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Dehn Twists, Hypertwists, and Uniformization of

Twined Singularities
By Kenjiro SASAKI and Shigeru TAKAMURA

Abstract. There are two kinds of homeomorphisms of an annu-
lus that appear as local monodromies of degenerations of Riemann
surfaces: fractional Dehn twist and Nielsen twist. In this paper, they
are “in a unified way” generalized to higher dimensions as a hypertwist,
which is the monodromy of a twined singularity (a quotient of a mul-
tiplicative A-singularity). We moreover establish the uniformization
theorem of this quotient, which generalizes the uniformization theorem
in our previous paper.
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1. Introduction

Let a and m (0 < a < m) and b and n (0 < b < n) be two pairs

of relatively prime integers. An (%, %)-fmctional Dehn twist is a self-

homeomorphism of an annulus [0,1] x S' given by (¢, €% —
(t, e2mi{=(1=t)a/m+tb/n}ci0)  Nore generally, where r is an integer, an

(%, %, IQ) -fractional Dehn twist is defined as the composite map of a k-
a b

introduce a Nielsen tgst.nFirst let H:[0,1] x R — [0,1] x R be an affine
transformation given by H(t,y) = (1 —t,(2t = D)5 — y). Then H and
H? transform [0,1] x R as illustrated in Figure 1.2; note that H?(t,y) =
(t, (1-2t)% + y> Under the covering map f : [0,1] x R — [0,1] x S1,
f(t,y) = (t,e*¥), H descends to an Qam-Nielsen twist h : [0,1] x St —

0,1]xS1, h(t, e?) = (1—t, e2™(2t=1)a/2me=10) Note that h? is a — (3, &)-

Dehn twist and an ( )-fractional Dehn twist (Figure 1.1). We next

fractional Dehn twist.
More generally, an (ﬁ, n) -Nielsen twist of h and a (—k)-Dehn twist

(not (+r)-Dehn twist), explicitly given by

(t, 619) c [0’ 1] wx S1 — (1 —t, e27ri{(2t71)a/2m+tm}efi@) e [0, 1] % S,
Note that its square is a — (%, %, 2/<;)—fractional Dehn twist.

A fractional Dehn twist appears as the topological monodromy of a
degeneration: Set ¢ := ged(m,n), m’ :=m/c,n’ :=n/c,and let v : C3 — C?
be an automorphism defined by

(11) o (z,w,t) RN (627ria/mz’ e27rib/nw, 627Ti/m’n’ct).

Suppose that 7 preserves Ag_1 := {(z,w,t) € C3 : zw = t%}; this is the case
precisely when e2ma/me2mib/n — p2mid/m'n’c that ig. % + % = ﬁ mod Z.
Write d = m/n’c (% + %
Let T' the cyclic group generated by =. Define a holomorphic map & :
Ag—1 — C by ®(z,w,t) = ¢m'n'c. Then & is [-invariant, so descends to a
holomorphic map ® : A4_1/I" — C, which is a degeneration of annuli whose

a b H) -fractional Dehn twist.

+ KJ) for some integer « such that % + % +K>0.

topological monodromy is a — (m, 7
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A Nielsen twist also appears as the topological monodromy of a degen-
eration: Let 7/ : C? — C3 be an automorphism defined by

(12) ’}’I : (Z,U),t) NN (627Tia/2mw’627Tia/2m27627ri/2mt).

Suppose that 4/ preserves Ag_1; this is the case precisely when e2mie/m —

e2md/2m that is, % = ?% mod Z. Write d = 2a 4+ 2mk for some integer
k > 0. Let I be the cyclic group generated by v'. Define a holomorphic map
@' : Ag_1 — C by ®(z,w,t) = t>™. Then @' is ['-invariant, so descends
to a holomorphic map . Ay—1/T" — C, which is a degeneration of annuli

whose topological monodromy is an (ﬁ, /@) -Nielsen twist.
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Fig. 1.3. An 5--Nielsen twist h.

Main results
We generalize the above notions/results to higher dimensions. Fix a pos-
itive integer d and consider a complex variety (a multiplicative A-singularity)

Ag1 = {(z1,22,...,29,t) €C"L ¢ y2g -y = 19},

If n > 3, the singular locus of A;z_; is not isolated — the union of ,C5
hyperplanes H;; = {z; = x; =t = 0} (1 <1i < j < n). In contrast, the
additive A-singularity x3+x35+- -+ 12 = t% has only an isolated singularity
at the origin. In particular if n > 3, this is not biholomorphic to Az_1. (If
n = 2, they are biholomorphic: Via 2} = z1 + izg and 2z, = x; — izg,
22 + 23 = t4 is transformed to x|z}, = t.)

Now take o € &,, (a permutation of n elements) and nonzero complex
numbers «y, ..., an, 8 such that ajos - - - oy, = 6%, and define an automor-
phism v : Ay 1 — Ag_1 by

v (1,32, Ty t) F— (Q1T(1), @2T(2), - -+ WnTo(n), OF).

Simple Case. We first consider the case that o is cyclic of full length
n. Take an (arbitrary) nth root 8 of ajag - -y, and define another auto-
morphism v/ : Ag_1 — Aq_1 by

(*) 7/ : (-73171‘27 <oy Ty t) = (ﬁma(l)w@xo@)a s aﬁxa(n)a 6t)

/

Then irrespective of the choice of 3, 4/ is conjugate to v in Aut(Ay_1)

(Lemma 2.3 (3)). Say v/ = f~!ovyof, then under a coordinate change via f
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of Aq_1, 7 may be regarded as v. We thus only consider an automorphism
of the form (x).

In what follows, suppose that ayag - - au, s a root of unity (this is equiv-
alent to the finiteness of the order of v (Corollary 2.2)). Say ajas - -« is
an mth root of unity, and consider an automorphism

v (21,2, .., Ty, t) € Agoy
(ﬁ) (627ria/mnl.a(1)’ 627ria/mn$a(2), s e27ria/mnxa(n), eQWi/mnt) € Ay_q,

where ¢ is a cyclic permutation of full length n and d = an + mnk for some
integer £ > 0. This generalizes the automorphism in (1.2) given by

o (ij,t) e Adfl (627ria/2mw7e27ria/2mz,e27ri/2mt) e Ad*l:

where d = 2a 4+ 2mk for some integer x > 0.
Before stating our results, we recall some terminology: A pseudo-refiec-

tion is a linear transformation conjugate to (z1,...,%,...,2n) — (21,...,
CZiy...,2n), where ( # 1 is a root of unity. By abuse of terminology, a
matrix conjugate to the diagonal matrix diag(1,...,(,...,1) is also called a

pseudo-reflection. A subgroup of GL,(C) is small if it contains no pseudo-
reflections.

Result 1 (Corollary 9.9) Uniformization. Let I' be the cyclic
group generated by the automorphism v of Aq_1 given by (§). Then Ag_1/T
is isomorphic to C"/G, where G is a small finite group generated by the
automorphisms f, 91,92, ...,9n—1 of C™ given by

. 27ia/mnd
fi(z1,..,2m) — (e / Zo(1)r- -+ s
2mia/mnd 2mi(a+mnk)/mnd
€ / Zo(n—1), € ( )/ Za(n))a
. 2mi/d —2mi/d
gi: (217 R Zn) = (zlu sy Zi—1,€ i/ Ziy Zit1ly -3 2n—1,€ mi/ ZTL)‘

We remark that G is abelian only when n = 2 and d = 2 (Theorem 10.6

(2))
= tmn,

Now define a holomorphic map ® : A;_1 — C by ®(z1,...,zp,1)
Then ® is I-invariant, so descends to a holomorphic map ® : A;_;/T" — C.
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Result 2 (Lemma 8.2) Correspondence of maps. Under the
isomorphism Aq_1/T = C"/G, ® : Aq_1/T — C corresponds to the holo-
morphic map ¢ : C*/G — C induced by the G-invariant holomorphic map
¢:C" = C, ¢(v1,v2,...0,) = (vivg -+ - v,)™™.

In the case that o € &, is arbitrary, decompose it into disjoint cyclic
permutations: ¢ = o109 - - - gy, say the length of o; is n;. Renumbering the

indices, assume that o1 permutes {1,2,...,n1}, o2 permutes {n; + 1,n1 +
2,...,n1+ny}, o3 permutes {ny+ns+1,...,n1+n2+ns} and so on. Write
Cr'=C" xC" x --- x C™; then o; acts on C™ as x; := (xgi), . ,xff)) —
x] = (xg?(l), . ,x((:i)(ni)). As in Simple Case, the following holds (Lemma

2.6): ~ is via an element of Aut(Ay_1) conjugate to an automorphism ~' :
Ag_1 — Ag_1 of the form

v o (xy, . T t) — (Brx(t, ..., Bx]', 6t), B e C*.

It thus suffices to consider automorphisms of this form. Note that the
condition that = preserves Ay 1 is given by

(1.3) By g = 8%,

In what follows, we consider the following automorphism of A;_; gen-
eralizing () in Simple Case:

. 27i o 2mi oy 2mi/N
(14) 7 (@1, 2 t) — (eFma/mmigfi  2mia/mmigy 2mi/Ny)
where

(i) n; is the length of 0;, and a;, m; are positive integers such that a; is
relatively prime to n;m;.

(ii) N := (m})™ ---(m))™e¢, where ¢ := ged(nimy,...,mmy) and m) =
(111) (627ria1/711m1 )nl (eQﬂiag/ngmg)ng . (627rial/nlml)nl — e271'id/N (see (13))7
ay

that is +%—22+---+nal—ll+/£:%for some integer k.

7m1

We say that I' is a twining automorphism group, v is a twining automor-
phism, and the quotient Ay_1/T" is a twined singularity. Here in case o is
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the identity, I' (and =) is said to be neat. We will prove the following (if T'
is neat, this reduces to the uniformization theorem in [SaTa]):

Result 3 (Theorems 8.1, 9.6) Uniformization of twined singu-
larity. Let I" be the cyclic group generated by the automorphism v of Ag_1
given by (1.4). Then there exists a small finite subgroup G of GL,(C) such
that Aq_1/T = C"/G. Here G = (f,91,92,---,9n—1) and
(i) f is given as the composition f = @i, where (below, {y is given in
Remark 1.1)

©: (Xh o ;Xl) — (627ria1Z1/ch(171’ . eZWialﬁl/chzfl)’
b (X1, X, Xp) — (X1, Xo, ., e2mmbs/dX LX),
(ii) g; is given as follows: Say X; € Xy, then

gt (X1, Xa, ..., X)) — (X1, Xo,...,emmbeldx, e m2mmb/dy

Note: f, g; denote 7, id; in Theorem 9.6 and ©, 1 denote @, El’ o therein.

REMARK 1.1. In Result 3, ¢ is the positive integer given in Lemma
7.4, that is, £y := Nc/ngmy Ly, where ni = length(Xy) and Ly is given by
(below, njmy, means the omission of ngmy)

I { lem(nymy, noma, . .. ,nk\ﬁ”bk, cooymymy) if length(Xg) =1,
k=

lem(nymy, noma, ..., nymy) if length(X};) > 2.

Whether G in Result 3 is abelian depends on o, n, d. In fact:

Result 4 (Theorem 10.6).

(1) If 0 = id, then G is always abelian. (If moreover n = 2, G is cyclic
([SaTa] Theorem 2.1, p.682 — originally proved in [Tak])).

(2) If o # id, then G is rarely abelian — in fact only when n = 2 and
d = 2 (and in which case G is cyclic generated by f in Result 3).
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Result 3 is further enriched. Define a holomorphic map ® : A;_1 — C by

®(x1,- -+ ,2p,t) =Y. Then ® is [-invariant, so descends to a holomorphic
map @ : Ay_1/T — C.

Result 5 (Theorem 8.3) Correspondence of maps. As above,
let T be the cyclic group generated by

vi(x1,...,x,t) — (62”1“1/”””133‘171, ... ,eQ”i“l/mmlmT, e27ri/Nt).
For each oy, let Ji be its cycle, that is, J, = {i : x; € x}. Then:

(1) A holomorphic map ¢ : C* — C given by ¢(z1,...,7n) =
! L
II < II xz> * 1s G-invariant.

k=1 NicJy
(2) Under the isomorphism Aq_1/T = C"/G, ® : Ay_1/T — C corre-
sponds to the descent ¢ : C"/G — C.

The topological monodromy of ® : A;_;/I' — C generalizes both a
fractional Dehn twist and a Nielsen twist — in a unified way! We call it a

al a9 . ay _ .
nimy’ Tiaing’ s Ty o o 0') hypertwist). Its

hypertwist (more precisely, <

action on a smooth fiber of ® will be described in our subsequent paper.

