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Abstract 

Among the models in theoretical physics, exactly solvable models deserYe special interest . 
For instance, the problem on the hydrogen atom, which played a crucial role in bringing high 
credit to quantum mechanics, is a typical example of the models whose eigenvalue problems 
are exactly soh·able by separation of variables. This system has three, which is the same as the 
number of degrees of freedom of the system, independent and mutually commuting conserved 
operators, namely, the Hamiltonian, the total angular momentum and its z-a,is component. 
We call a quantum system with N degrees of freedom that has N, independent and mutually 
commuting conserved operators quantum integrable system. Important problems for the quan­
tum integrable system are, for instance, the proof of quantum integrability by construction of 
the commuting consen·ed operators, the clarification of the underlying symmetries, the exact 
solution for the eigem·alue problem and the identification of the simultaneous eigenfunctions 
of the commuting conserYed operators. In this thesis, we shall study the quantum Calogero 
model, which is a representati,·e model among the one-dimensional quantum particle systems 
with inverse-square long-range interactions, from the Yie"·point of the quantum integrable sys­
tems. 

In Chapter 1, we shall clarify the motive of our study by briefly summarizing the theory of 
completely integrable systems in classical mechanics and some difficulty in its quantization. The 
completely integrable system is a classical dynamical system with N degrees of freedom that has 
N, independent and mutually Poisson commuting conserved quantities. Exact soh·ability by 
principle of such a system is guaranteed by Liouville 's theorem on integrability. The definition 
of the quantum integrable system is just a translation by the correspondence principle, which 
asserts the possibi li ty by principle of the identification of all the quantum numbers. E,·en for 
completely integrable systems, it is not trivial to soh·e their initial Yalue problems in practice. 
But fortunately, effecti,·e techniques for those problems such as the Lax formulation and the 
inverse scattering method ha,·e been de,·eloped for various completely integrable systems. The 
Lax formulation was also introduced for the classical Calogero model, which enables construct­
ing mutually Poisson commuting conserYed quantities and soh·ing the initial ,·alue problem for 
the model. Howe,·er, due to the non-commutati,·ity between the canonical-conjugate ,·ariables, 
the quantized La' formulation does not give a way to construct the commuting consen·ed oper­
ators. The aim and contents of the thesis are to give a solution for this difficulty, construct the 
conserYed operators, clarify the underlying symmetries, give the exact solution for the eigen­
value problem and identify the simultaneous eigenfunctions of all the commuting conserved 
operators. 

In Chapter 2, ''"e shall introduce a new formulation for the quantum Calogero model that 
corresponds to the Lax formulation in the classical theory, and clarify its quantum integrability 
and the underlying symmetry. It was pointed out by Calogero and Olshanetsky et al. that the 

,. 



quantization of the classical Lax equation for the classical model with symmetrizing the non­
commutat i,·e products yields an equality for the "quantized classical Calogero Hamiltonian" 
which does not contain a quantum correction in t he coupling constant . This observation had 
been a ground for the conjecture that the quantizat ion of the classical conserved quantities 
by the correspondence principle might yield the conserved operators of the quantum Calogero 
model. On the other hand , a naive quantization by the correspondence principle of the classical 
Lax equation without symmetrization gi,·es an equali ty for the correct quantum Calogero model 
which has a quantum correction in the coupling constant. However, there has not been a way 
to construct the conserved operators from the quantum Lax equation, let alone a way to prove 
their mutual commutativity. We pay attention to the sum-to-zero property of theM-matrix in 
the Lax equat ion of the quantum Calogero model , that is, the sum of one of the indices of the M­
matrix is zero. From t his property, we show that the sum of all the elements instead of the trace 
in the classical t heory yields the conserved operators of t he quantum Calogero model. ~loreover, 
we recursively construct the generalized Lax equations for a family of operators that includes 
the conserved operators. We prove that the commutator algebra of the family of operators is 
the W -algebra that is the underlying symmetry of the quantum Calogero model. We also give 
a way of constructing mutually commuting conserved operators, which proves the quantum 
integrability. The Dunk! operator formulation , which was introduced by Polychronakos, is also 
a powerful method for the study of the quantum Calogero model. We study the relationships 
between the quan tum Lax and the Dunk! operator formulations and clarify t heir relationship. 

The energy eigenvalue problem of the quantum Calogero model was solved by Calogero. He 
derived and solved an ordinary differential equation by separation of variables that determines 
the energy eigenvalue. On the other hand, Perelomov paid attention to the close similarity of 
the energy eigenvalues of the quantum Calogero model and t hat of the N harmonic oscillators. 
He conjectured that there must be N independent creation-like operators for the quantum 
Calogero model which are proved to be sufficient for the algebraic construction of all the en­
ergy eigenfunctions from the consideration of degeneracies. And he succeeded in giving the 
first three of such operators. The first aim of Chapter 3 is to give the complete answer to the 
Perelomov 's conjecture. Using the quantum Lax formulation we introduce in Chapter 2, we 
construct all the creation-like operators , which we call the power-sum creation operators. vVe 
also show that these power-sum creation operators mutually commute. Successive operat ions 
of the power-sum creation operators on the ground state wave fun ct ion t hat is the real Laughlin 
wave function yield all the eigenfunctions of the quantum Calogero Hamiltonian. The second 
aim of Chapter 3 is to observe some properties of the simultaneous eigenfunctions of the com­
muting consen·ed operators by explicitly constructing some of them. From the generalized Lax 
equation gi,·en in Chapter 2, we get a matrix representation of the second conserved operator 
on the energy eigenfunction basis const ructed algebraically in Chapter 3. Diagonalizing the 
matrix, we get the simultaneous eigenfunctions from the eigenvectors. By this method , we get 
the eigenvalue formula for the second conserved operators as a conjecture and the first seven of 
the simultaneous eigenfunct ions. These seven simultaneous eigenfunct ions are uniquely identi­
fi ed by the eigenvalues for the first and the second conserved operators because they have no 
degeneracy. J\loreo,·er, the expansion forms of the abo,·e seven funct ions with respec t to the 
monomial symmetric polynomials show the triangularity with respect to the dominance order 
which is similar to the triangularity for the Jack polynomials. This observation strongly sug­
gests a close relationship between the simultaneous eigenfunctions of t he commuting conserved 
operators of the quantum Calogero model and the Jack polynomials, and gives an important 

\·ii 

hint for the definition of the Hi-Jack polynomials. 

. Following the results in Chapter 3, we define the Hi-Jack polynomials and pro,·e that thev are 
mdeed the Simultaneous eigenfunctions of all the commuting conserTed operators of the q-uan­
tum Calogero model 111 Chapter 4. Fmt we prove that the Calogero model and the Sutherland 
model, whose eigenfunct ions are the Jack polynomials, share the common algebraic structure. 
By showmg that the quantum Lax and the Dunk! operator formulations for the Calogero model 
are one-parameter deformations of those for the Sutherland model, we prove that the Hi-Jack 
polynomial IS a one-parameter deformation of the Jack polynomial. l\'ext , based on the re­
su lts m Chapter 3 and the correspondence between the Calogero and the Sutherland models. 
we define the Hi-Jack polynomials. The Hi-Jack polynomial is a normalized inhomorreneous 
symmetric polynomial that is the simultaneous eigenfunction of the first and the seco:d com­
muting consen·ed operators of the Calogero model , whose expansion form with respect to the 
monomral symrnetrrc polynomials shows t he t riangu larity in the dominance order. \\'e pro,·e 
that this defimt1on umquely identifies the Hi-Jack polynomials. :-.Ioti,·ated bv the result b,· 
Lapo in te and Vinet, we prove the Rodrigues formula for the Hi-Jack polynom-ials. Usin rr th~ 
formula, we prove their integrality and t he facts that the Hi-Jack poh·nomials are indeed the 
simultaneous eigenfunctions of all the commuting consen·ed operator~ of the Calogero model 
and hence that they are the orthogonal symmetric polynomials with the weight function gi,·en 
by the square of the norm of t he ground state wave function. Consequently, we prove that 
the Hr-Jack polynomial is a multivariable generalizat ion of the Hermite polynomial, which \\·as 
mtroduced by Lasselle and J\lacdonald from the viewpoin t of a deformation of an orthorronal 
polynomial t hat corresponds to the specia l case of the Hi-Jack polynomial. However, it ~ the 
first time to deri,·e it from the viewpoint of t he simultaneous eigenfunction of all the commuting 
conserved operators of the quantum integrable system, which is a natural object for physicists· 
mterest. 

As we have described abo,·e, we shall study the quantum Calogero model from the viewpoint 
of the quantum in tegrable systems. And we shall deri,·e the results listed below: 

• A new formulation named quantum Lax formula t ion that o,·ercomes the difficulty in the 
quantization of the classical Lax formulation. 

• Const ruction of the commu t ing consen·ed operators and the proof of the quantum inte­
grability. 

• Derivat ion of the underlying ll'-symmetry. 

• Completion of the algebraic construction of the energy eigenfunction. 

• Identificat ion of the simul taneous eigenfunctions of the commuting consernd operators, 
their orthogonal ity and the Rodrigues formula. 

These are the main resu lts of the thesis. 
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Chapter 1 

Introduction 

Integrable systems haw been playing a special role among many models that appear in 
theoretical physics. Simple and solvable models have provided not only good exercises for stu­
dents, but also excellent ll"ays for us to understand physical phenomena. For instance, the exact 
solution of the quantum Kepler problem gaye us a convincing answer to the mystery of the series 
of discrete spectra of the solar ray at the beginning of this century [60, 6-l, 65], which brought 
high credit to quantum mechanics. In the analysis, the theory of the Laguerre polynomials 
and the spherical harmonics played an important role. These special functions are obtained 
by means of separation of ,·ariables of the Hamiltonian . By separation of variables, the partial 
differential equation that gi,·es the eigenvalue problem of the model is decomposed into three 
ordinary differential equations ll"hose solutions are the Laguerre polynomials and the spherical 
harmonics. From the Yie11·point of the integrable systems, we should note that the model has 
three, independent and mutually commuting conserved operators , namely the Hamiltonian, the 
total angular momentum and its z-a:xis component. These special functions are associated with 
the joint wave functions for the three mutually commuting conserved operators of the model. 
Thus we can identify all the quantum numbers the model has. Besides the quantum Kepler 
problem, the theory of special functions haYe been helping the analysis of Yarious kinds of 
important Schriidinger equations since the early days of quantum mechanics. Various physical 
phenomena haw been explained by reducing the problems to integrable Hamiltonians as first 
approximations and expanding the correction terms. 

Apart from the aim to11·ard the explanation of physical phenomena, mathematical structures 
of integrable systems attract many researchers because of their beauty. l\Jathematical beauty of 
integrable systems moti,·ates me to study them. In classical mechanics , the theory of the com­
pletely integrable system is ll"ell developed. The completely integrable system is a dynamical 
system ll"ith N degrees of freedom that has N, independent and mutually Poisson commuting 
conserved quantities. Liou,·ille 's theorem on integrability guarantees that ll"e can soh-e the 
initial ,·alue problem of the completely integrable system by definite integrals and change of 
variables in principle. Thus construction of commuting conserved quantities has been an im­
portant problem in the theory of classical integrable systems. The Lax formulation provides a 
method to construct consen·ed quantities. The success of the ill\·erse scattering method in the 
soliton t heory [1, 28] benefited from the Lax formulat ion. Though there is no counterpart of the 
Liouville theorem in quantum mechanics, ll"e define the quantum integrable system in a similar 
fashion to the definition of the classical completely integrable system. i\amely, the quantum 
integrable system is a quantum system with N degrees of freedom that has N , independent 
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and mutually commuting consen·ed operators. Existence of such conserved quantities asserts 
the possibility of identification of all the quantum numbers of the system. Thus the notion 
of integrabili ty and construction of commuting conserved operators a re also im portant in the 
quantum theory. However, naive quantization of the classical Lax formulat ion does not work 
because of the non-commutativity between the canonical-conjugate variables . Due to the abo,·e 
difficulty, development of a formulation for the quantum theory that is the counterpart of the 
classical Lax formulation is an attractive and challenging problem. 

The main theme of my thesis is the algebraic study on the quantum Calogero model. The 
Calogero model was introduced by F. Calogero in 1971 [19], "·hich describes N quantum ident i­
cal particles on a line with inverse-square interactions confined in an external harmonic well . He 
solved the eigenvalue problem for the model by separation of variables. In the classical theory, 
the Calogero model is a completely integrable system and has a Lax formulation [52 , 57, 58). 
We shall introduce the quantum Lax formulation and the Dunk! operator formulation for the 
Calogero model that is the counterpart of the classical Lax formulat ion . Our formulations will 
clarify the conservation law, the a lgebraic structure and the special functions that are assoc i­
ated with the eigenvalue problem of the Calogero model. Namely, what we shall show is an 
old-fashioned study on the exactly solvable problem in quantum mechanics and the associated 

special funct ions by using brand-new tools. 
In this chapter, we shall review what is the integrable systems and an overview history of the 

Calogero model so that t he motive for the problems we shall study in the succeeding chapters 
will be clear. First , we shall summarize the Liom·ille t heorem and the Lax formulation . \\'e 
shall also present the definition of quantum integrability and difficulties in the quant ization of 
t he Lax formulation . Summarizing t he overview history and the classical integrabi lity of the 
Calogero model, we shall observe the effectivity of the classical Lax formulat ion in t he study 
of t he classical Calogero model. And last , we summarize the motivation and aims of the study 
and brief t he outline of the thesis . 

1.1 Integrable Syst em s 

Let us first consider the not ion of integrability in the class ical mechanics. Generally speak­
ing, we can not solve the initial value problem for dynamical systems with more than or equal to 
t\\·o degrees of freedom. We can deal with the interacting two-body problem whose interaction 
only depends on the distance between the particles , for we can separate vari ables by introduc­
ing center of mass coordinates and relative coordinates. Thus we usually say t hat many-body 
problems involving more than or equal to three particles are not generally solvable. 

Howe,·er , there is a class of dynamical systems whose initial ,·alue problems are, in prin­
ciple, soh·able. We call such a classical dynamical system completely integrable system [2). 
Completely integrable systems are dynamical systems with N degrees of freedom t hat have 1\' , 
independent and involutive , or in other words, mu t ually Poisson commuting consen·ed quanti­
ties. Liouville's t heorem on in tegrability guarantees that completely integrable systems can be 
solved by quad ratures. \Ve sha ll verify the theorem and see how it works. 

Let us state again Liouville's t heorem on integrability. 

Theorem 1. 1 Consider a Hamiltonian with 1·espect to coordinates q and momenta p that 
describes a dynamical system with N degrees of freedom, 

H(p;q;t) = H (pt. · · · ,p,,·;q1, • • · , q,v; t) , (l.l a) 

1.1. INTEGRABLE SYSTEMS 

{Pi , PJ}p = {q, , qi}p = 0, {q, , p1}r = 6,1, 

where {a , b} P is the Poisson bracket, 

3 

(llb) 

{a, b}p ~r L.N ( aa_ !!!!._. - [)b. IJa). 
•=I IJq, IJp, IJq, IJp, (llc) 

If the system has a set of N, independent and analytic conserved quantities {I;Ji = 1, . .. , N} , 

di, { } [)I dt = I ,, H r + at' = 0, (l.2a) 

det(~~~) ,CO, (l.2b) 

which are in involution, 

{hiJ}p = 0, (l.2c) 

then the initial value problem of the equation of motion of the system can be solved by quadr _ 
tures. a 

Key to the proof of Theorem l. 1 is to show the ex istence of a canonical transformation, 

(p; q) --> (P ; Q), P1 = I1, j = 1, · · ·, N. (1.3) 

Since the conserved quantities are independent (l.2b) , we can solve a set of equations, 

Pi= I1(p ;q;t) , j = 1, ... , JV, 

with respect to p: 

Pi= Fi(q ; P ; t), j = 1, · · ·, N. (1.4) 

Here Fi(q ; P ; t) is an a nalytic function , whose existence is guaranteed by the inverse function 
theorem. Computmg partial deri,·at ives of both sides of eq. (1.4) with respect to p . and q . we 
get 

1 1
' 

T hen the product of eqs. (1.5) yields 

{\' L [)Fj IJ?t [)Fk IJP, = - [)Fj 
i,l,m=l [}f>t IJqi IJPm [}pi IJqk 

.-\nt isymmet rizing eq. (1.6) "·ith respect to the indices j and k, we ha,·e 

IJFk _ IJF1 
IJqj IJqk 

(l.5a) 

(l.5b) 

(1.6) 

(17) 
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The last equality of eq. (1.7) comes from the mutual commutativity of the conserved quantities 

with respect to the Poisson bracket (l.2c). 
Now we define a function IVr(q, q(i); P; t) by the following integral: 

N 

IVr(q, q(il ; P; t) = 2:= lr Fk(q ; P ; t)dqk. 
k=1 

(1.8) 

In the aboYe expression (1.8), r means a path inN dimensional coordinate space that connects 
two points q and q<iJ. \Ye can see that the above integral is independent of paths r. Let rand 
r' be t'm different paths that connect q and q<'J. The difference between 1 Vr and Wr• 1s 

where Sis a hypersurface whose boundary aS is given by the closed path, aS= f- f'. Then 

using the Stokes' formula , we get 

The last equality follows from eq. (1.7). Thus we see the integral (1.8) is independent of paths 

r. We denote the path-independent function by 

(1.9) 

We can easily verify that this function W(q, q(i); P; t) is a generating function of the canon ical 
transformation (1.3) in the following way. We define the angle variable Q that is canonically 
conjugate to to the action variable P by 

ew 
Qi = f)P , j = 1, · · ·, N. 

1 

From the definition of the generat ing function (1.9), we can readily see 

f) IV 
..,.- = Fi =Pi, j = 1, · · · , N. 
UQj 

Paying attention to the independent Yariables of the partial derivati,·es, 

f)~k lp;q;t 

f)~k lp;q;t 

(1.10) 

(1.11) 

1.1. INTEGR . .l.BLE SYSTE.\IS 5 

we can calculate the Poisson brackets among the action-angle variables (P; Q) as follows: 

{P;,Pi}p 

{ Q; , Qj} p 

{hijL = o, 

E ( ( f)~k lp;q;t ~~ lq;P) ( O~k lp;q;t ~~ lq;P) 

-(_?_I f)lVI ) _?_I ~1 ) 
apk p;q;t aP; q;P;t (aqk p;q;t aP1 q;P) 

N f)2W I N ( f)2JV I f)2W 
2:= oPoR {F\, Pm} + 2:= t5il-- -81--1 ) 

l,m=l i I q;P;t P 1=1 aPia}\ q;P;t 
1 oP;o}\ q;P;t 

0, 

£((_?_1 ewl )aP11 _ aP;I (_?_I ewl ) 
k=1 aqk p;q;t aP; q;P;t apk p;q;t apk p;q;t aqk p;q;t aP1 q;P) 

f)pj I N f)2W I - + 2:= -- {Pt, Pi} 
oP; q;P;t 1= 1 oP;o}\ q;P;t P 

t5ij. 

Thus we have \-erified that the transformation (1.3) preserves the fundamental Poisson bracket 
(l.1b) by using properties of the generating function (1.11) and hence it is a canonical trans­
formation. 

The time Holution of the action-angle variables is described by the canonical equations of 
motion, 

dQj 
dt 
dP1 
dt 

f)f{ 

aP/ 
f)J( 

- oQi = 0, j = 1, · · ·, N, 

where the new Hamiltonian I< is given by 

I<= H +oW 
at · 

(l.12a) 

(1.12b) 

(1.12c) 

The second equation of the canonical equation of motion (1.12) is equivalent to eq. (l.2a) 
because P1 is a conserYed quantity 11. 

Equation (l.12b) means that the Hamiltonian J( is independent of the angle ,·ariables Q , 

K(P; Q; t) = I<(P; t). 

Since the angle ,·ariables P are inYariant under the time evolution, we can fix them at p (OL 

(113) 

This means that the Hamil tonian is an analvtic function of time t with N initial parameters 
p (o) Substitut ing eq. (1.13) into eq. (l.12a)" and integrating it overt, we get 

Q ·(t) = Q(O) + {' - 0
-J<(p(O) · · · p(O). t')dt' 

1 1 j 0 f)p(O) 1 ' ' N ' · 
1 
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Thus we ha,·e solved the initial value problem in the action-angle variables. We can transform 
the action-angle variables and their initial values back to the original coordinates and momenta 
and their initial values through the canonical transformation (1.3) defined by the generating 
function (1.9). So dynamical systems satisfying the assumptions of the theorem can be solved 

by quadratures. 
A short comment might be in order. Dynamical systems that satisfy the assumptions 

of Liouville's theorem on integrability are called completely integrable systems . Liou,·ille's 
theorem says that there exists a canonical transformation that decomposes the system with 
N degrees of freedom into N systems "·ith only one degree of freedom , whose time evolution 
equations we can integrate. However, it does not provide us an explicit form of such a canonical 
transformation and its inverse. This means that Liouville 's theorem does not provide us a 
practical way to soh·e completely integrable systems. For practical methods to soh·e classical 

integrable systems, see, for instance, refs . [1, 28, 67 , 68). 
Because of Liouville 's theorem, it has been an interesting problem in classical mechanics to 

prO\·e the integrability of a system by showing a systematic way to construct a set of conserved 
quantities in involution. Historically, La.x provided such a method for the system with infinitely 
many degrees of freedom [47) . Suppose there is an N x N matrix L of coordinates q and 
momenta p . Then the time evolu tion of the matrix L governed by a Hamiltonian H is given 

by 

dL = {L H} + 8L 
dt ' r at 

We suppose there is another N x N matrix M of coordinates and momenta that satisfies 

(114) 

where the bracket in the r.h.s. denotes the commutator between matrices, 

[L,Mj = Li\I- ML. 

We call eq. (1.14) La.x equation. A pair of matrices, L and M, are called the Lax pair. 
The Lax equation provides us a systematic way to construct the conse rved quantities of the 
Hamiltonian. From the Lax equation (1.14), we ha,·e the equation of motion for the n-th power 
of the £-matrix: 

dL" 
dt = [L" , M]. 

Calculating traces of both sides of the abo,·e equation , we ha,·e 

iTrL" 
dt 

Tr[L" , Mj 

Tr(L"i\1- J\IL") 
0, 

due to the identity, TrAB = TrB.-1 , for arbitrary c-number ,·alued matrices, A and B. Thus we 
can obtain conserwd quantities of the Hamiltonian H just by calculating traces of the powers 
of the £-matrix: 

I.~TrL" , din 0 dt = , n = 1, 2, · · · (1.15) 
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To pr~ve the involuti';ity o~2 the conserved quantities (l.2c) , we usually use the classical r­
matnx, which IS an N x N matnx that satisfies the followin g fundam ental Poisson bracket 
[28), 

{ £(1) £(2)} = [r L(llJ- [r £(2)] ) p 12 , 21 , . 

The undefined symbols in the above equation are 

L(l l ~£ ® 1, L<2l ~ 1 ®L 
N 

r21 ~ Pr12P, P~ :L Eij ® Eji, Px ® y = y ® x , 
i ,j=l 

(1.16) 

where 1 and Eij are the unit matrix and the matrix unit , 1kt = .5k1, (Eij)kt = .Sikbjt, respec­
tl\·ely .. From eq. (1.16) , we can prove the mutual Poisson commutativity among the conserved 
quantities (1.15) as follows. \\"e shall calculate the following Poisson bracket: 

{L,TrL"}r 

Tr2 { £(1), (L<2l)" } r · 

Here , the symbol Tr2 mean~ the trace with respect to the second space of the tensor product, 
I. e., Tr2A ® B = A(TrB). Using eq. (1.16) , we have 

Tr2{ L(l l, (L<2l)"} r 

Tr2 t(£(2l)k-I{L(I l,£(2J} (£(2Jt-k 
k=l p 

Tr2 ~(£(2 J )k-I(h2 , £(1lj- b1, £(2lj)(L(2J)n - k 

[L(I l, -nTr2ri2(£(2Jt-I]. 

Thus we obtain 

(1.17) 

This is nothing but the Lax equation for the higher consen·ed quantity I., that guarantees the 
Poisson commutati,·ity with other consen·ed quantities. Using eq. (1.17) , the Poisson bracket 
among the consen·ed quantities In and Im is calculated as follows: 

{TrLm,I"}P 

Tr[Lm , JI .. J 

0. 

Thus we conclude that the im·oluti,·ity of the conserved quantity (1.2c) follows from the classical 
r -matrix and the fundamental Poisson bracket (1.16). The Lax formulation and the classical 
r-matrix are the standard formulation for the classical integrable systems. 

Though there is no theorem in quantum theory that corresponds to Liou,·ille 's theorem in 
the classical theory, we often define the quantum integrable system in a simi lar fashion to the 
definition of the completely integrable system. The quantum integrable system is a quantum 
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system with N degrees of freedom that has N, independent and mutually commuting conserved 

operators, 
din - 0 [I I ] = 0 n m = 1 2, ... , N, (1.18) dt- , r11 m ' ' 

1 
• 

where the time evolu tion of the conserved operator is governed by the Heisenberg equation of 

motion, 
. din [ l . Bin 

-1/idt = H,Jn - 1/ifit. 

