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Abstract

While deep learning achieves high accuracy in various natural language tasks via

representation learning with massive datasets, it is impractical to prepare such large-

scale datasets for every pair of task and language. Multilingual models mitigate

this problem by transferring models trained in resource-rich languages to resource-

poor languages. The standard approach to obtaining multilingual models is to

train a neural network with embedding layers fixed to language-independent word

representations, namely, cross-lingual word embeddings.

In this study, we consider two challenges of this approach; cross-lingual word em-

beddings obtained via existing methods degrade for distant language pairs, and this

method fails to exert true potential of neural networks as the embedding layer is not

optimized for the given task. To mitigate these problems, we propose a unsuper-

vised method to improve cross-lingual word embeddings for distant language pairs

using subword alignment (§ 4) and a method to obtain task-specific cross-lingual

word embeddings to obtain a fully task-specific multilingual model (§ 5).

In order to improve the quality of cross-lingual word embeddings for distant lan-

guage pairs, we first capture unambiguously-translatable word pairs such as loan-

words and named entities to constitute a more reliable bilingual dictionary to in-

duce cross-lingual word embeddings. We then induce cross-lingual word embeddings

from the obtained unambiguously-translatable bilingual dictionary. Experimental

results in four language pairs, English-Japanese, English-Finnish, English-Spanish,

and English-Italic, indicate that cross-lingual word embeddings obtained with our

method were more accurate than those obtained by the state-of-the-art method,

especially on distant language pairs.
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To obtain a fully task-specific multilingual model, we use a cross-task projection

that maps pre-trained cross-lingual word embeddings to the task-specific embedding

layer of the neural network trained on the resource-rich language. Experimental

results on sentiment analysis and document classification tasks demonstrated that

our method obtained superior performance compared to traditional models with

fixed embedding layers.

Combining these two methods, we obtain a multilingual model that is fully task-

specific (including the embedding layer) and performs well for distant language

pairs.

Keyword: natural language processing, multilingual models, cross-lingual word

embeddings
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Chapter 1

Introduction

1.1 Multilingual model for cross-lingual resource

utilization

Various tasks in natural language process (NLP) have experienced significant im-

provements via representation learning with deep learning on a massive annotated

corpus. However, preparing such a corpus in every language for each task is im-

practical, and as a result, the performances of NLP models in many resource-poor

languages are limited. A multilingual model, which can be trained in a resource-

rich language (hereafter, source language) and then applied to another resource-poor

language (hereafter, target language), mitigate this problem because it utilizes re-

sources across languages.

Obtaining a multilingual model should require not only minimal annotated resources

in the target language but also minimal cross-lingual resources such as bilingual

dictionary and parallel corpus because obtaining cross-lingual resources also requires

much human labor. In this study, we assume there is neither annotated resource in

the target language nor cross-lingual resource across the source and target language

to address the most common situation.
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1.2 Cross-lingual word embeddings based on subword alignment

The most common method (especially in an unsupervised scenario) to obtain a

multilingual model is to exploit cross-lingual word embeddings to absorb the differ-

ence in the vocabularies across languages. Cross-lingual word embeddings represent

words from multiple languages as vectors such that words (no matter which lan-

guages they are from) are close to each other if they have a similar meaning. A

neural network model trained while fixing the embedding layer to the pre-trained

cross-lingual word embeddings can be applied in the language other than the train-

ing language.

This method of obtaining a multilingual model fails to perform well due to (1)

the quality of cross-lingual word embeddings trained in an unsupervised manner

perform poorly for distant language pairs and (2) it fails to induce task-specific word

embeddings because we fix the embedding layer during the training. Recent studies

indicate that cross-lingual word embeddings are obtainable in a fully unsupervised

manner for similar language pairs, but for distant language pairs such as English-

Japanese or English-Finnish, the quality degrades significantly [1, 2]. Also, previous

studies [3, 4] and our experimental results indicate that a neural network with

the embedding layer fixed to pre-trained word embeddings performs poorly. This

study addresses these two problems by proposing two methods respectively, namely

cross-lingual word embeddings based on subword alignment and a fully

task-specific multilingual model using a cross-task projection of cross-

lingual word embeddings.

1.2 Cross-lingual word embeddings based on sub-

word alignment

Existing studies [1, 2] learn cross-lingual word embeddings from bilingual dictionary

induced in an unsupervised manner. We believe that this method fails to be effec-

tive in distant language pairs because the bilingual dictionary induced for distant

language pairs is noisy. The polysemous words in distant languages are likely to

2



1.3 Fully task-specific multilingual model using cross-task projection of
cross-lingual word embeddings

share only a part of their senses, and the remaining senses are irrelevant to each

other. For example, an English word “moon” has multiple translations in Japanese

such as “月 (The moon),” and “衛星 (satellite),” while “月” has multiple transla-

tions in English such as Monday and month, which are not included in the meaning

of “moon.”

To mitigate this problem of ambiguous translations in distant language pairs, we

take advantage of words that have surface correspondences such as loanwords and

named entities and use these word pairs for inducing cross-lingual word embeddings.

We assume that such word pairs with surface correspondences are likely to be un-

ambiguously translatable with each other since those words originally come from

the other language. To extract such words from the bilingual dictionary, we exploit

subword alignment to extract well-aligned word pairs in the bilingual dictionary.

1.3 Fully task-specific multilingual model using

cross-task projection of cross-lingual word em-

beddings

A multilingual model obtained in the method mentioned above fails to induce a

task-specific representation of words as we must fix the embedding layer during the

training in the source language. To exploit a fully task-specific neural network in

cross-lingual settings, we propose a novel method of projecting pre-trained cross-

lingual word embeddings to word embeddings of a task-specific neural network that

is trained for the target task with the training data in a source language. We then

utilize the obtained cross-task projection to obtain task-specific cross-lingual word

embeddings of the target language that can be used for the task-specific neural

network.

To obtain the above cross-task projection of cross-lingual word embeddings, we

propose a simple, yet effective method of locally-linear mapping. This method is

3



1.4 The structure of this paper

built on the assumption that local topology is preserved between the semantic spaces

of word embeddings in two NLP tasks; in other words, adequately similar words in

pre-trained cross-lingual word embeddings will have similar representation even in

task-specific semantic space.

1.4 The structure of this paper

The structure of this paper is as follows. In § 2, we present previous studies on cross-

lingual word embeddings and multilingual models, and discuss the relationships with

this work. In § 3, we introduce monolingual word embeddings and an unsupervised

method to obtain cross-lingual word embeddings [1] that we adopted for this study.

In § 4, we propose our method that utilizes subword alignment to obtain cross-

lingual word embeddings in an unsupervised manner and then conduct experiments

to evaluate this method and understand its characteristics. In § 5, we propose a

method that induces task-specific cross-lingual word embeddings in order to obtain

a fully task-specific multilingual model, and then conduct experiments to evaluated

effect of the task-specific word representation in multilingual models. In § 6, we

summarize our study and discuss our future work to further improve the quality of

multilingual models.
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Chapter 2

Related Work

In this chapter, we introduce previous studies that induce cross-lingual word em-

beddings (§ 2.1) and multilingual models (§ 2.2), and discuss their relationships to

this study.

2.1 Cross-lingual word embeddings

Supervised methods Most of the methods to obtain cross-lingual word embed-

dings assume that some cross-lingual resources are available. These methods ba-

sically obtain monolingual word embeddings independently for each language, and

then learn mappings across languages so that word pairs in a bilingual dictionary

are close to each other after mapping.

The most simple way to learn such mappings is a regression method which maps

embeddings of a language into another using least square objective [5–7]. Faruqui

and Dyer extended this method to use canonical correlation analysis to map both

languages into one semantic space [8], and Lu et al. proposed to use deep canonical

correlation analysis to further enhance the mappings [9]. Recent studies [10, 11]

follow the regression method but with a constraint of the mapping to be orthogonal
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2.1 Cross-lingual word embeddings

which not only improves the quality of resulting embeddings but also makes it

possible to analytically compute the globally optimal mapping via singular value

decomposition. Artetxe et al. generalized these methods as part of a multi-step

framework [12].