Acknowledgments. We would like to thank Professor Tadashi Ashikaga
for useful discussions.

2. Twining Automorphisms
Let d be a positive integer and consider the multiplicative A-singularity:
Ag_1 :={(z1,20,...,20,t) eC"M g -y, = td}.

The automorphism group Aut(Ag_1) of Ag_1 is the subgroup of G L, 1(C)
consisting of elements that map A;_1 to itself. Now take a cyclic permu-
tation 0 € &,, of length n and nonzero complex numbers ai,ao, ..., a,, &
such that ajas - - - a;, = 6%. Define then an automorphism v of Az 1 by

(2.1) v (1,32, Ty ) (Q1T(1), O2T5(2)5 - - - s WnTo(n), OF).
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LEMMA 2.1. Let k be an integer. Then v* = 1 if and only if k is a
multiple of n and (oo - - ozn)k/" =1 and 6F =1.

PrOOF. Note that v : (2q,...,2,,t) (1T gk (1)s - - s BnT ok ()5 V)
for some nonzero complex numbers p, ..., pn,v. If ¥ = 1, then it is
necessary that o = 1. Since o is cyclic of length n, this implies that k is
a multiple of n. Write & = nl, then v = 1. Here 4" : (21,...,2pn,t)
(ig -+~ Ty, ..., Q1O -+ ATy, O™), thus (a1ag - an)l =1and & =1
(that is, 6% = 1). Conversely, if k is a multiple of n and (aja - - - ay,)F/™ = 1
and 6 = 1, then +* = 1, indeed

k/n

fyk (X1, xn,t) — (g ap) ey, (aqag - -an)k/"acn, 6kt)

= (z1,...,2pn,t). O

COROLLARY 2.2. The order of v s finite if and only if ayao--- oy, s
a root of unity.

PROOF. =: Say that the order of v is k. Then from Lemma 2.1, k is
a multiple of n and (ajag--- an)k/” = 1; so ajag - - ay, is a k/nth root of
unity.

<=: Say that ajas---a, is an Ith root of unity: (ajas---ay) = 1.
This and g - - - ay, = 6% yield 1 = §'¢. Set k := nld, then k is a multiple

of n and (aag--- )™ =1 and 6* = 1, so by Lemma 2.1, 4% = 1. O
Note next the following:

LEMMA 2.3. Let~y be the automorphism of Aq—1 given by (2.1). Then:

(1) For an arbitrary nth root B of ajas---an, v : (1,...,2n,t) —
(BTo(1ys -+ -5 BTo(n), Ot) is an automorphism of Ag—1.

(2) Let by, ba,..., by, c be nonzero complex numbers such that biby - - - b, =
c?. Define f € Aut(Ag_1) by f: (x1,...,20,t) — (b121,. .., by, ct).
Then

alba(l) anba n

floyof: (z1,...,Tn,t) — ( xa(l),...,T”ma(n),ét).

by
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(3) v is conjugate to v in Aut(Ag_1).

PrOOF. (1): Tt suffices to show that 7’ preserves Ay 1, that is,
(B2o(1))(BTs(2)) +++ (BTon)) = 69, This is seen as follows:

(ﬂxa(l))(ﬁma(Z)) T (ﬁxo(n)) = f"r1w0 - Ty
= 8% 29 1p by " = a1asg - - - ay, = 6%

— 5% by x1xo - Ty = 4,
(2): This is confirmed as follows:

fYoyof(xy,...,xnt) = fLoy(bizy,... bpxy,ct)
= fﬁl(alba(l)xa(l)a s 7O‘nba(n)$o(n)a 6Ct)
a1bg(1) nbo(n)
= ( ™ Lo(1)s -+ b, Zo(n)s 5t>.

(3): In terms of (2), it suffices to show that there exist nonzero complex
numbers by, ba, ..., by,, ¢ satisfying

(i) ble s bn = Cd,

(i) g="2 (i =1,2,...,n), that is, by = %—b (i=1,2,...,n).
Note that once we show the existence of by, be, ..., b, satisfying (ii), it suf-
fices to take c as dth root of b1by - - - by,.

Since o is cyclic of length n, we have {1,2,...,n} = {1,0(1),...,

b
o™~ 1(1)}, so (ii) is restated as b1y = %(21—11((11)) (7=1,2,...,n). Set by =1
o _ By,
and inductively define byj1y (j = 1,2,...,n — 1) by bgi(y) : %Jj—l(l)'
b n— j — b ]
It then suffices to show that b; = Ba:n;ll((ll)). Since 3 = ‘ﬂb;(;)l(;](l) (j=
n=1 a1 by b,
1,2,...,n—1), we have 3"~ ! = Haﬂbl(;i()() Here]_[&l()(l):
j=1 ol (1 i=1 aJ 1
= A1) bei) bon-1(1)
cay, = [T, % — pgr_—<2"U)  Th n—1 _
a1 - o SO i) P )b1 us [
n bon—1(1) Bbon-1(1)
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LEMMA 24. Ifajas---ay is an mth root of unity, then (1) 6 is a root
of unity and (2) the order of %' (also, of ) is the least common multiple of
nm and the order of 6. (For a kth root of unity, k is called its order.)

PrOOF. (1): By aqasg---ap, = 6% (2): Since 4/ is a linear transforma-
tion, it is expressed as 7' : (z,t) — (B, 6t), where x = (x1,...,2,) and B
is an invertible n x n matrix of order nm. Then (7')* : (x,t) — (B*z, §*t),
so the order of 4 is the least common multiple of the orders of B and 6,
confirming the assertion. [

General Case. We have discussed the case that ¢ € &,, is a cyclic
permutation of length n. In the sequel, ¢ € &, is arbitrary, for which
consider the automorphism of A;_1 given by

(2.2) e (ml, T, ..., Ty, t) — (Oélita(l), Q2T 5(2)5 - -+ s L (n)s 6t)

Decompose ¢ into disjoint cyclic permutations: ¢ = o0109---0;, say the
length of o; is n;. Without loss of generality, we assume that o1 permutes

{1,2,...,n1}, o9 permutes {n; +1,n; +2,...,n1 +no}, o3 permutes {n; +
no+1,...,n1+ng+n3} and so on; these sets are cycles of . Write C"*! as
CMxC™x---xC"xC and (v1,2,...,7,,t) € C" 'l as (x1,2,..., 2, 1),

where x; € C". Then o; acts on C™ as a cyclic permutation, and the
restriction of v to C™ is of the form:

Yi+ Ly = (le,a:j2, e ,x]‘ni) a— (ajlei(jﬂ? ahxgi(h), eey ajni xai(jni))'

The order of ~ is finite if and only if the orders of all «; are finite. As in
Corollary 2.2, this is restated as follows:

LEMMA 2.5. The order of v is finite if and only if for every i, [] o
Jje€J;
s a root of unity, where J; denotes the cycle of o;.

Note next the following:

LEMMA 2.6. Let v be the automorphism of Aq—1 given by (2.2). For

each i, let 3; be an arbitrary n;th root of [[ «;, where J; denotes the cycle
JE€J;
of ;. Write J; as {j1,j2,---,Jn;} and for x; = (xj,xj,,...,2j, ), set

x]" = (Toy(1) Toy(a)s - - - ,.’L‘Ui(jni)), then:
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rrespective of the choice of (;, is constant. In fac
1) I ti the choi Bi, BYB3% B i tant. I t
,BnlﬂnQ R L. 5d
1 P2 1 =0
(2) v (m1,. . @y, t) — (Bl .. B, 6t) is an automorphism of

(3) v is conjugate to v in Aut(Ag_1).

l
Proor. (1) g7 - = 11 ( I1 ay) = craa-+-ap = 6%

=1 “jeJ;
(2): It suffices to show that +' preserves Ay 1. Temporarily write x;
as (wgz),xgb), cee xﬁf}) By @1 - x2---x; = t¢, we mean (acgl) : ~-x£bll))(xg2) e

:L'%)) e (.I‘gl) : a:ﬁf)) = t4. We then have to show that Syz{' - Boz3* - --
Bl = (6t), that is, (5135((;11)(1) e 511,(1) )(52:13((722)(1) e 5293(2) Yoo

o1(n1) o2(n2)
(@xgl)(l) e ﬂlw(l) ) = (6t)%, or (after reordering),

oi(n)
n1 QN 1 2 l
prgez ... g (@D D)l )...I%))...(xg)...xgl)) _ §dpd.
This is equivalent to 871532 - - - 8" = §¢, which is already shown in (1).

(3): The proof is similar to that of Lemma 2.3 (3). Construct first an au-
tomorphism f; : C" — C™, f; : x; = (a;gz), . ,:vgfz) — (bgl)ajgl) ..,bffi)x,(fi))

such that fi_1 ox;o fit @ — i)' Set bl = ﬁ bg-i) and take a com-
j=1

plex number c¢ satisfying bMp? ...p") = ¢4 Then f : (x1,...,2,t) —

(fl(:cl), oo fil®y), ct) is an automorphism of A4_; such that v = f~tovyo

f.0O

LEMMA 2.7. In Lemma 2.6, if for each i, oy := [] o is an m;th root
JE€J;
of unity, then:
(1) 6 is a root of unity.

(2) The order of v' (and so, 7) is finite, in fact it is the least common
multiple of lem(nyimy, noma, ..., nymy) and the order of .

ProOF. (1) follows from ajag - - - oy = 6. (2):
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For simplicity, express v : (z1,®2,...,z;,t) — (Bix]", foxd?,. ..,
Bix;', 6t) as (x,t) — (Bx,6t), where & = (x1,...,xy,) and B is an invertible
n X n matrix of the form

By B 0]
B = 2 ‘ (B; is an invertible n; x n; matrix).
0] By
Since the order of B; is n;m;, the order of B is lem(nymi, noma, ..., nymy).

Noting that (y)* : (z,t) — (B*z,§*t), the order of 7/ is the least common
multiple of the orders of B and 6, so the assertion holds. [

COROLLARY 2.8. If the order of 6 is a multiple of lem(nymy, nama, .. .,
nymy), then the order of v is that of 6.

DEFINITION 2.9. Let o € 6, and a1, as, ..., ay,d be nonzero complex
numbers such that ajas---a, = 6% The automorphism of v : Ay ; —
Ag-1 given by (z1,...,%n,t) = (Q1T5(1), - - -, AnTo(n), 0t) is called a twining

automorphism (a twiner) if its order is finite.

3. Lifting and Descent

Let p: X — Y be a covering. For f € Aut(Y), g € Aut(X) is called a
lift of f if the following diagram commutes:

XgX
(T

In this case, f is called the descent of g. For a subgroup I' of Aut(Y'), its
Lift T is a subgroup of Aut(X) consisting of all lifts of elements of I'. In this
case, I' is called the descent of L.

We now return to twining automorphism. Let ¢ € &,, and decompose
it into disjoint cyclic permutations: ¢ = oj09--- ;. Say that the length
of o; is n;. Without loss of generality, we may assume that the cycle of o1
is {1,2,...,n1}, the cycle of o9 is {n1 + 1,...,n1 + na}, the cycle of o3 is
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{ni1+mn2+1,...,n1 +n2+ns} and so on. Write C" as C™ x C"2 x - x C™
and (z1,22,...,2,) € C" as (x1,x2,...,x;). Let 0; act on C™ as

g; . Xy — (.’le,ij, Ce ,.’Ejni) [— :Bgi = (wai(jl),ﬂjgi(h), e "Tai(jni))‘
Consider the following automorphism of C"*! given by
(3.1) 71 (@1,... @ t) — (eXMa/mmigq - e2mia/mimign 2mi/Ny)
where

(I) a;, m; are positive integers such that a; is relatively prime to n;m;
(where n; is the length of ;).
(II) N := (m})™ ---(m;)™c, where ¢ := ged(nimq,...,mmy) and m; =
nim;
et
Note that v preserves Aq_y = {(z1,...,2,,t) € C"*t : 212, = t7}
precisely when d = N 7%—11 + 4 7%—11 + k) for some integer k (see (iii)

subsequent to (1.4)). In what follows, we assume this. Then:

LEMMA 3.1
(1) The order of v is N.

(2) Let T be the cyclic group generated by . Then the holomorphic map
®: Ay — C given by ®(x1,--- ,zn,t) =tV is T-invariant. Conse-
quently ® descends to ® : Ay_1/T — C.

PROOF. (1): Since the order N of § is a multiple of lem(nymy,...,
nymy) (see (II)), this follows from Corollary 2.8.