suall we deal with operators that do not explicitly depend on timet. In this case, the second 
U . y, tl e r h s of the above Heisenberg equation is zero. Existence of mutually commuting 
~~~:e~~ed

1 

op~r~~ors means that we can specify, in principle, all the quantum numbers the 
tern has by identifying the simultaneous eigenfunctions of the consen·ed operators. Thus, the 

sys . t t" n of the conserved operators and the identification of their s imultaneous systematic cons rue IO . I · t b 
ei enfunct ions are important problems in the theory of quantum mtegrable system. t IS o e 
n~ted that the construction of the simultaneous eigenfunctiOns for the commutmg conserved 

erators in practice and the proof of quantum integrability are different problems, winch IS 

op 1 at similar to what the integrability in Liouville's sense means. However, the beautiful 
::~1~vn~ry for the classical integrable systems such as the Lax formulation and the classical1·­
matrix can not be applied to the quantum systems because of the non-commutativity between 
the c~nonical conjugate variables . For example, the trace formula for the conserved quant1 t1e~ 
(1.15) does not work in the quantum theory. Suppose that the natural quantizatiOn of the Lax 

equation holds: 
dL l . BL [ l -iii-= [H L -IIi-= L,i\1. 
dt ' at 

Then the time evolution of the power of the £ -matrix is expressed as 

d£n 
- ihdt = [Ln, Mj. 

However we cannot conclude from the above equation that the trace of the power of the £­
matrix i~ a conserved operator because the trace identity, TrA.B = TrBA, does not work for 
operator-valued matrices A and B, i.e ., 

-irtftTrLn = Tr[Ln, M] ,1 0. 

Thus we have to de,·elop some extra device for the systematic analysis of the quantum integrable 

systems. 

1.2 Calogero Model 

The Calogero model was introduced as a solvable quantum many-body model in 1971 [19]. 
The Calogero model describes N identical particles on a line with inverse-square long-range 
interactions confined in an external harmonic well , 

1N?1N 1 l2N2 
He=? L Pj + 29 L (x _ x .)2 + ?w L xi, 

-]=I J,k=I J k - ]=I 
jtk 

(1.19) 
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where the momentum Pi is given by a partial differential operator, p
1 

= -i
8
8 .. Throughout this 
XJ 

thesis, we set the Planck constant at unity, li = 1. Two parameters, g and w are the coupling 
constant and the strength of the external harmonic well, respecti,·ely. In recent years, one­
dimensional quantum systems with inverse-square interactions including the Calogero model 
enjoy rene\\·ed interests of theoretical physicists. Japanese researchers have also contributed 
toward attracting many researchers who are interested in the long-range effect of electron­
electron interactions in condensed matter to the inverse-square interaction models. .\mong 
such contributions, Kawakami and Yang's study on the low-temperature critical behaviour of 
the Sutherland model [38] and introduction of the supersymmetric long-range t-J model by 
Kuramoto and Yokoyama [40] should be noted. 

From the ,·iewpoint of the classical integrable systems, the classical Calogero model is a 
completely integrable system in LioU\·ille's sense that has a Lax formulation [52, 57, 58] and 
a classical r-matrix [6]. The idea to introduce the Lax formulation for the inverse-square 
in teract ion models is due to i\Ioser [52]. Though i\Ioser dealt with the Calogero-t·doser model, 

(120) 

and the Sutherland model [72, 73], 

(121) 

the Lax formulation for the Calogero model (1.19) is st ra ightforwardly derived from the Lax 
formul ation for the Calogero-.\ loser model (1.20). The Sutherland model (1.21) is defined by a 
general izat ion of the Calogero-.\ Ioser model (1.20) that is compatible with the periodic bound­
ary condition. In Chapter 4, we shall see a brief summary on the common algebraic structure 
of the Calogero and the Sutherland models. The classical Lax formulation was extended fur­
ther to those for more generalized models, e.g. the ell iptic Calogero-i\loser model [21] and 
the inverse-square interaction models associated with the root lat t ices of Lie algebras [58]. At 
that time, the integrability of the models were claimed just by showing the La' formulation, 
though the Lax formulation is not sufficient to prove the involuti,·ity, or in other words, the 
mutual Poisson commutati,·ity among the conserved quantities. Proof of in\"Olutivity for the 
classical Calogero model was completed by constructing the classical 1·-matrix [6] . Here we 
shall briefly summarize a deri,·ation of t he Lax formulation and the r-matrix method for the 
classical Calogero model. 

Following the projection method [57, 58], we shall first in troduce the classical Lax formula­
tion for the Calogero model. The merit of the projection method is that it gives t he general 
solu t ion for the initial Yaluc problem of the classical Calogero model. Let us consider a time­
dependent N x N Hermi t ian matrix X(t). We shall deal with a case that each element of the 
matrix X(t) obeys the equat ion of motion for the harmo nic oscillator: 

(1.22) 
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The general solution of the above equation of motion are readily obtained as 

ldX 
X(t) = X(O) coswt + ;::;Cft(O) sinwt, (1.23) 

where X(O) and ~ (0) are the initial coordinate and velocity. We note that the matrix, 

C(t)~[X(t) , d;~ (t)j, (1.2-!a) 

is an anti-Hermitian conserved matrix: 

dX dX d2X J 
dC (t) = [-(t), -(t)j + [X(t), -dtz (t) = 0, 
dt dt dt 
Cl(t) = -C(t). 

(1.24b) 

(1.24c) 

· · · · X(t) b · the "projection" or We consider the motion of eigenvalues of the Hermtttan matnx ) 

an unitary transformation: 

[ 

Xt(t) 
xz(t) 

X(t) = U(t)D(t)U- 1(t), D(t) = ·. (1.25) 

Calculating the time-derivative of both sides of the above equation , we have 

dX (t) dU (t)D(t)u-t(t) + U(t) dD (t)U-t(t)- U(t)D(t)u-t (t) ~~ (t)u-t(t) 
dt dt dt 

U(t)L(t)U- 1(t), (1.26a) 

~ dD(t) + [M(t), D(t)j , (1.26b) L(t) dt 

M(t) ~ u- 1 (t)~~ (t). 
Note that the L- and J\1-matrices are respectively Hermit ian and anti-Hermitian , 

dDI dU- 1 

Ll(t) dt(t) + [DI(t), ~(t)U(t)j 

dD (t) + [u-t (t) dU (t) , D(t)j 
dt dt 

L(t) , 

J1!1(t) du-t (t)U(t) 
dt 

dU -u-1(t)-(t) 
dt 

-i\f(t). 

(1.26c) 

Using the above L- , i\f- and D-matrices, the equation of motion for the Hermitian matrix (1.22) 
is cast into the following form: 

~~ (t) = [L(t), .\J(t)j- w2 D(t). (1.27) 
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Equations (1.26) and (1.27) describe the motion of the eigem·alues of the time-dependent Her­
mitian matrix X(t). From the L-and J\1- matrices that satisfy eqs . (1.26) and (1.27) , we can 
reproduce the free harmonic oscillation of the Hermitian matrix X(t). For a given J\1-matrix , 
the unitary matrix U(t) that satisfies eq. (1.26c) is obtained as follows: 

U(t) = U(O) f l dt, ('' dtt-t · · · ('' dt 1J\J(tJ)J\J(t2) · · · M(tt). (1.28) 
l = O o lo lo 

\Ve can confirm that the abm·e integral is indeed a solution of eq. (1.26c) by the following 
calcu lation: 

dU(t) 
dt ( U(O) ~fa' dt,_ 1 fa''-• dt,_2 ···fa'' dt 1 J\J(tJ)J\1 (tz) · · · M(tt-t)) M(t) 

U(t).\!(t). 

Thus we want to find out the La' pair, L and J\1, which satisfies eqs. (1.26) and (1.27) with 
the time evolution defined by the classical Calogero Hamiltonian. 

The number of the initial parameters of the harmonic oscillation of the Hermitian matrix 
X(t) is 2N2 whereas those of the N-body Calogero model is 2N. Thus we ha,·e to introduce 
a restriction to the initial parameters of X(t) and reduce its number to 2N. As the first 
restriction, we restrict the initial ,·alue of matrix X(t) a diagonal matrix: 

[ 

Xt(O) 

X(O) = xz(O) . . j = D(O). 

XN(O) 

(1.29) 

This yields the restriction to the initial value of the unitary matrix , 

U(O) = 1 (1.30) 

The second one is the restriction to the conserved matrix, 

(1.31) 

which yields the restriction to the initial velocity of the matrix X(t): 

(1.32) 

This observation suggests that the form of L-matrix is gi,·en by 

(1.33) 
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. . d .. t. . by the Poisson bracket with the classical Calogero Hamiltonian Definmg the t1me- erna 1ve 

(1.19), 
dL (t) ~ { L(t), He} p ' 
dt 

we can determine the explicit form of the M-matrix by the sufficient condition of eq. 

[L(t), jH(t)j- w2 D(t) 

(1.26), 

{ L(t) , He} P 

( ) 
• < ~ 1 - ia(1 - H 1 

2' (1.3~) 
=> M(t) ij = tau;i ~ (x;(t) _ x1(t))2 '1 (x;(t)- x1(t)) 

l;ti 

where the coupling constant is given by 

(1.35) 

· · d t. Hermitian They also satisfy The above L-and M- matrices are respectively Herm1t1an an an 1- · 

eq. (1.26) under the identification 

dD (t) ~ { D(t), He} p· 
dt 

Thus we conclude that the general solution for the classical Calogero model (1.19) is obtained 
· b d. 1· · the time dependent matrix (1.23) w1th 101t1al values, eqs. (1.29) and JUSt y 1agona lZlng - · 

(1. 3~~nserved quantities of the Calogero model are obtained by the trace formula (1.15). \\'e 

introduce new matrices £± by 
(136) 

Then eqs. (1.26) and (1.27) are cast into the following forms: 

{L±,He}P = [L±,Mj ±iwL±. (137) 

We call the abo,·e equation Lax equation for the Calogero model. It is straightforward to deri,·e 

the following equation from the Lax equation, 

(138) 

Thus we can obtain the conserYed quantities of the Calogero model by the following trace 

formula, 
J~lassical = Tr(L + L -y\ (1.39) 

and the Hamiltonian corresponds to the first conserved quantity, 

~~lassical = 2He. 

IIn·oluth·ity of the consen·ed quantities is Yerified by the classical r·-matrix [6]. The fundamental 
Poisson bracket of the matrix L + L- are expressed as 

(1.40a) 
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where the classical r-matrix is giYen by 

N 1 { N 
r12 = - L --- Eik 181 L(LikEii + LiiEkt) 

j,k=l Xj - Xk I= I 
i# 

1 N 

+ 2Eii 181 L(LijEik + LkiEjl- LlkEij- LjtEkl) 
1=1 

+ ~Eii 181 (Eik- Eki) }· (1.40b) 

Thus we confirm the integrability of the classical Calogero model. 
\\'e have obserYed that the Lax formulation gi,·es a powerful method to study the classical 

Calogero model. The Lax formulation gi,·es not only a way to proYe the integrability, but also 
a way to solve the initial Yalue problem of the Calogero model. HoweYer , as we hm·e mentioned 
in the previous section, non-commutati,·ity between the canonical-conjugate ,·ariables in the 
quantum theory depri,·es the Lax formulation of its merits. So we have to inYent a new device 
for the systematic study of the quantum Calogero model. 

1.3 Motivation and Aims 

We have briefly summarized what is the integrable systems and how effecti,·ely the Lax for­
mulation works for the classical Calogero model. It is quite natural to expect that the quantized 
classical integrable systems might be the quantum integrable systems in a sense they possess 
mutually commuting consen·ed operators. It was pointed out by Calogero and Olshanetsky et 
al. [20, 59) that the quantization of the classical Lax equation for the classical model with sym­
metrizing the non-commutative products yields a equality for the "quantized classical Calogero 
Hamiltonian" which does not contain a quantum correction in the coupling constant. This ob­
servation had been a ground for the conjecture that the quantization of the classical consen·ed 
quantities by the correspondence principle might yield the conserved operators of the quantum 
Calogero model. On the other hand, a nai,·e quantization by the correspondence principle of 
the classical Lax equation without symmetrization gi,·es a equality for the correct quantum 
Calogero model which has a quantum correction in the coupling constant. However, the La.x 
formulation, which is a precision machinery for the classical integrable systems, does not work 
in the quantum theory because the non-commutatiYity between the canonical-conjugate vari­
ables breaks the trace identity. Because of this difficulty, a proof of quantum integrability does 
not follow from classical integrability. The fact moti,·ates us to find out a new instrument for 
the quantum integrable systems. In this thesis, we shall try such a challenge for the quantum 
Calogero model (1.19). 

The outline of the thesis is as follows. In Chapter 2, we shall study two systematic for­
mulations for the quantum Calogero model [76, 77, 80). One is the quantum La.x formulation, 
which is a natural generalization of the classical Lax formulation deYeloped by the author and 
his collaborators [3-l, 7~-78. 88, 89). The other is the Dunk! operator formulation whose funda­
mental properties were studied by Dunk! [27). This method was introduced by Polychronakos 
[62) into the field of the in,·erse-square interaction models. Using these formulations, we shall 
study a systematic construction of the mutually commuting conserved operators and the un­
derlying symmetry of the quantum Calogero model. In Chapter 3, we shall present an algebraic 
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· · f h m Calogero Hami ltonian (1.19) and try a con-
construction of the etgenfunctwns o t e quantu . d . . [76 77 79) -\s 
struction of the simultaneous eigenfunctions of commutmg conserve opetatOlsd • ; . · · d 
we have mentioned in Section 1.1 , just presenting a set of commutmg consen·e opera ots an 
constructin simul taneous eigenfunctions for them in practice are completely dtfferent pr ob­
lems We s~all complete the a lgebraic construction of the energy etgenfunct tons [7~, ~7) ':'h1c:1 

fi. ·d d b . Perelomov [61) As a first step toward the rdenttficatwn o t 1e srmu -
was rst const ere ) · II d. r th fi t 
tan eo us eigenfunctions of the commuting conserved operators, we sha . tagona tze e rs 
two commuting consen·ed operators and construct some s imul taneous etgenfunctwns [79) .. In 
Chapter 4, we shall identify the simultaneous eigenfuncttons of all the commutmg consen ed 

t [83 8-l 86 87) The simul taneous eigenfunctwns form t he orthogonal basts of the 
:::~:1 °:~ is the ~as~ wi~h the orthogonal basis of the hydrogen atom. Using the Dunk! opera­
tor fo:mulation, we shall prove the algebraic scheme, or m other \\"Ords, the Rodngues formul~ 
for the construction of the orthogonal symmetric polynomials assoctated wtth .the orthogona 
basis of the Calogero model, which we call the Hi-J ack (hidden-Jack) symmetn c polynomtals. 
vVe shall study some properties of the Hi-Jack polynomials and pro,·e that they mdeed form 
the orthogonal basis of the Hilbert space of the quantum Caloge ro model. The fina l chapter ts 
devoted to summary and concluding remarks. 

Chapter 2 

Algebraic Structure of t he Calogero 
Model 

Construction of the conserved cu rrents and identificat ion of underlying symmetry are im­
portant problems for integrable systems. For the classical integrable system, the Lax form u­
lation [47) has p layed an important role to solve these problems. However for the quantum 
theory, the non-commutativity of the canonical conjugate variables spoils some merits of the 
Lax formulation. And no general method to overcome this difficulty has been developed e,·en 
by now. 

For quantum im·erse-square-interaction models such as the Calogero-:'l loser (1.20), Suther­
land (1.21 ) and Calogero models (1. 19), two approaches were de,·eloped. One is the Dunk! 
operator formula tion [27), that "·as first applied to the above im·erse-square- interaction models 
by Polychronakos [62). By the Dunk! operator formulation, or in other words , the exchange 
operator formali sm, sets of commuting conse rved operators for the three models were obtained. 
The other formulation is the quantum La.x formula t ion [3-l, 74- 79,88, 89), which is a natural 
quantum mechanics generalizat ion of the classical Lax formulation. The quantum Lax formula­
tion was first introduced and studied for the quantum Calogero-l\loser and Sutherland models 
[34, 74, 75, 88, 89), and then extended to the Calogero model [76-78). The crucial points for the 
formulation are the "sum-to-zero" condition for the !\!-matrices and the recursive const ruction 
of the generalized Lax equations. Through the generalized Lax equat ions, we can compute the 
commutators among the operators related to the three models. :\ set of commu ting consen·ed 
operators for the Calogero-i'd oser model [74, 75 , 88, 89) and the algebraic st ructures of the three 
models [34, 75, 77, 78, 89) were obta ined through the quantum Lax formulation. 

T he aim of this chapter is to present the quantum Lax and Dunk! operator formulations, 
which will play an important role throughout the thesis , and the !!"-symmetry structure of the 
quantum Calogero model: 

He 

Pi = a 
-i-. 

8x1 

(2.1a) 

(2.1b) 

~ loti vated by the classical Lax equation for the classical Calogero Hamiltonian, which has 
been presented in Chapter 1, we formulate the quantum Lax equation for the quantum Calogero 

15 
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Hamiltonian . Using the quantum Lax equation for the Hamiltonian , we construct three families 
of commuting operators, namely, commuting conserved operators and power-sum creatiOn and 
annihilation operators by summing up all the elements of operator-valued matrices. By explicit 
calculations, we get sume Lax-equation-like relations for some conserved operators and power­
sum creation and annihilation operators. These relations lead to the recursion relation for the 
creation and annihilation operators. The recursion relation enables the recursive construction 
of the Lax-equation-like relations which we call generalized Lax equat ions. The W-algebra 
structure appears from the generalized La.x equations. Next, we summarize and reformulate 
the Dunk! operator formulation for the Calogero model and consider its relationship with the 
quantum La.x formulation. Integrability of the Calogero model is proved by explicitly showing 

the commuting consen·ed operators of the model. 

2.1 Quantum Lax Formulation 

In the classical theory, the Calogero model is solved by applying the projection method to 
an N x N-Hermitian matrix whose time evolution is governed by the equation of motion for 
the harmonic oscillator [57, 58]. The projection method also gives a way to introduce the Lax 
equation for the classical Calogero model. Referring to the classical La.x equation (1.37), we 
shall construct the La.x equation for the quantum model. Let us introduce three matrices: 

ph+ ia(1- h)-
1
- , 

J 1 J Xj - Xk 

ixjOjk , 
1 N 1 

-a(1 - o1k) ( )2 + aOjk L ( )2 · Xj - Xk l=l Xj -X! 
l#j 

The Lax equation for the quantum Calogero model is expressed as 

where 
L± = L±wQ, 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

and the constant a that appears in eqs. (2.2) and (2.4) is related to the coupling constant g by 

g = a2
- a. (2.7) 

The second term on the r.h.s. of the Lax equation (2.5) comes from the external harmon ic "·ell. 
\\"e remark that the relation (2.7) contains a quantum correction. With h explicitly written, 
the coupling constant g is expressed as g = a2

- /ia, which reduces to the classical one (1.35) 
in the classical limit h -; 0. 

It is interesting to observe that t he matrix i\I is common to the quantum Calogero-i\loser 
model (the case w 0) [3-!, 74, 75, 88, 89], and that the i\I-matrix satisfies the sum-to-zero 
condition: 

N N 

2:: ujk = 2:: ukj = o. (2.8) 
j=l j=l 
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The sum-to-zero condition leads to a systematic construction of the conserved operators, which 
IS realized more easily by the trace formula in the classical case. 

From the La.x equation (2.5), we see that the matrices of the following forms , 

(L+)P'(L-)"''(L+)P'(L-)"'' ... , PI + P2 + · · · = m1 + m2 · · · , (2.9) 

satisfy a relation, 

[He, (£+)P'(L-)""(£+)P'( L-)"'' .. ·] 

[(L+)P'(L -)"'' (L+)P'(L-)"'' · · ·, u] + w(LPl- L mk)(£+)P' (L -)"'' (L+)P'(L-)"'' .. 

[(L+)P'(L-)"''(£+)P'(L-)"'' · .. , Mj. (2.10) 

Using the sum-to-zero condition on the i\I-matrix, we find that the conserved operators are 
obtamed by Simply summing up all the matrix elements of eq. (2.9): 

N N 
[He, L ((L+)P'(L-)'"'(L+)P'(L-)"''. ·-)] 

~k=l ;k 1
:E [(L+)P' (£-)"'' (L+)P'(L-)"'' ... , uL 

0. (2.11) 

Due to the sum-to-zero condition (2.8), the following identities hold for arbitrary operator­
valued matrix A: 

N N N 

L (Ai\I)jk = L Ajl(L Mk) = 0, 
j,k=l j,l=l k=l 

N N N 

L (i\IA)jk = L (2:: Mjl)Alk = 0. 
;,k=l l,k=l j=l 

Then the last equal ity is readily verified by the above identities. Thus we can get various 
expressiOns of conserved operators made of the same number of the L +- and L- -matrices 
JUSt by changing the order of the two kinds of matrices. Among such conserved operators, 
we are mterested in mutually commuting conserved operators, which can be simultaneously 
diagonalized, and the conserved operators for which we can construct the "generalized" La.x 
equatiOns recurs ively. Hereafter, we often deal with a sum of all the matrix elements. So we 

N 

denote a sum of all the clements of a matrix A byTE A = L .-l
1
k. 

j k-1 

A set of commuting consen·ed operators of the model i~ ~ne of the important objects for 
quantum mtegrable systems because it shows the quantum integrability of the system in the 
analogous way for the classical completely integrable systems. Since the most simple matrix 
product of£+ and£- satisfying eq. (2.10) is£+ L-, we study the following consen·ed operators 
as candidates of the commuting consen·ed operators: 

ln=TE(L+L- )". (2.12) 

Explicit forms of the first two conseiTed operators are 
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N N 1 N 
LPJ + g L

1 

-y +w2 L: x] + Nw(Na + (1- a)) 
j=t J,k=t xJk J=t 
2Hc +constant, 

TE(L+C)2 

(2.13a) 

N N 1 { 2 1 1 1 1 1 2 1 1 1 1 2} 
LP~ + g L Pj2 + PJ-Pk- + PJTPJ + -pk~ + ~Pk~Pj + 2Pj 
j=t j,k=t Xjk Xjk Xjk Xjk Xjk X;k X;k X;k Xjk 

N ~ 

+2l L 1 ~~+(g2 -g) L 1 ~ 
J,k,l=t xJk xkl J,k=t xJk 

N N 2 2 N 2+ 2 N 
2{"'( 2 2 2 2) '\'1 xi + xk 2 '\'1 xj xk} 4 '\' 4 +w 0 x

1
p
1 

+ p1x1 + g 0 --2-- a 0 -. -- + W 0 x1 
j=:l j,k=l Xjk j,k,m=l X;mXmk j=l 

+4w(a- 1- Na)Hc + w2{N(a- 1- Naf- aN(N- 1)} , (2.13b) 

where Xjk <jg x
1 

- xk· The symbol L
1 

means that all the indices in the summand must not 
coincide. It is to be remarked that the total momentum is not a conserved operator. This 
reflects the fact that the system (2.1) is not translationally invariant. Furthermore, we see that 
the conserved operators generally possess the following forms: 

N 

In= LPJ" + ·'' · (2.14) 
j;:::l 

Thus we confirm that the first N conserved operators form a set of functionally independent 

conserved operators of the model. 
In order to confirm the integrability of the model , it is not enough just to construct a set of 

independent conserved operators. We must verify the mutual commutativity of the conserved 

operators (2.12): 
[InJm] =0, n,m=1,2, .. ·. (2.15) 

We expect that non-tri,·ial conserved operators also satisfy the La:x-equation-like relations with 
J\I-matrices that meet the sum-to-zero condition, as was demonstrated for the case w = 0 [75]. 
We generally call such Lax-equation-like relations generalized Lax equations. Using the explicit 
forms of the conserved operators (2.13), we obtain the generalized Lax equations for It and ! 2 : 

[lt ,L±] 
Mt 

[h.L±] 

[1±, Mt] ± 2wL±, 

2.\J, 

[1±, J\h] ± 4wL±£'f£± ± 4w2 (a -1- Na)L±, 

(2.16a) 

(2.16b) 

(2.16c) 
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+4(1- 6 k){-_!!_(p2 + 2) . 1 ( 
J • x2 _ J PJPk + Pk - 1a3 Pi - pk) 

N ;k xJk 
. 2 '\'I 1 1 N 

-w 0 x·lxlk X (Pi+ PI+ Pk)- (aJ- 3a)-4 - a2 "'~{ __ 1 __ - _1_} 
l=t J ;k X 0 2 2 ? N jk l=t Xj1X1kXjk XjiXlk 

-a3 '\'I { 1 1 } 1 3 N I 1 0 _2_2_ + _2_2_ + -a L } 
I= t X;·IX;·k X1kX 'k 2 X X X 1 l,m=l jl lk jmXmk 

(2.16d) 

Note that in the explicit forms of the generalized Lax equation and the J\I-matrix for the 
second conserved operator eqs. (? 16c) and (2 16d) th 1· d L · . , -· - , e genera tze ax equat10n and the \J-
;atnx for the first consen·ed operator appear. This is because the second conserved opera-tor 
2 contams the first conserved operator It as is seen in eq (2 13b) S h · · f 1 1 d ' · · - uc mtxmg o t 1e 
ower or er conserved operators generally occurs. As we see below the L + L-_ t · . t · 

constant matrix terms, , ma nx con ams 

(L + wQ)(L- wQ) 
(£2- w2Q2) + w[Q, L] 
1 
2(£+ L- + L- £+) + w((a- 1)1- aT), 

where T is a matrix whose elements are all equal to 1: 

(2 .17) 

(2.18) 

We note that a sum of all the elements of the matrix product AtT A2 for any operator-valued 
matnces At and A2 is the product of the sums of all the elements of the two matrices: 

(2.19) 

Thus a sum of all the elements of a power of L + L- -matrix become a polynomial of the sums 

of all the elements of lower-order powers of the matrix ~ ( L + L- + L- L +): 

TE(£+ L-)" 
1 

T1:(2 (£+ L- + L- L+) + w((a- 1)1- aT))" 

TE(~ (£+1- + L- £+))" 

+ ~ T1:(~(L+ L- + L- £+) r-tw((a- 1)1- aT)(~(£+ L- + L- £+) )"-' + 

T1: (~(£+ L- + L-£ +) r + nw(a- 1) TE(~ (L+ L- + L- L+))"-t 

" 1 
-wa LTE( -

2
(£+ L- + L-£+))'-t TE(~(L+ L- + L-£+))"-' + ... 

=t 2 
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The constant matrix terms generate a polynomial of lower order conserved operators in this 
way. That is why the conserved operators I .. (2.12) contain lower order conserved operators. 

1 
Instead of the L + L- -matrix, we adopt the matrix 2 { L + L- + L- L +} = L2

- w
2
Q

2 
and remove 

the constant matrix terms. Then we obtain a modified formula for conserved operators: 

(2.20) 

The first two modified consen·ed operators are given by 

Namely, i,, corresponds to the highest order conserved operator in I ... Note that the coefficient 
of the fourth term of the second conserved operator, g2 - g, contains the quantum correction. 
With the Planck constant h explicity written, the coefficient is expressed as l- hg. Moreover , 
the coefficient of the third term in the w2-order terms is not expressed as a polynomial of 
the coupling constant g, but as a2 These facts show the quantum conserved operators of the 
Calogero model are not given by the translations of the classical conserved quantities by the 
correspondence principle [20, 59]. We expect that the generalized Lax equations can be obtained 
for the higher order conserved operators. From eq. (2.16), the generalized Lax equation for I, 
is to be expressed as 

[i .. ,L±j = [L±,J~I,j ±2nw(L±L'~')"- 1 L±, 
N N 

'fJAin)Jk = 0, 'fJAI .. )ki = 0, 
j=1 

where explicit forms of the first two .\In matrices are 

(1\It)jk 

(i\-I2 )ik 

(2.22a) 

(2.22b) 
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+4(1- hl{-_::_(p2 + 2) . 1 
J 2 i PiPk + Pk - ta-(p - Pk) 

X 1k x\ 1 

N J 

. 2 '\'' 1 1 N 
-ta L X·IX X · (pj +PI+ Pk)- (a3- 3a)-4 - a2 '\''{ __ 1 __ - _1_} 

1=1 J lk ;k x L 2 2 2 N jk 1=1 XjiXIkXjk XjiXIk 

-aJI:'{~+~}+~aJ {' 1 } 
1=1 XjiXjk XlkXjk 2 l,m=1 Xj1X1kXjmXmk 

2 { '', x2 - x ·x + x2 2 2 
+4w a.Sjk L J J2 I I - a(1- .Sjk) xi - XjXk + xk }. 

1=1 xil xJk 
(2.22d) 

This formula guarantees that the conserved operators J .. (2.20) and hence In mutuallv com­
mute. Howe\·er, recurs1ve constructwn of the generalized Lax equations for these COI;sen·ed 
o~crators has not been successful because of the difficulty of the order problem of the L + _ and 
L -mat~1ces. Equation (2.22) for the first two cases n = 1 2 are confirmed by the e'"pli·c·t f . 
