A generalization of local class field theory
by using K-groups. 1.

By Kazuya KATo
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Introduction.

Local class field theory is an example of a theory on abelian extension of
fields. Let K be a field which is complete with respect to a discrete valuation
and with finite residue field, and let K** be the maximum abelian extension of X.
Then, local class field theory says that there exists a canonical homomorphism

K*—Gal (K**/K) ,

which is ““almost an isomorphism’’. By this homomorphism, we can translate
problems on abelian extension of K, i.e. problems on the group Gal (K**/K), into
problems on the group K*.

There is an analogous example of a theory on abelian extension: if K is a
finite field, there exists a canonical homomorphism

Z—Gal (K**/K),

which is “‘almost an isomorphism™. Recall that Z=K(X) and K*=K,(K) for
any field K, where K, and K, are notations in algebraic K-theory.
The subject of this paper is a natural generalization of these two examples.
For any ring R, let K,(R) be Quillen’s A-group in Quillen [18]. On the
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other hand, for any field &, let 8,(k) be Milnor’s K-group in Milnor [12] which
was denoted by K% in [12], i.e. Ro(F)=2Z, 8,(k)=~", and for any ¢=2,

g times

R =(E"R---QF/T ,

where [ is the subgroup of the tensor product generated by all elements of the
form 2,Q---®x, with @;+2;=1 for some 7 and j such that i#j. If 2 is a field,
there is a canonical homomorphism R,(k)—K,(k) (¢=0), which is a bijection in
the case ¢=<2.

Qur main results are the following theorems. (Cf. Kato [9] [10].)

THEOREM 1. Lef N=0 and let ky, ---, ky be fields having the following prop-
erties (i) and (ii).

(1) ko is a finite field.

(it)y For each i=1,.---, N, k; is complete with respect to a discrete valuation
and the residue field of k; is k;-..

Denote ky by K, and ky by k. Then:

(1) There exists a canonical homomorphism

Uy : &y(K)—Gal (K**/K)

characterized by the following properties (iii) and (iv).

(ili) For any finite abelian extension L of K, ¥y induces an isomorphism
S KRy k8 L)=Gal (L/K). Here, Rtr;x is a certain canonical norm homo-
morphism; cf. Chapter 11 §3.

(iv) For each i=1,---, N, let =; be a lifting to K of a prime element of k.
Then, the image of ¥x({ry, ---,7n}) under the canonical homomorphism
Gal (K**/K)—Gal (k**/k) coincides with the Frobenius automorphism over k.

(2) If ch(K), the characteristic of K, is >0, there exists a canonical homo-
morphism

Tx: Kny(K)—Gal (K**/K)
which induces the above homomorphism Uy via the canonical homomorphism

8n(K)— Kn(K).

Next, in the case N=2 of Theorem 1, we can obtain a more satisfactory result
together with a similar result on the Brauer group of K.

THEOREM 2. Let F be a complete discrete valuation field with finite residue
field and K a complete discete valuation field with residue field F. Then:
(1) The map L>NpxK,(L) is a bijection from the set of all finite abelian
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extensions of K in a fixed algebraic closure of K, to the set of all open subgroups
of Ky(K) of finite indices with respect to the topology of KK) defined in this
paper (cf. Chapter 1 §7).

(2) There exists a canonical isomorphism

O : Br (K)SHom(K*, Q/Z),0
having the following property: For each central simple algebra A over K,
Ker (9x({A): K*—Q/Z)=Nrd ¢ (A%,

where Nrdux: A*—K* is the reduced norm map. Here, Hom, (K*, Q/Z)... denotes
the torsion part of the group of all continmous homomorphism from K* to Q| Z
with respect to the topology of K* defined in this paper (cf. Chapter 1 §7) and
the discrete topology of Q|Z.

Lastly, let F be an algebraic function field in one variable over a finite field,
and K a complete discrete valuation field with residue field F. We shall define
a topological group %%, called the ‘‘K,-idele class group” of K.

THEOREM 3. Let F and K be as above.

(1) There exists a canonical homomorphism ¥y : €x—Gal (K**/K) having the
Jollowing property: For each finite abelian extension L of K, ¥y induces an iso-
morphism Ex/Npyxer=Gal (L/K).

(2) The map L~Npx%y, is a bijection from the set of all finite abelian exten-
sions of K in a fixed algebraic closure of K, to the set of all open subgroups of
Ex of finite indices.

Our main tool for these studies will be the Galois cohomology in the case
ch (K)=0, and the generalized residue homomorphism (cf. Chapter II §2) in the
case ch (K)>0.

k ok %k ok ok ok oK Kk ok kX

In Chapter I, we shall study complete discrete valuation fields K with residue
fields F such that ch (F)=p>0 and [F: F’]=p. We shall study the K,-group and
the Galois cohomology of K, and prove the above Theorem 2 in the mixed charac-
teristic case, which is the difficult case (cf. Chapter II §3 for the equal character-
istic case). Among other results, we shall prove the following theorem in Chapter I.

THEOREM 4. Let F be a field of characteristic p>0 such that [F: F*l=p, and
K a complete discrete valuation field of characteristic zevo with residue field F.
Then, for each n=0,
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@ HY(K, pn@pn) = Ky K) KK,
via the Galois symbol.
2 HY(K, pp@pym)=Br (F)n .

In Chapter II, we shall prove the above Theorem 1. In Chapter III, we shall
prove Theorem 3.

Chapter I is contained in this Part I, and Chapter II and Chapter III will be
published later.

k Kk ok ok ok ok ok ook ok ok %

The subject of this paper grew up from the author’s Master’s thesis stimulated
by Ihara [7] which suggested the study of local class field theory of the fields as
in Theorem 3 together with the possibility of class field theoretic interpretation
of the mapping “‘jion(f)"” associated with elliptic curves. A large part of the
results of this paper was proved in Kato [8] and its summary was published in
Kato [9] and [10].

I wish to express my sincere gratitude to Professor Y. Ihara for his sugges-
tion of these researches and his unceasing encouragement. I also wish to express
my hearty thanks to Professor Y. Kawada who guided me to the local class field
theory and the theory of Galois cohomology, and to Professor T. Tasaka who
carefully read the manuscript and corrected errors in it.

I was informed by Professor A.N. Parsin that he independently proved
several similar results, together with their globalizations in the 2-dimensional
case, which were announced in Parsin [17]. See also Parsin [15] and [16] for

related results in this field.

Conventions.

“Ring”” means commutative ring and “field”” means commutative field, unless
the contrary is explicitly stated.

If R is a ring,

R* denotes the group of all invertible elements of R,

2p denotes the absolute differential module 2%z, for example, of [6] § 20.
If % is a field,

ch (k) denotes the characteristic of &,

k, denotes the separable closure of %,

k** denotes the maximum abelian extension of &,

X, denotes character group of Gal (2**/k); in other words,
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X, is the group of all continuous homomorphisms from Gal (4**/%) to Q/Z
with respect to the Krull topology on Gal (,*"/k) and the discrete topology
on Q/Z,
Br (k) denotes the Brauer group of %,
ta,x (or simply p,) denotes the group of all #-th roots of 1 in &, for each
non-zero integer #.
If 2 is a discrete valuation field,
v, denotes the normalized additive valuation of k (v,(0)=o0),
e, denotes vy(p) where p is the characteristic of the residue field of &,
Oy={z e k|vi(2)z0},
my={x € k|vi(x) =1},
U,={x e k|vi{x)=0},
Ui ={x e ¥ | vy(w—1)=n} for each integer # such that n=1,
U" =U, except that Ui" denotes £* in the following two places;
{Ch. I §6 Proofs of the injectivity of @ and ¥V,
Ch. I §8 Proof of Th. 1 Step 2-5,
% denotes the residue class of x for each z ¢ 0.
If % is a field which is complete with respect to a discrete valuation,
k.. denotes the maximum unramified extension of k, i.e. the unramified
extension of & whose residue field is the separable closure of the residue
field of &,
Br(k../k) denotes the kernel of the canonical homomorphism Br (2)—Br (&..).
If A is a commutative group whose group law is written additively,
A5 A denotes the homomorphism A—A; z—nx, and A, denotes the kernel
of the above homomorphism A1>A, for each integer 7.

Chapter I. Complete discrete valuation fields with residue
fields F such that [F: F?]=p.

§0. Preliminaries.

In this section, we shall review some known properties of Galois cohomology
and K, of fields, we shall fix our notations and we shall formulate the subject of
this Chapter I.

§0.1. Preliminaries on Galois cohomology.

(Cf. Serre [20] for Galois cohomology.)
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Let & be a field.
Let C; be the following category: An object of C; is a Gal (k,/k)-module M
such that the action
Gal (k./B) x M—M

is continuous with respect to the Krull topology on Gal (,/k) and the discrete
topology on M. A morphism of C; is a Gal (&,/k)-homomorphism.
Then C, is an abelian category. If M is an object of C;, we denote by
Hk, M) the group
{xe M|o(x)=a for all ¢ e Gal (k/E)} .

Then, H°(k, ) is a left-exact functor from C, to the category of all abelian groups
and all homomorphisms between them. We denote by H'(k, ) the i-th right-
derived functor of H%k, ). The group H(%k, M) admits an interpretation in terms
of the arithmetic of 2 if M and ¢ are selected as follows. ((1)-(4))

@ H(k, E)=Br (k) .
2 H'k, ZinZ)~(X;),, for each #>0.

(Whenever the notation Z/nZ is used in this paper for an object of C;, we always
assume that the action of Gal (k,/k) on Z/uZ is the trivial one.)

If » is any integer which is invertible in %, (1) and the exact sequence in C,

IR aiig S |
give rise to the following long exact sequence
FEDE S H ) —H (b, ) S H (b, B~ HP (k, 1)—Br (B)5Br () .

Since H'(k, k;)=0 (Hilbert’s theorem 90), we have,
3) H'(k, po) =k (B,

“) H’(k, p)=Br (k),, .

§0.2. Preliminaries on K, of fields.

See Milnor [13] for the classical and conceptual definition of K, of rings. But
the following theorem (Matsumoto [11]) also serves as a definition of K, of fields.

MATSUMOTO’S THEOREM. For any field k, there is a canonical isomorphism
(E* Q") J=Ky(k) ; sQyY—1Z, Yl ,

where ] is the subgroup of the tensor product gemerated by all elements of the form
2@ —x) such that xek, x+0 and x+1.
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We denote the group law of K, multiplicatively. The symbol { , }; is
denoted simply by { , } more often than not. By the above theorem and by
some simple calculation, we have

fw, 1-2}=1, {y,—y}=1, and {y,2}z y}=1

for all # €% such that =0 and %1, and for all y, ze £*.

K,-NORMs. If % is a field and E is a finite extension of &, there is a ‘‘natural”’
K,-norm homomorphism (the transfer homomorphism of {13] § 14)

Ngj: Ky(E)—Ky(k) .
The most important property of K,-norm is the following., If aek* and be E¥,
Nzilla, big)={a, Neubhi .
Now, we review the tame symbol and the Galois symbol.

TAME SymBOLES. Let K be a discrete valuation field with residue field F.
Let v: K*>Z be the normalized additive valuation of K. The tame symbol is
the homomorphism 3 : K,(K)—F™ which is characterized by the following property:
3w, y}) is equal to the residue class of (—1)"""'""'5" /y*'* for all 2, ye K*. The
existence and the uniqueness of the tame symbol follows from Matsumoto’s
theorem.

TATE’S GALOIS SyMBoLS. (Cf. Bass [1] 9.) Let % be a field and let # be an
integer which is invertible in k. The Galois symbol is the homomorphism

®) o Kol) Ko(R)"—H(k, 1@ p2n)

defined as follows. (If M and N are objects of C; (§0.1), we regard M®N as an
object of C, on which Gal (k/k) acts by o(xQ¥)=0(2)Rae(y).)
The cup product

H'(k, p)QH (ks prn)—HP (R, 1a®pia)
and the isomorphism (3) in §0.1 induce a composite
g B QE (B > H &, p1a@1t)
and this homomorphism g, satisfies (see Bass [1])
gx( mod (£*Y"®(1—2) mod (*)")=0

for all ek such that +#0 and #+1. Hence, by Matsumoto’s theorem, we have
the homomorphism %, which is characterized by the following property:
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ha({z, y} mod Ky(k)")=g.(z mod (¢*)"®y mod (£*)")

for all 2, ye k¥,

Finally, we add a remark about the Galois symbol. Suppose further that k
contains a primitive s-th root { of 1. Then, the isomorphism Z/nZz=y,:
1mod#Z—{ in C; induces via @, an isomorphism g,=x,Qp, and so an isomor-
phism H(k, )= H (b, Q). Since H(k, 11,)=Br (k), by (), h, induces a homo-
morphism

b Ky(k)/ Ku(k)"—Br (k) .
It is known that for any &, b€ £*, hn({a, b}) coincides with the class of the central
simple algebra A over % which is characterized by the following property: A has
a k-basis (@9 Yosizn—1,057sn—1 Where x and y are elements of A such that =g,

y*=b and yry '=Cx. It is known that for any a, be%*, the following conditions
are equivalent:

(6) ha({a, b)=0=a e Ng/x(E*)  where E=k(}""
={a, b} ¢ Ky(k)"

§0.3. As is well known (cf. Serre [20] Ch. II §5), ordinary local class field
theory can be formulated in the form of Poincare’s duality theorem as follows.
Let K be a field which is complete with respect to a discrete valuation and with
finite residue field. Suppose ch (K)=0. Then, for each #>0, there exists a canon-
ical isomorphism

@) HYK, ,un);i—Z/Z

which arises from these special properties of K. This isomorphism (7) and the
cup product induce a pairing

HYE, ) @H'K, Z{nZ)~- 27
and so, by (2) and (3), a pairing
®) K* (K" @ Xe)i— 27
When # varies, (8) induces a homomorphism

K*—Gal (K**/K) .

Thus, ordinary local class field theory can be constructed on the isomorphism (7)
which is analogous to the isomorphism in ordinary Poincare’s duality theorem.
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Now, let F be a field which is complete with respect to a discrete valuation
and with finite residue field. Let K be a field which is complete with respect to
a discrete valuation and with residue field F. Suppose ch(K)=0. The main
subject of this Chapter I is to obtain a canonical isomorphism

™ HYK, to D)= 717

for each #>0. This isomorphism (7)" and the cup product will induce a pairing
H(K, i @pm)QH'K, ZinZ)~-2]7

and so, by (2) and (5), a pairing

® KK Kl K@ (Xidw— - Z/Z

When # varies, (8)' will induce a homomorphism
K, (K)—Gal (K®**/K) .

Thus, our local class field theory will be constructed on the isomorphism (7). It
is easy to define this isomorphism (7)’ in case # is not divisible by ch (F), but it
is highly difficult in case ch (Fy=p>0 and # is a power of p. In the latter case,
for the definition of (7)', we need long studies of Galois cohomology and of K, of
fields which will continue until §5.

§0.4. Lastly, we present here an example of a field which is in the domain
of our local class field theory. Let K be the field of all formal Laurent series
ZZ“iX ‘ over Q, such that lim ;=0 and such that {v,(a;)|i€ Z} is bounded below,
::rhere v, denotes the uségl—o;ormalized additive valuation of @,. Then, K is
complete with respect to the discrete valuation 7,: z?,,(iZS}ZaiX “Y=inf {v,(a:)|i € Z},

and the residue field of K is isomorphic to (Z/pZ)(X)).

§1. The reduced norm map of a division algebra of a certain type.

In this section, we study the reduced norm map of a division algebra of some
type over a complete valuation field. Our results are analogous to those of Serre
[19] Ch. V §3 in which the norm map of a cyclic extension of a complete valua-
tion field is studied.

NOTATIONS and ASSUMPTIONS. In this section, K is a field which is complete
with respect to a discrete valuation and with residue field F such that ch (F)=
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£>0, and D is a division algebra with center K having the following properties
(i) and (ii). :

(i) dimg D=p".

Since K is complete, D has a canonical discrete valuation vg o Nrdp/x (cf.
Serre [19] Ch. XII §2). We define Op, mp, Up and Uy*' just as O, mx, Ux and

&', respectively. We denoted the residue division algebra Op/mp by C.

(i) C is commutative, [C: F]=p and C is inseparable over F.

The assumption (i) implies that we are concerned with the simplest case, but
(ii) implies that we are concerned with the difficult part of the case. In what
follows, we denote vg o Nrdp/x by vp. From the above assumptions, it follows
that vp is a normalized valuation. If © <€ Op, we denote the residue class of xz by z.

DEFINITION of the ramification number of D. This is the minimum of
op(wye~y " —1) where » and y are any elements of D*, and denoted by # in this
section.

The aim of this section is to prove the following Prop. 1, 2, 3.

PROPOSITION 1. 1={=exp/(p—1), where ex=vg(P).

PROPOSITION 2. (i) If Osn=t+1, Nrd(Up*)c UL,
(i) If m=0, Ned (U™ )< UL™ and Ned (U™ )yc U™+,
Gii) The map Nrd: U™ U is surjective.

PROPOSITION 3. (On the action of Nrd on the subquotients of D*.) Suppose
Sfurther that [F: F*l=p. (In this case, we have C=F'". In what follows, we
denote by ¥ either the isomorphism CSF, C*SF*, or Qc—RQp which is induced
by the isomorphism x—z": CSF. Here Q denotes the module of absolute differen-
tials as noted at the begz'nning of this paper.) Then we have the following (1)-(v).

(1) The following diagram is commutative.

_C* —;”; F*
! i
UplUY —Ug/UL .

Nrd

Here the vertical arrows arve the canonical ones.
(ii) Let 1=n<t and fix an element ¢ of D such that vp(c)=n. Then the
Jollowing diagram is commautative.

c F
7 l 1 l 1 I
1+ze 1+2z-Nrd (¢}
(n) {n+1) (n) in+1}
Dn /UDn _g;?UK'n / UX‘IL

aln
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(i) Fix an element a of D™ such that vi(a) is prime to p. Then, the following
diagram is commutative and the rows are exact. ,
\I/ 2 »L 2 Fedfif (1) \ch (1-7)8 @ iFZ 2
O__)UK/UI((U_)UD/UI()U l()t)/Ull)t+1) - U]({“/U]({t+l) .

—_—
gog—laga—1 U

Here ¢ denotes the Cartier operator (see below), and (1) and (2) are the isomor-
Dhisms defined as follows. (Note that Qr is one-dimensional over F since [F: FP]=p
and since Qi=0%;2=25/52.)

1) fag/g=1+f(g " aga”~1), feOp, geUp.
@ fdg®lg"=1+f-Nrd(g"'aga~1), feOx, geUp.
(iv) Let m=1. Fix an element ¢ of K such that vx(c)=m and an element a

of D* such that vp(a) is prime to p. Then the following diagram is commutative
and the rows are exact.