(2): For any (x1,...,Zn,t) € Ag_1, ® o y(ay, - ,2p,t) = (66)N =
NN =N so oy =0. O

Since the order of «y is finite, v is a twining automorphism and T" is a
twining automorphism group. If the permutation o is the identity, I' (and
) is said to be meat, in which case x; = x;, so v is of the form

2miay /m 2mian /m 2mi/N
(T1,. .., T, t) — (eZT0/ Mg, 2man/mag, 2m/N )
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For such ~, [SaTa] showed that there exists a small finite subgroup G C
GL,(C) such that Ay_,/I' = C"/G; moreover the holomorphic map
C"/G — C corresponding to ® (in Lemma 3.1) under this isomorphism
is explicitly given. We will generalize these results (and more) to arbitrary
~. The construction of G is outlined as follows:

(i)

(iii)

Let p : Ay (= C") — Aj_1 be the universal | covering, and lift I' to
a group r acting on Ay_1. Then Ay /T = Ag 1/F If m) =mb =

-=m; =1 (e.g. n=2and I is not neat), then I" is small. Thus r
is the desired G.

If the condition in (i) is not satisfied, let ¢ : Ad 1 — C" be the covering
map given by (X1, X9, ..., X)) = (Xm1 X;lz, e X;nl), where
X;n’ : (Xhl, . ,X;.:’_'), and descend T to a group H acting on C".
Then Ag_y /T = Ay_1/T = C"/H. If n = 2 and T is neat, then H is a
small finite group,

In (ii), if » > 3 then H is generally not small, in which case take the
pseudo-reflection subgroup P of H (i.e. the subgroup generated by all
pseudo-reflections in H). It is normal in H and the quotient group
H/P is small and Ag_,/T = Ay /T = C*/H = (C*/P)/(H/P) =
C"/(H/P) (because C"/P = C" by Chevalley-Shephard-Todd theo-
rem). Thus H/P is the desired G.

We give some comments on the above construction:

(a)
(b)

(c)

In (ii), whether H is small is numerically determined (Theorem 7.2).

In (iii), the quotient map H — H/P is the descent of H with re-
spect to an explicitly-given covering map r : C* — C™ whose covering
transformation group is P. See Lemma 7.1.

I and H are generally not abelian, which makes the above construction
much more involved than that of [SaTa].

The construction of G is systematically described in terms of lifting and
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descent with respect to the following diagram:

q A4, =Cn »
(32) r Ccr / \ Adfl.
cr ~

4. Determination of I' and H

Consider a twining automorphism v : Ag_1 — Ag_1 of order N:

. 2mial /mnimi .01 2mia; /mymy .01 2wi/N
v (®1,...,2,t) — (e 1/m txlt, ... e 1/m tx)l e / t),

where o; is a cyclic permutation of length n; (n; +n2 +---+n; =n) and
(4.1) (1, 22,...,21) € C" x C" x --- x C™".

For each 7 (5 = 1,2,...,N), we determine its lifts with respect to p :
Ag_1 — Ag_1, first for j = 1. To that end, express v as the product of the
x-part and the t-part: v = v,y (= %7Vz), where

Yy (wl’ s t) (6271'ial/n1m1mg17 s ezﬂial/nlmlm?l’627Ti(1/N*/f/d)t)’
. 2rik/d
Yoo (@1, mt) — (@, .., @y, 2T/,

The lifts of 7, and v are easy to describe. In what follows, to be consis-
tent with the notation (z1,x2,...,x;,t) € Ag—1, write (X1, Xo,..., Xp) €
Ag_1 (=C") as (X1, X2,..., X)), where X; € C".

_ Lemma 4.1, A lift of v, 1s given by an aulomorphism 7y : gd—l —
Ag_1 defined by

(X1, Xo9,...,X))
s (627ria1/n1m1dXz171 7 627ria2/n2m2ngz, o ’627rial/nlmlXmUl).

PROOF. Since p(X1, Xo,...,X,) = (X X4, ..., X3 X1 Xo--- X30),
descends to an automorphism of A;_; that maps (x1,...,x;,t) to

<(62ma1/n1m1d)d$371’ ' (€2mal/nlmld)d$7l,

ey

(627ria1/n1m1d)n1 . (GQWial/nlmld)nlt>,



Dehn Twists, Hypertwists, and Uniformization 51

that iS, to (€2ﬂia1/n1m1w11717 ol e?ﬂ'ial/’nlmlm‘;l7eQﬂ'i(al/ml+...+al/ml)/dt). Here
; a1 a _ d 2i ot d _ ,27i(1/N—«/d

/Svlnce m_1 _|_ e _|_ Wl p— N — K, e 7I'1((11/7ﬂ1 al/ml)/ —e 7“( / "{/ ) Thus

v descends to ~y,.

Consider the set A of (p1,p2,...,pn) € Z™ satisfying 0 < p; < d (i =
1,2,...,n) and

y mod Z.

aul =

Observe that the number of elements of A is d*~!, as p,, is determined from

(p1,P2s -+, Pu1) (0 < p; < d) by (4.2).
We determine the lifts of v;. To be consistent with the notation (X1,

Xo,...,X;) € C", write (p1,p2,..., pn) as p = (py,Pa,---,P;), Where

LEMMA 4.2. Define an automorphism of Ay by
(4.3) Fup: (X1, Xov-.n X1) — (Fepy (X1)s Vepo (X2)s oo e (X0)),

where at,pi : Xz = (le,...,Xjni) — (627Tipj1/de1,...,€2ﬂ-ipj”i/deni).
Then i p is a lift of v. Moreover {Y1p : P € A} ezhausts all lifts of
Tt

PROOF. Since p(X1, X2,..., Xn)=(X{, X4, ..., X X1 X5 Xp0), Yep

descends to an automorphism of A;_; that maps (x1,...,®;,t) to
((%m)d(wl), s Gp) (), (2T ) (2mP2/ (e%ip”/d)t),
that is, to (m1,...,a, 2miPripettpn)/dy), Here by (4.2),

2mipitpatetpn)/d — 2min/d  Thyg 7, , descends to ;. We next show that
{Vtp : P € A} exhausts all lifts of v.. As p is d"1-fold, it suffices to show
that the cardinality of this set is d*~!. This is clear, as A consists of d"~!
elements and 7 , # 7 p for p # p’. O

COROLLARY 4.3. 7z7%tp is a lift of v. Moreover {y;Ytp : P € A}
exhausts all lifts of .

PROOF.  7;7,p descends to v,y i.e. . We show that {7,1p : p € A}
exhausts all lifts of v. As p: Ag_1 — Agq_; is d"-fold, it suffices to show
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that the cardinality of this set is ¢”~!. This is clear, as A consists of d"~!
elements and 7 p # 3t for p # p’. O

We next determine all lifts of 47 by replacing Vo, Yt With ’y%,yg in the
above argument. First from vy = 4,7, we have 77 = ~2~/. Here since 7, is
a lift of v, (Lemma 4.1),

LEMMA 4.4. %J; is a lift of ’y%.

We next determine lifts of 'yg. First for each j =1,2,..., N (= ord(v)),
set

(4.4) AW = {(pl,pg,...,pn) €eZ":0<p; <d, > % = % mod Z}.
i=1

We write (p1,p2,...,pn) asp = (P, Do ..., P;) € Z™ X Z™ x --- X Z™; note
ni+ng +---+n; =n. As for Lemma 4.2, we can show:

LEMMA 4.5. Forp = (py,py...,p;) € AY), let Fyp, be the automor-
phism of C™ in Lemma 4.2 and define an automorphism of Aq_1 by

45) 7 (X1, Xa, o, X1) — (Fop (X1), Feps (X2), - G0 (X)),

Then ’y(j) is a lift of 'yf. Moreover {%(‘712 . p € AU} ezhausts all lifts of
’Yt

As for Corollary 4.3, we can show:

COROLLARY 4.6. Forp e A9, et %Jg : Ag_1 — Aq_1 be the lift of ’yg
given by (4.5). Then %Jﬁgjg is a lift of v7. Moreover {%Jﬁé]g :pe AU}
exhausts all lifts of 7.

Let I" be the cyclic group of order N generated by v and T be the lift
of I with respect to p: Ag_1 — A4_1. By Corollary 4.6, the set of lifts of

vJ € T is given by Lift") .= {345 th pe A9}, Since I = U Liftl
=1
obtain the following:
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ProrosIiTION 4.7.  The lift r of I with respect to p is given by

4.6 Wﬁ(j):pEA(j),j=1,2,...,N '
x It,p

For p = (py,p9,.--,p;) € Z™ X Z™ X --- X Z™ and 0 = 0109+ 0] €
Gny X Gpy X -+ X Gy, set U(p) = (al(pl)a 0'2(172), e '7Ul(pl))‘

LEMMA 4.8. Let 0 = 010907 be the permutation appearing in the
definition of . For p € A9, set q := o7 (p). Then q € AU and 'y(g% =
Wy

PROOF. Since q is a permutation of p, {q1,q2,...,q.} = {p1,p2,. ..,
pn} assets,so g1+ g2+ -+ qn =p1 +p2+ -+ + pn. In particular

Qtgt-tqn pPrtpet--+pn
d B d

Hence g € AU). We next show ﬁt(];% = 'yx'yt(] ). Note that
ol , . ;
((ﬁt,qz)(‘X@)) i (627T1qj1 /dx iy 7627r1ani /deni )af.
( 27r1p31/dX .. ,627ripj"i /dXo_j(j )) as o; (qz) D;

J(j1)
ol

- 'Yt,pl(X ol(1) ’ng.'(jni)) = ?t,pi(Xil )-

Then for any X := (X1,..., X)) € Ay 1,
’Aﬁc%(,jq) (X) _ < 2mijal /mimy ((’Yt,ql)(Xl)> 71. L e2midar/mymy ((% ql)(Xl)) L >
J oJ
= ( 27lea1/n1m1,yt ,P1 (X(lfl)7 ceey Zﬂljal/nlml’ytypl (Xl : ))
= (Ve (e rijas/mimi X 71 ﬁt,pl(e%ijal/"llefl]))

= %(],f%:(X) O
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We will give a necessary condition for T to be abelian. Recall first that
forp = (p1,...,pn) € A, the automorphism %(,Jg); is given by

Vt(,J;)z (X1,...,Xpn) — (e%ipl/Xm,...,e27rip"/an).

Thus the following holds:
(47) { (%) ’yt(JI), ’y§ p), = ’yt( p),’yfz), for any p € AW, p/ € AU,

(w6) 3 =39 = p=1p.

LEMMA 4.9. IfL is abelian, then o(p) = p for anyp € AN, (Actually
the converse holds (Proposition 10.9).)

PROOF. Taking auxiliary g € AM, set n; = ?jﬁvﬁt(z), N 1= %“yf,lq) erl.
If T is abelian, then ny7m2 = n2m1. Here

~N N ~N ~ ~
mie =Y (i Fa) Fee = A2 (vﬂfﬁl(l,))%flq) by Lemma 4.8,
mom = Te (T3 )ity = Fe (VA n )ty by Lemma 4.8,

Thus:
1 - ~(N
mnz =mm <= %JEVH%(UL( )Vt(,q) - ViVHVt(U)*N( )%(P)

~(N) ~(1) _ ~(1) ~(N)
Vo 1(p)7tq ’Vt(, N(q)'Y

N 1 1) ~(N
%( a) 1(p>%S 3 t( c)ﬂt(,p)

(V) ~(N )
Tt,0-1(p) = Ttp

oY p)=p by (%) of (4.7). 0

aso N =id

IIIIIHHI

We next determine the descent H of I' with respect to the covering
q: Ag_1 — C" given by ¢(X1, Xoa,...,X;) = (X", X52,...,X;"). For

simplicity, set a := 7;, 0 := v and a = 7,, Bj,p = %(Qv where p =
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(p1,Da,---,p;). The latter pair is explicitly given by (see Lemma 4.1 and

(4.5)):
a: (X1,..., X)) — (e2ria/mmdxon - 2ma/mmd xor)
(4.8)  Bip: (X1,Xa,...,X))
— (gy}pl (X1), Bj,pz(X2)7 e 7§j7pz(Xl))a

where we set Bj,m = Yt p.- Since ¢(X1,X2,..., X)) = (Xrlnll,X;né,...,
X 711), the following holds:

LEMMA 4.10. The descents @, Bj,p of a, Bj,p with respect to q are ex-
plicitly given by

2miay /ed, 01 2miag /ed, 02 2miag /ed,, 01
e / ut, e / Uy?,...,€ o/ u, ),

a: (ug,ug,...,u) —
6j7p: (u17u27"'7ul)

— ((Bip)™ (1), (Bjpo)™ (w2), - -, (Bjp) ™ (1))

LEMMA 4.11.
(1) T={adB;p :pecAY), j=1,2,...,N}.