of the i\I m t .· (? 2 ) ' "' I 01 ms .. - a uces, e[qs. _ -]· 2c and (2 .22d). This pro,·es the mutual commutativity of the 
conserved operators, I .. , Im = _o and equivalently [I .. , Im] = 0 for n = 1, 2 and m = 1, 2, . . ·. 
But now, the cases n :0:: 3 remam to be a conjecture. The mutual commutativity of the con­
served operators for genenral cases will be verified by use of the Dunkl operator formulat·o · 
Section 2.4. I n Ill 

\
" F

1
or rdecurdsive construction of the generalized Lax equations, it is convenient to introduce 

·vey or ere product: 

(2.23) 

In part icular, the matrix, 

[(L+)"(L-)''lw' (2.24) 

satisfies a relation that is similar to eq. (2.10): 

[H, [(t+)"(L-)"Jwj = [[(L+)"(LTJw , Mj , (2.25) 

Thus we obtain a formula for a set of consen·ed operators: 

0~ = Td(L+)"(L-)"j,v (2.26) 

~h;se conserved operators do not generally commute among themselves. Howc,·er, the choice 
(---6) IS convement for the mvestigation of the algebraic structure of the model. 

Explicit forms of the first two consen·ed operators are 

o: = TE~(L+L-+L-£+) 
N2 /\·,1 ?N 

L Pj + 9 L -y + w- I: x 2 

;=I j,k=1 xJk i=I 
1 
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(2.27a) 

(2.27b) 

Using the explicit forms of the conserved operators 

equations for ot and 0~: 

[ot, L±] [L±, ut'] ± 2wL±, 

i\!1
1 2J\I, 

[o~,L±] [L±,ui] ±4w[(L±)2L"'Jw, 
N{a 2 . 1 ) 4h L -dP2 + PJPq + Pq) + w3(PJ- Pq 

J q=I Xjq J Xjq 
q¥J 

(2.28a) 

(2.28b) 

(2.28c) 

N 1 1 2 N '{ 1 1 } 
+ia2 2:.:' ---(Pi+ PI+ Pq) + (a

3
- 3a) x• +a L x 1x1 x2 + x2

1
xl 

l=l Xj1XIqXjq ;q 1=1 J q Jq J q 

N, { 1 1 } 1 3 ;, 1 } 
+a3"' ----- --a L 
~ X~ X~ x2

1 X~ 2 I -I XjtXtqXjmXmq / :;:1 ;t· ;q q JQ ,m-

{ 
a 2 2) . 1 ( ) +4(1- OJk) --::["(Pi+ PJPk + Pk - Ia3 Pi- Pk 

xik x;k 

N, 1 3 1 2 N'{--1 __ - _1_} 
-ia2 L ---(PJ +PI+ Pk) - (a - 3a):il- a L x 1XIkx2- x21Xfk 

l=l Xj1XIkXjk ;k 1=1 J ;k J 

N' 1 1 1 3 .;_, 1 } 
-a3 L {--+-?-?-}+-a L __ ___:__ __ 

l=l x]1x]k XfkX]k 2 l,m;::;l XjtXtkXjmXmk 

4 { N x2 + XjXI + Xf XJ + XjXk + Xk} 
+-w2 ac51k L 1 

_2 - a(1 - OJk) .2 . 
3 I=I x11 x1k 

(2.28d) 

1¥1 

As we have expected, the above J\I-matrices (2.28b) and (2.28d) satisfy the sum-to-zero condi­
tion. The first relation (2.28a) is nothing but the Lax equation for the Hamiltonian. We expect 
that similar relations also hold for all the operators, 

(2.29) 
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where p and m arc non-negati\'e integers. In the remaining part of this section, we shall 
recursively construct the generalized Lax equations for this family of operators. 

First, we introduce two series of operators that will play an important role in an algebraic 
treatment of the eigenfunctions of the model. Let us consider operators defined by 

o;<jg'EJ 
0~~ En 

TE(L+t, 

TE(L-t, 

(2.30a) 

(2.30b) 

where n is a nonnegati\'e integer. By use of the Lax equation (2.5) , commutation relations 
between the Hamiltonian (3.2a) and these operators are calculated as 

[Hc,TE(L+tj 

TE{[(t+t,M] +nw(L+t} 

nwE1, 

[Hc,TE(LT] 

TE{[(L-t,AI]-nw(LT} 
-nwEn. 

(2.31a) 

(2 .31b) 

Similar to the creation and annihilation operators in the theory of quantum harmonic oscillator, 

these operators change energy eigenvalue by nw. \Ve shall call the operators E1 and En po"·er­
sum creation and annihilation operators, respectively. The reason why we add power-sum to 
the name will be clear in Section 2.4 and Chapter 4. 

The commutators between E1, n = 1, 2, 3, and £± are 

[E[,L±j 
(MJ)Jk 

[E1,£±j 

[L±,MJj-w(1'f1)1, 
0, 

[1±, AI~]- 2w(1 'f 1)£+, 

1 N 1 
-2a(1 - o1k) 2 + 2ao1k 2: 2 , 

xik I=I xil 
1¥j 

(2.32a) 

(2.32b) 

(2.32c) 

(2.32d) 

(2.32e) 

(2.32f) 

We remark here that three M-matrices shown abO\·e meet the sum-to-zero condition. In the 
same way, we can compute the commutators between En, n = 1, 2, 3, and £±: 

(2.33a) 
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(J\f~)jk 

[B2 , L±] 

0, (2.33b) 

[ £ ±, M~] + 2w(1 ± 1)£-, (2.33c) 

1 N 1 
-2a(1- o1k) 2 + 2aOjk I: 2• (2.33d) 

xik 1=1 xil 
l;<j 

[£± , M~] + 3w(1 ± 1)(£-j2, (2.33e) 

1 2 N I 1 . Xj + Xk 
-(1-o1k){3a 2 (p1+pk)+3ia I:--. --3twa-.2-} 

Xjk l=l XjiXikXjk Xjk 

~{ 1 . Xj+Xm} 
+Ojk L., 3a-2-(Pi + Pm) - 3twa--2- . 

m=l Xjm Xjm 

(2.33f) 

m;<j 

These relations show that commutators [EX, Bl] and [En, BmJ, n = 1, 2, 3, m = 1, 2, ·· · vanish. 
The explicit forms of generalized Lax equations for the power-sum creation and annihilation 
operators, eqs. (2.32) and (2.33), lead us to an expectation that the commutation relations 

[EX,£±] and [En ,£±], n = 1, 2, 3, · · ·, take the following forms, 

[£±, M;]- nw(1 'f 1)(£+)"-1, 

[£±, u;j + nw(1 ± 1)(£ -)"-1, 

with the AI-matrices satisfying the sum-to-zero condition: 

N 

L(i\I;)Jk 
j=l 

N 

L(M~)Jk 
j=l 

N 

L:(Mo"hi = 0, 

N 

L(AI~)ki = 0. 
j=l 

(2.34a) 

(2.3.Jb) 

(2.35a) 

(2.35b) 

As a first step toward the recursive construction of the generalized Lax equations for all the 
operators Ofn , we shall prove the relations (2.34) and (2.35). The proof is done by induction. 

To do an inducti,·e proof, we need a recursion formula for the power-sum creation operators: 

(2 .36) 

The proof of eq. (2.36) is carried out as follows . Commutator between 0~ and BA is 
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\Ve shouldfrema(r
2
k
3
he)re that we have used the sum-to-zero condition of the .\!?-matrix. Sub-

stitutiOn o eq. . 7 mto the l.h.s. of eq. (2.36) yields 

t 4 n 
[Bt, 3wTr ~(£+) 1 - 1 { (£+)2£- + £+ L-£+ + £-(£+n(£+)"-'] 

{ 
4 n 

Tr [3w ~ { (£+)'-!{ (£+)2 L- + £+ L-£+ + L-(L+n(£+)"-', M~]- 8nw2(£+)"+1} 

-8nw2B!+I. (2.38) 

Here we have used again the sum-to-zero condition on the MJ-matrix. This is nothing but the 
recursion formula (2.36). 

Preparations for the proofs of eqs. (2 .34a) and (2.35a) are finished . We have alread,· 
obtained explicit expressions of the first three, eq. (2.32). By the inducti,·e assumption, ":e 
assume that the relatiOns (2.34a) hold upton= p with i\!6-matrices satisfying the sum-to-zero 

condition. We want to calculate a commutator [BJ+I• £±]. Using eq. (2.36), we ha,·e 

(2.39) 

By use of Jacobi 's identity for the commutator, 

[A, [B, C]J + [B, [C, A]]+ [C, [.4., B]J = 0, (2.40) 

the r.h.s. of eq. (2.39) is rewritten as 

(2.41) 

In order to proceed the calculation, we need a formula: 

[[o~,BJj,L±] 

[£± , [MJ, M6] + [Mi, B}] + [o~ , M6]] 
4 { p-1 

-3w2p (1 'f 1) L(L+)l-1 { (£+)2 L- + £+ L- £+ + L -(L +)2}(£ +)p-l-1 
1= 1 

+ (1 'f l){ 2(£+)P L- + 2L -(£ +)P + £+ L -(L +)p-I + (L +)p-I L-£+} 

- 3(1 ± !J(£+rl }· (2..J2) 

This formula is pro,·cd by repeated use of Jacobi's identity (2.40) and the Lax equations, (2.28c) 
and (2.34a) for n = p. Applying Jacobi 's identity to the l.h.s. of eq. (2 . .J2) , we haw 

(2..J3) 
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. · (2 28 ) d (2.34a) for n = p, and applying Jacobi's identity l\lakmg use of the Lax equatiOns, · c an 

again, \\·e ha,·e 

-[[Bj,L±],Oi]- [[L±,oi],Bj] 

= -[[L± , ugj-pw(1=t=1)(U)P- 1,0i] 

+ [[L±, MJ] ± ~w{(L±)2 L '~' + L± L'f L± + U(£±)2}, Bj] 

[L±, [uJ , Bj] + [oi,M6]] + [[Oi,L±j,M6]- [[Bj,L±j,MJ] 

_ [Oi,pw(1 'f 1)(L+r1] 'f ~w[Bj, (L±? L'f + L± L'~' L± + £'f(L±)
2
] 

[L±, [uJ,Bt] + [oi,M6]j + [[L±,MJj,M6] + [[M6,L±j,Mij 

_ [oi, pw(1 'f 1)(L +r1] + [pw(1 'f l)(L+)p-I , Mi] 

'f~w[Bj, (L±) 2 L'~' + L± £'f L± + L'f(L±)2] 

±~w[(L±) 2 L'~' + L±L'~'L± + L'~'(L±) 2 , M6] 

[L±, [MJ, M6] + [MJ, Bj] + [oi, M6]] 

-~w2p{(l 'f 1) ~(r+)'- 1 {(L+? L- + L+ L- L + + L -(L +)2}(L +)p-I-I 
3 1=1 

+ (1 'f 1){ 2(L +)P L- + 2L-(L +)P + L+ L -(L+y-I + (L +y-I L- r+} 

- 3(1 ± l)(L+)p+I }· ( 2 .4~) 

Consequently, we obtain the formula (2.42). For brevity of the expressions, we adopt the 

following symbols: 

]( 

G 

[oi,BJJ, 

[Mi, ug] + [Mi, Bj] + [oi , ug]. 

Equation (2.42) is nothing but the generalized La.x equation for the abo,·e ]( operator. Note 
that the operator-valued matrix G also sat isfies the sum-to-zero conditiOn because the matnccs 

MJ and M6 do. 
-With eqs. (2.32a), (2.32b) and (2.42), the r.h.s. of eq. (2.41) is calculated as follows: 

-[[K,L±],Bi]- [[L±,B/J,K] 

- [ [ L ±, G], B I] + [ [ L ±, Md], K] - w( 1 'f 1) [ 1, K] 
p-1 

+~ [w2p{ (1 'f 1) 2_]L +)1- 1 { (L+) 2 L- + L + L- L + + L-(L +?}(L +)p-I - I 
3 1=1 

+ (1 'f 1){ 2(L+)PL- + 2L -(L+)P + L+ L -(L+)p-I + (L+)P- 1 L- L+} 

- 3(1 ± 1)(£+)P+l }, B/]. (2.~5 ) 
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After a calculation which is similar to that in eq. (2.44) , we obtain 

Tools for the calculation are Jacobi's identity and eqs. 
Mg+ 1-matrix as 

(2.32a) and (2.42). We define the 

\[,P+I - 1 [ t G] 1 o -- 8pw2 BI ' . (2.4 7) 

We remark that the Mg+ 1
-matrix satisfies the sum-to-zero condition, for the matrix G satisfies 

it. Then from eqs. (2.39) , (2.46) and (2.47), we finally obtain the expected expression, 

(2.~8) 

which is exactly the same as the formula (2.34a) for n = p+ 1. As we have confirmed before, the 
formulae, (2.34a) and (2.35a), hold for n = 1, 2, 3. Thus we complete the proof of the formula 
for a ll positive integer n. 

In a similar fashion, we can deduce the relations for the annihilation operators, eqs. (2.3~b) 
and (2.35b). Instead, we can easily check them from the generalized Lax equations for the 
creation operators (2.3~a) and (2 .35a), which has been formulated just now. Computing the 
Hermitian conjugate of the relation (2.34a) , we have 

(2.~9) 

Defining the i\J~-matrix as 

M~ = (M~)t, (2.50) 

we get the generalized Lax equation for the annihilation operator Bn (2.3-lb): 

[L±, M~j + nw(1 ± 1)(L -)"- 1, 

N N 

IJM,~)jk IJi\I~)kj = 0. 
j=l j=l 

We remark here again that eqs. (2.3-la) - (2.35b) assure the commutativity among the creation 
operators and among the annihilation operators: 

(2.51) 

The commuting power-sum creation operators will play an important role in the algebraic 
construction of the eigenfunctions of the Calogero Hamiltonian (2.1) in Chapter 3. 

The next task is a recursi,·e construction of the generalized Lax equations for the operators 
0~, defined by cq. (2.29). \\'atching closely on the relations (2.28a), (2.28c) and (2.3~), we 
notice that the following relations might hold for 0~,: 

N 

IJ.\I;:.)jk 
j=l 

[L±, M;,,] + mw(1 ± l)[(L+)P(L-)'n-tv 

-pw(1 'f ll[(£+)"-I(L-)'tv' 
N 

IJM;,.)kj = 0. 
j=l 

(2.52a) 

(2.52b) 
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Note that the relations hold for m = 0 (2.34a), p = 0 (2.34b) and p = m = n for n = 1, 2 
(2.28a) and (2.28c). We shall prove eq. (2.52) by induction. 

First, we prove a recursion formula for o;~-m: 

[ On-m] 4 ( )O"-m- 1 B2, m == w n- m m+l . (2 .53) 

This formula can be verified as follows. Substitution of the definition of o;:,-m yields 

(2.54) 

Using eq. (2.33c) and the sum-to-zero condition on the Mg-matrix (2.33d), we get the recursion 

formula: 

[B2,o;:,-m] = Tx:{[[(L+)"-m(L-)mJw, Mgj + 4(n- m)w[(L+)"-m-
1
(£-)m+tJ 

= 4w(n- m)0;:,+';'- 1 (2.55) 

Now we shall prove eq. (2.52a). In the case of m = 0, the relation holds. We assume that 
the relations (2.52a) hold up to m = !', and that the M;;,-m-matrices satisfy the sum-to-zero 
condition. Due to the formula (2.53), the commutator [o;:;:r-t, £±] is expressed as 

(2 .56) 

By iterated use of Jacobi's identity (2.40) and the generalized Lax equat ions for B2 (2.33c) and 
o:-~ (2.52a), the r.h.s . of eq. (2.56) is calculated as follows: 

-[[o;-~,L±],B2]- [[L±,B2],o;-~] 
- [[1±, M;-~] , B2] + [[1± , Mgj, o;-~j + [2w(1 ± 1)£-, o;-''] 

-[1Lw(1 ± 1)[(£+)"-~(L-)~-tv' B2] 

+ [(n- p)w(1 'f 1) [(L +)"-~- 1 (L -)~Jw, B2] 

[L±, [82, J\I;-~j + [M~, o:-~]j 

+[[82,L±j,M;-'']- [[o;-'',L±j,Mgj 

+!Lw(1 ± 1) [[ (L+)"-~(L -)~-tv' Mg] 

-(n- !L)w(1 'f 1) [[(£+)"-1'-
1(£ -)'tv' ug] - 2w(1 ± 1*-, i\I~'- 1'] 

+4(p + 2)(n- p)w2(1 ± 1) [(L +)"-~- 1 (L -)~ Jw 
-4(n- 1-'- 1) (n- !L)w2(1 'f 1) [(L +)"-1'-

2(£ -)"+llw 
[L±, [82, M;:-''] + [u~, o;;-~] + [ug, u,~-~]] 

+4(1' + 1)(n -l')w2(1 ± 1)[(L+)"-1'-
1(L-)"Jw 

-4(n- !'- 1)(n- !L)w2(1 'f 1) [(L +)"-~-2 ( £ -)~+ 1 ] . (2.57) 
IV 

We define the JII~'.;:i- 1 -matrix by 

M~'.;:t'- 1 
= 4w(n

1
- !') { [82 , u;-~] + [ug, o:-~] + [ug, M;;-'']} , (2.58) 
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which meets the sum-to-zero condition. Finally we obtai th . t d f 1 f 
(2.

5
6) and (2.57): ' n e expec e ormu a rom eqs. 

[L± ~vr-~-~] 
' 1'+1 

+(p + 1)w(1 ± 1) [(L +)"-~- ~ (L -vJw 

-(n- 1-' -1)w(1 'f 1)[(£+)•-~-2(£-)~+ t]w· (2.59) 

Thus the pwof is completed. The generalized Lax equations provide an easy way to consider 
the algebratc structure of the Calogero model. 

2.2 W-Symmetry of the Calogero Model 

. The generalized Lax equat ions reveal an interesting algebra among the operators OP . Let 
us mtroduce a new operator by m 

w<•l = _.!._os-n-1 s >_ ]71] + 1. 
n - 4W s+n-1, 

In this notation , the genera lized Lax equations (2.52) are written as 

[11",\'l, L±j = [L±, i\I~'l] 
1 

+4(s + n- 1)(1 ± 1) [(L+)'-n-1 (L -)s+n-2L 

1 
--(s- n -1)(1 'f 1)[(L+)s-n-2(£-)Hn-1] 

4 w ' 
_ _.!._ 1\[s-n-1 

4W · s+rt-l' 

N N 

'fJM~'l)Jk 'fJM~'l)kJ = 0. 
j=1 j=1 

(2.60) 

(2.61a) 

(2.61b) 

(2.61c) 

From the abo,·e generalized Lax equations for the w <•l_operator the commutation relation 
among the n ·~·l-operators is calculated as " ' 

[11',\'l, T E [(£+)t-m-1(L -)t+m-tvl 

TE{_.!._ [[(L +Jt-m-1 (L-)'+m-1] u<•l] 
..tw w' n 

1 
+

2
(s + n- 1)(t _ m _ 1l [ (L+J•+t-n-m-3(£ -J•+t+•+m-3Jw 

1 - 2(s - n - 1)(t + m - 1) [ (L +)s+t-n-m-J(L -)'+t+n+m-Jlw + ... } 

(n(t -1)- m(s -1J)lr<•+t-2) + p (s,t)(IV(")) 
n+m n ,m l ' (2.62) 

where p(s,t)(ll'(")) · ·fi (u) , . n,m 1 ts an unspect ed polynomial of 11'1 -operators, u :::; s + t - 3, l :::; n + m, 
11 htch are generated by replacements of L + and L-, 

(2.63) 
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Here 1 is a unit matrix and Tis a constant matrix whose matrix elements are all 1: Tjk = l. 
This,is the IV-algebra in the sense the algebra is a higher-spin generalization of the Virasoro 

algebra (for review, see ref. [16]). We remark that indices sand n are integer or half-odd integer, 
though of course both s-n-1 and s+n-1 must be non-negati1·e integer. The algebra possesses 
the operators with indices s = l, 3/2, 2, 5/2, · · ·, which represent the conformal spins. 

For the classical mechanics case, derivation of the IV -symmetry was examined by two differ­
ent methods: the collecti1·e field theory [3] and the classical r-matrix method [7]. The classical 
r-matrix approach 11·as extended to the trigonometric and elliptic versions of the Calogero­
i\loser model [6 , 8, 66]. Quantum generalization of the collective field theory [4, 5] also suggests 
the IV-symmetry structure of the quantum Calogero model, though the relationship between 
the quantum Calogero model and the quantum collective field theory has not been estab lished. 
Our proof is the first direct proof of the 11'-symmetry of the quantum Calogero model. For 
the spin generalizations of the quantum Calogero-i\loser, Sutherland and Calogero models were 
also investigated by the quantum Lax formulation [34, 78]. The sum-to-zero condition was also 

an important key in the investigations. 
At the end of this section, we gi1·e a brief summary of the correspondence of the lV~')­

operators to the creation operators, the annihilation operators and the consen·ed operators: 

l. creation operator 

2. annihilation operator 

3. conserved operator 

In particular, the creation operators and the annihilation operators respectively form commut­
ing subalgebras of eq. (2.62). The property of the creation operators and the annihilation 
operators will play an important role in the algebraic construction of the energy eigenfunctions 
in Chapter 3. 

2.3 Dunkl Operator Formulation 

In the researches on the algebraic structures of the Calogero model, two formulations 
were independently developed. In the last two sections, we have formulated the quantum Lax 
formulation [34, 74-77] that is an extension of the Lax formulation in the classical theory [52]. 
On the other hand , Polychronakos introduced another formulation for these models [62] that he 
called exchange operator formalism. His method is based on the differential operators including 
coordinate exchange operators. Now Polychronakos ' method is usually called Dunk! operator 
formulation because the basic properties of this kind of differential-difference operators were 
first studied by Dunk! [27]. These two approaches independently reveal interesting aspects of 
the models. \\·e shall study the relationship between the two, which have not been checked by 
serious considerations. 

We summarize the Dunk! operator formulation d eve loped by Polychronakos [62]. We intro­
duce differential operators which he called coupled momentum operators, 

. -l N 1 / 
1rt =PI+ Ia{! L -.--!Ilk, l = 1, 2, . .. , N, 

k=1 Xi- Xk 
k;tl 

(2.6~) 
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where a complex phase factor J.L = exp(i1rB) corresponds to the statistics of the particles in the 
system 11·hose meaning will be described later. The coordinate exchange operators J(lk obey 

J(lk = J(kl, (Ktk)
2 = ,i, KL = fJ.- 2J(Ik, 

KtkAt = Akf(lk. KtkAJ = A1K 1k, for j # l, k, (2.65) 

11·here AJ is either a momentum operator p1, a particle coordinates x1, or particle permutation 
operators Kj; , i = 1, 2, · · ·, N. These relations (2.65) guarantee that the coupled momentum 

operators (2.64) are Hermitian operators, 1rJ = 1r1. By linear combinations of the coupled 
momentum operators and the coordinate operators , 

we define creation-like and annihilation-like operators : 

Ct 

c) 

(2.66) 

(2.67a) 

(2.67b) 

The creation-annihilation-like operators, {c~, c)ll = l , 2, · · · , N}, describe the algebraic struc­
ture of the Calogero model. On the other hand , the coupled-momentum operators and the 
coordinate operators, { 7rt, qdl = l , 2, · · ·, N}, are applied to the study on the algebraic struc­
ture of the Calogero-i\loser model and the Sutherland model, which will be summarized in 
Chapter 4. 

By a straightforward calculation, we can check the following commutation relations for the 
creation- and annihilation-like operators: 

[c1, C.n] = 0, 

[c/, c~] = 0, 
N 

[c1, c~] = 2wc5tm(l + a{t-1 L Ktk)- 2waf.t-1(l- c5tm)Ktm· 
ktl 
k=1 

(2.68a) 

(2.68b) 

(2.68c) 

Using eq. (2.68), we can construct a set of commuting operators that correspond to the 
conserved operators of the Calogero model: 

N 

1,. = L(c/cl)", (2.69a) 
1=1 

[1,., l,n] = 0, n,m = 1, 2, · (2.69b) 

This relation is ,·erified as follows. \Ve introduce the number-like operators as 

(2.70) 

Commutators among the number-like operators are gi1·en by 

(2.71) 
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Using the above commutation relation, we can compute the commutator among the operators 

(2.69a) as follows: 

N 

L [(n1)", (nk)m] 
j,k=l 

N n m L L :L(nj)P-1(nk)q-l [nj, nk] (nj)"-P(nk)m-q 
j,k=l p=l q=l 

N n m L L :L(n1)P-1(nk)q- 12waJ.L- 1(nk- nj)Kjk(nk)m-q(n1)"-P 
j,k=l p=l q=l 

N n 
2waJ.L-l L :L(nj)P-1((nk)m- (nj)m)Kjk(nj)"-p 

j,k=! p=l 

N { n 
waJ.L-1 j~l :;;(njy-l((nk)m- (nj)m)Kjk(nj)"-P 

- ~(n1)q-l((nk)"- (nj)")Kjk(nj)m-q} 

n-1 n+m-1 m-1 n+m-1) 
waJ.L-1 (:L- L - L + L (nj)' Kjk(nj)"+m-,-1 

r=O r=m r=O r=n 

0. 

Thus we have confirmed eq. (2.69). 1 ote that the abm·e commuting operators contain coordi­
nate exchange operators. If we restrict the operand to the states of identical and indistinguish­
able particles, we can obtain the differential operators that do not include particle permutation 
operators. These differential operators generated by the restriction must be related to the 
operators in the quantum Lax formu lation . We shall reveal the relationship in the following 

section. 

2.4 R elationship b etween the Two Formulations 

In the quantum theory, identical particles are indistinguishable. This requires the wa,·c 
functions to be invariant up to a phase factor under the permutations of particle indices. 
The action of the coordinate exchange operators to such wa,·e functions w(x 1, x2 , · · ·, x,v) is 
described as 

\lt(Xt, · · · , Xk, · · ·, Xt,''', XN) 

,u\lt(x 1, · · ·, Xt, · · ·, Xk, · · · , XN ), (2.72) 

where the phase factor J.L giYes the informat ion on the statistics of the part icles. For instance, 
the case I' = 1 corresponds to the boson system and the case I·' = -1 corresponds to the fermion 
system. In order to include the fractional statistics [90], we allow 1-' to be a complex number, 
1-' = exp(i1rll). Existence of such wa,·e functions is known for the Calogero mode l [19, 76, 77]. 

From now on, we shall denote by ~~ the restriction of the operand to such waw functions. Then 
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we notice the following relations for arbitrary polynomials P: 

(2.73) 

They can be proYed by induction on the degree of a polynomial. First , we consider the simplest 
case, namely the hnear case. There are only two independent elements and we can check the 
relation (2. 73) directly: ' 

. . N 1 
(PI+ 1wx1 + lJ.L- 1a L ---]{1k)l 

k=l Xt- Xk Jl 

k,<l 

N 1 
{;; (61k(PI + iwxl) + ia(1- 61k) x

1 
_ x) ~~ 

N 

L L(kl , 
k=l ~ 

( . . -l ~ 1 I PI - lWX1 + lJ.L a L ---K1k) 
k=l XI- Xk ~ 
k,<l 

N 

:L(61k(PI- iwxl) + ia(1- 61k)-
1-)l 

k=I Xt- Xk Jt 

f_ Likl . 
k=l ~ 

(27-!a) 

(2.74b) 

For all the independent elements of the polynomials up to degree d, we assume that the relation 
(2.7() holds. Allwe haYe to do is to prove the relation for c/P(cf,cl) and c1P(cf,c1), where 
P(c1, cl) IS an arbitrary polynomial of degree d. It can be done by a simple and straightforward 
calculation: 

(PI+ iwx1 + iJ.L- 1a f_ ~I<Ik)P(c/, c1)1 
k=! Xt Xk ~ 
k,<l 

N 

:L(61dP1 + iwxl) + ia(1- 61k)-. -
1-)P(a!, ak)l 

k=l X1- Xk ~ 

N N 

{;; L(k ,~1 P(L+, L-)k{ 

N 

{;; (L+ P(L+, L-) )
1
kl,,' (2.75a) 

(PI- iwx1 + iJ.L- 1a f_ --1--_Kik)P(c/, cl)l 
k=!Xt-Xk Jt 

k,<l 

N 1 I :L(61dP1- iwx1) + ia(1- 61k)-.--. )P(cl,ck) 
k=I Xt - Xk Jl 
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N ,,. I L Lik L P(L+, L-)km 
k=l m=l Jl 

f(L-P(L+,L-)) 1kl· 
k=l I.J 

Thus we have proved the relation (2. 73) for arbitrary polynomials. 
i\loreo1·er, we can also see the correspondence of the commutator algebras, 

[i:P1(cJ,c1), £ P2 (c~ , em)JI = [TEPI(L+ , £-),TEP2(L+,£-)jl~' 
l;;;l m=l J.J 

(2.75b) 

(2.76) 

where p
1 

and p2 are arbitrary polynomials. To prove the above relations, it is sufficient to 

show the following identities: 

(2.77) 

In a similar way to the proof of eq. (2.73), we shall prove the identity (2.77) by induction on 
the degree of P1• First, we get the following expression by applying eq. (2.73) on P2: 

(2.78) 

We shall consider a simple case, namely P1 (c)) =c). From the explicit form of the£± matrix, 
we can see the action of K1k operator on £± as 

(2.79) 

where an N x N numerical matrix F1k is given by 

k 

0 

(2.80) 

k 0 

1\ote that (Eik)2 is the identity matrix. So the action (2.79) lead us to 

(2.81) 
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where P2 is an arbitrary polynomial. Thus we obtain 

c) f
1 
P2(c~, Cm)~~ = Lt TE P2(L+, L -)~~ + E Lit TE F1kP2(L+, L- )EI{· 

k;i/ 

Using an identity, 

[1, 1, · · ·, 1)EikP2(L +, L -)Eik[1, 1, ··· ,If 
[1 , 1, · · ·, 1)P2(£+, L-)[1 , 1, ··· ,If 
TE P2(£+, L-), 

where a superscript T means a transposition, we get 

N N 

c) f/2(c~,em)l~ = {;LitTEP2(£+,£-)I~· 
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(2.82) 

(2.83) 

(2.8-l) 

This shows the validity of eq. (2. 77) for the simplest case. Following the same logic, we can 
also confirm another simple case: 

N N 

c1 f
1 
P2(c~, em) I~={; Lik TE P2(L+, £-)~~· (2.85) 

We assume that the relation (2. 77) holds for all the polynomials P1 up to degree d. For a 
polynomial of degree d + 1, cj P1 (c) , c1), we haw 

N 

c) P1 (cJ, Ct) .~1 P2(c~, em)~~ = Lt P1 (cJ, ct) TE P2(£+, L -)~~ 
N 

+I.: L(kP1 (c!, ck) TE FtkPz(L+, L -)Eikl 
k=l J.J 
k;i/ 

N 

L L(kP1 (ck, ck) TE P2(£+, L -)1 
k=l I' 

N 

{;{£+PI(£+, L-) L TE P2(£+, L-)L. (2.86) 

In a similar way, we can also confirm 

(2.87) 

Thus we have inducti1·ely pro1·ed the correspondence (2.77). These relations (2.73) and (2.76) 
assure that t11·o series of operators, 

N 

6:;, =I.: [(clJ"(ck)"'Jw, (2.88a) 
k~l 

l\r(•) = _2_6•-n-1 
n - 4W s+n-1' (2.88b) 
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respectively correspond to the operators Oi:, (2 .29) and ll',\'> (2 .60) and also satisfy the com­

mutation relation of the quantum IF-algebra under the restriction ~~. As a special case, we 

have 

f:(clrJ =B!,J , 
k;J ~ ~ 

(2.89a) 

~(ck)"J~ = s,.J~· (2.89b) 

That is why we called the operators BA and B,. (2.30) power-sum creation-annihilation opera­
tors . They also guarantee the mutual commutativity of the conserved operators, 

(2.90) 

of the Calogero model (2.12). 
The final task in this section is to present a correspondence with the generalized Lax equa­

tions. By a straightforward calculation, we can confirm the following commutation relations: 

[6i:,,cl] 2mw[(ck)P(ck)"'-tv' (2.91a) 

[6i:, , ck] -2pw[(cl)P- 1 (ck)"'] w· (2.91b) 

We shall verify the first formula (2.91a). Using eq. (2.68), we hm·e 

N 

L [[(cj)P(cj)"'Jw, cl] 
j;J 

N 

m L [ (c})P(cj)m-1 [cj, cl]Jw 
j;1 

N 

2mw[(ckJP(ck)"'- 1]w- 2waJ.L- 1 L:[( (cj)P(c1)"'- 1 - (ckJP(ck)"'- 1)MjkL· 
);1 

From the identity, 

[cJ,cl] = -[c} , ck], (2.92) 

we can readily confirm the following identity, 

(2.93) 

which verifies the first formula (2.9la). Equation (2.93) is prm·ed as follows. Among the terms 

in the Weyl ordered product , [(c})P(c1)"'M1kJw' we pay attention to the following term: 

( c} )P• ( c1 )'"' ( c})P' · · · Jlf1k( c} JP'• ( c1 )"''• ( c} )P; - - . 

On the other hand , there is a term in the other Weyl ordered product, -[(ck)P(ck)'"i\JjkJw' 
which uniquely corresponds to the abo,·e term: 

(ck)P', (ck)"''• (ck)P; · · · JIJJk(ck)P• (ck)"'' (ck)P' · · ·. 
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Summing up the above two terms , we have a commutator: 

[(cj)P• (cj)"'' (cj)P' · · · , (ck)P', (ck)"' '• (cl)P; · · ·] i\JJk· 

For convenience, we rewrite the above commutator as 

[(J)Jcj(jh , (k)Jcl(k).j i\!Jk , 

where the symbol (j)t is a sequence of cJ and c1 labeled by j. Among the terms the above 
commutator yields, we pick up the following term, 

(2.9-1) 

On the other hand, there is a commutator picked up form the Weyl ordered product (2.93) , 

[UJ1c}(j)2, (k)Jck(k)4]J\!Jk , 

which yields the following term, 

(2.95) 

From eq. (2.92), we notice that eq. (2.95) is the unique counter term of eq. (2.94). Thus we 
confirm eq. (2.93). We can ,-erify the second formula (2.9lb) in the same way. The restriction 
of eq. (2.91) generates the following equation that is similar to the generalized Lax equation 
(2.52) 

-(1 :r: 1)pw ~ { [(L+JP- 1(£-l"'L} J~ 

+( 1 ± 1)mw ~{[(£+)P(£-)"'- 1LL1 
The newly appeared operator-valued matrix, Ai:,, is defined as 

N N 

L(A!:,GhnJ = 2.:::(6~,- O~")Gk,.J , 
n ::; J 11. n=I 11. 

where G is an arbitrary matrix that obeys 

(2.96) 

(2.97) 

(2.98) 

\\"e can wrify that the .\~n matrices also satisfy the sum-to-zero condition. Substitution of the 
unit matrix 1 into eq. (2.97) is possible because the unit matrix satisfies eq. (2.98): 

N N 

L (A!'n l )k,.J = 2.::: (6;,,- O~,) l k,.J 
n=I 11. n=l 11. 

(2.99) 

Since 6fnl = o~.J ' the r.h.s. of the above equat ion vanishes. Then we get 
~ ,, 

N 

2.:::(.1\;,,)k,. = 0 k = l , ···,N. (2.100) 
n = l 