The other stream of studies attempts to train word embeddings of multiple lan-

guages simultaneously instead of mapping independently induced monolingual word

embeddings. MultiCluster first obtains multilingual corpus by assigning the same

word ID for word pairs in the hand-crafted bilingual dictionary and then trains Skip-

gram model on the multilingual corpus [13]. However, this method fails to perform

well due to polysemies, and to mitigate this, Duong et al. dynamically replaced

the target word with its translation during the training of Skip-gram model [14].

Another study utilizes earth mover’s distance to enhance the quality of resulting

cross-lingual word embeddings instead of replacing words [15]. Nakashole improves

cross-lingual word embeddings for distant languages in a supervised situation by

incorporating neighborhood information in the pre-trained embeddings [16].

Semisupervised methods Practically, it is very human-intensive to obtain cross-

lingual resources, and thus some researches focus on obtaining cross-lingual word

embeddings with minimal supervision. Artetxe et al. successfully obtain cross-

lingual word embeddings from 25 words pairs or numerals by self-learning frame-

work which alternatively induce dictionary and train mapping [17]. Another study

utilized word pairs with exactly the same character string [18] which can be ob-

tained automatically. However, this method is not applicable to language pairs

with different symbolic systems such as English-Japanese, and the experimental

results indicate that their performance is limited.

Unsupervised methods Unsupervised learning of cross-lingual word embed-

dings is first obtained using earth movers distance as the objective instead of least

square objective [19]. In this method, Wasserstein GAN [20] was used to induce the

mapping across languages which minmizes the difference between distributions of

6



2.1 Cross-lingual word embeddings

the embeddings of the source and the target languages. Other studies exploit adver-

sarial learning to obtain cross-lingual word embeddings without any cross-lingual

supervision [2, 21] and Artetxe et al. enhanced self-learning framework with unsu-

pervised initialization strategy and robust learning method [1]. Instead of learning

a mapping between pre-trained monolingual word embeddings, Wada and Iwata

train a language model sharing some of the parameters of the neural network and

the resulting embedding layer is taken as cross-lingual word embeddings [22]. These

unsupervised methods sometimes exhibited better performance against ones based

on cross-lingual resources; in other words, cross-lingual resources are not always

optimal for obtaining cross-lingual word embeddings.

While these unsupervised methods obtain high-quality cross-lingual word embed-

dings for similar language pairs (typically, European languages), performances are

still limited in distant language pairs such as English-Japanese. In this work, we

focused on such distant language pairs and improved cross-lingual word embeddings

with subword alignment.

Task-specific word embeddings The effort to obtain task-specific cross-lingual

word embeddings has been made previously. Gouws et al. obtain task-specific cross-

lingual word embeddings by constructing a task-specific bilingual dictionary, which

defines equivalent classes designed for the given task instead of equivalent seman-

tics [23]. All words (regardless of their languages) in the same equivalence class get

the same vector representations. For instance, equivalence classes for POS tagging

task equate two words in a different language if they have overlapping syntactic cat-

egories. Although they successfully obtained task-specific cross-lingual word embed-

dings for POS tagging, it is not clear how we should define the task-specific bilingual

dictionary for other NLP tasks, and preparing them is usually human-intensive.
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2.2 Multilingual models

2.2 Multilingual models

Lack of resources in many languages is a deeply rooted problem in natural language

processing, and there have been many pieces of researches contributed to mitigating

this problem by transferring models across languages.

Multilingual models using parallel corpus An intuitive approach to realize

the cross-lingual transfer of a model is to utilize machine translation [24, 25]. They

either translate annotated corpus of the source language to the target language and

train a model in the translated corpus, or train a model in the source language

and translate input in the prediction. Johnson et al. learned multilingual neural

machine translation system from parallel corpus and enabled zero-shot translation;

they can translation among language pairs where no parallel corpus is available [26].

Other studies utilize parallel corpus directly to train multilingual model instead of

training machine translation systems [27, 28]. While some of these methods do not

rely on an annotated corpus in the target language, they heavily rely on cross-lingual

resources such as parallel corpus.

Multilingual models with cross-lingual word embeddings Another intu-

itive method to obtain multilingual models is to fix the embedding layer of a

neural network to cross-lingual word embeddings. Many existing pieces of re-

search implemented this for various tasks in an unsupervised senario [14] where

no annotated corpus is available in the target language as ours and a supervised

scenario [29, 30]. Other studies enhanced these models by employing language-

adversarial networks [31, 32]

As discusses in § 5.2, these models fail to induce task-specific representation of

words, and thus cannot exert true potential of neural networks.

8



2.2 Multilingual models

Multilingual models with character embeddings Several studies utilize char-

acter level embeddings shared across languages to obtain multilingual models [33,

34]. An obvious weak point of these methods is that they do not apply to distant

language pairs of ones with a different alphabet while our method only relies on

cross-lingual word embeddings which are obtainable regardless of the alphabet of

the language [1].

9



Chapter 3

Preliminaries

In this chapter, we introduce methods to obtain monolingual word embeddings

from a raw corpus in § 3.1, and an unsupervised method to obtain cross-lingual

word embeddings in § 3.2.

3.1 Monolingual word embeddings

Monolingual word embeddings are vector representation of words in a language so

that similar semantic words are close to each other as vectors. Most of the methods

to obtain monolingual word embeddings learn the representation from a raw corpus

such as Wikipedia1 and Twitter2 by exploiting Distributional Hypothesis [35] which

states that the semantics of words can be implied from the surrounding words. Here,

we introduce Skip-gram [36] and its extension, Subword Information Skip-gram [37],

which we adopted for this study.

1https://dumps.wikimedia.org/
2https://twitter.com/

10

https://dumps.wikimedia.org/
https://twitter.com/


3.1 Monolingual word embeddings

3.1.1 Skip-gram

In Skip-gram model, each word w has two vectors Xtrg
w and Xctx

w and the model is

trained to predict the surrounding (context) word from a target word in the raw

corpus. Suppose that D = {w1, w2, · · · , wN} are the list of words in the raw corpus

and let wi be the target word. We optimize the model to predict the context words

{wi−k, wi−k+1, · · · , wi−1, wi+1, · · · , wi+k−1, wi+k} from the target word wi.

Typically, the negative sampling technique is exploited for computational efficiency.

Given the target word, we randomly sample words (negative samples) and the model

is trained to predict the word is a negative sample or an actual context word. We

optimize Xtrg and Xctx by stochastic gradient descent to minimize the following

objective function

L =
N∑
i=1

∑
k∈{−K,··· ,−1,1,··· ,K}

logP (t = 1|wi, wi+k) +
NS∑
j=0

logP (t = 0|wi, w
′
ij)

where NS is the number of negative samples. We compute the probability of the

word pair v, c to be an actual neighboring word pair from the raw corpus by

P (t = 1|v, c) = σ(Xtrg
v ·Xctx

c )

where σ(·) is the sigmoid function, σ(x) = 1
1+exp(−x)

. The probability of the word

pair v, c not to be an actural neighboring word pair is

P (t = 0|v, c) = 1− P (t = 1|v, c)

= 1− σ(Xtrg
v ·Xctx

c )

= σ(−Xtrg
v ·Xctx

c )

After the optimization, we use Xtrg as the word embeddings.

11



3.2 Unsupervised learning of cross-lingual word embeddings

3.1.2 Subword-Information Skip-gram

Subword-Information Skip-gram [37] is an extension of Skip-gram by utilizing sub-

word information. This method not only improves the quality of the word embed-

dings, but it also enables to induce word embeddings of unknown words.

This method optimizes the same objective function as Skip-gram (§ 3.1.1) but in-

stead of words, character n-grams have embeddings. Word embeddings are com-

puted as the summation of embeddings of its n-grams.