0— F - c tiaiA 2 L5 Qr -0
2 L 1 (3)]2 <4)lz

z
) 1) ) ‘mp+1) ¢ )l t ) t
{m {m+ {mp {mp+ {t+mp (t+mp+1) {t+m (t+m+1)
0-Ug™ Uk U™ U} v — g 4 /Up “Nra UK /Ux

z

I
1ize

Here (3) and (4) are the isomorphisms defined as follows.
® fdglg—1+f(g " aga—1)c, feOp, geUs.
) fdg*ldg’—1—fc-Nrd (¢laga™ 1), feOx, gelUyp.
(v) There exists an isomorphism
K*/Nrdp/x (D*)=Br (F), .

REVIEW on the Cartier operator. (Cf. Cartier {3].) Let % be a field of charac-
teristic p>0. Let #=0, let {( i be the n-th exterior power of the Z-module 2,

% n 7n+1
and let A £;,4-0 be the kernel of d: A 2,— A 2. Then, the Cartier operator r
k k k

n n
is the unique additive homomorphism A 2 40— A £, such that
k k

T<w1’_dy—1/\... /\%):x%/\.../\dﬂ
Y1 Yn Y1 Yn
r(dw)=0
n—1
for all wek, yi,++,Y.€ k" and for all we A Q.. In this §1, we are concerned
k

2
with the case in which =1 and A £2,=0.
k
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Proors. First, we prove the following Lemma.

LEMMA 1. Suppose ac D*, beOp, vola) is prime to p, and the residue class
in C of b does not belong to F. Then vi{aba 'b™ —1) is equal to the ramification
number of D.

(Roughly speaking, since the properties of ¢ and b much differ from each
other, the commutator aba*b™" bhecomes most different from 1.)

Proor oF LEMMA 1. We can prove the following (5) and (6) easily.

(5) If %, yeD* and vplz+y)=inf (vp(x), vp(y)), we have the following inequality
for any ze D¥,

vpz(@+ )z @+y)  —1) =inf (wp(zez e —1), vp{zyz 'y —1)) .
(6) For any z,y, ze D¥,
vp(zayz Nxy) =) zinf (vplezz a7 —1), vplzyz 'y T —1)) .
Since each element ¢ of D can be written as

c= N ralt’ ri;e K,
05i<p—1
0=7<p—1

and vp(c)=inf {v5(r:;a°0))}, (5) and (6) show
) vplzez e =) =inf (vp(zaz @ '~ 1), vp(zbz B 1))
for any z,ce D*. From (7), by putting z=a or z==b, we have, for any ce D*,
(8) vplaca ¢ =D zvplaba 6 1),
© vpbed T =Dz opbab a =) =vplaba b —1) .
Comparing (7), 8) and (9), we have, for any ¢, ze D¥,
vplcze 'z =Dz vplaba b —1) . Q.E.D.

ProoF OF Prop. 1. Since C/F is inseparable, for each se D*, the homomor-
phism z—szs™’ induces the identity map on Op/mp=C. This shows 1=t It
remains to prove f=<exp/(p—1). Let @ and b be as in Lemma 1. Let

10) & +ra" e rpaatr,=0 (7€ K)
be the minimum equation of @ over XK. Then, the equation 47" (10) & is
10y @0 +rb T o+ - +7,=0 .

We are interested in the difference (10)’—(10). As an assistance, we define a map
d,: D—D by d,(x)=awa'—x. This map has the following properties.
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(11) o =5 <”Z>(da)"<x) VeeD, Vm=0.
vo(du(x))=vp(x)+t  VxeD.
vp(da(b))=1 .
From these properties, in case 1=m=p—1, we have
12 amba " =b+md(b)+- - - =b+R vp(R)=t  for some ReD,
and so,
13) ba"b=a"+R  vp(R)y=muvp(a)+t  for some ReD.
Similarly, we have
(14) a"ba""=b+pd (B)+ R+ (d)"(b)  for some R e pdb)-mp .
Suppose that ¢>exp/(p—1) contrary to Prop. 1. Then,
vp(pd.(B))=exp-+t<pt=vp((d.)"(D)) .
So, by (14),
a’ba ?=b+R vo(R)=exp+i for some ReD.
This leads to
(15) b'@Pb=a"+R  vp(R)=exp+t+punla)  for some ReD.
By (13) and (15), the difference (10) —(10) can be written as
(16) Roy+#Ri+ -« +vp iRy =0 (r;e K, R;e D)
where
vp(Ro)=exp+t+pvpl@),  vplR)=(p—ivpl@)+t for 1<i=p—1.

Since the class modulo p of vp(R;) (0=i<p—1) are different from each other and
v(K*ycpZ, this equality (16) leads to a contradiction. Q.ED.

ProOF OF ProP. 2. In what follows, = denotes a fixed prime element of K.
The proof consists of three steps.

Step 1. Suppose that x € D, n=1 and vplx)=xn. Then we can prove that x
satisfies either of the following three conditions.

(i) zekK.

(ii) l1+z=(1+9)(1+2) for some y ¢ K and z€ D such that vx(y)=n/p, vp(z)=n,
Plun(2), and the residue class in C of zz~"2*'/? does not belong to F.

i) 1+x=1+9)(1+2) for some y e K and z€ D such that vx(y)=n/p, volz)=n
and vp(z) is prime to p.
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The proof is easy, and so we omit it. » ‘
Step 2. By step 1, for the proof of Prop. 2 (i) and (ii), it suffices to prove

“If zeD and ovplx)=n=1,
Nrd (1+#)=1+Nrd 5)+R, oxR)=t+n—1Dp"  for some ReK”,

in the following three cases:
(i) zekK,
(ii) pl» and the residue class of zz~"'® does not belong to F,
(iii} # is prime to p.

We prove the following more precise two formulae in each case.

an Nrd (1+#)=1+Trd (2)+Nrd #)+R , vg(RY> t+(n—0p~",
for some RekK.
vx(Trd (@) =t+@n—0p™" .

Here Trd denotes the reduced trace map.

Case (i). In this case, these formulae are easily proved because Nrd (1+4%)=
(1+2)?, Trd (x)=px and Nrd (z)=2".

Case (ii). Let #e€Op such that z=u=x™?. Let
(18) Wy’ e +r,=0 (e K)

be the minimum equation of # over K.
It suffices to show that

(19) For all 1isp—1, ox(r)zt—tp".

‘We deduce this from the fact # is an element of Op such that #¢ F. As an
assistance, let ¢ be an element of D* such that vp(e) is prime to p. Let d,: D—D
be as before. We can prove (cf. (14))

(20) wfau " =a+pd (a)+R+(d)a), for some Repdla)-mp.

Since vp(pdu(@))=exp+vp(@)-+izvp(@)+pt by t<exp/(p—1) (Prop. 1), and since
vo{(d) (@) =vp(a)+pt, (20) induces

wau*=a+R , vo(R)zvpla)+pt for some ReD,
and so,
a'uPa=u’+R  vp(R)=pt  for some ReD.

By using this, we can write the difference ¢™*(18)a—(18) as follows:
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1) R—3 (irid"'d(@u""+R)=0, R,RieD,
=1
vp(RY=pt, Riewa'dJa)-mp  for each i.

Let wvx(r.) be the minimﬁm of vg(r;) (1<i<p—1), and denote 7.4 'd,(a@) by z.
Suppose vx(r)<t—1p~* contrary to. (19). Then, vp(z)<pi=<vp(R). By sending the
equation 27" (21) into the residue algebra, we see that # satisfy a nontrivial equa-
tion of degree<p—1 over F. This contradicts the fact that [C: F]=p. Q.E.D.

Case (iii). Let
(22) Pt e 2y,=0 (e K)

be the minimum equation of 2 over K.
It suffices to show that:

‘ For all 1<i=p—1, owxlp)=inp +it—tp™".
The proof of this fact is similar to those of Case (ii)‘ and Prop. 1, so we omit it.

Step 3. It remains to prove Prop. 2(ii). Let ¢ and & be as in Lemma 1.
Let s=aba'b"*—1. Then, vy(s)=¢ by Lemma 1. By (17),

1=Nrd (gba"*b"")=Nrd (1+s5)=1+Trd (s)+Nrd (s)+R ,
ve(R)>1, for some ReK.

It follows vx(s")=¢, where s'=Trd(s). By (17), we have:

If zeK* and wvx(2)=1,
Nrd Q+2s)=1+2s'+R, ox(R)>vx(zs’), for some ReK.

This proves the inclusion U™ cNrd (U5*"). Q.E.D.

Proor oF ProP. 3. The assertion (i) is clear. The assertion (ii) follows from
the formula (17). Since the proof of (iv) is similar to that of (iii), we omit the
former. Now, we prove (iii). The first row in (iii) is exact because it is isomor-
phic to the exact sequence

0—F*>F*—Qp—2y—Br (F),—0

which is deduced from the following well known exact sequence in Cr (§0.1)
0= FF F 2 e 025, —0

(cf. Cartier [3]) by taking the Galois cohomology.

The homomorphisms (1) and (2) are well defined because the differential mod-
ules admit the following interpretation: by Graham [5], there is an isomorphism:
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k' QFDJ=0  aQy—wdyly

for any field %2, where %" denotes the additive group of % and J denotes the sub-
group of the tensor product generated by all elements of the form

@+ YR @ +y)— (2R5) —(YRy)

such that z, ¥ and xz+yec%*. Once the maps (1) and (2) are known to be well
defined, it is clear that they are isomorphisms. For the proof of the commutativity
of the diagram in (iii), it suffices to show the part

0, —
¢ uns F
1 {2}

(4 (£+1) (¢) (t+17
UD /UD W K /UK

is commutative. Since [C: C?]=p, 2, is additively generated by elements of the
forms dx and ydz/z such that ze€C, ye F, ze C*. So, it suffices to show that if
an element of £¢ has either of these forms, its two images under (2)-(1—7)-% and
Nrd-(1) coincide. For an element df (fe Op), this is equivalent to

1+f?.Nrd (f'afa ' —1)=Nrd 1 +afa”*—f) mod Ug™ ,
which follows from the formula (17). For an element fdg/g (fe Ok, g € Up), this
is equivalent to
23) 1+f7-Nrd (¢ 'aga™ ~1)—f-Nrd (¢ "aga™"—1)
=Nrd (1+f(g 'aga *—1))  mod UZ™ .
By using the formula (17), (23) is found to be equivalent to
(24) —Nrd (¢ laga ' —1)=Trd (¢ laga™—1) modmi".
Put k=g 'aga'—1. By the formula (17),
1=Nrd (¢"'aga™)=Nrd 1 +#)=1+Trd (i) +Nrd ()  mod UL,

which proves (24). Thus, we have proved Prop. 3 (iii).

Finally, Prop. 3 (v) follows immediately from Prop. 2 and from (i)-(iv) of
Prop. 3.

The proofs of Prop. 1, 2, 3 are now complete.

ReMARK 1. Let K be as at the beginning of this section. Let L be a cyclic
extension of K of degree p such that the residue field C of L is an inseparable
extension of F of degree p. Then, we can deduce some properties of the norm
map Npx: L*—»K * ((i)-(iv) below) from the arguments in this §1.
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Let = be a prime element of K and let o be a generator of Gal(L/K). Then,
the division algebra D over K defined by

p=t
D='C—_B0 L-s°, sa=o(@)-s forall ael, s’==n

satisfies the assumptions at the beginning of this section and its ramification
number is given by t=p-vi(o(h)h *—1) where & is any element of Oy such that
the residue class of # in C does not belong to F. Since L is a maximal commu-
tative subalgebra of D,

Nrdp/x ()=Np/x(x) for all zel™.
By using this, we can easily prove the following (i)-(@ii.

(1) If 0sn=tp™, NygUP' cUZP (t is as above).

(i) If mz0, NyxU ™ c U™,

(i) Nyg: UL SUE™Y is surjective.

(() and (ii) are deduced immediately from Prop. 2 and from the embedding
LcD, and (iil) is proved by slightly changing Step 3 of Proof of Prop. 2.) We
shall use (I)-(iii) in §3 and §5. We shall also use there

(iv) results which follow immediately from Prop. 3 and the embedding LCD,
which we do not write down here concretely, for they are simple modifications
of the assertions in Prop. 3.

§2. Computation of K,(K)/K,(K)".

The aim of this section is to have an exact knowledge of K, (K)/KyK)" for
fields K which are interesting to us.

NOTATION. Let K be a discrete valuation field. We denote by V&' (or simply
by V'™) the subgroup of K,(K) generated by all elements of the form {x, y} such
that ze Ug’ and ye K*. There are inclusions

K(K)=V" oV ov®s... .

In this section, we prove the following two Propositions. In Prop. 1, we
compute the subquotients (V&' - Ky(K)?)/(VE™ - Ku(K)?) of Ky(K)/Kx(K)*.

PROPOSITION 1. Suppose that K is a field which is complete with respect to a
discrete valuation, F is the vesidue field of K, ch (F)=p>0 and [F: F¥]=p. Let
1nz0. Then, (V& KAKP(VETY - Ky(K)P) is isomorphic to the following group,
via the isomorphism p, defined below.

(1) F*/F*Y in case n=0.
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(ii) F/F® in case O<n<exp/(p—1) and pln.

(iii) Rr in case O<n<exp/(p—1) and n is prime to p.

iv) L2r/lw—ar(w)| we Qr}®F/{2x"—ax|x e F} in case n=exp/(p—1).

(v) 0 in case n>exp/(p—1).

Here, 1 denotes the Cartier operator Q2p—2p (see the review after §1 Prop. 3)
and a in (iv) denotes an element of F defined below. If ch(K)=0 and K contains
a primitive p-th root of 1, we can take 1 as a.

DEFINITION of the above isomorphism. The above isomorphism is not canoni-
cal. Let # be as in the above (i) (resp. (ii), resp. (iii), resp. (iv)). We define a
homomorphism p, from the group in the above (i) (resp. (i), resp. (iii), resp.
(iv)) to the group (V' - Ky(K)))/(VE* - Ky(K)?) as follows. This p, is in fact an
isomorphism as is proved later.

(i) Case #=0. Fix a prime element = of K. We define p, (which depends
on the choice of #) to be the homomorphism induced by the homomorphism Ug—
V' a7l

(ii) Case “O<n<egp/(p—1) and p|»n”. Fix a prime element = of K and an
element b of K such that vx(d)=n/p. We define p, (which depends on the choices
of = and b) to be the homomorphism induced by the homomorphism Ox— V™ V"t
x—{1+2b?, z}.

Case ch (K)=0 Case ch (K)=p
Ty [y
1 +
; .QF 1 -QF
: . (p—1)-times
(p—1)-times
-+ . -+ .
r Qr
FIF? FIF»
4 9 o
4 - t -
(p—1)-times : (p—1)-times
4+ { :
2r 2F
+ 4
F(F? FjF?
(The tail exists) (continue forever)
VIf ex/(p—1) is an”

integer, the group :
in (iv) appears at the:
tail.) .

Fig. 1.
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(i) Case “O<#un<egp/(p—1) and = is prime to p”’. Fix an element ¢ of K
such that vx(c)=#. We define p, (which depends on the choice of ¢) to be the
unique homomorphism 2— V'™ /V'™™* such that

Z dyjy—-1+wxc, y} for all ze€Og and all yeUg.

(iv) Case n=exp/(p—1). Fix an element b of K such that vx(d)=ex/(p—1.
Fix a prime element 7 of K. We define p, (which depends on the choices of b
and ) to be the homomorphism induced by the following two homomorphisms:

.QF}_')V(n)/V(n+1)
z dy/g—{1+xd", y} ,
OKHV('H,)/V(’IL"]'I)
F—{1+xb", =} .

We define ae F to be the residue class of —pb'™.

Roughly speaking, the structure of Ky(K)/Ky(K)® is as Figure 1.

The following Prop. 2 asserts that, roughly speaking, an element of
Ky(K)/K«(K)® is approximated by (or is equal to, if ch (K)=0) some element of
the form { , } mod K,(KX)® in most cases. Note that an element of K,(X) has
the form {, ¥, }---{, } and need not have the form {, }, generally.

PrROPOSITION 2. Let K and F be as in Prop. 1. Let n=0, Let © be an ele-
ment of KoK) such that we V" KyK) and x¢ V""" K K)". Then, we have
0= n=<exp/(p—1) and the following.

(i) If n=0, there exist a prime element = of K and an element f of Ug
such that:

feF?,
2={f, 7} mod VW .KuK)* for all i=0.

(ii) Suppose 0<n<exp/(p—1) and p\n. Let be K such that vg(b)=n/p. Then,
there exist a prime element © of K and an element f of Ox such that:

feF?,
s={1+/0" 7} mod V'V K (K)Y  for all i=0.

Git) If O<n<exp/(p—1) and n is prime to p, there exist an element ¢ of K

and an element g of Ux such that:

vg(c)=n,
ger”,
g={1+¢, g} mod V. K K)Y forall i=0.
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In case ch(K)=0, since V'*' c K,(K)® for sufficiently large i in this case, the above
assertions are true even if one puts Ky (K)* instead of V' Ky(K)*.

The proofs of the propositions proceed as follows. First, we prove Prop. 1

except the part of the injectivity of p, in Prop. 1 (ii)~(iv). Next, we prove Prop.
2. Lastly, we prove the injectivity of p, in Prop. 1 (iD)-(iv).

PROOF OF PROP. 1 except the part mentioned above.

Case (i). Generally, let S be a discrete valuation field with residue field E.
Let = be a fixed prime element of S. We are going to define a decomposition

VS|V = K(E)DE* .
Define homomorphisms ¢, #, s and ¢ as follows.
q: KB~V IV s (& f)-le,y) modVE  for o, yeUs.
7: Vs |VS'—EyE);  {ax™, yn"} mod V§'—(z, 7}
for #,yecUs and m,neZ.
CE*SVSVE Zelw, ) mod VY for meUs.
t: V'V -E*;  the tame symbol.

[

By Matsumoto’s theorem, these homomorphisms are well defined. We can easily
show that »g=id, fs=id, {g=0, rs=0 and gr+st=id where each id denotes the
identity map. Thus, we have the desired decomposition. Prop. 1(i) follows from
the decomposition and the following Lemma.

LEMMA 1. Suppose k is a field such that ch (By=p>0 and [k: F"|=p. Then,
Ky(k) is p-divisible.

Proor. Letw,yek™. Let E=F'?. Then, {x, y}i={x, Ng/y""h=Nzulz, y"'") 5=
(NE/k{fDl/p, yllp}E)p.

Before we proceed to Prop. 1(ii)-(v), we prove two Lemmas.

LeMmA 2. (This Lemma is very useful throughout this paper.) Let S be a
discrete valuation field.