(2 H={a’B; , :pe AV, j=12,... N}

PrOOF. (1): Proposition 4.7. (2) follows from (1) as the induced ho-
momorphism g, : ' — H from ¢ : A;_1 — C" is surjective, [J]

REMARK 4.12. If o # id, T is generally not abelian (see Lemma 4.9).
Accordingly H is generally not abelian.

Lemma 4.11 (2) implies the following:
LEMMA 4.13. FEach element of H is of the form

(u1,ug, ... up) — (Cluaj(l)a <2uaj(2)7 SR Cnuaj(n))a

where (1, (a, ..., Cy are roots of unity, o is the permutation appearing in the
definition of vy, and j € Z.
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5. Simple Pseudo-Reflections

To determine the pseudo-reflection subgroup of H, some technical prepa-
ration is needed. A pseudo-reflection is simple if it is of the following form
(and a general pseudo-reflection is conjugate to such):

(Uty ..o ty) — (u1,...,CuUj, ..., up) (¢ #1isaroot of unity).

This is denoted by h;¢. In the particular case ( = —1, it is a simple
reflection. Note that the order of a pseudo-reflection is finite (if ¢ is a kth
root of unity, its order is k) and its fixed point set is an (n — 1)-dimensional
subspace (for h; ¢, this is defined by u; = 0).

An example of a non-simple pseudo-reflection is

: -1
Eijo (W1, oWy ooy Uy e U ) > (UL e, QU e O Uy e Uy,

where v # 0. This is called an (4, j)-switching. Note k;j o is conjugate to

—a a 0
hi 1, for instance if n = 3 and (¢,j) = (1,2), thenvia A= 1 1 0
0 0 1

0 a O -1 0 0

A a0 0jA=|0 10

0O 0 1 0 0 1

LEMMA 5.1. A linear automorphism of C™ is a pseudo-reflection if and
only if its order is finite and the dimension of its fived point set is n — 1.

Proor. It suffices to show “if”. Suppose that a linear automorphism
f(z) = Az satisfies the condition. Then A¥ = E for some positive integer
k. The minimal polynomial of A thus divides 2* — 1, so its roots are dis-
tinct kth roots of unity. Hence A is diagonalizable to a matrix of the form

G @)
G2 . , where (; is a kth root of unity. Here by assumption the

o Cn
dimension of the fixed point set of f is n — 1, so only one of (1,(2,...,(, is

not 1 and the others are 1, implying that f is a pseudo-reflection. [J
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LEMMA 5.2. Let h: (u1,...,un) = ((1Ur(1)s -« -5 Cnlir(n)) e an auto-
morphism of C" (n > 2), where (1, ...,(, are roots of unity and 7 € S,, is
a cyclic permutation of length n.

(1) Let Fix(h) be the fized point set of h, then

1 if G-+ Gu=1,

0 otherwise.

dim Fix(h) = {
(2) If h is a pseudo-reflection, n must be 2 (so T is necessarily a transpo-
sition) and h : (uy,ug) — (Crug, ¢ tur) (a (1,2)-switching).
PrOOF. (1): First

Fix(h) = {(ulv sy Up) €CM g = Qrtir(1), U2 = C2Ur(2); -+ - Up = CnUT(n)}'

Without loss of generality, we assume 7 = (1 2 --- n). Then Fix(h) is

defined by u; = (ua, us = (ous, ..., uy = (yuy; this is equivalent to
(*) up = Qua = (1Gu3z = -+ = (1G2 -+ (u—1Up = (1G2 - - - Cpu1.
We claim that setting v := (1,§;1,Cf1C§1, ce qlgl e C;_ll) € C", then

Fix(h) is {cv : c € C} if (1(2--- (=1, and {0} otherwise. Note that from
(%), in particular u1 = (32 (uu1, whose solution is, if (1(a--- ¢y # 1,
unique u; = 0, accordingly the solution of (%) is unique u; = ug = ug =
<o =u, =0, s0 Fix(h) = {0}. If (12 - - §, = 1, solving (x) with respect to
uy yields ’UQ:Cl_lUl, U3:C1_1C2_1u1, ceey un:Cflcgl o -Q;llul. Thus set-
ting ¢ := uy, then (uy,usg,...,u,) = 0(17€;17C1—1C2—17 .. '7€1—1C2—1 e ;_11),
hence Fix(h) = {cv : c € C}.

(2): If h is a pseudo-reflection of C" (n > 2), then by Lemma 5.1,
dimFix(h) = n —1 > 1. This combined with (1) implies n — 1 = 1
and (1C2---(, = 1, that is, n = 2 and (1¢2 = 1. Thus h : (u1,u2) —
(Grug, ¢ ). O

Lemma 5.2 (2) is generalized to:

LEMMA 5.3. Let h : (u1,...,un) = (Ctr(1);- - -, Calir(n)) be an auto-
morphism of C™ (n > 2), where (3,...,(, are roots of unity and 7 € S,,. If
h is a pseudo-reflection, then it is either simple or switching.
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PRrROOF. Decompose 7 into disjoint cyclic permutations: 7 = 779 - - - 73.

Without loss of generality, we assume that 7, permutes {1,2,...,n1},
permutes {ny + 1,71 +2,...,n1 +n2} and so on. Write C" as C™ x C"2 x
- x C™ and (u,u2,...,u,) € C" as (u1,us,...,u;), where u; € C".

Express then h as

h: (ul, us, ... ,ul) — (hl(ul), h2(u2), ey hl(ul)),

where h; : C" — C™ is a linear automorphism of finite order (as h is).
Then Fix(h) is expressed as Fix(h1) x Fix(hg) x - -+ x Fix(h;), so

dim Fix(h) = dim Fix(hy) + dim Fix(hg) + - - - 4+ dim Fix(hy).

Here if h is a pseudo-reflection, then by Lemma 5.1, dimFix(h) =n—1 =
ni+no+---+mn;— 1, thus

dim Fix(h1) + dim Fix(hg) + - - - + dim Fix(h;) =n1 + na + -+ +n; — 1.

Noting dim Fix(h;) < n;, we have: For some hy, dim Fix(hg) = ng —1 (so hy
is a pseudo-reflection by Lemma 5.1) and for any other h;, dim Fix(h;) = n;
(so h; is the identity). Thus h(u1, ug, ..., w) = (w1, ua, ..., hi(ug), ..., u)
such that hj is a pseudo-reflection. Here if ng > 2, h is switching and if
ng = 1, simple, because: in the former case, by Lemma 5.2 (2), nx must
be 2 and hj is switching and in the latter case, hy : C — C is of the form
ur— Cu (¢ # 1 1is a root of unity). O

6. The Pseudo-Reflection Subgroup of H

LEMMA 6.1. Let G be a finite subgroup of GL,(C) and Q be the pseudo-
reflection subgroup of G (i.e. the subgroup generated by all pseudo-reflections
of G). Then @ is normal in G.

PROOF. By definition, any element conjugate to a pseudo-reflection is
also a pseudo-reflection, so @) is normal in G. J

The G-action on C™ naturally descends to a G/Q-action on C"/Q.
Here:

THEOREM 6.2 (Chevalley-Shephard-Todd). C"/Q = C" and under
this isomorphism, G/Q acts on C" linearly. So G/Q may be regarded as a
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subgroup of GL,(C). (Note G/Q is a small group, as the pseudo-reflection
subgroup of G/Q is trivial.)

We return to the cyclic group I' generated by a twining automorphism
v Ag_1 — Ag_1 given by

(6.1)  (@1,..., @, 1) o (M mmg | ema/mmig L o2m/Nyy

Recall that T is the lift of ' with respect to the universal covering p :
Ad,l( C™) — Ag4—1 and H is the descent of T with respect to the covering
q:Aq_1 — C™ We apply to H the above results, to determine its pseudo-
reflection subgroup — the subgroup generated by all pseudo-reflections in
H. Note first that:

LEMMA 6.3.
(1) The cyclic group T' contains no switching that leaves t fized.

(2) Any pseudo-reflection in H is simple.

PrROOF. (1): We only show that I" contains no (1,2)-switching (other
cases are similarly shown). Note first that from (6.1), 4% € T' maps ¢ to
e2™k/Ny Tf Ak is a (1,2)-switching, then e2mk/N must be 1; so k is a multiple
of N. Since the order of v is N, this implies that 7" is the identity, which
contradicts that " is a (1,2)-switching.

(2): Let h € H be a pseudo-reflection. By Lemma 4.13, h is of the form:

(62) h: (ula Uy« .. 7“”) = (Cluaj(l)a <2u0'j(2)7 ) Cnuaj(n))

for some j and some roots (i, (a,...,(, of unity. Then by Lemma 5.3, h
is either simple or switching. The assertion is thus confirmed by showing
the latter does not occur. We only show that A cannot be a (1, 2)-switching
(other cases are similarly shown). Otherwise

h:(ug,ug,us, ... uy) — (oug,a ‘ug,us, ..., uy) (o aroot of unity).

Comparing this with (6.2) yields ¢/ = (1 2).
Recall that ¢ = o109 - - - 07, where 01,09, ..., 07 are the cyclic permuta-
tions appearing in (6.1) and n; is the length of o;. From o/ = (1 2), we
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have o] = (1 2) and O'g = O'g); = ... = ¢/ = id. Note that a{ =(12)
implies o1 = (1 2) and ny = 2 (see Remark 6.4 (2) below); from the latter,
X1 = (X1, X2), so the covering q : A4_1 — C™ is given by

!
my

g1 (X1, X2, X, X)) — (XP0 X0 X X0,

Define a lift k € T of h with respect to ¢ by

he (X1, X2, Xs,...,Xn) — (&Y™ X5, 0" V"™ X, Xy, ..., X0).

The descent h € T of h with respect to p : gd_l — Ag_q is then

d/m/’ —d/m!
h: (x1,z2,23,...,20,1) — (« /Mgy, /mlxl,xg,...,acn,t).

This is a (1,2)-switching, which contradicts that I' contains no switching
(as shown in (1)). O

REMARK 6.4. For a cyclic permutation 7, 77 is generally decomposable:
Say the length of 7 is [ and set k := ged(4,1), then 77 is a product of k cyclic
permutations of the same length I/k (note k divides ).

(1) In case k = 1, 77 is indecomposable, and the length /1 of 77 is the same
as that of 7.

(2) If I = 2 (i.e. 7 is a transposition), then necessarily k¥ = 1 or 2. In the
former case, by (1) the length of 77 is also 2, so 7/ is a transposition —
necessarily 77 = 7 and j is odd.

We turn to determine the pseudo-reflection subgroup of H.

PROPOSITION 6.5. The pseudo-reflection subgroup P of H is a direct
product Py X Py X --- X P, where P; is the subgroup of H generated by ith
simple pseudo-reflections, that is, of the form

(ug,ug, .. un) — (up,ug, ..., U, ... uy), € is a root of unity.

Proor. Clearly PiP>---FP, C P. Since any pseudo-reflection in H
is contained in some P; (from Lemma 6.3 (2)), P = P, P»--- P,. Here by
definition, PN P; = {1} (i # j), thus P=P; x Py x --- x P,. O
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We next determine P; explicitly. Recall first the following diagram with
group actions:

Ay =C"A T

(6.3) [ N

H ~ C" A1 T.
Here I' is the cyclic group generated by a twining automorphism

2miar /m1mi .01 2mia; /mymy 5,01 27/ N
e / ... exma/ x)' e N,

vi(®y,. .., 2, t) — ( x]

and T is the lift of T’ with respect to p, and H is the descent of I with
respect to q.

Notation 6.6. The subsequent discussion involves the following groups:

° IN“Z C T the subgroup generated by ¢th simple pseudo-reflections, that
is, of the form (X1, Xo,...,X,) — (X1, Xs,...,(X;, ..., X,,), where
¢ is a root of unity.

e ['; C I': the subgroup generated by automorphisms of the form
(z1,... 2n,t) = (21,...,p%;, ..., o, ut), where p is a root of unity.

e P, C H: the subgroup generated by ith simple pseudo-reflections.

_ DEFINITION 6.7. The surjective homomorphism p : [ -T (resp. g :
I' — H) induced by p (resp. q) is called a descent homomorphism.

LEMMA 6.8.

(1) T is the descent of T; with respect to p, that is, p*(fl) =T1;. In fact
ps : Iy — I'; is an isomorphism.