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Computation of the sum of the other suffix k needs a preparation. From eq. (2.98) , we ha1·e 

t J.L-
1 I</mGknl = 

k,n.:::} JL 

t F/mGknflmJ.l-
1 I</ml~ 

k,n=l 

t Gknl· 
k,n;:l J1. 

Thus the sum of all the elements of the matrix G is symmetric with respect to the exchange of 

the indices. Then we get from the r.h .s. of eq. (2.97), 

N I L (6:;,- o:;,)Gkn 
k,n::::l Jl 

For an arbitrary operator-valued matrix G that meets the condition (2.98), the matrix Afn must 

satisfy the following identity, 
N 

L (A:;,)k/Gln = 0, 
k,l,n=l 

which means A!:, meets the sum-to-zero condition: 

N 

L(A:;, )kl = 0, I= 1, · · · , N . 
k=1 

Thus eq. (2.96) is rewritten as 

E[O~n,Lt,Lnl~ = ,~[L±,A:'nL,l-(1'f1)pwE{[(L+)P- 1 (L-)'"JwL1 
+(1 ± 1)mw E { [(£+)P(£-)m-1Jw} k<L 

(2.101) 

(2.102) 

and we conclude that the A~" matrices must be the i\1 -matrices for the generalized Lax equa-
tions: 

A:'n = 1\I:;,. (2.103) 

\Ve have clarified the correspondence between the quantum Lax and the Dunk! operator 
formul at ions for the Calogero model. \\'e also ha1·e formulated a direct method to obtain the 
generalized Lax equations from the commutator among the Dunk! operators. The correspon-

dences we have considered a re based on the restriction ~~. Thus any equality between a formula 

in the quantum Lax formulation and the correspond ing formula in the Dunk! operator formu­
lation is a "weak" equality. A problem whether such equalities are "strong", or independent of 
the restriction, is also worth considering. 

2.5. SUM.\JAR!' 
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2.5 Summary 

We have im·estigated the algebraic structure of the quantum Calogero model in the frame­
work of the quantum Lax formulation and the Dunk! operator formulation. From the Lax 
equation for the classical model, we ha,·e obtained the Lax equation for the quantum Calogero 
Hamiltonian (2.5) whose i\I-matrix satisfies the sum-to-zero condition (2.8). The sum-to-zero 
condition has enabled us to construct a set of the conserved operators of the quantum Calogero 
model, as ,,·as the case with the quantum Calogero-i\loser model [3-l, 74, 75, 88, 89]. To show 
the quantum integrability of the Calogero model, we ha1·e considered a construction of com­
muting consen·ed operators, eqs. (2.12) and (2.20). By use of the explicit forms of the first two 
consen·ed operators, /1 and /2 (2.13), or 11 and 12 (2 .21), we ha1·e obtained the first two of the 
generalized Lax equations for the commuting conserved operators (2.16) and have conjectured 
the general form (2.22). However the generalized Lax equations for the commuting consen·ed 
operators are not compatible with the recursi1·e construction. To study the recursi1·e construc­
tion of the generalized Lax equations, we ha1·e introduced a series of operators that are made 
by sum of all the elements of the \\"eyl ordered product of the£+. and £--matrices (2.29). 
From the explicit forms of the first few conserved operators (2.26) and power-sum creation­
annihilation operators (2.30), we have obtained the corresponding generalized Lax equations, 
eqs. (2.28), (2.32) and (2.33). From these first few generali zed La:~: equations, we have found 
out the recursion formulae, eqs. (2.36) and (2.53). Using the recursion formulae, we have re­
cursi,·ely constructed all the generalized Lax equations (2.52). The generalized Lax equations 
pro1·e the mutual commutativity of the power-sum creation-annih ilation operators, which will 
play an important role in the algebraic construction of the energy eigenfunctions [76, 77]. \\"e 
shall study this topic in Chapter 3. Defining the IV~'l-operators by eq. (2.60), we have prm·ed 
that the generalized Lax equations yield the IV-algebra as a commutator algebra among the 
w~·l-operators. 

We have studied correspondences between the quantum Lax formulation and the Dunk! 
operator formulation, which are de1·eloped independently in the study of the quantum Calogero 
model [80]. The Dunk! operator formulation pro1·ides us a simple way of constructing the 
commuting consen·ed operators of the Calogero model (2.69). We ha1·e observed that the 
restriction of the operand to the wa1·e functions of the identical particles enables us to translate 
the results in one of the theories into those in the other. To be concrete, we ha1·e related 
arbitrary operators made from the two matrices, L + and L-, and their commutator algebras 
with those in the Dunk! operator formulation, eqs. (2.73) and (2.76). A. method to directly 
obtain the .\!.':.-matrices has been also obtained as eq. (2.97). :\lutual commutativity of the 
consen·ed operators I, has been prm·ed. 

In a sense, the quantum Lax formulation makes up for difficulties with the Dunk! operator 
formulation and 1·ice 1·ersa. For example, "·e can readily see that the commutator algebra in the 
quantum Lax formulation can be \\Titten in a closed form by the operators defined by (2.29). 
Howe1·er, this is not observed in the Dunk! operator formulation. On the other hand, the Dunk! 
operator formulation pro1·ides an easy way to prove the mutual commutat i1·ity of the consen·ed 
operators of the Calogero model (2.69) and a direct method to construct the generalized Lax 
equations, eqs. (2. 102). Howe1·er, in the quantum Lax formulation , a recursi1·e construction of 
the generalized Lax equations for the commuting consen·ed operators (2.22) remains unknown 
because of the difficulty of the order problem of a pair of matrices, L + and L-. Thus the 
translation between the two methods will help our deeper comprehension of the systems. 



Chapter 3 

Algebraic Construction of the 
Eigenfunctions 

Historically speaking, the Calogero model appeared as a one-dimensional quantum many­
body problem with square and inverse-square long-range interactions [19]: 

Hcalogero = (3.1a) 

.8 
Pi = -1-

0Xj. (3.1b) 

By a masterful separation of variables, Calogero solved the eigenvalue problem of the above 
Hamiltonian in 1970. He found out a change of variables that yields an ordinary differential 
equation for the eigem·alue problem of the Hamiltonian (3.1) , which is reducible to Laguerre's 
ordinary differential equation. The formula of the energy spectrum has a similar form to that 
for the N harmonic oscillators. The fact motivated Perelomov to try an a lgebraic treatment of 
the system (3.1), though his challenge was not completed [61]. One of the aims of this chapter 
is to complete Perelomov's approach using the quantum La' formulation. 

Since the Hamiltonian (3.1) is translationally invariant, we may fix the center of mass at 
the origin of the coordinate. This corresponds to the convention that we are not interested in 
the motion of the center of mass, as is often the case with the statistical mechanics problem. 
In this case, the Hamiltonian reduces to the following form, 

He (3.2a) 

(3.2b) 

which contains an external harmonic well instead of mutual harmonic interactions. This mod­
ification \ras introduced by Sutherland [70]. He obtained the exact ground state wave function 
for the Ham iltonian and found out a correspondence with the theory of random matrices. Using 
Calogero's energy spectrum formula, he also studied the thermodynamics of the above Hamil­
tonian (3.2). \\"e treat the Hamiltonian (3.2) instead of the original Hamiltonian (3.1). i\ote 
that the center of mass is not always fixed at the coordinate origin. Only when we compare 

41 



42 CHAPTER 3. A.LGEBR..l.IC CONSTRUCTION OF THE EIGENFUNCTIO.VS 

our results for the Calogero Hamiltonian (3.2) with those for the original Calogero Hamiltonian 
(3.1), we fix the center of mass at the origin of the coordinate. 

The other aim of this chapter is to consider the simultaneous eigenfunctions of the conserved 
operators of the Calogero model, which must form the orthogonal basis . As a similar model 
to the Calogero model, we know the Sutherland model [72, 73]. The Sutherland model is a 
quantum many-body system on a circle with inverse sine-square interactions (1.21). Among the 
recent works on the Sutherland model, the computation of the dynamical correlation function 
of the model is worth mentioning [31, 32, 48]. A key role is played by the Jack symmetric 
polynomials [49, 69], which form the orthogonal basis of the Sutherland model. The Jack 
symmetric polynomials are also related to the singular vectors of the IV-algebra [9, 10 , 51], 
which is the symmetry of the Sutherland model [3-!]. As we have seen in Chapter 2, the 
Calogero model also has the !\"-symmetry structure [77]. However, in contrast to the Sutherland 
model, we have no knowledge on the orthogonal basis of the model. It is expected to be an 
essential tool for deeper comprehension of the Calogero model, such as rigorous calculations of 
correlation functions and relationships with the representation theory of the IV-algebra. Those 
expectations concerning the orthogonal basis of the quantum Calogero model motivate us to 

challenge its construction . 
As we have mentioned, we shall complete the algebraic construction of the energy eigenfunc­

tions a Ia Perelomo,- and study the simultaneous eigenfunctions of the conserved operators of 
the Calogero model. Factorizing the Hamiltonian into a pair of Hermitian conjugate operators, 
we get the ground state energy and the ground state wa,·e function. By successive operations 
of the power-sum creation operators obtained in Chapter 2 on the ground state wa,·e function , 
we construct all the energy eigenfunctions of the Calogero model (3.2). Fixing the center of 
mass at the coordinate origin, we formulate the algebraic construction of the eigenfunctions of 
the original Calogero Hamiltonian (3.1). On the algebraically constructed basis of the Hilbert 
space of the Calogero model, we get a matrix representation of the second commuting con­
sen·ed operator j 2 (2 .2lb). By a straightforward diagonalization of the matrix, we conjecture 
an eigenvalue formula for the second commuting conserved operator and present the first seven 
of the simultaneous eigenfunctions. 

3.1 Perelomov's Program 

We demonstrate an algebraic treatment of the eigenfunctions of the quantum Calogero 
model (3.2a). First , we shall identify the ground state wave function. We decompose the 
Hamiltonian (3.2a) into the sum of the non-negative operators. From eq. (2.2la), we see that 
the Hamiltonian is expressed as follows: 

(3.3) 

Changing the order of£+ and£- in the second term of the r.h.s. of eq. (3.3), we get 

He T1:(~L+ L- + ~[L+ ,r-J ) 
1 1 
2TE(£+ £-) + 2Nw(Na + (1- a)). (3.4) 

3.1. PERELOJ\IOV'S PROGRAM 

\Ve define a pair of Hermitian conjugate operators as 

N N 

L Lti =Pi+ iwxi + ia L --1-, 
k;l k;l Xk -Xi 

k¢i 

N _ . . N l L Lik =Pi - 1WXi + Ia L ---. 
k;l k;l Xi- Xk 

k¢i 

Using the abm·e operators, a new expression for the Hamiltonian (3.2a) is obtained: 
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(3.5a) 

(3.5b) 

(3.6) 

N 

Note that the operator L h) hi is a nonnegative Hermitian operator. Consequently, all the 
i;l 

eigenvalue of the Hamiltonian (3.6) must be larger than or equal to the ground state energy 
1 -' 

Eg = 2Nw(Na + (1- a)). It is interesting to observe that the ground-state energy Eg reduces 

to that of N bosonic (fermionic) harmonic oscillators when we take the harmonic oscillator 
limit a -) 0 (a -) 1). In these limits, the coupling constant g vanishes, as is easily recognized 
from eq. (2.7). In order to obtain the ground state wave function, we ha,·e only to solve the 
following equations: 

hiiO) = 0, for j = 1, 2,-- · , N. (3.7) 

Namely we seek a state that is annihilated by the operator hi. The solution of eq. (3.7) is 
expressed as the real wa,·e function of Laughlin's type: 

N 1 
(xiO) = IT (xj - xk)" exp(- L -wxj). 

l<;j <k<;N j;l 2 
(3.8) 

Excited states are obtained by applications of the power-sum creation operators B!, n = 
1,2, · ·- ,N, 

Bj = TE(£+)" , 

[He, BJ] = nwBJ, 

on the ground state. The abo,·e relations are given in eqs. (2.30a) and (2.3la). Let )..' denote 
a set of positive integers less than or equal to N, 

)..' {.V"",(N-1)""- 1 , · ··,1"1
} 

{:Y,· ·· ,N,N-l,··· ,N- 1,· ··,1 , ·· · ,1} 
~ '-_,----' ~ 

n,v n.v- 1 UJ 

(3.9) 

\\"e call)..' dual Young tableau, which is the dual of the Young tableau. Later we shall introduce 
a definition of the Young tableau. For details about the Young tableau and the dual Young 
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tableau, consult, for instance, ref. [50]. Here a function of the dual Young tableau l(X) is the 

length of the dual Young tableau , 

(3.10) 
k=l 

which is the number of non-zero elements in the dual Young tableau. The excited state labeled 
by a dual Young tableau X and its energy eigenvalue E(X) are expressed as follows: 

N 

1>-') II (Bk)"' IO) , (3.1la) 
k=l 

He IX) (Eg + IXIw)IX) ~ E(X)IX) , (3 .1lb) 

where the symbol lXI denotes the weight of the dual Young tableau, 

N 1(-1') 

1>-'1 = :L knk = :L >-~. (3.12) 
k=l k=l 

Multiplicity of the n-th level for the system whose energy eigenvalue is Eg + nw is equal to 
the number of partitions p(n; N), i.e., the number of the different dual Young tableau X whose 

weight is equal ton, #{XjiXI = n }. This is exactly the same result as is well known for the 
N harmonic oscillators. 

Independence of the states, which correspond to two different dual Young tableaux, X and 
11-' respectively, can be confirmed as follows. First, we remark that the order of the creation 
operators dose not matter because of the mutual commutativity of the creation operators, 

[BA, Bl] = 0, n, m = 1, 2, .. -, as has been confirmed in Section 2.1. In the harmonic oscillator 

limit, a -t 0, BA is expressed as 

BA a~O TE(diag(pl + iwxl,Pz + iwxz , ... • PN + iwxN)r 

N t n _ 2JaJ), n- 1,2,· (3.13) 
j=l 

Hence two different indices >.' and 1/ generate two different polynomials of the com·entional 

creation operators for the quantum harmonic oscillators , {a}lj = 1, 2, · ·- , N}. Homogeneous 
polynomials with degree n have independent elements whose number agrees with the number 
of partitions, p(n; N). Thus we can get all the energy eigenfunctions algebraically by eq. (3.11) 
and hence they form a basis of the Hilbert space of the Calogero model. 

\\"hen we consider the original Calogero Hamiltonian (3.1), we must take it into account 

that the center of mass is fixed at the origin of the coordinate. In this case, the operator B~ 
(and also B 1) reduces to zero: 

N 

TEL+=:Lh! 
k=l 

t ( -i:- + iwxk) = 0. 
k=l UXk 

(3.14) 

3.2. SIMULT4.NEOUS EIGENFUNCTIONS 

This formula means that the indices of the eigenfunctions of the original Calogero Hamiltonian 
(3.1) should be the dual Young tableaux X that meet the following condition, 

or in other words , n1 must be zero, n 1 = 0. Then the eigenfunctions are expressed as 

N 

l>.')calogero = II (Bt)"' IO) , 
k=Z 

(3.15) 

(3.16) 

whose energy eigenvalue is E(X) = Eg + IXIw. This agrees with the result of Calogero [19]. 
Perelomov investigated an algebraic approach to the Calogero's system (3.1a) and succeeded 

in obtaining three kinds of "creation (annihilation)"operators , namely B!.BJ and BJ (and 
their Hermitian conjugates) by direct calculation. However, he did not give higher operators 

BA, n 2 5. The correct formula for these operators was first gi,·en in eq. (2.30a) [76, 77]. 

3.2 Simultaneous Eigenfunctions 

\Ve have obtained an algebraic formula for the energy eigenfunctions of the quantum 
Calogero model [76, 77]. Since the series of the eigenfunctions contains the same number of 
independent elements as that of the non-interacting quantum harmonic oscillators, they span 
the Hilbert space of the quantum Calogero model. Howe,·er, they do not form an orthogonal 
basis of the Hilbert space because of the large degeneracy of its Hamiltonian. A com·en­
tional approach to the construction of the orthogonal basis is the Gram-Schmidt method. The 
Gram-Schmidt method compels us to compute many complicated multiple integrals and seems 
hopeless. Instead, we shall consider the diagonalization of nontrivial higher conserved operators 
of the model and remO\·e the degeneracy, as has been done for the wave functions of the hydro­
gen atom. The eigenvalues corresponding to the conserved operators are expected to uniquely 
identify the elements of the orthogonal bas is obtained as simultaneous eigenfunctions. 

From the study in Chapter 2, we know the commuting consen·ed operators of the Calogero 
mode l [76, 80]. They take the forms 

(3.17) 

where theN x N operator-valued matrices L +and L- are defined by eq. (2.6) in Chapter 2. The 
Hamiltonian corresponds to the first conserved operator 11, i.e., 2Hc = 11. Thus we ha,·e a set 
of independent operators that are simultaneously diagonalizable. The basis that diagonalizes 
them all simultaneously is expected to be the orthogonal basis of the quantum Calogero model. 
As a first step of the research of the orthogonal basis of the model , we shall diagonalize the 
first nontrivial conserved operator 12 , and obsen·e how the degeneracy disappears. 

First, we consider how to obtain the matrix representation of the operator 12 on the basis 
given by the algebraic formula in the pre,·ious section [76, 77]. \\"e denote the ground state 
of the model by IO) 1. The eigenfunction of the quantum Calogero model is labeled by a dual 
Young tableau X (3.9). The corresponding eigenfunction is expressed as 

N 

1>-')t = II (Bk)"'IO)t· (3.18) 
k=l 
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The suffix 1 of the ket in the abo,·e expression means that the state fX)t diagonalize the first 
conserved operator i

1
, or equivalently, the Hamiltonian of the Calogero model. The operator, 

B~ = TE(L+)", is the power-sum creation operator. We recall that the eigenva~u e of the first 
conserved operator, or equivalently twice the energy etgenvalue, of the state f..\ )t ts gtven by 

[19, 76, 77] 
(3.19) 

where the symbol fXI is called the weight of the dual Young tableau (3. 12). Any ~wo states 
with different weights are orthogonal. This means that a higher consen·ed operator I2 is block­
diagonalized by the energy eigenfunction basis and each block consists of the states of the same 

weight. 
In the calculation of the matrix elements on the basis (3.18), we shall utilize the fact that 

the operator 0 A = TEAL-, where A is an arbitrary N x N operator-valued matrix, annihilates 
the ground state, i.e., 0Af0) 1 = 0. \Ye use the generalized Lax equations obtained in Chapter 

2 [76, 77] to derive the following formulae: 

i2]0)t w2 N((a -1)- NarfO)t ~ E2(0)f0)1, (3.20) 

N n.-1 

nw L (L +r+t L- + nw2a L BLB~-k 
j,k=l k=l 

+nw2(2Na- (n + 1)(a- 1))B~, 

2nmw2 B~+m· 

(3.21) 

(3 .22) 

By using the above formulae, we can express the operator i 2 in the form of a c-number-valued 
matrix. For instance, the block with weight 2 is expressed as 

j [ ]2) 1 ] _ [ E2(0)- 6w2(a -1) + 4w
2
Na 2w

2
a ] [ ]2) 1 ] 

2 ]12)1 - 2 E2(0)-4w2(a-1)+4w 2Na f1
2
)t · 

(3.23) 

We have implicitly introduced above a lexicographic order among dual Young tableaux. That 
is , two different tableaux X and p.' with the same weight are denoted by X > p.' if the first 
non-vanishing dif!'erence ,\~ - p.~ is positi,·e. 

Similar calculat ions lead us to t he (n+1)-th block of the operator i 2, M 2 (n), on the weight-n 
basis in the lexicographic order denoted by D 1(n) = [ln) 1, fn- 1, 1) 1, · · ·, ]1")t]7

: 

(3.24) 

Diagonalization of the matrix J\!2 (n) gives the eigenvalue E2 (X) and the corresponding eigen­
vector E 2(X). Then the following relation must hold among E2 (X), E 2 (X), J\!2 (n) and i 2: 

i2T,~ 1 D 1 (n) T;;' M2(n)TnT,.- 1 D 1 (n) 

T,. 

diag[E2(n), E2 (n -1, 1) , · · ·, E2 (1")]T,~ 1 D 1(n), 

[E 2(n), E 2 (n, n- 1), · · ·, E 2(1")]. 

(3.25) 

(3.26) 

\\'e denote by ]X)2 the weight-n states that diagonalize the operator i 2. The equality (3.25) 
shows us their forms as 

(3.27) 
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where the suffices 2 of the kets in the above ex_rression mean that the state f..\') 2 diagonalizes 
the first two commutmg cons_erv~d operators, I1 and i 2 . In particular, the elements of D

2
(n) 

that have no degeneracy m £2(..\) turn out to be the elements of the orthogonal basis of the 
model. 

After a straightforward but lengthy calculation, we can obtain the eigenvalues of j 2 for up 
to the seventh block (corresponding to weight 6). The eigenvalue E2 (X) is expressed as 

- 1 2 ( 1 ( ) 2 I(A') N ) 
E2(..\) = 4w 4N (a -1)- Na + (1- a+ 2Na)fXf- a {;(..\~f + {;(..\d . (3.28) 

Here, Ak is the k-th element of the Young tableau..\, which is the dual of the dual Young tableau 
X defined by 

N 
..\k Lni, (3.29a) 

j=k 

nk = ,\k- ..\k+t, AN+t~O. (3.29b) 

Namely, the dual Young tableau X is obtained by exchanging the rows and the columns of 
the Young tableau ..\ and vice versa. The eigenvalue E2 (X) removes most of the degeneracy. 
Indeed, there ts no degeneracy up to the states with weight 5. We can obtain the expres­
stons for the orthogonal eigenfu~1ctions fron:_ the simultaneous eigenvectors corresponding to 
the nondegenerate etgenvalues £ 1 (X) and E2 (X). However, there still remains deaenerac,·. 
For example, two pairs o~ dif!'ere!1t tableaux, {4, 12}, {32 } and {3, 13}, {23} respecti:ely gi,~e 
t_!1e s~me etgem:alues of It and h. Since ~qs. (3.19) and (3.28) suggest that the eigem·alues 
E,.(..\) of the htgher conserved operators I ,., m ::=: 3, involve the higher-order power sums of 

I 

the Young tableau, p,.(..\) = 2:(..\k)"', remaining degeneracy must be completely removed b,· 
k=l -

their diagonalizations. 

Generally speaking, the eigenfunctions of the quantum Calogero model (3.18) are gi,·en 
by products of symmetric polynomials and the ground state wa,·e function. We denote the 
symmetric-polynomial parts of the energy eigenfunctions by 

[X],~(xf..\'), 
(xfO), · 

The meaning of the suffix 1 in the above expression is the same as that of the suffix for the 
ket fX)t. The coordinate representation of eigenfunction (3 .18) is expressed in terms of power 

N 

sums p,. (x,, · · · ,xN) = L xz. The first se,·en eigenfunctions are 
k=l 

[0], = 1, 

[1] 1 = 2iwp 1, 

[2], = -4w2p2 + 2wN + 2wN(N- 1)a, 

[12]1 = -4w2(pt) 2 + 2wN, 

[3] 1 = -8iw3p3 + 12iw2 ( 1 + a(N -1)) p1, 

(3.30a) 

(3.30b) 

(3.30c) 

(3.30d) 

(3.30e) 
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[2 , 1)t = -8iw3 p2p1 + 4d((!V + 2) + aN(N -l))pt , 

[13 )t = -8iw3 (p 1)
3 + 12iw2NPt· 

(3.30f) 

(3.30g) 

Note that coefficients of the power sums depend on the particle number N and the parameter 

th t determines the coupling constant. We denote polynomial parts of the s1multaneous a a _ 
eigenfunctions for 11 and !2 in a similar way by 

[Xh = (xiA2)2. 
(x!O)! 

Then the first seven of them are expressed by the basis [X)t as 

[0]2 = [D)t = 1, 

[1]2 = [1] 1 = 2iwpt , 

[2h = [2)t- [12)t = -4w2(p2 - (pt)2) + 2waN(N- 1) , 

[12h = [2)t + a[12]1 = -4w2(p2 + a(p1?) + 2wN(Na + 1) , 

[3h = 2[3)t- 3[2, 1)t + [1 3]1 

= -8iw3 (2p3 - 3p2p1 + (pt) 3
)- 12iw2a(N- 1)(N- 2)p1 , 

[2 , 1]2 = [3]1- (1- a)[2, 1)t- a[1 3)t 

= -8iw3 (p3 - (1- a)p2p1 - a(pt) 3
)- 4iw2(1- a)(N- 1)(Na + 1)p1 , 

[1 3]2 = 2[3)t + 3a[2, 1)t + a2[1 3)t 

= -8iw3 (2p3 + 3ap2p1 + a2(p1?) + 12iw2(a2 N
2 + 3aN + 2)P1· 

(3.31a) 

(3.31b) 

(3.31c) 

(3.31d) 

(3.31e) 

(3.3lf) 

(3.31g) 

Since the eigenvalues E1 (A') and E2(X) for the above seven symmetric polynomials have no 
degeneracy, they are indeed the simultaneous eigenfunctions of all the commut tng, conserved 
operators, 1n and hence In, n = 1, 2, · · ·. In this sense, they should be denoted by [A loo · These 
are the first seven of a new series of orthogonal symmetnc polynOimals w1th respect to the 

inner product: 

N 

{" II dxk II lxk- xd2" exp( -wx2)[A']oo[l/]oo 
-oo k=l 1'3!k<l-:!N 

Nx6>.·~·· (3.32) 

Thus they should be regarded as a deformed multivariable generalization of the Hermite poly­
nomials. 

\\"e notice that the eigem·alue formula for the commuting conserved operator h (2.13b), 

N 

E2 (A) = 4w2 L ((Ad+ a(N + 1 - 2k)Ak), (3.33) 
k=1 

"·hich can be deriwd from eqs. (2.13) , (2.21), (3.19) and (3.28), has the same form as that of 
the eigenvalue of the Sutherland Hamiltonian on the Jack polynomial [69, 73]. llloreover, the 

3.3. SUMMARY 

first seven orthogonal symmetric polynomials (3.31) are cast into the following forms, 

[0] 00 = 1, 
[1] 00 = 2iwm1, 

2 ( aN(N-1)) [2] 00 = 8w m1' +- , 
2w 2 

[1
2
]00 = -4w

2
((1 + a)m2 + 2am1'- .!_N(Na + 1)) 

2w ' 

[3] _ 48. 3 ( 1 (N- 1)(N- 2) ) 
00 - - 1w mp + 

2
w a 

2 
m 1 , . 

[2, 1]oo = 8iw
3

((2a + 1)m2,1 + 6am 1,- ;j-(1- a)(N- 1)(Na + 1)m1) , 
_w 
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(3.3-la) 

(3.3-lb) 

(3.3-lc) 

(3.3-ld) 

(3.3-le) 

(3.3-lf) 

[1
3

]00 = -8iw
3

((a
2 + 3a+ 2)m3 +3a(a+ 1)m2,1 +6am 1,- 2~(a2N2 + 3aN + 2)m

1
) , 

(3.3-lg) 

where m>. denotes the symmetrized monomial, or in other words, the monomial symmetric 
polynomial whose definition is 

CTESN, distinct 
permutations 

The above expansions show the triangularity, which is also observed for the Jack polynomials. 
The meaning of this observation will be discussed in more detail in the next chapter. These 
observation strongly suggests that there must be a similarity between the Jack polynomials and 
the unidentified orthogonal symmetric polynomials associated with the Calogero model. To be 
concrete, the observation of the eigem·a!ue formula (3.33) and the triangularity (3.34) sho"· the 
essential part of the definition of the simultaneous eigenfunctions of all the commuting consen·ed 
operators of the Calogero model. Based on the results of this section, "·e shall introduce the 
definition and investigate the properties of the simultaneous eigenfunctions in the next chapter. 

3.3 Summary 

We ha,·e studied an algebraic construction of all the eigenfunctions of the Calogero Hamil­
tonian with the help of the quantum La' formulation. By the factorization of the Hamiltonian , 
we have obtained the ground state "·a,·e function. sing the power-sum creation operators 
which has been obtained in Chapter 2, we ha,·e formulated an algebraic method to construct 
the eigenfunctions of the Calogero model. From the number of independent eigenfunctions, 
we have confirmed that the eigenfunctions form the basis of the Hilbert space of the Calogero 
model. \Ve ha,·e also reproduced the result for the original Calogero model by fixing the center 
of mass at the coordinate origin. Thus we have completed Perelomov's dream of the algebraic 
construction of the eigenfunctions of the Calogero model. \\'e have also considered a con­
struction of the orthogonal basis of the Calogero model by diagonalizing mutually commutin_g 
conserved operators. \Ve have direct ly diagonalized the first nontrivial consen·ed operator !2 
using the energy eigenfunctions with weights up to 6. The results indicate a general formula 
for the eigenvalue of 12. In addition , we ha,·e presented explicit expressions of the first se,·en of 
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the unidentified orthogonal symmetric polynomials associated with the Calogero model. Fr~m 
I. · f f tl 11-e1·ght function of the inner-product , we ha1·e concluded that the se1 en the exp JCJt arm o 1e . . 

1
. 

· ·fi d h 1 etric polynomials should be regarded as multJvanable genera Jza-umdentJ e art ogona symm . 
