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Chapter 1 
Introduction 

1.1 X-ray Security System 

In this thesis, we focus on the topic of CNN-based X-ray dangerous objects detection. As 

terrorist activities around the world become more frequent, protecting people’s lives and 

property has become an important issue for the security department. Airports, subway stations, 

government and large-scale event venues are high-risk places for terrorist activities. They use 

bombs, metal weapon and violent means to endanger people’s safety. X-ray security system 

plays an important role in these places. Due to tourists’ baggage is always compact and 

cluttered, checking the baggage manually is inefficient. X-ray security system solved this 

problem. Fig. 1 explained how the X-ray security system works. In this system, baggage was 

transported to the inspection machine in first-in-first-out order. The inspection machine will 

scan the baggage in a short time using X-ray radiation. After several seconds, an X-ray image 

which contains all items in the baggage will be displayed on the screen. By this way, human 

operators can review the highly varying baggage without open it in a very short time.  

 

 
Fig. 1: An X-ray security system 
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 However, this kind of X-ray system has several shortcomings. In the first place, the device 

for X-ray radiation is heavy and expensive. Second, the X-ray image processing for screen 

displaying is time consuming. For each X-ray image displayed on the screen, human operators 

need to check these images one by one. Since there is only a small amount of baggage which 

may include dangerous objects, the workload of checking all of them is tedious and 

meaningless. Last, due to there are too many types of dangerous objects, this manual work 

requires human operators to have accurate judgment and high ability of concentration. Even so, 

this checking work is still accompanied by a high error rate.  

1.2 Convolution neural network 

1.2.1 Principle of CNN 

In recent years, convolution neural network (CNN) has shown state-of-art performance in 

image processing task. CNN is a mathematical algorithm which consists of multiple layers. 

These layers simulate the functions of human brain neural network. The structure design of 

CNN is based on a biological research result. In 1959, Hubel & Wiesel [1] conducted an 

experiment on cat’s brain. They observed the response of a single neuron in the cat’s brain to 

the image and found that neurons in the frontal area of the visual system reacted strongly to 

specific light signals but did not respond to any other pattern at all. This phenomenon indicates 

that animals’ visual system always prefers to catch the low-level features of the image at first. 

These low-level features include edge information, color, direction and others, which are 

extracted by the first layer of animals’ visual system called the Primary Visual Cortex (V1). 

Due to animals’ visual system is hierarchical and progressive, the deep layers of the system 

will handle these low-level features and generate high-level features. As the image information 

flows through the visual system, the features will be processed layer by layer. Finally, the whole 

image will be displayed in front of our eyes. 

 Fig. 2 [2] explains the structure of a human visual system. This system consists of four 

kinds of layer. The image information flows from the retina and the V1 layer will conduct edge 

detection on the image. In the Secondary Visual Cortex (V2) layer, the visual system will 

extract low-level features of the image. Then, V4 layer will extract high-level features based 
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on the information flowing from V2 layer. Finally, Inferior Temporal Gyrus (IT) layer will 

perform recognition task. 

 

Fig. 2: A human visual system[2] 

1.2.2 Basic components of CNN 

Similar to this system, we introduce the function layer design of CNN now. The most important 

layer in CNN is Convolutional Layer. This kind of layer simulates the V1 layer in the human 

visual system. In the human visual system, the image information flowing from retina is 3-

dimensional information. V1 layer is able to transform the 3D information to 2D information. 

A convolutional layer consists of a set of filters. These filters are n*n 2D square matrix, which 

can directly handle 2D information. To extract features of the image, each filter will convolve 

the input image in the convolutional layer. Depending on the size of the filter, the size of the 

feature images is different, so that different levels of feature images can be obtained. These 

feature images can be sent into deep convolutional layers for further extraction. By repeating 

this process, CNN is able to extract high-level features of the input image. Fig. 3 explains how 

convolutional layer works. In this case, the input image size is 7*7 and the filter size is 3*3. 

During the convolution, the filter will scan the input image. The process multiples each number 

in the filter by the pixel intensity value and sums all of the products together. This value 
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becomes the new intensity of the pixel. For example, when we conduct convolution operation 

in the colorized field in the Fig. 3, we get a new pixel value of 4 and the whole output image 

size will be 5*5 after we finish the convolution operation.  

  

 

Fig. 3: A convolution operation 

 However, only the structure of convolutional layer is not enough. This is because 

convolution operation is a kind of linear operation, which indicate that this layer can only deal 

with linear problem. It is necessary that adding non-linear factors in CNN to enable CNN to 

solve any kind of problem. For this purpose, CNN takes use of Activation Function to bring in 

non-linearity property. The activation function simulates the process of electrical signal 

transmission between neurons in the animal's nervous system. We emphasize that activation 

functions should be nonlinear and continuously differentiable in most cases. This is because 

the proposed backpropagation algorithm (BP) [3] for training CNN, which we will introduce it 

later. There are many activation functions, here we introduce the three most commonly used 

activation functions. 

 The first activation function we want to introduce is Sigmoid Function (see Fig. 4 (a)). This 

function maps the real number interval to the 0~1 interval, which represents the process of 

neurons from inactive to active. Sigmoid function explains the principle of neuron propagation, 

but this function has two shortcomings. One is that the gradient of this function diagram at both 

ends is infinitely close to zero, which causes the gradient of CNN to disappear in the back 

propagation, leading to the network not converge to the global minimum. The other 

shortcoming is that the distribution of the function output is unbalanced in the positive and 
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negative intervals. This will cause the gradient in the back propagation to be updated in the 

same direction, which is not conductive to the neural network convergence. The second 

activation function we want to introduce is Hyperbolic Tangent Function (see Fig. 4 (b)). This 

function is the improvement based on sigmoid function. It can be seen from the function picture 

that the tanh function solves the problem that the output of the sigmoid function is unbalanced 

in the positive and negative intervals, but this function also has the problem that the gradient 

disappears in the back propagation. The third one we want to introduce is the most popular 

activation function in the recent years called Relu Function [4] (see Fig. 4 (c)). Relu is a special 

activation function, whose function diagram is not full interval differentiable. Compared to the 

exponential operations of the previous two functions, the linearly unsaturated form of relu 

enables CNN to converge faster and turns a part of the parameters into zero to increase the 

sparseness of the network, which alleviates the problem of overfitting [5]. At the same time, 

relu also solved the gradient vanishing problem. Recently, researchers have proposed some 

improved function about relu [6][7]. Due to page limitation, we will not repeat them. 

 

 

(a) sigmoid function 

sigmoid(x) =
1

1 + e−𝑥𝑥 
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(b) tanh function 

(c) ReLU function 

Fig. 4:Three kinds of activation function 

 Another important component of CNN is the pooling layer. Because the convolutional 

layer has a lot of filters and these filters will generate multiple feature images after scanning 

the input image. These feature images contain a large number of parameters. If using these 

feature images directly for classification tasks, the GPU will face huge computational load and 

even memory overflow. The role of the pooling layer is to reduce the parameters of CNN and 

subsample the feature images to achieve the purpose of relieving overfitting. There are two 

common pooling layers. One is max pooling layer. In the max pooling layer, the algorithm 

selects the largest value in the pooling window as the sample value. The pooling window will 

scan the whole feature image. After the scanning, the algorithm will generate a subsampled 

tanh(x) =
e𝑥𝑥 − e−𝑥𝑥

e𝑥𝑥 + e−𝑥𝑥 

Relu: f(x) = max (0,𝑥𝑥) 
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feature image. The other layer is mean (average) pooling layer. In this layer, the sample value 

is calculated by averaging all the pixel values in the pooling window and the rest of the 

algorithm is the same as the max pooling layer. In the both two kinds of pooling layer, we can 

adjust the size of subsampled image by adjusting the size of the pooling window. This allows 

that the reducing the parameters of CNN be controllable. Fig. 5 show how max pooling layer 

and mean pooling layer works. 

 

Fig. 5: Max pooling and Mean (Average) pooling 

At the end of CNN, there is used to be a classifier or a detector or a fully connected layer 

for handling different types of tasks. Their main role is to globally classify the feature images 

learned by the previous layers and calculate the probability that the input image is most likely 

to belong to a certain category. This is the final component of CNN. 

1.2.3 Gradient descent and Backpropagation algorithm 

Supposing 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 are the inputs of linear the neural network and 𝑦𝑦 is the real output 

of the linear neural network. We have the follow equation: 

                      𝑦𝑦 =  𝑤𝑤1𝑥𝑥1 +𝑤𝑤2𝑥𝑥2 +⋯+ 𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛   ,                 (1) 

where 𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛 are the weights from input neuron nodes to output neuron nodes in the 

linear neural network. We use variable 𝑡𝑡 to represent the correct output of the neural network. 
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Because there is always a difference between 𝑦𝑦 and 𝑡𝑡, we use the square error method to 

measure the difference between them: 

𝐸𝐸 = 1
2

(𝑦𝑦 − 𝑡𝑡)2                                   (2) 

The training process of the neural network is actually the process of updating a set of weights 

so that 𝐸𝐸  is the global minimum. For a neural network of the single neuron, the function 

diagram of 𝐸𝐸 is a parabola (see Fig. 6) and we can easy to find the global minimum. For a 

neural network of multiple neurons, the function diagram of 𝐸𝐸 is a paraboloid (see Fig. 7 

(a)[8]). It is necessary to use gradient descent [10][11] method to find the minimum of the 

paraboloid. In multi-layer CNNs. the network structure incorporates nonlinear transformations, 

and the paraboloid becomes more complex (Fig. 7 (b)[9]). In this case, we can’t solve the 

global minimum by solving the equations. In order to avoid the 𝐸𝐸 falling into a local minimum 

[12], we need to take use of the optimizers to improve the gradient descent algorithm. There 

are some published optimizers such as Momentum [13], NAG [14], Adagrad [15] and Adam 

[16]. 

 

Fig. 6: Gradient descent in parabola 
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Fig. 7: The function diagram of 𝐸𝐸 in linear and non-linear networks[8][9] 

 Gradient descent algorithm is performed in backpropagation in neural networks. The 

gradient descent algorithm tells us that the gradient of the previous layer of the neural network 

can be obtained by the loss function taking the partial derivative of the weight in the latter layer. 

In the process of backpropagation, the difference of the output layer will propagate forward. 

Each layer of the neural network uses the difference of the current layer to calculate the 

difference of the previous layer, so that the weights are updated in the direction of decreasing 

the difference. This kind of propagation process needs to set a learning rate. By adjust the 

learning rate, the problem of gradient disappearance and gradient explosion occurring during 

propagation can be effectively prevented, and the overfitting of the network can be alleviated 

[17]. 

1.3 Motivation and Methods 

Although the security system has been studies for decades, there is still not enough published 

works on raw X-ray images baggage security. In 2003, an explosive detection system (EDS) 

was proposed [18], their work was mainly based on explosives in airport or post office security. 

However, dangerous objects are not just explosives, but also guns, metals, liquids and other 

items. Because most X-ray images are illegible, some researches work on X-ray image 

enhancement and segmentation [19][20]. This kind of work contribution is vert limited because 

it cannot solve the dangerous object detection problem fundamentally. Baştan M et.al proposed 

(a) A paraboloid diagram of a linear 
   

(b) A paraboloid diagram of a CNN   
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a method from the perspective of colorizing the objects in X-ray images according to their 

spectrum energy call bag of visual words (BoVW) [21]. This work is similar to the previous 

image enhancement method, but its performance is quite well. Still, their work has two 

shortcomings. One is that their work requires expensive device support. The other is that adding 

information on X-ray images means that it is hard to detect dangerous objects in real time. An 

improve method was proposed in 2013 called primed visual words [22]. Their experiment is 

based on firearm detection. They have achieved true positive rate of 90.07% and false positive 

rate of 4.31% in classification task. However, it is necessary to conduct experiments on object 

detection task because security systems require more accurate location detection in practical 

applications. Mery, Domingo, et al proposed a multiple view analysis method [23]. Their 

method includes three part: data association, 3D analysis and final analysis. The main idea of 

their method is that reconstructing the data in 3D clustering and using multiple view 

information and neighbor information in to classify it. But the size of their experiment dataset 

is small and the X-ray images in their dataset are not complicated enough. It is hard to verify 

the robustness of their algorithms. Jaccard, N et.al introduced a data synthesizing method of 

X-ray images and they conducted their experiments of small metal detection in freight 

containers [24][25]. Although their work is about cargo security not baggage security, their 

contribution also has great reference value for us. Cargo security is different from baggage 

security. This is because cargo always has large size. When there are dangerous objects in the 

cargo, they have a very small proportion of the area in the X-ray image of the entire cargo, 

which is extremely difficult for inspection. Baggage security is similar to it, the objects in 

baggage are usually irregular, which increases the difficulty of detection. Some studies use 

Support Vector Machine (SVM) to X-ray image classification task [26][27]. Subsequently, 

CNNs demonstrated strong capabilities in the field of image processing [28]. There is also a 

research about X-ray image detection task [29]. Their experiments are mainly focus on three 

kinds of dangerous objects detection: razor blades, shuriken and handguns. However, their 

dataset is a little small and their results are unable to be robust in practical applications. 