(i) IfueUs andveUS, {u,v)e V&', In particular, if ue US' and ve US,
{u, v} e V&,

(i) Suppose i=1, j=1, xems, yeml and x+0. Then,

{14z, 1+yl={1+2y, _x}_l mod V'Y

Proor. Let %, ¥, and j be as in the hypothesis of (ii) above. Let N be the
subgroup of K(S) generated by all elements of K,(S) of the form {e, b} such that
acUs'? and be UY’. Then,
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{1+, 1+yi={1+2+2y,1+y} mod N
={1+z+xy, —(1+9)/(@+2y)}
={1+z+zy, —2}
={(l+z+2y)/A+), —z}
={l+4zy, —2}" mod V' |

This proves (i). Since (i) is true, Nc V¥,  Hence, the above calculation
shows (ii).

LEMMA 3. Let S be a discrete valuation field with residue field E. Let n=1,
ce S and vs(cy=n. Then, there exists a homomorphism 0: Qe—Vs' |V which is
characterized by the property:

0z dj/g)={1+xc,y} mod V™  for all ©eOs and all yeUs.

PROOF. By Lemma 2 and by the isomorphism (E*®QE")/J=0Qr which was
mentioned in the proof of §1 Prop. 3, this Lemma is reduced to the following fact:
If #,9,2+yeUs,

{1+@+ye, e+yi={1+we, x}{l+ye, ¥y} mod piwen
But this can be written as
{1+-@+ye, —1/c={1+xzc, —1/cHl+yc, —1/c} mod Vi

which is obvious.
We return to the proof of Prop. 1.

Case (ii). In this case, p, is well defined because
14576 € (1 +1B)7- Ugt™
for all fe Ox. The surjectivity of p, is shown as follows. It suffices to show that
{1+/0°, g} e V™ VK (K)  for all feOyx and ge Ux.

Since [F: F*]=p, Qr is additively generated by elements of the forms z”-dy/y
and dz such that x,z¢ F and ye F*. Hence, by Lemma 3, it suffices to show
that {14767, g} and {1—gb?, g} belong to V'™V K,(K)” for all fe Ox and all g ¢ Uy.
This follows from the facts

14+ e A+)?Uy™ and  {1—gb®, gi={1—gb" b7} .

Case (iii). Lemma 3 shows that p, is well defined. The surjectivity of p, is
shown as follows. Let = be a prime element of K. It suffices to show that the
subgroup {UZ', 7} of V' is included in the subgroup of V'* which is generated
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by V" and all elements of the form {u,v} e U, ve Ux. Take #' e Z such
that z#'=1 mod p. For any fe Ux, we have,
{1+fz", By ={(1+n'fz"", s} ={1+nfx", 2 ={14+2fz", —n'f}" mod V"' |
Case (iv). Assume n=exp/(p—1). Let ¢ be the homomorphism
Qp—s V(n)KZ(K)p/V(’IH-I)KZ(K)p
Fag/g—{1+/57, g} mod V"V KL(K) .

Then, ¢ annihilates the group {w—ar(w)|we 2r}. To see this, fix some ge Uk
such that g¢ F?. Let s;e Ok for each 7 such that 0<i<p—1. Then,

e S e
(1~ap)((3, 51D ) « (53— a50) dg/g+d(F)
But on the one hand,
| (55 —a%0) dglg) ={1+(ss—aso)b”, g}
E{1+80b7 g}p
=1 mod V"V K (K) .
where & is any representative of . On the other hand, for all fe Uy,

o(—df )y=p(—F dfIf )=(1—1V°, f}
={1—15", 0" =1 mod V""" K,(K)* .

Next, let ¢ be the homomorphism

Fs V(n)KZ(K)p/V(n—{-I)KZ(K)p
Fo{14+/07, 7} mod V"™ Ky(K)* .

Then, as is easily shown, ¢ annihilates the subgroup {#"—ax |z e F}. These show
that p, is well defined. The surjectivity of p, is obvious. Suppose X contains a
primitive p-th root { of 1. Then, —p({—1)"""e Ux and the residue class of
—p(L—1)'"? is equal to 1. Thus, a=1 if one defines o, using {—1 as b.

Case (v). Assume n>exp/(p—1). Then, Ug'cK**. Hence V'™ c Ky(K)".
PrROOF OF PROP. 2. Prop. 2 is an easy consequence of the following Lemma.

LEMMA 4. Let K be as in the hypothesis of Prop. 2. Let ae KyK). Then,
we have the following assertions (i) (ii) (iii).
(i) Hypothesis: a={f,z} mod V'"' K(K),
feUx, feF?,
7 iS a prime element of K,

i>0.
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Conclusion: There exist f' and =’ such that
a={f', 2"} mod V""" K (K,
flife U and 2'jze U,
(ii) Hypothesis: a={1-+fB°, z} mod V'¥ Ku(K)",
feOxk, fe F?, ve(®)=n/p, p|n,
7 iS a prime element of K,
i>n, 0O<n<exp/(p—1).
Conclusion: There exist f and =’ such that
a={1+£'8", =’} mod V""" K,(K)?,
: vr(f —)=i—n and ©'jn e UE™.
(i) Hypothesis: a={l+c, g} mod V'" K (K)?,
g€ Uz, GeF?, vx(c)=n, n is prime to p,
i>n, 0<n<egp/(p—1).
Conclusion: There exist ¢’ and g’ such that
a={1+¢, ¢’} mod V"V Ky K)?
vr(c'— ) =i and g'lge UE™.

ProoF oF LeEmMMA 4. Since (i), (i) and (iii) of Lemma 4 are similarly proved,
we present here only the proof of Lemma 4 (ii). If O<i<exp/(p—1) and pli, this
follows from the surjectivity of p; in Prop. 1(ii). Next, suppose 0<i<exp/(p—1)
and ¢ is prime to p. Let ¢ be an element of K such that vx(c)=i—xn. Lemma
2 (ii) shows, for all se Ok,

(14707, 1+sct={1+sfb"c, —fb*} "
={1+s/8%, —f}" mod V¥ Ky(K)P .

This calculation and the surjectivity of p; in Prop. 1 (iii) show that each element
of V"W Ky(K)?/V*™ Ky(K)? has the form {1407, 1+sc} mod V' K,(K)? for some
s€Og. This proves Lemma 4 (ii) in the present case. Lastly, we omit the proof
in the case i=egp/(p—1) since it is similar to those in the previous cases.

Thus, we have proved Lemma 4 and hence Prop. 2.

Proor of the injectivity of p, in Prop. 1(ii), (iii) or (iv). The proof is
divided into three cases.

Case 1. Suppose ch (K)=p.
In this case, we may suppose K=F(T)). Let

s K2<K>/K2<K>b§ Qx;  sl@, ¥} mod Ky(K)")=dajedyly

2
be the well known homomorphism. Here, A 2k denotes the second exterior power
K



326 Kazuya KAToO

2
of 2% over K. Since [K: K*|=p°, A 2k is a one dimensional linear space over
K
2
the complete valuation field K. Hence A 2x has a natural topology which is
K
2
characterized by the following property: For each non-zero element w of A O,
X

2 2
the map K— A Qx; x—xw is a homeomorphism. Each element of A £2x can be
K K

uniquely written as

% winT* dT/T

with respect to this natural topology, where w;c 2p for all i and w;=0 if 7 is

sufficiently near —oo. For each #=0, let V, be the subgroup of /2\ Qx:
K
Vnz{_}j wi AT dT)T [wie.QF} .

Then, s(V"™ Ky(K)*/K(K)")C V.
Let #, b, =, p, be as in Prop. 1(ii). Let £, be the composite

FIF*5V"™ Ky(K) V™ Ky(KY 225V Vi
Then, we have,
to(x mod F)=da AO* dT/T mod Vs,

which proves the injectivity of o, in Prop. 1 (ii).
Let #, ¢, p, be as in Prop. 1(iii). Let ¢, € F be the residue class of ¢/7T".

Let ¢, be the composite
QeBV ™ KKV KK 25V Vi -
Then, we have,
tw)y=—ncowANT"dT/T modV,.,,
which proves the injectivity of p, in Prop. 1 (iii).

Case 2. Suppose ch(K)=0 and K contains a primitive p-th root {of 1. We
use the homomorphism

hy: Ky(K)JKy(K)—Br (K), .
Recall that %, is the composite
3
E(K)/ KK SH (K, 1,Qp)=H (K, 11,)=Br (K),

where h, denotes the Galois symbol.
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First we show p, ,/,-1) is injective. There are many Pegn/ip-11 AS 1S seen
from the definition, but it suffices to prove the injectivity of some one Pegnlip=11+
Let Br (K,,/K) be the kernel of the natural homomorphism Br (K)—Br (K,,) where
K,, denotes the maximum unramified extension of K. Then, we have the fol-
lowing Lemma.

LEMMA 5. Zp (Vs "™ Ky (K)/K(K)?") CBr (Kuy/K),.
ProoF. This follows from Ug&® "™ c(Kx). (QE.D.)
By Serre [19] Ch. XII,

@ Br (K.:/K),=Br (F),D(Xp), -

But Br (F),=Qr/(1-7)2r as in §1 Prop. 3 and (Xp),=F/la"—x|x e F} by Artin-
Schreier theory. Thus,

2) Br (Koo/K)y=02p/(1—1)R2r DF (" —x|xec F}.

The isomorphism (1) is defined depending on the choice of a prime element of K
as in Serre [19] Ch. XII. Define p, /(-1 using the prime element = which was
used to define the isomorphism (1) and using {—1 as b. Then the composite

2r/Q—p2rDF[{a’—a|ze F}
Peyrn/(p~1) V(er/(p—l’)Kz(K)p/Kz(K)p;é’Br (Km/K)p

(2

—>2e/(1-1)2r®F/{a"—x|x € F}

is found to be the identity map. Thus, p. ,/i,-1 is injective.
Next, we show that g, is injective in the case O<n<exp/(p—1). We use the
following Lemma 6.

LeMMA 6. Let K and F be as in the hypothesis of Prop. 1. Suppose ch (K)=0
and K contains a primitive p-th root of C of 1. Let

Ry Ky(K)/Ky(K)*—Br (K),

be as before. Then, we have the following (i), (i) and (iii).
(i) Suppose feUx, f& F® and n is a prime element of K. Then,

h’zli({.f: 7[} mOd KZ(K)p) ¢ BI' (Knr/K)p .

The division algebra which corresponds to hy({f, =} mod Ky(K)?) satisfies the as-
sumptions at the beginning of §1 and its ramification number is exp/(p—1).

(ii) Suppose O<n<exp/(p—1), pln, feOk, f¢ F?, be K, vib)=n/p and = is
a prime element of K. Then,
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({14787, 7} mod Ky(K)") & Br (Kol K), .

The division algebra which corresponds to hy({1+fb%, z} mod K (K)?) satisfies the
assumptions at the biginning of §1 and its ramification number is (exp{(p—1))—n.
T(iil) Suppose O<n<exp/(p—1), n is prime to p, geUg, geF?, ceK and
vr(Q)=n. Then,

Riyf{l+c, g} mod Ky(K)") € Br (K../K), .

The division algebra which corresponds to hy({1+c, g} mod Ky(K)*) satisfies the
assumptions at the beginning of §1 and its ramification number is (exp/(p—1))—n.

Proor. The “¢Br(K../K)’ parts follow from §0.2 (6) by taking K., as k.
The ramification numbers can be computed using § 1 Lemma 1, for the explicit
forms of the division algebras in the above Lemma are given in §0.2.

Now, we return to the proof of the injectivity of p, in the case O<u<
exp/(p—1). Since the proof in the case “O<n<exp/(p—1) and p|#»’’ and that in
the case “O<m<exp/(p—1) and # is prime to p”’ go similarly, we present here
only the proof in the latter case. Let ge Uy, g¢F?, ceK and vg(c)=n. It
suffices to show

{14¢, gl ¢ V"VE (K.

Prop. 2 and Lemma 5 and Lemma 6 show that for any element @ of V™" K, (K)®,
hy(a) satisfies either of the following two conditions.

(1) hy(@) € Br (Kur/K),.

(i) The division algebra which corresponds to k(a) satisfies the assumptions
at the beginning of §1 and its ramification number ¢ satisfies

t<(exp/(p—1)—mn .
Hence, by Lemma 6 (iii), {1+c, g} ¢ V™™ Ky(K)".

Case 3. Suppose ch(K)=0. (Here, K need not contain a primitive p-th root
of 1.) Let { be a primitive p-th root of 1 and let L=K({). Since the residue
field C of L is a finite Galois extension of F such that {C: F] is prime to p, the
canonical homomorphisms F*/F**—C*/C*?, F|F*—C/C?, 2r— 8¢, 2r/lw—ayr(w)|w e
Qpy—Qc/lw—ar(w)|we 2c, Flia"—ax|ze F}—>C/{a°—ax|xeC} are all injective.
Hence the injectivity of p, for K follows easily from the injectivity of p, for L.

§3. The Galois symbol is an isomorphism.

The purpose of this section is to prove the following Theorem 1.
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THEOREM 1. Let K be a field which is complete with respect to a discrete
valuation and with residue field F. Suppose that ch (K)=0, ch(F)=p>0, and
[F: FPl=p. Then for any natural number n, the Galois symbol

Ry Ko(K)Ko( K" = H* (K, pn@ 1)
is bijective.
Proor. By Bass [1] 9 (11) and (12), it suffices to prove the above Theorem

when #=1 and K contains a primitive p-th root of 1. So, in what follows, we
suppose that K contains a primitive p-th root { of 1. It suffices to show that

hy: Ky(K)/Ky(K)*—Br (K),
(cf. §0.2) is bijective.

§3.1. We prove the injectivity of %,.

As in §0.2, for any @, be K*, the condition 7,({a, b} mod K,(K)")=0 is equiva-
lent to the condition {«, b} € K,(K)?. The problem lies in the fact that an element
of Ky(K) has the form {, H, } -++{, } in general and need not have the form
{, }. But by §2 Prop. 2, any element of K(K)/K,(K)* which does not belong
to V'x? " K (KYK(K) has the form { , } mod Ky(K)*. Hence, it remains to
show that the homomorphism ‘

{e,,p/ip—1)) ? pby h;’
Vx Ky(K)?|Ko(K)—Br (K),
is injective. But this follows from the proof of the injectivity of Pegr/ -1 (§2).

§3.2 Now, we proceed to the proof the surjectivity of 4;,. This proof is
difficult because we have only little knowledge of Br (K). For any field £ such
that ch(k)#p and such that 2 contains a primitive p-th root of 1, let C(&) be
the cokernel of %, : Ky(k)/Ky(k)*—Br (k),. We are going to prove C(K)=0.

Let x, be a fixed element of Og such that %, ¢ F*. Let ay, s, s, - - - be fixed
elements of the algebraic closure of K such that z;=(z;,)? for all i=0, Let
K'"=K(z;) and let K'=U K'". Since K is a Henselian dicrete valuation
field of characteristic 0, Br (k(”))zBr (K'*™'") where K'*'* denotes the completion
of K*'. It follows that C(X"™")=C(K"'"). Since the residue field of K" is
perfect, we have much knowledge of Br(K“’") by Serre [19] Ch. XII, and it
follows that C(K''")=0. Hence C(K'~")=0. For the proof of C(K)=0, since
C(K'"y=lim C(K'"), it suffices to show that each C(K'")—C(K'**') is injective.
Now, we_n_e>ed the following Lemma. In what follows, if G is a group and A4 is
a G-module, we denote by A® the group {x € A|ox=2,VoecG.
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LeMMA 1. Let k be a field and E a cyclic extension of k of finite degree m
with Galois group G. Then the sequence

Res

Br (B)m—sBr (E)S-—25Br (B)m

is exact. Here, Res denotes the restriction map and Cor denotes the corestriction
map. (Cf. Serre [20] for the definition of these maps.)

Proor. This follows from the spectral sequence
H*G, H(E, k)=H"(k, k3) . (QED.)
We return to the proof of the injectivity of C(K'")—C(K'**"). Let L=K'"'.

It suffices to show that the homomorphism C(K)—C(L) is injective. Let G=
Gal(L/K). Consider the following commutative diagram.

pK

0— K(K)/Kx(K)? —>Br (K),— C(K)—0

« Res I

OA KAL) KAL) Br (L)~ C(L)°

Cor

Br (K),

@

Here, « and 8 are the canonical homomorphisms. The rows are exact by the
injectivity of k,. The middle column is exact by Lemma 1. Furthermore, the
induced homomorphism from Ker («) to Ker (Res) is bijective. This follows from
the following well known fact: “‘Suppose % is a field and # is an integer which
is invertible in k2. Suppose % contains a primitive »-th root of 1. Then, an ele-
ment w of Br (k), belongs to the image of

k* X k*——>BI' (k)n 5 (, y)Hh;&<{x’ y})

if and only if there exists a cyclic extension E of & such that the canonical homo-
morphism Br ()—Br (E) annihilates w and such that [E: k] divides #.”” Hence,
by applying the snake lemma to the diagram (1), we find that the injectivity of
8 is equivalent to the exactness of the following sequence

@ KB Ko KPS DKL) Be (K, .

Since the following diagram (3) is commutative as is proved in §3.5 later and
since hp,x is injective,

KLY E(LY 5B (L),

(3) Nri/g Cor

KB Ko KP22 5B (K,
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the exactness of (2) is equivalent to the exactness of the following sequence (4).

eNL/E

@ Ko(K) KoK =(Ko(L) KoL)~ Ko(K) KK .

Thus all things are reduced to a property of K.

§3.3. It remains to prove the sequence (4) is exact. Before we proceed to
the proof of this, we prove some Lemmas in §3.3. Let K and L be as before.
We denote ex (=ey) by e. We fix a generator ¢ of G (=Gal(L/K)) and a prime
element = of K. Note that = is also a prime element of L. We denote V"' - Kx(K)”
by 7% and we denote Vi"-KyL)® by 7.".

In the following, we apply Remark 1 at the end of §1. In the present case,
the division algebra D in that Remark satisfies ¢=ep/(p—1).

LEMMA 2. We have Nyx? " cZ%" for all n=0. Furthermore, we have,
(i) Npx: 2017530 -2 7% is an isomorphism.
(ii) If O<n<ep/(p—1), the following sequence is exact.

0 U™ UL ST T 2, {x,7} /(m/WISMUNL/K P i
(ili) The following sequence is exact.
U(ep/(p—l))(L*)p/(L*)p 7} o (ep/(p 11)/K (L)p L/Ky(ep/(p 1))/K (K)p

PrOOF. These are deduced from; the formula Ny/x{a, b}.={a, Ni/xb} (ac K*,
bel™, §1 Remark 1(i) and (ii), the knowledge of K,/(K;)* written in § 2 Prop. 1.
The details are left to the reader.

