σ−1(q)β̃1,q as β̃1,q α̃ = α̃β̃1,σ−1(q) (Lemma 4.8).

Here (ψσi(n))
−κ = (β̃1,σ−i+1(q))

−1β̃1,σ(q) and δ = (β̃1,σ(q))
j , so

(
ψσ(n)ψσ2(n) · · ·ψσj(n)

)−κ
= (β̃1,σ−j+1(q) · · · β̃1,σ−1(q)β̃1,q )−1δ.

Thus ϕj
(
ψσ(n)ψσ2(n) · · ·ψσj(n)

)−κ
= α̃jδ.

(2): Since p ∈ Λ(j), we have

(∗) − (p1 + · · · + pn−1)/d ≡ (pn − jκ)/d mod Z.
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Now

(ψ1)
p1(ψ2)

p2 · · · (ψn−1)
pn−1(X1, . . . , Xn)

= (e2πip1/dX1, . . . , e
2πipn−1/dXn−1, e

−2πi(p1+···+pn−1)/dXn)

= (e2πip1/dX1, . . . , e
2πipn−1/dXn−1, e

2πi(pn−jκ)/dXn) by (∗)
= δ−1β̃j,p(X1, . . . , Xn).

The equation of (3) is the product of (1) and (2). �

From Lemma 9.4 (3), any element of Γ̃ is written as a product of γ̃, ĩdi

(i = 1, 2, . . . , n− 1), so they generate Γ̃, therefore:

Corollary 9.5. Set γ := q∗(γ̃), idi := q∗(ĩdi) and γ := r∗(γ), idi :=

r∗(idi), then:

(1) γ̃, ĩd1, ĩd2, . . . , ĩdn−1 generate Γ̃.

(2) γ, id1, id2, . . . , idn−1 generate Γ (= H).

(3) γ, id1, id2, . . . , idn−1 generate Γ (= G).

Γ̃
q∗
		��

��
��

�� p∗

���
��

��
��

� γ̃, ĩd1, ĩd2, . . . , ĩdn−1

γ, id1, id2, . . . , idn−1 ∈ Γ (= H)
r∗


��

��
��

��
Γ � γ, id.

γ, id1, id2, . . . , idn−1 ∈ Γ (= G)

(9.5)

We summarize the explicit forms of relevant automorphisms. Set

*k := Nc/nkmkLk (k = 1, 2, . . . , l), where Lk is the integer given by (6.9).

Then:
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Theorem 9.6.

(1) γ̃ = α̃β̃1,q , where{
α̃ : (X1, . . . ,X l) �−→

(
e2πia1/n1m1dXσ1

1 , . . . , e2πial/nlmldXσl
l

)
,

β̃1, q : (X1, X2, . . . , Xn) �−→ (X1, X2, . . . , e
2πiκ/dXσ(n), . . . , Xn).

ĩdi : (X1, X2, . . . , Xn) �−→ (X1, X2, . . . , e
2πi/dXi, . . . , e

−2πi/dXn).

(2) γ = αβ1, q , where
α : (X1, . . . ,X l) �−→

(
e2πia1/cdXσ1

1 , . . . , e2πial/cdXσl
l

)
,

β1, q : (X1, X2, . . . , Xn) �−→
(X1, X2, . . . , e

2πim′
lκ/dXσ(n), . . . , Xn).

idi : (X1, X2, . . . , Xn) �−→
(X1, X2, . . . , e

2πim′
k/dXi, . . . , e

−2πim′
l/dXn) (say Xi ∈ Xk).

(3) γ = αβ1, q , where
α : (X1, . . . ,X l) �−→

(
e2πia1�1/cdXσ1

1 , . . . , e2πial�l/cdXσl
l

)
,

β1, q : (X1, X2, . . . , Xn) �−→
(X1, X2, . . . , e

2πim′
l�lκ/dXσ(n), . . . , Xn).

idi : (X1, X2, . . . , Xn) �−→
(X1, X2, . . . , e

2πim′
k�k/dXi, . . . , e

−2πim′
l�l/dXn) (say Xi ∈ Xk).

Proof. (1): γ̃ = α̃β̃1,q is the definition of γ̃, and the explicit forms of

α̃, β̃1,q , ĩdi are respectively given by (9.2), (9.3), and (9.4), confirming (1).