(2) P; is the descent of T; with respect to q, that is, qs (fl) =P,
PrOOF. (1): Since
p: (X1, X2, .., X)) — (XL XS X X1 X X)),

an ith pseudo-reflection (Xi,..., X;) — (X1,...,(X;, ..., X,,) descends to
(z1,...,20,t) — (x1,...,C%;, ..., 2,,(t). This correspondence is clearly
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surjective, so p«(I';) = I';. Moreover this is injective: Distinct automor-

. ¢ Xq,....(X;,.... X
phisms b Xn) = (X ’C/ ireess Xn) descend to distinct auto-
Xl?"')XTL)H(le"'ch’ia"‘vXn)
t oo Clxy, t
morphisms (xh s Ty )'—>($1, ,C/CU: 7xn7C)/
(X1, oy Ty t) = (1, ()24, 2, CTE).

(2): Write (Xl,...,Xn) € C"as (Xl,XQ,...,Xl) e CMxCr2x...xCM
(n=mn1+mng+---+mng), then
(6.4) q: (X1,Xo,..., X)) — (X7, X572, ., X",

Say X; € X, then under q, (X1,...,X,,) — (X1,...,(X;, ..., X,) descends
to (u1,...,up) — (ug,..., M, . ,up). This correspondence is clearly
surjective. [

Recall that I" is the cyclic group of order N generated by
(6.5) v:(x1,...,x,t) — (62”1“1/”””13:‘171, cee e%i“l/"lmlwf’,e%iﬂvt).
Thus

(6.6) Vo (@, @, t)

NN (627rija1/n1m1m‘17{’ o e27rijal/nlml$;71j’ 627rij/Nt).
We investigate when v/ € T';, that is, 7/ is of the form (x1,...,2,,t)
(x1,...,¢%;, ..., x,, Ct) for some root C of unity. Say x; € xj, then
(6.7) V(2. T, t) — (1, .o i, , Tn, Ct).
—— —_———— ——
T Tk T

Comparing (6.6) and (6.7) yields a{ =1, a% =1, ..., alj = 1, accordingly
(6.6) reduces to

(6.8) 1 (z1,...,x;,t) — (e%ijal/"lmlml, L elmaa/mm g 62’Tij/Nt).
We then compare the coefficients in (6.7) and (6.8):

e Comparison for @, (s = 1,...,k,...,1) gives e>™%/msms — 1 where
k means the omission of k.
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e Comparison for @), gives e2ak/mkmk g, — (...,xi,l,gda:i, e ), that
T
is,
(. .. ,ezﬂjak/nkmkxi,h €2ﬂijak/nkmkxi, ce ) = ( cee s Li—1, Cdl'l', cee )
If length(zz) = 1, this reduces to (e2™Jok/mmky,) = ((a;), so
e2mijar/memi — ¢4 If length(zy) > 2, then e™Jar/™mk = 1 and
¢t=1.

e Comparison for t gives e>™/N = (.

Note. If length(xy) = 1 (resp. > 2), then (¢, (%) = (e2™9/N,
e?miiak/meme) (resp. (¢, ¢%) = (e2™/N 1)).  Accordingly (eQWij/N)d =
e2miiak /MM (resp. (e2™9/N)d = 1) which also follows from the fact that
'yj preserves Ag_1, that is, x1xe -+ - x, = t.

We summarize the above results as follows:

LEMMA 6.9. LetT'; be the subgroup of I' defined in Notation 6.6. Then
v €Ty if and only if ¥7 is of the form (say x; € xy,):

(x1,...,2,t) — (xq,...,e>" G/ Ny xy 2™/NE) if length(xy,) = 1,
(@1,...,2,t) — (z1 ..., 2;,e>9/N) if length(xy) > 2.

This condition is ‘more explicitly’ given by: O‘{ =1, ag =1,..., 0'lj =1 and
(below, k is the omission of k)

» e¥mijas/nsms — 1 for s =1,2,...,k,...,l if length(xy) = 1,
* ..
e2mjas/nsms — 1 for s =1,2,...,1 if length(xy) > 2.

Here as and ngms (s = 1,2,...,1) are relatively prime, so (x) is restated
as: j is a multiple of Ly, where (below, ngpmy, is the omission of nEMmy)

(6.9) Ly = { lem(nymy, ngma, ..., npMmy, ..., nymy)  if length(zy) = 1,

lem(nymy, noma, ..., mymy) if length(zy) > 2,
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Here ns; = length(zs) (the order of o). Hence 4/ € T; if and only if j
is a common multiple of Ly and the orders of o1,09,...,0;, that is, j is a
multiple of lem(Lg, n1,n2,...,n;) = Li. The following is thus obtained:

COROLLARY 6.10. In Lemma 6.9, 7 € T; if and only if j is a multiple
of Ly, given by (6.9).

We explicitly determine I'; and I:Z

LEMMA 6.11.

(1) The group T'; (in Notation 6.6) is cyclic: Say x; € xy, then I'; is
generated by the following automorphism:

R (@, g t) — (2, 2mkd/N gy g, eZWiL’“/Nt),
(Note: If nj, > 2, then e2milrd/N = 1))

(2) The subgroup T; of T (in Notation 6.6) is cyclic: Say X; € Xy, then
I'; is generated by the following automorphism

. i - lyeeeyNp) 1y.--4€ i Gyeeeshn).
6.10 & (X X X 2mili/N x X

Proor. (1): T is cyclic, because it is a subgroup of the cyclic group
I'. Say now z; € xy, then since v/ € I'; if and only if j is a multiple of Ly,
(Corollary 6.10), T'; is generated by v *.

(2): T; is cyclic, because T; is isomorphic to the cyclic group I'; (Lemma
6.8 (1)). Say X; € X. We then show that I, is generated by the & given
by (6.10). Since X; € Xy, x; € T, and thus by (1), T'; is generated by ~%*.
Since p, : Iy — T is isomorphic (Lemma 6.8 (1)) and p,(&) = v5, T is
generated by p;l(vH) = ¢. 0

Recall that H is the descent of ' with respect to q.

COROLLARY 6.12. The subgroup P; of H generated by ith pseudo-re-
flections is actually cyclic: Say u; € uy, when we write (uy,...,u,) € C" as
(uy,...,u;) € C" x - x C™. Then P; is generated by

(6.11) hi:(uty ... up) — (ug,..., ezmnkm’“Lk/NCui, ceey Up).
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PROOF. Since ¢,(I;) = P; (Lemma 6.8 (2)) and T; is generated by &
(Lemma 6.11 (2)), P; is generated by ¢.(&;). Here ¢«(&;) = h;, confirming
the assertion. [J

Let P be the pseudo-reflection subgroup of H. Then P = P; X Py X
.-+ X P, (Lemma 6.5), thus from Corollary 6.12 the following holds:

ProOPOSITION 6.13. The pseudo-reflection subgroup P of H is gener-
ated by the automorphisms hi, ho, ..., hy in Corollary 6.12.

7. Numerical Criterion of Smallness

That is, its pseudo-reflection subgroup P is nontrivial. Consider the
quotient map r : C* — C"/P. By Chevalley-Shephard-Todd theorem,
C™/P = C" and under this isomorphism, H/P acts on C" linearly. So H/P
may be regarded as a subgroup of GL,(C) and r as a map r : C* — C".
Since the covering transformation group of r is P, the following is obvious:

(71) r: C" — C" is the identity map <— P = {1}
‘ <= H is small.

We explicitly give r. We begin with observation. Let Z;y : <62”i/ ) act
on C by multiplication, then the quotient map C — C/Z, = C is given
by z +— 2'. More generally let Zg, x - x Zy, = (e¥/0) x ... x (2m/tn)
act on C" = C x --- x C by multiplication, then the quotient map C" —
C"/(Zg, x -+ X Zy,) = C" is given by

~

(7.2) (21, zm) — (25,0, 2.

Similarly the quotient map r : C* — C"/P = C™ may be explicitly given.
Recall first that P = (hy) x (ha) x --- x (h,,) (Proposition 6.13), where h;
is an automorphism of C" given by (6.11): Set ¢} := Nc/ngpmyLy, where
Ly, is the positive integer given by (6.9) and N := (m))™ ---(m})™c and
¢ = ged(nyma, ..., ymy) and m), = nkgnk (¢ is an integer by Lemma 7.4
below), then explicitly

hi:(upy... uy) — (ul,...,eQﬂWkui,...,un),
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As for (7.2), r: C" — C"/P = C" is then given by

(ul,...,un)H(uil, ........ ,uf’“, ........ ,ufif)
—_——— ——
Ul U uj
We formalize this result as follows:

LEmMA 7.1. Write (uj,ug,...,u,) € C" as (w1, ug,...,u;) € C" x
C"2 x - x C", where uy := (uj,,...,u;, ). Then the covering map r :
C"™ — C" is explicitly given by r(ui, ug, ..., u;) = (uil,u?, .. ,ufl), where
ule — (ufk L )

wo= (g g ).
The following is immediate from Lemma 7.1:
r is the identity map <= (1 =ly=---={; =1
(i.e. N¢/nymiLy =---= Ne¢/mymyL; = 1)
< mjLy=---=myL; = N.

This combined with (7.1) yields the following:

THEOREM 7.2. The following are equivalent:
(1) H is small.
(2) The covering r : C* — C" is the identity map.
(3) mlLl m2L2 = = m;Ll =N.

COROLLARY 7.3. Ifn =2, then H is small.

PRrROOF. From Theorem 7.2, it suffices to show m{L; = mhLy = --- =
myL; = 1. Note first that the permutation o € &,, appearing in the def—
inition of 7 is, if n = 2, either the identity or a transposition (12). We
separate into two cases:

(i) If o is the identity, then ny = ny = 1, ¢ = ged(m1,m2), m) = L, m} =
T2 N =mimhe, L1 = mhe, and Ly = mje. Thus m)L; = mhLy = N.
(ii) If o is the transposition (12), then ny = 2, ¢ = 2my, m} = 2% =1,

N = (m})?c =2my, and L = nymy = 2my. Thus m{L; = N. O

Supplement. We show that ¢ := Nc¢/npmyLy is an integer. Recall
that N := (m})™ ---(m))™¢, where ¢ := ged(nima,...,nmy) and m) =
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% and Ly, is given by (6.9):
I lcm(nlml,ngmg,...,nkmk,...,nlml) if ne = 1,
k= .
lcm(nlml, nama, . .. ,TL[’I?’L[) if g > 2.

LEMMA 7.4. { := Ne/npmyLy is an integer.
PRrROOF. Rewrite Ly as
L — { lem(my,mh... 1w, ...,myc if ng =1,
lem(m),m5,...,m))c if ng > 2.
Here
{ lem(mf,mf ... ,m),...,m;) divides mims---m} ---mj,

/ !/ !/ L / / /
lem(mf, ms, ..., m;) divides mim}---mj.

In either case Ly divides m/) --- (m})™ 1 - mjc, so ngmpLy (= m} Lyc)

divides m/ ---(m},)™ ---mjc?, in particular, divides Nc¢ = (m})™ .-

(m))™c?. O
8. Uniformization of Twined Singularities

8.1. Uniformization theorem
In what follows, set G := H/P. Consider the diagram expanding (6.3):

Ag 1 =CrA T

L

(8.1) H~C™ Ag_1"T.
T/
G:=H/P~C"
Then
(8.2) Ag1/T = Aq_/T=C"/H = C"/G.

Here G is a small finite subgroup of GL,,(C) (Theorem 6.2). We thus proved
(1) of the following:
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THEOREM 8.1 (Uniformization theorem). Let I' be the cyclic group
generated by a twining automorphism v : Ag_1 — Aq_1 given by

627r1al/77,1m1 0'1’ o 7eZﬂ’lal/mmlw;ﬂ7 627”/Nt).

vi(xy,..., 2, t) — ( x]

Then:

(1) There exists a small finite group G C GLy(C) such that Ag—1/T" =

C"/G; this isomorphism is the composition T o g o p— ', where

p:Ag )T —Aq1/T, g: Ay /T —>C"/H, 7:C"/H —C"/G

are induced from p, q, r.

(2) The isomorphism U :=Fogop ': Ag_1/T —=C"/G in (1) is ex-
plicitly given by
\If([:nl, el azl,t]) = [m?m,l/d, cel :Bflmz/d],

where [x1,...,x;,t] € Ag_1/T" and [m?ml/d, e ,mflml/d] € C"/G de-
note the images of (x1,...,x;,t) € Ag_1 and (wilmll/dj o ,a:flml/d) c

C™ respectively.

PROOF. It remains to show (2). Since

ﬁ([XlaXQw"?Xl]) = [Xcli7Xga"'7de>X1X2"'Xl]v

we have ]371([$1,:B2,...,$l,t]) = [cci/d, a:;/d, ...,a:ll/d]. Thus
\Il([ml,mg,...,:cl,t]) :Foqoﬁfl([ml,m%...,ml,t])
_ 1/d 1/d 1/d — " /d ./d r/d
:roq([wl/ ,mQ/,...,:rl/ ]):r([zcrlnl/ ,a:g%/,...,w;ﬂl/ ])
N G

Correspondence between maps
We keep the notation above: I' is the cyclic group of order N generated

by the automorphism of A4_1 given by

627T1(11/7’le1 milv ) 627r1al/nlml il??l ’ 627r1/Nt>‘

v (@1, .., @, t) —

. ey
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Define a holomorphic map ® : A;_1 — C by
(8.3) O(z1, 29, ..., xp, t) = V.