For each word in the raw corpus, special characters < and > are added to the

beginning and end of the word, and then they compute the bag-of-character n-

grams, G. The word itself is also included in G. For example, from the word where

with n = 3, the resulting G would be

G = {<wh, whe, her, ere, er>, <where>}.

The embedding Xtrg
s of a word s is computed by

Xtrg
s =

∑
g∈G

Xngram
g

where Xngram
g is the vector representation of n-gram g.

Given the trained embeddings, the embeddings of unknown word can be computed

as the summation of embeddings of all its character n-grams.

3.2 Unsupervised learning of cross-lingual word

embeddings

The role of cross-lingual word embeddings in a multilingual model is to represent

words in two languages with fix-length vectors in a shared semantic space to absorb

12



3.2 Unsupervised learning of cross-lingual word embeddings

the difference among vocabularies across languages. They represent semantically-

similar words as vectors with similar values irrespective of languages of the words.

In this study, we use cross-lingual word embeddings as a resource to obtain task-

specific cross-lingual word embeddings.

In this study, we adopted the state-of-the-art method of obtaining cross-lingual word

embeddings of two languages [1]. This method learns cross-lingual word embeddings

from pre-trained word embeddings in both languages in an unsupervised manner

without any cross-lingual resources such as bilingual dictionaries. The method can

be applicable to our target scenario that assumes no language resource for the target

(resource-poor) language.

First, word embeddings X and Y of the source and target language are obtained

through existing methods of learning word embeddings via unsupervised tasks such

as language modeling [36]. Then they learn linear orthogonal mappings Wx and

Wy in an iterative manner so that the mapped embeddings XW T
x and YW T

y are in

the same semantic space and semantically-similar words in different languages have

similar vector representation. They estimate an initial bilingual dictionary using a

statistical method, and then iteratively (1) learn orthogonal mappings Wx and Wy

from the previously induced bilingual dictionary, and (2) induce bilingual dictionary

from previously induced mappings until convergence. In what follows, we describe

each step in details.

Train mapping Supposing that D is the previously induced bilingual dictionary,

we learn mappings Wx and Wy that maximizes cosine similarity of word pairs in D(
Ŵx, Ŵy

)
= argmax

Wx,Wy

∑
i,j∈D

(XiWx) · (YjWy).

This optimization problem has an analytical solution, and the solution can be effi-

ciently computed using singular value decomposition [1].

13



3.2 Unsupervised learning of cross-lingual word embeddings

Induce bilingual dictionary Using previously trained mappings, Ŵx and Ŵy,

we now induce an updated bilingual dictionary which will be used in the next

iteration to train the mappings. From every word from both of the languages, we

take the nearest neighbor in the opposite language.

Due to high dimensionality, computing nearest neighbors with cosine similarity suf-

fers from hubness problem [7], where a few points become the nearest neighbor

of many other points. To mitigate this problem, they use cross-domain similar-

ity local scaling (CSLS) [2] instead of cosine similarity in the computation of the

nearest neighbor. To compute CSLS similarity, we first compute mean similarity of

the mapped embeddings WxXs of a source word s and its neighbors in the target

language as follows

rT (WxXs) =
1

K

∑
t∈NT

cos(WxXs,WyYt)

where NT is the set of K neighbors of s in the target language. Likewise, we also

compute rS(WyYt) for each word t in the target language. Now, we compute CSLS

similarity of a word s in the source language and a word t in the target language by

CSLS(WxXs,WyYt) = 2 cos(WxXs,WyYt)− rT (WxXs)− rS(WyYt).

To enhance robust learning, they apply random dropout to the similarity matrix

before dictionary induction.

14



Chapter 4

Cross-lingual word embeddings

based on subword alignment

To mitigate the problem of ambiguous translations in distant language pairs we dis-

cussed in § 1.2, we take advantage of words that have surface correspondences such
as loanwords and named entities, and use these word pairs for inducing cross-lingual

word embeddings. We assume that such word pairs with surface correspondences

are likely to be unambiguously translatable with each other since those words are

originally came from the other language.

To extract such words from the bilingual dictionary, we exploit subword alignment

to extract well-aligned word pairs in the bilingual dictionary. We first prepare an

initial bilingual dictionary by exploiting existing unsupervised method to obtain

cross-lingual word embeddings [1]. We then train the subword alignment model [38]

from the bilingual dictionary to assign an alignment score to each word pair in the

dictionary. Word pairs with greater alignment scores are extracted to create an un-

ambiguously translatable bilingual dictionary as they are expected to be loanwords

or named entities. When combined with the unsupervised method of bilingual dic-

tionary induction [1], our method can work in a fully unsupervised manner and does
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4.1 Proposal

not rely on any cross-lingual resources such as a bilingual dictionary or a parallel

corpus through entire steps.

The contributions of this study are as follows:

• We experimentally confirmed that the quality of cross-lingual word embed-

dings obtained through an existing method is degraded in distant language

pairs.

• We proposed a novel method to obtain cross-lingual word embeddings that

exploit subword alignment.

• Our method sets the new state-of-the-art for the task of inducing cross-lingual

word embeddings for distant language pairs without supervision.

The structure of this chapter is as followed. In § 4.1, we propose a novel method to

obtain cross-lingual word embeddings by exploiting subword alignment. In § 4.2,

we conduct a seriese of experiments to evaluate our method and understand its

characteristics. Finally, we will summarize this work in § 4.3.

4.1 Proposal

Here, we explain the details of our method to obtain cross-lingual word embeddings

of two languages by exploiting subword alignment. To address a common situation

where no hand-built bilingual resource is available, we design our method to be fully

unsupervised; no hand-built bilingual resource is required in any steps.

Our method first obtains an initial bilingual dictionary in an unsupervised manner

by exploiting the existing unsupervised method to obtain cross-lingual word em-

beddings [1] (explained in § 3.2). Then, we train a subword alignment model to

compute an alignment score for each word pair in the dictionary. Word pairs with

high alignment scores are collected to construct a refined bilingual dictionary which

16



4.1 Proposal

we expect to contain mostly unambiguously translatable word pairs. The refined

bilingual dictionary is finally used to re-train cross-lingual word embeddings.

We hereafter explain each step of our method in detail:

Step 1: Inducing initial dictionary in an unsupervised manner The first step

is to obtain an initial bilingual dictionary without relying on any cross-lingual

resources. For this purpose, we first train cross-lingual word embeddings of

the two languages using an existing unsupervised method as described in § 3.2.
Now, letX and Y be the obtained cross-lingual word embeddings of the source

and target language respectively, then we construct a bilingual dictionary by

taking the nearest word in the target language for each word in the source

language. We employed CSLS with the neighborhood size of 10 to mitigate

the hubness problem as described in § 3.2 to compute the similarity.

Step 2: Learning subword alignment model Given the bilingual dictionary in-

duced in the previous step, we train a subword alignment model that computes

the likelihood of character-level alignment of word pairs in the dictionary. For

this purpose, we exploit a many-to-many alignment method [38] that is ca-

pable of aligning two sequences of symbols (words) for any language pairs.

We expect this model to learn how words are imported from one language to

another.

Suppose Dinit = {(x1, y1), (x2, y2), · · · , (xN , yN)} be the bilingual dictionary

induced in the previous step, where xi and yi are words (sequence of charac-

ters) in the source and the target languages. For each word pair (xi, yi), we

want to find alignment u⃗ that most likely to happen.

ˆ⃗u = argmax
u⃗∈U(xi,yi)

P (u⃗|(xi, yi))

where U(xi,yi) is the set of all possible alignment of xi and yi. This model is

trained by an Expectation-Maximization algorithm.
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Step 3: Filtering the initial bilingual dictionary Now, we filter the bilingual

dictionary induced in Step 1 so that we obtain word pairs that have less

ambiguity in mutual translation. For each word pairs (xi, yi), we compute the

best character-level alignment ˆ⃗u and its alignment score, logP (ˆ⃗u|(xi, yi)). We

extract word pairs with alignment scores higher than a threshold to construct

the refined bilingual dictionary Drefined.