(2) is the descent of (1) with respect to q: Writing (X1, . . . , Xn) ∈ C
n as

(X1, . . . ,X l) ∈ C
n1 × C

nl , then by (6.4),

q : (X1,X2, . . . ,X l) �−→ (X
m′

1
1 ,X

m′
2

2 , . . . ,X
m′

l
l ).(9.6)

Similarly (3) is the descent of (2) with respect to r : (u1,u2, . . . ,ul) �→
(u�1

1 ,u
�2
2 , . . . ,u

�l
l ) (this explicit form of r is given in Lemma 7.1). �

Note that while ĩdi ∈ Γ̃ is a lift of id ∈ Γ, ĩdi itself is not the identity

map; neither are its descents idi, idi.
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Lemma 9.7. The set of lifts of id ∈ Γ is given by{
(ĩd1)

k1(ĩd2)
k2 · · · (ĩdn−1)

kn−1 : ki ∈ Z, 0 ≤ ki < d
}
.

Proof. For simplicity, set ĩdk := (ĩd1)
k1(ĩd2)

k2 · · · (ĩdn−1)
kn−1 , where

k = (k1, k2, . . . , kn−1). Note that ĩdk is a lift of id ∈ Γ as ĩd1, ĩd2, . . . , ĩdn−1

are lifts of id ∈ Γ. Note next that explicitly

ĩdk : (X1, . . . , Xn)

�→ (e2πik1/dX1, . . . e
2πikn−1/dXn−1, e

−2πi(k1+···+kn−1)/dXn).

So ĩdk �= ĩdl if k �= l, and the elements of S := {ĩdk : k ∈ Z
n−1, 0 ≤ ki < d}

are all distinct. Thus S consists of dn−1 elements. Since p : Ãd−1 → Ad−1

is dn−1-fold, this implies that S exhausts all lifts of id ∈ Γ. �

From the explicit forms of ĩdi, idi, idi in Theorem 9.6, the following is

clear:

Corollary 9.8. ĩdi �= ĩdj, idi �= idj, idi �= idj for i �= j.

Consider the special case that σ ∈ Sn is cyclic of length n. Then γ is of

the following form (a1,m1 are for simplicity denoted as a,m):

γ : (x1, . . . , xn, t) �−→ (e2πia/nmxσ(1), . . . , e
2πia/nmxσ(n), e

2πi/nmt).(9.7)

Corollary 9.9. For the cyclic group Γ generated by (9.7), the small

finite subgroup G ⊂ GLn(C) such that Ad−1/Γ ∼= C
n/G (see Theorem 8.1)

satisfies:

(1) Γ̃ = H = G, that is, the covering maps q and r in (8.1) are the identity

maps.

(2) G is generated by the automorphisms f, g1, g2, . . . , gn−1 given by

f : (x1, . . . , xn)

�→ (e2πia/nmdxσ(1), . . . , e
2πia/nmdxσ(n−1), e

2πi(a+nmκ)/nmdxσ(n)),

gi : (x1, . . . , xn) �→ (x1, x2, . . . , e
2πi/dxi, . . . , e

−2πi/dxn).
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Proof. (1): In the present case, σ is cyclic of length n, so l = 1

in (9.6) and Lemma 7.1, and thus q : X �→ Xm′
1 , r : u �→ u�1 . We

claim that m′
1 = *1 = 1 (so q and r are the identity maps). First since

c = gcd(n1m1) = n1m1, we have m′
1 := n1m1/c = 1. Next N = (m′

1)
n1c =

n1m1 and L1 = lcm(n1m1) = n1m1, thus *1 := Nc/n1m1L1 = 1, confirming

(1).

(2): Since Γ̃ = G, this follows from Theorem 9.6 (1) (note n1,m1, a1 are

denoted by n,m, a in the assertion). �

9.2. Preparation to deduce relations

Recall that γ̃, ĩdi ∈ Γ̃ are lifts of γ, id ∈ Γ, and their descents are

γ, idi ∈ Γ, whose descents are γ, idi ∈ Γ. None of them are identity maps

(see Theorem 9.6 for their explicit forms). Note that i = 1, 2, . . . , n − 1.

Convention: Define ĩdn, idn, idn as identity maps.