 In fact, most of previous works we mentioned are based on multi-view X-ray image dataset. 

When collecting images with a typical X-ray imaging device, we will get grayscale X-ray 

images called single-view X-ray images. But such images are often illegible. The multi-view 
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X-ray image is RGB colorized image in which an X-ray imaging device illuminates the same 

object from different angles with X-rays of different energies, and combines the images 

obtained by the same objects at different X-ray intensities (see Fig. 8[21]). In practical security 

systems, single-view X-ray images are often processed and converted into multi-view X-ray 

images to help human operators better identify objects in the baggage. This kind of multi-view 

X-ray device has some limitations. In the first place, the price of the device is in high level and 

it is cumbersome to handle. In the security area of the airport, we usually see dozens of such 

security devices, which take up a lot of place. Special transporters are also required to carry 

these devices. In the second place, the device needs to convert the single-view X-ray images 

of the baggage one by one and display these images to the screen, which take a lot of time. This 

is also why the security area is always overcrowded. In most cases, the baggage is safe. This is 

because the proportion of baggage containing dangerous objects is only a small percentage. 

The work that colorizing all the X-ray baggage images is undoubtedly meaningless. Finally, 

even if all the baggage objects can be displayed on the screen in the form of multi-view X-ray 

images, this also has a very high requirement for the professional quality of human operators. 

These human operators have to check thousands of images every day. This work requires rich 

experience and accurate judgement. At the same time, long-term work is very prone to visual 

fatigue. This also means that manual checks are accompanied by higher error rates, which in 

some cases are fatal. 

 

 

Fig. 8: Example of multi-view X-ray images[21] 
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 Considering the many deficiencies of the multi-view X-ray device. We aim to study a 

portable automatic security system that can directly handle single-view X-ray images. We use 

CNN to train dataset including a large amount of single-view X-ray images to challenge the 

dangerous object detection task. This system is not only easy to handle, but also efficient. If 

this security system can be used for mass production, it can improve the efficiency of security 

inspection, reduce the cost and reduce the workload of security human operators. 

1.4 Main Contributions 

This thesis main has three contributions which can be listed as follows: 

 First, instead of using multi-view X-ray devices which are expensive and heavy, we 

introduce a portable X-ray device (see Fig. 9). In contrast to multi-view device that need to 

colorize the image, our device can collect single-view X-ray image in real time. This device 

contains three part: a laptop, an X-ray generator and an imaging device. These three parts play 

different roles. The left one is laptop. It has a dedicated X-ray processing software that 

visualizes the collected X-ray images in real time and saves the source files. The illumination 

time and intensity of each X-ray image will also be displayed on the screen in real time, which 

will facilitate the researcher’s reference and adjust the illumination environment. The software 

also can reverse the color of the image to meet the needs of different conditions. The middle 

one is an X-ray generator (Product Name NS-100-L). This is a hand-held X-ray generator with 

a hand-held part that collects the operator’s biometric information for personal authentication. 

This is extremely high security and prevents the possibility of being stolen. The electron 

acceleration voltage in the X-ray tube can output to 100kV. This intensity of illumination can 

meet the needs of all security areas. The one in the right place is X-ray imaging device. This is 

a board which is used to put the baggage. This board can remove the extra environmental 

background information in the X-ray image. This system is very efficient. We only need to put 

the baggage on the X-ray imaging device, then use the X-ray generator to illuminate the 

baggage. and the X-ray image of the baggage will be displayed in real time and saved in the 

laptop. All these three parts are lightweight, compact, safe and easy to carry.  
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Fig. 9: A portable X-ray device 

 Second, we built a baggage security screening system for detecting dangerous objects. We 

would like to emphasize that our security system is different from previous works. As we 

mentioned before, most of previous works are based on multi-view X-ray images. Our system 

can directly handle single-view X-ray images. Our experiments are based on object detection 

tasks, not only to classify X-ray images but also to determine the location of dangerous objects 

in the X-ray image. We trained a powerful CNN for real time detection and prepared a large 

single-view X-ray dataset. 

 Third, considering that raw single-view X-ray dataset is very limited. We proposed a 

method to synthesize X-ray image. The images we synthesized are very close to real baggage 

X-ray images, and we have experimentally proved the improvement of our synthesized images. 

Our synthesizing algorithm can automatically label the images in the synthesizing process 

without adding meaningless workload. At the same time, this synthesizing method can also be 

used on other kings of X-ray data synthesizing. 

1.5 Outline  

The rest of this thesis is organized as follows. Chapter 2 discusses the related work of object 

detection. Chapter 3 presents some preliminary knowledge regarding Yolo for readers who are 
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not familiar with the CNN model we use. Chapter 4 describes the method we proposed in this 

thesis. We show our experiment results in Chapter 5, and in this chapter, we also analysis our 

experiment results. In the Chapter 6, we discuss the limitations of our system and summarize 

the thesis and propose the future work. 
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Chapter 2 
Related work 

2.1 Overview 

This chapter consists of four parts. In the first part, we introduce traditional object detection 

algorithm, which can be view as a basic method. In the second part, we introduce some two-

stage object detection CNN models, which can be view as the development process of the 

object detection CNN. In the third part, we introduce some recently popular real time detection 

CNN and we will make a performance comparison and evaluate these CNNs in the last part. 

2.2 Traditional object detection algorithm 

2.2.1 Adaboost cascade object detection algorithm based on harr-like feature 

The object detection task is much more complicated than the image classification task, because 

the object detection task not only needs to classify the object but also needs to accurately locate 

the object. Generally speaking, the position of an object in the image is random, and the shape 

of the same object observed at different angle is also very different. Therefore, for the object 

detection algorithm, the most important point is how to extract the features of the object. 

 The earliest feature extraction method is harr-like feature proposed by Viola et.al [30][31]. 

They used the harr-like feature for face detection. The harr-like feature is a series of black and 

white rectangular features (see Fig. 10). This kind of rectangular feature is equivalent to a 

sliding window, and when the sliding window is move to an area of human face, the feature of 

the face in the area can be calculated. The calculation is done by summing the pixel values of 

the white areas in the rectangular and subtracting the sum of the pixel values of the black areas. 

After that, Lienhart et.al proposed some extended harr-like features that made the extracted 

feature forms more diverse [32]. Since the size and shape of each human face are different, the 

size of rectangular sliding window is also not fixed. The algorithm performs translation and 

scaling on the sliding window and thereby effectively extracting harr-like features of different 
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scale at different positions. The number of harr-like features is huge. For a 20*20 size image, 

there are about 100,000 generated harr-like feature images. 

 

Fig. 10: Examples of harr-like feature 

 In 1984, Valiant et.al proposed a concept of a classifier [33]. If a classifier can obtain 

a slightly higher accuracy than a random guess, this kind of classifier is called weak 

classifier. If a classifier can significantly improve the accuracy of the random guess, this 

kind of classifier is said to be strong classifier. AdaBoost is an algorithm that improves the 

performance of weak classifiers [34]. We can get a strong classifier by training a weak classifier 

using AdaBoost algorithm combined with the harr-like features. However, when performing 

object detection tasks, a single strong classifier cannot solve high-precision complex tasks, we 

usually use cascaded strong classifiers to solve the problem. 

Fig. 11: Classification strategy tree based on cascade structure 
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Fig. 11 shows the classification process. The harr-like features will pass through a strategy 

tree. Each layer of the strategy tree is a strong classifier based on AdaBoost algorithm training. 

Each strong classifier consists of several weak classifiers. Each layer of the strategy tree filters 

the features that meet the criteria. Only features detected as non-negative regions can enter the 

next layer for further screening. The final positive region obtained by such layer screening is 

the target region of detection. By this way, the algorithm implements the detection task. 

2.2.2 SVM detector based on HOG features 

Histogram of Oriented Gradient (HOG) feature is similar to harr-like feature [35], which is a 

feature descriptor used for object detection. HOG calculate the histogram based on the gradient 

not based on color. This algorithm is based on an idea that if we use the entire image as a feature 

to count the gradient information, it is difficult to find the object features of the image through 

the gradient histogram. However, the features of the local area can be described by a gradient 

histogram. This is because the gradient information mainly exists at the edge position of the 

local object. Therefore, HOG constructs the features by calculating and counting the gradient 

direction histogram of the local region of the image. 

  Compared with harr-like feature, the HOG feature is not affected by the image lighting 

factor. Before constructing the HOG feature, it is necessary to perform gamma correction on 

the image. The effect of gamma correction is to improve the contrast between the light and dark 

parts of the image. The algorithm then divides the image into small connected areas called cell 

units. Each cell units will generate a gradient histogram. In order to make the HOG features 

have better illumination invariance, the gradient histogram will be normalized. At the same 

time, HOG features have the characteristics of rotation invariance and scale invariance, and the 

calculation amount is also smaller than harr-like features. These generated HOG features will 

be trained by SVM to achieve the purpose of detection. 

2.2.3 Improvement based on HOG feature: DPM algorithm 

HOG feature has a shortcoming that although it has a good detection performance on the front 

and back of the pedestrian, the side detection performance on the pedestrian is not so well. This 
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is because the model based on HOG feature is not complicated enough. To solve this problem, 

Pedro F proposed DPM algorithm [36]. The essence of DPM is to use the HOG feature, 

but the HOG feature has been improved. The gradient of the original HOG feature is signed. 

DPM uses a method that combining signed gradient and unsigned gradient, which reduces 

the dimension of the HOG feature and reduces the time complexity. 

 Compared with the simple model of HOG, DPM proposed a multi-filter detection method 

and got better performance. DPM uses multiple resolution filters for detection an object. The 

response score is obtained by convolving the original object with these different resolution 

filters. The higher the response score, the closer the feature is to original object. Finally, a 

comprehensive response is made to detect the object. Taking human detection as an example 

(see Fig. 12[36]). Fig. 12 (a) is a root filter, which is used for detection the whole contour of a 

person. Fig. 12 (b) divides human body into six parts and each part is a filter with higher 

resolution than the root filter. This is used to detect the details of human body. Fig. 12 (c) is a 

spatial model which shows the relationship between each part and root. The brightness of the 

pixel determines how relevant it is to the root. Combined with these three models, DPM can 

detect human more accurately. 

 

 
Fig. 12: A component person model for human detection[36] 
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Fig. 13: The detection process of DPM[36] 

Fig. 13[36] shows the detection process of DPM algorithm. DPM is also an algorithm 

based on sliding window. It builds resolution pyramids and uses filters of different resolution 

to progressively detect objects from contour to detail. This method is easy to understand and 

adapts well to the deformation of the object. However, this algorithm still has some 

shortcomings. This first is that this multi-resolution filter is manually designed. Different filters 
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are required for different objects, and workload is huge. The second is that when the object 

rotates a lot, the detection performance is not good, and the adaptability needs to be improved. 

2.2.4 Summary of traditional object detection algorithms 

we introduced three traditional object detection algorithms in this section. it is easy to conclude 

their common features. The traditional object detection algorithm is mainly divided into three 

steps (see Fig. 14). The first step is region selection. Algorithms for region selection are 

generally based on sliding windows. Sliding windows traverse the entire image with filters of 

different sizes. This strategy enumerates all possibilities of object position but reduces the 

efficiency of the algorithm. The second step is feature extraction. Commonly used feature 

extraction methods are harr-like features and HOG features. Since the shape, position, 

environmental background and illumination changes of the object are all uncertain, it is difficult 

to extract robust features. The final step is to train the classifier. The commonly used classifiers 

are SVM and Adaboost. The process of training the classifier is actually the process of finding 

the true positive features of the target object. We can use the trained classifier to detect the 

target object. 

 

Fig. 14: Traditional object detection method 

 In summary, traditional object detection algorithm has two shortcomings. One is that 

region selection strategy is based on the sliding window algorithm with high time complexity 

and redundancy. The other is that the features of the manual design lack robustness for diversity 

changes. 

Region Selection Feature Extractor Classifier 
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2.3 Two-stage object detection CNN models 

2.3.1 R-CNN (Region CNN） 

In 2014, Girshick R first used CNN for object detection task and made a great progress. 

This CNN model is called R-CNN [37]. Compared with the huge computational 

complexity of sliding window extraction features, R-CNN uses a method called selective 

search to calculate candidate regions, which greatly improves the efficiency of extracting 

features [38]. Selective search uses the similarity between regions to extract object features. 

This algorithm splits the image into different regions and then merges regions with similar 

features such as texture, color, and contour (see Fig. 15[38]). The merged region is used 

as a candidate region for detection. This results in multiple candidate regions by 

hierarchical merging. This algorithm does not exhaust all possibilities. The selective 

search algorithm in R-CNN will generate approximately two thousand candidate regions, 

which is why it is better than the exhaustive method. 