LEMMA 3. For each n=1, let S, be the cokernel of the canonical homomorphism
UL U -UR UM . Then, for each n=1,

(0' 1)(U(n))CU(Ln+e’)

and the induced homomorphism S,—Su+er 1S an isomorphism. Here, o—1 denotes
the homomorphism w—o(x)/x and e’ =e/(p—1).

Proor. Consider the following commutative diagram.
U}gb)/ {n+1) — U(n)/UMH-I)
(n)/ {n+1} — (n)/U(n-rl) N S —>O
n

0 U(n+e')/U(n+e'+1) - U(n+e')/U(n+el +1) __’Sn+e’_)0
Nik
T'n.-re')/U(*rHe'—l) = U(n-Le’pl/U(n+9’p1—1)
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The middle column is exact by § 1 Remark 1(iv) and the rows are exact. Hence
the homomorphism S,—S,..- is an isomorphism.

LEMMA 4. If ue UL and o(w)jue (L"), we have ue K*-(L*)".

PrOOF. Generally, let £ be a field and let E be a finite cyclic extension of %.
Let m=[E: k]. Suppose that m is invertible in 2 and that % contains a primitive
m-throot of 1. Let G=Gal (EJk), o a generator of G, and f: (E*[(E")" )t the
homomorphlsm which is defined by:

If »,yc E* and o(@)/x=y™, fzmod E*”):Ng/ky.

Then, the following sequence is known to be exaéf.

E* [ (B (B ot
Now, the proof of Lemma 4 goes as follows. Let ¢ Uy, o)/u=v" and veL*.
Then, o(w)jue UL”'*™" and so, ve Uy*™. Since NyxUy'™™' cU*™ by
§1 Remark 1 (i), NL/Kve Ug?''"  Since Ni/zv is a p-th root of 1 and no primi-
tive p-th root of 1 belongs to Ux®'*™", it follows Nyxv=1. Hence, Lemma 4
follows from the above exact sequence. ‘ :

§3.4. Now, we prove that the sequence (4) is exact. Let I be the image of
Ky(K)—K,(L). Suppose that the sequence (4) is not exact. Then, there is an
element ¢ of K,(L) such that a ¢ K,(L)"-1, o(a)/a € Ky(L)* and NL/gaeKz(K)”. Let
n be an integer such that ae 23" -I, a¢ """ -I and 0=<n=ep/(p—1). Such n
exists because a € Ky(L)=77"-Iand a ¢ Ky(L)*-I> 77" -Iif i>ep/(p—1). Let a=bc,
be 73" and cel. Then, b satisfies be 77, be 7.1, a(B)/be K(L)® and
Nypxbe Ky (K)*. Now, we show that these properties of & lead to a contradic-
tion. By Lemma 2 (i), we have ##0. Furthermore, by Lemma 2 (ii) and (iii),
the class of & in Z3"/7:"™" belongs to the image of the homomorphism {x, z}:

MUY S 1(,"'”- In what follows, we consider three cases and we show
that each case leads to a contradiction.

(i) Suppose 1=n<e. Let S, be as in Lemma 3. By Lemma 2 (ii), we can
regard S, as a subgroup of 7" /%" and S,..- as a subgroup of ¥/,
In the commutative diagram

S c %,—I(l1u/7-l'\ln+1)
lo—1 Jo—1
Suewr CYTTTLTH (€ =el(p-1),
the left ¢—1 is injective by Lemma 3. Hence be ;™" and this is a contradiction.
(ii) Suppose n—e. Let u# be an element of Uy such that b={u,=

mod 37", In the following commutative diagram
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. {
U(e)/U(e-H) . T} 7‘(3)/%24:—}-1)

1

‘“”(L%”/(L*)P‘* S Pl’/K2<L>” @=e/(p—1)),
the lower [, 7':} is injective by §2 Prop. 1." Hence o(u)/u e (L*)*. By Lemma 4,
uwe K*(L*)". Hence be 73"V -1 and this is a contradiction. '
(iii) Suppose #>e. Let u be an element of U;" such that b={u, z} mod Z;"**.
Then, o()/u e U (L*)? where ¢'=¢/(p—1). By Lemma 4, u € K*-(L*)*. Hence
be ;"™ .T and this is a contradiction. Thus, the proof of the exactness of (4)
is complete if we prove the following Lemma 5.

§3.5. The following Lemma is used many times in this Chapter I.

LEMMA 5. Let k be a field and let E be a finite separable extension of k. Let
n be an integer which is invertible in k. Then the following diagram is commuta-
tive.

Ey(E)| Ky E)"=5 2R HE, 1@ )

Ngx lCoresbnctxon

b A ALY - ST
where ..z and h., , are the Galois symbols.

PROOF. We use the technique in Bass and Tate [2] §5. Let ! be any prime
number. It suffices to show that for each a e K,(E),

COI' ° hn,E(a)—hn,k o NE/k(a)

is of finite order prime to L. If /#ch (%), let & be the algebraic closure of k. If
I=ch (), let k be the separable closure of k. Let L be the fixed field in % of a
Sylow [-subgroup of Aut (k/k). Then L has the following properties (i) and (ii).
(i) L is a filtered inductive limit of finite extensions of 2 of degrees prime
to 1.
(iiy Every finite extension of L is of degree a power of /. In the following,
we denote H*( , #,Qu,) by H{ ). Let

EQpL=L,XL;x++-XL,

where Ly, -+, L, are finite separable extensions of L. Then, since the followmg
two diagrams commute

i=1

H(E)—~® H(L) KBy~ KyL)

r T
> Coryp . N Nyp.s
Cor 21 Ly/L E/k i§1 L;i/L

HE) — HD Kb — EfD)
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and since, by (i), the kernel of H{k)—~H(L) is a torsion group without /-torsion,
we may suppose k=L.

Suppose k=L. By (ii), there exist finite extensions E,, ---,E, of % such
that k=E,c..--CcE,=E and [E;: E;_,]=! for each i. Hence we may suppose
[E: k]=I. Then, by Bass and Tate [2] §5, Ky(E) is generated by elements of the
form {&, y} such that x € £* and y € E*. But, for such # and y, it is easy to show

COI' o hn,E{.’XJ, y}:hn,k o NE/k{x, y} .

This proves Lemma 5.

§4. Bi-fields.

We define a new concept ““B;-field”’. This is an analogue of the famous
concept ““‘C;-field”’.

DEFINITION. Let i=0. We call a field &, a B;-field if and only if for each
finite extension £ of k2 and for each finite extension F of E, the norm Np/z:
K,(F)—K;(E) is surjective.

ExampLE. B, -field=algebraically closed field=C,-field.
We propose some conjectures.
CONJECTURE 1. A C;-field is a Bi-field.

CONJECTURE 2. A field which is complete with respect to a discrete valuation
is B; if its residue field is B;-,.

These conjectures are well known to be true in the case i=1. The C;-version
of Conjecture 2 was called ‘“Artin’s conjecture’’ and is known to be false for
=2,

In this section, we prove the following two propositions.
ProOPOSITION 1. A C,-field is a B.-field.

PROPOSITION 2. Let K be a field which is complete with respect to a discrete
valuation and with residue field F. Suppose that F is a By-field. Then,

(i) For each central simple algebra A over K, the reduced norm map Nrdax
A*SK* is surjective.

(ily K is a By-field.

Thus Conj. 1 and Conj. 2 are true also in the case i=2.

We shall not make use of Prop. 1 in the later part of this paper, but Prop.
2 (ii) will be used in the next section.
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Proors. For a while, we are concerned with general fields.

LeMMA 1. Let k be a field and let A be a central simple algebra over k. Let
r=1 and let ack®. Then the following conditions (1), (ii) and (iii) are equivalent.

(i) aeNrdu; A*.

(ii) aeNrdy,a/m MJAY* where MJA) denotes the ring of all matrices of
(7, v) type over A.

(ili)y There is a finite extension E of k such that ac Ny, E¥ and such that A
s decomposed by E.

We omit the proof of Lemma 1. If £ is a field and w e Br (2), we denote by
Nrd (w/E) the group Nrd,, A* where A is any central simple algebra over % having
its class w in Br (k). This notation makes sense by Lemma 1.

LEMMA 2. Let k be a field, y ¢ X, E the cyclic extension of k which corre-
sponds to y, and a,bek*. Let (x,b) be the element of Br (k) which is defined in
Serre [19] Ch. XIV. Then, the condition

a< Nrd (%, b)/k)
implies
{a, b} € NpnKu(E) .

ProoF. Suppose a e Nrd ((x, b)/k). By Lemma 1, there are a finite extension
F of £ and an element ¢ of F* such that a=Nzc and (x, b)7=0. (For we Br (&),
wyp denotes the image of w under the canonical homomorphism Br (k)—Br (F).)
The condition (y, b)»=0 is equivalent to the condition

b=Ngr/rd  for some de(EF)*,
by Serre [19] Ch. XIV. It follows,

{a, bh=Nr{c, br=Ngp o Ngr/ric, digr=Ngrndic, dizr
=N © Nprslc, dlar € NenKo(E) .

LeEMMA 3. Let k be a field having the following properties (1) and (ii). Then,
k is a By-field. '

(1) For each finite extension E of k and for each finite cyclic extension F of
E such that [F: E) is a prime number, Nr/g: K (F)—Ky(E) is surjective.

(i) If ch (B)=p>0, [k: E"]<p".

Proor. Suppose that & has the above properties. Let E be any finite exten-
sion of 2. It suffices to prove the surjectivity of Np/p: Kx(F)—Kx(E) in the fol-
lowing two cases.
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(a) F is a finite Galois extension of E.

(b)y F is a finite purely inseparable extension of E.

First, we consider the case (a). Let [ be any prime number. Let Z be the
fixed field in F of a Sylow-I-subgroup of Gal (F/E). Since F/L is a Galois exten-
sion such that Gal (F/L) is a l-group, Ng/: Ky(F)—K,(L) is found to be surjective
by (i) and by easy induction. Hence, for any z ¢ K,(E),

v x[L:E]:NL/E(x]L) ENL/E ° NF/LKz(F):NF/EK2(F) .

This shows that K(E)/Np/gK,(F) is annihilated by [L: E] which is prime to /.
Since [ is any prime number, this shows Ky(E)/Np/zK(F)=0.

Next, we assume ch (By=p>0 and consider the case (b). It suffices to prove
the surjectivity of Nuss: Ky(k''")—~Ky(k). Let x,y€k*. For the proof of {z, y} e
N KBy, we may assume [%: £°]=p° and ¢ ¢ (£*)". Let 2'=k(z"?). Then,

(@, Y}=Niils"'?, yy=Navwpia?, 4%} .

LEMMA 4. Let & be a field having the following properties (1) and (ii). Then,
k is a By-field.
(i) For each finite extension E of k and for each we Br (E),

Nrd (w/E)y=E* .
Gi) If ch (By=p>0, [k: EF1=p".

Proor. It suffices to show that % has the properties (i) and (ii) in Lemma 3.
Let E be a finite extension of % and let F be a finite cyclic extension of E. Let
7 be an element of Xz such that F corresponds to y. For any a,b¢E*, a€
Nrd ((x, b)/E) by (i). Hence {a, b} € Nz/zK,(F) by Lemma 2. This shows Ky(E)=
NF/EKZ(F )

ProoF oF Prop. 1. Since every finite extension of a C,-field is C; (Serre [20]
Ch. II §4), it is easy to show that a C,-field satisfies (i) and (i) in Lemma 4.
(For the proof of (i), take the division algebra D corresponding to w, then
Nrdyz D*=E* is easily seen.) Q.E.D.

PROOF OF PROP. 2. Prop. 2 (ii) is a consequence of Prop. 2 (i) and Lemma 4.
Indeed, what we have to show is that [K: K*]<p® in the case ch(K)=p>0.
Suppose ch (K)=p>0. Then K=F(T)). Since F is B, [F: F?l1<p and hence
[K: KP]<p% C

So, in what follows, we devote ourselves to the proof of Prop. 2(i). We need
three steps. Let K and F be as in the hypothesis of Prop. 2. Note that the
condition “F is B,”’ implies Br (#)=0 (cf. Serre [19] Ch. X §7).
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Step 1.. Suppose we Br(K,;/K). By Serre [19], Br(K,/K)=Br(F)®Xr.
Since Br (F)=0, Br (K../K)=Xr. By this isomorphism, an element .y of Xz cor-
responds to (%,n) where = is any prime element of K and where ¥ denotes the
“‘unramified element” of Xy corresponding to 3. (Cf. Lemma 2 or Remark 1
below, for the notation (¥, w).) Let w=(¥,r) where 7 and = are as above. Let
L be the finite cyclic extension of K which corresponds to %, and let C be the
residue field of L. Since L is unramified over K,

Ui' =Ny U .
By this and by F*=N»C*, we have
Ug=N;;xU,CNrd (w/K) .
Furthermore, by Remark 1 below, —= belongs tb Nrd (w/K).‘ Thué, we have
K*=Nrd (w/K) .

REMARK 1. If g€ Xx and ae K*, (¢, a) coincides with the class of the central
simple algebra A which is characterized by the following properties. Let L be
the cyclic extension of K corresponding to ¢, and let ¢ Gal (L/K)—Q/Z be the
induced homomorphism by ¢: Gal (K**/K)—Q/Z. Let n be the order of ¢ and let
¢ be the generator of Gal (I/K) such that ¢(s)=1/n. Then, L is a subfield of A4,
and there is an element a of A such that

-

Ky .
A= La*,
=0
a“=aq,

aga'=o(x) for all xel.
In particular, —a=Nrdx (—a) € Nrda/x (A%).

Step 2. 1f F is perfect, Br (K)=Br (X,./K) by Serre [19] Ch. XII. Hence, in
this case, all were proved in Step 1. In Step 2 and Step 3, we suppose that F' is
not perfect. Let p=ch (F). Since F is By, [F: F’]=p. In this Step 2, we prove
that K*=Nrd (w/K) if weBr(K), and if w¢ Br (K,./K). But this is clear if one
combines §1 Prop. 3(v), the fact Br(F)=0, and the following Lemma 5. The
proof of Lemma 5 will continue until the end of Step 2.

LEMMA 5. Let K be a field which is complete with respect to a discrete valu-
ation and with vesidue field F. Suppose ch (F)=p>0 and [F: Ff]=p. Suppose
weBr(K), and we¢Br (K../K). Then, the division algebra which corresponds to
w satisfies the assumptions at the beginning of §1.
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Proor. First, suppose ch (K)=p. Generally, let 2 be a field of characteristic
p>0. Let 2; 4-0 be the kernel of the exterior derivation

d: Qo n 2.
k
Then the sequence in C, (§0.1)

x s—zP | 4 zodz/e 1-y
(Y Sl S Jial L ML N N

is known to be exact. Here, y denotes the Cartier operator. (Cf. [3]) Hence,
by taking the Galois cohomology, we have a canonical isomorphism

O : .Qk/(l—r).Qk,d:o;’Br (k)p .

Now, we return to the proof of Lemma 5 in the case ch (K)=p. Since K=F(T)),
we can obtain an exact knowledge of 2x/(1—7)2x 4-. In what follows, for an
element 1 of Qx, we denote the class of 2 in Qx/(1—7)2x,4=0 by [2]. For each
n=0, let M, be the subgroup of Qx/(1—7)Qx 4-0 generated by all elements of the
form [fdg/g] such that fe K, ge K* and vx(f)=—n. Then, MycM,cM,c---,
and U M,=92x/1—7)2k.a=0. Put M_,=0. By the above isomorphism 6y,
Br (K;;/K )» corresponds to the kernel of the homomorphism

Qx/(1— T)QK,d=o—‘>~QKm/(1'“T)-me,d:o

which is found to be M, by an easy calculation. As concerns M, n=1, we have
the following (i) and (ii).

(i) Suppose n=1 and p|z. Fix an element b of K such that vx(b)=#/p, and
fix a prime element = of K. Then,

FIF?=M,/M,_, by
folfo?drjz] mod M.,  (feOy).

(i) Suppose #=1 and #» is prime to p. Fix an element ¢ of K such that
vr(c)=n. Then,

Qr=M,/M,; by
fdjlg—1fc dglg] mod M., (feOx,geUy).

Using these (i) and (ii), we can prove the following (iii) and (iv) just as in the
proof of §2 Lemma 4.
(iii) Hypothesis: we 2x/(1—7)2k, a0,
w=[fb"" dr/z] mod M;,
feOxg, f2F?, be K*, pox(b)>i=0,
7 is a prime element of K.
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Conclusion: There exist /' and z’ such that
w=[f'b"dr'/z'] mod M;_,
v f' — Nz poe®)—i, ='/re UF'x'"P ",

(ivy Hypothesis: we 2x/(1—7)82x,a-0,

w=[cdg/g] mod M;,
geUx, e F? ceK*, —vg(c)>i=0,
vx(c) is prime to p.

Conclusion: There exist ¢’ and ¢’ such that
w={c" dg’'lg’] mod M;._,
vk =)= —i, g'lge Ug &',

By (i) and (iii), or by (ii) and (iv), we have the following consequence.
Suppose w € x/(1—7)2k,4-0 and w ¢ M,. Then, w has either of the following
two forms.

[F677 drjn] where feOx, fe¢F?, vx(b)>0,
and = is a prime element of K.
[c dglg] where geUx, §¢F", vg(c)<0.

and wg(c) is prime to p.

In the former case, the element of Br (X), corresponding to w is decomposed by
K(a) and by K(B) where « is a root of the equation X*—X=7b0"" and B is a root
of the equation X?==. In the latter case, the element of Br (X), corresponding
to w is decomposed by K(«) and by K(8) where a is a root of the equation
X?—X=c and $ is a root of the equation X?=g. Thus, if weBr(X), and w¢
Br (K../K), w is decomposed by a field which is a totally ramified extension of K
of degree p and by a field which is an extension of K of degree p and whose
residue field is an inseparable extension of F' of degree p. Hence, the division
algebra which corresponds to w satisfies the assumptions at the beginning of § 1.

Next, suppose that ch (K)=0 and K contains a primitive p-th root { of 1.
Then, by §3 Theorem 1,

by Ko(K)/Ko(K)'—Br (K),
is an isomorphism. Furthermore,
Ry (Vex? 2 Ky(KYP Ko (K))=Br (Ku/K), -

Hence, in this case Lemma 5 follows from §2 Prop. 2.