Recall that Γ̃ is generated by γ̃, ĩdi (i = 1, 2, . . . , n − 1), and Γ by

γ, idi, and Γ by γ, idi (Corollary 9.5). We deduce relations among γ̃, ĩdi

(which descend to relations among γ, idi and then those among γ, idi).

We begin with preparation. By Theorem 9.6 (1), γ̃ = α̃β̃1,q , where q :=

(0, . . . , 0, κ, 0, . . . , 0) (κ lies in the σ(n)th place) and{
α̃ : (X1, . . . ,X l) �−→

(
e2πia1/n1m1dXσ1

1 , . . . , e2πial/nlmldXσl
l

)
,

β̃1, q : (X1, X2, . . . , Xn) �−→ (X1, X2, . . . , e
2πiκ/dXσ(n), . . . , Xn).

Remark 9.10. β̃1,p (for general p = (p1, p2, . . . , pn)) is given as follows

(see Lemma 9.2 (1)):

β̃1,p : (X1, X2, . . . , Xn) �−→ (e2πip1/dX1, e
2πip2/dX2, . . . , e

2πipn/dXn).

Using the relation β̃1,p α̃ = α̃β̃1,σ−1(p) (Lemma 4.8), we may rewrite

γ̃N = (α̃β̃1,q ) · · · (α̃β̃1,q )︸ ︷︷ ︸
N

as γ̃N = α̃N (β̃1,σ−N+1(q) · · · β̃1,σ−1(q)β̃1,q ); for in-

stance if N = 3,

γ̃3 = (α̃β̃1,q )(α̃β̃1,q )(α̃β̃1,q ) = (α̃β̃1,q )α̃α̃β̃1,σ−1q β̃1,q

= α̃α̃α̃β̃1,σ−2(q)β̃1,σ−1q β̃1,q .
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From the explicit form of β̃1,p (see Remark 9.10), β̃1,p β̃1,p′ = β̃1,p′ β̃1,p

for any p, p′. Thus

γ̃N = α̃N
N−1∏
i=0

β̃1,σ−i(q).(9.8)

To rewrite this, recall that σ = σ1σ2 · · ·σl (cycle decomposition) and the

length of σj is nj .

Lemma 9.11.

(i) σ
nj

j = id.

(ii) σnl(q) = q. Consequently σi(q)=σi′(q) if i ≡ i′ mod nl.

(iii) nl divides N .

(iv) σ−i(q) = σN−i(q).

Proof. (i) is clear as σj is a cyclic permutation of length nj .

(ii): Since q := (0, . . . , 0, κ, 0, . . . , 0) (κ lies in the σ(n)th place), we have

σnl(q) = (0, . . . , 0, κ, 0, . . . , 0) (κ lies in the σ−nl+1(n)th place). To show

σnl(q) = q, it thus suffices to show σ−nl+1(n) = σ(n), that is, σnl(n) = n.

Note that n is contained in the cycle Jl of σl (indeed Jl = {n−nl+1, . . . , n−
1, n}), so σ1, σ2, . . . , σl−1 are ‘irrelevant’ to the transformation of n. Hence

σ(n) = σl(n), so σnl(n) = σnl
l (n) = n (as σnl

l = id by (i)).

(iii): Note that

N = (m′
1)

n1 · · · (m′
l)
nlc = (m′

1)
n1 · · · (m′

l)
nl−1m′

lc

= (m′
1)

n1 · · · (m′
l)
nl−1nlml as m′

lc = nlml.

Thus nl divides N .

(iv): Since nl divides N , we have N − i ≡ −i mod nl. Thus σN−i(q) =

σ−i(q) by (ii). �

Using (iv), rewrite (9.8) as γ̃N = α̃N
N−1∏
i=0

β̃1,σi(q). This is further rewrit-

ten. For instance if N = 6 and nl = 2,

γ̃6 = α̃6(β̃1,q β̃1,σ1(q))(β̃1,σ2(q)β̃1,σ3(q))(β̃1,σ4(q)β̃1,σ5(q))

= α̃6(β̃1,q β̃1,σ1(q))
3 as σ2(q) = q.
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In general, the following holds:

γ̃N = α̃N
( nl−1∏

i=0
β̃1,σi(q)

)N/nl

.(9.9)