 

 

Fig. 15: Selective Search method[38] 
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  After the candidate regions is obtained, the R-CNN algorithm will use CNN to extract 

feature. After the image is input to CNN, CNN will normalize the size of candidate regions and 

then perform feature extraction. Finally, the features of CNN output will be classified by SVM. 

Although R-CNN improves detection performance, it also has several shortcomings. First, the 

R-CNN needs to pre-read candidate regions of the image, which requires a large amount of 

computer storage resources. Secondly, when the R-CNN normalizes the candidate region, the 

object may be deformed due to normalization resulting in distortion. Finally, there is a large 

amount of overlap in the candidate regions generated by selective search. Since each candidate 

region will be extracted in the CNN, too much overlap will cause the CNN to repeatedly extract 

the same feature. This will increase the redundancy of the algorithm. The framework of R-

CNN is shown in Fig. 16[37]. 

 

 

Fig. 16: The framework of R-CNN[37] 

2.3.2 Spatial pyramid pooling (SPP-NET) 

Like R-CNN, the input of the previous CNNs is fixed to the image size. This is because in the 

last fully connected layer of CNN, a fixed dimension input is required. In fact, a fixed size can 

cause image distortion and affect algorithm performance. From the principle of recognizing 

images by the human brain, the fixed size is superfluous. The human brain does not morph the 

image, but first recognizes the image as a whole, and then analyzes the features hierarchically 

to achieve the purpose of recognition. SPP-NET [39] the problem of fixed input size of CNN. 

By adding a spatial pyramid pooling before the fully connected layer, the features of the same 
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dimension can be extracted from the different sizes of images output by CNN. The function of 

the spatial pyramid pooling is to enable the CNN to input images of ant size and provide the 

same dimension input the fully connected layer. 

 Fig. 17[39] shows how spatial pyramid pooling layer work. The input of this layer is the 

feature maps with different sizes. The spatial pyramid pooling layer has three sizes of pooling 

window, which are 4*4, 2*2, and 1*1 respectively. Each size pooling window can slip the 

feature map into equal parts. Then the pooling operation is performed in each grid of pooling 

window. So that the features of the same dimension can be obtained. SPP-NET also has several 

shortcomings. First, like R-CNN, SPP-NET is also trained in stages, and the features of each 

stage require a large amount of computer storage resources. This means that the CNN model 

of SPP-NET cannot be too deep. Second, the CNN model and SVM classifier are independent 

of each other in SPP-NET. In the backpropagation, the parameters on both sides cannot be 

updated at the same time, and the performance improvement cannot improve the performance 

of the other size. Compared with R-CNN, the advantage of SPP-NET is that the input to the 

network is the entire image not candidate regions, which is more flexible than R-CNN.  

 

 

Fig. 17: Spatial pyramid pooling layer 
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2.3.3 Fast R-CNN 

Independent training of each part is not only slow, but also unable to pass parameters in real 

time. To solve this problem, Girshick et.al proposed Fast R-CNN [40]. Fast R-CNN has two 

main contributions. First of all, Fast R-CNN has greatly improved the training and testing speed 

than R-CNN. Second, Fast R-CNN proposed the concept of multi-task loss. It adds the box 

regression directly to the CNN for training. This kind of end-to-end structure can update the 

weights better. Fig. 18[40] shows the architecture of Fast R-CNN. The input to Fast R-CNN is 

an image of any size. The candidate regions generated by the selective search algorithm are 

also taken as inputs, and these candidate regions are called region of interests (ROIs). Fast R-

CNN extracts feature using a fully convolutional network. After the fully convolutional 

network generating feature maps of different sizes, these feature maps will be sent to the ROI 

pooling layer. This ROI layer has a similar function to the spatial pyramid pooling layer in 

SPP-NET and can fix feature maps of different sizes to the same size. The ROI pooling layer 

can map the ROI window to the feature maps according to the mapping relationship between 

the original input image and the feature maps, and the generate the same size feature maps by 

pooling operation. Fast R-CNN does not need to repeat extraction of features, and pooling is 

much simpler. Therefore, Fast R-CNN greatly increased training and testing speed. 

 Fast R-CNN does not use SVM as a classifier. Behind the ROI layer is the softmax 

classification and box regression. These two parts are trained in parallel and can be seen as a 

part of the neural network. This design allows the training weights of the entire network to be 

updated simultaneously, and this multi-task training method can improve the training efficiency. 

In addition, box regression does not require additional storage resources. The main 

shortcoming of Fast R-CNN is that although the latter half of the neural network performance 

is improved, the candidate regions is still calculated by selective search algorithm. This 

algorithm has a high time complexity, which hinders the efficiency of the entire neural network. 

From the results, Fast R-CNN gave us an inspiration. If we can find an algorithm instead of 

selective search, then we can achieve real end-to-end training. This kind of object detection 

can be better popularized in practical applications. 
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Fig. 18: Fast R-CNN architecture[40] 

2.3.4 Faster R-CNN 

Faster R-CNN effectively solves the problem of slow calculation of candidate regions [41]. In 

the network structure of Faster R-CNN, there is a sub-network to replace the selective search 

to calculate candidate regions. This sub-network is called region proposal network (RPN). 

Faster R-CNN can be seen as a network combining RPN and Fast R-CNN. After the input 

images enter Faster R-CNN, the features will be extracted by a CNN. The output feature maps 

of CNN are the same size as the input image. The feature maps generated here will be shared 

by the later RPN and ROI pooling layer. Fig. 19[41] shows the structure of RPN. In the RPN, 

multiple candidate region boxes will be predicted for each sliding window position on the 

feature map. Each candidate region box can be uniquely determined by ratio, size, and center 

point. These candidate boxes are called anchors. RPN define nine different sizes and ratios of 

anchors with sizes of 128*128, 256*256 and 512*512. The ratios are 1:1, 2:1 and 1:2 

respectively. In order to determine whether there are detected objects in these candidate regions. 

RPN will give the region score by calculating the degree of overlap between the anchor and 

the ground truth area. If the region score is higher than the threshold, it will enter the ROI 

pooling layer as a positive candidate region. At the same time, the feature maps will also enter 

the ROI pooling layer. The rest structure of Faster R-CNN is the same as Fast R-CNN. Faster 

R-CNN needs to train two networks during the training process, one is the RPN and the other 

is the classification network. However, the convolutional layer parameters of the two networks 
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are shared, so the alternate training mode can be selected to make Faster R-CNN converge 

faster. 

 Let’s discuss the shortcomings of Faster R-CNN. First of all, although Faster R-CNN 

achieves an end-to-end structure, the detection speed is still not ideal enough. The requirements 

for real time detection are still not met. Secondly, the method of calculating candidate regions 

by RPN does improve the performance compared with selective search, but it is still 

computationally intensive. Nevertheless, Faster R-CNN is also important for object detection. 

 

 

Fig. 19: Region proposal network[41] 

2.3.5 Summary of two-stage object detection algorithms 

A series of improvements to the two-stage algorithms greatly improves detection performance 

compared with traditional object detection algorithms. The two-stage algorithms mainly 

improve the traditional algorithms from the following two parts. First, the traditional algorithm 

needs to train each part of network independently, and the latest two-stage algorithm has 

achieved end-to-end training. Secondly, the traditional algorithm uses selective search to 

extract candidate regions, but two-stage algorithms propose a method based on region proposal, 

which reduces the computational complexity and avoids repeated extraction features. The 

shortcoming of the two-stage algorithms is that although the performance of the algorithm is 
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improved, the detection speed of the algorithm is still not up to the real-time detection due to 

existence of the fully connected layer. 

2.4 Single-shot object detection CNN models 

2.4.1 Yolo 

It is unreasonable to pursue the accuracy blindly and the speed cannot be improved. Therefore, 

in the method of improving the object detection performance, there are also some algorithms 

that sacrifice a part of the precision and greatly increase the speed, and Yolo is one of them 

[42]. Compared with two-stage object detection algorithms which are based on region proposal, 

Yolo turns the classification problem into a regression problem. We take use of Fig. 20[42] as 

an example to explain the system principle of Yolo. 

 

Fig. 20: The system model of Yolo[42] 

 Yolo first resizes the input image and turn the size of the input image into a square. The 

Yolo divides the image into equal-sized regions using S*S grids. In Fig. 20, S is 7, and the 

image is divided into 49 grid regions. Each grid will predict B bounding boxes and probability 

values for C categories. In Fig. 20, B is 2 and C is 20. In Yolo, each bounding box needs to be 

represented by five parameters: the coordinate of the center point on the x and y axes, the height 
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h and width w of the bounding box, and the confidence value of the predicted bounding box. 

In Yolo, each grid only predicts one object. Only when the center point of the object is in a grid, 

the corresponding grid will predict that object. In Fig. 20, we can clearly see that there is a dog 

in the lower left part of the image. The dog’s center point is in the red grid, so only the red grid 

will predict the dog category, and the grid next to the red grid will not predict the dog category. 

This means that Yolo has a drawback. For small objects groups such as birds and insects, Yolo 

is difficult to detect. This is because there may be multiple object centers in a grid, and each 

grid of Yolo can only predict one object, leading to prediction errors. This is why Yolo’s 

accuracy is lower than Faster R-CNN. After the prediction, Yolo will generate a large number 

of prediction boxes, many of which are meaningless. In order to avoid multiple detections of 

the same object, Yolo uses the non-maximum suppression method to ensure that each object is 

detected only once [43]. Finally, Yolo selects the prediction box with the highest confidence 

value as the detection result. 

 Fig. 21[42] is the network architecture of Yolo. It is easy to find that the entire Yolo 

network is composed of convolutional layers and fully connected layers without any sub-

network structure. This is why Yolo is faster than other two-stage models. Here, the output 

dimension of Yolo is 7*7*30. This is because when S=7, B=2 and C=20, each bounding box 

needs (x,y,w,h,c) five parameters and each grid predicts two bounding boxes in total requiring 

7*7*(5*2+20) parameters. Yolo’s speed and accuracy are inversely proportional. According to 

actual needs, we can adjust the size of Yolo’s grid and the size of input image to adjust the 

balance of accuracy and detection speed of Yolo. When the input image size is large, Yolo’s 

detection speed will be slower and the accuracy will increase. When the input image size is 

small, Yolo’s detection speed will be faster and the accuracy will decrease. Therefore, Yolo can 

adapt to various environmental needs in practical applications.  
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Fig. 21: The architecture of Yolo[42] 

2.4.2 Single shot multibox detector （SSD） 

In the real time detection field, there is a model faster than Yolo, and the performance is close 

to the Faster R-CNN. This model is called SSD[44]. The method of SSD feature extraction is 

inspired by FPN[45]. In the traditional object detection algorithm, the method of feature 

extraction is similar to the pyramid structure (see Fig. 22[45] (a)). The convolutional layers in 

the front part extract low-level features, and the deep convolutional layers extract high-level 

features. The last convolutional layer extracted features are used for category prediction. One 

shortcoming of this method is that it ignores the impact of low-level features on prediction 

accuracy. From a physiological point of view, human brain tends to pre-judicate object 

categories through low-level through low-level features such as contours, colors, shapes, and 

then recognized objects based on the features of the details. In other word, the combination of 

low-level features and high-level features can better recognize objects. SSD is taking this idea. 

The way SSD extracts features is also a pyramid structure. The difference is that the features 

extracted by each layer are used for prediction (see Fig. 22[45] (b)), which can better identify 

objects and improve accuracy.  



30 
 

 

Fig. 22: Different feature extraction method[45] 

 In the design of the anchor part, SSD takes a similar method to Faster R-CNN. Faster R-

CNN takes the method of generating nine different sizes anchors at each prediction point. Then 

get the final bounding box through the ROI pooling layer and classifier. SSD take six anchors 

generated at each prediction point (see Fig. 23[44]). The size of the anchor is different 

according to the size of feature map. The larger feature map has smaller anchors, which can 

better detect large features. The small feature map has larger anchors, which can better detect 

small features. The combination of the big anchors and the small anchors finally use NMS 

method to determine the bounding box. Although this method can extract features better, it also 

has shortcomings. The anchor size of each feature map cannot be adjusted by learning. The 

anchors need to be pre-set manually. Since the feature map size of each layer is different, the 

anchor size is also different. The setting of the anchor size usually depends on experimental 

experience, and it is difficult to find the most suitable setting method. 

 
Fig. 23: SSD anchors on different sizes of feature maps[44] 

(a) Traditional feature extraction method (b) Feature extraction method in SSD 
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2.4.3 Yolov2 

Yolov2 is an improved version of Yolo[46]. Yolov2 uses a series of methods to improve the 

accuracy on the premise of ensuring the original speed. It is the most stable object detection 

model at present. Yolov2 mainly made the following improvements.  