· f h H "te polynomials From the eigenvalue formula for the commutmg conserved tJons o t e erm1 · . · 1 · 

I d the expansion of the explicit forms w1th respect to the monom1a symmetnc 
operator 2 an · · 1 d 1 "d · fi d · 1 b e ved a similarity between the Jack polynom1a s an t 1e um ent1 e functwn, we 1ave o s r . . d 1 "d ·fi 

I t · olynom"1ais This observation give us a cruc1al hmt towar t 1e 1 ent1 -orthogona symme nc P · . . 0 · 
t . f the orthogonal sy·mmetric polynomials assoc1ated w1th the Calogero model. etalied 

ca Jon o . d fi . · · t fa m d 
mathematical properties of the polynomials , such as the1r e 111t10n m a compac r an 

their formulation , are to be investigated in the next chapter. 

Chapter 4 

Orthogonal Basis 

Exact solutions for the Schriidinger equations have provided important problems in physics 
and mathematical physics. i\lost of us have studied the Laguerre polynomials and the spherical 
harmonics in the theory of the hydrogen atom, and the Hermite polynomials and their Rodrigues 
formu la in t he theory of the quantum harmonic oscillator . The former is also a good example 
that shows the role of conserved operators in quantum mechanics. The hydrogen atom has 
three, independent and mutually commuting conserved operators, namely, the Hamiltonian , 
the total angular momentum and its z-axis component . The simultaneous eigenfunctions for 
the three consen·ed operators give the orthogonal basis of the hydrogen atom. A classical 
system with a set of independent and mutually Poisson commuting (im·olutive) consen·ed 
quantities whose number of elements is the same as the degrees of freedom of the system can be 
integrated by quadrature. This is guaranteed by the Liouville theorem. Such a system is called 
the completely integrable system. Quantum systems with enough number of such consen·ed 
operators are analogously called quantum integrable systems. The hydrogen atom is a simple 
example of the quantum integrable system. 

Among the var ious quantum integrable systems, one-d imensional quantum many-body sys­
tems with im·erse-square long-range interactions are nOll" attracting much interests of t heoretical 
physic ists. Of the 1·arious integrable inverse-square-interact ion models, the quantum Calogero 
model [19] has t he longest history. Its Hamiltonian is expressed as 

( 4.1) 

where the constants N, a and w are the particle number, the coupling parameter and the 
strength of the external harmonic well respecti1·e!y. The momentum operator Pi is giYen by 

a 
a partia l differential operator , Pi = -i-. In Chapter 2, 11·e have confirmed that the model 

OXj 

is a quantum intearable s1·stem in the sense that it has sufficient number of independent and 
mutually commut~1g con;eJTed operators [62, 76- 78, 80]. On the other hand , the Sutherland 
mode l [72, 73], wh ich is a one-dimensiona l quantum integrable system with inverse-sine-sq uare 
interactions, 

- 1 N 2 1 N a2 - a 
Hs = - ""'P · + - L 2 , 

2 L 1 2 . sin (x · - X k) 
J;J J ,k;J 1 

(4.2) 

j#k 
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has been t horoughly invest igated since its orthogonal basis was known to consist of the J ack 
symmet ric polynomials [36, 50, 69]. T he quant um Lax formulatwn and t he Dunk! operato r for­
mulat ion (exchange operator fo rmalism) showed t hat these two models share the same algebrmc 
structure [13 , 14, 34, 35, 62, 76-78, 80]. We have a lso observed in Chapter 3 that the first seven 
simultaneous eigenfunct ions of the commuting conserved opera tors of t~1e Calogero model and 
the Jack polynomials have a common property, namely the t n angulan ty w1th respect to the 
dominance order [69] . T hese facts st rongly suggest some s imilarities in the structures of the 
Hilbert spaces of the Calogero and the Sut herland models. In order to clanfy th1s problem , we 
shall apply a naive approach that we use in the study of the hydrogen atom to the quantum 
Calogero model and study the deformed mult ivariable extension of t he Herm1te polyn01mals, 
namely, the Hi-J ack (hidden-Jack) symmet ric polynomials [79, 83, 84, 86, 87]. . . 

The J ack symmetric polynomials are uniquely determined by three propert1es [50, 69]. Fmt, 
they are the eigenfunctions of the differential opera tor tha t is derived from the Hamiltonian 
of the Sutherland model. Second , they possess triangula r expanswns 111 monom1al symmetnc 
polynomials with respect to the dominance order. And last, t hey a re properly normalized. For 
detail , see eq. (4.38). Quite recently, Lapointe and Vinet discovered the Rodrigues formula 
for the Jack symmetric polynomials using the Dunk! operator for the Sutherland model [4 2] . 
Here we shall extend their results to the quantum Calogero model and give the Rodrigues 
formula for the Hi-Jack symmetric polynomials [83, 84] . Through the Rodrigues formu la , we 
shall also investigate the properties of the Hi-Jack symmetric polynomials and compa re them 
with the basis of the model that was given by the quant um Lax formula tion [76 , 77] in Chapter 
3 and by the Dunk! operators [17, 18] . The algebraic const ruction of t he eigenfunctions for the 
Hamiltonian (t he first conserved operator) of the quantum Calogero model has already been 
given. Thus the Hi-Jack symmetric polynomials must be linear combina tions of them. We shall 
specify the linear combinations t hat relate the Hi-Jack polynomials and the eigenfunctions of the 
Hamiltonian given before [17, 18, 76, 77] . We also want to see the relationships and simila ri t ies 
between the J ack polynomials and the Hi-Jack polynomials. A proof of the ort hogonality of 
the Hi-Jack polynomials is also an important problem. We shall present clear answers to these 

questions. 
The outline of this chapter is as follows. In Section 4.1 , we summarize and reformulate 

the results of the quant um Lax and the Dunk! operator formulations for the Calogero and 
Sutherland models. We shall clarify the common algebra ic structure of the models. The Jack 
symmetric polynomials a re a lso int roduced . In Sec tion 4.2, we present t he Rodrigues formula for 
t he Hi-Jack symmetric polynomials and int roduce some propos itions that guarantee the resul ts. 
Some propert ies of the Hi-J ack polynomials such as integrali ty, t riangularity, orthogona li ty 
and relat ionships wit h t he J ack polynomials are also presented. In Sect ion 4.3 , we prove the 
proposit ions. And in the final section, we give a brief summary. 

4 .1 Models and Formulations 

In our deri1·at ion of the Rodrigues formula for the Hi-Jack symmetric polynomials , we do 
many computat ions im·olving the Dunk! operators for the Caloge ro model. We a lso compare 
t he Hi-J ack polynomia ls wi th the Jack polynomials and wi th the bas is of the Calogero model 
given by the quantum La:x form ulation in Chapter 3. Thus we need a summary of the Calogero 
model, the Sutherland model, and the quantum Lax and t he Dunk! operator formulations. 
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First, we reform ulate the q uantum Lax formulation and the Dunk! operators for the Calogero 
model. The Lax matn ces for theN-body system are gi1·en by N x N operator-valued matrices. 
To express them, we ha1·e to introduce two operator-valued matrices: 

(-L3a) 

(-1 .3b) 

where j, k ~ 1, 2, · · ·_ , N . T he above L-mat rix is for the (rational) Calogero-:d ose r model (1.20) 
whose Ham!l to man lS obtamed by taking w = 0 of the Calogero model (4. 1) or t he rational 
limi t of the Sut herland model (4.2). The Lax matrices for the Calogero model are 

L- L +wQ, 
'+ 1 - -L = ---

9 
(L - wQ). 

_w 

( -l A a) 

(4.-lb) 

In eqs. ( 4.3) and ( 4.4) above, we have in t roduced different normalizat ions from those mat rices 
in Chapter 2. We have a lso in t roduced accent marks. They a re just for convenience of late r 
discuss ions in t his chapter . T hen t he Hamiltonian (4 .1 ) is expressed by the above Lax matrices 
as 

He wTEL+L-+ ~Nw(Na+ (l -a) ) 
wTEL+L-+Eg, (-1.5) 

N 

where T E denotes a sum of a ll the matrix elements , T E A = L Aij , and Eg is the ground state 
i,j=l 

energy. Note t hat the first term of the r. h. s. of eq. (4.5) is a no nnegati1·e Hermit ian operator. 
T hus the ground state is t he so lution of t he following equat ions, 

N 

L Ljk¢g = 0, for j = 1, 2, · · · , N => ifc¢g = EgJ,g. (-16) 
k=l 

The ground state wa,·e funct ion is the real Laughlin wa1·e function: 

1 N 
¢g= IT lxj - xklaexp(-?w 2: xJ). 

l$j<k$N - j= l 

(-1. 7) 

A short note might be in order. The phase of the di ffe rence product of the above rea l Laughlin 
wa1·e function, which determines t he statist ics of t he pa rt icles, or in other words, t he svmmetn · 
of all the eigenfunctions, can be a rbit rary. \Ye can assign any phase factor to all the e~chang;s 
of pa rt icles . Howe1·er , we must in t rod uce a phase facto r to t he defi nit ion of the Dunk! operators 
[80], as has been discussed in Chapter 2. To am id unnecessa ry complex ity, 11·e fix t he phase at 
un ity. 

The eigenfunc tion of the Calogero model is fa torized into an inhomogeneous symmet ri c 
polynomial and the ground sta te wa1·e function. For conve nience of im·est igations on the 
inhomogeneous symmetric polynomia ls, we redefine the Lax mat rices (4.4) by the follmring 
similari ty transform ation: 

o~ 1 L-¢g· 

d>~ 1 L + og· 
(-!.Sa) 

(-l .Sb) 
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Any operator with a hat, 6, is r~lated to an operator 0 by the similarity transformation using 

the ground state wave function </>g, 

0 

6 

(4.9a) 

(4.9b) 

A set of mutually commuting conserved operators of the Calogero model Unln = 1, 2, · · · , N} 

is given by 
(4.10) 

The Hamiltonian He is equal to w!1 + Eg· We regard the first conserved operator J, as the 
Hamiltonian of the Calogero model. The Heisenberg equations for the L- and L + matrices are 
expressed in the forms of the Lax equation [76]. 1\loreo,·er, we have more general relations for 

a class of operators, 
(4.11) 

where the subscript w means the vVeyl ordered product. The class of operators naturally 
includes the Hamiltonian, He= wV1

1. The generalized Lax equations are 

[vPm' L-] 
[vPm,L+] 

[L-, Z;']- p[(L-)m(L+)P-']w , 

[L+ ,z;] +m[(L-)m-I(L+)P]w, 

(4.12a) 

(4.12b) 

where the symbol Z;' is an N x N operator-valued matrix that satisfies the sum-to-zero 

condition: 
N N 

'L,(Z;')ik = 'L,(Z;')ki = 0, fork= 1, 2, · · ·, N. (4 .13) 
j=I j=I 

As we have confirmed in Chapter 2, the generalized Lax equations exhibit that the operators 

(4 .11) satisfy the commutation relations of the lV-algebra [77, 78]. 
T he operators with m = 0 are important in the construction of the eigenfunctions of the 

Hamiltonian , because they sat isfy 

(4.14) 

Thus the operators VP0 play the same role as the creation operator in the theory of the quan­
tum harmonic oscillator. We call these mutually commuting operators VP0 power-sum creation 
operators, whose meaning has been explained in Chapters 2 and 3. 

Successive operations of the power sum creation operators generate all the eigenfunctions 
of the Hamiltonian, which are labeled by the Young tableaux. The Young tableau A is a 
non-increasing sequence of N nonnegati,·e integers: 

Then the polynomial part of the excited state </>;. is given by [76, 77] 

(\',~);."( I~L ,);.,v_,-;.,v ... (l',o)-1,--1, . 1 
A" 

II (VpO),\;-,\k+l . 1, 
p=I 

(4.15) 

(4.16) 
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where AN+I = 0 and the eigenva lue for the first consen·ed operator is 

(4.17) 

It is nontrivial that.</>,~ is indeed an inhomogeneous symmetric polynomial. We shall prO\·e 
It Ill Section 4.~. N?te that the eigenfunction of the original Hamiltonian He (4.1) and its 
eigemalueaie </>,~ = </>g</>;. and wE, (A)+ E8 . These eigenfunctions gi,·e the complete set of the 
eigenfunctiOns. However , they are not orthogonal because of the remaining large deuenerac,·. 

Usmg the Dunk! operator formali sm, we can do an analogous im·estigation on th; Calog~ro 
model. The Dunk! operators for the model are 

where Ktk is the coordinate exchange operator. The operator J(1k has the properties 

Ktk = Kkt, (Ktk? = 1, K1~ = Ktk. K1k · 1 = 1, 

KtkAt = Akf<tk, f<tkAi = AiJ(Ik, for j # l, k, 

(.USa) 

(4.18b) 

(.USc) 

(4.19) 

where Aj is either a partial differential operator _!!__ (or equivalentlv a momentum operator EJx. J, 

Pi), a particle coordinate Xj or a coordinate excha;ge operator J( .k k = 1 2 ... N k ...t 1· Th 1' ' , , , r . 
e abO\·e properties of the coordinate exchange operator are also expressed as the action on 

a multi,·ariable function: 

(I<tkf)(x,, ... ,Xt, ... ,Xk, .. · ,XN) = j(x 1, • • • ,Xk, · · · ,x1, • • • ,XN)· (4.20) 

Note that the action on the ground state of the above Dunk! operators has already been remO\·ed 
by the similarity transformation (4.9) . The Dunk! operators satisfy the relations, 

(al, Om) = 0, [aJ, a!nJ = 0, 
N 

[at, a;,] = Otm( 1 +a L I<tk) - a(1- OtmWtm, 
k=I 
kfl 

[dt, dm] = a(dm- dt)Ktm, 

O't·1 = 0. 

(4.2la) 

(4.2lb) 

(4.2lc) 

(4.2ld) 

:\.s we have mentioned, the phase factor of the difference product part of the ground state wa,·e 
function can be arbitrary. This phase factor affects the definition of the Dunk! operators and 
coordinate exchange operators with hat , i.e. , a1, aJ, d1 and ktk· \\'e ha,·e to introduce a phase 
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factor in the defining relations of the coordinate exchange operators (4.19), the action on the 
multivariable functions (4.20) and the commutation relations of the Dunk! operators (4.21), 
as we have seen in Chapter 2 [80]. This modification is naturally introduced by the inverse of 
the similarity transformation of the Dunk! operators (4.9b). Using the above relations, we can 

confirm that the eigenfunctions of the Hamiltonian h are given by [17, 18] 

I: (o:~<l)l>.' (o:~<2/' · · · (o:~(N/" · 1 
a:ES,v dis~inct 

permutat•on 

m>.(o:l, at · ··, o:~v) · 1, 

E1(>.)cp>., 

where m>.(x 1, x2, · · ·, XN) is a monomial symmetric polynomial [50 , 69] defined by 

o-ES,v: distinct 
permutation 

(4.22a) 

(4.22b) 

(4.23) 

Note that the summation over SN is performed so that any monomial in t he summand appears 
only once. In terms of the Dunk! operators, we can express the commuting conserved operators 

In (4.10) and the operators vpm (4.11) as 

N 

I,. ~(dt)"lsym' n = 1, 2, · · ·, N, (4.24) 

N 

v.m = ~[(atlm(o:))PJwjsrm' (4.25) 

where the symbol J means that the operand is restricted to symmetric functions [80] . Then 
Sym 

the power sum creat ion operators are expressed by 

(4.26) 

where Pn (x 1, x2, · · · , XN) is the power sum symmetric polynomial of degree n [50, 69]. This 
shows that two kinds of eigenfunctions (4 .16) and (4.22) are related by the transformation 
between the power sum symmetric polynomials and the monomial symmetric polynomials. 

Next, we consider the quantum Lax and the Dunk! operator formulations for the Sutherland 
model. The Lax matrix for the Sutherland model is 

(4.27) 

The abo,·e Lax matrix gives the Hamiltonian of the Sutherland model by 

(4.28) 
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where Eg is the ground state energy. As is similar to eq. ( 4.6), the ground state of the Sutherland 
model satisfies the following equations , 

N 

"'L1k?fig = 0, for J. = 1, 2, · ·. N => H- .i. - • ,!J-L.., ' S'i'g- 'g -rg > 
k=1 

(4.29) 

because the first term of the r.h.s. of eq. ( 4.28) is a nonnegative operator. The ground state is 
given by the trigonometric Jastraw wave function: 

?fig= II lsin(xj-Xk)l". 
1$j<k$N 

(4.30) 

The phase factor of the above trigonometric Jastraw wa,·e function can be arbitrary. By the 
change of the variables , 

exp 2ixi = Zj, j = 1, 2, . . . , N, 

the Hamiltonian of the Sutherland model (4.2) is transformed to 

I . a T 
11·1ere p, . = -1-. he ground state wave function (4.30) is transformed to 

J azj 

N 
.i. II I . _ I" II -ta(N-1) 'l'g = z1 Zk Zj . 

1'5j<k$N j=l 

(4.31) 

(4.32) 

(4.33) 

Here we do not mind the difference of the scalar factor of the ground state wave function. The 
similarity transformation of the above Hamiltonian yields 

(4.3~) 

The above projected Hamiltonian can be deri,·ed from the Lax matrices (4.3). \\"e define the 
"ground state" for the L-matrix ( 4.3a) by the solution of the equations, 

N 

L Ljkt:;• = 0, for j = 1, 2, · · · , N, (4.35a) 
k=1 

and their solut ion is 

(4.35b) 
1$j<k$N 

The phase of the abO\·e Jastraw wa,·e function also can be arbitrary. The effect of the phase 
to the Dunk! operators for the Sutherland model, which can be made explicit by the similarity 
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transformation, is also the same as that of the Calogero model. By the similarity transformation 

using the above Jastraw function, we define L and Q as 

L = t;-•Lt;•, 
Q = t;-•(Jt;•=Q. 

(4.36a) 

(4 .36b) 

Then we get the projected Hamiltonian (4.34), whose variables are not {zi} but {xi} by 

Hs- tg 2TE(QLj2 

(4.37) 

From now on, we take I 2 as the Hamiltonian of the Sutherland model. The Jack symmetric 

polynomials J>.(x ; 1/a) are uniquely defined by [59] 

N 

IzJ>.(x; 1/a) = :L(Ak + a(N + 1- 2k)Ak)l>.(x; 1/a) , (4.38a) 
k=l 

J>.(x; 1/a) = L V>."(a)m"(x), 

vu(a) = 1, 

0 
1-'~). 

(4.38b) 

(4.38c) 

D 
where x = (x 1,x2, ... ,xN) and A and J1. are the Young tableaux (4.15). The symbol ::0 is the 

dominance order among the Young tableaux [50, 69]: 

D N N l l 

J1.9 ¢'} L Jl.k = L Ak and L Jl.k:::; L Ak for alii . (4.39) 
k=l k=l k=l k=l 

Note that the dominance order is not a total order but a partial order. A total order among 
the Young tableaux is given by the lexicographic order: 

N N 

J1. :::; A ¢'} L Jl.k = L >.k and the first non-vanishing difference >.1 - J1.1 > 0. (4.40) 
k=l k= l 

Commuting conserwd operators of the Sutherland model are given by 

In= TE(QL)". ( 4.41) 

We have similar relations to the generalized Lax equations for the Calogero model (4 .12) , 

where the operator u~ is defined by 

[L, Y~j- q[L1Qq- 1]w , 

[Q, Y~] + m[L1Qq]w, 

u; = TE[L1Qq]w. 

The operator-Yalued matrix l~ also satisfies the sum-to-zero condition, 

N p.: 

:L(l '~)ik = :L(l'~)ki = 0, for k = 1, 2, · · · , N. 
j=l i=l 

( 4.42a) 

(4.42b) 

(4.43) 

(4.4~ ) 
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Since eqs . (4.12) and (4.42) has the same form , we notice the correspondence between the 
quantum Lax formulation of the Calogero model and that of the Sutherland model: 

(4.45) 

This means that the two quantum Lax formulations for the Calogero and Sutherland models 
give two different representations of the same commutator algebra. 

The same situation can also be observed in the Dunk! operator formulation. \\"e introduce 
the Dunk! operators for the Sutherland model whose action on the ground state is remo,·ed in 
a similar way to deal with the Dunk! operators for the Calogero model: 

These Dunk! operators satisfies the following relations, 

['VI, 'V m] = 0, [x1, Xm] = 0, 
N 

['VI, Xm] = 6/m( 1 +a L J(lk) - a(l- 6/m)K/m, 
k=l 
k;tl 

[Dt, Dm] = a(Dm- Dt)Ktm, 
\?1 · 1 = 0, 

(4A6a) 

(4.46b) 

( 4.46c) 

(4A7a) 

(4.47b) 

( 4.4 7c) 

(-L47d) 

which are completely the same as those of Dunk! operators for the Calogero model (4.21). 
Commuting conserved operators (4.41) are expressed by the Dunk! operator as 

N 

In = L(Dt)"l , n = 1, 2, · · ·, N. 
l=I Sym 

(4.-!8) 

Thus we notice the correspondence between the two sets of Dunk! operators: 

(4A9) 

i\loreover, in the limit w -7 oo, the Lax matrices and the Dunk! operators for the Calogero 
model reduce to those for the Sutherland model. Thus our theory for the Hi-Jack symmetric 
polynomials described by the Dunk! operators for the Calogero model contains the results for 
the Jack symmetric polynomials written by the Dunk! operators for the Sutherland model. 

\Ve have summarized the quantum Lax and the Dunk! operator formulations for the Calogero 
and Sutherland models. They give two different representations of the same commutator alge­
bra. The quantum La, formulation and the Dunk! operators for the Calogero model include 
those for the Sutherland model as a special case w -7 oo. Thus we can say that the theory 
of the Calogero model and the Hi-Jack polynomials is a one-parameter deformation of that of 
the Sutherland model and the Jack polynomials. In the following section, we im·estigate the 
Hi-Jack polynomials using the Dunk! operators. 
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4 .2 Hi-Jack Symmetric Polynomials 

Following t he defi nit ion of the J ack symmetric po lynomials (4.38), we defin e t he Hi-Jack 

symmetric polynomials j,( x; w, 1/a). 

Definition 4. 1 The Hi-Jack polynomials j >, (x ; w, 1/a) a1·e uniquely specifi ed by the following 

four conditions: 

I 1j,(x; w, 1/a) 

j,( x ; w, 1/a) 

N 

I: >.k]>.(x ; w, l /a) 
k=l 

E1 (>.)j>.( x ; w, 1/a), 
N 

I:(>.%+ a(N + 1 - 2k)>.k )J>.( x ;w, l /a) 
k= l 

E2(>.)j,( x ; w, l /a), 

I: w,~(a , 1 /2w)m~(x), 
D 

~"'' or 1~1<1'1 

w,, (a, l /2w) = 1. 

(4.50a) 

(4 .50b) 

(4.50c) 

(4 .50cl) 

Here ). = {>.1 ~ >.2 ~ ··· AN ~ 0} E YN is a Young tableau and YN means the set of all the 
N 

Young tableaux. The symbol J>.l is the weight of the Young tableau, J>.J = I: Ak · 
k=l 

The first two formulae (4.50a) and (4 .50b) indicate t hat t he Hi-Jack polynomials a re the si­
multaneous eigenfunctions of t he first two conserved operators of the Calogero model wi th 
specifying their eigenvalue formulae . The t hird property of t he Hi-Jack polynomials (4. 50c) 
is called triangularity. The las t one is normalization. The fi rs t three condit ions are based on 
the observation in Chapter 3. Triangularity of t he Hi-Jack polynomials with respec t to t he 
dominance order plays an essent ial role in the uniq ue identificat ion of t he Hi-J ack polynomials. 
Because of remaining degeneracy, an eigenfunct ion cannot be uniquely ident ifi ed on ly by the 
eigem·alues for the first two out of the N commuting conserved operato rs. However , combining 
the eigenvalues and t riangula rity, we can uniquely ident ify t he Hi-Jack polynomials. 

P ro p osit ion 4 . 2 Let>. and J1. be distinct Young tableaux. If the two eigenvalues for the Young 
tableaux are equal, 

(4.51) 

then we can not define the dominance 01·de1· between the two Young tableaux ). and JJ.. 

The proposition asserts that we can distinguish any two eigenfunct ions wh ich share common 
first two eigenvalues E1 and E2 by t riangula rity of the Hi-J ack polynomials. 

In order to wri te clown the Rodrigues formula for the Hi-Jac k polynomials, it is com·enient 
to introduce the following symbols (cf. eq. (4.18)): 

II aJ, 
jEJ 

(dj, + ma)(d12 + (m + l )a) · · · (dj, + (m + k- 1)a), 

(4.52a) 

(4.52b) 
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where J is a subset of a set {1, 2, · · ·, N} whose number of elements IJI is equal to k, J ~ 
{1 ,2, · · · ,N}, IJI = k. From eq. (4.21c), we can ,-erify an identity, 

l

{iJ) {i j) 
(d; + ma)(di + (m + 1)a) = (di + ma)(d; + (m + 1)a)i ' , 

Sym Sym 
(4.53) 

where m is an intege r. T he symbol IJ where J is some set of in tegers means t hat the operand 
. . Sym 
IS res tnctecl to the space o f the mu lti variable fu nct ions t hat a re symmetric with respect to the 
exchanges of any mcl1ces Ill the set J. T his ident ity guarantees that the operator d does not 
depe nd on t he order of the elements of a set J. The ra ising operators of the Hi- Jack ;~lynomials 
are expressed as 

bt = I: o:jd1,J, fork= 1, 2, · · ·, N- 1, (-1.5-la) 
Js;{l,2, .. ·,N) 

IJI=k 

b;t = o:\o:~ .. . Q:~. (4.5-l b) 

Us ing the raising operators (4.54), we can write clown the Rodrigues formula for the Hi-J ack 
polynomia ls j,( x ;w, 1/a) as 

j,( x ;w, l /a) = C;:1(b;t)>.N(b;t,_l)'N-l-AN ... Wil''-'' · 1, 

with the constant C, gh·en by 

N-l 
C, = II Ck(>.I, >.2 , · · · , >.k+I; a), 

k=l 

where 

(4.55) 

(-1 .56) 

Ck( >.I , >.2 , · · · , >.k+I; a) = (a),,_,k+, (2a + Ak-I - >.k),,_,k+, · · · (ka + >. 1 - >.k),,_,k+, . ( -1.5 7) 

In t he above express ion, the symbol (f3)n is the Pochhammer symbol, that is, (f3)n = (3(13 + 
1) · · · ((3 + n- 1), (f3)o ~ 1. \\"hat we want to prove is summari zed as the following propos it ion. 

Proposition 4 . 3 The symmetl'ic polynomials generated by the Rod1·igues formula (4.55) sat­
isfy the definition of the Hi-Jack symmet1·ic polynomials (4 .50}. 

The first two out of four requ irements (-1. 50) are derived from the following propos it ions. 

Proposit ion 4. 4 

(-1.58) 

Prop osit io n 4. 5 The null opemt01·s ni+ I,J, which are defined by 

nk+I,J = do,J, J ~ {1 , 2, · · · , N}, Ill= k + 1, (-1.59) 

satisf y 

(-1 .60) 
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Proposition 4. 6 

[I2 ,btJI ={bt(211+k+ak(N-k))+ L 9k+1,Jnk+1,J}I . (4.61) 
Sym J~{l,2, .. ·,N} Sym 

IJI=k+l 

Here 9k+l,J is an unspecified nonsingular operator that satisfies 9N+l,J = 0. 

The first requirement directly follows from Proposition 4. 4 . For a while , we forget about 
the normalization constant. From the l.h.s. of eq. (4.50a), we get 

I,(bt)A.V(b"j,_ ,)>-.v-1-AN ... wn>-1-A2 ·1 

=([I,, (bt)>-"(bt_,)>-.v-1->.v ... (bi)>-1->.'] + (bt)>-"(bt_,)>-v-1->.,,· . .. (bi)>.1->.'It) ·l. 

(4.62) 

Because of eq. (4.21d), the second term of the above equation Yanishes: 

N 

I1 · 1 = L a!ak · 1 = 0. 
k=l 

Then using Proposition 4. 4 , we get the expected result : 

I,(bt)A.V(bt_,)>..v-1->..v .. . (bi)A1-A2 ·1 

(
N-l ) 

= 2: k(>.k- >.k+,) + N>.N (bt)A"(bt-,))."_ 1-A" . .. wn>.1->.,. 1 
k=l 

N 
= L >.k(bW·v(bt,_,)A.V-1-A,V . .. wnA1-A2. l. 

k=l 

The second requirement (4 .50b) is shown by induction. It is easy to show it for>.= 0, 

Iz · j 0 (x;w, 1/a) = E2 (0)j0 (x; w, 1/a) = 0, 

(4.63) 

(4.6-l) 

(4.65) 

by using eq. (4.21d) because j 0 (x;w , 1/a) is equal to 1 as a polynomial. By inductive as­
sumption, eq. (4.50b) holds up to >. = {>.1, >.2, · · · , >.k, 0, · · ·, 0}. Then for >. = {>.1 + 1, >.2 + ....___,__... 
1, · · · ,>.k + 1,0 , · · · ,0}, we ha,·e ....___,__... 

N-k 

N-k 

l2bt(bt)>-'(bt_,)>., _1->., ... (bi)>- 1 ->., ·1 = ([~z,bt] +btJz)(bt)>.'(bL)>.'_1->., .. . (bi)>. 1->., ·l 

(4.66) 
From the inductive assumption and Proposition 4. 6, we get 

I2bt(bt)>.'(bt-t)>-•-1->.,. (bi)>.1->., ·1 

( 

k 

= bt £2({>., ,,\z, .. · ,>.k.o, · .. , 0}) + 2~>.1 + k + ak(N- k)) 

X (bt)>.'(bt_
1
)>.,_ 1->.' · · · (bt)>. 1->.1 ·1 

= Ez( {>., + 1, Az + 1, ... , ).k + 1, 0, ... '0} )bt(bt)A' (bt_,)>-,_ 1-A' ... (b"t)A1-A2 . 1t4.67) 
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which completes the proof. 

As byproducts of the proof of the last two requirements of Proposition 4. 3, we notice the 
following results. 

Proposition 4. 7 The expansion coefficients of the Hi-Jack polynomials C>.W>.~(a, 1/2w) are 
polynomzals of a and 1 /2w wzth znteger coefficients. This property is analogous to that stated 
by the Macdonald-Stanley conjecture for the Jack polynomials {41, 50, 69}. 

Proposition 4 . 8 

J>.(al, at·· ·, a~; 1/a) · 1 = J>.(x; w, 1/a). (4.68) 

We also notice the stronger form of the triangularity of the Hi-Jack polynomials (4 .50c). \\"e 
define the "weak" dominance order among the Young tableaux by 

d I I 

J.1.9 ~ L J.l.k :<::: L >.k for alii. (4.69) 
k=l k=l 

Namely, the definition of the dominance order ( 4.39) is given by adding another condition, 
IJ..I = IJ.i.l to the above weak dominance order. The stronger form of the triangularity (4.50c) is 