Here {
α̃N : (X1, . . . ,X l) �→

(
e2πia1N/n1m1dX1 . . . , e

2πialN/nlmldX l

)
,

β̃1,σi(q) : (X1, . . . , Xn) �→ (X1, . . . , e
2πiκ/dXσ−i+1

l (n), . . . , Xn).
(9.10)

We claim that

nl−1∏
i=0

β̃1,σi(q) : (X1, . . . , Xn) �→ (X1, X2, . . . , e
2πiκ/dXn−nl+1, . . . , e

2πiκ/dXn︸ ︷︷ ︸
nl

),

that is,

nl−1∏
i=0

β̃1,σi(q) : (X1, . . . ,X l) �→ (X1, . . . ,X l−1, e
2πiκ/dX l).(9.11)

Since β̃1,σi(q) : (X1, . . . , Xn) �→ (X1, . . . , e
2πiκ/dXσ−i+1

l (n), . . . , Xn), the

composition
nl−1∏
i=0

β̃1,σi(q) is the multiplication of each coordinate Xσ−i+1
l (n)

(i = 0, 1, . . . , nl − 1) by e2πiκ/d. Here

{σ−i+1
l (n) : i=0, 1, . . . , nl − 1} = {n− nl + 1, . . . , n− 1, n}

= {j : Xj∈X l}.

So
nl−1∏
i=0

β̃1,σi(q) is given by the multiplication of every Xj ∈ X l by e2πiκ/d,

that is, of the form (9.11). Consequently( nl−1∏
i=0

β̃1,σi(q)

)N/nl

: (X1, . . . ,X l)(9.12)

�→ (X1, . . . ,X l−1, e
2πiκN/nldX l),

where recall that nl divides N (Lemma 9.11 (iii)).

Lemma 9.12. Set ξk :=

{
e2πiakN/nkmkd (k �= l)

e2πi(al+mlκ)N/nlmld (k = l).
Then:
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(1) γ̃N : (X1, X2, . . . ,X l) �−→ (ξ1X1, ξ2X2, . . . , ξlX l).

(2) γN : (X1,X2, . . . ,X l) �−→ (ξ
m′

1
1 X1, ξ

m′
2

2 X2, . . . , ξ
m′

l
l X l).

(3) γ
N

: (X1,X2, . . . ,X l) �−→ (ξ
m′

1�1
1 X1, ξ

m′
2�2

2 X2, . . . , ξ
m′

l�l
l X l).

Proof. It suffices to show (1), as (2) and (3) are descents of (1).

First γ̃N = α̃N
( nl−1∏

i=0
β̃1,σi(q)

)N/nl

(see (9.9)). By (9.10) and (9.12), setting

α := e2πialN/nlmld and β := e2πiκN/nld, then

γ̃N : (X1, . . . ,X l) �−→ (ξ1X1, . . . , ξl−1X l−1, αβX l).

Here αβ = e2πialN/nlmlde2πiκN/nld = e2πi(al+mlκ)N/nlmld = ξl, so

γ̃N : (X1, . . . ,X l) �−→ (ξ1X1, . . . , ξlX l). �

9.3. Relations between generators

We keep the notation above. We claim that the following relation holds:

γ̃N = ĩd1ĩd2 · · · ĩdl,(9.13)

where ĩdk is defined as follows: Write {1, 2, . . . , n} = J1 � J2 � · · · � Jl (the

cycle decomposition, where Jk is the cycle of σk), then

ĩdk :=


∏
i∈Jk

(ĩdi)
akN/nkmk (k �= l),∏

i∈Jl
(ĩdi)

(al+mlκ)N/nlml (k = l).

More explicitly, letting fk : C
nl → C

nl (k = 1, 2, . . . , l) be the automorphism

given by X l=(Xj1 , . . . , Xjnl
) �→ (Xj1 , . . . , Xjnl−1 , ξ

−nk
k Xjnl

), then

ĩdk :

{
(X1, . . . ,X l) �→ (X1, . . . , ξkXk . . . ,X l−1, fk(X l)) if k �= l,

(X1, . . . ,X l) �→ (X1 . . . ,X l−1, ξl fl(X l)) if k = l.
(9.14)

So

ĩd1ĩd2 · · · ĩdl : (X1, . . . ,X l) �→ (ξ1X1 . . . , ξl−1X l−1, ξl f1f2 · · · fl(X l)).