First, Yolov2 adds batch normalization after each layer to reduce the overfitting of the 

network [47]. This is because the essence of neural network training is to learn the data 

distribution. When the distribution of training dataset is different from the distribution of testing 

dataset, the performance of the network is bad. The distribution of datasets can be made 

consistent by batch normalization.  

Second, Yolov2 made improvements to the image resolution adaptation. In the training 

network of Yolo, the input image size is 224*224, and the input image size of the detection 

network is 448*448. When training Yolo with large size images, the resize process will result 

in insufficient image resolution. This will cause Yolo’s poor detection performance on high 

resolution images. Yolov2 divided the training process into two parts. First training images 

with size of 224*224 and then training images with size of 448*448. By this way, Yolov2 has 

better adaptability to high resolution images.  

Third, Yolov2 removed the fully connection layer of Yolo and borrowed the idea of taking 

use of anchor for prediction. Yolov2 ensures that the height and width of the feature maps are 

odd by adjusting the size of the input image. The merit of this is that when the feature map of 

Yolov2 is divided into grids, it can be guaranteed that the feature map has only one center grid. 

The reason for this is that the essence of Yolo is to use the position of the center point of the 

object to make predictions. The large object usually occupies the center of the entire image. If 

the height and width of the feature map are even, there will be four center grids in the feature 

map. These four center grids will predict the same object, which is obvious redundant.   

 Fourth, in Faster R-CNN and SSD, the sizes of anchors are set manually, and Yolov2 uses 

k-means clustering to find the most suitable anchor size setting for the network. Yolov2 uses 

intersection over union to redefine the loss function of k-means. The size of the anchor does 

not lead to error. Yolov2 found that the network performance and error can be optimally 
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balanced at K=5. That is to say, each grid of Yolov2 only predicts five anchors but achieves the 

same performance as nine anchors per point of Faster R-CNN. 

 Fifth, Yolov2 improves the prediction method of anchor. In Faster R-CNN and SSD, the 

prediction of anchors is made by using offset. Both networks adjust the position of anchors by 

calculating the offset value between anchors and ground truth of the object. However, all 

parameters are randomly initialized wen the network is just starting training and there is no 

limitation on offset, which may cause the anchor of the initial prediction to be far from the true 

position of the object. This kind of prediction is meaningless and reduces the efficiency of 

network training. Yolov2 uses the relative position of the anchor and the grid cell to make the 

anchor not deviate from the center of the object. This makes the network more stable and easier 

to converge.   

 Sixth, Yolov2 borrowed the idea of ResNet [48] to propose a passthrough layer. Yolov2’s 

feature map size is 13*13, which is enough to detect large objects. However, the detection 

performance of small objects is not good. This is because the features of small objects are easily 

disappeared in the deep convolutional layer. Yolov2 uses the passthrough layer to concatenate 

the feature maps of the previous convolutional layer and the feature maps of the deep 

convolutional layer. This prevents features of small objects from disappearing in deep 

convolution. 

Last, Yolov2 proposed a new network architecture which is called darknet (see Table 1). 

This network is quite faster than Yolo. Yolo’s network is based on Google’s VGGNet [49], 

which contains twenty-four convolutional layers and two fully connected layer. Because this 

network is very deep, the parameters of this network exceed thirty billion orders of magnitude. 

Since the fully connected layer has a large number of parameters, darknet removes the fully 

connected layer. At the same time, darknet only contains nineteen convolutional layers, the 

reduction of the convolutional layer greatly increases the speed of the network. 

Yolov2 is faster, stronger and better than Yolo. It tells us that in order to get better 

performance, we must not only improve the overall structure of the network, but also improve 

the network details. 

 

 



33 
 

Table 1: Darknet-19[46] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.4 Yolov3 

Yolov3 [50] is the final version of Yolo currently, with minor improvements on the basis of 

Yolov2. There are three main improvement. First, Yolov3 draws on the ideal of FPN to make 

multi scale predictions of features. Based on Yolov2, the prediction scale is change from two 

to three, which can extract the features of overlapping objects more accurately. Second, Yolov3 

uses darknet-53 network as a classifier. This network is deeper than Yolov2’s darknet-19 

network. Finally, Yolov3 does not use the softmax function for classification, but instead uses 

Type Filters Size/Stride Output 

Convolutional 32 3*3 224*224 

Maxpool  2*2/2 112*112 

Convolutional 64 3*3 112*112 

Maxpool  2*2/2 56*56 

Convolutional*3 128,64,128 3*3,1*1,3*3 56*56,56*56,56*56 

Maxpool  2*2/2 28*28 

Convolutional*3 256,128,256 3*3,1*1,3*3 28*28,28*28,28*28 

Maxpool  2*2/2 14*14 

Convolutional*5 512,256,512, 

256,512 

3*3,1*1,3*3, 

1*1,3*3 

14*14,14*14,14*14, 

14*14,14*14 

Maxpool  2*2/2 7*7 

Convolutional*5 1024,512,1024, 

512,1024 

3*3,1*1,3*3, 

1*1,3*3 

7*7,7*7,7*7, 

7*7,7*7 

Convolutional 1000 1*1 7*7 

Avgpool  Global 1000 

Softmax    
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the logistic function. This is because the softmax function does not apply to multi scale 

classification. Compared with Yolov2, Yolov3 have better performance in detecting small 

objects, the training time is two to three times more than Yolov2 due to the deeper network 

structure. 

2.4.5 Summary of single-shot object detection algorithms 

The single-shot object detection algorithm is currently the fastest real time detection algorithm. 

Compared with the two-stage algorithms, there are mainly three improvements. First, the 

single-shot algorithm converts the object detection task into a regression problem, simplifies 

the process of object detection, greatly improves the detection speed, and proposes the idea of 

end-to-end detection. Secondly, single-shot proposed a multi scale training method that is more 

flexible than two stage algorithms and can adapt the different datasets. Third, the single-shot 

algorithm improves the anchor design of two stage algorithms, and finds the optimal anchor 

setting by using clustering. 

2.5 Performance comparison  

We show performance comparison of previous object detection models in Fig. 24. In Fig. 24, 

the horizontal axis represents the detection speed of the model, and the vertical axis represents 

the detection accuracy of the model. These results are based on VOC2007 dataset. VOC2007 

is an open dataset with approximately 10,000 labeled images of RGB channel. It is one of the 

commonly used datasets in the field of computer vison. Since traditional object detection 

algorithms are outdated, we have listed the performance comparison results of the two-stage 

models and single-shot models. As can be seen from the results, Yolov2 shows better 

performance in both speed and accuracy. We don't have the results of Yolov3 on the VOC2007 

dataset, but we can predict that Yolov3 will perform better than Yolov2. Since these results is 

based on the RGB color image dataset, it can only be used as a reference. There is currently no 

test result on X-ray dataset, so this time we conduct our experiments on X-ray dataset to see 

the results. We chose Yolov2 as the object detection model for our experiments. This is because 
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Yolov2 is the most stable network by now, and our hardware resources are limited. Experiments 

on Yolov3 need more time, this will be our future work. 

 

Fig. 24: Performance comparison of object detection CNN models based on VOC2007 

dataset 
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Chapter 3 
Proposed Method 

3.1 Overview 

In this chapter, we introduce our research method for dangerous object detection on X-ray 

images. In the first part, we provide some basic knowledge of CNNs to help readers who are 

not familiar with these concepts. In the second part, we introduce how to label the images and 

create annotation files for training data. In the third part, we describe our raw X-ray data 

collection method. In the fourth part, we explain how to synthesize X-ray images. In the last 

part, we propose the whole framework of our security system. 

 

3.2 Preliminary  

3.2.1 Definition of mAP and Recall 

In the object detection task, there are two metric measures which are often used to evaluate the 

performance. One is mean average precision (mAP) and the other is Recall. Before explaining 

these two concepts, we explain the follow four mathematical definitions first. When preparing 

a training dataset, we will label the objects that need to be detected. We usually label them with 

rectangular boxes, which represent the real position of the objects in the image. These 

rectangular boxes are called ground truth. Assuming that the rectangular box with solid line in 

Fig. 25 is ground truth, the real detection result is usually deviated from the ground truth. We 

use the dotted rectangle in Fig. 25 to represent the real detection result. We define the 

intersection of the real detection result and ground truth as true positive (TP), which means this 

detected part is related to the object. Instead, we define the rest of the dotted rectangular to be 

false positive (FP), which means this area cannot be classified as a part of the object. The area 

outside the two rectangular boxes is defined as true negative (TN), which means that the model 

correctly classifies this area as a part not belonging to the object. The rest of solid rectangular 
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is defined as false negative (FN), which means this area belongs to the object, but the model 

fails to detect this area. Equation (3) shows the definition of Recall. Recall shows the ability of 

the object detection model to reject nor-related information. 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                   (3) 

 To explain mAP, we first introduce the definition of Precision. The mathematical formula 

of Precision is shown in Equation (4), which is used to measure the ability of the object 

detection model to detect relevant information. Precision and Recall have different 

mathematical implications. In the case that we want to detect more objects and make as few 

missing objects as possible. We should try to make Recall as large as possible. In the case that 

we want to detect a higher proportion of relative objects. The lower the proportion of unrelative 

objects, the better. We should try to make Precision as large as possible. Although there is no 

relationship between both values, we rarely encounter the situation that both Precision and 

Recall are large enough in real experiments. 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                                  (4) 

Fig. 25: Definition of TP, TN, FP and FN 
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 Therefore, we believe that these two values are mutually constrained. That is to say, when 

Recall becomes larger, Precision will become smaller. Conversely, when Precision becomes 

larger, Recall will become smaller. In the experiments, we need to find a balance point 

according to actual needs and choose the appropriate Precision and Recall values. This balance 

point is called threshold, and different Recall values and Precision values can be obtained by 

adjusting the threshold value. 

 

Fig. 26: Example of Precision-Recall curve 

 By varying the threshold, Precision and Recall are changing and we can get a Precision-

Recall curve (see Fig. 26). We define the area which is enclosed by the curve and the X axis as 

average precision (AP). In the case that the curve is continuous, it is obviously that this area 

can be obtained by calculating the integral (see Equation (5)). 

AP =  ∫ 𝑃𝑃𝑃𝑃1
0 𝑑𝑑𝑟𝑟                                    (5) 

 For discrete Precision-Recall curve, we can calculate AP by summing (see Equation (6)) 

AP =  ∑ 𝑃𝑃(𝑖𝑖)∆𝑟𝑟(𝑖𝑖)𝑛𝑛
𝑖𝑖=1                              (6) 

 In the experiment, we can get multiple AP values from each classification. The mAP value 

is the average of APs. Both mAP and Recall are important metric measures for evaluate the 

performance of the algorithm. 
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3.2.2 Positive and negative examples 

In deep learning, the training dataset is usually divided into two parts. One part is positive 

examples and the other part is negative examples. Proper preparation of positive and negative 

examples is a prerequisite for training a good classifier. Positive and negative examples are not 

arbitrarily chosen. A good dataset can simulate complex and varied real environments, enabling 

the classifier to learn various situations. For example, if we want to train a classifier to detect 

cars, there is no doubt that the positive examples are different kinds of cars. The question is 

that what is the negative example. Specifically, the negative examples can be any object that is 

not a car. However, in order to make the training dataset more like the real environment, we 

usually choose objects related to the driving environment as negative examples, such as trees, 

mountains, rivers, roads, pedestrians and buildings. In this case, it makes no sense to choose 

objects in the room such as tables, stairs and beds as negative examples. Let’s take another 

example, if we want to detect faces of patients lying in the hospital bed. The negative examples 

should be doctors, nurses, windows and medicines. Taking images of blackboards and clouds 

may make no sense because these objects do not match the real environment of the hospital. In 

the case of dangerous object detection of baggage security, which is our experiment. The 

positive examples are three kinds of dangerous objects: scissor, knife and bottle. We take some 

safe objects that often appear in security checks as negative samples such as bags, clothes, tape 

and umbrellas. 

 In large datasets, the number of negative examples is much larger than the number of 

positive examples. Even in small datasets, the number of negative samples is one to three times 

more than the number of positive examples. So how can we generate so many examples? If our 

dataset is very limited, we can cut a high pixel resolution image into multiple low pixel 

resolution images to generate negative examples. Suppose that we have an image with pixel 

resolution of 10000*10000 and the detector can work on the resolution of 50*50. Now, we cut 

this 10000*10000 resolution image into pieces of 50*50. We can get 40,000 negative examples. 

Then we repeat this process and cut this large resolution image into pieces of 20*20. We can 

get 250,000 negative examples. The process can be repeated multiple times. Finally, we can 

enlarge these negative examples and force them into the same size. This method has a limitation 
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that the generated negative examples are not sufficient diverse. However, if we can create a 

dataset with thousands of high pixel resolution images and cut all theses images into pieces. 