This, being I'-invariant, descends to a holomorphic map ® : A4_;/T' — C
(which is a local model of a degeneration of compact complex manifolds).
We shall explicitly give the corresponding map C"/G — C under the iso-
morphism Ay /I' =2 C"/G in Theorem 8.1.

Consider first the case [ = 1, that is, v : (z1,t) — (e2m01/mm1 gy 271/N¢),
Explicitly v is of the form (below, write aj, m1, L1 as a,m, L etc):
e27ria/nm

eQﬂ'ia/nmxa(n) ’ 627Ti/Nt),

’7:(1:17"'71'1172&)'—)( Lo(1)s-+ -

where 0 € G, is a cyclic permutation of length n. In this case, ¢ = nm,
m' =1, L =nm, N = (m/)"c = nm. Accordingly ¢ := N¢/nmL = 1 and
d = N(;% + k) = na + nms. The following then hold:

LEMMA 8.2.

(i) Let G C GL,(C) be the small finite group in Theorem 8.1. Then the
holomorphic map ¢ : C" — C given by ¢(v1,...,v,) = (v -+ v,)"" is
G-invariant. (So ¢ descends to a holomorphic map ¢ : C*/G — C.)

(ii) Let ® : Ag_1 — C be the I'-invariant map given by (8.3). Under the

isomorphism W : Ag_1 /T —=C"/G in Theorem 8.1, ® : Ag_1/T —
C corresponds to ¢, that is, ® = ¢po V.

PROOF. (i): As seen in Theorem 9.1 (3) below, G = {gjp : P €
AV) j=1,2,... N}, where g; , is EJBM therein. Explicitly

e?ﬂi(ja—l—nmpl)/nmdva 7 627ri(ja—|—77,mpn)/nmdvo_(n) ) .

gj,p: (’Ul,...,Un)l—>( (1),...
For simplicity, set ¢; := e2m(atnmpi)/nmd ¢} ep

9ip+ (V1,02 0n) 7= (Q0o(1), C2Vo(@)s -2 Gl (m))-
It suffices to show ¢ o gj p(v1,va,...,vn) = @(v1,v2,...,0,). Note first that
(G1Ga -+ ¢u)™™ = 1, indeed
(C1la -+ Gp)™™ = e2milimatnm(pit-tpn)}/d
= Zmilnatnmir)/d  ag (1, ..., py) €AV
= =1,
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Then
¢ 0 gj,p(v1,02,. ., 0) = ¢(C1Vs(1)s C2V5(2)s - - - » GnVo(n))
= (G162 )" (Vo (1) Vo (2) " ** Vor(m))™™
= (Vo(1)Vs(2) **Vo(m))""  as (C1l2-+-Cu)"™ =1
('Ul’UQ n)nm - ¢(Ul, V2, ... ,'Un).
(ii): From Theorem 8.1 (2), ¥([z1,...,zn, t]) = [xi/d, . 1/d] Thus

¢o\Il([$1,...,xn,t]) za([a:%/d,...,x}/d]) = (xl---xn)"m/d
td

nm R
t as Ty Ty =

=N as N =nm
= ®([z1,...,2n,t]) by definition. O

We turn to the general case:

2wial /nimi .01
x]', ...,

(%) v: (x1,...,2,t) — (e e%ia’/”lmlaafl, e%i/Nt).

As for Lemma 8.2, we can show the following:

THEOREM 8.3. Write (v1,...,v,) € C" as (vy,...,v;) € C" = C™ x
-+ x C™. For each permutation o) appearing in (x), let Jy be its cycle, that
is, J ={i : v; € vi}. Then:
(1) Let G C GLp(C) be the small finite group in Theorem 8.1 and
¢ : C" — C be a holomorphic map given by ¢(vi,..., vy) =
l L
I ( II ’UZ‘> k, where Ly, is the integer given by (6.9). Then ¢ is
k=1 “ieJg
G-invariant.

(2) Let @ : Ag_1 — C be the I'-invariant map given by (8.3). Under the

isomorphism W : Ag_1 /T —=C"/G in Theorem 8.1, ® : Ag_1/T —
C corresponds to the descent ¢ : C"/G — C.
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9. Explicit Forms of Elements of f, H, G

We subsequently deal with many notations — to reduce the burden of
memorizing them, H, G are denoted by I', I'. Recall:

e Express v = a3, where

a: (x1,...,x,t)
(627ria1/n1m1$(;1, . eZWial/nlmlm;Tl’e?Tri(l/N—fi/d)t),
. 2rik/d
B (x1,...,xt) — (z1,..., 2,2 /).

IS8

, np—zj—modZ

(see (4.4)).

e For p € AU let @&, Bj,p be the lifts of v, 3 given by (4.8), and @, 3 ,,

be their descents with respect to ¢q. Let @, Ej,p be the descents of
a, (; p with respect to r.

The following then holds:

THEOREM 9.1.

(1) T = {ajﬁj,,, cpe AV, = 1,2,...,N}, where
{ §: (X1,..., X)) — (627r’iva1/n11711(1)(c1f17 'N"7ezﬂial/mmldX7l)7
ﬁj p: (Xl,...,Xl) [ (6j7p1(X1)7 ...,ﬁ“,l(Xl)).

(2) T = {aﬂ]p peAD j=12 .. N},where
{6: (wy,...,u;) — ( 2miay /cd ul’, ...,e%ial/Cdufl),
Bip: (wi,w) — ((Bip)™ (), -, (Bjp)™ ().
(3)

={@B;, :peAV, j=12... N}, where
( ) . (eZm‘“Zl/Cd’v({l, e, e27ria1€z/cdv275)’

T
{?
@m5@h~wW)Hﬁ(WmJM&@ﬂw~X@@WM@m-
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Namely
0 r={a6;,) p-
(9.1) T={a,,) I'={y = alp}.
o
I={a"B;,}

PrOOF. (1) and (2) are already shown in Lemma 4.11. (3) follows

from (2), as the descent homomorphism r, : I' — T is surjective and the

covering r : C" — C" is given by r : (ui,us,...,u;) — (ufl,u?,...,ufl)

(see Lemma 7.1). O

Note:

0, B¢T|a B,¢l|a
afel | @, el | W, eT | @5,

Here explicitly:

LEMMA 9.2. Setting (, := €2™/d then for p = (p1,02,---,Pn) €
AU,
(1) Bip: (X1,X2,...,X,) — (e2m01/dX) 2mip2/dx, e2mipn/dX .

(2) By p: (X1, X2, Xp) ¥ (Y1,Y2,...,Y]), where

Y= (X, Xy, G X )

ni
_ Pny+1 Pni+2 Pnq+ng
}/2 - ( 2 Xn1+17 2 Xn1+2a---aC2 Xnﬁr”z)
n2
_ Pnq4ng+1 Pnq+no+2 Pnj+ng+ng
Y = ( 3 Xn1+n2+17 3 Xn1+n2+2’ <983 Xn1+n2+n3)

n3
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(3) By p: (X1, Xo,..., Xp) ¥ (Z1,22,...,2)), where

L1pn
7, = (Cflple’ Cf1p2X2’ . 7C11p anl)

ni
EQpnl-&-l fzpn1+2 £2pn1+n2
ZQ — ( 2 an—i-lan Xn1+27---aC2 Xn1-‘rn2)
~~
n2
_ 531771 +no+1 ZSpn +ng+2 €3Pn +ng+n
Z3 - (CS e Xn1+n2+1> 3 e Xn1+n2+27"" 3 e 3X7l1+n2+n3)

n3

PrOOF. (1): Write p = (p1,p2,...,pn) as (P, Pay- .-, D;) € L™ XL X
-++ X Z". Note that (see Theorem 9.1 (1)) N
ﬁjrp L(le X27 cee aXl) = (ﬂj:]’l (Xl).v BIPQ(XQ)a cee ’_ﬂjypl(Xl))a
where 8j p, 1 Xi = (Xjy,..., Xj,,) — (eQmpjl/del,...,ezmp«’ni/deni). In
the cooridinates (X1, Xa,..., Xy),
Bjp: (X1,Xo,...,X,) — (ezmpl/Xm, e2mp2/dx, eQWip"/an).
(2): Note that (see Theorem 9.1 (2)) _
Bip: (Xupes X0) = ((Brp )™ (X 1), (B ™ (X0)).
Writing this in the cooridinates (X1, Xo, ..., X},) yields the assertion.
_(3): Note that (see Theorem 9.1 (3))
Bipt (Xtvee s X0) — ((Bip) ™8 (X1, (B0 (X).
Writing this in the cooridinates (X1, Xs,...,X,,) yields the assertion. [J

REMARK 9.3. Ifo #1id, T (= H) is generally not abelian — this is also

the case for I' (= G). We will determine when I' (and G) is abelian. See
Theorem 10.11.

9.1. Generators of I', T (= H) and ?(: G)

The covering maps p, ¢, r induce surjective homomorphisms (descent
homomorphisms) p, : T — T, ¢ : T — T, r,: T — T (see (9.1)). As ¢, and
r4 are surjective, generators of I descend to those of T, and then, to those

of T'. Subsequently we will explicitly give generators of T and descend them
to I, and then to I
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First take a lift 7 := &Bl,p of 7 (recall &/ Bj,p is a lift of 77; Corollary
n)
4.6). To simplify discussion, for p we take g := (0,...,0, £ ,0...,0):

9.2) a: (Xq,...,X)) — (e%i“l/nlmldX‘l’l,...,62”ial/"lmldX?l),
(93) ﬂth (Xl,XQ,...,Xn) [ (Xl,XQ,...,627rin/dXU(n),...,Xn).

We next take lifts i?il, ﬁg, . ,ian_l of id € I as follows:
(9-4) 1?212 : (Xl, ce ,Xn) [— (Xl, v 7Xi—17 627ri/dXi, Xi+17 PN ,6_27ri/an).

Recall that I’ = {&’jﬁj?p cpeAd) j=12 .. ,N} (Theorem 9.1 (1)).

LEMMA 9.4. Set 6 := (5170((1))9' (note in general § ¢ T), and for sim-
plicity write 7, id; as ©, Y. Then:

(1) (pj (wo(n)wUZ(n) T wo-j(n))ifi = a’é.
(2) FOTP = (p17 s ,pn) € A(J); (wl)pl (,(/}2)[)2 U (wn—l)p"* = 6715‘7‘71).

(3) Forp= (p1,...,pn) € AU,
7 (wa(n)woz(n) e ¢Uj(n))_“(w1)p1 (P2)P2 - -+ (Y1)t = ajaJEP'

PROOF. (1): Note first that

(pj = (agl,q)j

— ajal,rjﬂ(q) .. 51,0—1(q)51,q as Bl,qa = &Blyg_l(q) (Lemma 4.8).
Here (1/}01'(”))7” = (B/l’o-fi+l(q))7lgl,g-(q) and ¢ = (Bl,a(q))jv SO
(Vo) Vor(n) * Voitm) = (Bl,a—j“'l(q) o '517071(,;)61,11)_15-

ThUS SOJ (wa(n)qu)UQ(n) e ﬂ)gj(n))_’i == &36
(2): Since p € AY) | we have

(x) —(p1+-+pn-1)/d=(pp— jr)/dmod Z.
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Now

(wl)pl (¢2)p2 o (Qpn—l)pn_l (X17 cee aXn)

_ (627rip1/dX1’ o e%i”"*l/an_l, 6_27Ti(p1+"'+p"*1)/an)
— (6271'ip1/d)(17 s 627ripn_1/an_1’ e?rri(pnfjn)/an) by (*)

=67 Bip(X1, ..., Xn).
The equation of (3) is the product of (1) and (2). O

From Lemma 9.4 (3), any element ~of [ is written as a product of 7, 1?11
(1=1,2,...,n—1), so they generate I, therefore:

COROLLARY 9.5. Set ¥ := ¢.(3), id; := ¢.(id;) and 5 1= r.(¥), id; :=
r(id;), then:

(1) ¥s ialaiaz,---,ian_l generate r.

(2) 7, idy,ids, . ..,id,_1 generate T (= H).

(3) 7, idl,ﬁg, e ,ﬁn_l generate T (= Q).

f > i)ipalaifaQM‘ 'a{(in—l

Ea D+
NP

(9.5) 77H17ﬁ27---,ﬁn—1 e
r

L >7,id.