Here f1f2 · · · fl = 1, indeed ξ−n1
1 ξ−n2

2 · · · ξ−nl
l = e−2πiN(a1/m1+···+al/ml+κ)/d =

e−2πid/d = 1. Thus ĩd1ĩd2 · · · ĩdl = γ̃N .
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Lemma 9.13.

(1.a) For any k, ĩdk = 1 ⇐⇒ ξk = 1.

(1.b) ĩd1 = ĩd2 = · · · = ĩdl = 1 ⇐⇒ γ̃N = 1.

Proof. (1.a) is immediate from (9.14).

(1.b): From Lemma 9.12 (1), γ̃N = 1 ⇐⇒ ξ1 = ξ2 = · · · = ξl = 1. This

and (1.a) gives (1.b). �

Corresponding to the relation γ̃N = ĩd1ĩd2 · · · ĩdl, γ
N = id1id2 · · · idl

and γ
N

= id1id2 · · · idl, where explicitly

idk =


∏
i∈Jk

(idi)
akN/nkmk ,∏

i∈Jl
(idi)

(al+mlκ)N/nlml ,
idk =


∏
i∈Jk

(idi)
akN/nkmk (k �= l),∏

i∈Jl
(idi)

(al+mlκ)N/nlml (k = l).

Lemma 9.14.

(2.a) For any k, idk =1 ⇐⇒ ξ
m′

k
k =1 and ξ

−nkm
′
l

k =1.

(2.b) id1 = id2 = · · · = idl = 1 =⇒ γN = 1.

Proof. (2.a): From (9.14), idk : (X1, . . . ,X l) �→ (X1, . . . , ξ
m′

k
k Xk,

. . . ,X l−1, f
m′

l
k (X l)). Here f

m′
l

k = 1 ⇐⇒ ξ
−nkm

′
l

k = 1, so the assertion holds.

(2.b): From Lemma 9.12 (2), γN = 1 ⇐⇒ ξ
m′

1
1 = ξ

m′
2

2 = · · · = ξ
m′

l
l = 1.

This and (2.a) gives (2.b). �

Remark 9.15. In (2.b), “⇐=” does not hold: Since m′
k (k �= l) does

not divide nkm
′
l, even if ξ

m′
k

k = 1, in general ξ
−nkm

′
l

k �= 1 (that is, idk �= 1).

From (9.14),

idk : (X1, . . . ,X l) �−→ (X1, . . . , ξ
m′

k�k
k Xk . . . ,X l−1, f

m′
l�l

k (X l)),

where f
m′

l�l
k :X l =(Xj1 , . . . , Xjnl

) �→ (Xj1 , . . . , Xjnl−1 , ξ
−nkm

′
l�l

k Xjnl
). Here if

ξ
m′

k
k =1, then ξ

−nkm
′
l�l

k =1; otherwise idk ∈ Γ is a pseudo-reflection, but this
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contradicts the fact that Γ (= G) is a small group (Theorem 8.1 (1)). This

proves (1) of the following ((2) is immediate from (1)):

Lemma 9.16. For any k,

(1) If ξ
m′

k
k = 1, then ξ

−nkm
′
l�l

k = 1.

(2) idk = 1 ⇐⇒ ξ
m′

k�k
k = 1.

From Lemma 9.12 (3), γ
N

= 1 ⇐⇒ ξ
m′

1�1
1 = ξ

m′
2�2

2 = · · · = ξ
m′

l�l
l = 1.

This combined with Lemma 9.16 (2) gives:

Lemma 9.17. id1 = id2 = · · · = idl = 1 ⇐⇒ γ
N

= 1.

We summarize the above results as follows:

Proposition 9.18.

(1) γ̃N = ĩd1ĩd2 · · · ĩdl. Here ĩd1 = ĩd2 = · · · = ĩdl = 1 ⇐⇒ γ̃N = 1.

(2) γN = id1id2 · · · idl.

(3) γ
N

= id1id2 · · · idl. Here id1 = id2 = · · · = idl = 1 ⇐⇒ γ
N

= 1.

For (2), we merely have: id1 = id2 = · · · = idl = 1 =⇒ γN = 1.