We can get millions of negative examples with high variance. After than we can train a good 

detector. 

 When we train the labeled dataset with Yolo, we do not need to deliberately prepare 

positive and negative examples. This is because Yolo can automatically prepare positive and 

negative examples through anchor prediction. Let us introduce the concept of Intersection over 

Union (IOU). Fig. 27 shows the definition of IOU, the upper left rectangle is the ground truth, 

and the lower right rectangle is the detection result. Since the detection results is always 

different from the ground truth, IOU is defined by dividing the intersection of the detection 

result and the ground truth by the union part of them. In Yolo, the threshold of IOU is always 

set to be 0.5. That is to say, when IOU value of the detection result is greater than 0.5, it will 

be treated as a positive example. When IOU value of the detection result is less than 0.5, it will 

be regarded as a negative example. By adjusting the threshold of IOU, we can control the 

proportion of positive and negative examples. This method is also applicable in Yolov2 and 

Yolov3. 

 

 

Fig. 27: Definition of IOU 
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3.3 Preparing training dataset 

We use a software called labelImg to label our X-ray images (see Fig. 28). This is a software 

for labeling images, and the software menu is on the left side. Click open button or open dir 

button to open an image or a folder. Click Change Save Dir to modify the path to save the label 

file. Click Prev Image or Next Image to switch between the previous or next image. Click 

Create RectBox to draw a rectangle and add a label to the image. 

 

 
Fig. 28: Software interface of labelImg 

 

Fig. 28 shows how to label an X-ray image with only one knife. Note that the size of the 

rectangle should cover the object exactly, too large and too small is no good. Fig. 29 shows 

two error labels. The rectangle in Fig. 29 (a) is too small, which will cause the network cannot 

learn the entire features of the object. The rectangle in Fig. 29 (b) is too large, which will cause 

the network to learn the extra features of the background other than the object. Both of these 

labeling methods will lead to erroneous learning of the network and reduce the detection 

accuracy. 
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Fig. 29: Examples that labels are not suitable 

 

Each labeled image will be mapped with an annotation file. The annotation is based on 

Pascal VOC2007 format standard, which contains all the information about the image such as 

image name, path, size, objects in the image and their position (see Fig. 30). This tree-like 

structure can be used for training with any object detection model. Yolo can convert these 

annotation files into the format required for Yolo training through the built-in conversion code. 

 

（a）Label is too small 

（b）Label is too large 
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Fig. 30: Annotation files of labeled images 

3.4 Raw X-ray image data collection 

Our dataset contains two parts. The first part is raw X-ray dataset. Our raw X-ray dataset 

contains 1104 X-ray images, which are collected by us one by one. These images are used 

directly as part of the training dataset. We will also select some raw X-ray images as seeds for 

synthesizing images, and we will explain our synthesizing method later. The device we use to 

collect data is a medical machine (see Fig. 31). This device is an experimental device for 

developing portable X-ray device. By adjusting the illumination distance and illumination 

intensity of this device, we can simulate the functions of our portable X-ray device to achieve 

the same effect. We set the illumination distance to be 150cm and input voltage to be 70kV. 

The size of X-ray images we collected is 3000*2488 pixels resolution. Considering that this 

size is not suitable for directly training because of our limited hardware sources. We resized 

this size into 600*497 by factor 0.2. We mainly focus on three kinds of dangerous objects 

detection: scissor, knife, bottle. These three are the most common objects in the security check. 

We have prepared more than a dozen of these three kinds of dangerous objects with different 

shapes, sizes and some common safe things. 
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Fig. 31: Medical X-ray device 

 In the real security checks, the number of dangerous objects in the baggage is usually not 

much. In most cases, there are only one to three dangerous items, and the rest are safe items. 

This means that collecting images by stacking dangerous objects in large quantities is not 

realistic. Considering the extremely complicated way of placing objects in the baggage, we 

used some auxiliary materials to rotate the objects and randomly placed them at various 

positions We also considered the situation that objects overlap with each other. By combing 

dangerous objects and safety objects, the contents of the real baggage are restored to the utmost 

extent. 

 There are two kinds of raw X-ray images. One is an image that contains only one or two 

dangerous objects, which is called simple image (see Fig. 32 (a)). This kind of image is easy 

to train, allowing the network to better learn the features of a single dangerous object. The other 

kind of image contains many objects and they overlap with each other, we call this is a complex 

image (see Fig. 32 (b)). This kind of image is close to the real baggage content, allowing the 

network to learn the features in complex baggage. Our complex images include images that are 

extremely difficult to identify, which allows ours network to handle more complex detections. 

In these images, scissors are the most complex and varied. We collected images of scissors that 

were opened at different angle. At the same time, some types of knives are retractable. We have 

also taken images of knives with different telescopic ranges. Since the lighting environment of 

each data collection is different, the brightness of the images we collected is slightly different, 

but this does not affect our experiments. 
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(a) Examples of simple image 

 

 

 
(b) Examples of complex image 

Fig. 32: Examples of raw X-ray data 
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3.5 Synthesizing X-ray data 

3.5.1 Beer–Lambert law 

We use Tanaka’s method to synthesize X-ray images [51]. His method is an improvement of 

the method proposed by Jaccard, N., Rogers et.al [24]. We introduce Jaccard’s method first, 

his method was using for cargo security, which is very similar to our baggage security. 

 Jaccard’s method suppose that all X-ray images obey the following Beer-Lambert law: 

𝐼𝐼𝑥𝑥𝑥𝑥 = 𝐼𝐼0exp (−∫ 𝑢𝑢𝑥𝑥𝑥𝑥(𝑧𝑧)𝑑𝑑𝑧𝑧),                              (7) 

where 𝐼𝐼𝑥𝑥𝑥𝑥 is the illumination intensity at the position represented by coordinate (𝑥𝑥,𝑦𝑦), 𝐼𝐼0 is 

the irradiation intensity of X-ray source beam, and 𝑢𝑢𝑥𝑥𝑥𝑥(𝑧𝑧) is photon reduction coefficient in 

the Z-axis direction. If the objects to be illuminated can be treated as a whole, this formula 

indicates that the X-ray intensity of the objects satisfies an integral attenuation relationship 

with the X-ray intensity of the illumination source. In the case of cargo, the attenuation 

contributions are from two parts. One is from the object (O) and the other is from container 

(C). Then we have the following formula: 

𝐼𝐼𝑥𝑥𝑥𝑥 = 𝐼𝐼0exp (−� 𝑢𝑢𝑥𝑥𝑥𝑥(𝑧𝑧)
𝑂𝑂

𝑑𝑑𝑧𝑧)exp (−� 𝑢𝑢𝑥𝑥𝑥𝑥(𝑧𝑧)
𝐶𝐶

𝑑𝑑𝑧𝑧)  

  = 𝐼𝐼0𝑂𝑂𝑥𝑥𝑥𝑥𝐶𝐶𝑥𝑥𝑥𝑥                                                           (8) 

Baggage security X-ray images also obey the Equation (8). We can obtain the 𝐼𝐼𝑥𝑥𝑥𝑥 by 

measuring the luminance value of the X-ray image. That is to say, we need to measure 

𝐶𝐶𝑥𝑥𝑥𝑥   and 𝐼𝐼0 , then calculating the value of 𝑂𝑂𝑥𝑥𝑥𝑥 . If we obtain the value of 𝑂𝑂𝑥𝑥𝑥𝑥 , the 

corresponding X-ray image can be used as a background image. We also can extract the 

objects from other X-ray images. By taking using of both background and extracted objects, 

we can synthesize new X-ray images by multiplication. 

3.5.2 Image pre-processing 

To synthesize a large amount of X-ray images, we take some of raw X-ray images as seeds. 

These images cannot be directly used for synthesizing because their brightness is not 
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inconsistent. Therefore, we pre-process these images to ensure they are consistent in brightness. 

The image pre-processing stage contains two steps. The first step is histogram equalization. As 

can be seen from our example of raw X-ray data, the appearance of the objects in the image is 

clear, but the background is rather vague. This makes the details of the image difficult to 

identify. The purpose of histogram equalization is to evenly distribute the brightness of objects 

and backgrounds so that the details of the image can be fully represented. Through histogram 

equalization, we can effectively eliminate the influence of environmental factors on the images. 

The second step is gaussian filtering. Gaussian filtering can remove impurities form the details 

of the image to give a cleaner image.  

 

Fig. 33: Examples of image pre-processing[51] 

(a) Before pre-processing  
(image1) 

(b) After pre-processing 
(image1) 

(c) Before pre-processing 
(image2) 

(d) After pre-processing 
(image2) 
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 Fig. 33[51] gives two examples of image pre-processing. Fig. 33 (a) and Fig. 33 (c) are 

the two raw X-ray images. In order to better explain the role of pre-processing, we used two 

example images, the real raw X-ray images are not so dark. Obviously, these two images are 

difficult to read because of the darkness and even human operators can hardly observe the 

contents inside. After pre-processing these two images, both of them become bright with 

uniformly distributed brightness and clearly visible. We show the histogram of the two example 

images in Fig. 34[51]. It can be found that the luminance distribution of the two images before 

histogram equalization is concentrated on the edge portion (see Fig. 34 (a)), and it becomes 

smoother after histogram equalization (see Fig. 34 (b)). 

 

Fig. 34: Histogram of the two example images[51] 

3.5.3 Dangerous object extraction 

In this stage, we extract dangerous objects from pre-processed images. We need to extract the 

contour of the object we want to extract. In order to extract a complete contour, we first binarize 

the image so that we can better observe the contour to be extracted. We use a threshold for 

binarizing image. For each pixel on the image, if the pixel value is higher than the threshold, 

this pixel value will be set to 0. Otherwise, it will be set to 255. By this way, we can binarize 

the image. Fig. 35[51] gives an example of binarizing image with the threshold value of 55. It 

can be found that at the threshold value of 55, the contour of the scissor after the binarization 

of this image is not complete. In this case, we need to adjust the threshold value and binarize 

the image repeatedly until we can see the complete contour. 

(a) Before histogram equalization  (b) After histogram equalization  
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Fig. 35: Example of binarizing the image[51] 

 The setting of the threshold value needs to be based on experience, and the threshold value 

of each image is also different. Whether the contour is successfully extracted or not is also 

judged by eyes. This is a shortcoming of this method, and we will improve it in the future. Fig. 

36[51] shows different extracted contours with different threshold values. The red circle parts 

indicate the parts we failed to extract. We can find that in this scissor example, the threshold 

value of both 55 and 65 cannot extract the complete contour and the contour extracted with 

threshold value of 75 is perfect. After successfully extracting the contour, it is necessary to cut 

the scissor’s contour along the circumscribed rectangle, and the set the luminance value of the 

background part of the rectangle that does not belong to the scissor to 1. This is because we 

only need the contour part of the scissor for synthesizing, and we need to eliminate the 

interference of the background part on the synthesis. Then, we take 𝑂𝑂𝑥𝑥𝑥𝑥  value as 1 and 

perform synthesizing process with this dangerous object contour and the prepared background 

images. 

Fig. 36: Sampling contours extracted with different thresholds[51] 

(a) Preprocessed original image (b) Binarized image (threshold = 55) 

(a) Threshold = 55 (b) Threshold = 65 (c) Threshold = 75 
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3.5.4 Synthesizing data 

Now that we have the background image and the contours, in order to generate robust dataset, 

we perform the follow operations on the contours: 

 Randomly enlarging or reducing each contour by α times (0.7 ≤ α ≤1.3). 

 Randomly rotating each contour by β° (0 ≤ β ≤359). 

 Randomly selecting position of each contour on the background image. 

Multiple objects can be synthesized on each background image, and each object can be 

synthesized with any number of background images. The position and size of the object are 

changed randomly. Through the random combination of the background images and the 

objects, we can synthesize a large number of X-ray images. Fig. 37 gives some examples of 

synthesized images. We have marked synthesized dangerous objects using red rectangular 

boxes. These red rectangular boxes are not included in the real synthesized X-ray images. Here 

we resized the synthesized image into 512*614 and successfully synthesized 5017 images for 

experiments. At the time of synthesis, the algorithm recorded the positions of the dangerous 

objects and automatically labeled each image. This saves a lot of time for manual labeling. In 

the next chapter, we will conduct five kinds of comparison experiments and prove that our 

synthesized images improve the detection performance. 