An issue here is that we may not have any development set to turn the thresh-

old because we do not want to rely on any hand-built bilingual resources to

maximize its applicability. To find the best threshold for the alignment score,

we take 100 word pairs in the induced dictionary with the highest alignment

scores to be a development set which we use to evaluate the resulting cross-

lingual word embeddings we obtain in the next step; we adopt the threshold

that achieves the best performance on the bilingual lexicon induction task for

the development set. We denote the remaining bilingual dictionary as D′
refined.

Step 4: Re-training cross-lingual word embeddings We now train cross-lingual

word embeddings from the reliably subword-aligned (hopefully, unambigu-

ously translatable) bilingual dictionary that we obtained in the previous step.

We employ an existing method for supervised training of cross-lingual word

embeddings [39].

Given word embeddings of the source and the target languages, X and Y ,

and the refined bilingual dictionary D′
refined, this method trains two mappings

Wx and Wy so that the mapped embeddings XWx and YWy are in the same

semantic space, e.g., word pairs in the bilingual dictionaryD′
refined become sim-

ilar after mapping. To enhance the quality of cross-lingual word embeddings,

embeddings are normalized and whitened so that different components have

unit variance and be uncorrelated before learning mappings and de-whitened

to restore the original variance after. Like many other methods [2, 17, 18],

the mappings are constrained to be orthogonal. For the details, please refer

to the original paper.
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4.2 Evaluation

4.2 Evaluation

To examine the effect of exploiting subword alignment and gain a profound un-

derstanding of our method, we conduct experiments in two distant language pairs,

English-Japanese (en-ja) and English-Finnish (en-fi) and two similar language pairs,

English-Spanish (en-es) and English-Italic (en-it). Following existing studies [2, 17,

39], we used the bilingual lexicon induction task for evaluation.

4.2.1 Settings

In the following, we explain the details of the experimental settings.

Bilingual lexicon induction Bilingual lexicon induction is a task to predict the

translation in the target word from a word in the source language. Given a word

in the source language, we take the closest word in the target language, and if the

word is in the set of translations of the source word in the ground truth bilingual

dictionary, we consider it to be correct. For the ground truth bilingual dictionary,

we used the test set of MUSE bilingual dictionary1 which are used in previous

studies [1, 2].

For Method #2 and #3, we kept 100 word pairs of the induced initial dictionary

with highest CSLS similarities for a development set to tune the filtering threshold of

CSLS similarity and alignment score, respectively, and the remaining word pairs ar

e used as training set. For Method #4 through 6, we used the training set of MUSE

bilingual dictionary as an annotated hand-built bilingual dictionary. For Method

#5 and #6, we randomly sampled 500 word pairs from this bilingual dictionary as

a development set, and the remaining word pairs are used as training set. We used

the development set to tune the filtering threshold of alignment score.

1https://github.com/facebookresearch/MUSE
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We conducted Wilcoxon singed-rank test with p = 0.05 to show the statistically

significant results in bold in results.

Monolingual word embeddings Both our method and the baseline method

construct cross-lingual word embeddings from monolingual word embeddings that

are trained independently. We used monolingual word embeddings obtained by ap-

plying Subword-Information Skip-gram (SISG) [37] on Wikipedia corpus2 except in

§ 4.2.4. We used pre-trained word embeddings available online3 for all language

except for Japanese. For Japanese, we used the official Implementation of SISG4 to

train word embeddings from Wikipedia dump file, because the pre-trained embed-

dings online are broken. For all languages, we take 200,000 most frequent words as

our vocabulary.

Implementation For character-level many-to-many alignment in Step 2 of our

method, we used mpaligner5 version 0.97. To learn mapping across languages in

Step 1 and Step 3, we used official implementation6 of the original papers [1, 39]

with the default hyperparameters.

4.2.2 Detailed evaluation in four language pairs

First, we evaluate our method and other methods in details in four language pairs:

English-Japanese (en-ja), English-Finnish (en-fi), English-Spanish (en-es), and English-

Italic (en-it).

2https://dumps.wikimedia.org/
3https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.

md
4https://github.com/facebookresearch/fastText
5https://osdn.net/projects/mpaligner/
6https://github.com/artetxem/vecmap
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Methods for comparison In order to evaluate an impact of subword alignment

to filter out a bilingual dictionary used to induce cross-lingual word embeddings [39],

we compare six methods, including three unsupervised methods and three super-

vised methods, that differ in how to prepare the bilingual dictionary for inducing

cross-lingual word embeddings [39].

Method #1 (unsupervised) The method described in § 3.2 [1].

Method #2 (unsupervided with naive CSLS filtering) This method filters

the dictionary finally used in Method #1 using CSLS similarities of the word

pairs.

Method #3 (unsupervised with our subword alignment-based filtering)

Our method described in § 4.1 filters the dictionary finally used in Method

#1 by subword alignment.

Method #4 (supervised with a hand-built bilingual dictionary) This method

uses a hand-built bilingual dictionary (described below) [39].

Method #5 (supervised with a refined hand-built bilingual dictionary) This

method filters the hand-built bilingual dictionary by subword alignment.

Method #6 (supervised with a combined bilingual dictionary) This method

combines bilingual dictionary obtained by Method #4 (with a different thresh-

old to alignment scores) and the hand-built bilingual dictionary used in Method

#3.

For Method #2 and #3, we kept 100 word pairs of the induced initial dictionary

with highest CSLS similarities for a development set to tune the filtering threshold of

CSLS similarity and alignment score, respectively, and the remaining word pairs ar

e used as training set. For Method #4 through 6, we used the training set of MUSE

bilingual dictionary as an annotated hand-built bilingual dictionary. For Method

#5 and #6, we randomly sampled 500 word pairs from this bilingual dictionary as
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manual dict. unsup. dict. distant similar
(filtering) (filtering) en-ja en-fi en-es en-it

#1 - [1] 0.4573 0.4393 0.8086 0.7713
#2 - [1] (CSLS) 0.4440 0.4400 0.8000 0.7673
#3 - [1] (alignment) 0.4874 0.4547 0.8087 0.7787

#4 MUSE - 0.5175 0.4373 0.7940 0.7587
#5 MUSE (alignment) - 0.4944 0.4320 0.7913 0.7580
#6 MUSE [1] (alignment) 0.5210 0.4766 0.8033 0.7686

Table 4.1: The accuracy of bilingual lexicon induction

a development set, and the remaining word pairs are used as training set. We used

the development set to tune the filtering threshold of alignment score. The results

are shown in Table 4.1

Comparison with unsupervised baseline First, if we compare our Method #3

with the unsupervised baseline Method #1, our method outperforms the unsuper-

vised baseline. By comparing the performance among different language pairs, we

find that the difference is more significant for distant language pairs (en-ja, en-fi),

while we gain minor improvements in similar language pairs (en-es, en-it). From

these results, we confirmed the effectiveness of our method, especially for distant

language pairs.

Comparison with alternative filtering method Our method filtered the in-

duced bilingual dictionary by subword alignment to obtain an refined bilingual

dictionary that consists of unambiguously translatable word pairs, and successfully

obtained high-quality cross-lingual word embeddings. Here, we examine if we gen-

uinely need subword alignment, or if other simple methods of filtering also yield

similar results.

Instead of filtering the bilingual dictionary by the alignment scores (§ 4.1), we

filtered it by CSLS similarity scores used in step 1 (Method #1). Like our method,

100 word pairs with highest CSLS similarity scores are kept as a development set
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and are used to find the best threshold for the filtering. This filtering method is

expected to yield higher quality bilingual dictionary. However, it does not consider

ambiguity of words.

For all language pairs, we found that our method outperforms the alternative filter-

ing method. Thus, we can conclude that the quality of cross-lingual word embed-

dings is improved only by exploiting subword alignment.