Lastly, suppose that ch (K)=0. Let { be a primitive p-th root of 1 and let
L=K({). Suppose that weBr(K), and w¢Br(K,.,/K). Let D be the division
algebra over K which corresponds to w. Let n=(dimg D). Now, we prove
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n=p. In what follows, we use some elementary results in the general theory of
central simple algebras making no references to them. Since pw=0, # is a power
of p.  On the other hand, as was proved. above, w;, is decomposed by an extension
MJL of degree p. Hence » divides [M: K]. Since [L: K] is prime to p, we have
n=p. Let C be the residue algebra of D and let d be the index of Ux-Nrdy/x D*
in K*. By a general theory (Serre [19] Ch. XII), d|# (hence d| p) and
dimr C=nd=pd .

Furthermore, we can show d=1 as follows. Since the division algebra over L
corresponding to . satisfies the assumptions at the beginning of §1, there is a
totally ramified extension M of L of degree p such that wy=0. Since NyxM*c
Nrdp/xD* and Up-NyeM*=L*, Ny/xL* CUg-NrdpxD*. Since d|p and [L: K] is
prime to p, we have d=1. Hence dimy C=p. Hence, C is commutative. If C
is separable over F, the unramified extension of K corresponding to C/F decom-
poses D and this contradicts the assumption. Hence C is inseparable over F and
this completes the proof of Lemma 5.

Step 3. Now, we complete the proof of Prop. 2 (i). Suppose we Br (K). We
prove K*=Nrd (w/K) by induction on the order # of w. If n=1, this is clear.
Let #>1. Let ! be a prime divisor of #. By the hypothesis of induction, we
have K*=Nrd (lw/K). Let a be any element of K*. Then, by Lemma 1, there
are a finite extension L of K and an element & of L* such that lw;,=0 and a=
Ni/xb. First suppose wy € Br(L../L). Then, by Step 1, we have be Nrd (w,/L).
Next, suppose wy¢Br(L./L). Then, I=p (It is well known that Br (K,,) is a
p-primary torsion group.) and hence &€ Nrd (w/L) by Step 2. In any case, by
Lemma 1, there is a finite extension M of L such that wy=0 and be Ny, M*.
Since wy=0 and a € Ny/xM*, by Lemma 1 we have ¢ € Nrd (w/K). This completes
the proof of Prop. 2 ().

§5. The cohomological dimension.
The aim of this section is to prove the following Theorem 1.

THEOREM 1. Let K be a fleld which is complete with respect to a discrete
valuation and with residue field F. Suppose ch (K)=0, ch (F)=p>0, and [F: F?]=
p. Let cd, K be the cohomological p-dimension of K (see below). Then,

(1) cd, K=2 or 3.

(i) cd, K=2 if and only if for each finite extension F' of F, Br (F') has no
p-torsion.

(i) HYK, pprQuemy=Br (F),», canonically.
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COROLLARY 1. Let K be a field which is complete with respect to a discvete
valuation and with residue field F. Suppose that F is a By-field. Then, cd (K)<2,

where cd (K) denotes the cohomological dimension of K.

COROLLARY 2. Let F be a field which is complete with rvespect to a discrete
valuation and with finite residue field. Let K be a field which is complete with ve-
spect to a discrete valuation and with residue field F. Suppose ch(K)=0. Then
Jor each m>0, there exists a canonical isomorphism

W'm,K: H3(K, ﬂm@ﬁm)i—;'z/z

having the following properties.
(1) If L is a finite extension of K, the following diagrams are commutative.

HY(EK, um®pm>MiZ/z H(L, ,z,n@ym)—’SLZ/z

[Res AN ¢! | Cor
Tm,x 1

HYL, pmomﬁ—Z/Z HYE, ;zm®/zm>—ﬂ—z/z

(i) Suppose min. Let s: pn@u—1.RQpn be the injective Gal (K, K)-homo-
morphism which is characterized by the following propety:

SRy ™M =x®y  for all xep, and for all yep,.
Then, the following diagram is commutative.

Tm,K 1

(K ﬂm@#m)—’_Z/Z
iby s

HYE, @) ””—’iiZ/z

Besides the above results, we prove the following Proposition 1 in this section.
This is an analogue of the known fact:

“Let K be a field which is complete with respect to a discrete valuation and
with residue field . Suppose ch (K)=0, ch (F)=p>0, F is perfect, and ex/(p—1)
is not an integer. Then Xy is p-divisible.”

PRoOPOSITION 1. Let K be a field which is complete with respect to a discrete
valuation and with vesidue field F. Suppose ch(K)=0, ch (F)=p>0, [F: F?l=p,
and ex/(p—1) is not an integer. Then Br (K) is p-divisible.

REVIEW on the cohomological dimension. (Cf. Serre [20])
Before we begin the proof of Th. 1, we review the definitions of the
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cohomological p-dimension c¢d, 2 and the cohomological dimension cd (k) of a field
k. Let £ be a field and let p be a prime number. Then, by definition, cd, & is
an element of the set {0,1,2, ---, oo} characterized by the following property:

For each integer =0, the following conditions (i) and (i) are equivalent.

(i) cd, k=i,

(iiy If M is an object of C; (§0.1), and if M is a p-primary torsion group,
H"(k, M)=0 for all # such that n>1.

Next, cd (k) is defined by

cd (B)=Sup-cd, & .

Proor OF THEOREM 1. The outline of the proof is as follows. In Step 1 and
Step 2, we prove the following assertion:

‘‘Besides the hypothesis of Th. 1, suppose that F' is separably closed. Then
cd, K=<2.”

This assertion induces (i) of Th. 1 (Step 3). By using the results in §3, we
prove (iii) (Step 4). Finally, (ii) is deduced from (iii) (Step 5).

Step 1. Besides the hypothesis of Th. 1, suppose that F is separably closed.
For the proof of cd, K<2, by Serre {20] Ch. II §2 Prop. 4, it suffices to show
that HXK, KJ) (=Br(K)) is p-divisible and that H*X, K.*) has no p-torsion.
So, we prove that Br (K) is p-divisible in Step 1, and that H*K, K.*) has no
p-torsion in Step 2. We may suppose that K contains a primitive p-th root { of
1 in the proof of cd, K<2, because cd, K=cd, K({), for [K({): K] is prime to p.
So, we suppose that K contains a primitive p-th root { of 1 in Step 1 and in
Step 2.

For the proof of the p-divisibility of Br (K), since Br (X) is a torsion group,
it suffices to show the following assertion (A).

(A) If xeBr(K), and » is a natural number, there exists y € Br(K) such
that z=p"y.

As an assistant to the proof of (A), let L=K({’) where {’ is a primitive p™*'-th
root of 1. We have the following commutative diagram (cf. § 3 Lemma 5).

KoL) KAL) -25Br (D),

WNwr . . lcor
Ky(K)/Ky(K)’'~2=Br (K),
By §3 Th. 1, %} x and h, ; are isomorphisms. Since F is a Bi-field, K is a B,-
field by §4 Prop. 2. Hence Ny/x: Ko(L)/ Ko(LY— Ko(K)[Ky(K)” is surjective. Thus,
Cor: Br(L),—Br (K), is surjective. So, if z € Br(K),, there exists # € Br (L), such
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that x=Cor (#). On the other hand, we have the following commutative diagram
in virtue of the fact that L contains a primitive p""'-th root of 1.

’

Kz(L)/KZ(L)""“ 2 Br iL),W

»,L

K(KLY 2% Br(D),

Here, a is the natural projection and § is the homomorphism wp"w. Since %',z
and Ahm+1,z are isomorphisms by §3 Th. 1 and since « is surjective, § is surjec-
tive. So, u=p"y for some ve Br(L). Hence,

x=Cor (#)=p" Cor (v) .
Thus, we have proved (A).

Step 2. As in Step 1, besides the hypothesis of Th. 1, we suppose that F' is
separably closed and that K contains a primitive p-th root { of 1. We are going
to prove that H*X, K.*) has no p-torsion. Let K’ (=0) and K beasin §3.2.
Since K is a Henselian discrete valuation field of characteristic 0, H*(K™', Kf)~
HY(K™ " (K™'™¥) where K''* denotes the completion of X', Since the residue
field of K*'* is algebraically closed, H(K"'*)) is ‘the zero functor for i=3 as
is well known. Thus, HY(K"', KJ)=0. Hence it suffices to show that each
HYK' KH—-H K" KF) is injective. Let L=K'"'. It suffices to show that
HYK, K)—HYL, K)) is injetive. Now, we need the following Lemma.

LEMMA 1. Let & be a field and let E be a finite cyclic extension of k. Let
G=Gal (E/k) and let ¢ be a generator of G. Then the kernel of H*k, kE¥)—~H*(E, k¥
is isomorphic to the group A|B where A is the kernel of Cor: Br (E)—Br (k) and
B is the image of o—1: Br (E)—Br (E).

Proor. This follows from the spectral sequence
HYG, HYE, E)=H"(k, k) . (QE.D.)

We return to the proof of the injectivity of H*K, K5 )—HYL,K.). Let G=
Gal (L/K) and let ¢ be a generator of G. By Lemma 1, it suffices to show that
the sequence

Br (L)2">Br (L)-Br (K)

is exact. Since [L: K]=p, the “prime to p’’ part of this sequence is exact. Since
Br (L) is p-divisible (Step 1), it suffices to show that the sequence

Cor

Br (L),~— L Br (L),—Br (K),
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is exact. Hence, by §3 Theorem 1 and by §3 Lemma 5, it suffices to show the
exactness of the sequence

poa—1 LK P
@ Ko L)] Ko(LY'—— KoL) Ko LY'—— K3 K)/ Ko(K)P .

Thus all things were reduced to a property of K,.

Now, we prove the exactness of (1). Let 7, ¢, %" and 21" be as in §3.3.
Let ¢'=e/(p—1). Since F is separably closed, Ux'” c(K*)* and Uz'" c(L*?. For
each n such that 0=<n<e'p, let 4, be the subset of Ky(L) defined by

A.={f,z}|feUyand feF} if n=0,
Au={{1+fz"*, z}| feUy and f¢F} if pln and #>0,
A,={{l+c,gllce K,vx(c)=n, ge U, Ge F} if =» is prime to p.
Then, we have
@ If 6e A, , NL/Kﬁ € 71({”) and NL/KB ¢ 71((1%#1) .
This follows from §2 Prop. 1, from the formula

Nyle, yho={z, Nuyxyl (eK', yel®),

and from the calculation of Nyx: L*—K™* given by §1 Remark 1 (iv) (with f=
ep/(p—1)). By §2 Prop. 1, each element a of K,(L) satisfies

a={u, 7} 11 60, mod KLy

0=n<e'p

{er)

for some #e Uy and for some (6,)ozn<e» Where 8,=1 or 6,¢ A4, for each #.
Suppose Nyxae Ky(K)®. Then, 6,=1 for all #». Indeed, if 6,1 for some #, let
ny=min {n]8,#1}. Since Nypguc(K*)* by §1 Remark 1 (), (2) shows

NL/KCYENL/KanOEI mod 7;{1@04-1) .
This is a contradiction. Hence 8,=1 for all # and we have
a={yu,z} mod K(L)*.

Since Ny/gue (K*)?, we(L*’ - K* by a general field theory. Hence, for the proof
of ae KoL) Ky(L)" (the exactness of (1) follows from this), it suffices to show
that the image of K,(K)—Ky(L) is contained in Ky(L) ' Ki(L)Y. Let 8¢ KyK).
Since K is a B,-field (see Step 1), 8=Nr/xp’ for some S’ e K,(L). Hence, in Ky(L),

B=IL=(8"=(E) IL (8)/') e KL ™ Kl L)' .

TeG

Thus, we have proved the exactness of (1). And hence we have proved cd, K<2
in the case F is separably closed.
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Step 3. Let K, be the maximum unramified extension of X and let Ifm be
its completion. By Step 1 and Step 2, cd, K.<2. Generally, for any Henselian
discrete valuation field S and for any prime number /, cd; S=cd; S where $ is the
completion of S. So, cd, K.,=2. Next, since ch (Fy=p>0, c¢d, F=1 (cf. Serre
[20] Ch. II §2). So, (cf. [20] Ch. I §3)

cd, K=cd, F+cd, K, =142=3 .
It remains to show cd, K>1. By §3 Th. 1,
Kz(K)/Kz(K)szz(K, 1) -
Since Ky(K)/KA(K)"+0 (§2 Prop. 1), we have H¥K, 1@y #0 and so, cd, K>1.

Step 4. Let n be any natural number. We identify F, with the residue field
of K,,. Consider the following diagram in Cr (here, C» is the category defined
in §0.1).

hom
KoK Ko(Ko) " —— H* (K o, 110 Q )

(3) tame symbol
FLJFS™

By §3 Theorem 1 and by running to the inductive limit, the above hyn is an
isomorphism. Hence, (3) induces a homomorphism

@ HF, H Ky, p0r @)~ H'F, FS/FH) .
On the one hand, HY(F, F}|(F¥)"™)=Br (F),» follows from the exact sequence
0—FF 22, pr L X (R0 .
On the other hand,
HYK, pp@ptpn)= H'(F, H¥(K s, 0@ 2m))

follows from the spectral sequence

HYF, H* (Ko, @ ppm)—=H* (K, 2pQp)
since cd, K..=<2 (Step 3) and cd, F<1. So, the homomorphism (4) can be rewrit-
ten as
(5) H (K, 1@ ptgn)—Br (F)ge

It remains to show that (5) is an isomorphism. By induction on # using the
following commutative diagram of exact sequences

H(K, !?p@/v‘p)‘—’H (K, porQupm)— H(K, #pf—@‘upn—l)—»()
0 - Br(F), — Br(F)y» —  Br(F)m
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(the upper row is exact since H*(K, p#,®u,)=0 by cd, K=3), it is found that we
may suppose zn=1. Let N be the kernel of Ky (Ko Ko Ko —F3 [(F¥)? which is
induced by the tame symbol. By §2 Prop. 1 and by running to the inductive
limit, Gal (F./F)-module N is built up by a finite number of extensions from
Gal (F,/F)-modules of the forms @p, and F,/F?. Hence, for i=1,2, H'(F, N)=0
by H'(F, 2r)=0 and by HF, F,/F?)=0. This shows that (4) is, and hence (5)
is an isomorphism.

Step 5. (The proof of (i) of Th. 1) By (iil) of Th. 1, the condition
“For each finite extension F’ of F, Br (F'),=0"’
is equivalent to the following condition
“For each finite extension L of K, H (L, p,Qun=0" .

But the latter condition is equivalent to cd, K=<2, by the argument in the proof
of Serre [20] Ch. II §2 Prop. 4. This completes the proof of Th. 1.

ProoF OF COROLLARY 1. Let K and F be as in the hypothesis of Corollary
1. Suppose ! is any prime number. Since F is a Bi-field, cd; F<1 (cf. Serre {20]
Ch. II §3).

If l#ch(F), ch; K,.=1 as is well known, and hence we have

Cdl KéCdl F‘f—Cdz Knréz .

If I=ch(F) and ch(K)=0, we have cd; K<2 by (ii) of Theorem.
If I=ch(K), we have cd; K=1 by Serre [20] Ch. II §2 Prop. 3.
Hence we have cd; K<2 in all cases.

ProoF oF COROLLARY 2. Generally, let K be a field which is complete with
respect to a discrete valuation and with arbitrary residue field F.

If ch (F)=p>0, the “prime to p’’ part of the Galois cohomology theory over
K is easy. If ch(F)=0, the whole of the Galois cohomology theory over K is
easy. For a while, we will study this easy part. If ch (F)=p>0, we will com-
bine this study with the study of the p-primary part given in Th. 1.

Let m be an integer which is invertible in F. Let K,. be the maximum
unramified extension of K. Identify F, with the residue field of K,.. Asis well
known, there is a canonical isomorphism in Cr (§0.1),

HY(Kozy @t = thn if =1,
0 i oi>1.
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Hence, using the spectral sequence
HXF, H(Kney pn@uen)=H (K, tn@tm) 5
we have an exact sequence
H(F, @ pm)—H K, pn@pin) = H(F, pin)—>H(F, ftn@ttn) »
Suppose that F is complete with respect to a discrete valuation and with finite

residue field. Then, cd (F)=2 by Serre [20] Ch. II §5 and by its analogue in the
characteristic >0 case. Hence we have

®) H(K, praQun)=H(F, tt)=Br (F)u .

Suppose further ch (K)=0. For any non-zero integer m, by (6) and by (iii)
of Th. 1, we have,
H¥K, tmRpm) =B (Fp, .

Since Br (F)=~Q/Z canonically by ordinary local class field theory, we have the
canonical isomorphism 7u,x.

It remains to prove the commutativity of the three diagrams in Corollary 2.
The commutativity of the left diagram in (i) and that of the diagram in (ii) is
deduced easily and left to the reader. The commutativity of the right diagram
in (i) is proved as follows.

If m|#n, let Sn.. be the homomorphism s defined in (ii). Let A be the induc-
tive limit of the system {(¢#,&Qtn, Sm,o)- Then, by the commutativity of the diagram

in (ii), we have a canonical isomorphism
7x: HY(K, A)=Q|Z .
By the commutativity of the left diagram in (i), we have a commutative diagram
HYK, A)5Q/Z
lRes .. l[L:K]
HYL,A=-Q/Z
for each finite extension L of K. Since Cory/x o Resyx=[L: K] and since
[L: K]: Q/Z—Q|Z is surjective, it follows that the diagram
HYL, A)25Q/Z
foor N
HYK, A)—Q|Z
is commutative. This proves the commutativity of the right diagram in ().

Proor OF PRroP. 1. Since there is an exact sequence

Br (K)5Br (K)—H (K, 1t) ,
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it suffices to show H*(K, 11,)=0. Let L=K(Z) where ¢ denotes a primitive p-th
root of 1, let G=Gal (L/K) and let H be the inertial group of L/K. The condi-
tion that ex/(p—1) is not an integer implies that H={1}. Let C be the residue
field of L. Let ¢: G—(Z/pZ)" be the injective homomorphism induced by the
action of G on the p-th roots of 1. For any Z/pZ[G]-module A, let A=
{xe Alo(z)=0plo)s, VoeG}. Since the order of G is prime to p, H’(K, pp) is
isomorphic to H*(L, #4,)° and hence is isomorphic to H*(L, #,Q@p,)*=Br C). Let
¢ be an element of H such that ¢1. Since H acts on Br (C) trivially, any ¢
Br(C)Z satisfies z=p(0)x. But 1—¢(¢)#£0, and hence x=0. Q.E.D.

§6. Local class field theory.

In this section, we are concerned with the main problem of this Chapter I.
In this section, F denotes a field of characteristic p>0 which is complete with
respect to a discrete valuation and with finite residue field. And K deontes a
field of characteristic 0 which is complete with respect to a discrete valuation and
with residue field F. Our aim is to prove the following Theorem 1 and Theorem 2.