 

Fig. 37: Examples of synthesized X-ray images 

3.6 Framework of our dangerous objects detection method 

Now, let me explains how our X-ray security system works. First, it is necessary to prepare 

some labeled raw X-ray images. These images can be obtained from common X-ray devices, 

(a) (b) (c) (d) 
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but we strongly recommend using our portable X-ray devices. At the same time, these X-ray 

images should be single-view X-ray images. These raw X-ray images will be used directly as 

part of the training dataset for training the CNN. Some of these images will also be taken as 

seeds for synthesizing X-ray images. The synthesizing process contains three modules. The 

first is preprocessing module, in this module, the system performs histogram equalization and 

gaussian filtering on the seeds. Then these preprocessed images will be extracted by dangerous 

object extraction module. In the last module, the system will synthesize X-ray images. As long 

as the seeds are sufficient, the system can synthesize any number of X-ray images and 

automatically generate annotations. These synthesized images are also taken as a part of 

training dataset. Finally, both raw X-ray images and synthesized images will be trained for an 

object detection CNN model. Training from scratch is not recommended, the common way for 

training CNN model is taking use of a pre-trained model for fine-tuning. There is no published 

pre-trained model based on X-ray image datasets. We use a pre-trained model based on RGB 

image datasets instead. We show our system framework in Fig. 38. 

 

Fig. 38: Framework of our dangerous objects detection method 
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Chapter 4 
Experiments and Results 

4.1 Overview 

In this chapter, we show detection performance of our X-ray security system. We show the 

design of our experiments and conduct five kinds of experiments to prove that our synthesized 

images contribute the detection performance. We also show the significance of t-test of our 

experiment results. 

4.2 Design of five kinds of experiments 

We have collected 1104 raw X-ray images with size of 600*497 and synthesized 5017 X-ray 

images with the size of 512*614. These images will be divided into two parts in a certain 

proportion: training dataset and testing dataset. Both of two datasets contains raw X-ray images 

and synthesized images. Our experiment results will be counted from three parts. The first part 

is detection performance based on raw X-ray images. The second part is detection performance 

based on synthesized X-ray images. The third part is total detection performance based on two 

kinds of X-ray images. This statistical method can better compare the detection results of raw 

X-ray images and synthesized X-ray images and reflect the role of our synthesized images. For 

fair comparison, we conduct the following five kinds of experiments: 

 Training only raw X-ray images. 

 Training only synthesized X-ray image. 

 Training both raw X-ray images and synthesized X-ray images with the same 

proportion. 

 Training raw X-ray images and a small amount of synthesized X-ray images. 

 Training raw X-ray images and a large amount of synthesized X-ray images. 

We run each kind of experiments 20 times to obtain stable results. In each running time, we 

randomly divide our datasets with constant proportion. We also use control variable method to 

make these experiments comparable. We set learning rate to be 0.001 and batch size to be 64 
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in all experiments. The amount of training and testing dataset of each kind of experiment is 

listed in Table 2. In the previous two experiments, we train 662 images with only raw X-ray 

images and only synthesized X-ray images respectively. These two kinds of experiments’ 

results are the based line of dangerous object detection task. Exp.3 cut the training dataset into 

two parts with the same proportion and keep the total training images the same as previous two 

experiments. So that we can compare the two kinds of X-ray images from Exp.3. The amount 

of raw X-ray images for training in Exp.4 and Exp.5 is set to be the same as the total of training 

data in previous three kinds of experiments and the amount of synthesized X-ray images is 

different. This is to observe the effect of adding different amount of synthesized X-ray images 

on performance. 

 

Table 2: Five kinds of experiments 

 

Exp 

Training dataset Testing dataset 

Raw images Synthesized 

images 

Total Raw images Synthesized 

images 

Total 

Exp.1 662 0 662 442 442 884 

Exp.2 0 662 662 442 442 884 

Exp.3 331 331 662 773 773 1546 

Exp.4 662 331 993 442 442 884 

Exp.5 662 3010 3672 442 2007 2449 

 

4.3 Experiment results 

We show the details of 20 times running results of five experiments. Our experiments are 

mainly focus on three kinds of dangerous objects detection: bottle, knife and scissor. The six 

rows of the table represent the running time, testing AP of bottle, testing AP of knife, testing 

AP of scissor, mAP and Recall. Here AP and mAP are reserved two decimal places, and Recall 

is expressed as an integer in percentage. All results are obtained with the threshold of 0.25. 



54 
 

 

Table 3: Total testing results in each running time of Exp.1 

(training 662 raw X-ray images, testing 442 raw X-ray images + 442 synthesized X-ray 

images, 10,000 iterations) 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bottle 35.84 45.11 35.13 32.47 41.87 40.33 42.59 39.88 43.54 41.80 41.45 44.81 37.22 37.81 39.33 40.98 44.32 43.22 48.93 44.53 
knife 46.74 52.03 34.85 42.04 45.90 50.84 53.32 48.12 51.56 50.44 49.91 48.31 49.63 52.47 47.21 52.20 52.32 49.01 51.03 54.53 

scissor 75.83 76.55 56.99 67.36 74.99 73.60 77.63 74.60 72.91 74.22 73.39 78.33 74.87 77.04 75.43 75.51 75.43 70.79 76.92 77.04 
mAP 52.80 57.89 42.33 47.29 54.26 54.93 57.85 54.20 56.01 55.49 54.91 57.15 53.91 55.77 53.99 56.23 57.36 54.34 58.96 58.70 
Recall 57 60 43 49 56 59 58 57 58 58 58 57 60 56 57 58 60 57 59 58 

 

Table 4: Raw images testing results in each running time of Exp.1 

(training 662 raw X-ray images, testing 442 raw X-ray images + 442 synthesized X-ray 

images, 10,000 iterations) 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bottle 89.86 89.97 86.46 89.25 87.41 86.64 89.99 89.67 89.45 88.17 89.59 88.50 88.62 86.50 87.81 88.09 90.35 89.37 87.72 89.27 
knife 75.55 83.04 73.57 74.76 77.46 80.22 78.25 77.05 77.79 79.48 77.14 82.90 83.74 77.58 78.66 82.45 77.18 82.42 77.29 79.01 

scissor 86.11 86.54 75.82 81.85 84.64 85.45 87.10 85.17 84.76 86.22 84.60 89.49 85.19 85.13 86.51 86.11 83.65 86.03 86.10 87.61 
mAP 83.84 86.52 78.62 81.96 83.17 84.10 85.12 83.96 84.00 84.63 83.78 86.96 85.85 83.07 84.33 85.55 83.73 85.94 83.70 85.30 
Recall 86 85 75 79 82 84 85 85 84 85 85 87 87 84 86 86 85 85 84 85 

 

Table 5: Synthesized images testing results in each running time of Exp.1 

(training 662 raw X-ray images, testing 442 raw X-ray images + 442 synthesized X-ray 

images, 10,000 iterations) 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bottle 11.46 17.35 6.88 10.71 18.57 14.43 16.21 13.86 16.21 9.41 13.10 18.58 8.56 8.32 12.80 16.20 17.25 11.70 27.78 18.00 
knife 17.53 20.95 11.31 13.87 12.74 19.61 23.19 15.42 19.85 21.76 19.64 18.01 20.06 22.40 18.70 21.75 24.65 17.22 19.20 24.65 

scissor 53.01 59.62 18.67 24.58 52.99 48.34 59.45 55.90 48.57 54.11 50.56 48.79 51.36 58.53 52.60 53.35 56.03 42.05 60.52 59.41 
mAP 27.33 32.64 12.29 16.39 28.10 27.46 32.95 28.39 28.21 28.43 27.77 28.46 26.66 29.75 28.03 30.43 32.64 23.66 35.83 34.02 
Recall 30 35 12 19 30 34 32 30 33 31 31 29 34 28 30 32 35 30 35 31 
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Table 6: Total testing results in each running time of Exp.2 

(training 662 synthesized X-ray images, testing 442 raw X-ray images + 442 synthesized X-

ray images, 10,000 iterations) 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bottle 76.43 79.65 69.75 79.30 80.32 74.80 79.38 76.91 79.16 79.90 73.68 76.24 80.08 75.42 70.85 77.00 78.25 80.02 79.18 79.18 
knife 63.44 66.81 62.05 68.19 68.27 66.37 63.96 65.87 67.23 63.73 70.12 64.77 65.6 65.58 64.33 67.91 66.78 69.78 67.44 63.36 

scissor 66.64 65.37 58.46 61.63 68.73 67.24 67.09 64.72 68.14 62.17 65.72 66.36 63.45 68.04 60.45 67.62 67.43 68.83 69.80 59.73 
mAP 68.84 70.61 63.42 69.71 72.44 69.47 70.14 69.16 71.51 68.60 69.84 69.12 69.71 69.68 65.21 70.85 70.82 72.88 72.14 67.42 
Recall 66 67 62 69 70 67 69 66 69 65 67 64 69 65 65 67 68 71 71 64 

 

Table 7: Raw images testing results in each running time of Exp.2 

(training 662 synthesized X-ray images, testing 442 raw X-ray images + 442 synthesized X-

ray images, 10,000 iterations) 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bottle 48.09 63.86 38.54 57.76 64.39 45.62 59.96 47.50 54.40 58.50 45.90 51.60 65.12 50.18 39.09 55.51 57.86 57.51 60.10 57.87 
knife 43.03 52.60 42.64 53.20 55.26 48.14 48.73 48.17 53.29 44.93 53.25 45.35 50.06 42.58 43.85 48.96 51.73 54.24 57.71 53.61 

scissor 55.77 54.11 45.75 51.50 60.29 56.22 56.64 54.01 58.35 52.92 56.36 55.00 55.24 57.02 49.61 59.24 57.44 57.12 63.81 49.85 
mAP 48.97 56.85 42.31 54.15 59.98 49.99 55.11 49.89 55.35 52.12 51.83 50.65 56.81 49.93 44.18 54.57 55.68 56.29 60.54 53.78 
Recall 45 51 39 51 54 47 52 46 52 46 48 44 52 44 42 50 51 54 55 48 

 

Table 8: Synthesized images testing results in each running time of Exp.2 

(training 662 synthesized X-ray images, testing 442 raw X-ray images + 442 synthesized X-

ray images, 10,000 iterations) 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bottle 89.61 89.77 87.59 89.35 89.72 89.92 90.66 90.00 90.36 90.20 88.26 89.70 90.07 90.29 89.55 88.65 88.71 90.24 89.79 89.93 
knife 78.64 81.08 77.85 84.31 83.30 84.58 78.39 79.74 80.86 78.78 85.81 80.35 78.35 84.24 82.43 78.95 81.94 82.36 77.99 71.49 

scissor 89.85 87.05 89.45 86.66 87.34 89.16 88.96 88.69 88.79 80.24 89.97 88.62 81.13 90.12 85.65 81.15 88.26 90.41 89.90 79.22 
mAP 86.03 85.97 84.96 86.77 86.78 87.89 86.00 86.14 86.67 83.08 88.01 86.22 83.18 88.22 85.88 82.92 86.30 87.67 85.89 80.21 
Recall 86 84 84 87 85 87 87 86 85 84 86 84 85 86 87 84 85 87 86 80 
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Table 9: Total testing results in each running time of Exp.3 

(training 331 raw X-ray images + 331 synthesized X-ray images, testing 773 raw X-ray 

images + 773 synthesized X-ray images, 10,000 iterations) 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bottle 80.18 87.56 86.44 87.29 85.59 87.90 86.44 88.89 87.57 87.50 86.84 87.06 87.18 87.73 86.14 86.57 84.33 86.61 87.13 86.10 

knife 70.83 76.61 73.01 73.52 74.64 72.87 73.69 76.12 70.18 74.91 75.02 75.36 73.91 75.55 72.31 74.24 75.84 74.74 75.16 72.71 

scissor 79.39 80.00 82.87 79.26 79.78 79.04 80.11 79.32 82.18 79.97 84.45 85.04 79.74 83.93 79.86 84.02 79.80 79.94 82.65 78.71 

mAP 76.80 81.39 80.78 80.02 80.00 79.94 80.08 81.44 79.98 80.80 82.11 82.49 80.28 82.41 79.44 81.61 79.99 80.43 81.65 79.18 

Recall 77 82 79 79 80 81 80 80 79 81 81 82 80 82 79 82 80 81 82 76 

 

Table 10: Raw images testing results in each running time of Exp.3 

(training 331 raw X-ray images + 331 synthesized X-ray images, testing 773 raw X-ray 

images + 773 synthesized X-ray images, 10,000 iterations) 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bottle 76.93 86.13 86.46 86.34 86.19 86.23 86.10 87.48 87.56 86.13 86.64 85.04 87.87 87.84 86.57 84.17 86.11 87.52 87.82 83.08 

knife 68.42 76.05 71.59 73.15 74.10 72.01 73.84 73.72 69.79 73.52 76.34 76.37 75.40 76.43 71.88 74.48 75.44 74.07 74.04 71.20 

scissor 78.88 79.93 79.95 79.02 83.04 78.69 79.98 78.96 81.27 79.59 84.19 84.93 79.69 80.55 79.52 84.52 78.81 78.79 79.73 77.23 

mAP 74.75 80.71 79.33 79.51 81.11 78.98 79.97 80.05 79.54 79.74 82.39 82.12 80.99 81.61 79.32 81.06 80.12 80.12 80.53 77.17 