Evaluation of supervised methods Occasionally, a hand-built bilingual dictio-

nary is available to obtain cross-lingual word embeddings. Here, we consider what

method is suited in such a situation. For this purpose, we compare three methods

including the supervised baseline [39] (Method #4), and two modified versions of

our method (Method #5 and #6). In all of the language pairs, the highest accuracy

was obtained by concatenating the hand-built bilingual dictionary with the refined

dictionary that is obtained in an unsupervised manner (§ 4.1) for inducing cross-

lingual word embeddings. However, if we compare supervised Method #4, #5, and

#6 using a hand-crafted bilingual dictionary with the fully unsupervised Method

#1, #2, and #3, the unsupervised methods outperform the supervised methods on

the similar language pairs with a small margin. Method #6, the combination of the

hand-crafted dictionaries and those fileted from the automatically-induced method

by subword alignment yielded the best performance for the two distant-language

pairs.

4.2.3 Evaluation in various language pairs

To evaluate our method in various situations, we compare our method (#3 in

§ 4.2.2) with unsupervised baseline method [1] (#1 in § 4.2.2) in eight additional

language pairs: English-Danish (en-da), English-German (en-de), English-French

(en-fr), English-Dutch (en-nl), English-Portuguese (en-pt), English-Swedish (en-

sv), English-Turkish (en-tr), and English-Persian (en-fa). The result is shown in

Table 4.2.
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Method en-da en-de en-fr en-nl en-pt en-sv en-tr en-fa

Baseline (#1) 0.5567 0.7327 0.8040 0.7333 0.7853 0.6040 0.4827 0.3147
Ours (#3) 0.6100 0.7373 0.8013 0.7347 0.8020 0.6233 0.4833 0.3127

Table 4.2: The accuracy of bilingual lexicon induction in additional 8 language
pairs

Lang. # tweets (m) Ave. # tokens

English 193 14.18
Japanese 117 19.32
Finnish 26 17.01
Spanish 43 14.62
Italic 93 16.47

Table 4.3: The statistics of Twitter corpus

In six of eight languages, our method (#3) outperformed the unsupervised baseline

(#1), especially in en-da and en-pt. Furthermore, the difference in the accuracy in

the other two language pairs are minimal. This result confirms the applicability of

our method in various of language pairs.

4.2.4 Evaluation on Twitter corpus

The monolingual word embeddings we used in the experiments are comparable

corpora rather than monolingual corpora, and it may affect the performance signif-

icantly. Therefore, we evaluated our method (#3) with the unsupervised baseline

(#1) on word embeddings obtained from Twitter corpora to understand the per-

formance in such a scenario.

We obtained raw corpora consists of tweets (excluding retweets) in 2017/8 in En-

glish, Japanese, Finnish, Spanish, and Italic. User IDs starting from “@” are re-

placed with a special token, and all URLs are removed. We then tokenized the

corpora using NLTK7. We show the details of the resulting corpora in Table 4.3.

7https://www.nltk.org/api/nltk.tokenize.html
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Method distant similar
en-ja en-fi en-es en-it

Baseline (#1) 0.2898 0.7831 0.5223 0.4386
Ours (#3) 0.2810 0.7908 0.5534 0.4428

Table 4.4: The accuracy of bilingual lexicon induction on Twitter corpus

The results are shown in Table 4.4. The accuracy in English-Finnish is significantly

greater than results with Wikipedia corpus shown in Table 4.1. This is because

the embeddings obtained from Twitter corpora have lower coverage (35%) of the

ground truth bilingual dictionary compared to embeddings obtained fromWikipedia

corpora (100%). Among three of four language pairs tested, our method (#3)

outperformed the unsupervised baseline method (#1), but the accuracy is generally

lower than Table 4.1.

4.2.5 Qualitative analysis

Induced bilingual dictionary From the refined bilingual dictionary obtained

in Step 2 (§ 4.1), we present top-10 word pairs with the highest alignment scores

excluding ones with the exact same character string in Table 4.5. We also show the

alignment score ranking including word pairs with exactly same character strings.

We can see that we successfully obtained loanword pairs such as cost-コスト in

English-Japanese, camera-kamera in English-Finnish, and international-internacional

in English-Spanish, and named entities such as india-intia in English-Finnish, and

americans-americani in English-Italic.

Sensitivity of hyperparameters To find the best threshold of alignment score,

we kept 100 word pairs in the induced bilingual dictionary with the highest align-

ment scores as development set. Here, we consider how sensitive the resulting word

embeddings are to the value of hyperparameters.
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Figure 4.1: The accuracy of bilingual lexicon induction task with various value
of threshold. The dotted line indicates the unsupervised baseline (#1).

In Table 4.1, we show the relationship between minimal alignment score and the

accuracy of the bilingual lexicon induction task. For all of the language pairs except

for English-Japanese, we found a tendency to improve the accuracy as the minimal

alignment score increases or the size of resulting bilingual dictionary decreases. For

English-Japanese, the resulting bilingual dictionary was too small to properly induce

the mapping at -0.25.
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4.3 Summary

In this paper, we analyzed cross-lingual word embeddings and found that their per-

formances degrade in distant language pairs. To mitigate this problem, we proposed

a novel unsupervised method to obtain cross-lingual word embeddings by exploiting

subword alignment to utilize unambiguously translatable words.

In experiments, our method outperformed the state-of-the-art unsupervised and

supervised method to obtain cross-lingual word embeddings, especially for distant

language pairs, and advanced the new state-of-the-art for bilingual lexicon induc-

tion. Through analysis, we confirmed that our method correctly identifies loanwords

and named entities that are expected to be helpful to obtain cross-lingual word em-

beddings as they tend to have less ambiguity.
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rank English Japanese

1 chart チャート (tya a to)

2 demonstration
デモンストレーション
(de mo n su to re e sho n)

3 plantation
プランテーション
(pu ra n te e sho n)

4 sparta
スパルタ
(su pa ru ta)

5 elf
エルフ
(e ru hu)

6 scrap
スクラップ
(su ku ra ppu)

7 ana
アナ
(a na)

8 timing
タイミング
(ta i mi n gu)

9 scandal
スキャンダル
(su kya n da ru)

10 brest
ブレスト
(bu re su to)

(a) English-Japanese

rank English Finnish

68 croatia kroatia
138 constantin konstantin
139 israelis israelin
196 india intia
213 socrates sokrates
227 camera kamera
286 macedonian makedonian
326 atlantic atlantin
332 tina nina
336 caucasian kaukasian

(b) English-Finissh

rank English Spanish

323 international internacional
487 secretaries secretarios
496 territories territorios
591 mercenaries mercenarios
606 initial inicial
628 rational racional
653 residential residencial
666 national nacional
702 narrator narrador
705 salaries salarios

(c) English-Spanish

rank English Italic

439 italians italiani
453 terrorists terroristi
502 errors errori
532 senators senatori
558 arrests arresti
616 tensions tensioni
625 americans americani
657 assassins assassini
658 continents continenti
688 aliens alieni

(d) English-Italic

Table 4.5: Word pairs in the induced dictionary
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Chapter 5

Fully task-specific multilingual

model using cross-task projection

of cross-lingual word embeddings

To exploit a fully task-specific neural network in cross-lingual settings, we propose

a novel method of projecting pre-trained cross-lingual word embeddings to word

embeddings of a task-specific neural network that is trained for the target task with

the training data in a source language (Figure 5.1). We then utilize the obtained

cross-task projection to obtain task-specific cross-lingual word embeddings of the

target language that can be used for the task-specific neural network.