Another relation. There is another relation among γ̃, ĩdi (and also

among γ, idi and among γ, idi):

Lemma 9.19. For each i = 1, 2, . . . , n− 1,

(1) ĩdiγ̃ = γ̃ ĩdσ(i)(ĩdσ(n))
−1.

(2) idiγ = γ idσ(i)(idσ(n))
−1.

(3) idiγ = γ idσ(i)(idσ(n))
−1.
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In particular if σ(i) = i, then ĩdiγ̃ = γ̃ ĩdi(ĩdσ(n))
−1, idiγ = γ idi(idσ(n))

−1,

and idiγ = γ idi(idσ(n))
−1 (these indicate that Γ̃,Γ and Γ are not abelian.

Indeed they are not except for σ = id or n = d = 2 (Theorem 10.11)).

Proof. (1) can be shown as in the proof of Lemma 4.8. (2) and (3)

are the descents of (1). �

Remark 9.20. If σ(n) = n, then ĩdσ(n) is the identity map (as ĩdσ(n) =

ĩdn is the identity map), thus (1) becomes ĩdiγ̃ = γ̃ ĩdσ(i). In particular if σ

is the identity, then ĩdiγ̃ = γ̃ ĩdi. This implies that Γ̃ is abelian. Accordingly

Γ and Γ are abelian.

10. When G is Abelian?

We will determine when G (= Γ) is abelian. We begin with preparation.

Recall that G is generated by γ, idi (i = 1, 2, . . . , n− 1) (Corollary 9.5 (3)).

Lemma 10.1. Set f := γ and gi := idi (i = 1, 2, . . . , n− 1). Then:

(1) G is abelian if and only if (gi)
−1gσ(i) = gσ(n) for every i.

(2) Suppose that G is abelian. If σ = id, then gσ(n) = id (so σ(n) = n).

Otherwise gσ(n) �= id (so σ(n) �= n).

Proof. (1): As G is generated by f, gi (i = 1, 2, . . . , n−1) it is abelian

precisely when gif = fgi for every i. By Lemma 9.19 (3), this is equivalent

to gi = gσ(i) (gσ(n))
−1 for every i.

(2): If σ = id, then gσ(n) = gn = id. We next show that if σ �= id, then

gσ(n) �= id. Since G is abelian, (gi)
−1gσ(i) = gσ(n) by (1). Thus if gσ(n) = id,

then (gi)
−1gσ(i) = id, so gi = gσ(i). This implies i = σ(i) (note: gi = gj ⇔

i = j by Corollary 9.8). Hence σ = id, contradicting the assumption. �

Lemma 10.2. If σ �= id and G is abelian, then {1, σ(1)} = {2, σ(2)} =

· · · = {n, σ(n)} (as sets).

Proof. Since G is abelian, (gi)
−1gσ(i) = gσ(n) for every i (Lemma 10.1

(1)). We explicitly give both sides. First from Theorem 9.6 (3), gi and gσ(i)
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are given by (say xi ∈ xk, so xσ(i) ∈ xk):

gi : (x1, x2, . . . , xn) �−→ (x1, x2, . . . , e
2πim′

k�k/dxi, . . . , e
−2πim′

l�l/dxn),

gσ(i) : (x1, x2, . . . , xn) �−→ (x1, x2, . . . , e
2πim′

k�k/dxσ(i), . . . , e
−2πim′

l�l/dxn).

Accordingly

(gi)
−1gσ(i) : (x1, . . . , xn)

�→ (x1, . . . , e
−2πim′

k�k/dxi, . . . , e
2πim′

k�k/dxσ(i), . . . , xn).

Note next that as σ �= id, we have σ(n) �= n (Lemma 10.1 (2)). From

Theorem 9.6 (3),

gσ(n) : (x1, x2, . . . , xn) �−→ (x1, x2, . . . , e
2πim′

l�l/dxσ(n), . . . , e
−2πim′

l�l/dxn).

As (gi)
−1gσ(i) = gσ(n), we have {i, σ(i)} = {n, σ(n)} for every i. �

Corollary 10.3. If σ �= id and G is abelian, then n = 2 and σ =

(1 2).