-THEOREM 1. There exists a canonical injective homomorphism
© 0: Br (K)~Hom (K*, Q/Z)
having the following property: For each we Br (K), Ker (@(w))=Nrd (w/K).
THEOREM 2. There exists a canonical homomorphism
¥ : Ky(K)—Gal (K**/K)

having the following property: For each finite abelian extension L of K, ¥ induces
an isomorphism

Kx(K)/Ny/xKo(L)5Gal (LIK) .

DEFINITIONS OF @ AND ¥. We have constructed a canonical isomorphism
3 1
m.xt H(K, /"m@#m)=zz Z

for each m>0 (§5 Corollary 2). Hence we have the following composites

@ K™ [(K*)"®@Br (K)n=H(K, ttn)QHK, ttn)

cup product

HYE, tn @)=~ Z/ z,
m
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@ KB B )" QKo HAK, i) QHE, ZmZ)
I FEK, pn @)=L /Z .
By the commutativity of the diagram in §5 Corollary 2 (ii), (1) induces a homo-
morphism
® K*®Br (K)—Q/Z
and (2) induces a homomorphism
@ KAKYRXx—Q/Z .

The homomorphism @ is defined by (3) and the homomorphism ¥ is defined by (4).
Some formulae. We denote the pairings (3) and (4) both by { , >x. Let L
be a finite extension of K. Then, we have the following formulae.

%) {a, wyr={Nyxa,wyx, Vael*, VYVweBr(K).
(6) {a, wyr={a, Corpyxwdr, VaecK*, VweBr(l).
@ @, yppr={Nyxa, px, VaecKyl), VyeXg.
® {a, r=Xa, Corpyxpx, VaeKyK), VyeX,.

Here, the corestriction maps are defined by the following identifications:
Br(k)=H*k, k) and X3=H'(k,Q/Z) where k is any field.
These formulae are proved easily by using

§3 Lemma 5,
the formula Cor (xURes ())=Cor (x) Uy, (U: cup product)
the commutativity of the right diagram in §5 Corollary 2 (i).

Proors of the injectivity of @: Br(X)—Hom (K*,Q/Z) and ¥: Xz—
Hom (K,(K), Q/Z) where ¥V denotes the dual of 7.
The injectivity of the ‘“‘prime to p”” parts of these homomorphisms are easily

proved as follows. If # is prime to p, there are induced commutative diagrams
(9) and (10) with exact rows

©) 0—Br(F), -  Br(K), - (XF)a —0
Im lvy o

ia
0—>iz-/z-> Hom <K* 1 Z/Z>~>Hom <F* iz/z)-»o
n n 7
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10  0— X — (X9, —  Hom (k*, by / z>_>0
n
a iby 1A

8
0—Hom <F* %z/ Z>—>Hom (KZ(K), %Z/Z>—>Hom (KZ(F), %z/ Z>—>0 ,

where a is the homomorphism defined by ordinary local class field theory, & is
the residue field of F, and 8 is the homomorphism induced by the tame symbol.
The upper exact row of the first (resp. second) diagram is obtained from the
spectral sequence

HYF,H"(K.., )=H"K, )

(cf. the proof of §5 Corollary 2). The homomorphism « is bijective by ordinary
local class field theory, and 8 is bijective as is easily seen. Hence, if # is prime
to p, the homomorphisms

Br (K).—Hom (K*% Z/ Z)
(Xx)u— Hom (KZ(K), % z / z) ,

which are induced by @ and ¥V, are bijective.
Next, we prove the injectivity of the p-primary parts of @ and V. It suffices
to show the induced homomorphisms

e owp 1
Br (K),—Hom | K*(K*?, L 7]z
r (K) om( HK™) 5 / )
(Xx),—Hom (Kz(K)/Kz(K)”, —; z/ z)

are injective. We may suppose that K contains a primitive p-th root ¢ of 1.
Indeed, if we can prove our assertions for L=K({), we can deduce w=0 from
the assumptions w € Br (K), and (K*, w)x=0, as follows:

by (5)

<K*, w>K=0=>(NL/KL*, w>K=0=><L*, wL>L=O=>wL=O
=[L: Klw=Corp/xw;=0=w=0.

(The last = follows from the fact that [L: K] is prime to p and pw=0.) The
similar argument goes for (Xg),—Hom (Kx(K)/K(K)*, (1/p)Z/Z). Hence we suppose
that K contains a primitive p-th root { of 1. In this case, we have isomorphisms

Br (K),=Ky(K)/KxK)" (83 Th. 1)
(Xx)p=H'(K, Z[pZ)= by Z|PZ=pp; 1-OH (K, 11)
=K*/(K*Y"  (Kummer theory) .
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Hence it suffices to show that the induced homomorphisms

(1) Ky(K)/Ky(K)*—Hom (K*/(K*)”, —;—Z/z)

(12) K*/(K*y—Hom <K2(K)/K2(K)”, i— z/ Z)

are injective. The group K*/(K*)” has the structure illustrated in the following
Figure 2. If one compares Figure 2 with Figure 1 in §2, one finds that each
pair of the groups which are combined by <« in Figure 3 consists of a locally
compact abelian group and its dual group (with respect to the usual topologies on
these groups).

T ziwz
1 ey KoK/ KK Y KBy
+ B Z|pZ@F*[(F*y
(p—1)-times T T
T §/FP | Fipe \\ !
4 F \\ |
(p—1)-times f
+ FIF» / 1 FiF?
T oma—mer } Fliz?—alz e F)
Fllz?—eziz e F} | @Ffler—alze F}
Fig. 2. Fig. 3. (Suppose { € K)

Hence, it remains to show that the homomorphisms (11) and (12) induce the
duality map of each pair (the pair (Qr, F), the pair (F/F¥, F/F?), etc.) of the groups
which are combined by < in Figure 3. But the homomorphisms (11) and (12)
induce the same homomorphism

¢ Ku O KKy QK (K'Y~ 2],
and the composite ¢;:

2@yRz—{z, Y}z
K*/(K"Y QK" /(K *)p®K*/(K*)”—>K2(K)/Kz(KY’@K*/(K*)”i’% Z/ z
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coincides with the following composite
K (K" Y QK (K" YQK* (K*PSHNK, t)QH'K, 1) QH' (K, 1)
RN YK, 1Dt @ ) HK, 11y @) I%Z/ Z

where « is the isomorphism induced by Z/pZ=p,; 1—{. Since ¢ has the following
properties (13) and (14), the homomorphisms (11) and (12) realize the duality
between two groups which are combined by « in Figure 3 and we arrive at the
goal.

In the following (13) and (14), we use the notation ¢ for the composite

,Q residue map k trace Z/pzlp;/p_;; Z/Z ,

where k is the residue field of F. This homomorphism 6 has the following prop-
erties: As is easily seen, the pairings 2rQF—(1/p)Z/Z; wQu—d(xw) and F/F’Q
FIF*—(1/p)Z|Z; x@y—i(xdy) give the perfect dualities of the pairs of locally
compact abelian groups (2r, ) and (F/F*, F/F”). Furthermore, as in Serre [19]
Ch. XIV §5 Cor. to Prop. 15, the canonical isomorphism Br (F),=(1/p)Z/Z and
the canonical pairing (X7),QF*/(F**—(1/p)Z/Z defined by ordinary local class
field theory are given by

Br (F),=2¢/(1—1)2x(ct. the proof of §4 Lemma 5)1—1?— Z/Z,
(Xp)p®F*/(F*)"§F/{w”—x}®F*/(F*)”—>% Z/z D ey dyly)

respectively. We fix a prime element = of K, and we denote {—1 by <.

13) If 0=n=exp/(p—1) and i>(exp/(p—1)—n,
(V&' KoKV KK QUE - (K*P/(K*)")=0 .

14 Suppose 0=n=Zexp/(p—1). Let i=(exp/(p—1)—n. Then, the induced
homomorphism by (13):

VR KKV KUK QU B S Ky~ 22

coincides with the following, provided that the notation U’ stands for K*
(not for Ug) only for a moment.
If n=0,

F*(FYQF/w" x|z F}—% Z/Z D e@y—dy dufa)
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if O<n<exp/(p—1) and p|n,
FIFQFIF'~ Z[Z;  a@y-iady),
if O<n<exp/(p—1) and n is prime to p,
9F®F—% Z/ Z;  w@u—niaw)

if n=exp/(p—1),

02 RZ[pZ z/z L w®ld(w)
the sum of p 1
Fl{a®—2}QF*|(F *)"—+; Z / Z; aQy——ddyly) .

Here, we identify each subquotient of K,(K)/K,(K)* with F*/(F*), F/F?, Qr, or
Qr/1—)2rDF/{&"—5 |2z € F} via the isomorphism p, (§ 2 Prop. 1) which we define
using the above fixed = in the case of §2 Prop. 1 (i), (ii), or (iv), and choosing b
or ¢ arbitrarily in the case of §2 Prop. 1(ii) or (iii), and taking = (={—1) as &
in the case of §2 Prop. 1(iv). We identify each subquotient of K*/(K™)" with
ZIpZOF*[(F*", F, F/F?, or Fl{z"—«|x e F} via the following isomorphisms:

ZIpZOF*|(F*Y=K*|UZ(K*?;  the sum of l—z and fiof (feUx),

if O<i<exp/(p—1) and pli,

FIFP= U (K* UL (K" 5 fol4fEb)? (feOn),
if 0<i<egp/(p—1) and ¢ is prime to p,
FUS(KIULV KD froltfPc (feOp)
(b and ¢ are the elements which were used to define the above p,),
FllaP—o|ze Fy= UL T (KYYIKY s foldfi” (FeOx) .

The proofs of (13) and (14) are as follows. Since ¢, is anti-symmetric, (13) follows
from the fact:

If it+ji>exp/(p—1), {(Ug, ULIcVE cKyK)® (§2 Lemma 2).

Next, the part ““if =0, ---"" of (14) is deduced directly from the definition of e.
(We omit the details.) The rest of (14) can be reduced to the above part by using
the fact ¢ is anti-symmetric. For example, suppose O<n<exp/(p—1) and 7 is
prime to p. (The proofs of the other parts go similarly and are left to the reader.)
Let feUx, geUx, he Ok, ce K, and vg(c)=n. Then,
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({1+fe, gIQU+he’c ) =—e({l+fc, 1+he"c}R0g)
=e({L4fehzc 7, —fc)Rg)
(here, we used §2 Lemma 2 (ii))
=e({—fe, yQU+1h7) .
But
e —f¢, IR+ fhe") = —nd(fh dG|g)

by the part “if #=0, --- of (14).

Proof of Ker (§(w))=Nrd (w/K). The following proof is applicable to the case
ch (K)=p in Ch. II with no change. LetweBr(X). If aeNrd (w/K), therearea
finite extension L of K and be L* such that w;=0 and a=Ny/xb. Hence {a, w)x=
(b, wr>r=0 by the formula (5). This proves Ker (¢(w)) DNrd (w/K).

Next, we prove Ker (@(w))=Nrd (w/K). We need two steps.

Step 1. In Step 1, by induction on the order of w, we prove that we may
assume w € Br (K), for some prime number /. Indeed, suppose w € Br (K),, #>1,
ac K*, and {a, w)x=0. Let ! be a prime divisor of #. Since {a, lw)x=0, we
have a e Nrd (Jw/K) by the hypothesis of our induction. Hence, by §4 Lemma 1,
there are a finite extension L of K and beL* such that lw,=0 and a=Np/xb.
By the formula (5), <b, wiyr=<a, wdx=0. Suppose we have proved the fact
Ker (@(w")=Nrd (w'/K) for all w’eBr (K);,. Since L is a field which and whose
residue field satisfy the assumptions at the beginning of this section, too, it follows
that be Nrd (wz/L). Hence, there are a finite extension M of L and ce M* such
that wy=0 and b=Nyszc. Thus, wy=0and a=Ny/xc. This shows a e Nrd (w/K)
by §4 Lemma 1. And we have arrived at the goal of Step 1.

Step 2. In Step 2, we suppose we Br (K);, w=0, and that / is a prime num-
ber. Since ®(w): K*—Q/Z is non-zero by the injectivity of @, the image of &(w)
is of order I. Hence, for the proof of Ker (®(w))=Nrd (w/K), it suffices to show
B(K*/Nrd (w/K))=<!. (For a set S, we denote the order of S by #(S).)

First, suppose w ¢ Br (K,./K). Then, we have /=p, and the division algebra
D which corresponds to w satisfies the conditions at the beginning of §1 by §4
Lemma 5. Hence, by §1 Prop. 3(v), there is an isomorphism

K*Nrdp/xD*=Br (F), .

Since #(Br (F),)=p by ordinary local class field theory, we have #(X*/Nrd (w/K))=p.

Next, suppose w € Br (K,../K); and w+#0. Let D be the division algebra over
K which corresponds to w. By Serre [19] Ch. XII, there is a natural splitting
exact sequence
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0—Br (F)%Br (K../K)>Xp—0 .

First, suppose that w=a(w,) for some w, € Br (¥). Then the residue algebra C of
D is nothing but the division algebra with center F which corresponds to ws.
Since the order of w, is I, we have dimy C=/* by ordinary local class field theory.
Let F' be a maximal commutative subfield of C such that the extension F'/F is
separable. Let L be the unramified extension of K which corresponds to F ’.
Then, since w is the image of w,, the following commutative diagram

Br (F)—Br (Ku:/K)

(135
Br (F')—Br (L../L)

shows that L decomposes D. Hence we have dimg D==/°. Since L is unramified

over K,
’ & =NpxU" ¢ NrdpxD*
k =NpgUyn CNrdp/x .

The map Nrdpx: Up/Uy'—Ux/Ux’ is surjective because it is equal to the map
Nrde/r: C*—F* which is well known (and is known from §4 Prop. 2(), for a
finite field is B,) to be surjective. Thus, we have UxCNrdpx D*. Since
dimg D=2, the map Nrdp/x: D*/Up—K"jUx can be rewritten as Z—Z; 1—l
Hence we have #(X*/Nrdp/x D*)=I. Next, suppose that we Br (X,./K); and that
w does not belong to the image of «. Let y=p4(w) and let F’ be the cyclic extension
of F corresponding to . Let ¥ be the “unramified’’ element of Xy corresponding
to y and let L be the unramified cyclic extension of K corresponding to ¥. Then,
we can show w;=0 as follows. Let = be a prime element of K. Then, by Serre
[19] Ch. XII, B((%, n)=x=PBw). (Cf. §4 Remark 1 after Step 1 of the proof of
Prop. 2, or Serre [19] Ch. XIV, for the above notation (, ).) Hence w— (¥, x)
comes from Br (F). By ordinary local class field theory, any element in Br (),
is decomposed by any extension of F of degree I/, and so, in particular, by F’.
Hence, the commutative diagram (15) shows that w—(¥, =) is decomposed by L.
Thus, w;=0. By Serre [19] Ch. XIV §1, we have w=(%,a) for some ae K*.
Since A((%, @)=vk(a)y, we have w=(7,z') for some prime element 7’ of K. It
follows that D has the following properties.

dimgz D=1 .

Ug'=NyxU cNrdpx D* .

The map Nrdp/x: Up/Uy' —Ux/Ug' is nothing but the map Np./p: F*—F*,
Nrdp/x D* contains ~z'.

Hence #(K*/Nrdp/x D*)=8(F*/Np/pF'*) and this is equal to ! by ordinary local
class field theory.
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PRrOOF of the fact that for each finite abelian extension L of K, ¥ induces an

isomorphism
Ky(K)/NyxKo(L)=Gal (L/K) .

Let L be a finite abelian extension of K. Let ¢ denote the homomorphism
K,(K)—Gal(L/K) induced by ¥. Tne surjectivity of ¢ follows immediately from
the injectivity of ¥V : Xx—Hom (Ky(K), Q/Z). Next, we show Np/xK,(L)cKer ().
For each character y of Gal (L/K),

(Np/x KoL), 1ox=<KsL), 327=0

by the formula (7), where we regard y as an element of Xx. Hence Np/xK(L)C
Ker (9).

It remains to show that NixK,(L) coincides with Ker (§). It suffices to show
a6 B(Ky(K)/ Ny KL(L)<IL: K] .

Generally, if f: A—»B and g: B—C are homomorphisms of abelian groups,
there is an exact sequence

Coker (f)—Coker (gf)—Coker (g)—0,
and so, we have an inequality
#(Coker (gf))<#(Coker (f))-#(Coker (g)) .

Hence, to prove (16), we may assume that [L: K] is a prime number /. But
in this case, we can show that Np/xK,(L) coincides with Ker (), from which (16)
follows immediately. Suppose L is a cyclic extension of K such that [L: K] is a
prime number /. Let y be an element of Xx to which L corresponds. Suppose
ae Ky(K) and 6(a)=1. This implies <{«, x>x=0. By Lemma 1 below, there are
a,be K* such that

a={a, b} mod Ky(K)".
We have {{aq, b}, x)x=0. Hence {a, (1, b))x=0. Since Nrd (w/K)=Ker (d(w)) as

has been shown, we have, aeNrd((x,5)/K). Hence {a,b}c NixK.(L) by §4
Lemma 2. Hence « € NyxK,(L) and this is our goal.

LeEMMA 1. Let K be as at the beginning of this section. Let | be a prime
number. Then, for each element « of KyK), there are a,be K* such that a=
{a, b} mod Ky(K)'.

Proor. First, suppose /=p. By §2 Prop. 2, we may assume ac¢
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VEx? P Ky (K)®. If K contains a primitive p-th root of 1, there is an isomorphism
Vir®?' " Ky (K)? | Ky(K) = Br (Ko K),

induced by #;. Hence, in this case, it suffices to show that each element of
Br (K../K), is decomposed by a cyclic extension of K of degree p. But this has
been proved in Step 2 in the proof of “Ker (#(w))=Nrd (w/K)”. If K contains no
primitive p-th root of 1, our assertion follows from § 2 Prop. 2, from the existence
of the isomorphism Oexo/ip-1) (§2 Prop. 1) and (assume ex/(p—1)e Z) from

a7n Orllw—arw) | we 27}=0 in this case,

where ¢ is the element of F given in §2 Prop. 1. The proof of (17) is as follows.
Let K'=K{({) where { denotes a primitive p-th root of 1, let G=Gal (X'/K), and
let C be the residue field of K. Let ¢: G—(Z/pZ)* be the injective homomorphism
induced by the action of G on the p-th roots of 1. For any Z/pZ[G}module A,
let A"={ze Alo(@)=p(6) z, YVoeG}. Then, we have isomorphisms

Qrlfw—ar(w)| w e Qry=(2e/1—7)20)" = (Br (C)p)" =(Z/pZ)" =0,

where G acts on Z/pZ trivially.