To obtain the above cross-task projection of cross-lingual word embeddings, we

propose a simple, yet effective method of locally-linear mapping. This method is

built on the assumption that local topology is preserved between the semantic spaces

of word embeddings in two NLP tasks; in other words, adequately close words in pre-

trained cross-lingual word embeddings will have similar representation even in task-

specific semantic space. We first represent general cross-lingual word embedding

of a word in the target language by linear combinations of general cross-lingual

word embeddings of k neighboring words in the source language. We then use the
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projection of cross-lingual word embeddings

bad

food

delicious
good

bueno
(good)

delicioso
(delicious)

comida
(food)

malo
(bad)

bad malo
(bad)

good

bueno
(good)

delicious
delicioso
(delicious)

food
comida
(food)

Task-specific word embeddings
(sentiment analysis)

General word embeddings

Figure 5.1: Conceptual diagram of task-specific cross-lingual word embeddings
(right) compared to general cross-lingual word embeddings (left). good and bad
are close to each other in the general semantic space while they are apart in the

task-specific semantic space for sentiment analysis.

obtained weights to compute a task-specific word embedding of the target word by

a linear combination of task-specific word embeddings of the k neighboring source

words (§ 5.1). Note that our method does not rely on any cross-lingual resources

such as bilingual dictionaries and annotated corpora in the target language, and

is therefore applicable to any tasks, languages, and models with word embeddings

layers.

We evaluated our method on document classification and sentiment analysis tasks.

We first obtained task-specific neural networks for the two tasks using annotated

corpora in the source language (English), and then induced task-specific cross-

lingual word embeddings for the target languages (Spanish, German, Danish, Dutch,

French, Italian, Portuguese, Swedish and Turkish) to apply the obtained neural

network to those languages. Experimental results confirmed that our method suc-

cessfully improved the classification accuracy of the multilingual model [14] in all
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of the task-language pairs.

The contributions of this study are as follows:

• We confirmed the limitation of the traditional multilingual model

with embedding layers fixed to pre-trained cross-lingual word embeddings.

• We established a method of obtaining fully task-specific multilingual

models by learning a cross-task projection from general to task-specific cross-

lingual word embeddings.

• Our cross-task projection is simple and has an analytical solution

with only one hyperparameter; the solution is a global optima.

5.1 Fully task-specific multilingual model

In this section, we propose a method of projecting general cross-lingual word em-

beddings to semantic space of the embedding layers of purely task-specific neural

networks whose all the parameters (including embeddings) are trained for the task.

We assume that an annotated corpus is only available in the source language. Using

the obtained task-specific cross-lingual word embeddings, we apply the fully task-

specific neural networks trained with datasets in the source (resource-rich) language

to the target language without assuming any cross-lingual resources or annotated

corpus in the target language. Note that our method is applicable to any tasks and

models as long as they have word embedding layers for input words.

5.1.1 Method overview

The entire framework of obtaining a fully task-specific multilingual model is as

follows:
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Step 1: inducing cross-lingual word embeddings First, we obtain general cross-

lingual word embeddings {Xgen, Y gen} where Xgen and Y gen are word embed-

dings of the source and target language i nthe save semantic sapce from a

raw corpus of each language using [1] (§ 3.2). As we discussed in § 3.2, this

step can be done in an unsupervised manner without using any cross-lingual

resources such as a bilingual dictionary and parallel corpus.

Step 2: training a neural network in the source language Next, we train a

neural network f(·;Xspec, θ) (including an embedding layer) on annotated cor-

pus D in the source language. The embedding layer, Xspec, of the resulting

neural network will be considered as task-specific word embeddings of the

source language. This neural network is only applicable to the source lan-

guage because we do not have task-specific word embeddings in the target

language in the same semantic space with Xspec.

Step 3: locally linear mapping Then, we induce cross-task projection ϕ that

computes task-specific word embeddings of the target language Y spec from pre-

trained general cross-lignual word embeddings {Xgen, Y gen} and task-specific

word embeddings of the source language Xspec. We will explain the details of

this mapping in § 5.1.2

Step 4: applying the neural network to target language Finally, we replace

embedding layer Xspec of the neural network obtained in Step 2 f(·;Xspec, θ)

with Y spec to obtain a neural network f(·;Y spec, θ) which is applicable to the

target language.

5.1.2 Learning cross-task projection of embeddings using

locally linear mapping

Here, we will explain the detailed construction of our cross-task projection ϕ for

cross-lingual word embeddings used in Step 3 in the previous section. Given general

cross-lingual word embeddings Xgen, Y gen of the source and target languages, and
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task-specific word embeddinsXspec of the source language, we need to compute task-

specific word embeddings Y spec of target language in the same semantic space with

Xspec. We introduce a mapping method inspired by locally linear embeddings [40],

a dimension reduction technique, assuming that the local topology among nearest

neighbors will be consistent between two NLP tasks (here, language model and the

target task).

The construction of this cross-task projection has two steps. First, for each word i

in the target language, we take k nearest neighbors in the source language in the

semantic space of the general cross-lingual word embeddings where k is a hyper-

parameter. For this purpose, we used cosine similarity as the metric instead of

Euclidean distance in [40].

Then we learn αij that most successfully restore Y gen
i as a linear combination by

optimizing

αij = argmin
αij

∣∣∣∣∣Y gen
i −

∑
j∈Ni

αijX
gen
j

∣∣∣∣∣
where Ni is the set of k nearest neighbors of a taget language word i in the source

language, with constraint of
∑

j αij = 1.

The solution to this optimization problem can be analytically given by

αij =

∑
k C

−1
ijk∑

j

∑
k C

−1
ijk

where

Cijk =
(
Y gen
i −Xgen

j

)
· (Y gen

i −Xgen
k ) .

We then compute Y spec
i using the obtained weights αij by

Y spec
i =

∑
j∈Ni

αijX
spec
j .
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The resulting Y spec is thereby in the same semantic space with the task-specific

word embeddings of the source language, and the local topology among nearest

neighbors are preserved after projection. Our locally linear mapping has only one

hyperparameter k, how many neighbors in the source language we consider for the

target language, and we can find the global optima by the analytical solution with

simple computation.

Hyperparameter search Even though our proposing method has only one hy-

perparameter k, we still want to appropriately tune its value to obtain the best

performance. Typically we choose k that performs best in the development dataset

in the target language. However, we assume that no annotated resource is available

in the target language, and thus we cannot exploit development datasets in the

target language.

To address this problem, we apply our cross-task projection to the source language

with various k and then choose k with the best model performance with the result-

ing embeddings on the development data of the source language. In experiments,

we report the results with this tuning method along with another tuning method

assuming a very small development data of 100 examples in the target language

5.2 Experiments

We conduct a series of experiments to evaluate our purely task-specific multilingual

models obtained by the proposed cross-task projection of cross-lingual word embed-

dings (§ 5.1.2). Our method is language- and task-independent and applicable to

various tasks where existing multilingual models can be applicable. Following exist-

ing studies on multilingual models [14, 24], we adopted classification and sentiment

analysis tasks with various languages. For all of the experiments, we use English as

the source language.
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Language # samples # ave. tokens

English 673,768 237.0
Spanish 14,997 159.0
German 86,550 195.8
Danish 8,366 172.2
Frenchi 71,292 256.9
Italian 21,594 137.5
Dutch 1,690 229.0

Potuguiss 6,263 249.0
Swidish 10,383 162.3

Table 5.1: Statistics of RCV1/2 corpus used for document classification

5.2.1 Settings

In the following, we explain the experimental settings including details of the two

target tasks and datasets we used.

Document classification is the task of predicting the topic of a given text. For

this task, we use Spanish, German, Danish, French, Italian, Dutch, Portuguese, and

Swedish as the target languages.

Following existing studies [14], we use RCV1/RCV2 dataset [41] for this task which

contains news text in many languages with labels from 4 categories: Corporate/In-

dustrial, Economics, Government/Social, and Markets.

For the datasets in the source language, English corpus, we randomly selected 10,000

samples for the test set, other 10,000 samples for the development set, and the rest

to be the training set. For the target languages, we sample 100 samples to be

development set for alternative tuning of k (§ 5.1.2) and the rest to be the test set.

The summary and statistics of the datasets are given in Table 5.1.