X

ﬁ,ﬁl,idg,. --7ﬁn—1 € %(: G)

We summarize the explicit forms of relevant automorphisms. Set
Uy == Ne/npmy Ly (k= 1,2,...,1), where Ly, is the integer given by (6.9).
Then:
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THEOREM 9.6.
(1) v = &El’q, where
a: (Xl,...,Xl) — (e%ial/”lmldX‘ljl,...,e2ﬂial/”lmldX;”),
{ Biq: (X1, Xo, .o, Xp) v (X1, Xoy oo, €2M9/9X 000 X,
id; : (X1, Xo,. ., X)) — (X1, Xo,...,e2m/dx; e 2m/dx ).
=ap, _q» Where

Xh'_'7 l) N (6271'ia1/cd)(t1717'”7627rial/cd)(;71)7
(X1, Xoy e, X))
X17X27"'7€2ﬁimgn/dXU(n)7-..,Xn).

Bl —— <I
QI QI

Xl,XQ,...,Xn) —
(X1, Xy, ..., e2m/dx, e 2mmi/dX ) (say X; € X}).

5

T ()(17 o 7Xl) — (€2wia1€1/cht171, o ’627riazﬁz/chlUl)7

Bl,q c (X, Xo, .., X)) —

(X17 X27 s 7627rim2ZlH/an(n)a s 7Xn)
ﬁi : (Xl,XQ,. . ,Xn) [—
(X1, Xy, ... e2mmbe/dx, e=2mimibli/dx y (say X; € X}).

Proor. (1): 7= &51,(1 is the definition of ¥, and the explicit forms of

a, [1,q, id; are respectively given by (9.2), (9.3), and (9.4), confirming (1).

(2) is the descent of (1) with respect to ¢: Writing (X1,...,X,) € C" as
(X1,...,X;) € C" x C™, then by (6.4),

(9.6) q: (X1,X9,..., X)) — (X7, X572 X",

Similarly (3) is the descent of (2) with respect to r : (w1, u2,...,u;) —
(uﬁl,u2 ) .,ufl) (this explicit form of r is given in Lemma 7.1). O

Note that while 1?1Z clisa lift of id € T, 1?1Z itself is not the identity
map; neither are its descents id;, id;.
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LEMMA 9.7.  The set of lifts of id € I is given by

{(ﬁl)kl (i?lg)’” R (fin_l)k”—l ke, 0<k < d}

ProoF. For simplicity, set 1215 = (id )" (idg)k2 - - - (iftin,ljknfl, where
k = (ki,ko,...,kn—1). Note that idg is a lift of id € I" as idy, idg, ...,id,—1
are lifts of id € I'. Note next that explicitly

idy : (X1,...,Xp)
— (627Ti/€1/dX17 o 62ﬂikn_1/an_1, 6*27Ti(k1+‘“+kn—1)/an).

Soidy # idy if k # 1, and the elements of S := {idy : k € 2", 0 < k; < d}
are all distinct. Thus S consists of d*~! elements. Since p : Ag_1 — Ag_1
is d"~1-fold, this implies that S exhausts all lifts of id € I". O

From the explicit forms of i?ih id;, ﬁz in Theorem 9.6, the following is
clear:

COROLLARY 9.8. IA(L #+ ﬁj, Hz 75 ﬁj, ﬁz 75 ﬁj fori# 7.

Consider the special case that o € &,, is cyclic of length n. Then ~ is of
the following form (a;,m are for simplicity denoted as a,m):

(9.7) ~v: (x1,...,2p0,t) — (eQ“ia/”mxo(l), ce e%i“/"m:cg(n), e2mi/mmy).

COROLLARY 9.9. For the cyclic group T' generated by (9.7), the small
finite subgroup G C GLy(C) such that Aqg—1/T = C"/G (see Theorem 8.1)
satisfies:

(1) T = H = G, that is, the covering maps q and r in (8.1) are the identity
maps.

(2) G is generated by the automorphisms f,g1,92,...,gn—1 given by
fi(re,...,zn)

27mia/nmd 27mia/nmd 2wi(a+nmk)/nmd
= (6 / Lo(1)s--+»€ / Lo(n—1),€ ( ) ma(n)):

gi: (z1,...,2pn) — (T1,22,. .. ,e27ri/dxi, cee e_QWi/dxn).
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PrROOF. (1): In the present case, o is cyclic of length n, so [ = 1
n (9.6) and Lemma 7.1, and thus ¢ : X — X™, r : u — uft. We
claim that m{ = ¢; = 1 (so ¢ and r are the identity maps). First since
¢ = ged(nymy) = nymy, we have m| := nymy/c = 1. Next N = (m/)™"c =
nymy and Ly = lem(nyimi) = nymy, thus €1 :== Ne/nymi Ly = 1, confirming
(1). _

(2): Since I' = G, this follows from Theorem 9.6 (1) (note n1,mq,a; are
denoted by n,m,a in the assertion). [J

9.2. Preparation to deduce relations

Recall that 7, id; € T are lifts of v,id € T', and their descents are
7, 1id; € T, whose descents are 7, id; € I'. None of them are identity maps
(see Theorem 9.6 for their explicit forms). Note that i = 1,2,...,n — 1.
Convention: Define i?in, idy,, ﬁn as identity maps.

Recall that I' is generated by 7,id; (i = 1,2,...,n — 1), and T by
7, id;, and T by 7, id; (Corollary 9.5). We deduce relations among 7, id
(which descend to relations among 7, id; and then those among 7, ﬁz)
We begin with preparation. By Theorem 9.6 (1), ¥ = &El,q, where q :=
0,...,0,k,0,...,0) (k lies in the o(n)th place) and

a: (Xq1,...,X)) — (e2’““1/"1m1dX‘1”, e ,62”1“1/"””1de1),

Brq: (X1, Xav o, Xp) v (X1, Xoy oo, @™9/9X 00 X,

REMARK 9.10. Bl,p (for general p = (p1,p2,...,pn)) is given as follows
(see Lemma 9.2 (1)):

Brp: (X1, X, ..., Xp) — (2™P/AX, 2mr2/dx,  2mivn/dx .

Using the relation Bl,pa = &5170_1(1,) (Lemma 4.8), we may rewrite

AN = (@P1q) - (@P1,q) as 7V = &N(EI,U*NJFl(q)"'5170*1(q)/§1,q); for in-

N
stance if N = 3,

7 = (@P1,q)(@B1,q)(GP1,q) = (GP1,q)AaS; ,—1401,q

= aqaf ,-2(q)f1,0-14P1,q-
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From the explicit form of Bl,p (see Remark 9.10), Bl,pgl,p’ = Bl,p’gl,p
for any p, p’. Thus

To rewrite this, recall that o = o102 --0; (cycle decomposition) and the
length of o} is n;.

LEMMA 9.11.
(i) o7 =id.
(i) o™ (q) = q. Consequently o*(q)=0" (q) if i = i’ mod n;.
(iii) ny divides N.

)

(iv) 07 (q) = o™ (q).

PROOF. (i) is clear as o is a cyclic permutation of length n;.
(ii): Slnce q:=(0,...,0,k,0,...,0) (k lies in the o(n)th place), we have
o™ (q) = (0,...,0,k,0,...,0) (k lies in the o~ T1(n)th place). To show

U"Z(q) = g, it thus suffices to show o~™*(n) = o(n), that is, ¢ (n) = n.
Note that n is contained in the cycle J; of 0; (indeed J; = {n—m;+1,...,n—
1,n}), so 01,09,...,0,_1 are ‘irrelevant’ to the transformation of n. Hence
o(n) = oy(n), so a™(n) = 0,"(n) =n (as ;" = id by (i)).

(iii): Note that

N = ()™ - (mf)e = (mh)™ - (mf)™ e
= (my)™ - (m))"nymy  as mjc = nymy.

Thus n; divides N.

(iv): Since n; divides N, we have N — i = —i mod n;. Thus oV ~%(q) =
o~%(q) by (ii). O

Using (iv), rewrite (9.8) as ¥ = aV H 8, oi(g- This is further rewrit-
1=0
ten. For instance if N = 6 and n; = 2,

= &%(B1,481.0(g)) (B102(0)P1.0%(g) Brot(a)Pro5(a)
= a°(BrgBror(q)’ aso’(q) = q.
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In general, the following holds:

. . n—1 __ N/TL[
(9.9) ,-}/N = aN( 1_[0 ﬂl,a"{g))

7=

Here

(9.10) { GV (X, X)) e (2maN/mmdxy L e2maN/mmd X))

51701'(‘1) : (Xl, e ,Xn) — (Xl, ey CQWiH/anl—i+1 ,Xn)

(n)? """
We claim that

nl—l ~ . .
'1_[0 ﬂl,ai(q) : (X17 e 7Xn) = (X17 X?a R 62WIN/an—nl+17 s 5627T1K/an)7
i= b
that is,
n;—1 _ .
(9.11) 1_[0 ﬁlp.i(q) (X, ,Xl) — (X1, X -1, e%rm/Xm)_
7=
Since B yi(q) : (X1,...,Xn) — (X1,... ,eQwiﬁ/dXU;iH(n), .., X,), the
TLl—l —
composition [[ 5; +i(q) 15 the multiplication of each coordinate XJ%H(”)
=0 ’ l

i=0,1,...,n; — 1) by e2™/4_ Here
( y
{al_i'H(n):i:(),l,...,nl—l}:{n—nl+1,...,n—1,n}
= {j : Xj GX[}.
n;—1 _ .
So [[ Bii(q) is given by the multiplication of every X; € X; by g2min/d

i=0
that is, of the form (9.11). Consequently

n—1 __ N/ny
(912) ( 1:[0 ﬁl,o‘“q)) : (X17"'aXl)
= (X1, Xy, TN X)),
where recall that n; divides N (Lemma 9.11 (iii)).

e27riakN/nkmkd ( #

l
) Then:

LEMMA 9.12. Set & := {62m(al+mm)N/nlmld (k=1)
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(1) AV (X1, Xo,.., X)) — (X1, £Xo,...,6X)).
2) ¥V (X1, Xoy. .., X)) — (§T1X1,§?2X2,...,§llel),
= m/ 0 mhl e
3) 7 (X1, Xo,. ., X)) — (6777 X, 65 *Xo,.., 8" X)).

Proor. It suffices to show (1), as (2) and (3) are descents of (1).
-1 __ N/n
First 7V = &N< II ﬂl’ai(q)) l (see (9.9)). By (9.10) and (9.12), setting
1=0
o= eZﬂialN/nlmld and /8 = e?Trif-cN/nld7 then

:\YJN : (Xla"'7Xl) — (lel,...,fl_le_l,Oé/BXl)-

Here aﬂ — eQﬂialN/nlmldGZWinN/nld — 627ri(al+mm)N/nlmld — &7 S0

(X, LX) e (G X, L, 6X). 0

9.3. Relations between generators
We keep the notation above. We claim that the following relation holds:

(9.13) N = idyids - - - id,,

where idy, is defined as follows: Write {1,2,...,n} = L I JoII--- 11 J; (the
cycle decomposition, where Jj, is the cycle of oy), then

[T (idy)es/mems (k#1),
<1 . i€Jy
ldk = 1—[ (i’ai)(al—i—mln)]\f/mml (k; — l)

i€J;
More explicitly, letting f : C™ — C™ (k = 1,2,...,1) be the automorphism
given by X;=(Xj,,..., X, ) = (Xj, ., Xj, 1, " X, ), then

Iny

(9.14) fak:{(Xh”"Xl)H(Xl""’g’“x’““-’Xl17fk<Xz>> i A1,
(X1, X)) = (X, X1, 8 f1( X)) if k=1

So
idyidy - -id; (X1, X)) = (OX1 - 81X 1,6 fifa - i X))

Here fifo--- fi = 1, indeed & ™ & "2 - - & ™ = e 2miN(ar/mitda/mitr)/d —
e_zﬂid/d = 1. Thus idlidg s idl = ’A}//N.
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LEMMA 9.13.

(1.a) For any k, id, =1 < & =1.

(1b) id; =idy =--- =id; =1 < 3V = 1.
PrOOF. (l.a) is immediate from (9.14).

(1.b): From Lemma 9.12 (1), 7V =1 <= & =& = --- = & = 1. This
and (1.a) gives (1.b). O

Corresponding to the relation 3V = idyidy - --id;, Y = idyids - - - id,
and ?N =idyidy - - - id;, where explicitly

H (ﬁi)akN/nkmk7 H (Hi)akN/nkmk (k 7& l),
3 i€Jy 3 _ iEJk_
id, = H (ﬁi)(al-l—mm)N/nlml’ id;, = H (Hi)(al-i-mm)N/nlml (k‘ _ l).
= 1€J;
LEMMA 9.14.
2.a) For any ]{,’7 ﬁkzl — é‘mgﬂzl and é'_nkmgzl
k k
(2.b) idy =idy=---=id; =1 = FV¥ = 1.