given by the following formula. 

Proposition 4. 9 

J>.(x;w, 1/a) = ( 
1 ) (1>-1-1~1)/2 

2w W>.~(a)m~(x). 
d 

~<A 
and 1~1=1~1 (mod2) 

W>.>.(a) = l. 

Then the following formula straightforwardly follows from the aboYe. 

Proposition 4. 10 

J>.(x; w, 1/a) = J>.(x; w, 1/a) + 
d 

1•$>. and 11•1<1>.1 
and 1~1=1>.1 (mod2) 

( 
1 ) (1>.1-1~1)/2 

2
w W>.~(a)J~(x ; 1/a). 

(4.70a) 

(4.70b) 

(4. 71) 

During the discussion in Section 4.1, we have noticed that the Hi-Jack polynomials should 
reduce to the Jack polynomials in the limit w-+ oo: 

J>.(x;w = oo, 1/a) = J>.(x; 1/a). (4.72) 

In Proposition 4. 10 , the abo,·e relation is expressed in more detail. Proposition 4. 8 giws an­
other relationship between the Jack polynomials and the Hi-Jack polynomials. The relationship 
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between the eigenfunctions of the Hamiltonian He given by the QIS!Il (4 .16) or the eigenfunc­
tions (4 .22a) and the Hi-Jack polynomials is now clear. Several bases for the ring of homoge­
neous symmetric polynomials are known [50, 69]. The power sums, the monomial symmetric 
polynomials and the .Jack polynomials are examples of such bases. Thus, the transformation 
between the Hi-Jack polynomials and two kinds of the eigenfunctions of the Hamiltonian He 
is the transformation between the bases of homogeneous symmetric polynomials. Defining the 

transformations by 

we have 

ff1 
( {P>.}) = J; , 

f_;"1 ({m;}) = J>., 

ffj({<P>.}) = j). , 

f.r'J({cp;}) = i>.· 

(4.73a) 

(4.73b) 

(4.74a) 

(4.74b) 

Note that the transformation (4.73b) is nothing but the expansion of the Jack polynomials 
in the monomial symmetric polynomials (4.38b). Propositions 4. 7, 4. 9 and 4. 10 and the 
triangularity of the Hi-Jack polynomials (4.50c) are observed in the explicit forms. The explicit 
forms of the first seven Hi-Jack polynomials are 

j 0 (x; w, 1/a) 

j 1(x;w, 1/a) 

j 1,(x;w, 1/a) 

(a+ 1)j2(x; w, 1/a) 

(2a + 1)h,I (x; w, 1/a) 

(a2 + 3a + 2)]J(x; w, 1/a) 

J0 (x; 1/a) = m0 (x) = 1, 

J1 (x ; 1/a) = m1 (x), 
a N(N -1) 

J1,(x; 1/a) +- J0(x; 1/a) 
2w 2 

a N(N -1) 
mi'(x) +- m 0 (x), 

2w 2 
1 

(a+ 1)J2(x; 1/a)- -N(Na + 1)J0(x; 1/a) 
2w 

1 
(a+ 1)m2(x) + 2ami'(x)- -N(Na + 1)m0 (x) , 

2w 
1 (N-1)(N-2) 

JI,(x; 1/a) +-a · JI (x; 1/a) 
2w 2 

( ) 
1 (N- 1)(N- 2) ( ) 

711 13 X + -a m 1 X , 
2w 2 

(2a + 1)h,I (x; 1/a) 
1 

-
2
)1- a)(N- 1)(Na + 1)JI(x; 1/a) 

(2a + 1)m2,1(x) + 6ami'(x) 
1 

-?(1- a)(N -1)(Na + 1)mi(x) , 
-W 

(4.75a) 

(4 .75b) 

(4.75c) 

(4.75d) 

(4.75e) 

(4.75£) 

(a2 + 3a + 2)JJ(x; 1/a)- ]_(a2 N 2 + 3aN + 2)JI(x; 1/a) 
2w 

(a
2 + 3a + 2)mJ(x) + 3a(a + 1)m2,I(x) + 6a2mi'(x) 

3 ( hr2 -
2

w a l v +3aN+2)mi(x). (4.75g) 
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The explicit forms show the fact that the Hi-Jack polynomial is a one-parameter deformation 
of the Jack polynomial , 

]>.(x; w = oo, 1/a) = J>.(x; 1/a). 

This has been clarified as eq. ( 4. 72) by the discussion of the common algebraic structure of the 
Calogero and the Sutherland models in Section 4.1. The above Hi-Jack polynomials coincide 
with the seven orthogonal symmetric polynomials (3.34) given in Chapter 3 up to normalization. 

Orthogonality of the Hi-Jack polynomials follows from the following proposition. 

Proposition 4. 11 The Hi- Jack polynomials are the simultaneous eigenfunctions of all the 
commutmg conserved operators Unln = 1, · · ·, N} with no degeneracy in the eigenvalues. Hence 
they are the orthogonal symmetric polynomials with respect to the following inner product: 

j'"" IT dxkl¢gi2J>.(x;w, 1/a)j~(x;w, 1/a) 
-oo k=l 

ex: 6>.,w (4.76) 

In the next section, we shall prove Propositions 4. 2 - 4. 11 . 

4. 3 Proofs 

4 .3. 1 Unique Identificat ion of t he Hi-Jack P olynomials 

In order to prove Proposition 4. 2, we need a preparation . We introduce an elementarv 
deformation which will be applied to the Young tableaux later. Let x = {XI, · · ·, XN} be a se-t 
of N nonnegative integers and X,v be the set of all x's, which includes Y,v, Y,v c X,v. Then 
we can introduce a deformation R1 : X,v -; X,v for 1 :S I :S N- 1, 

(4.77) 

when X satisfies the condition x1 > Xl+I· Defining the dominance order in X,v by eq. (-1.39), 
we notice 

(-178) 

This means that the elementary deformation R1 generates a smaller set of N nonnegati,·e 
integers from a set of N nonnegative integers. \\'e want to show that successive applications of 
tl;; elementary deformations to a Young tableau .\ generate all the Young tableaux J.l satisfying 

J.L:S.\. Necessary properties of the elementary deformation are summarized in two lemmas, 
Lemmas 4. 12 and 4. 13. The latter one "·ill be used in the proof of Proposition 4. 2. 

The elementary deformation is not generally a deformation within the Young tableaux } ;\' 
because a deformed tableau R1(.\) does not belong to Y,v when the Young tableau .\satisfies 
.\1 = .\I+I + 1. But we can show that successi,·e applications of the elementary deformations 
gi'e us an deformation among the Young tableaux l';v. 
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Lemma 4o 12 By iterative applications of the elementary deformations to a Young tableau A, 
we can make A' E YN that is the largest in the dominance order of all the Young tableaux J1 that 

meet 
D 

11::;\ Jlk = Ak, for 1 ::; k ::; l- 1, Jll = A1 - 1, (4.79) 

when A satisfies an inequality, 

N 

L Ak ::; (N- l + 1)(AI- 1). (4.80) 
k=l 

A proof of the abo,·e lemma is as follows. Since the Young tableau A satisfies the condition 
(4.80), there is some suffix k ~ l + 1 such that Ak ::; A1- L We denote the minimum number 
of such suffices by m + 1. This means that the Young tableau A E Y,v sat isfies 

Thus we can apply Rm to A since Am> Am+l· Generally speak ing, when you can apply Rk to 

a Young tableau J1, Rdt•) satisfies 

Rk(J.t)k+1 = Jlk+l + 1 > Jlk+2 = Rk(11)k+2, 

for Jlk+l ~ Jlk+2. Therefore we can define a successi,·e operation of the elementary deformation, 
Rk+l o Rk(Jl). By fur ther successive operations, we haYe 

R,, o · · · R,+1 o R,(A), m::; n::; N- 1, 

for the Young tableau A now we are dealing with. Due to the condition ( 4.80), there exists an 
integer 11 such that 

R,.. o o · o o R,(A) E YN, m::; 11 ::; N- 1. (4.81) 

If not , then the condition (4.81) is not satisfied for all 11, m::; 11::; N- 1. This means 

Am+ 1 = 0 0 

• = \v = A1 - 1, 

and the Young tableau A breaks t he condition (4.80) . We denote the minimum of such integers 
by 11m. Then we get a Young tableau: 

(4.82a) 

(4.82b) 

This Young tableau (4.82) satisfies the condition (4.80) because of the following relation: 

N 

. 0 R,(A)k = L Ak ::; (N- l + 1)(AI- 1). 
k=l 
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Thus following the discussions to find out the minimum suffices m and 11m for the Young tableau 
A, "·e can find out mmunum sufficesm' and 11m• for the Young tableau (~.82). From the explicit 
form (4.82b), \\e can 1dent1fy the m1mmum suffices as 

m' m-1 ~ l, 

when m ~ l + 1. Then we get 

R,.. o 0 
•• o R,(A) 

; R,..m 0 · · · 0 i:(A)nm+l 
R,..m 0 · · o 0 R,(A)nm 

= R,..m 0 · · · 0 R,(A)nm+l 

Iteration of the same procedure until m' becomes l finally yields a Young tableau, 

X= Rn, o · · · R1 o 0 
• • o R,..m o · · · o R.n(A) E }~v, 

(4.83a) 

(-L83b) 

(U~a) 

(H-!b) 

(H5) 

where l ::; m ::; 11m ::; · · · ::; 111. By construction, we can readily sec that the Young tableau X 
satisfies the condition (4 .79). The explicit form of the Young tableau is 

Ak, 1::; k::; l- 1 
A1-l, l::; k::; 111 

N 

'; =! 1'1- :L AI., k = 111 + 1 (-1.86) 
k=l 

k¢.nt+1 

Ak, 111 + 2::; k::; N- 1 

Let J1 be an arbitrary Young tableau satisfying the condition (~.79). \\oe shall compare the 
partial sums of the two Young tableaux, X and Jl · From the condition (~.79), we see 

m m 

L A~ = L Jl, for I ::; m ::; l. (487) 
k=l k=l 

Due to the definition of the Young tableau and the explicit form of X (~086), we get the following 
inequality: 
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The explicit form of X (4.86) also shows 

m m 

L ).~ = L ).ko for n1 + 1 <::: m <::: N. 
k=l k=l 

The above two relations are combined to give 

m 

L ).~ 2: L Jl, for l + 1 <::: m <::: N. (4.88) 
k=l k=l 

D 
Thus eqs. (4.87) and (4.88) prove 11:'0X, which means that the Young tableau X is the largest 
of all the Young tableaux satisfying the condition (4.79). 

D 
Text we show that we can make any Young tableau 11 such that 11:'0.\ by iterative applications 

of the elementary deformations ( 4. 77) to a Young tableau >.. 
D 

Lemma 4. 13 Let ). and 11 be two Young tableaux, >. , 11 E :l';v. If 11:'0.\, then we can obtain 
the smaller Young tableau 11 by successive applications of the elementary deformations (4. 77) 
to the larger Young tableau .\. 

We assume 11 is different from >., because the case 11 = ). is trivial. Then there is a minimum 
number of l such that the 1-th partial sums of the two Young tableaux satisfy 

I I 

2: >.k - 2: Ilk = t:.1 > o, 
k=l k=l 

where 6 1 is some positive integer. For conYenience, we add a superscript (l-1) to). to indicate 
that the elements of two tableaux ).(I-I) and 11 are the same up to the (1-1)-th element. Since 

D 
the two Young tableaux satisfy ll:S>.(I-J), we have 

k=l 
1-1 

::: 1111-2: Ilk 
k=l 

k=l 

<::: (.V- l + 1)Jlt = (N- l + 1)(.\1 - 6t). 

The above inequality guarantees that we can apply the deformation shown in Lemma 4. 12 61 
times to the larger Young tableau >.. The deformation yields a Young tableau ).Ul, which is the 
largest in the dominance order of all the Young tableaux that satisfy 

D 
v::;>., vk = .\k, 1 <::: k <::: l- 1, v1 = .\1 - 61. (4.89) 

The Young tableau 11 also satisfies the condition (4.89). Thus we conclude that 11 ~;.Ul. This 
means that we can apply the same procedure to ).U) again . Thus iteration of the procedure 
finally yields the Young tableau ).(-"l that is equal to ?t. 
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J ow we are in position to pro,·e Proposition 4. 2. We use the reductiYe absurdit,·. From 
the assumptiOn of the proposition, eq. (4.51) two different Young tableaux ). "E }-' . ·. h fi . , . J , fA' J\, gt\e 
t e same rst two etgem·alues. Assume we can define the dominance order between the two 

Young tableaux. Without loss of generality, we can assume ?t~A. Then from Lemma 4. 13, 
there must be a way of applying iteratiYely the elementary deformations to the larger Young 
tableau.). that ytelds the smaller Young tableau p, say Rr 0 ... 0 R;(>.) = 11 . The iteratiYe 
applicatiOnS cons1st of the elementary deformations ( 4. 77). Since the elementary deformation 
does not change the wetght , the first eigenvalues E1 for any X E XN and well-defined Rt(X) are 
the same. Companng the second eigenvalues for X and R1(x) , we haYe 

E2(x)- E2(Rt(X)) = 2(xt- Xt+t - 1) + 2a > 0, 

because the inequality Xt > Xt+J holds to make R1(x) well-defined. This inequality shows that 
JteratJ\'e applicatwns of the elementary deformations Rk to X monotonically decrease the second 
etgenvalue E2 for the deforme~ X· Thus the second eigem·alues for any pairs of distinct Young 

tableaux ). and 11 that meet tt:S.\ must satisfy the inequality, 

E2(.\) > E2(Rro · .. oR;(>.))= E2 (J1). 

This is contradictory to the assumption of the proposition, eq. (4.51) . Thus we have proved the 
proposition. Proposition 4. 2 is essential to the unique identification of the Hi-Jack polynomials 
just by diagonalizing the first two commuting conserYed operators. As a result, it will implicitly 
play an important role to show that the Hi-Jack polynomials are the simultaneous eigenfunctions 
of all the commuting conserwd operators. 

4.3.2 Hamiltonian 

We shall prO\·e Proposition 4. 4 . It is easy to prove the case k = N. From the definition 
of 11 and bt, we have 

N 

l:[di,ala~ .. a~] 
1=1 
N N 

l:l:al···ai-t[di,aJ]al+ 1 ···a~ 
j=ll=l 

Using eq. (4.2 l c), we get 

N N N 

[11, bt] = L L al· · · al-taj(6jt(1 +a L Kj;)- a(1- 6jt)Kjt)a}+ 1 · ··a~ 
j=ll=l i=l 

i;lj 

N 

(Nbt + aal · · · aL La} (Kit- Kjt)a)+ 1 · · ·a~) 

= Nb~ , 

j,l=l 
j#l 

(4.90) 

(H1) 

which says the Yalidity of eq. (~.58) for the case k = N. 1\ote that we do not ha,·e to restrict 
the operand in the abO\·e calculation. 
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For the case k f N, we need more computation. First, we decompose the Hamiltonian [1 

into two parts: 
[r~,bt] = L [Ldi + Ld;,a~d1,J] 

JC{l 2 ... N) iEJ i~J 
-l;l~k· 

(4.92) 

The first part of the r.h.s . of eq. ( 4.92) is calculated as 

[L d;, a~d1,J] 
iEJ 

k 

LL{aJ, · ··aL[d;,aJ.JaL,···ai,dl,J 
iEJ 1=1 

+a~(dj, +a) · ·· (di•-• + (L- 1)a) [d; , dj, +La] (di•+• + (L + 1)a) · · · (d1, + ka)} 

k 

L L {a}, · ·· a}._, (6;j,o},(1 +a L I<ili +a L Kid)- o)(l- cl;j1)aKij,)oL, · · · ai.dl,J 
iEJ I; I jEJ ;~J 

jfj, 

+a~(dh +a)··· (di•-• + (l- 1)a)((dj, + la)- (d; + la))K;j1 

(di•+• + (l + 1)a) · · · (d1, + ka) }· {4.93) 

We move exchange operators to the rightmost and utilize the restriction I . Using eqs. (4.19) 
Svm 

and (4.53), we get · 

[L d; , o~d1 ,JJI 
iEJ Sym 

k 

kaJdl,JI +a L L a~dl,J\{il)(d; + ka)l 
Sym if/:J l=l Sym 

k 

+aLL { ( o~\U}o}, - a~\Udal)dl,J + aH d1,J\{i) (dj, + ka) - d1,J\Ud (d; + ka))} I 
l=i iEJ Sym 

i¥-jl 

k 

kaJdl,JI +aLLa~dl,J\{il)(d;+ka)l . 
Sym i'/:J 1=1 Sym 

(4.9-l) 

The second part of the r.h.s. of eq. ( 4.92) is calculated as 

[L d;, o~d1,JJI 
irf.:J Sym 

k 

LL{aJ, --·aL,[d; ,o},]aL, - -- a}.d1,J 
iftJ l=! 

+a~(dil +a)··· (dj,_, + (L- 1)a) [d;, dj, +La] (di,+• + (L + 1)a) · · · (d1, + ka)} I 
Sym 

4.3 PROOFS 

+a~(dh +a)··· (dj1_, + (l- 1)a) ( (d1, +La) - (d; +La) )K;
11 

x (dil+• + (L + 1)a) · · · (d1, + ka)}l 
Sym 

k 

~~{ -aa~\{il)a)dl,J\{il)(d; + ka) + a~(dl,J- dl,J\{il)(d; + ka)) }ISym. 

Substitution of eqs. (4.9-1) and (4.95) into eq. (4.92) yields 

[I~ ,bt JI 
Sym 

L { kaJdl,J 
J<;;{l ,2,---,N) 

[J[;k 
k 
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(4.95) 

+aLL{(aj- a~\Uda!Jdl,J\{il)(d; + ka) + a~(d1 ,J- d1,J\{il)(d; + kaJ)}}I 
l'fj /;1 Sym 

kbtl . (4.96) 
Sym 

Thus we have proved Proposition 4. 4 . 

4 .3.3 Null Operators 

We shall prove Proposition 4. 5 . Since the function (bt)>.•(b[_1)>.,_,->., . -. (bi)>.,->.,. 1 is 
a symmetric function of .V Yariables {x1, x2 , · · ·, XN }, it is sufficient to prove the case J = 
{1 , 2, · · ·, k + 1}. For breYity, we use the symbol nk+1 = nk+l,{l,- .. ,k+ l) hereafter. Then the 
expression to be prO\·ed is 

(-1.97) 

This fo llows from 

[ni+l,btJI ~nk+ll , fori<':k, (-1.98) 
Sym Sym 

where t he symbol ~ means that the term on the r. h.s. can be mu ltip lied on the left by some 
nonsingular operator 0 , 0 · 0 = 0. We can easily wrify 

nk+l(bt)!.'(bt_l)!.·-·-!.· ... wn>.,->., ·1 ~ nk+l(bt_l)>.,_,->., ... wn>.,->., ·1 

(-1.99) 

using eqs. (-1.21d) and (4.98). For com·enience of explanation, we introduce a symbol [m] for 

a set {1 , 2, .. · ,m} with an integer m. We also introduce IJ with a set of integers J that 
Sym 

ind icates the operand is a symmetric function of xi, j E J. From the identity (4.53), we ha1·e 

l

[k+lj l[k+ll 
nk+ 1 = nk(dk+ 1 + ka) 

Sym Sym 
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k } llk+!J 
{ dtKt k+l +a+ a L Ki k+l nk , 

j:::;2 Sym 
(4.100) 

which means 

l

lk+!J llk+lJ 
nk+I ,...,_, nk . 

Sym Sym 
(4.101) 

Thanks to the above relation, eq. (4.98) fori> k follows from that fori= k, i.e., 

[nk+ 1,btJI ~ nk+tl · 
Sym Sym 

(4 .102) 

We shall prove a stronger statement, namely, 

Proposition 4. 14 

[ [Mj b+ IAIIJ/!NI ~ [Mj /INI 
nk+I' k nk+l , 

Sym Sym 
J\I 2 N. (4.103) 

Here , the superscript [J\I] over Dunk! operators indicates that they are made from the Dunk! 
operators (4.18) that depend not only on the variables x1, x 2 , • · · , X,y but a lso on XN+l, · • ·, XAf. 

Note that n~~~~ and bt 1
·'

11 are symmetric under SN but not under SM. 'vVe just changed the 
number of mriables of Dunkl operators (4.18) but do not change the definition of operators 
made from them , such as conserved operators (4.24) and raising operators (4.52) and (4.54). 
Namely, the indices and subsets in the summand of their definitions arc included in the set [N]. 

All the Dunk! operators in the remainder of this Section 4.3.3 will aill"ays depend on 
x1, · · ·, XAf. \Ve shall omit the superscript [.i\I] in the following. 

To pro,·e Proposition 4. 1~ , we need seYerallemmas. \\'e define the restricted raising oper­
ator by 

bt,, = L a~.dt,J', 
fCJ 

i"l=k 

(4. 10-1) 

where J is a set of integers. From the definition of the raising operator (4.5-1), we can easily 
verify 

bt '!Jf L a~dt,J 
J!:;[NJ 
IJI=k 

4.3. PROOFS 

k 

I: I: I: a~.a~dvdk-l+l,J 
1=0 J'!:;[k+!J Jl:;{k+2,-··,N) 

[J'[=k-1 [Jj:/ 
k 

I: I: a~bL,,k+ljdk-l+l,J· 
1:0 Jl:;{k+2.-··,N) 

Thus we have the following formula. 

Lemma 4.15 
k 

[Jj:/ 

bt =I: I: a~bt-l,[k+tJdk-l+l,J, 
/:0 Jl:;{k+2,-··,N) 

[Jj:/ 

with bci,1 = 1 and when /11 = 0, a~ = 1 and dk+l,J = 1. 

We shall a lso use the following formulae: 

Lemma 4. 16 

[d,,a~J -aal L a~\{j)](iJ, i rf. J, 
jEJ 

[d,,a~J aHl+a I: 
jE[AIJ\J 

K,J), i E J, 

t l[k+lj 
[nk+l,ad 

Sym 
-a( alKt2K23 · · · Kkk+tKk+ll + · 

llk+ll 
nk , l rf. [k + 1]. 

Sym 

· · + al+t](k+ll)nk 

(4.105) 

( 4.106a) 

(4.106b) 

llk+lJ 
Sym 

(4.106c) 

The first two formulae can be checked from the definition of d, and a~ and commutation 
relations (4.2 1): 

alI: IT aJ. [a,, aj] 
jEJ j'EJ\{j} 

-aal L a~\{j)J(ii• i rf. J, 
jEJ 

[ala, , al rr aj] 
jEJ\{i} 

a![ a,, al]o~\{i} +a![ a!, a~\(i)J 
AI 

al(1 +a L K,k)a~\{i)- aa) L a~\{j)J(iJ 
k=l jEJ\(i) 
k>'i 

a~+ aal L a~\{k}K,k + aa~ L K,k- aal L a~\{J)J(,1 
kEJ\{i) kE[AIJ\J JEJ\{•) 

a~(1+a L J(ii) , iEJ 
jE[.I/j\J 
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The last formula (4.106c) is proved by induction on k. By a straightforward calculation using 
the commutation relations (4.21) and the definition of the null operator (4.59), we can confirm 

the case k = 1: 

1

121 
[n2 , al] 

Sym 

1
)2] 1121 

Note that we have used the relation K 12 = 1 in the above calculation. 
Sym Sym 

validity of eq. (4.106c) up to the case k- 1, we can calculate the case k: 

I

Jk+lJ 
[nk+l• a!] 

Sym l
jk] t ) IJk+1] 

( [nk,al] (dk+t+ka)+nk[dk+l,a1] 
Sym Sym 

Assuming the 

-a( (alK12K23 · · · Kkl + · · · + a!Kkl)nk-1(dk+1 + ka) 

l
jk] ) ljk+l] 

+[nk, a!+t] Kk+11 + al+1nkf(k+11 
Sym Sym 

-a( (alK12K23 · · · Kkl + · · · + alKkl)nk-1(dk+1 + ka) 

-a( a!K12]{23 · · · Kk k+t + · · · + alKk k+1 )Kk+llnk-1 

) l

[k+l] 
+a!+t Kk+ 11nk , l ¢ [k + 1]. 

Sym 

l
[k+lJ l[k+l] 

Using the merit of the restriction f{k k+ 1 = 1 , we have 

l

[k+l] 
[nk+1, al] 

Sym 

Sym Sym 

-a((alK12K23 · · · Kk1 + · · · + alKkl)nk-1(dk+1 + ka)Kkk+1 

-a( al K12Kn · · · Kk k+1 + · · · + alJ<k k+1) Kk+tlnk-1 + al+1 Kk+11nk) /
1
k+

1
] 

Sym 

-a( ( c,J K12K2J · · · f(k k+1f(k+11 + · · · + alKk k+1 f(k+1 1) (nk + ank-1) 

-a( a!J<12K23 · · · Kk k+1J(k+11 + · · · + alJ<k k+1 Kk+1 1 )nk- 1 + al+1 Kk+1 1nk) l[k+l] 
Sym 

l

[k+1] 
-a( alK12K23 · · · Kk k+1J(k+11 + · · · + al+1Kk+11)nk 

Sym 
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~ nk/ , l ¢ [k + 1], 
Sym 

which proves the formula (4 .106c). 

In the following, we often need to deal with the terms that do not have al appearing as an 
expltctt factor on the left of the terms. When 0 represents a Dunk! operator of our interest 
such terms are denoted by oj 

1 
. , 

a, ...... o 

Lemma 4o 17 For i\1 2: n 2: k + 1, we have 

(.J.107) 

This formula is also proved by induction on k. The case k = 1 is verified as follows. From the 
definitions of the operators and the first two formulae of Lemma 4. 16 , we ha1·e 

([n2, a~ .. · a~]+ a~· ·a~ [d1, d2 +a]) I 
1 o 1-o 

([d1, a~· · · a~] (d2 +a)+ dt[d2, a~ · 0 ·a~] + aa~ · · · a~(d2 - dt)I<12) I 
o!-o 

( d1 a~ 0 

• • a~(l +a L K 2i) + aa~ 0 0 
• a!,(d2 - d1)K12) I 

jE[M]\{2, .. ·,n} ol-o 

a~- .. a~(d1(1+aK2 1 +a-£ I<2i))/ 
1 r=n+I a, ...... o 

M 

= a~---a~(l+aK12+a L I<2i)d11 ~d1 . 
j=n+l o!-o 

As the inductive assumption , we assume that the lemma is valid up to k- 1. Then the case k 
is expressed as 

( [nk+t, a~··· a!,] +a~· · · a~ [d1, d(2,- ,k+1J]) I 
a t-o 

([nk.a1 .. a!,]+a~ .. · a~[d1,dt,{2, 0k)])(dk+1+ka)/ 1 o 1-o 

+(nk[dk+t,a1o··a~] +a~··oa~d1,{2o ,kl[d1,dk+t] )j 
1 

. 
o 1-o 

(-1108) 

Using the second formula of Lemma 4. 16 and eq. (4.21), 11·e can readily calculate the second 
term in the r.h .s. of the abo1·e expression: 

AI 

= ((a~- a~nk+[nk.a~ .. ·a!,])(l+aK1k+t+a L Kk+1i ) 
j=n+I 
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+aa~ · · · a~d 1 ,(2,. kj(dk+1- dl)K, k+l) I 1 ' o,-o 

(([nk.a~·· · a~] +a~···a~[d1 ,d 1 ,(2, ,k)] +a~···a!,dt,{2, ,k)d, ) 

M 

x(1+aKlk+t+a L Kk+li) 
j=n+l 

+aa~. ··a!, (d1,(2,. .. ,k}K1 k+ldl - d1,(2,. ·,k)d,K, k+l)) I 1 o, ...... o 
AI 

(([nk. a~ ... a!,] +a~··· a~ [d1, d1,(2,-··,k)]) ( 1 + aK, k+l +a . L Kk+l i) 
;=n+l 

(4.109) 

Substitution of the above equation into eq. (4.108) yields 

([nk+ 1 ,a~···a~] +a~···aqd,,d{2, ,k+l)J)Iol-o 

AI 

(([nk. a~ ... a~] +a~·· · a~ [d1, d1,(2,. .. ,k}]) (dk+1 + ka + 1 + aK, k+l +a L J(k+l i) 
;=n+l 

(4110) 

The second term of the r.h.s. of the above expression has d1 at its rightmost . Thus the proof 
of eq. (4.107) reduces to the proof of the following relation for the first term of the r.h.s. of eq. 
(4110): 

This formula can be readily verified by the inductive assumption: 

([nk. a~·.· a!,] +a~·· · a!, [d1, d1,(2,..,q]) ( dk+l + ka + 1 + aK1 k+l +a "£ Kk+l i) I ,_ 
;=n+l o, 0 

M 

d1(dk+ 1 +ka+1+aKlk+l+a L f(k +li ) 
j=n+l 

M 

(dk+ 1 +ka+ 1 +aKlk+l +a L Kk+li)d, + [d, ,dk+l +aKlk+d 
j=n+l 

M 

(dk+l + ka + 1 +a!(, k+l +a. L Kk+l i)d, 
J=ll+l 

+a(dk+l- d,)f{, k+l + a(d,- dk+l)K, k+l 
AI 

(dk+l + ka+ 1 +a!(, k+l +a L Kk+li)d, ~ d1. 
j=n+l 
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Equations (4.110) and (4.111) prove Lemma 4.17. 

As a step toward proving Proposition 4. 14 , we prove the case N = k + 1. 

Proposition 4. 18 

(4.112) 

Both sides of the above equation are symmetric under permutations of indices 1, . .. , k + 1. 
From the first two equations of Lemma 4. 16 , we have 

. N . 

[nk+l• at,·· .0. ··at ]- '\' ~t . . . ~ ... ~t /" 
k+l - ~"""1 L.(k+lviJJ (4.113) 

j=l 

where O,i is some unspecified operator that can be written by d1 and K1m with 1 ::; I, m ::; k + 1 
i k+l 

and al · · .V · · · al+l = IT aj. Commutators among the operators made of d1 operators are also 
j=l 
j'l'i 

operators made of d, and Klm with 1 ::; I, m ::; k + 1. Thus we can say that the raising operator 

b([k+IJ and the l.h .s. of eq. (4.112) have factors al · · .0 . · · al+l on the left. Therefore, in order 
to prove Proposition 4. 18 , it is sufficient for us to prove the following expression: 

l
[k+l'l l[k+IJI [ nk+l, b([k+IJ] ~ nk+l . 
Sym or -a Sym or -a 

(-1.114) 

This is proved by induction on k. The case k = 1 can be verified by a straightforward calcula-
tion: 

[dl(d2+a),a!(d,+a)+a~(d2+a)JI 121 I 
Sym or-o 

( 
AI AI ) 1[2] I 

a! (1 +a~ K 1j) + aH1 +a~ K2j) n2 Sym ol-o 

M 1[2J I aH1+a:LK2i)nz 
1 

~nz. 
j=J Sym o 1-o 

We assume that eq. (4.114) is ,·alid up to k -1. From the definitions of the null operator (4.59) 
and the restricted raising operator (4.104), we can decompose them as 

b([k+ll = albt_ 1,(2,. .. ,k+l)(d, + ka) +a~··· al+1d1,{2,-··,k+l}• 

nk+ 1 = dldl,{2,···,k+l)· 

Then the l.h.s. of eq. (4.114) of the case k is cast into 

ll
,k+IJI 

[d d ntb+ (d + ka) +at ... akt+ldl,(2, .. k+l) I 1,{2,- .. ,k+l)·~l k-1,{2, .. ·,k+l) I 2 • t 
Sym o 1-o 

(d1 [dl,{2, .. ·.k+l}•al]bt_,,{2,-·,k+l)(dl + ka) 

+ ( [nk+l, a~.· · ak+l] +a~· · · al+d d1, dt,{2,- ,k+l) ])c11,{2, ,k+l)) ~~ky:.ll-o · ( 4.115) 
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·1 fi th t the second term of the r.h.s. of the abo,·e From Lemma 4. 17 , we can east y con rm a 
equation satisfies the following relation: 

l
[k+tll = nk+t · 
Sym a! -o 

Thus we ha,·e to show the following relation so as to prow eq. ( 4.114): 

l
[k+tll l[k+l[l 

dt [dt,{2,-··,k+l}• al]bt_l,{2,-··,k+l}(d, + ka) Sym ol-o ~ nk+t Sym ol-o. (4.116) 

We need a formula that is similar to the third formula of Lemma 4. 16 : 

Lemma 4. 19 

1

{2 ... k+l} t ) 1{2,-··,k+l} 
[d1,{ 2,. .. ,k+l}• al] Sy~· = -a(a~/(23 · · · I<k+tt + · · · + ak+tKk+tt dt,{2, ··,k) Sym 

This lemma is also proved by induction. Verification of the case k = 1 is eas ily done: 

[d2 +a, al] = -aa~Kt2· 

'vVe assume the lemma holds up to the case k - l. Using the inductive assumption, we can 
calculate the l.h.s. of the lemma of the case k as 

tll{2,-··,k+l} 
[dl,{2,-··,k+l}• a, Sym 

t ) 1{2,-··,k+l} 
([dl,{2,. .. ,k}• a!] (dk+t. + ka) + dt,{2, ··,k} [dk+t, a,] Sym 

(-a( aV(23 · · · Kkl + · · · + alKkt )dt,{2, ··,k-l) (dk+l + ka)Kk k+t 

) 1

{2,-··,k+l} 
-adt ,{2,- ·,k}ak+t Kk+l 1 

Sym 

-a( ( a~K23 · · · Kk k+tKk+t 1 + · · · + alKk k+IJ(k+l 1) (dl,{2,· ·,k} + adl,{2,-··,k-l}) 

) 1

{2,-··,k+l} 
+al+tf(k+ltdl,{2,-··,k} + [dl,{2,-·· ,k} •ak+1]Kk+lt 

Sym 

-a( (a~/(23 · · · Kk+tt + · · · + ak+t[{k+t 1)d1,{2,·,k} 

+a( a~K23 · · · Kk k+tKk+l t + · · · + alKk k+l f(k+l 1 )dl,{2,-··,k- l} 

) 1

{2,-··,k+l} 
-a( a~K23 · · · Kk k+l + · · · + al Kk k+t )dt,{2,-· ,k-l)J(k+l 1 

Sym 

1

{2,-··,k+l} 
-a(a~/(23 · · · Kk+l 1 + · · · + ak+tKk+tt)dl,{2, ··,k) 

Sym 
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which complete the proof of Lemma 4. 19. Using Lemma 4. 19 , we can calculate the l.h.s. of 
eq. (-1.116) as 

~ -ad, ( a~/(23 · · · Kk+l 1 + · · · + al+l Kk+t t )dl,{2, .. ,k}bt_1,{2, ··,k+t) (d1 + ka)l [k+tlj . 
Sym at-o 

(4.117) 

Paying attention to the relations, 

[d,,a1
1
]1 =0, dk+tdt,{2,··,k}=nk,{2,···,k+t), nk{2 k }(d +ka)-n t ' ···,·+l l - k+l• a 1-o 

we can further calculate eq . (4.117): 

-ad, ( a~K23 · · · Kk+lt + · · · + al+t](k+t 1 )dt,{2, .. ,k}bt_1,{2,. .. ,k+l} (d1 + ka)l[k+tll 
Sym a!-o 

-a(a~K23 · · · Kk+tt + · · · + al+tf(k+tt)dk+tdl,{2,. .. ,k)bt_1,{2,. .. ,k+t}(d1 + ka)l[k+IJI 
Sym a!-o 

( [nk,{2, ··,k+t), bt_t ,{2, ··,k+t}] + bt_t ,{2,-··,k+t} nk,{2, ··,k+t}) (d1 + ka)l [k+tll 
1 Sym o 1-o 

( [nk,{2,. ,k+l}, bt-1 ,{2, ··,k+t}] (d, + ka) + bt_t,{2,-··,k+l)nk+t) Ilk+ til . 
Sym o!-o 

Note that the second term in the last expression is the expected null operator nk+t· Due to the 
induct ive assumption, the first term can be cast into the following form: 

[nk,{2,-··,k+t). bt-,,{2,. ·,k+t}] (d1 + ka) ~ nk,{2,-··,k+l} (d, + ka) = nk+t . 
l
[k+ljl l[k+ljl l[k+ljl 
Sym of-o Sym ai-o Sym a!-o 

Thus we ha,·e praYed eq. (4.114) and hence Proposition 4. 18. 

We need a few more formulae to pro,·e Proposition 4. 14 . 

Lemma 4. 20 For all sets of positive integers J = {j1, ]z, · · ·, j 1} ~ [N] such that J n 
{1 , 2, .. ·, k + 1} = 0, we have 

(4.118a) 

(4.118b) 

(4.118c) 
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These formulae can be straightforwardly verified by using the definitions of operators, the third 
equation of Lemma 4. 16 and the fundamental commutation relations among Dunk! operators 
(4 .21). For convenience of the proof of the above formulae, we introduce a symbol "' that means 
an unspecified non-singular-operator-,·alued coefficient. This symbol enables us to compactify 

the expressions in the following way: 

(some invoh·ed expression)~ (an operator)¢* (some involved expression)= "' (an operator), 

(some invoh·ed expression) x (an operator)+ "' (an operator) = "' (an operator). 

Using this •-symbol, we shall prove Lemma 4. 20 . By iterated use of eq. (4.101) and the third 

formula of Lemma 4. 16 , we have 