Sentiment analysis is a task of predicting a polarity label of the writer’s attitude

for a given the text. We designed this task to be a binary classification of positive

and negative labels. For this task, we use Spanish, Dutch, and Turkish as the target

languages.
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Corpus Lang. # samples # ave. tokens

Yelp Review dataset EN 4,406,965 133.0

ABSA dataset

EN 1,513 14.0
ES 1,411 15.1
NL 1,148 14.1
TR 878 9.7

Table 5.2: Statistics of datasets used for sentiment analysis task

To train the model in English, we use Yelp Review dataset1 which is a set of restau-

rant reviews with numerical ratings in the range of 1-5 given by the reviewers. We

labeled the reviews with ratings of 1 or 2 to be negative, ones with ratings of 4 or

5 to be positive, and ones with ratings of 3 are excluded. In order to balance the

number of positive samples and negative samples, we downsampled positive samples

as in [24]. Then, we randomly sample 100,000 sample to be the development set,

another 100,000 sample to be the test set, and the remaining 4,206,965 samples to

be the training set.

For evaluation in the target languages, we use ABSA dataset [42] which consists

of restaurant reviews in various languages including English, Spanish, Dutch, and

Turkish with annotation of polarity label of positive or negative to each sentence.

For each language, we randomly sample 100 sentences to be development set for

alternative tuning of k (§ 5.1.2) and rest to be the test set. The summary and

statistics of the datasets are given in Table 5.2.

Preprocessing We apply the same preprocessing to all dataset we use. All cor-

pora are tokenized by NLTK2 tokenizer and lowercased to match vocabularies of

pre-trained word embeddings.

1https://www.yelp.com/dataset
2https://www.nltk.org/api/nltk.tokenize.html
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General cross-lingual word embeddings General cross-lingual word embed-

dings were obtained using the state-of-the-art unsupervised method with self-learning

framework3 [1] as described in § 3.2. This method takes monolingual word embed-

dings of two languages and learns the mapping between them to obtain cross-lingual

word embeddings. For monolingual word embeddings, we used pre-trained word em-

beddings available online.4 They are word embeddings with the dimension of 300

obtained by applying subword-information skip-gram [37], which is a widely used

method for monolingual word embeddings, to Wikipedia corpus.

Models Our method is applicable to any neural networks with word embeddings

layer as the existing multilingual models are. In the experiments, we implement

a simple bag-of-embeddings model that takes the dimension-wise average of all

embeddings of input tokens. The resulting vector is then fed to following single-

layer feedforward neural network.

In order to evaluate the impact of task-specific word embeddings and effectiveness

of our cross-task projection of cross-lingual word embeddings, we compare three

different multilingual models.

GenEmb [14] trains the feed-forward neural network with embedding layers fixed

to the pre-trained cross-lingual word embedding.

CrossTaskProj trains the feed-forward neural network in the target language and

make it cross-lingual by cross-task projection as described in § 5.1.

EmbFFNN adds an embedding-wise two-layer feedforward neural network to the

feed-forward network used in TaskSpekEmb. The additional element-wise

feedforward neural network is (with embedding layers fixed to pre-trained

cross-lingual word embedding) intended to map pre-trained word embeddings

to task-specific word embeddings.

3https://github.com/artetxem/vecmap
4https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.

md
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Method Doc. class. Sent. analysis

GenEmb 0.842 0.809
EmbFFNN 0.958 0.853
CrossTaskProj 0.975 0.870

Table 5.3: Classification accuracy of models evaluated in the source language
(English) on document classification and sentiment analysis

As stated in § 5.1.2, we used two strategies to tune the additional hyperparameter

k for CrossTaskProj: 1) utilize the development set of the source language as de-

scribed in § 5.1.2, and 2) prepare a very small (100 samples) development data in the

target language. For document classification task, we also evaluateCrossTaskProj

with subword alignment based cross-lingual word embeddings (SACLWE) we dis-

cussed in § 4. We run all experiments three times and report average classification

accuracy.

5.2.2 Results

Here, we will report the result of our experiments and evaluate the effect of the fully

optimized multilingual model. First we evaluate GenEmb and CrossTaskProj

in English to understand the impact of task-specific word representation in neural

networks. Then, we evaluate the models in cross-lingual settings to evaluate how

well our locally linear mapping produce task-specific cross-lingual word embeddings.

Impact of task-specific word embeddings We examine the impact of opti-

mizing word embeddings to the given task on model accuracy through experiments

in English. Table 5.3 shows the result of document classification and sentiment

analysis tasks respectively.

In both tasks, CrossTaskProj which has task-specific word embeddings outper-

formedGenEmb with a wide margin. So, task-specific word embeddings are crucial
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Method en-es en-de en-da en-fr en-it en-nl en-pt en-sv

GenEmb 0.376 0.767 0.635 0.665 0.542 0.662 0.477 0.803
EmbFFNN 0.669 0.697 0.571 0.778 0.569 0.744 0.424 0.466

CrossTaskProj
Tuned on the src. lang. 0.666 0.753 0.697 0.854 0.569 0.799 0.557 0.812
Tuned on the trg. lang. 0.724 0.788 0.718 0.840 0.617 0.823 0.588 0.820

CrossTaskProj on SACLWE
Tuned on the src. lang. 0.488 0.693 0.672 0.748 0.492 0.816 0.514 0.800
Tuned on the trg. lang. 0.682 0.794 0.738 0.859 0.621 0.815 0.542 0.844

Table 5.4: Accuracy in document classificaiton task. All models are train on
English dataset and applied in the other languages.

Method en-es en-nl en-tr

GenEmb 0.802 0.736 0.695
EmbFFNN 0.773 0.705 0.679

CrossTaskProj
Tuned on the source lang. 0.825 0.759 0.712
Tuned on the target lang. 0.826 0.763 0.709

Table 5.5: Accuracy in sentiment analysis task. All models are train on Yelp
Review dataset in English and applied in the other languages. Evaluation datasets

are ABSA dataset for each language.

to obtain better model performance. This result motivates us to learn task-specific

cross-lingual word embeddings to exploit fully task-specific neural network.

When compared CrossTaskProj and EmbFFNN, we found that in both docu-

ment classification task and sentiment analysis task CrossTaskProj outperforms

EmbFFNN in monolingual evaluation. This indicates that inducing task-specific

word embeddings has a more significant contribution to the model performance than

having deeper models.

Performance of multilingual models We evaluate the performance of the mod-

els in cross-lingual settings. In Table 5.4 and Table 5.5, we report results of cross-

lingual evaluation on sentiment analysis task and document classification task. All
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models are trained in English and evaluated in other languages.

CrossTaskProj with hyperparameter tuning on the development set of the source

language, English, successfully outperformed the baseline, GenEmb, in all lan-

guage pairs. This result indicates the importance of task-specific word representa-

tion in the multilingual model and that locally linear mapping successfully induces

task-specific cross-lingual word embeddings. While we gained a little more im-

provements by tuning k on the small (100 samples) development set in the target

language, the gain is relatively small compared to the gain between GenEmb and

CrossTaskProj with hyperparameter tuning on the source language development

set. We gained a little more improvements by tuning k on the small (100 samples)

development set in the target language.

Comparing CrossTaskProj and EmbFFNN, the difference in classification accu-

ray in cross-lingual setting is more significant than monolingual setting. In several

languages, EmbFFNN has even lower classification accuracy compared to Gen-

Emb. We guess that by having more layers, the model becomes more sensitive

to the small difference in word representation, and thus, the noise in pre-trained

cross-lingual word embeddings degrades the model performance.

Performance with subword alignment based cross-lingual word embed-

dings A fully task-specific multilingual model relies on cross-lingual word em-

beddings as described in § 5.1 and we adopted an existing method [1] to obtain

them. Here, we adopt subword alignment based cross-lingual word embeddings we

discussed in § 4 instead, and evaluate the performance.

When the hyperparameter is tuned on the small development set, we found fully

task-specific multilingual models with subword based cross-lingual word embeddings

outperforms ones with embeddings obtained by the existing method in six of eight

language pairs we tested. This result confirms the quality of subword alignment

based cross-lingual word embeddings.
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However, we observed the degradation of the performance when the hyperparameter

is tuned on the development set of the source language. We guess that the subword

alignment based cross-lingual word embeddings have a small bias as the bilingual

dictionary is filtered and thus it is important to correctly tune the hyperparameter.