Next, suppose I#p., Since Ug' c(K*)', we have Vi cK,(K)'. Since (a)
K(K)| V' =K(FYDF* by the proof of §2 Prop. 1(), (b) Vi'cKu(F), (o)
K(F)| Vi’ = Ky(k)DE*, (d) Ky(k)=0 (K, of finite fields are well known to vanish),
where £ denotes the residue field of F, it follows

KAK)/Ky(K)' = ZIZDR* [(F*) DE*|(F) .

By writing down this isomorphism explicitly, our assertion is proved without any
difficulty.

ReMARK 1. Lastly, we describe the relation between the local class field theory
of K and that of F. We have the following commutative diagram (18), where ¥’
denotes the homomorphism in ordinary local class field theory and a denotes the
canonical restriction to the unramified part.

KyK) 5 Gal (K*/K)
tame symbol a
g

F* —  Gal(F**/F).

(18)

It is not difficult to deduce the commutativity of (18) from the definition of ¥, and
its proof is left to the reader.
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§7. The topologies of K* and K,(K).

In this section, F denotes a field of characteristic p>0 which is complete with
respect to a discrete valuation and with finite residue field, and K denotes a field
which is complete with respect to a discrete valuation and with residue field F.
We always regard F as a topological field with respect to the ordinary topology,
ie. the valuation topology. In this section, we define natural topologies on K*
and K,(K) which take the topology of the residue field F' into account. (We do
not adopt the topology fon K™ defined by the valuation of K since it induces on
the residue field the discrete topology. Our topology is weaker than it.)

§7.1. The definition of the topologies of K* and K,(K).

Let I=Z,[[X]] (resp. I=F,[[T, X]]) and J the completion of the local ring of
I at the prime ideal pI (resp. TI). Then, J is a complete discrete valuation ring
with a prime element p (resp. T') and with residue field F,((X)). The ring J can
be described as the set of all Laurent power series Z a, X" over Z, (resp. F,[[T])
such that lim @,=0 when #n——oo. We regard J as a topological ring by taking
the set {U; ;|¢=0, 7=0} of subsets U;. ;=X I+p’] (resp. U;;=XI+T?]) as a basis
of the neighbourhoods of zero in J.

Now, let K and F be as above. Suppose that ch(K)=0 (resp. ch (K)=p).
Then K can be regarded as a finite extension of the field of fractions of /. Pre-
cisely, there is a ring homomorphism ¢: J—Og such that;

(i) Og is a free module of finite rank over J via ¢.

(ii) Via the induced homomorphism F,(X)=J/pJ-F (resp. F,(X)=]J/T]—

F), F is finite dimensional over F,((X)) and the given valuation of F is the one
induced by the natural valuation of F,((X)).
(This fact follows easily from Nagata [14] 31.12.) Take a basis (¢;)izi<a Of Ox
over J and endow Ox with theltopology for which the bijection J™—Ox; (®:)i<i<n—
> e is a homeomorphism. It is clear that this topology of O is independent of
tlhe choice of the basis (e;);, and is compatible with the ring structure of Ok.
Furthermore,

LeMMA 1. This topology of Ox is independent of the choice of the above
homomorphism o.

This Lemma will be proved in the next §7.2. We endow Uy with the topology
induced by the topology of Ox. Then,

Lemma 2. This topology of Ux is compatible with the (multiplicative) group
structure of Ug.
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(For the proof, see §7.2.) We endow K* with the unique topology which is
compatible with the group structure of K* and for which Uy is open in K*, and
which induces on Uy the above topology of Ug. Lastly, we endow K,(K) with
the strongest topology which is compatible with the group structure and for
which the map

K*xK*—>KyK);  (z, 9)—{x, y}

is continuous. There is a natural bijection between the following two sets (i)
and (ii) for any commutative topological group H.

(i) The set of all continuous homomorphisms Ky(K)—H.

(ii) The set of all continuous maps k: K*x K*—H such that

hay, 2)=h(x, 2)k(yY, 2)
hix, y2)=h(x, Yh(x, 2)
h(l—u, u)=1

for all =, y,z€ K* and for all #¢ K such that #=0 and u+1.

REMARK 1. Suppose ch (K)=p. Choose a ring homomorphism ¢: F—0Og such
that the composite

FLOZSF

is the identity map. Choose a prime element = of K. Then, these choices deter-
mine a ring isomorphism

¢: FI[T]]-0«

such that ¢(T)=z and such that the restriction of ¢ to F is ¢. If one regards
F[[T]] as a topological ring with the product topology of the valuation topology
of F, and if one endows Oy with the topology defined above, ¢ becomes a home-
omorphism.

§7.2. The standard topology of a module over a Noetherian local ring.

For a while, we review a certain topology on a module over a Noetherian
local ring, which will be used for the proofs of the above Lemma I and Lemma 2.

Let A be any Noetherian local ring and m. the maximal ideal of 4. We call
an A-module M a discrete A-module if and only if:

(1) For each z e M, there is a natural number » such that m%-x=0.
We regard any A-module M as a topological group in the following way: As a
base of the neighbourhoods of 0 in M, take all A-submodules N of M such that
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MJN are discrete A-modules. We call this topology on M, the standard topology
on M over A. This topology has the following properties (a)-(e).

(a) If M is a finitely generated A-module, this topology coincides with the
my-adic topology.

(b)y If M is an A-module, M is a discrete A-module in the sense of the above
(1) if and only if the standard topology on M over A is discrete.

(¢) Any A-homomorphism is continuous.

(d) If N is an A-submodule of M, the standard topology on N (resp. on M/N)
over A coincides with the restriction (resp. quotient) of the standard topology on
M over A.

(&) Let B be another Noetherian local ring and f: A—B a ring homomorphism
such that B is finitely generated as an A-module. Then, for each B-module M,
the standard topology on M over B coincides with the standard topology on M
over A which is defined by regarding M as an A-module by f.

Now, let I, J and ¢ be as in §7.1, The above argument can be applied to
the I-module Ox/m% (2=0) because;

LeMMa 3. Let n=0 and endow Ox/my with the quotient topology of the topology
of Ox defined in §7.1. Then, this topology of Ox/mk coincides with the standard
topology over I

The proof is easy and left to the reader.

Proor OF LEMMA 1. We can easily prove that any neighbourhood of zero in
Ox contains mk for some n=0. Hence, it is enough to prove that the quotient
topology on Ox/mx is independent of the choice of ¢. Now, for any ring R of
characteristic p, and for any natural number 7, denote by W,(R) the ring of all
Witt vectors of length 7 relative to p over R as in Demazure [4] Ch. III. 1. Note
that if % is an ideal of a ring A such that pe®, and if »z#u—1, there is a well
defined ring homomorphism

pr—1t

r—1
(1) WT(A/%)_)A/S‘)’IH ; (xO: xl) Py xf—l)H '§O p’_xi

Take a natural number rz=n—1, and let a: WAF[[X])—I/p"I (resp. I/T"I) and
B: W(F)~Og/mx be the homomorphisms of the above type (1). We have a com-
mutative diagram

a

WA FIX]) — 1/13”1 (resp. I/T™I)
o - by o
WAO ) SWAF)0xlms
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where ¢’ denotes the homomorphism induced by ¢. Since a and ¢’ are finite
ring-homomorphisms, the topology of Ox/m% coincides with the standard topology

over W,(Op) (Lemma 3 and the property (e) of the standard topologies), which is
independent of ¢.

Proor oF LEMMA 2. It suffices to prove that for each 7=0, the topology on
(Ox/m%)* induced by the topology of Ox/myk is compatible with the group struc-
ture. We can take an J-subalgebra R of Og/m} such that R is finitely generated
as an Imodule and such that Og/my is generated by R as an I{X ']-module.
Then, by the definition of the standard topology and by Lemma 3, R is open in
Ox/mx. On the other hand, the topology on R induced by the topology of Oy /m
coincides with the standard topology over I (property (d)), and hence with the
me-adic topology. Since R* is open in R for the mp-adic topology of R, it is also
open in Og/mx. Since the mp-adic topology of R* is compatible with the group
structure of R*, the map (Ox/my)*—(Ox/m%)*; m—x"" is continuous on the neigh-
bourhood R*-a of each element « of (Ox/m®)* and hence is continuous on (Ox/m3)*.
This proves Lemma 2.

§7.3. Some properties of the topologies of K* and K,(K).

Let F and K be as at the beginning of §7. The following Lemma is proved
easily.

LEMMA 4. Let L be a finite extension of K. Then, both the inclusion map
K*—L* and the norm map Nijx: L*~K* are continuous.

The following Proposition is important to the study of the topology of K,(K),
but its proof is rather long and continues until the end of §7.

PROPOSITION 1. Let m=0 and n=0. Fix a prime element = of K and an
element g of Ox such that g¢ F?. Then, the homomorphism v

v: Ug X Ug' - Ky(K) (Ko K™ Vi)
(&, y)—{w, 7y, g}

is surjective and the topology of Ki(K)/(KJ(K)™ V"), i.e. the quotient of the
topology of Ky(K), coincides with the quotient of the topology of Uxx UL’ with
respect to the surjection v.

COROLLARY. Let H be a discrete abelian group on which D is nilpotent. Then,
Jor a homomorphism h: Ky(K)—H, the following conditions (i) and (i) are equiva-
lent.
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(1) h is continuous.
(i) For each ac K*, the map K*—H; z—h(x,a}) is continuous. Further-

more, WV )y={1) for some n.

This Corollary is deduced from the above Proposition as follows. What we
must show is that the condition (i) implies that 2(Vx"')={1} for some ». But this

is shown easily by the method in the proof of Graham [5] 2 Lemma 1.

PrOOF OF PRoOPOSITION 1. To prove that v is surjective, we may assume

m=1. Then, this follows from §2 Prop. 1.
Now, we prove the rest of Prop. 1. It suffices to show that there is a con-

tinuous map ¢ which makes the following diagram commutative.

K*/U]({n) X K*/Uzl{'n) _?; UK/UI(('IL) X UI‘{“/UI({’,“
(@9 \ amt )
! AT
{x,y} KK (KK V&) {x,7Hy, g}
The rest of this section is occupied by the proof of the existence of such a map

¢. This is easily reduced to the fact: for each /=0,1, -.-,#—1, there is a con-
tinuous map ¢; which makes the following diagram commutative

(1,)/ &n)XUK/U('n) _S‘ii‘) UK/ ('n,) (1)/ (n) (z-}—].)/U(n)XUK/U]({'n))N
9 \ S (u v, (a;, b;);)
TN . X I
{w,y} K(K)(KAK) - VK") {u, 7}v, g}g{a;, b}

where N is a suitable natural number which we may take anyway for each i.

Step 1. In this step, we prove that there is such a map ¢: in case 0. It
suffices to show that: for each ¢'=0,1, --+,#—1, there is a continuous map ¢,

which makes the following diagram commutative

(4} (71,) ('L') tn} {in) (1) (m} {e+1) {n} \n)
UK /U /U UK/U X(U(”//(l]j}{”)é(U”H—n//[{]‘n’?U /U

\
=9 N - S, v, (@i, b)), (a5, 05)9)
I " ‘/( } I 7 7
{z,y) KKK AE -VE) {u,7Ho, g}H{a], -}-I}{aj, b3}

¢i,2
—

where M and N are suitable numbers which we may take anyway for each 7.
The proof of the existence of ¢; . consists of the “‘case i'=0"" part and the
“case 7/ #0” part. Since these two parts go similarly, we present here only the
“4'=0"" part.
Let 7 be a natural number such that »=#—1 and r=m. Let 3 be the con-

tinuous map



Generalization of local class field theory

UL U SF 1+ar* mod Uy (aeOg) .
For each £=0,1, ..., p"—1, let ¢, be the continuous map
¢t F—0g/m ; 2 @' g'—a modmy  (a.,€Ox).
<s<p”

Let ¢ be the continuous map

in)

g: UK/U}(M‘_’UK/UI‘{M

In what follows, we use the fact that the map (Ox/m%)* —(Og/me)*:

continuous, making no reference to it. In what follows, the notation

; # mod Uy a3 Zj Po(&)g" mod Ug” .

363

-1

- 1S

means

the congruence modulo K(K)*™. V'™, It is easily seen that there are contintous

maps

fl . Um/ (n) (1.+1)/U(n) s
f' UK/ (n) (1)/ (n)

2. s
.f;z: (1)/ ('ﬂ,)XUK/U(n) (z-}-l)/ ln)
f:;: (z)/ (n)XUK/UKn)_’UK/U(n’
f5: (1,]/ (’n)XUK/ ('n,) (Ié)/ {n)

»

which satisfy the following congruences (i)~(iv) for all z € U /U and y e U/ U .

(i) o, y)=( _II 1+4.0@)g'", yh{ /i), v}

(i) 1+¢ug@)g’=’, y={1+g(p@)g's", 6w} (L +dun@)g's’, fole)}

() (1+gG@)'=, 0=1+¢0@)g' s, —g " 0y))
={1+¢.(p(2))g°z*0(y) " 0(y), — g7~ 0(y)}

=(_ IO {1+4unaNg’="0) " ouBg", —g™*= " *0(y)})

A folw, ), —g 0w} - { filw, ), 7}
V) {(1+g:0@)g’ 7" 0) " bu(@)g", —g 7z 0(y)}
={14+¢.(p@)g’=*0(y) " u(Bg", 9"}
={fslz, ¥), g} .

This shows the existence of ¢; ,.

Step 2. In this step, we prove the existence of ©o. In the case ch(K)=p,
the proof is easy. In this case, we may assume K=F F((T)). Foreach e Ux/Uy",

{n}

let fix)e F* and g(z) e U /U be the elements such that r=f(z)g(x). Since K,(F )

is p-divisible, Ky(F)CK(K)™. Hence, for all x, y e Ux/US,

{z, y}={g(@), yHow), (@)} mod KKy V¢

>

which proves the existence of ;.



364 Kazuya KATO

Next, suppose ch(K)=0. Since we have proved the existence of ¢; for i+0,
we can define a continuous map ¢, which makes the following diagram commus-
tative.

U}é)/U;{n)XUx/UZL) _"’_-x-_) UK/U}gL) m/ U
€75/ ) AN /S @y
TN .
{v,y) B(KO/(EL(KY"-Vx) {x, 7Ny, g}

Now, we need the following Lemma.

LEMMA 5. Let K and F be as at the beginning of this §7. Suppose L is an
extension of K of degree p such that the residue extension is inseparable and of
degree p. Suppose m=0, n=0, n'=n, NyxUr"' cUL (K*™, and NyxVy'c

V' Ky(K)™. Fix a prime element = of K. Then, for a suitable number N, there
is a continuous map & which makes the following diagram commutative.

(Ll)/U(n’)XUL/U(n') UK/ (mx( (1)/ (n)XUK/U(n))
(%, ¥) (o, (5, Yo)s)

{z, ¥} l l {oe, =} I {#s, 9l
KA DIEAL™ Ve S K RN ELBP™ V) .
PRrOOF. By applying the existence of ¢, to L, and by Lemma 4, it suffices to
prove the following assertion:

“Fix an element % of Oy such that ¢ F. Then, for a suitable number N,

there is a continuous map & which makes the following diagram
UZIUE" S UxUR X UR U X Ug/URHY
z O\ S (e, (@, Ya))
\ !

I /
Nuxla, b} KfE)/(KLKY™ V) {u, 7} 1T {es, 93}
commutative.”’

This assertion is proved as follows. Let #» be a number such that »=m and
r=n'—1. Let

I={(, j)|1=i<n’,0=j<p™™, and j is prime to p} .
As is easily seen, the map
(1)/Uwu1 /<FI m/U(n ]
(z mod UL, @ipneny—n I (1— @i7'h’) mod U (ai; € Og)

(t,5)el

is a homeomorphism. But if x¢ U /U and @€ Ox, and if (i, j) e,
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NL/K{wf h}:{x9 NL/Kh} ) and
Nyx{l—a" 7', hy=Nyx(l—a" =0, W}
=Np{l—a”7'h, =}

={Npx(1—a" k)" 7} mod Ky(KY" Vi .

(Here, the action of 1/j is well defined, for the group K,(K)/(K(K)*" V') is an-
nihilated by p™, and j is prime to p.) Hence, by Lemma 4, we have the above
assertion. Q.E.D.

Now, we return to the proof of the existence of ¢, in the case ch(K)=0.
Take extensions L; 0<i<m of K such that K=L,cL,c---cL,, and such that
[L;: L;_J=p and the residue extension of L;/L;_, is inseparable and of degree p
for each i=1, ---, m. Take numbers #,, 7, -, %, such that #=n,<w, <. - <,
Niyz, UL UL and Nygp,  ViE cKy(Lio)P" - Vit for each i. Such num-
bers exist since the assumption ch (K)=0 implies fj "CKy(L)™™ for sufficiently
large N. Fix an element 2 of O such that the residue field of L, is F(h).
Let » be a number such that r—m=n,—1 and r=m. Let ¢ be the continuous
map F—0;, [(mg,)"";

¢: o @& 5 & "-h mod (mz,)"™  (a,€O0xg).
0=s<p” 0<s<p”

Then, there are a natural number M and continuous maps

fi: UnUx"~Ux'1Ux"
fo: Ug/UZ = UL U

L

£ and fi; 1=<jsM: UgUZ xUx/UZ —Ug/UZ
o 1=Si=M: Ux/U xUg/US—-UZ U

(n)

such that for all z, ye Ux/Ux",

{@, ¥} ={Nr_/x¢(®), yH filw), ¥},  and
N1, /x10@), ¥} =No,xldp@), 9@} N, /xl¢p(@), fo(y)} (the first term vanishes)

=(ato, ), %) 1T Ufo, 9, foslo, 0)

Indeed, fi, fi; and f;; exist by Lemma 5 and by induction on m. This shows
the existence of g¢,. Q.E.D.

§ 8. The existence theorem.

In this section, F denotes a field of characteristic p>0 which is complete with
respect to a discrete valuation and with finite residue field, and K denotes a field



366 Kazuya KATo

of characteristic 0 which is complete with respect to a discrete valuation and with
residue field F.

Let Hom; (K*, Q/Z) be the group of all continuous homomorphisms from K*
to @/Z with respect to the topology on K* defined in §7 and with respect to the
discrete topology on Q/Z. Define Hom, (Ky(K), Q/Z) similarly.

In §6, we defined canonical injective homomorphisms

¢: Br(K)~Hom (K*,Q/Z), and ¥':Xg—Hom (K,K),Q/Z).

(We denote by ¥ the dual homomorphism of ¥.) The aim of this section is to
prove the following Th. 1 and Th. 2 which determine the images of @ and 7.

THEOREM 1. Im (®)=Hom, (K*, Q/Z).
THEOREM 2. Im (¥V)=Hom, (K,(K), Q/Z).

COROLLARY 1. (i) Br(K)=Hom,(K* Q/Z).