which proves eq. (4.118a). Verification of the second formula is simple. From the definitions of 
the operators nk+J-I and dk+J-I,h we have 

l
[k+Jj,[N[ [n[ 

nk+l-ldk+J-I,J Sym Sym = d1(d2+a) ··· (dk+J-I+(k-l)a)(dj, +(k-l+1)a) . .. (dj, +ka)/ . 
Sym 

We denote a sequence of coordinate exchange operators that transform the indices {1 ... , k-
l + 1,jJ , · · · ,]t} to {1, · · ·, k + 1} by K~ . Then we have ' 

which prO\·es eq. (.J.ll8b) The fo llowing commutation relation is convenient for the proof of 
eq. (4.118c): 

[ ll [k+!JU(i} 
11k+ll dj = 

Sym 
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(d . ) ( l[k+JjU(o) x J+J +)a · · · dk+J + ka) 
k Sym 

"'\' a(K - 1) l[k+!Ju(i) l[k+![u(i) 
-::- '1 nk+J ~ nk+J ~ nk+J ' i d [k + 1). 
]-1 Sym Sym 'F 

By iterative use of the above formula, we have 

( nk+J (dit + (k + 1- l)a) ... (d + ka) _ d ) /WI Jt k+I-[,Jilk+l 

([nk+l· (dit + (k + 1 -lla)] + (dit + (k + 1 -lJa)nk+lrm 

x(dh + (k + 2 -l)a) · · · (dJ, + ka)/[N( + "' nk+J/[Nl 
Sym Sym 

... ( ) I[NJ [NJ .,. nk+l dh+(k+2-l)a ···(dj,+ka) + "' nk+J/ 
Sym Sym 

= "'nk+ I/ [N( . 
Sym 

Thus we have proved Lemma 4. 20 . 
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Now we are ready to prO\·e Proposition 4. 14 . We shall pro,·e it bv induction on k Fi st 
we shall check the case k - 1 F th d fi .. .. · · r ' 
( 

- · rom e e mtwns of the raJsmg operators eqs. ( 4.5.J) and 
4.104), we ha,·e ' 

[ 
+]/[Nj [ I[NJ N [Nj 

n2,bJ Sym = n2,bi,[2J] Sym + ~[n2 ,a)(d; + aJ]/Sym. (4.119) 

According to Proposition 4. 18 tl e fi t t f h h to be ' 1 rs erm 0 t e r .. s. of the above equation is confirmed 

[ 
I

[Nj I[Nj 
n2, bi,121 ] ~ n2 . 

Sym Sym 
(.J.120) 

The second term is calculated as 

[ 
t l[[NJ I[N[ [!VI 

n2,a;(d;+a) =[n2,a1](d;+a) +a1[n2,(d;+aJ][". (.J.l21) 
~ ~ ~ 

From the third formula of Lemma 4. 20, we notice that the second term ~f the r.h.s. of eq. 
(4.121) satisfies 

I
[Nj [N( 

a1[n2,(d;+aJ] ~n2 [ . 
Sym Sym 

Using eq. (.J.l06c), we can verify that the first term of the r.h.s. 

(.J.l22) 

of eq. (.J.l21) reduces to 

(.J.l23) 
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Summarizing the results, we have 

(4.124) 

Thus we have confirmed that the proposition holds for the case k = 1. 
By inductive assumption, the proposition holds up to k-1. What we like to show is that the 

commutator between nk+I and each term of the decomposition of the raising operator (4.105) 

is similar to nk+I, i.e., 

Using the Leibniz rule, we decompose the l.h.s. into two parts: 

I

INl 
[nk+t, a~bt_l,lk+l]dk-l+t,J] 

Sym 

= [nk+t• a~bt-l,lk+tl]dk-l+t,JIINl + a~bt-l,lk+tl [nk+t• dk-l+t,J J/INl . 
~m ~m 

(4.125) 

(4.126) 

Then from the third formula of Lemma 4. 20 , we notice that the second term is similar to nk+I: 

(4.127) 

Our remaining task is to check the first term. When l 'it IJI = 0, the first term is similar to 
nk+1 because of Proposition 4. 18 . When l # 0, we ha,·e to do some calculation: 

(4.128) 

From the first formu la of Lemma 4. 20, the first term of the r.h.s. of eq. (4.128) is calculated 
as 

[nk+I, aj] bt-l.lk+Ildk-I+I,J 
I

INl 

Sym 

t llk+ll IINl 
[nk+I, a,] bt_l,lk+l]dk-I+I,J 

Sym Sym 

nk+I-Ibt-l,lk+ l]dk-I+I,J 
I

INl 

Sym 

I

INl INl 
bt_1,lk+tlnk+I-Idk-l+t,J + [nk+I-1· bt_1,lk+tl] dk-l+t,,, . 

Sym Sym 
(4.129) 

Note that the operators bt_l,lk+tl and dk-I+I,J are im·ariant under the permutat ions of indices 
1, · · · , k + 1. Using the second formula of Lemma 4. 20, we can verify that the first term of the 
r.h.s. of eq. (4 .129) reduces to 

I

INl INl 
bt_l,lk+tlnk+t-ldk-l+t,J ~ nk+tl . 

Sym Sym 
(4.130) 

4.3 PROOFS 
83 

From the inducti,·e hypothesis, we ha,·e 

[ 
l

lk+l] llk+Il 
nk-I+I• bt_l,lk+IJ] ~ nk-I+I . 

Sym Sym 
(4.131) 

Then the second term of the r.h.s. of eq. (4.129) is calculated as 

[ 
l

lk+ll IINl 
nk+I-1, bt-l,lk+l]] dk-I+I,J ~ 

Sym Sym I

INl 
nk-I+Idk-I+I,J 

Sym 

I

INl 
nk+I . 

Sym 
(4.132) 

On the other hand , the second term of the r.h.s. of eq. ( 4.128) is separated into two parts as 

t [ b+ l IINl t IINl IINl 
a, nk+I• k-l,lk+Il dk-I+I,J s m = a,nk+Ibt_l,lk+Ildk-I+I,J - a~bt-l,lk+Ilnk+tdk-I+I,J . 

Y Sym Sym 

. . (4.133) 
In an analogous way to the venficat10n of the first and the second terms in the r.h.s. of eq. 
(4.129): we can confirm both the second and the first terms in the r.h.s. of eq. (4.133) are 
respectively stmtlar to nk+I· Then we obtain 

t [ + IINl IINl a, nk+I, bk-l,lk+tl]dk-I+I,J ~ nk+I . 
Sym Sym 

(-Ll3.J) 

Equations (4.130), (4.132) and (4.134) yield 

I
[Nl INl 

[nk+I• a~bt_l,lk+IJ]dk-I+I,J ~ nk+II . 
Sym Sym 

(4.135) 

Thus we ha,·e proYed Proposition 4. 1-! and hence Proposition 4. 5 . 

4.3 .4 R aising Operators 

Proposition 4. 6 is given in a form whose operators depend on N variables x 1 , ... , x,v. It is 
convenient for us to explicitly indicate the number of ,·ariables, for we shall change the number 
of variables during the induction procedure. 

Proposition 4. 21 

[IINl( ) +[NlJI[Nl { +[Nl ( INl ) 
2 N , bk,IJ\'l = bk,[N[ 2/1 (N) + k + ak(N- k) + 

Sym 

[Nl INl } /INl L 9k+I,Jnk+I,J , 
J<;;[Nl Sym 

IJI=k+t 

H er·e g~'~1I,J is an unspecified nonsingular operator that satisfies g!:li,J = 0. 

Note that 11·e haYe introduced the notation 

"' I);'tl(N) = L(d\''11)". 
i=l 

N ~ k. 

(4. 136) 

(4.137) 

It is obvious that Proposition 4. 6 is tantamount to the above proposition. We shall prO\·e 
Proposition 4. 21 by induction on k and !V. Precisely speaking, we usc the induction on l, 
which relates k and N by k = l + 1 and N = l + J\I with arbitrary integer .\f. The plan requires 
several lemmas. 
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Lemma 4. 22 

M M 
al[MJ .. . ~ ... a~Ml((l+aK;1 +a L K1d+(1+al(;1 +a L Kjk)djMI 

k=N+l k=N+l 

AI 
+d}"'l(1+al(;1 +a L K1k)), 1::0:i,j::O:N, ifj, (4.138a) 

k=N+l 

[(d}Ail)2, ali"'i .. . ~ ... a~uJJI ' 
o 1-0 

. M 
t[M] ~ t[M] tfMJ ( [AI] d[AIJ ( }( (J( "\' }( )) -aa2 · · · ·· · aN a1 d1 K1j + K,j i +I 11 +a lj li + L.. lk , 

k=N+l 

j = i or N + 1 ::; j ::; !If. (4.138b) 

Both formulae are readily verified from the first two formulae of Lemma 4. 16 . Using the second 
formula of Lemma 4. 16, we can prove eq. (4.138a) as follo\\'s: 

[(drfJ)2, alfAIJ · · .~. · · aWfJ] 
M 

d)[M]~t1[AI] .. . ~ t[M] "\' ~ ··aN (1 + aK;i +a L.. Kjk) 
k=N+l 

i M 
+al[AIJ · · .V · a~A/]( 1 + aK;1 +a L K1k)djM I 

k=N+l 

i Af N 

atfAil · · v · · a~M1 ((l + aK;i +a L Kid+ (1 + aK;i +a L Kjk)djAII 
k=N+l k=N+l 

N 

+d}M1(1+aKij+a L K1k)) , 1::0:i,j::O:N, ifj. 
k=N+I 

Verification of the second formula (4.138b) is done with the help of eqs. (4.106a) and (4.106b): 

[(d~'li)2, atfMl ... ~ . . . a~uJJI 
a t-o 

-aiMla2t[MJ ... ~ ... atN[AI]atK,.- aat[MJ .. . ~ ... t[AIJ tJ( ·d[MJ) I J J J 2 aN aJ l; J ai-o 
i 
v . t[M] t(d[AI]}' . }' d[AI] ( "\' ' ' ) aN a1 i ''1 + ''i 1 + 1 +a L.. J, 1k)l1 1j 

kE([MJ\([Nju{j} ))U{ l }u{i} 

-aa2t[Mj .. ) . . . t[Mj t (dfMJJ( J( d[Mj }( ' ' ~ ' ) aN ai 1 ij + iii + 11 + aJ,lj(I,,; + L.. J,lk) 
k;:;N+I 

j = i or N + 1 ::; j ::; i\1. 

Thus Lemma 4. 22 is praYed. Lemma 4. 22 leads to the following formula. 
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Corollary 4. 23 For 1 ::; i < N ::; M, we have 

[I!MJ(N _ 1), at1[MJ ... ~ ... t[MJ t [MJJI aN-laM 
oi-o 

=at [MJ[IIM-i](N- 1) t[M-1] ... ~ ... ~t[M-l]ll I 
M 2 ,al u.N-1 . ot-o O{M-IJ ...... o[M] 

(4.139) 

The restriction I mea th t · . . [If] 
01

.\1_
11

_
01

M
1 

ns a we respectively 1dent1fy the Dunkl operators a)· , a)·111 

and d[MJ with atiM-l] [M-1] [M-lJ . 

I I
' d ' 'a; and d; , where ~ ::0: !If - 1. The l.h.s. of the ab01·e formula is 

ca cu ate as 

[/2[M](JV- 1), at,[AI] ... ~. t[AIJ t [AI]ll 
. · QN-lQM 

oi-o 
N-1 

= [2:(dY!JJ2,a:rMJ .. ~ 
j=l 

= [(d)Ml)2, al[MJ ... ~ ... a;~':_llaL[MJll 
ai ..... o 

= -aa1[Mj. at [M] t [MJ(iMJy f" d[M j f' ( ~~~ ) · · N-1 aM ; ''; + ,,; ; + ,,; + ai<li K 1; + L.. K 1k) .(4.140) 
k=N 

In a similar ll'ay, the r.h.s. of eq. (4.139) is calculated as 

at JMJ[riM-!J(N- 1) t[AI-lJ ~ t[At-lJJI I M 2 ,0:1 ... . ··QN-1 at ..... a 0[.\t-!J ....... oPIJ 

_ t [AI]( tfAI-lj t [Al-l] 
-aM -aa2 ... aN-I 

ll'hich coincides ll'ith eq. (4.140). Thus 11·e haYe confirmed Corollarv 4. 23. 
The folloll'ing formulae are Yalid for arbitrary number of Yariabies. 

Lemma 4. 24 For· M:;:,: N, we have 

I

[N] I[N] 
[I):'1i(N -1),d!~1 1] = a((!V -1)(d!~ 11)"- !),' 1i(N -l)) , 

Sym Sym 
(nna) 

[Nj [J\'j 

[(d[M])" d[.IIJ·ll' = ad[AIJ (JfAI](tV -1)- (N- 1)(d[AI])" )I "'J\1 >? N ' l,[N] J,[N-l) n · · 1\ , v _ -· 
Sym Sym 

(4.142b) 
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By inducti\'e assumption, we assume the formula for the case N- 1, i.e. , 

[(d[.I!J)n d[MJ ll{l, .. ·,N-2,S} = al"i, (JIMI(JV- 2)- (JV- 2)(d~IJJ")/{1 , .. ·,N-2,N} 
N ' 1,{1, .. ·,N-2,N} Sym 1,[J\ -2j n Sym 

(4.143) 
\\'e decompose the l.h.s. of eq. (4.1-12b) into two terms as 

I
[NJ 

[(d[MJ)" d[MJ l 
N ' l,[NJ Sym 

([ [Mj n [Mj ( f[MJ 'If ) d[Mj 
= (d,v ) 'd1,{1,.--,N-2,,\'} C .V-1 + l a + 1,{1, .. ·,N-2} 

)I [NJ 
x ((d\~~ 1 + (N- l)a)(d\~" 1 + Na)- (d~1 ! +(IV- 1)a)(d~~1 + iVaJ)] Sym 
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= [(d~!J)",cf1~;L .. N-2,N)(d~~ 1 +NaJ]/INJ 
Sym 

[(d[M))n d[MJ ( [MJ [MJ li[NJ 
- N 'a 1,{1, .. ·,N-2) dN-1- d,v )(J(N-1 N- 1) . 

Sym 
(4.14-1) 

Since the operand is restricted to the symmetric functions of the indices {1, ... , IV}, the second 
term in the r.h.s. of eq. (4.144) is simplified as 

[( [MJ)n [MJ [MJ [MJ l/[N) - d,v 'ad1,{1, .. ,N-2)(dN-1 - d,v )(J(N-1 N- 1) 
Sym 

= adiMJ (d[MJ - d!MJ)(K - 1)(d!MJ)"I!NJ l,{l,···,N-2} N-1 N N-1 N N 
Sym 

- ad[MJ (d!MJ)"(d!MJ - JMI)(r - 1)/[NJ 1,{1, .. ·,N-2) N N-1 N \N-1 N Sym 

= ad
1
''!J ··,N-2)(d~~1- d~tj )((d~~1)"J(N-1 N- (d\~ 1JJ")/[NJ 

1, 1, Sym 

= ad[M) (d(M) - d[M))((d[MJ )"- (d[M))")/[Nj 1,[1, .. ·,N-2} N-1 N N-1 N Sym 

I
[NJ - (d[.ll) d[M) ) ((d[Mj )" (d[Mj)") -a 1,{1, .. -,N-1)- 1,{1,. .. ,N-2,N) N-1 - N Sym. (4.1-15) 

Using the inducti1·e assumption (4.143), we simplify the first term in the r.h.s. of eq. (-1.1-1-1) 
as 

[NJ 
[(d[MJ) n d[MJ . (cfMJ + N J]/ 

N ' 1,{1,···,/\ -2,N} t'l-1 a Sym 

1

{1 ... N-2 N) I[NJ I["') 
= [(d[MJ)n d[M) J ' ' , (d[MJ + N ) + d[MJ [(d[MJ)" d[~l) J 

N , l,{l,···,N-2,N} Sym N-1 a Sym l ,{ l ,···,N-2,N} N 1 A-1 Sym 

N~ ,~ 
- d[MJ ("(d[AIJ)"-(N-?)(cfMJ)")(d[M) +Na) -a l,{l,···,N-2} ~ J • - N N-1 Sym 

F1 

I
[N) [MJ n [M) n + ad1,{ 1, .. ,N-2,N) ( (d,v-1) - (dJ\. ) ) S 
ym 

.Y-? 

- d[M) ((d[Mj + Na)(·"-(d[MJ)n- (N- ?)(d[Mj)") -a 1,{1 ,-··,N-2} N-1 L 1 . - N 
j;1 

N-2 ) I[NJ 
+a L ((d\~~ 1 )"- (d}Mil")- a(N- 2)((d~~~ 1 )"- (d~11 l") Sym 

j;1 

I
[N) [MJ n [.1/j n + ad1,{1,.-,N-2,N)((d,v_1) - (d,v ) ) Sym 

N-2 I[N) = adiMJ (L (c/Ml)"- (N- 2)(d\;~tJJ") 1,{1,. .. ,N-1} j;
1 

J Sym 

I
[NJ [.11) n [.\f j n + ad1 {1 ... ,,._, N) ((d,y_ 1) - (d,y ) ) · , , , ~, Sym 

(-1.1-16) 
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d h .d t't' (4 142a) se,·eral times in t he calculation. From eqs. ( 4.14-1) Note that we have use t e 1 en 1 ) · 
_ (4. 146), we finally obtain 

[(d[Af])n d[M] JIIN] = adiM] (IIMI(N- 1) - (N- 1)(d\~lj)" ) I[Nj , 
N > l,INJ Sym l,IN-1] " Sym 

h. h · thin but the second formula of Lemma 4. 24 · 
w JC JS 

110 
g f f p .t. 4 21 We have to separately prove the case for Now we shall start the proo o ropos1 JOn · · . . . _ . 

k = N because of the difference of the definition of the ra1smg operato1 (4.u4). 

Proposition 4. 25 
[/IN!(N) b+INI] = b+INI (2![NI(JV) + N)). 

2 • > N,[N] N,IN] 
(4.147) 

This formula can be straightforwardly verified from the definition of bt~[~J (4.54b) and the 
second formula of Lemma 4. 16 : 

:f[(dn2,aliNJ .. ·a~INJ] 
j=l 

[/INI(JV) b+[Ni] = 
2 > N,IN] 

~(d1·N]~tliNJ . tIN] tiN] t IN]d[N] ) ~ ...., · · CiN + 0:1 . '. O:N j 

j=l 

t al[NJ ... a~[N](2d1N] + 1) 
j=l 

b+IN] (2I[N](N) + N) ) N,INJ l . 

As a ground for inductive assumption, we need a proposition: 

Proposition 4. 26 

[JIA!J(J\/) b+IMIJI IMJ = ((b+IMJ11MI(M)+l+a(M-l))+ L 9k~jl n~'5i ) IIMJ , VM:;:.: 1. (4 .148) 
2 > l,IMJ Sym l,[Mj 1 J<;[Mj ' ' Sym 

jJj=2 

This is nothing but Proposit ion 4. 21 for l = 0, i. e., k = 1 and N = M ~Al]. The proof is as 
follows. Using eq. (4.21c), we can rewnte the second conserYed operatm /2 (M) as 
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Then from Proposition 4. 4 and Proposition 4. 14 fork = 1, i.e., eq. (4. 124), we obtain the 
results. 

We assume that Proposition 4. 21 is valid up to l, namely, k = 1 + 1 and N = 1 + M. 
Assuming the validity of Proposition 4. 21 for the case of k and N, we shall verify the case of 
k + 1 and N + l: 

[J IN+l](N + 1) b +IN+l] l 
2 > k+l,IN+l] l

iN+!] 

Sym 

= b:;~.r;+l] ( 2/[N+l](N + 1) + (k + 1) + a(k + 1)(N- k)) + L g1:t~n~;,~ . { I I } IIN+l] 

J<;(N+l] Sym 
jJj=k+2 

(4. 150) 

Since both sides of the above expression are invariant under the permutations of indices 
1, 2, ... , N + 1, it is sufficient to check the term with the factor a~IN+l] ... arr;"J+l]a~J·~tl on 
the left. Thus we introduce the restriction a(IN+lJ, ar~V/lJ, ... , a~N+l] ~ 0, which we denote by 

lo:1::,'.i .N-o· From the definition of the conserved operator J~N] (N) (4.137) and Lemma 4. 15 , 
we have 

!~N+l](N + 1) !~N+l](N) + (dr.:::i 1) 2 , 

b+IN+l] t(N+l]b+[N+l] (d[N+lj + (k + 1) ) + b+IN+l] k+l,IN+l] aN+! k,INJ N+l a k+l,IN]· 

Then the l.h.s. of eq. (4 .150) is decomposed as 

[ [N+l] +[N+l] ll IIN+l] 
/2 (N + 1), bk+l,(N+l] o:l::,'.i ,N-o Sym 

{ [f[N+l](i'Y) t(N+l] b+IN+l] (diN+l] + (k + 1)a)] + [JIN+l](JV) b+IN+l.J] 2 > aN+l k,INJ N+l 2 > k+l, INJ 

(4.151) 

(4.152) 

+[(diN+lJ? tiN+!Jb+IN+lJ (diN+l] + (k + 1)a)] +[(diN+!]? b+[N+ll] } I IIN+!J_ 
N+l 'QN+ 1 k,[N] N+ l N+l ' k+ l ,[NJ a:r~~:2~.~- -.N ""O Sym 

I I

[N+!J, 
[( IN+l])2 tiN+!] t(N+ l] t(N+l]diN+l] l 

= dN+J , a,v+1 a2 · · · ak+l 1,{2,- ·· ,k+l} 
011

.v+IJ 
t.k+2 .. ,,v""O Sym 

[ 
IN+lj 2 +[N+!JJI IIN+l] 

(dN+l ) 'bk+l,INJ 
0

t[N+>I -o Sym 
l.k+2.···,N 

[(d[N+l])2 t[N+l]~t .. t[N+lJ]diN+lJ (diN+lJ + (k + 1)a) 
N+l , Q:t u.2 Q:k+! l,{2 ,···,k+l} 1 

iE{l,k+2.- ·,N) 

I I

[N+l] 

ot(S+IJ ...... o Sym . 
l.k+2,···,N 

(4.1 53) 

( 4.15~a) 

(4.15~b) 

(4.15-lc) 
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Thus the r.h.s. of eq. ( 4.153) becomes 

[It+tJ(N + 1), b;l~.i~~!J] 

{ [/[N+!J(JV) t[N+!Jb+[N+!J] (iN+lj + (k + 1)a) = 2 , aN+l k,[Nj N+l 

t[N+!J t[N+tl t[N+Ijd[N+!J [!IN+Ij(N) d[~:il] 
+aN+I a 2 · · · ak+I t,{2,-··,k+I) 2 ' ' 

I t[N+!J t[N+!J t[N+!Jd[N+!J l 
+[(d\::i )

2, aN+ I a 2 · · · ak+I t,{2,-··,k+t,N+t) 

"' [(d[N+!J)2 t[N+Ij I . . . at{N+Ii] d{N+!J . ) (d{N+!J + (k + 1)a)} + ~ N+l , a; a2 k+I 1,{2,-··,k+t • 
iE{l ,k+2, ··,N) 

I

[N+Ij 

I t{.V+II -o Sym . 0 !,k+2.···,N 

(4.155) 

We shall calculate the above equation term by term. Using Corollary 4. 23 , we can rewrite the 
commutator of the first term of the r.h.s. of eq. (4.155) as 

I

{N+I) 
[/[N+ !J( rlf) t[N+ tlb +[N+tl ] (diN +II+ (k + 1)a) I 

2 1 , aN+! k,[N] N+l oE~:2'.~ .... v"'o Sym 

{Vj I I[N+!J 
_ at[N+ti[IINI(N) b+i

1
NI1JI ' I (d\::i l + (k + 1)a) tiN+iJ . (4.156) 

- N+l 2 ' k, N Sym O(NJ.....,o(N+l] o,,k+2.···.N""O Sym 

The above commutator allows the use of inductive assumption. Thus we have 

I I

{N+!J 
[JIN+IJ(JV) t[N+!Jb+[N+!J] (d[N+!J + (k + 1)a) 

2 'QN+ l k,[N] N+l ot~Z:z~.~ ... N""o Sym 

{ t[N+Ij t[N+lj t[N+!Jd[N+!J (2I[N+!J(JV) + k + ak(N- k)) a 2 · · · ak+I aN+I 1,{2,- .. ,k+t,N+t) I 

t[N+!J t[N+!J t[N+!Jd[N+Ij (Nd[N+Ij- I [N+!J (N)) +2aa2 · · · ak+l aN+I 1,{2,- .. ,k+t) N+t 1 

I I

[N+!J 
+ t[N+!J "' {N+!J {N+!J} 

aN+l ~ 9N-I,J\{N+ l)nk+2,J ,!IN+ll -O Sym . 
J<;[kju{N +I} i.k+2 ...... v 

(4.157) 

N+IEJ,IJI=k+2 

By using eqs. (4.138a) and (4.142b), the third term is cast into 

I I

[N+!J 
[(d[N+!J)2 t{S+!J t{1\'+l) t[.V+!Jd[N+!J l 

N+l 'Q2 ... Qk+l 0 N+l 1,{2,···,k+l,N+l} t(S+i] 
o 1.k+'1.· ·.N ..... o Sym 
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{ [(d[N+!J)2 at[N+tJ . .. t[N+IJ t[N+!J]d[N+!J 
N+l ' 2 ak+l aN+ l 1,{2,-··,k+I,N+l) 

+atiN+!J ... at1N+Ilat1N+IJ [(d[N+!J)2 d[N+!J ] } I I[N+!J 
2 k+l N+l N+l ' 1,{2,-··,k+I,N+!) t(N+IJ 

o,,J::+'2.· ··.N""'o Sym 

a~[N+!J · · · al~t!Jau•:t!J{ ( 2d\::il + 1 + a2(N - k) 

+a L (2K;N+t + d\::i1 K;,v+l + K;N+Id!~":i 1 ) 
iE{I ,k+2, ··,N) 

+a
2

. . L K;N+IJ(jN+I)d\'~;,1.1 ,k+ I ,N+l) 
>,JE{l,k+2,-··,N) 

i;tj 

k+l } I I[N+IJ +ad\~;,Ij,k+I) (~(d!N+Ij)2- k(d!~:t'IJ2) a:r::,'i ,N-o Sym . 

Using eq. (4.138b), we get the following expression from the fourth term: 

"' [(d[N+IJ)2 t[N+ !J t[N+tJ .. . ~t[N+ti]d[N+Ij (d[N+!J + (k + 1)a) L_; N+ 1 '
0

z Q2 u:k+l l,{2 ,.··,k+ l} I iE{I,k+2, .. ,N) 

I I

{N+!J 

o;~Z:z'.~ ... ,v"'O Sym 

-a L a~[N+tJ. · · al~t1a~~i 11 

iE{I ,k+2, .. ,N) 

( [N+ I) d[N+!JJ( J( "' J' ]{ ) J(iN+ldN+I + N+l iN+I + iN+!+ a+ a ~ \jN+ l iN+ l 
jE{l,k+2, .. ,N) 

j¥i 
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(4. 159) 

(4.160) 

Assembling eqs. (4.157) - (4.160) and doing some calculation with the help of Lemma 4. 24 
and the definition of null operators (4.59), we obtain 

[ [N+!J +[N+!J ll I[N+!J 
/2 (N + 1) , bk+t,[N+!J a:r::,'.i . .v-0 Sym 

{ t[N+!J t[N+ IJ t[N+!Jd[N+!J (2I[N+Ij(N + 1) + (k + 1) + a(k + 1)(/V- k)) O<z ... ak+l aN+I 1,{2,- .. ,k+I,N+l} I 

I

[N+!J 
"' •IN+tJ IN+tJ }I + L..., gk +2,J n k+2, J t[N+ll ...... o S m 

J ~[N+l) 0 t.k+2.···,N y 
N +I EJ,I JI=k+2 

{ b;fr+!J ( 2l[N+!J(N + 1) + (k + 1) + a(k + 1)(/V - k)) 

I I

[N+!J 
"' [N+I) [N+!J } + ~ gk+2,Jnk+2,J 

0
t[.v+_, 1 s ' 

J c;:[N+ l] l.k+-'.· .,,v"'O ym 

( 4.161) 

lll=k+2 

which prO\·es Proposition 4. 21 . 
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4.3.5 Normalization, Triangularity and Expansion 

We shall prO\·e the last two properties of the Hi-Jack polynomials (4.50c) and (4.50d) and 
Propositions 4. 7, 4. 8 and 4. 10 . Here again we implicitly assume that the Dunk! operators 
depend only on N variables x 1, • • · , XN - The restriction symbol without explicit indication of 
indices also means the restriction of the operand to symmetric functions of indices 1, 2, · · ·, N. 

First we shall prol'e the following proposition. 

Proposition 4. 27 Operation of symmetric polynomials of Dunk! operators { al, at· · ·, a~} 
on any symmetric polynomials of N variables { x 1, x2 , · · · , XN} yields symmetric polynomials of 
the N variables { x 1, x2, · · ·, XN}. 

Let us denote an arbitrary polynomial of x 1, x2, · · ·, XN by P(xt , x2, · · ·, XN ). Acting the Dunk! 

operator aJ on P(x 1, x2 , · · · , XN ), we hal'e 

(4.162) 

It is obvious that the first and the second terms of the r.h.s. of eq. (4.162) are polynomials of 
x 1, x2,. ·., x,v. Since the difference of polynomials P(x1, x2 , · · ·, x,v) - P(x; H xi) has a zero 
at x; =xi, the third term is also a polynomial of x 1, x2 , · · ·, XN- Proposition 4. 27 follows from 
this property. We note that the orders of the second and the third terms, which are the terms 
with the coefficient 1/2w, are less than that of the first term by two in the r.h.s. of the abol'e 
expression. 

As a basis of symmetric polynomials, we employ the monomial symmetric polynomials 
[50 , 69] defined by 

u: distinct 
permutation 

(4.163) 

where A is a Young tableau (4.15). By definition, monomial symmetric polynomials are sym­
metric polynomials with respect to any exchange of indices 1, 2, · · ·, N . Calculating the action 

of the Dunk! operator a~(j) on the monomial x~(qx~(2 J · • · x~('N)• we have 
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Defining the Young tableaux from the sets of integers that appear in the r h s of the abO\·e 
expressiOn as exponents by · · · 

A(j±I) Pt .... ,Aj ± 1, ... ,AN}, 

{AJ, ... 'A;- k, ... 'Aj + k- 1, ... ' AN} , 

{AI,·· · ,Aj- k, ·· · ,A;+ k -1,· · · ,\v }, 

A(i -k,j+k- 1) 

A(j-k,i+k-1) 

wh:re the integers in the r.h.s. are regarded to be arranged in the non-increasing order we 
nottce the followmg relatiOns: ' 

(-U6-l) 

From eqs; (4.162), (4.163) and (4.164), we have the following result as a special case of Propo­
Sition 4. _7 : 

Corolla r y 4. 28 Operation of the monomial symmetric polynomial whose arguments are Dunk! 
operators on 1 yzelds a symmetric polynomial of the following expansion, 

mA(a!,nt · · · ,o;v) ·1 = mA(x1,x2, · · · ,xN) 

+ L 
d 

~9 and I~I<IAI 
and I~I=IAI (mod2) 

(4 .165) 

where an unspecified coefficient (1/2w)OAI-I~D/2uA~(a) is an integer coefficient polynomial of a 
and 1/2w. In the above expansion, increasing the order of 1/2w by one causes decreasing of the 
wezght of the symmetrized monomial by two. 

Next we shall consider the action of d; operator on the monomial symmetric polynomials 
of al, a~,···, a~v- We shall consider the case where the length of the Young tableau A, 1 is less 
than or equal toN, l::::; N, i.e. , A= {>. 1 ~ A2 ~ ···~At> 0}. From the monomial symmetric 
polynomial mA(al, a~,···, a\-), we single out a monomial (a~(l))A' (a~(2))A' . . . (a~(t)lA,_ Because 
of eq. (4.21d), we have 

d;(a~ 1 !))A'(a~12))A' · · · (a~(l))A' · 1 = [d;, (a~(l))A'(a~ 12/' ·· · (a~(l})A'J/ . 1. 
Sym 

From eq. ( -l.2lc) , we can easily ,·erify 

[d;, aj] =a! { oiJ(1 +a£ K;k)- a(1- o;1 )K;j }· 
k=l 
k;ii 

Using the abo,·e formula, we get the following expressions: 

[d;, (a~lt/' (a~(2))A' ... (a~(l})A'J/ 
Sym 

= { ( Ah + (.Y- l)a) (a~c 1 /' (a~12/' · · · (a~u/' 

(-1.166) 

(-1.167) 
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( 4.168b) 

e 
Note that the summation 2.::: , e < s means zero, which occurs in the third and fourth term of 

k=s 
eq. ( 4.168a) when >.h = >.1 or h = 1, l. From the above calculation, we get the following result. 

Proposition 4. 29 No higher order monomial in the dominance order is generated by the 
action of d; operator on a monomial (aj)-'•<•l(at)-'•(21 · · · (a~v)"•<Nl · 1, where>. = Pt ?:: >-2 ?:: 
· · · ?:: AN ?:: 0} and a E S N, and the coefficients of the monomials are integer coefficient 
polynomials of a. The weight of the Young tableaux of the monomials are the same as that of 

the original monomial. 

This property causes the triangularity of the Hi-Jack polynomials (4.50c) . From the definition 
of the raising operator of the Hi-Jack polynomial and t he above proposition, we notice the weak 

form of the third requ irement of Proposition 4. 3 . 

Proposition 4. 30 

(bt)-'N(bt_l)-'N-1-,\N ... (b"t)-'1-,\2 ·1 

L v,~~(a)rn~(al, ···,a~) ·1, 
0 

~-t$>. 

where v,~~(a) is an unspecified integer coefficient polynomial of a. 

(4.169) 

Combining Corollary 4. 28 and Proposition 4. 30 , we can easily confirm the first formula of 
Proposition 4. 9 symmetrized and hence the third requirement of Proposition 4. 3, i. e., eq. 
( 4.50c). To ,·erify the second formula of Proposition 4. 9 , or equivalently, the fourth requirement 
(4.50d), we ha,·e to sho"· 

(4.170) 

Computation of """(a) needs consideration on the cancellation among the monomials in eq. 
(4.168). 
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After summing over the distinct t . 
and the fourth terms of ( 

4 168 
) ~ermu atwn a E S,v , the terms that come from the third 

a replaced by a'= a(jh) .yiel~s cance out and vanish, for the fourth term with the permutation 

h 
- a(at )"'. v u'(l) 

(4.171) 

which is the summand in the thi d t f (4 ) · 
1 

b r erm 0 eq. .168a wtth negati,·e sign. Similar cancellation 
a so occurs etween the second term in the bracket of the first term of eq. (4.168a) and the 
first term of eq. (4.168b) with a replaced by a'= a(kh) 1 + 1 < k < N ·1 · h 1 
is that of eq. (4.168a): , - - '" lere am t e r. l.S. 

h 

- a(a~,(ll' · · v. · · (a~·ul'(a~'(k))"• = -a(a~(ll'(a~c2l' . .. (a~(l))"'· (4.172) 

Since there are N -l permutations a' that yield the monomial -a( at )"• (at )"' ... ( t )"' 
through the commutator ( 4.168b ), we can cancel the second term ;ffhe fir~~2)bracket ~~(lihe 
first term of eq. (4.168a). Thus the coefficient of the term (a~(l))"' ... (a~(l))"' coming from 

the commutator [d;, rn,~(al, a1, · ·· ,a~) Jl is >.h where i =a( h). 
S. th H. J k 1 Sym mce e 1- ac · po ynomial is symmetric with respect to the exchange of indices 1 . . . N 

we have only to calculate the coefficient of (alJ"• ·· · (a/)"'· In the following calculation :ve shall 
omit all the monomials except for (all"' · · · (aJ)"', namely the monomial with identit~ permu­
tatiOn .. Any lower order monomial and the same order monomial with different permutation 
are om1tted m the expression. However, we implicitly sum up over the distinct permutations to 
use the above cancellation. To know the coefficient of the monomial of interest that is yielded 
from b(rn,~(al, ··· ,a~) · 1, we have only to do the following calculation using eq. (4.168): 

dl,{l, .,q(all"' ···(a/)"'· 

=dl,{l, ,2} { [dt, (all"' · · · (a/)"'JI + la(a1)"' · · · (aJ)"'} · 1 
Sym 

=dt,{l, ,2}{ (>-t + la)(a1)"' · · · (a[)"• + a(N -l)(aJ)"' ·· · (a/)"'+ a -£ (all"' · ·· (a/)"'}· 1. 
i=2 

..\,<>.1 

(4.173) 

Summing o,·er the distinct permutation, we can cancel out the second and third term as has 
been explained in eqs. (4.171) and (4. 172). Next, we operate d2 on t he operand: 

dl,{< . .. ,q(all"' ···(a[)>.,· 1 

(>-t + la)dt,{l, ,3}{ (.-\2 + (1- 1)a)(a1J"• ···(a/)"'+ (N -l)(all"' · · · (a[)"• 

1 

-a L (at)>.'(oJ)"'(a~)"' 
i=l 

).,>>.2 

N 

(a/)"'+ a L (all"'··· (a/)"'}· 1. 
i=3 

Ai<A2 

(4.17.J) 
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Since we have already operated d1 on the monomial symmetric polynomial m,~(al, · · · .' a:v), 
summation 0 ,·er the distinct permutation is not anymore invariant under the permutation of 
the indices 1, ... , N, but invariant under the permutation of indices 2, · · · , N. To cancel out 
the second and fourth terms, we only need transpositions (2j), 3 ::; J :S N. The thrrd term , 
which is a monomial with the same Young tableau and a permutation (12), can not be canceled 
out because of the break of invariance under the permutation involving the index 1. Howe,·er, 
this monomial can not be changed to the monomial with identity permutation by operating d;, 

i :;:: 3. Thus, we have 

dt,{l,··,l}(al).\ 1 · ··(a/).\'· 1 = (.!1 1 + la)(.i\z +(I- 1)a)dr ,{l, ··,J}(al).\1 
• • · (aJ).\1 

• 1. (4 .1 75) 

Repeating analogous calculations, we get 

dt,(l,···,l}(al).\ 1 • • • (a/).11 · 1 = (.!1 1 + la)(.i-2 + (l- 1)a) · · · (.!11 + a)(alJ.\ 1 
• • • (aJ).\ 1 

• 1. (4.176) 

Then the following expans ion follows from the above formula, 

bTm,~(al, · · · ,a~) · 1 

{ (.!1 1 + la)(.i-2 +(I- 1)a) · · · (.!11 + a)m.l+t' (a\,···, a:v) 

+ L Y.l+l'p(a)mp(al, ···,a~)} ·1, (4.177) 

JJ.~>.+ tf 
wF.I 

where .il+ 11 = {.!11 + 1, · · ·, .!11 + 1} and Y.1+11P(a) is an unspecified integer coefficient polynomial 
of a. We remark that 1 is a monomial symmetric polynomial with .>- = 0. Then from the 
definition of the raising operator (4.54) and repeated use of eq. (4.177), we finally ,·erify eq. 
(4.170): 

Lemma 4. 31 

Combining Corollary 4. 28 , Proposition 4. 30 and Lemma 4. 31 , we can confirm the th ird and 
fourth requirements of Proposition 4. 3, eqs. (.J.50c) and (4.50d), and Propositions 4. 7 and -1. 
9. 

In the limit w --) oo, eq. ( 4.169) reduces to 

(b;t).\'(b;t_y.v-1-.lv .. . wn-~~-.1,. 11 

L v,~P(a)m1,(x 1 , · · ·, xN)· 
0 

11<>. 

W->00 

(4.178) 

As has been remarked in Sect ion -1.1 , the Dunk! operators for the Calogero model reduce to 
corresponding Dunk! operators ( -l.-19) for the Sutherland model in the limit w --) oo. Then it 
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is obvious that the Hi-Jack polynomials in the limit w --) oo are the Jack J)Olvnomials Thus 
~~~ . . 