This is not a significant problem because only very small supervision (100 samples)

in the target language is required.

5.2.3 Analysis

Here, we further investigate the characteristics of our method. First, we visual-

ize the task-specific cross-lingual word embeddings we obtained by a locally linear

mapping for the sentiment analysis task using t-SNE [43]. We then discuss about

the sensitivity of our method to hyperparameter k to obtain some valuable insights.

Task-specific sementic space of sentiment analysis In Figure 5.2, we show

the visualization of general cross-lingual word embeddings and task-specific cross-

lingual word embeddings for sentiment analysis task in English and Spanish. We

used multilingual sentiment dataset5 [44], which contains the list of positive words

(shown as green dots) and negative words (shown as red crosses) for English and

Spanish, to indicate the distribution of positive and negative words in the visualiza-

tion. Also, among positive and negative words, we present five most frequent words

in the ABSA test dataset.

For English, we found that task-specific word embeddings extracted from the embed-

ding layer of trained neural network successfully learns task-specific features, and

positive words and negative words are distinguishable. However, they are mixed

and not distinguishable in general word embeddings. Notice that delicious and best

are close in task-specific word embeddings while they are apart in general word

embeddings.

5https://sites.google.com/site/datascienceslab/projects/multilingualsentiment
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Visualization of Spanish word embeddings exhibits similar property. Positive words

and negative words are distinguishable in task-specific word embeddings obtained

by our cross-task projection, but they are indistinguishable in general word embed-

dings. This indicates that locally linear mapping successfully transfers task-specific

feature of words across languages.

Sensitivity to hyperparameter k We proposed two strategies to tune the hy-

perparameter k of our cross-task projection of cross-lingual word embeddings: tun-

ing on the development set in the source language as described in § 5.1.2 or preparing
small (100 samples) development sets in the target languages. In many cases, hy-

perparameter search on the development set in the target languages improves the

model quality even when only small development set is available. We believe this

is because the best value of k is language dependent. In what follows, we evaluate

how the model quality is affected by the value of k among different languages and

tasks.

In Figure 5.3, we present classification accuracy of the model with various value of

k in document classification task and sentiment analysis task. In many cases, k = 1

performs best, but in several occasion, larger value achieved better classification

accuracy. For document classification task, performance of the model varies signifi-

cantly by changing k for many languages, but for sentiment classification task, the

performance is consistant with various value of k.

5.3 Summary

In this paper, we proposed a novel method to obtain a fully task-specific multilingual

model without relying on any cross-lingual resources or annotated corpus in the

target language. Our method induces task-specific cross-lingual word embeddings

for the target language using our novel method of locally linear mapping.
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5.3 Summary

Through experiments, we showed that the true potential of a neural network is

not exerted by the existing multilingual model as they fix the embedding layer of

the neural network to pre-trained cross-lingual word embeddings. Experimental

results and analysis confirmed that our cross-task projection successfully obtains

task-specific word embeddings of the target language without any annotated re-

sources in the target language, and classification accuracy of the resulting purely

task-specific multilingual model outperformed existing multilingual model with em-

bedding layer fixed to general word embedding with a wide margin.
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Figure 5.2: The t-SNE visualization of English and Spanish word embeddings
in sentiment analysis
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Figure 5.3: The classification accuracy with various value of k
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Chapter 6

Conclusion

In this study, we proposed two methods to improve a multilingual model. The

multilingual models obtained using our method are robust to the distant languages

due to cross-lingual word embeddings based on subword alignment (§ 4) and achieves

better performance due to task-specific cross-lingual word embeddings (§ 5). Here,

we summarize our contributions in this thesis (§ 6.1), and then discuss the future

of multilingual models (§ 6.2).

6.1 Contribution of this thesis

In § 4, we first observed that the quality of cross-lingual word embeddings obtained

in an unsupervised manner degrades for distant language pairs. Our method of sub-

word alignment based cross-lingual word embeddings mitigates this problem using

subword alignment for filtering the unsupervisedly induced bilingual dictionary to

obtain unambiguously translatable word pairs. Empirical results (§ 4.2) confirmed

that the performance in distant languages improves with our method.

In § 5, we proposed a method to obtain task-specific cross-lingual word embeddings

in order to exert the true potential of neural networks by inducing task-specific word
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representation. Because the most commonly used method to obtain a multilingual

model fixes its embedding layer to pre-trained cross-lingual word embeddings opti-

mized to language model task, it fails to induce task-specific representation of words.

Our method mitigates this problem by learning cross-task projection, namely lo-

cally linear mapping, to map the pre-trained cross-lingual word embedding to task-

specific cross-lingual word embeddings. This method is applicable to any neural

network model with an embedding layer for any task. In experiments (§ 5.2), we

observed improvements in various languages in two distinct tasks.

6.2 Future of multilingual model

While our method obtains fully task-specific multilingual models which is applica-

ble to distant languages, there are many remaining issues to overcome to obtain

multilingual models that perform equally well for all languages. We discuss what

kind of improvements we must make to accomplish such a goal.

Further improvements of cross-lingual word embeddings in distant lan-

guage pairs As discussed in § 4, we successfully improved the quality of cross-

lingual word embeddings in distant language pairs. However, the accuracies in

bilingual lexicon induction in distant language pairs are still not comparable to

ones in similar language pairs. We believe this is due to the difference in grammar

(word order) and word segmentation across languages. In most of existing meth-

ods, including ours, the translation of a word is assumed to be a single word, but in

reality, a word often translated into multiple words especially in distant language

pairs. For example, the translation of an English word “she” in Japanese is “彼女

の” which consists of two words. We guess that this difference is the crucial prob-

lem that degrades the quality of cross-lingual word embeddings in distant language

pairs.
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Absorbing gramatical difference among languages In this study, we con-

sider a multilingual model that utilize cross-lingual word embeddings to absorb the

difference in vocabularies across languages. However, such methods fail to absorb

the difference in grammar or word order. Therefore, we believe that our method

and any other methods that simply utilize cross-lingual word embeddings fails to

work well with neural networks that incoporate sequential information such as Con-

volutional Neural Network [45] and Long Short-Term Memory [46] which are known

to work well in many NLP tasks.

For this purpose, several methods are available such as pre-training a multilingual

encoder from raw corpora and incorporating a machine translation model to absorb

the difference in grammar. A pre-trained multilingual encoder takes a sentence

(or sequence of sentences) and produces language-independent representation of

the input, and pre-trained cross-lingual word embeddings can be considered as a

kind of pre-trained multilingual encoder. Pre-trained cross-lingual word embeddings

can be considered a kind of pre-trained multilingual encoder, and thus pre-trained

multilingual encoder suffers from the same issue with pre-trained cross-lingual word

embeddings we discussed in § 1.3. Thus, the multilingual encoder has to have

enough representative power so that it is applicable to various tasks, or we must

have some method to fine-tune the encoder while keeping it multilingual.

In several existing studies, a machine translation model was used to obtain a cross-

lingual model [24, 25]. A problem regarding these methods is that it requires massive

parallel corpus to obtain high-quality machine translation model, and the noise

in the translation affects the model performance significantly. However, in recent

years, several unsupervised methods to train machine translation models without

any cross-lingual corpus are proposed [47–53], and the performance is increasing.

Thus, we believe it worth investigating the possibility of exploiting unsupervised

machine translation for multilingual models.

Exploiting different types of resources In this study, we assumed that there

is an annotated corpus in the source language and there is neither an annotated
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corpus in the target language nor cross-lingual resources across the source and the

target languages. Furthermore, we did not consider any other languages except

these two languages. However, in reality, there are many other languages which

may or may not have annotated corpora, and for some language pairs, we may

obtain cross-lingual resources. To accomplish the best performance, it is important

to exploit all of these resources effectively.

However, our methods and many other methods of obtaining a multilingual model

and cross-lingual word embeddings fail to do so. It is our future work to solve this

issue to enhance the quality of multilingual models.
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