Proof. By Lemma 10.2, {1, σ(1)} = {2, σ(2)} = · · · = {n, σ(n)}.
This equation indeed holds for n = 2, σ = (1 2), as {1, 2} = {2, 1}. In

contrast, this fails for n ≥ 3. For instance, if n = 3 and σ = (1 2 3), then

{1, 2} = {2, 3} = {3, 1}, which is absurd. The general case is similarly

confirmed. �

We revive the notation γ, idi for f, gi. Recall that Ad−1/Γ ∼= C
n/G as

well as the following diagram:

Ãd−1 = C
n

q
��








 p

��������
γ̃, ĩdi�

γ, idi � C
n

r
����

��
��

Ad−1 γ, id.�

γ, idi
� C

n

(10.1)

Lemma 10.4. Suppose n = 2 and σ = (1 2). Then:
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(A) The covering maps q, r in (10.1) are the identity maps. Accordingly

Γ̃ = Γ = G and γ̃ = γ = γ, ĩdi = idi = idi.

(B) G is abelian if and only if d = 2.

Proof. Since σ = (1 2) is cyclic, (A) follows from Corollary 9.9 (1).

We next show (B). For simplicity, set ψi := ĩdi and gi := idi. By (A) in

the present case, ψi = gi. By Lemma 10.1 (1), G is abelian if and only if

(gi)
−1gσ(i) = gσ(n). Substituting n = 2, σ = (1 2) and ψi = gi into this

equation yields (ψ1)
−1ψ2 = ψ1, so (ψ1)

2 = id. By Theorem 9.6 (1), this is

equivalent to (e2πi/d)2 = 1, that is, d = 2. �

Hence:

Proposition 10.5. σ �= id and G is abelian if and only if n = 2,

σ = (1 2) and d = 2.

In this case G is actually cyclic. To see this, note first that when n = 2

and σ = (1 2), G is generated by γ, id1 (Corollary 9.5 (3)) and γ̃ = γ,

ĩdi = idi (Lemma 10.4 (A)) and 2 = d = 2a + 2mκ, so a = 1 and κ = 0.

Then from Theorem 9.6 (1),

γ (= γ̃) : (x1, x2) �−→ (e2πi/4mx2, e
2πi/4mx1),

id1 (= ĩd1) : (x1, x2) �−→ (e2πi/2x1, e
2πi/2x2).

Hence id1 = (γ)2m, so G is generated by γ. This confirms (2) of the follow-

ing; (1) is already shown in Remark 9.20.

Theorem 10.6. Whether G is abelian depends on σ, n, and d. More

precisely:

(1) If σ = id, then G is always abelian. (If moreover n = 2, G is cyclic

([SaTa] Theorem 2.1, p.682 — originally proved in [Tak])).

(2) If σ �= id, then G is rarely abelian — in fact only when n = 2 and

d = 2 (and in which case G is cyclic generated by γ).
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For (2), we will determine when Γ̃ is abelian. The following is needed.

Lemma 10.7. For each i = 1, 2, . . . , n− 1,

ĩdi = α̃N β̃N, pi for some pi ∈ Λ(N),

where as in (4.4),

Λ(N) =
{
p = (p1, . . . , pn) ∈ Z

n : 0 ≤ pi < d,(10.2)

n∑
i=1

pi
d

≡ Nκ

d
mod Z

}
.

Proof. Since ĩdi is a lift of 1 (= γN ) ∈ Γ, this follows from Corollary

4.6. �

For p = (p1, . . . , pn) ∈ Λ(j), the automorphism β̃j,p is given by

β̃j,p : (X1, . . . , Xn) �−→ (e2πip1/dX1, . . . , e
2πipn/dXn) (Lemma 9.2 (1)).

Thus {
(∗) β̃j,p β̃j′,p′ = β̃j′,p′ β̃j,p for any p ∈ Λ(j), p′ ∈ Λ(j′),

(∗∗) β̃j,p = β̃j′,p′ ⇐⇒ p = p′.
(10.3)

Actually: Γ̃ is abelian ⇐⇒ σ = id or n = d = 2. The following is the

first step to show this.

Lemma 10.8. Γ̃ is abelian ⇐⇒ σ(pi) = pi for every i.

(Notation: For x = (x1, . . . , xn), set σ(x) := (xσ(1), . . . , xσ(n)). So σ(x) = x

means xσ(1) = x1. . . . , xσ(n) = xn, i.e. σ fixes all elements of x.)