Recall 76 81 77 77 81 80 80 78 78 81 80 81 80 81 79 82 80 81 82 73 

 

Table 11: Synthesized images testing results in each running time of Exp.3 

(training 331 raw X-ray images + 331 synthesized X-ray images, testing 773 raw X-ray 

images + 773 synthesized X-ray images, 10,000 iterations) 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bottle 84.58 88.93 86.73 87.85 86.46 89.01 87.79 89.59 87.88 88.19 86.78 87.76 86.69 87.29 87.37 88.17 85.78 86.47 87.71 87.66 

knife 71.89 77.18 75.28 74.22 75.55 73.28 73.43 77.89 70.93 76.07 74.54 74.69 72.44 75.25 73.90 74.28 76.33 75.62 75.66 74.40 

scissor 82.85 84.80 86.59 80.31 79.46 82.16 83.72 80.17 85.55 85.80 85.29 85.74 80.40 85.70 84.69 82.81 85.31 87.97 83.45 80.87 

mAP 79.78 83.64 82.87 80.79 80.49 81.48 81.65 82.55 81.45 83.35 82.21 82.73 79.84 82.75 81.99 81.75 82.47 83.35 82.27 80.98 

Recall 79 84 80 81 80 82 80 83 80 82 81 82 79 82 80 81 81 81 83 79 
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Table 12: Total testing results in each running time of Exp.4 

(training 662 raw X-ray images + 331 synthesized X-ray images, testing 442 raw X-ray 

images + 442 synthesized X-ray images, 10,000 iterations) 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bottle 87.55 87.04 87.96 88.46 88.81 87.68 88.53 88.16 88.97 87.64 89.26 87.75 87.71 88.72 86.90 88.34 89.43 88.97 87.16 87.89 

knife 80.05 75.07 78.30 77.41 76.87 78.22 78.69 75.47 74.85 79.79 78.78 75.49 81.41 78.17 75.51 75.40 76.41 78.16 77.02 76.31 

scissor 88.22 83.30 86.47 85.21 87.62 83.23 80.94 86.76 85.50 87.68 85.04 79.95 87.58 88.24 87.53 86.23 80.43 85.59 84.80 85.94 

mAP 85.27 81.80 84.24 83.69 84.43 83.04 82.72 83.46 83.11 85.04 84.36 81.06 85.57 85.04 83.32 83.32 82.09 84.24 82.99 83.38 

Recall 83 81 84 83 84 81 83 82 84 86 85 81 86 86 82 82 81 84 81 83 

 

Table 13: Raw images testing results in each running time of Exp.4 

(training 662 raw X-ray images + 331 synthesized X-ray images, testing 442 raw X-ray 

images + 442 synthesized X-ray images, 10,000 iterations) 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bottle 87.66 89.97 88.76 89.98 90.03 88.29 89.82 88.78 89.99 88.67 89.62 88.59 88.47 89.69 89.10 89.27 90.26 89.40 88.46 89.60 

knife 82.55 76.85 81.74 78.44 82.80 79.19 77.58 78.07 77.58 81.47 79.33 79.51 83.43 83.42 78.44 80.90 77.53 78.61 78.05 82.31 

scissor 88.14 83.54 87.79 86.52 87.56 79.92 80.76 86.33 83.67 88.07 86.18 79.42 87.94 88.11 88.80 88.02 80.90 86.80 85.02 88.96 

mAP 86.12 83.45 86.10 84.98 86.80 82.47 82.72 84.39 83.75 86.07 85.05 82.51 86.61 87.07 85.45 86.06 82.90 84.94 83.85 86.96 

Recall 84 84 87 85 86 83 83 83 85 88 86 83 87 89 87 86 83 84 81 87 

 

Table 14: Synthesized images testing results in each running time of Exp.4 

(training 662 raw X-ray images + 331 synthesized X-ray images, testing 442 raw X-ray 

images + 442 synthesized X-ray images, 10,000 iterations) 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bottle 87.90 84.13 86.25 86.77 87.54 87.65 87.18 88.00 88.30 87.74 88.60 88.35 87.39 88.01 85.11 87.86 87.94 88.63 86.76 87.13 

knife 76.71 73.64 75.17 75.33 75.17 77.86 79.14 73.93 73.00 77.41 80.31 73.31 80.48 75.94 72.11 70.69 75.99 78.06 76.33 74.03 

scissor 87.91 82.23 84.85 83.28 88.25 84.64 80.87 87.92 87.41 87.10 80.04 84.43 86.87 88.65 83.32 83.54 83.04 81.20 85.47 82.94 

mAP 84.18 80.00 82.09 81.79 83.65 83.38 82.40 83.28 82.90 84.09 82.98 82.03 84.91 84.20 80.18 80.70 82.32 82.63 82.85 81.37 

Recall 83 79 80 80 82 79 82 81 83 84 85 80 84 84 78 79 80 83 80 79 
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Table 15: Total testing results in each running time of Exp.5 

(training 662 raw X-ray images + 3010 synthesized X-ray images, testing 442 raw X-ray 

images + 2007 synthesized X-ray images, 25,000 iterations) 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bottle 90.77 90.54 90.59 90.65 90.55 90.66 90.53 90.67 90.75 90.75 90.67 90.41 90.70 90.75 90.74 90.73 90.44 90.68 90.71 90.62 

knife 89.41 89.40 88.59 87.10 88.45 89.12 88.63 89.75 88.60 89.26 88.82 89.35 89.90 88.83 88.56 89.32 88.40 89.26 88.42 89.56 

scissor 90.38 90.47 90.00 89.90 90.30 90.06 90.26 90.49 90.31 90.39 90.46 90.60 90.43 90.04 90.10 90.47 90.28 90.51 90.47 90.47 

mAP 90.19 90.14 89.73 89.22 89.77 89.95 89.81 90.30 89.89 90.13 89.98 90.12 90.35 89.88 89.80 90.17 89.71 90.15 89.87 90.22 

Recall 92 92 91 91 91 92 91 93 92 92 92 93 92 93 91 93 91 93 92 93 

 

Table 16: Raw images testing results in each running time of Exp.5 

(training 662 raw X-ray images + 3010 synthesized X-ray images, testing 442 raw X-ray 

images + 2007 synthesized X-ray images, 25,000 iterations) 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bottle 90.24 89.19 89.58 88.92 88.60 89.34 88.71 90.34 90.15 89.59 89.29 88.55 89.77 89.32 89.27 89.68 85.52 89.99 90.31 89.45 

knife 86.04 83.58 79.74 78.01 82.39 81.84 77.89 80.87 84.57 78.72 81.15 80.72 83.13 79.63 82.29 82.91 82.68 85.16 84.06 84.05 

scissor 88.85 89.95 85.85 86.29 86.55 87.56 85.71 88.04 89.60 88.16 89.13 89.40 86.62 88.19 86.11 89.12 88.78 88.23 88.93 88.38 

mAP 88.38 87.57 85.06 84.41 85.85 86.25 84.10 86.41 88.11 85.49 86.53 86.22 86.51 85.71 85.89 87.24 85.66 87.79 87.77 87.29 

Recall 89 88 88 87 86 88 85 88 90 88 89 88 85 88 86 88 86 89 89 89 

 

Table 17: Synthesized images testing results in each running time of Exp.5 

(training 662 raw X-ray images + 3010 synthesized X-ray images, testing 442 raw X-ray 

images + 2007 synthesized X-ray images, 25,000 iterations) 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bottle 90.81 90.63 90.72 90.81 90.79 90.79 90.74 90.71 90.82 90.82 90.79 90.58 90.74 90.85 90.83 90.80 90.62 90.74 90.75 90.71 

knife 89.71 90.05 89.30 88.60 89.31 89.81 89.64 90.37 89.37 89.96 89.59 89.92 90.28 89.66 89.21 90.17 89.32 89.62 89.12 89.98 

scissor 90.67 90.56 90.72 90.25 90.74 90.44 90.79 90.75 90.60 90.80 90.75 90.79 90.78 90.71 90.60 90.83 90.51 90.78 90.69 90.72 

mAP 90.40 90.41 90.25 89.89 90.28 90.35 90.39 90.61 90.26 90.52 90.38 90.43 90.60 90.40 90.21 90.60 90.15 90.38 90.19 90.47 

Recall 93 93 92 92 92 93 92 95 92 94 93 94 94 93 92 93 92 93 92 94 
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 We show all running results of Exp.1 in Table 3, Table 4 and Table 5. Similarly, Table 6, 

Table 7 and Table 8 give all running results of Exp.2. Table 9, Table 10 and Table 11 give all 

running results of Exp.3. Table 12, Table 13 and Table 14 give all running results of Exp.4. 

Table 15, Table 16 and Table 17 give all running results of Exp.5. We compare these results 

using the mean and standard deviation values of 20 times runs. We show all MEAN ± STDEV 

values of each experiment in Table 18, Table 19, Table 20, Table 21 and Table 22 respectively. 

 

Table 18: Mean ± STDEV values of the first experiment (Exp. 1) running 20 times. 

YOLOv2 results Recall (%) mAP Bottle (AP) Knife (AP) Scissor (AP) 

Total test (884) 54.05 ± 3.99 54.72 ± 3.88 41.06 ± 3.95 49.12 ± 4.45 73.97 ± 4.72 

Raw data test (442) 84.20 ± 2.78 84.21 ± 1.81 88.63 ± 1.23 78.78 ± 2.88 85.20 ± 2.70 

Synthesized data test (442) 30.05 ± 5.51 27.97 ± 5.51 14.37 ± 4.81 19.13 ± 3.69 50.42 ± 10.94 

 

Table 19: Mean ± STDEV values of the second experiment (Exp. 2) running 20 times. 

YOLOv2 results Recall (%) mAP Bottle (AP) Knife (AP) Scissor (AP) 

Total test (884) 67.05 ± 2.46 69.58 ± 2.27 77.28 ± 3.08 66.08 ± 2.21 65.38 ± 3.31 

Raw data test (442) 48.55 ± 4.36 52.95 ± 4.65 53.97 ± 7.86 49.57 ± 4.64 55.31 ± 4.06 

Synthesized data test (442) 85.25 ± 1.68 85.74 ± 2.00 89.62 ± 0.77 80.57 ± 3.28 87.03 ± 3.62 

 

Table 20: Mean ± STDEV values of the third experiment (Exp. 3) running 20 times. 

YOLOv2 results Recall (%) mAP Bottle (AP) Knife (AP) Scissor (AP) 

Total test (1546) 80.15 ± 1.66 80.54 ± 1.31 86.55 ± 1.78 74.06 ± 1.70 81.00 ± 2.06 

Raw data test (773) 79.40 ± 2.28 79.96 ± 1.70 85.91 ± 2.44 73.59 ± 2.23 80.36 ± 2.14 

Synthesized data test (773) 81.00 ± 1.41 81.92 ± 1.12 87.43 ± 1.16 74.64 ± 1.72 83.68 ± 2.46 

 

Table 21: Mean ± STDEV values of the fourth experiment (Exp. 4) running 20 times. 

YOLOv2 results Recall (%) mAP Bottle (AP) Knife (AP) Scissor (AP) 

Total test (884) 83.10 ± 1.74 83.61 ± 1.19 88.15 ± 0.74 77.37 ± 1.84 85.31 ± 2.55 

Raw data test (442) 85.05 ± 2.09 84.91 ± 1.57 89.22 ± 0.72 79.89 ± 2.20 85.62 ± 3.14 

Synthesized data test (442) 81.25 ± 2.12 82.60 ± 1.34 87.36 ± 1.14 75.73 ± 2.64 84.70 ± 2.65 
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Table 22: Mean ± STDEV values of the fifth experiment (Exp. 5) running 20 times. 

YOLOv2 results Recall (%) mAP Bottle (AP) Knife (AP) Scissor (AP) 

Total test (2449) 92.00 ± 0.79 89.97 ± 0.26 90.65 ± 0.10 88.94 ± 0.63 90.32 ± 0.20 

Raw data test (442) 87.70 ± 0.01 86.41 ± 1.19 89.29 ± 1.04 81.97 ± 2.35 87.97 ± 1.33 

Synthesized data test (2007) 92.90 ± 0.91 90.36 ± 0.17 90.75 ± 0.07 89.65 ± 0.44 90.67 ± 0.14 

 

Table 23: Independent samples test (95% interval confidence) of raw images test results. 