0 
p<.l 

(4.179) 

which means the coefficients v,~p(a) in eq. (4 .38b) and v,~1,(a) in (4.169) are essentially same: 

(4.180) 

This proves Proposition 4. 8. Calculating thew--) oo limit of Proposition 4. 9, we ha,·e 

j,~(x;w--) oo, 1/a) = L w,~p(a)mp(x) 
0 

p<.l 

J,~(x; 1/a), 

which shows the top weight monomial symmetric functions in the expansion of the Hi-Jack poly­
nomtal ( 4. 70a), or equtvalently, eq. ( 4.50c) form the Jack polynomial of the same Young tableau. 
Smce the monomtal symmetric polynomials m,~(x) and the Jack polynomials J,~(x; 1/a) respec­
tively form the bases of the symmetric polynomials, the lower weight monomial symmetric poly­
nomials can be re\\-ritten by the lower weight Jack polynomials. Thus we confirm Proposition 
4. 10. 

4.3.6 Orthogonality 

In our proof of Proposition 4. 11 , it is com·enient to use some results in previous sections. 

Proposition 4 . 32 Operation of d; operator on a monomial of al 's, (at).l•tl) .. (a~).l•t.V>. 1, 
where A E Y,v and u E SN yields the monomials of al 's of the form, (a()~•P> · · · (a:v)~·<·'> · 1, 

D 
where J.L E YN, J.L:SA and T = (i, h)u E SN, 1::; h::; N. 

The above assertion is a part of Proposition 4. 29 . We also use the following property. 

Proposition 4. 33 The Hi-Jack polynomials are expanded into the monomial symmetric poly­
nomials of al 's as 

whet·e v,~,~(a) = 1 f= 0. 

j,~(x; w, 1/a) = L v,~p(a)m1,(a!, ·· · ,a~) · 1 
0 

p<.l 

J,~(al, · · ·, aL 1/a) · 1, 

(4.181a) 

(4.18lb) 

This result is sho'm in Propositions 4. 8 and 4. 30. We can readily sec that the above propo­
sition and Corollary 4. 28 lead to the triangularity of the Hi-Jack polynomial (-1.50c). Here 
we only use the triangularity (4.181a) and do not mind if the r.h.s. corresponds with the Jack 
polynomial. 

First, "·e shall pro,·e that the Hi-Jack polynomials are the simultaneous eigenfunct ions of all 
the commuting conserved operators {Inl1 ::; n ::; N}. By definition, the Hi-Jack polynomials 
are the simultaneous eigenfunctions of the first two consen·ed operators, J, and fz. Due to 
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Corollary 4. 28 and Propositions 4. 32 and 4. 33, operation of In on a Hi-Jack polynomial j, 

yields 

In· j,(x; w, 1/a) 
N 

:[(dtr :L v,~m1,(al, ···,a~) · 1 
l=l D 

~9 

:[v~~m~(al, ·-,a~) -1 
0 
~9 

L w~~m,(xi,· · · , xN) · 
0 

p.~>. 

o' I ~ I <IAI 

(4.182) 

Since the n-th consen·ed operator commutes with the first and second consen·ed operator, 

[II, In)= [hin) = 0, we have 

Mnj,(x;w, 1/a) = EI(,\)In)A(x;w, 1/a) , 

hfnj,(x;w, 1/a) = E2(,\)Inj,(x;w, 1/a). 

(4 .183a) 

(4.183b) 

Equations (4.183a), (4.183b) and (4.182) for In)A are respectively the same as eqs. (4.50a), 
(4.50b) and (4.50c) for the Hi-Jack polynomial j,. We ha1·e proved in Section 4.3.1 the unique­
ness of the Hi-Jack polynomial j, determined by the definition (4.50) . Therefore we conclude 
that In]A must coincide with j, up to normalization. Thus we confirm that the Hi-Jack poly­
nomials j, simultaneously diagonalize all the commuting conserved operators In, n = 1, · · · , !\". 

Next, we shall verify that there is no degeneracy in the eigenvalues. The eigenvalue of the 
n-th conserved operator for a Hi-Jack polynomial j, is denoted by En(,\): 

Inj,(x; w, 1/a) = En(,\)j,(x; w, 1/a), n = 1, · · ·, N. (4.184) 

Both the conserved operator In and the Hi-Jack polynomial j, are polynomials of the coupling 
parameter a, which can be readily recognized from the definition of the consen·ed operators 
(4.24) and Proposition 4. 7. Thus the eigenvalue En(,\) is also a polynomial of a, 

(4.185) 

Considering the case a = 0, 11·hich corresponds to N free bosons confined in an external har­
monic well, we can easily obtain the constant term e~0l(,\) as 

N 

e~o)(,\) = :[ (,\k)". (-U86) 
k=I 

It is clear that there is no degeneracy in the constant terms of the eigenvalues {e~,0l(,\)ln = 
1, ···,IV}. We shall confirm it by showing uniqueness of the solution of the follo11·ing algebraic 
equations: 

e~,0)(,\) = Pn , n = 1, 2, · · ·, N. 

\\'e define the elementary symmetric polynomial by 

en(AI,,\2,·· · ,,\,v)= L Au(l)Au(2)···Au(n)· 
a:distinct 

permutations 

(4.187) 

(4.188) 
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The generating function of the elementary symmetric polynomials is given by 

N N 
E(t) ~ L en(,\)tn = IT (1 + ,\kt). 

n=O k==l 
(4.189) 

From the abm·e definition of the generating function, it is ob1·ious that the solution of the 
algebraic equations, 

en(A) =en , n = l , 2, · · ·, JV, (4.190) 
are uniquely determined by the solution of the algebraic equation , 

~ N n 1 
E(t) - Lent = 0 => Ak = -- k = 1 2 · ·-, N, ti >_ t2 >_ . . > t 

n=l tk' ' ' . - N, (-1191) 

where tk is the k-th zero of the generating function in non-increasing order. For com·enience, we 
take the maximum num_ber of the non-zero elements of the Young tableau as infinity, 1\" = 00 . 

The loganthmic denvative of the generating function (4.189) yields 

d 00 ,\ 00 

- logE(t) = L _k_ = L Pn(,\)(-t)''-I, 
dl k=I 1 + Akt n=l 

where Pn(,\) is the power sum of degree n. Paying attention to the fact that E(O) = 1, we can 
calculate the definite integral of the above expression over t: 

oo (-1)n-I oo 

L --pn(,\)tn =log(:[ en(,\)tn), 
n=i n n=O 

( 4.192a) 

00 00 ( 1)n-I L en(,\)tn = exp(:[ ---Pn(,\)tn). 
n=O n=l n 

(H92b) 

Comparing the terms with the same order oft, we can transform the power sums to the elemen­
tary symmetric polynomials and vice versa. We should note that no higher order polynomial 
appears in the transformation given by the above relations: 

Pn Prt(et,e2J· · ·,en), 

e,l e1l(Pt , P2 , ···,pn)· 

For given constant parts of the eigem·alues, Pn, n = 1, 2, · · ·, 1\", we can uniquely identify the 
corresponding parameters, en, n = 1, 2, · · ·, N, by the above transformation (4.192b). Then 
the algebraic equations (4.187) arc cast into another forms (4.190). Thus the solution of the 
a lgebraic equat ions (4.187) are uniquely gi1·en by the zeroes of the algebraic equation (4.191) 
and hence we hm·e prm·ecl that there is no degeneracy in the constant terms of the eigem·alues. 
Since the consen·ed operators In arc Hermitian operators concerning the inner product (4.16) , 
this pro,·es that the Hi-Jack polynomials are the orthogonal symmetric polynomials with respect 
to the inner product. 

From the explicit form of the weight function, 

(4.193) 
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we conclude that the Hi-Jack polynomials are a multivariable generalization of the Hermite 
polynomials [46]. We note that a proof based on the isomorphism between the Dunk! operators 
for the Hi-Jack polynomials and those for the Jack po lynomials [62, 83] has been reported 
[37, 84]. Our proof is a direct proof that does no t rely on the isomorphism. As has been 
pointed out before, all the Dunk! operators for the Hi-J ack polynomials reduce to those for the 
Jack polynomials in the limit , w --too. Thus our proof contains a proof of orthogonali ty of the 

Jack polynomials as a special case. 

4.4 Summary 

\\"e have studied the orthogonal basis of the Calogero model. T wo crucial observations are 
the reasons why we ha,·e introduced the Hi-Jack polynomials by Definition 4. 1 in a similar 
way to a definition of the Jack polynomials, eqs. (4.38), which form t he ort hogonal basis of the 
Sutherland model. One is the observat ion of the explicit forms of t he first se\·en orthogonal 
symmetric polynomials (3.3-1) in Chapter 3 that indicates a s imilarity between these polynomi­
als and the Jack polynomials. The other is the common algebraic structure of the Calogero and 
Sutherland models, which has been explicitly shown in Section 4. 1. \\·e have introd uced the 
elementary deformation of the Young tableau which generates all the Young tableaux 11 that 

D 
meet !1'5), from a Young tableau .A. Using the property of the deformation, we have confirmed 
that our defin ition of the Hi-Jack polynomials , Definition 4. 1 , uniquely specifies the Hi-Jack 
polynomials . \Ye have proved that the functions generated by the Rodrigues formula [83] t hat 
is an extension of t he Rodrigues formula for the Jack symmetric polynomials discovered by La­
pointe and Vinet [42] satisfy the definition of the Hi-Jack polynomials. Our proof is based on the 
algebraic relat ions among the Dunk! operators. In the consideration of their normalizations , we 
have clarified t hat expansions of the Hi-Jack symmetric polynomials in terms of the monomial 
symmetric polynomials have triangular forms , as is simi lar to the Jack symmetric polynomi­
als. We have also confirmed that the Hi-Jack symmetric polynomials exhibits the integrali ty 
corresponding to the weak form of the 1\Iacdonald-Stanley conj ecture for the Jack symmetric 
polynomials [41]. The Hi-J ack symmetric polynomials and the eigenfunctions for the Hamil­
tonian that were algebraically constructed through the quantum Lax formulation in C hapter 
3 a re related by the transformation between the Jack symmetric polynomials and the power 
sum symmetric polynomials. \\"e have studied on the orthogonality of the Hi-Jack polynomials. 
The orthogonal basis provides a ,·ery useful tool for the study of physical quantities in quantum 
theory. The orthogonality of the Hi-Jack symmetric polynomials is expected to be importan t 
in t he exact calculation of the thermodynamic quantities such as the Green function s and the 
correlation functions, as has been clone for the Sutherland model using t he propert ies of the 
J ack polynomials [29, 30, 32, 48]. Orthogonality of the Jack polynomials is prO\·ed by showing 
that all the commu t ing consen ·ed operators of the Sutherland model {Idk = 1, 2, · · ·, N} arc 
simul taneously cliagonalizecl by the Jack polynomials [49, 50]. Cons idering the correspondence 
between the Calogero model and the Sutherland model , we can expect that all the conserved 
operators of the Calogero model {hik = 1, 2, · · · , N} are also diagonalizecl by the Hi-Jack poly­
nomials. This expec tat ion has been verified. We ha,·e verified that the Hi-Jack polynomial on 
which the n-th conserved operator operates, I,. jA, also sat isfies the definition of the Hi-Jack 
polynomial except for the normalizat ion condition. This means that In)A coincides with the 
Hi-Jack polynomial ]A up to a scalar factor. Therefore the Hi-Jack polynomials are the simul-
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taneous eigenfunctions of all the consen·ed operators. \\'e ha,·e calculated the eigem·alues of 
a ll the conserved operators fa tl h h · . r 1e case w en t e couphng parameter a is zero and ha,·e found 
ouththere IS no degeneracy. Thus we have prO\·ed the orthogonalit\· of the Hi-Jack polynomials 
:vit respect to the mner product ( 4. 76). From the explicit form ~f the weight function of the 
mner product, we have confirmed that the Hi-Jack polynomials which we ha,·e found should be 
regarded as a multivanable generalization of the Hermite polynomials. 



---~--------

Chapter 5 

Summary and Concluding Remarks 

In this thesis , we have studied the quantum Calogero model in an algebraic fashion. In the 
classical theory, the Calogero model is known to be a completely integrable system. The model 
has a Lax formulation, which has been developed as a powerful tool for various completely 
integrable systems. For the classical Calogero model, the Lax formu lation not only shows its 
integrability, but also gives a way to solve the initial value problem of the model. In this sense, 
the Calogero model is a special model even in the classical integrable systems, because the 
notion of integrability just asserts the existence of the canonical transformation to the action­
angle variables. However, because of the non-commutativity between the canonical conjugate 
variables, the merits of the Lax formulation for the model seemed to be completely destroyed 
in the quantum theory. This difficulty has motivated us to find a powerful method to studv 
the integrability and the underlying symmetry of the quantum Calogero model. We hav~ 
also wanted to find out an elegant way to construct the eigenfunctions. Though the energy 
eigem·alue problem was solved by Calogero in 1971 [19), an algebraic construction of the energy 
eigenfunctions has not been completed. 'v\'e have pursued more detailed information on the 
eigenfunct ions of the quantum Calogero model. Quantum integrability means that we can 
identify, in principle, all the quantum number of the system by diagonalizing all the mutually 
commuting consen·ed operators. But just proving it possible is far different from doing it in 
practice. T hus we have aimed at giving a method to construct the simultaneous eigenfunctions 
of the commuting conserved operators and hence to identify the orthogonal basis of the quantum 
Calogero model. 

In Chapter 2, "·e ha,·e developed the quantum Lax formulation of the Calogero model , "·hich 
is a natural generalization of the Lax formu lation for the classical one, introduced the Dunk! 
operator formulation and im·estigated the algebraic structure of the quantum Calogero model 
in the framework of the quantum Lax formulation and the Dunk! operator formulation. From 
the Lax equation for the classical model, we ha,·e obtained the Lax equation for the quantum 
Calogero Hamiltonian whose J\I-matrix satisfies the sum-to-zero condition. The fact enables 
us to construct a set of the conserved operators of the quantum model , as was the case wirh 
the quantum Calogero-l\ loser model [34, 74, 75, 88, 89). To show the quantum integrability of 
the Calogero mode l, we have considered a construction of commuting consen·ed operators, eqs. 
(2.12) and (2.20). By use of the explicit forms of the first two conserved operators, !1 and 
h (2. 13) , or j 1 and j 2 (2.21), we have obtained the first two of the generalized Lax equations 
for the commuting conserved operators (2.16) and ha,·e conjectured the general form (2.22). 
However t he generalized Lax equations for the commuting consen·ed operators are not com-
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patible with the recursive construction. To study the recursive construction of the generalized 
Lax equations, we ha,·e in troduced a series of operators that are made by summation of all 
the elements of the \\ 'eyl ordered product of L+- and L-- matrices (2.29). From the explicit 
forms of the first few conserved operators (2.26) and power-sum creat ion-annihilation operators 
(2.30), we have obtained the corresponding generalized Lax equations , eqs. (2.28), (2.32) and 
(2.33). From these first few generalized Lax equations, we have found out the recursion formu­
lae, eqs. (2.36) and (2.53). Using the recursion formulae, we have recursn·ely constructed the 
generalized Lax equations (2.52). The generalized Lax equations prove t he mutual commuta­
tivity of the power-sum creat ion-annihilat ion operators, which ha,·e played an Important role 
in the algebraic construction of the energy eigenfunctions [76, 77] in Chapter 3. Defining th_e 
w <•>-operators by eq. (2.60), we have pro,·ed t hat the generalized Lax equatiOns yields the II­
al;ebra as a commutato r algebra among the IV~'> -operators. \\'e ha,·e studied correspondences 
between the quantum Lax formulation [76-78, 80] and the Dunk! operator formulation [27] that 
was introduced by Polychronakos into the problems on the inverse-square interaction models 
[62]. The Dunk! operator formulation provides us a simple way of constructing the commuting 
conserved operators of the Calogero model (2 .69). We have observed that the restriction of the 
operand to the wave functions of the identical particles enables us to translate the results in one 
of the theories into those in the other. To be concrete, we have related arbitrary operators made 
from the two matrices , L + and L-, and their commutator algebras with those in the Dunk! 
operator formulation , eqs. (2. 73) and (2. 76). A method to directly obtain the M{;,-matrices has 
also been given as eq. (2.97). Mutual commutativity of the conserved operators In has been 
proved. The simultaneous eigenfunctions of these mutually commuting conserved operators 

have been studied in Chapters 3 and 4. 

In Chapter 3, we have studied an algebraic construction of all the eigenfunctions of the 
Calogero Hamiltonian with the help of the quantum Lax formulation [76-78]. Our approach 
is based on Perelomov's idea on an algebraic treatment of the eigenfunctions of the Calogero 
model. By the factor ization of the Hamiltonian , we have obtained the ground state wa,·e 
function. Using the power-sum creation operators which has been obtained in Chapter 2, \\·e 
have obtained an algebraic method to construct the eigenfunctions of the Calogero model. 
From the number of independent eigenfunctions , we have confirmed that the eigenfunctions 
form the basis of the Hilbert space of the Calogero model. We have also reproduced the resul t 
for the original Calogero model by fixing the center of mass at the coordinate origin. Thus we 
have completed Perelomo,·'s dream of the algebraic construction of the eigenfunctions of the 
Calogero model. Another approach to the algebraic construction of the eigenfunction of the 
Calogero Hamiltonian that uses the Dunk! operators was also reported [17, 18], which has been 
briefly summarized in Chapter 4. \\'e have also considered a const ruct ion of the orthogonal 
basis of the Calogero model by diagonalizing mutually commuting conserved operators. \\"e 
have directly diagonalized the first nontri,·ial conserved operator 12 using the eigenfunctions 
with weights up to 6. The results indicate a general formula for the eigenvalue of 12. In 
addition, we have presented explicit expressions of the first seven of the unidentified orthogonal 
symmetric polynomials associated wi t h the Calogero model, which have been identified as the 
Hi-Jack polynomials in Chapter 4. From the explicit form of the weight function of the inner­
product, we ha,·e concluded that the orthogonal symmetric polynomial should be regarded as 
a multivariable generalization of the Hermite polynomial. From the eigem·alue formula for the 
commuting consen·ed operator / 2 and the expansion of the explicit forms with respect to the 
monomial symmet ric function, we ha,·e obsen·ed a similarity between the Jack polynomials and 
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the seven orthogonal svmmetric pol · · 1 Th 1 · 
t 

. d h d fi . . " . ) nOima s. e resu ts have given an important sugrrestion 
O\\ar t e e mt10n of the HI-Jack polynomials. o 

h In Chafter 4• we have studied the orthogonal basis of the Calogero model further and also 
ave competed the construction of the orthogonal basis in an algebraic fashion [79 83 8-1 86] 

Based on the fact that the Calogero model has a set of mu tually commuting co~ser,ved op~ 
erators [62, 76-78, 80], we have tned to construct the simultaneous eigenfunctions for all the 
conserved operators of the Calogero model that must form t he orthogonal basis of the model 
Smce the Calogero and the Sutherland models share the common algebraic structure, it is nat~ 
ural to mtroduce the HI-J ack symmetric polynomials in a similar way to a definition of the 
Jack polynomials [83, 8-1]. The resu lts in Chapter 3 also support t his expectation. \\"e ha,·e 
mtroduced the element~ry deformation of the Young tableau which generates a ll the Young 

tableaux Jl. that meet Jl.<::,>. from a Young tableau >.. Using the property of the deformation we 
have confirmed that our definition of the Hi-Jack polynomials, Definition 4. 1 , uniqueh· s~ec­
Ifies the HI-Jack polynomials ._ \\'e have proved that the functions generated by the Rodrigues 
formula [83] satisfy the defimt10n of the Hi-Jack polynomia ls . This resu lt is an extension of 
the Rodngues formula for the J ac k symmetric polynomials discovered by Lapointe and Vinet 
[42]. Our proof is based on the algebraic relations among the Dunk! operators. In the con­
SideratiOn of their normali zations, we have clarified that expansions of the Hi-J ack symmetric 
polynomials 111 terms of the monomial symmetric polynomials have triangularity, as is simi­
lar to the Jack symmetric polynomia ls. We have also confirmed that the Hi-Jack svmmetric 
poly nomials exhibits the integrality corresponding to the weak form of the l\lacdonald-Stanley 
conJecture for the Jack symmetric polynomials [41]. The Hi-Jack symmet ric polynomials a nd 
the eigenfunctions for the Hamil tonian that was algebraically constructed through the quantum 
Lax formulation in Chapter 3 are related by the transformation between the Jack s\·mmetric 
polynomials and the power sum symmetric polynomials. We have confirmed the orth-ogonality 
of the Hi-Jack poly nomials. The orthogonal basis provides a very useful tool for the study of 
physical quantities in quantum theory. The orthogonality of the Hi-Jack symmetric polynomi­
als is expected to be important in the exact calculation of the thermodynamic quantities such 
as the Green functions and the correlation functions , as has been done for the Sutherland model 
using the properties of the Jack polynomials [29-32, 48]. Orthogonality of the Jack polynomials 
is proved by showing that all the commuting conserved operators of the Sutherland model, Ik , 
k = 1, 2, · · · , N, are simultaneously diagonalized by the Jack poly nomials [49, 50]. Considering 
the correspondence between the Calogero model and the Sutherland model, we can expect that 
all the conserved operators of the Calogero model , h , k = 1, 2, · · · , N , are also diagonalized by 
the Hi-Jack polynomials . This expectation has been w rifi ed. \Ve have prO\·ed that the Hi-Jack 
polynomial on which the n-th consen·ed operator operates, Inj~, also satisfies the definition of 
the Hi-Jack polynomia l except for the normalization condi t ion. This means that Inj~ coincides 
with the Hi-Jack polynomial j~ up to a scalar factor a nd therefore the Hi-J ack polynomials are 
the simultaneous eigenfunct ions of all the consen·ed operators. \\'e ha,·e calcu lated the eigen­
,·alues of a ll the conserved operators for the case when the coupling parameter a is zero and 
have found out there is no degeneracy. Thus we ha,·e prO\·ed the orthogonality of t he Hi-Jac k 
polynomials with respect to the inner product (4.76). From the explicit form of the weigh t 
function of the inner product, we ha,·e concluded that the Hi-Jack polynomial is a multi,·ari­
able generalization of the Hermite polynomial. .-\ccording to recent preprints [11 , 12. 26], the 
generalized Hermite polynomials were also introduced by Lasselle [46] and by i\lacdonald in a n 
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unpublished manuscript. They defined the generalized Hermite polynomials as a deformation 
of known orthogonal symmetric polynomials with respect to the inner product ( 4. 76) with the 
parameter a fixed at 1/2. On the other hand, our definition specifies the Hi-Jack polynomials , 
or in other words, the generalized Hermite polynomials, as the simultaneous eigenfunctions 
for the commuting conserved operators of the Calogero model , which are natural objects for 

physicists' interest. 
Compactly summarizing, we have developed the formulation for an algebraic study of the 

quantum Calogero model. We have presented a way to construct the commuting conserved 
operators, and have identified the underlying symmetry. We have given a simple method for the 
algebraic construction of the energy eigenfunctions. We have also identified the simultaneous 
eigenfunctions of all the commuting conserved operators and ha1·e presented their Rodrigues 
formula. The simultaneous eigenfunction is a one-parameter deformation of the well-known Jack 
polynomial which we call Hi-Jack polynomial. Proving their orthogonality, we have identified 
that the Hi-Jack polynomial as a multi,·ariable generalization of the Hermite polynomial. Thus 
we have succeeded in clarifying the fundamental properties on the quantum Calogero model 
from the viewpoint of the quantum integrable systems. 

'vVe believe that the thesis has opened the gate toward the exact calculations of various 
corre lation functions of the Calogero model. As we have mentioned before, the knowledge on 
the Jack polynomials [36, 50, 69) enabled the exact calculations of correlation functions of the 
Sutherland model [29-32, 48). The correlation functions exhibit an interesting connection with 
the exclusion statistics [33], which was first recognized by the asymptotic Bethe ansatz [71] of 
the Sutherland model [15, 91, 92]. Similar connections between the exclusion statistics and the 
quantum Calogero model were also reported [53, 54, 81, 82, 85]. Thus we expect similar rela­
tionships between the exclusion statistics and the correlation functions of the Calogero model. 
Some progresses related to our results were also reported recently [11, 12, 26). Multi variable 
generalizations of the classical Laguerre and Jacobi polynomials, which form the orthogonal 
basis of Calogero models associated with root lattices other than A,v_ 1 [59], were studied. 
Their non-symmetric extensions, which describe the spin or multi-component generalizations 
of Calogero models, were also reported. Further investigations on these orthogonal polynomi­
als must be important for the study of Green functions and cor relation functions of Calogero 
models, which was done for the Sutherland model with the he lp of the properties of the Jack 
polynomials [29, 30, 32, 48]. The quantum La,, fo rmulation and the Dunk! operator formulation 
for the Calogero and Sutherland models revealed their IV -symmetry and the Yangian symme­
try structures [13, 14, 34, 35, 77, 78). It is interesting to study the orthogonal polynomials from 
the viewpoint of representation theory of such symmetries. As examples of such studies, we 
should note that the Jack polynomials were identified with the singular vectors of the Virasoro 
and ll'walgebras [10, 51). The i\lacdonald polynomials [50) and their generalizat ions, which 
are q-deformations of the orthogonal symmetric polynomials, are also interesting topics. The 
i\lacdonald polynomials are associated with the discretization, or in other words, the relativis­
tic generalization of the Sutherland model [63). The Rodrigues formula for the Macdonald 
polynomials was given [43-45, 55, 56). Further studies on the cont inuous Hahn polynomials [23) 
which are associated with the relati1·istic or disc retized Calogero model [22) and more gener­
alized q-deformed orthogonal polynomials such as BC,v-Askey-Wilson polynomials [39] related 
to the discretized Calogero model associated with root lattices of BC,v-type [24, 25] are inter­
esting. Thus we believe that the field of t he quantum integrable systems with inverse-square 
interactions will continue to produce lots of attractive open problems. 
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