PROOF. (2.a): From (9.14), idy : (X1,...,X)) — (X1,....6/% X},
o X, f,:ll(Xl)). Here f;nl =1« §k_nkml = 1, so the assertion holds.

(2.b): From Lemma 9.12 (2), 7V =1 += "1 = &2 =--- = §lml =1
This and (2.a) gives (2.b). O

REMARK 9.15. In (2.b), “=" does not hold: Since mj, (k # 1) does
not divide nymy, even if &, * = 1, in general &, *" ' # 1 (that is, idy # 1).

From (9.14),

— m/l mil
W (X1 X)) o (X €0 X X (X)),

here £ X, = (X X X X kit if
where f,. " X =(Xj,,. .., jnl)»—>( i Xy —10 & Xj”l)' Here i
, -

—npmi

5;:’“ =1, then &, =1; otherwise id;, € Tisa pseudo-reflection, but this
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contradicts the fact that T (= G) is a small group (Theorem 8.1 (1)). This
proves (1) of the following ((2) is immediate from (1)):

LEMMA 9.16. For any k,

!
—nEmil;
=1

(1) IfE =1, then &,

’
mkﬁk

(2) idg =1 < & = 1.
From Lemma 9.12 (3), 7" =1 <= &M =g = ... =" =1,
This combined with Lemma 9.16 (2) gives:
LEMMA 9.17. ﬁlzﬁgz--~:ﬁl:1 = ?Nzl.
We summarize the above results as follows:
ProrosIiTioN 9.18.
(1) 3 =ididy---id;. Hereid; =idpy =---=id; =1 < 3V =1
(2) 7V = idyids - - - 1d,
(3) 7 —idyids---id). Hereid; =idp = --- = id; = 1 <= 7" = 1.
For (2), we merely have: id; =idy = ---=id; =1 = V¥ =1

Another relation. There is another relation among 7, id; (and also

among 7, id; and among 7, ﬁz)
LEMMA 9.19. For eachi=1,2,...,n—1,
(1) idF = Fidy ) (idyn) -

(2) 1477 = 7id () (idon) -
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In particular if o(i) = i, then idy = 7iai(iao.(n))_1, idy = Wﬁi(ﬁa(n))_l,
and id7y = Fid;(idy(,)) " (these indicate that [,T and T are not abelian.
Indeed they are not except for 0 =id or n = d = 2 (Theorem 10.11)).

PROOF. (1) can be shown as in the proof of Lemma 4.8. (2) and (3)
are the descents of (1). O

REMARK 9.20. Ifo(n) = n, then iag(n) is the identity map (as iag(n) =
id, is the identity map), thus (1) becomes id;¥ = 7yid,;. In particular if o
is the identity, then ;iﬁ = ’i;il This implies that [ is abelian. Accordingly
I' and I are abelian.

10. When G is Abelian?

We will determine when G (= I') is abelian. We begin with preparation.
Recall that G is generated by 7, id; (i = 1,2,...,n— 1) (Corollary 9.5 (3)).

LEMMA 10.1. Set f:=7 and g; := id; (t=1,2,....,n—1). Then:
(1) G is abelian if and only if (gi)_lgg(i) = Go(n) for every i.

(2) Suppose that G is abelian. If o = id, then gy, = id (s0 o(n) = n).
Otherwise g () # id (s0 o(n) #n).

PROOF. (1): As G is generated by f, g; (1 =1,2,...,n—1) it is abelian
precisely when g¢; f = fg; for every i. By Lemma 9.19 (3), this is equivalent
t0 gi = 9o (i) (Yo(n)) " for every i.

(2): If o = id, then g,(,) = gn = id. We next show that if o # id, then
Jo(n) # id. Since G is abelian, (gi)_lgg(i) = go(n) by (1). Thus if g,(,) = id,
then (gi)*lgo(i) = id, s0 g; = go(;)- This implies i = o (i) (note: g; = g; <
i = j by Corollary 9.8). Hence o = id, contradicting the assumption. (]

LeMMA 10.2. Ifo #id and G is abelian, then {1, o(1)} = {2, 0(2)} =
-~ ={n,o(n)} (as sets).

PROOF. Since G is abelian, (gi)_lgg(i) = go(n) for every i (Lemma 10.1
(1)). We explicitly give both sides. First from Theorem 9.6 (3), g; and g,(;)
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are given by (say x; € @y, S0 Ty(;) € T):

. 2mim’ ¢y, /d —2mim/4;/d
gi: (x1,29,...,2p) — (T1,29,...,€ Wleldg. e e/ Tn),

sy ot
9oi) + (T1, 22, Tn) > (71,22, . .. ,e2mimibe/dy, e~ Zmmili/dy .

o(@)re >

Accordingly

_1 .
(1) Go(iy : (1, -, T0)
—> ((1;17 L 76—27rim;cflc/dxi7 o 627rim;€ék/d,[1;

(i) - ,.%'n).

Note next that as ¢ # id, we have o(n) # n (Lemma 10.1 (2)). From
Theorem 9.6 (3),

. 2mim/¢;/d —2mim/¢;/d
9o(n) * (I171‘27"'>$n) — ($1,$2,...,€ h/ Lo € a/ fL‘n).

(n)s e«
As (gi)_lga(i) = Go(n), We have {i, o(i)} = {n, o(n)} for every i. [J

COROLLARY 10.3. If o # id and G is abelian, then n = 2 and o =
(12).

PrOOF. By Lemma 10.2, {1, 0(1)} = {2,0(2)} = --- = {n,o(n)}.
This equation indeed holds for n = 2, 0 = (12), as {1, 2} = {2, 1}. In
contrast, this fails for n > 3. For instance, if n = 3 and o = (123), then
{1, 2} = {2, 3} = {3, 1}, which is absurd. The general case is similarly
confirmed. [J

We revive the notation 7, ﬁz for f, g;. Recall that A4_1/T =2 C"/G as
well as the following diagram:

Zd,l - (Cnn :?, 1&@

N

(10.1) 7,1id; ~Cn A1 vy, id.

_

%7 Hzm cn

LeEMMA 10.4. Suppose n =2 and o = (12). Then:
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(A) The covering maps q, r in (10.1) are the identity maps. Accordingly

r=T=¢G and?:7:§, idi:ﬁi:Hi.

(B) G is abelian if and only if d = 2.

PROOF. Since o = (12) is cyclic, (A) follows from Corollary 9.9 (1).
We next show (B). For simplicity, set v; := id; and g; := id;. By (A) in
the present case, 1; = ¢g;. By Lemma 10.1 (1), G is abelian if and only if
(gi)_lgo'(i) = Jo(n). Substituting n = 2, ¢ = (12) and ¢; = g; into this
equation yields (11) 142 = 11, so (11)? = id. By Theorem 9.6 (1), this is
equivalent to (e2™/4)2 = 1, that is, d = 2. O

Hence:

ProprosiTION 10.5. ¢ # id and G is abelian if and only if n = 2,
o= (12) and d = 2.

In this case G is actually cyclic. To see this, note first that when n = 2
and 0 = (12), G is generated by 7, id; (Corollary 9.5 (3)) and 7 = 7,
id; = id; (Lemma 10.4 (A)) and 2 = d = 2a + 2mk, so a = 1 and kK = 0.
Then from Theorem 9.6 (1),

=2l

(: ﬁ) . (1,171.2) — (627ri/4ml_27627ri/4ml,1)’

- (:l’al) : ([L_be) NN (627ri/2x1,627ri/2$2).

all
=

Hence id; = (7)?™, so G is generated by 7. This confirms (2) of the follow-
ing; (1) is already shown in Remark 9.20.

THEOREM 10.6. Whether G is abelian depends on o,n, and d. More
precisely:

o =1id, then G is always abelian. moreover n = 2, G is cyclic
1) If id, then G l bel If 2, Gi li
([SaTa] Theorem 2.1, p.682 — originally proved in [Tak])).

(2) If o # id, then G is rarely abelian — in fact only when n = 2 and
d = 2 (and in which case G is cyclic generated by 7).
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For (2), we will determine when I is abelian. The following is needed.
LemmaA 10.7. For eachi=1,2,...,n—1,
id; = aNBN, pi  for some p; € A(N),
where as in (4.4),

(10.2)  AM = {p:(pl,...,pn) €T 0<p; <d,

n
=1

i

: % mod Z}.

|

PROOF. Since id; is a lift of 1 (= ~Y) €T, this follows from Corollary
4.6. 0

For p = (p1,...,pn) € AU the automorphism Bj,p is given by
Bj,p (X, X)) — (ezmpl/Xm, . ,e%ip"/an) (Lemma 9.2 (1)).
Thus

103) 1) BuwByp = BywBip forany pe A, pl € AV,
(#) Bjp = Bjr.pr =P =p".

Actually: [ is abelian <= o = id or n = d = 2. The following is the
first step to show this.

LEMMA 10.8. T is abelian <= o(p;) = p; for every i.
(Notation: For @ = (x1,...,2y), set o() := (T5(1)s - -, To(n))- SO 0(T) =
means Ty(1) = T1. .- -, Te(n) = Tn, i.6. 0 fixes all elements of x.)

PROOF. Since I is generated by 7 and id; (1=1,2,...,n—1) (Corollary
9.5 (1)), we have

[ is abelian < 51?11 = ;iﬁ for every 1.

Since 7 = &BLQ (Theorem 9.6 (1)) and id; = aNBN, p; for some p; € AV
(Lemma 10.7), the condition on R.H.S. is rewritten as

b1, @ B, p, = @~ BN, ;01,4 for every i.
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By Lemma 4.8, BN%& = &BNﬁ_l(m) and 51’,1&]\7 = &'NBLU_N( Here

Bl,J*N(q) = Bl, q (as o N = ld), thus

q)-

= . ~N+13 7 ~N+173 3 v
I'is abelian <= &' * B, ¢BN, p, = @ + BN,o-1(p))1,q> T

— Blquszl :/B/N70'71(p7;)§1,(I7 vi

< ON,pBLqg=BN.o-1p)PLg i by (x) of (10.3)

<~ ON,p; = BN, o-1(p;)> Y

— p,=0 Yp;), Yi by (xx) of (10.3). O
Furthermore:

ProrosiTioN 10.9. The following are equivalent:
(1) T is abelian.
(2) o(p) =p for any p € A,
(3) o=id orn=d=2.
(From the equivalence of (1) and (3), in most cases I is not abelian.)

PrROOF. “(1) = (2)” was shown as Lemma 4.9.

(2) = (1): If o(p) = p for every p € AY) | then in particular o(p;) = p;
for every ¢. The assertion thus follows from Lemma 10.8.

(3) = (2): First if 0 = id, (2) is obvious. Next if n = d = 2, then
either 0 = id or o = (12). It suffices to consider the latter case — for which
2 =d=2a+2mk, so a =1 and k = 0, accordingly (10.2) is

AN = {(pl,pg) €Z?:0<p; <2, Z# EOmodZ}

Then for p € A(N), clearly o(p) = p (note: for p = (p1,p2), o(p) = p
precisely when p,(1) = p1, Py(2) = D2)-

(1) = (3): If T is abelian, its descent G is necessarily abelian, thus
o =1id or n = d = 2 by Theorem 10.6. [J
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LEMMA 10.10.  The following are equivalent:

(A) T is abelian. (B) H is abelian. (C) G is abelian.

Proor. “(A)== (B)” and “(B) = (C)” follow from the facts that H
is the descent of I" and G is the descent of H. “(C) = (A)”: If G is abelian,

then o0 =id or n=d =2 by Theorem 10.6, so [ is abelian by Proposition
10.9. O

Lemma 10.10 combined with Proposition 10.9 yields:

THEOREM 10.11. The following are equivalent:
(1) c=id orn=d=2.
(2) T is abelian.
(3) H is abelian.

(4) G is abelian.

Supplement. For each 0 € G,,, define an automorphism f, of C" by
fo(z1,22,. ., Tn) = (To(1), To(2), - - - s To(n)). This does “not” define a group
action of &, on C". Indeed fr(fs(21,...,2n)) = fr(To), - Tom)) =
(xa‘r(l)7 s 7$O'T(n)) = fO’T(x17 RS wn)y so fro fo = for # fro. In contrast,
fo(z1,22,. ., 2n) = (To-101); To-1(2), - - - » To—1(n)) defines a group action of

6717 as f‘r o fa = fTO"
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