 

Comparison of Raw data test results  

Levene's Test for 

Equality of Variances 

t-test for Equality 

of Means 

F-value Sig Sig (p-value) 

 

 

Exp. 1 vs Exp. 2 

 

mAP 

Equal variances assumed 12.915 0.001 0.000 

Equal variances not assumed  0.000 

 

Recall 

Equal variances assumed 7.653 0.009 0.000 

Equal variances not assumed  0.000 

 

 

Exp. 1 vs Exp. 3 

 

mAP 

Equal variances assumed 0.066 0.798 0.000 

Equal variances not assumed  0.000 

 

Recall 

Equal variances assumed 0.005 0.944 0.000 

Equal variances not assumed  0.000 

 

 

Exp. 1 vs Exp. 4 

 

mAP 

Equal variances assumed 0.074 0.787 0.0975 

Equal variances not assumed  0.0975 

 

Recall 

Equal variances assumed 0.001 0.978 0.141 

Equal variances not assumed  0.141 

 

 

Exp. 1 vs Exp. 5 

 

mAP 

Equal variances assumed 0.761 0.388 0.000 

Equal variances not assumed  0.000 

 

Recall 

Equal variances assumed 1.464 0.234 0.000 

Equal variances not assumed  0.000 

 To prove that our experiment results are statistically significant, we show the significance 

of t-test based on our experiment results. In order to confirm whether our synthesized data can 

improve the detection performance, we perform significance of t-test using raw images test 

results of Exp.1 and raw images test results of other experiments (see Table 23). We also 

performed a significance of t-test on the raw images test results and synthesized images test 
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results in each experiment to analysis the difference between raw images and synthesized 

images (see Table 24). 

 

Table 24: Independent samples test (95% interval confidence) of raw images test results and 

synthesized images test results for each experiment. 

 

Comparison of raw data test results and 

synthesized data test results for each experiment 

Levene's Test for Equality of 

Variances 

t-test for Equality 

of Means 

F-value Sig Sig (p-value) 

 

 

Exp. 1 

 

mAP 

Equal variances assumed 4.862 0.034 0.000 

Equal variances not assumed  0.000 

 

Recall 

Equal variances assumed 1.900 0.176 0.000 

Equal variances not assumed  0.000 

 

 

Exp. 2 

 

mAP 

Equal variances assumed 10.661 0.002 0.000 

Equal variances not assumed  0.000 

 

Recall 

Equal variances assumed 18.708 0.000 0.000 

Equal variances not assumed  0.000 

 

 

Exp. 3 

 

mAP 

Equal variances assumed 0.520 0.475 0.000 

Equal variances not assumed  0.000 

 

Recall 

Equal variances assumed 3.569 0.067 0.0055 

Equal variances not assumed  0.006 

 

 

Exp. 4 

 

mAP 

Equal variances assumed 1.235 0.273 0.000 

Equal variances not assumed  0.000 

 

Recall 

Equal variances assumed 0.149 0.702 0.000 

Equal variances not assumed  0.000 

 

 

Exp. 5 

 

mAP 

Equal variances assumed 27.374 0.000 0.000 

Equal variances not assumed  0.000 

 

Recall 

Equal variances assumed 3.279 0.078 0.000 

Equal variances not assumed  0.000 

 

4.4 Detection examples of our security system 

We select a trained Yolov2 model which has the best performance in Exp.5 to show some 

detection examples for convincing. Our testing dataset contains both simple images and 
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complex images. Considering that simple images are easy to be detected, we select some of 

complex images as examples to show. Fig. 39 gives six detection examples and we show all 

dangerous objects detection score from left to right under each example images. Because raw 

images testing results are the most valuable reference, all example images we selected are raw 

X-ray images. We can find that the objects in some example images are difficult to distinguish 

even for experienced human operators, but our trained model can accurately detect these 

dangerous objects. 

 

Fig. 39: Detection examples of the best performance model in all experiments 
 
  

(a) bottle1: 88%, scissor: 68%,  

knife: 87%, bottle2: 84%. 
(b) knife: 77%, bottle1: 84%,  

scissor: 82%, bottle2: 91%. 
(c) bottle1: 80%, knife: 71%,  

bottle2: 90%, scissor: 85%. 

(d) bottle1: 89%, scissor: 90%, 

bottle2: 87%, knife: 79% 
(e) bottle1: 89%, scissor: 86%,  

bottle2: 82%, knife: 55%, bottle3: 54% 

(f) knife: 77%, bottle: 85%,  

scissor: 86%, bottle2: 94% 
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Chapter 5 
Discussions 
 

5.1 Discussions 

In the real security checks, the raw images detection performance is the most important. This 

is because synthesized images are virtual data after all, and its test results can only be used as 

a reference. Therefore, in our experimental results, we should pay attention to whether the 

detection result of raw images has been improved. In Exp.1, we found that when we only train 

raw X-ray images, the raw images testing results are quite well (mAP: 84.21, Recall: 84.20). 

At the same time, the AP value of bottle has reached 88.63, which is the highest one in these 

three kinds of dangerous objects. The AP value of knife is 78.78, which is the lowest one in 

these three kinds dangerous objects. This is because bottles are relatively large and easy to 

detect. Yolov2 is not good at detecting small objects, resulting in the detection accurate of knife 

is lower. We can see that in Exp.1, the synthesized images testing results (mAP: 27.97, Recall: 

30.05) are in sharp contrast with the raw images testing results. This is because we only trained 

raw X-ray images in Exp.1 and raw X-ray images are easier to be detected than synthesized X-

ray images. The results in Exp.2 verified this phenomenon. When we only train synthesized X-

ray images with the same amount of Exp.1, we found that the synthesized images testing results 

in Exp.2 (mAP: 85.74, Recall: 85.25) were as good as raw images testing results (mAP: 84.21, 

Recall: 84.20) in Exp.1, and might even be better. This is because when we only train 

synthesized images, the trained model has better adaptability the synthesized images. There is 

an interesting phenomenon here, the testing results of Exp.2 did not show symmetry with Exp.1. 

In other words, the raw images testing results in Exp.2 (mAP: 52.95, Recall: 48.55) were not 

as low as expected, which are both close to 50 in mAP testing and Recall testing. At the same 

time, the total testing results in Exp.2 (mAP: 69.58, Recall: 67.05) are also higher than the total 

testing results in Exp.1 (mAP: 54.72, Recall: 54.05). This initially indicates the performance 

improvement of our synthesized X-ray images dataset. In Exp.3, we got the raw images results 
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of (mAP: 79.96, Recall: 79.40) and the synthesized images results of (mAP: 81.92, Recall: 

81.00). We found that when we train both raw X-ray images and synthesized X-ray images 

with the same amount, both mAP and Recall of synthesized images testing results are a little 

higher than raw images testing results. The significance of t-test (p-value of mAP: 0.000, p-

value of Recall: 0.006) in Table 24 indicates that this is not due to random factors. This is 

because the brightness of synthesized images is darker than raw images, which means that the 

features of synthesized images extracted by CNN are hard to disappear in deep convolutional 

layers, allowing the network learns these features better. Since we trained both raw X-ray 

images datasets and synthesized images datasets, the trained model showed good performance 

on two kinds of testing datasets. We note that the synthesized images testing results in Exp.3 

(mAP: 81.92, Recall: 81.00) are worse than the synthesized images testing results in Exp.2 

(mAP: 85.74, Recall: 85.25) and the raw images testing results in Exp.3 (mAP: 79.96, Recall: 

79.40) are also worse than the raw images testing results in Exp.1 (mAP: 84.21, Recall: 84.20). 

This is because the total number of training images in the three experiments is equal, and the 

number of raw images and synthesized images in Exp.3 is smaller than that in Exp.1 and Exp.2 

respectively, resulting in insufficient training of both two kinds of images. As we mentioned 

before, the raw images testing result is the most important and our purpose is to improve the 

raw images detection performance. In Exp.4, we restored the amount of raw X-ray images for 

training and added a small amount of synthesized X-ray images to see if these synthesized 

images can affect results. We got the raw images testing results in Exp 4 of (mAP: 84.91, Recall: 

85.05) and both of mAP and Recall of the results are a little higher than raw images testing 

results in Exp.1 (mAP: 84.21, Recall: 84.20). However, the significance of t-test shows that (p-

value of mAP: 0.0975 p-value of Recall: 0.141) shows their difference is not significant. This 

indicates that a small number of synthesized images did not make a significant contribution to 

our raw images testing results. The synthesized images testing results in Exp.4 (mAP: 82.60, 

Recall: 81.25) are also close to the synthesized images testing results in Exp.3 (mAP: 81.92, 

Recall: 81.00). This because we used the same amounts of synthesized images for training in 

both experiments, which also indicates that our experiment results are stable. When we trained 

a large number of synthesized images in Exp.5, we got raw images testing results of (mAP: 

86.41, Recall: 87.70) and synthesized images testing results of (mAP: 90.36, Recall: 92.90). 
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We found that the raw images testing results in Exp.5 (mAP: 86.41, Recall: 87.70) is also higher 

than raw images testing results in Exp.1 (mAP: 84.21, Recall: 84.20). This time, the 

significance of t-test (p-value of mAP: 0.000 p-value of Recall: 0.000) shows that this testing 

results are significant. This means that although a small number of synthesized images do not 

contribute to the raw images testing results, a large number of synthesized images work on the 

accuracy. the significance of t-test based on Exp.5 (see Table 24) also tells us the synthesized 

images testing results (mAP: 90.36, Recall: 92.90) which both mAP and Recall are the highest 

values in all experiments are significant. This means that the raw images testing results still 

have space for improvement. 
 

5.2 Limitations   

There several limitations in our system that need to be noted. 

 The brightness of our synthesized X-ray images is different from raw X-ray images. 

The synthesized X-ray images are darker, which are easy to be detected. The reason 

why synthesized X-ray images are darker is that the histogram equalization process 

average the brightness of objects and the background of the image. Since the objects 

are darker than the background, the whole image will become darker after histogram 

equalization. This difference in brightness causes our synthesized images not to be 

completely the same style as raw X-ray images, limiting the features learning of raw 

X-ray images by the network. 

 Although our trained model can detect these dangerous objects in real time, the 

detection accuracy is still cannot meet the needs of practical applications. In other 

word, our model is not yet fully automated, and manual assistance is still required in 

practical applications. In the best case, we got the detection mAP of 86.41 and Recall 

of 87.70. In a real practical security system, the accuracy requirement is 95% or even 

higher. Our model is still some distance away form this precision and needs to be 

improved. 
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 The dangerous our model can detect is limited. Our model can only detect three kinds 

of dangerous objects. In real life, the kinds of dangerous objects are extremely 

complicated. In addition to scissors, knives and bottles, there are dangerous items such 

as guns, drugs, and explosives. Due to the limited dataset, our model is not able to 

detect these mentioned dangerous items. We need to augment the dataset and reinforce 

the model so that the model can detect more dangerous items. 

 The pre-trained model we used for fine-tuning is based on RGB color image datasets. 

Because our dataset are all single-view X-ray images, fine-tuning a model pretrained 

with RGB color image datasets is not a good idea. There is still no open pre-trained 

model based on X-ray datasets. 

5.3 Future work 

 We will fix the image synthesizing algorithm to synthesize X-ray images which are 

the same style as raw X-ray images. At the same time, we will make the features of 

dangerous objects in the synthesized images clearer and without distortion. 

 We will try other object detection model to conduct our experiments. We will train 

Yolov3 using our X-ray dataset, we think that Yolov3 can show better performance 

than Yolov2. On the other hand, using Faster R-CNN is also one of our plans. We 

believe that the X-ray dataset can get higher detection accuracy on Faster R-CNN. 

 We will collect more raw X-ray images which contain other dangerous objects to 

expand our X-ray dataset. We will study how to detect guns, drugs and explosives to 

reinforce our model. 
 We will try to find other open X-ray datasets for pre-training the model and start 

fine-tuning from the pre-trained model which is based on other X-ray datasets. 
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Chapter 6 
Conclusion 

In this thesis, we focus on the topic of CNN-based X-ray dangerous objects detection. We have 

discussed the shortcomings of commonly used multi-view security systems. In order to enhance 

the detection efficiency, we proposed a portable X-ray device for collecting single-view X-ray 

images. We have elaborated on the improvement process of the object detection models and 

finally selected Yolov2 to conduct our experiments. We have collected 1104 raw X-ray images 

for experiments. Considering that raw X-ray dataset is limited, we used Tanaka’s method for 

synthesizing X-ray images. In the synthesizing process, the algorithm can generate annotations 

automatically, greatly reduced the workload of labeling the images. We synthesized 5017 X-

ray images for expanding our training dataset.  

 We applied both raw X-ray images and synthesized X-ray images for training the model. 

In order to prove that our synthesized images contribute to raw images detection performance, 

we design five kinds of experiments. To obtain stable results, we run each kind of experiments 

20 times. Our experiments mainly focus on three kinds of dangerous objects detection: scissor, 

knife, bottle. Finally, we achieved raw images testing mAP of 86.41 and Recall of 87.70. We 

also showed the significance of t-test on our results. The t-test showed that training a small 

amount of synthesized images cannot improve the raw images detection accuracy, but training 

a large amount of raw images can improve the detection performance. 
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