Proof. Since Γ̃ is generated by γ̃ and ĩdi (i = 1, 2, . . . , n−1) (Corollary

9.5 (1)), we have

Γ̃ is abelian ⇐⇒ γ̃ ĩdi = ĩdiγ̃ for every i.

Since γ̃ = α̃β̃1, q (Theorem 9.6 (1)) and ĩdi = α̃N β̃N, pi for some pi ∈ Λ(N)

(Lemma 10.7), the condition on R.H.S. is rewritten as

α̃β̃1, q α̃
N β̃N, pi = α̃N β̃N, piα̃β̃1, q for every i.
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By Lemma 4.8, β̃N, piα̃ = α̃β̃N, σ−1(pi) and β̃1, q α̃
N = α̃N β̃1, σ−N (q). Here

β̃1, σ−N (q) = β̃1, q (as σ−N = id), thus

Γ̃ is abelian ⇐⇒ α̃N+1β̃1, q β̃N, pi = α̃N+1β̃N, σ−1(pi)β̃1, q , ∀i

⇐⇒ β̃1, q β̃N, pi = β̃N, σ−1(pi)β̃1, q , ∀i

⇐⇒ β̃N, pi β̃1, q = β̃N, σ−1(pi)β̃1, q , ∀i by (∗) of (10.3)

⇐⇒ β̃N, pi = β̃N, σ−1(pi),
∀i

⇐⇒ pi = σ−1(pi),
∀i by (∗∗) of (10.3). �

Furthermore:

Proposition 10.9. The following are equivalent:

(1) Γ̃ is abelian.

(2) σ(p) = p for any p ∈ Λ(N).

(3) σ = id or n = d = 2.

(From the equivalence of (1) and (3), in most cases Γ̃ is not abelian.)

Proof. “(1) =⇒ (2)” was shown as Lemma 4.9.

(2) =⇒ (1): If σ(p) = p for every p ∈ Λ(N), then in particular σ(pi) = pi

for every i. The assertion thus follows from Lemma 10.8.

(3) =⇒ (2): First if σ = id, (2) is obvious. Next if n = d = 2, then

either σ = id or σ = (1 2). It suffices to consider the latter case — for which

2 = d = 2a+ 2mκ, so a = 1 and κ = 0, accordingly (10.2) is

Λ(N) =
{

(p1, p2) ∈ Z
2 : 0 ≤ pi < 2,

p1 + p2

2
≡ 0 mod Z

}
= {(0, 0), (1, 1)}.

Then for p ∈ Λ(N), clearly σ(p) = p (note: for p = (p1, p2), σ(p) = p

precisely when pσ(1) = p1, pσ(2) = p2).

(1) =⇒ (3): If Γ̃ is abelian, its descent G is necessarily abelian, thus

σ = id or n = d = 2 by Theorem 10.6. �



Dehn Twists, Hypertwists, and Uniformization 89

Lemma 10.10. The following are equivalent:

(A) Γ̃ is abelian. (B) H is abelian. (C) G is abelian.

Proof. “(A) =⇒ (B)” and “(B) =⇒ (C)” follow from the facts that H

is the descent of Γ̃ and G is the descent of H. “(C) =⇒ (A)”: If G is abelian,

then σ = id or n= d= 2 by Theorem 10.6, so Γ̃ is abelian by Proposition

10.9. �

Lemma 10.10 combined with Proposition 10.9 yields:

Theorem 10.11. The following are equivalent:

(1) σ = id or n = d = 2.

(2) Γ̃ is abelian.

(3) H is abelian.

(4) G is abelian.

Supplement. For each σ ∈ Sn, define an automorphism fσ of C
n by

fσ(x1, x2, . . . , xn) = (xσ(1), xσ(2), . . . , xσ(n)). This does “not” define a group

action of Sn on C
n. Indeed fτ

(
fσ(x1, . . . , xn)

)
= fτ (xσ(1), . . . , xσ(n)) =

(xστ(1), . . . , xστ(n)) = fστ (x1, . . . , xn), so fτ ◦ fσ = fστ �= fτσ. In contrast,

fσ(x1, x2, . . . , xn) = (xσ−1(1), xσ−1(2), . . . , xσ−1(n)) defines a group action of

Sn, as fτ ◦ fσ = fτσ.
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