(ii) Xg=Hom, (KyK), Q/Z).

(i) The group X is isomorphic to the group of all continuous maps h: K*x
K*~Q|Z such that:

Ry, 2)=h{z, Dh(y, 2)
h(z, y2)=h(z, Hh(z, z)
h(l—u, u)=0

or all x,y,z¢ K* and for all uec K such that u+0 and u+1.

COROLLARY 2. The map L—Nr;xKy(L) is a bijection from the set of all finite
abelian extensions of K in a fixed algebraic closure of K to the set of all open sub-
groups of K,(K) of finite indices.

This Corollary 2 follows from Th. 2 and from §6 Th. 2 immediately.

ProoF orF THEOREM 1. (Step 1 and Step 2.)

Step 1. In Step 1, we prove that O(w): K*—~Q/Z is continuous for all we
Br(K). The following proof is applicable with no change to the case ch(K)=p
in Ch. II.

Step 1.1. First, we prove this in the case we Br (K../K). Then, w=w'+(x, =)
for some w’, y, and = where w’ belongs to the image of the canonical homomor-
phism Br (F)—Br (K../K), x is an unramified element of Xz and = is a prime
element of K. Hence, it suffices to prove that @(w’) and ®((y, 7)) are continuous.
By §6 Th. 1, it suffices to prove that Nrd (w'/K) and Nrd ((y, =)/K) are open in
K*. But (cf. §6 Step 2 of Proof of Ker (§(w))=Nrd (w/K)) the former group
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contains Ux and the latter contains all elements % of Ux such that &€ Np. pF'™*
where F’ denotes the cyclic extension of F corresponding to y. Hence the former
is open immediately, and the latter is open since Np.,»F'* is open in F* by the
ordinary local class field theory.

Step 1.2. Here, we prove that Br(K../K) is a direct summand of Br (K).
Since Br (F) and Xr are p-divisible, and since there is an exact sequence

0—Br (F)—Br (K,../K)—»X—0,

it follows that Br (X,./K) is p-divisible. By this and by the fact that the “prime
to p’’ part of the torsion group Br (K) is contained in Br (K../K), Br (K../K) is a
direct summand of Br (X).

Step 1.3. (The main part of Step 1.) By Step 1.2, there is a subgroup M of
Br (K) such that Br(K)=Br (K../K)®M. Suppose we M. In what follows, we
prove that @(w) is continuous.

Let p™ be the order of w. We denote by A the set

0,1, -+, p—1}x{0,1, -+, p—1}.
For each i=0,1, .--,m, and for each ac A“':A;zt-lin-eii A, take a finite extension
K, of K inductively, as follows. If ;=0 and if ¢ is the unique element of A°, let
K,=K. Suppose 0=i<m and (@, ---,a;)€ A*. Suppose that L=K,,....op 18
taken already, such that [L: K]=p" and the order of w; is p™*. Let b=(j, k) c A.
We take Ki,,,...,q0;,5, which we denote by L;, as follows.
By the assumption we M, " 'we Br (L../L). Hence, by §4 Lemma 5, the

m—t—

division algebra D over L which corresponds to p Yy, satisfies the assumptions
at the beginning of §1. Fix a prime element = of D and an element ¢ of Op
such that § does not belong to the residue field of L. Then, we take L, to be a
(commutative) subfield of D such that LcL;, n°g* € L,, and [Ly: L]=p.

Then, [Ly: K]=p**" and the order of w;, is p™**. In this way, we can take
K, for each ae A* such that 0=i<sm.

Next, for each ae A® such that 0=<i<m, we take a natural number #, induc-
tively, as follows. If i=0 and if ¢ is the unique element of A° let #, be a
natural number which satisfies Ux® cNrd (w/K). (The existence of #, follows
from the existence of a separable extension of K which decomposes w. We omit
the details.) If 0<i<m and ae A, and if be A, let 7. be a natural number

which satisfies

tngy) (ng)
Ne iz U ) U .



368 Kazuya KaTo

Here, if a=(a,, -+, a;), «b denotes (aj, - - -, a;, b). For each i=0, ..., m—1, let

Ni: I (KZ/UZe)— TI (KijUgs"

ae 4i+l ae 4l

be the sum of the homomorphisms:

* ( ) norm map (p)
(Kab/UKn;bb K /U Lo )aEAi,beA .

Now, our task is to prove that each N; 0=i=<m—1 is an open map. If we
can prove this, the image of the composite Nyo Nyo -+ o n-1 1S an open subgroup
of K*/Ux*', where e denotes the unique element of A°. Since U cNrd (w/K)
and since Im (N, o Ny o -+ o N,,_;) is contained in Nrd (w/K)/Ug', it follows that
Nrd (w/K) is open in K*. Since Ker (@(w))=Nrd (w/K), we have the consequence
that ®(w) is continuous. Hence, it suffices to prove the following Lemma.

LeMMA 1. Swuppose weBr (K)p and weBr(K,./K). Let D be the division
algebra over K which corresponds to w. (Then, by §4 Lemma 5, D satisfies the
assumptions at the beginning of §1.) Let = be a prime element of D and let g be
an element of Oy such that Ge F. For each

b:(]: k)eA:{Oy 1) Tt P—I}X{O, ly Tt p_l} ;

let K, a (commutative) subfield of D such that 7’9" € Ky and such that [K,: K]=p.
Let n=0. For each be A, let ny, be a natural number such that NK,,/KU("”’CU("’.
Then, there are a neighbourhood V of 1 in K*|UZ' and a continwous map o=
(@o)pea: V— H K\ JUZY such that beISIA Ny, /xe@) mod Ug” for all e V.

Proor. We denote the group H Ky /UL by G. Let N be the homomorphism

N:G-K*U ; (mb)beAHbHANKb/Kxb .

It suffices to show that for each /=0, 1, ---,z—1, there are a neighbourhood V
of 1 in Ug'/UZ" and a continuous map ¢ which make the following diagram

commutative.

14 _9’) GX( (1, 1)/U(n))
AN / (90 Y)
v !

\ (n}
K*U¢ N(x)-y .
The proof of this fact will continue until the end of Step 1.

First, let ¢ be the ramification number of D (§1). Let 7 be an integer such
that 0<i<u—1. Define i’ as follows. If 0=i<t, let i'=i. If i=t, let i'=t+p(i—1).
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As was shown in §1, Nrdyx U cUg' and Nrdp/x Us "V cUZY. Let
Nrdi: (@’)/U(‘Iv"}'l) U}{i)/U;HU

be the homomorphism induced by Nrdp/x. By §1 Prop. 3, there are a neighbour-

hood W of 1 in Uy’ /U™ and a continuous map 6: W—Uy" /U3 such that

(z+1)

the composite Nrd;-# coincides with the inclusion map WSUE' /Uy Here

(1,)/ (4+1}

is the one induced by the topology of K™ defined in

(z)/ (441}

the topology of

§7; in other words, is homeomorphic to F* (when i=0), or to F (when
i>0) in the usual way. And the topology of Uy’ /Uy ™ is the similar one; in
other words, if C denotes the residue field of D, Uy /Uy *" is homeomorphic to
C* or C in the usual way. (The existence of W and that of # is not clear only

when i=f{. But in this case Nrd, is isomorphic to
A=7)e§: Lc—Lr

as a continuous homomorphism between topological groups. Fix A€ F such that
heF*. Let W=myp-dh/hC 2y and let 6 be the map

0: W25  wdhlh(—s—2"—3"—---) db"')/(h*") .

Then, (1—7) % o & coincides with the inclusion map WSQp. This proves the
existence of W and 4.)
Next, let » be a sufficiently large number. We define a continuous map 41:
FIUF T G as follows. If i=0, define 2 by:

the b-component of X( b ﬁf’-§s> , where be A and each a,€O0g,

0<s<pr+1

".g° mod U  if 5=(0,1).
is equal to {"gq’“
1 otherwise .

If i>0 and p|é’, fix ce K such that vx(c)=:'/p and define i by:

the b-component of 2<1+c h ".¢° mod Uy “), where be A and

O§s<p"""1
l+c T a-¢° modUgy if 5=(0,1).
each a,€0g, isequal to 0=s<pT¥1
1 otherwise .

Suppose >0 and ¢’ is prime to p. Let d be the integer such that 0=<d<p and
d=¢" mod p. Fix ce K such that vg(c)=(i'—d)/p and fix he Og such that h=g".
Define 2 by:
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the (j, k)-component of 2<l+c-nd z. @ -g" mod U}f'“’) ,
1]

=s<p”
where (7,k)eA and each a,€O0g, is equal to
Icntg® X al A7 mod UggR' i j=d.

0ss<prtl
s=k mod p

1 otherwise .

Lastly, we define V to be the inverse image of W under the canonical pro-
jection ¢: Ug' /U UL U™ . We can define ¢: V-G x(Ug™ UL) by

()= (40 (), z/N(20(x))) .
This completes the proof of Lemma 1.

Step 2. Conversely, we prove that each continuous homomorphism ¢: K*—
Q/Z has the form @(w) for some we Br(K). (Step 2.1-Step 2.5.)

Step 2.1. First, we prove that ¢ is of finite order. By the definition of the
topology of K*, o(Ug”)=0 for some x. Hence, if m is sufficiently large,
P (U ) Co(Ug)=0. Thus, p™¢ is factorized as

K*>K* U —Q/|Z .

Since K*/Ug'=ZxZx Uy as a topological group and since Up is compact, the
image of p™¢ is finite. Hence ¢ is of finite order.
Step 2.2. By Step 2.1, it suffices to study the following two cases.

Case 1. The order of ¢ is prime to p.
Case 2. The order of ¢ is a power of p.

The study of Case 1 is easy as follows. If » is prime to p, @ induces an
isomorphism

Br (K),5Hom (K* % z/z)

as was shown in §6 Proof of the injectivity of @ and 7.

Hence it remains to study Case 2, which will be done in Step 2.3, 2.4, and
2.5.

Step 2.3. We prove here that we may assume that K contains a primitive
p-th root £ of 1. Let L=K(). Let ¢: K*—~Q/Z be a continuous homomorphism
and suppose that the order of ¢ is a power of p. Then, the composite

Ni/k

0o Npyk: L*~—>K*—¢>Q/Z

is continuous by §7 Lemma 4. Assume that our problem is solved for L. Then,
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there is we Br (L) such that ¢ o Nyx=0:(w). By the formula §6(6), it follows
[L: Klp=®x(Corpx(w)). Since [L: K] is prime to p, ¢o=0x(w") for some w'e
Br (K). (@x or @, denotes @ of each field.)

Step 2.4. In Step 2.4 and in Step 2.5, we assume that K contains a primitive
p-th root £ of 1. In Step 2.4, we prove that we may assume po=0. We use
induction on the order of ¢. Assume that our problem is solved in case po=0.
Let ¢: K*—Q/Z be a continuous homomorphism and suppose that the order of ¢
is p", r=1. By the assumption, p" o has the form @x(w) for some we Br(K).
Since Px(pw)=p"0=0, pw=0 by the injectivity of @x (§6 Th. 1). Hence, the
isomorphism

Byt Ky(K) Ky(KY=Br(K), (§3 Theorem 1)

and §6 Lemma 1 show that there is a cyclic extension L of K of degree p such
that w;=0. By the formula §6 (5),

P70 o Npyx=0(wr)=0: L*~Q/Z .

Hence, by applying the hypothesis of induction to L, there is w’ e Br (L) such that
(24 NL/K:¢L(w,)-
Now, let G=Gal (L/K). For any G-module A, let

Af={xe A|o(x)=x for all ceG}.

Clearly, Br (L) has a natural G-module structure. For all s€G, s(wy=w’ follows
from

Or(o(w)=0(w) o  (here, we used the formula §6 (5))
=¢ o Ny o0 '=¢ o Nyx=0r(w')

and from the injectivity of ®;. Thus, w’eBr(L)?. Since G is cyclic, we have
an exact sequence

0—H%G, L¥)—~Br (K)—Br (L)*—0 .

It follows that there is w'’ € Br(K) such that w'=(w');. Hence ¢—@x(w’’) an-
nihilates Nz/xL*, and so, (K*)*. Hence, by the assumption, o—Pr(w'y=0x(w'"")
for some w''’ € Br (K).

Step 2.5. Suppose that K contains a primitive p-th root { of 1 and that
¢ K*I(K*Y—(/p)Z|Z is a continuous homomorphism. We prove that ¢ has the
form O(w) for some weBr(K),. Look at Figure 3 in §6 once more. In this
Step 2.5, let the notation Ux' stand for K* (not for Uy) contrary to the custom.

By induction on ¢ starting with i=(exp/(p—1))+1 (until i=0), we prove that for
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each {, each continuous homomorphism
¢: U‘“(K*)f’/(K*%% Z/Z

is the restriction @(w)| Ux (K*//(K*)" for some w e Br (K),.

If i=(exp/(p—1))+1, this assertion is clear. Suppose that ex p/(p—1)=i¢=0. By
our induction, we may assume that the restriction ¢| U (K*?/(K** of ¢ is the re-
striction of @(w) for some we Br (K),. Since ¢—®(w) annihilates U™ (K*)P/(K*),
¢—@(w) induces a continuous homomorphism: Ui (K*Y U™ (K*\Y—(1/p)Z/ Z.
For each i, let A; be the topological group

ZIpZX F*I(F*?  if i=0,

FIF® it O<i<exp/(p—1) and p|i,

F if O<i<exp/(p—1) and ¢ is prime to p,
Fl{aP—x |z e F} if i=exp/(p—1).

Then, for each 7, the homomorphism A,—U¢ (K*)?/U¢™ (K*/ which is given in
§6 Proof of the injectivity of @ and ¥V, is continuous. Hence the composite
AU (K p/U(’L+1)(K*)pby g—ow) 1 Z/Z
b
is continuous. By duality, this composite is induced by an element of B; where
B; is the group

ZIpZ <X Flix"—x|xc F} if =0,

FIF? if O<i<exp/(p—1) and pli,

Qr if O<i<exp/(p—1) and ¢ is prime to p,
F*[(F*Y  if i=exp/(p—1).

Hence, the isomorphism %, : K,(K)/K,(K)*—Br (K), and the explicit calculation in
§6 of the homomorphism
K KK VET “K2<K>*’®U‘“(K*WU‘”“(K*)”*%Z/ Z  (nti=expl(p—1)
show that there is some w’e Br (K), such that ¢—@(w)=0(w") on Ug (K*)*/(K*.
Q.E.D.
Proor or THEOREM 2. (Step 1 and Step 2.)

Step 1. First, we prove that ¥V(y) is continuous for each ye Xx. It suffices
to prove this in the following two cases.

Case 1. Suppose the order n of y is prime to p. It suffices to show that
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Ky(K)/K,(K)" is a discrete group. Let % be the residue field of F. Let

= be a fixed prime element of K,

s: Ky(K)—Ky(F) be the unique homomorphism such that
s(ez®, yo')={%, 4} for all z,yeUg and for all 4 7,

t: Ky(K)—F*, and ¢: Ky(F)—E* be the tame symbols .

By the proof of §6 Lemma 1, and by the definition of the topology of K,(K),
the homomorphism

Ko(K) Ko (K" B (R S B [(F*)

is a continuous bijection with respect to the ordinary topologies of &* and F*.
Since £*/(*)" and F*/(F*)" are discrete, it follows that K,(K)/Ky(K)" is discrete.

Case 2. Suppose that the order of y is a power of p. By §7.3 Corollary, it
suffices to prove the following (i) and (ii).

(i) For sufficiently large 7, Vg, y>x=0.

(ii) For each a¢ K*, the map K*—Q/Z; x—{{x, a}, x>k is continuous.

Let L be the cyclic extension of K which corresponds to y. For sufficiently
large n, U cNykL*, and so, Vi’ cNpxKy(L). This proves (). It remains to
prove (ii). Let w=(y,@)eBr(X). Then, the homomorphism K*—Q/Z; x—
=, a}, Yk coincides with —@(w), which is continuous by Th. 1.

Step 2. Conversely, we prove that each continuous homomorphism ¢: K,(K)—
Q/Z has the form ¥"(y) for some ye Xg. (Step 2.1-2.5.)

Step 2.1. First, we prove that ¢ is of finite order. Just as in the proof of
Graham [5] Lemma 1, it is easily seen that ¢(Vg')=0 for sufficiently large z.

(1) (n)

Hence, if m is sufficiently large, p™o(V ")Co(Vy )=0. Thus, the composite

K*x K*—K,(K)"%Q/Z
is factorized as
K*x K*>K*|U$ x K* U %Q/Z .
where ¢’ is a continuous maﬁ. Let A be the topological group
lweUx|ze UgUx’ (2Us).

Fix a prime element = of K and an element r of Og such that 7 is a prime ele-
ment of F. Then, the image of p™¢ is generated by ¢'(A X A4), o'(Ax{x mod Ux'}),
@' (Ax{z mod U¢'}), and ¢'(z,7). Since A is compact and Q/Z is discrete, these
four sets are finite. Thus, the image of p™¢ is finite and hence ¢ is of finite
order.
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Step 2.2. The “‘prime to p”’ part is easy. If » is prime to p, the homomor-
phism (Xg),—Hom (Kx(K), (1/m)Z/Z) induced by ¥" is bijective as was shown in
§6 Proof of the injectivity of @ and ¥V. Hence we may assume that the order
of ¢ is a power of p.

Step 2.3. Here, we prove that the homomorphism

Nyg: KLY KAL) — Ky(K)/ Ko K™

is continuous for each #=0 and for each finite cyclic extension L of K. We use
this result in Step 2.4. Clearly we may assume that [L: K] is a prime number.
Since ch (K)=0, Vg cKy(K)"™" and V" CKy(L)"™" for sufficiently large ». Hence,
we can apply §7 Proposition 1. We consider the following three case (i), (i), (iii).

(i) If L/K is unramified, or if [L: K] is prime to p, the proof goes as fol-
lows. Let = be a prime element of K and let ¢ be an element of Ox such that
g ¢ F®. Then, there are an integer i and a prime element =’ of L such that
7'=x' mod (L*)*". Hence, by §7 Proposition 1, it suffices to show that the
homomorphism

Upx U= KoK Ka( K™
(ﬁ?, y)}_’NL/K{xy ﬂ} 'NL/K{y: g}:{NL/K(x); ”}' {NL/K(?/)’ g}
is continuous. But this is clear since the homomorphism Nx: L*—K* is con-
tinuous by §7 Lemma 4.
(ii) If L/K is totally ramified and [L: K]=p, the proof goes as follows. Let

# be a prime element of L. By §7 Proposition 1, it suffices to show that the
homomorphism

Fr U~ EyE) KK ;5 w>Nyxle, 7}

is continuous. Let g be an element of Oy such that g¢ F?. Fix a number =
such that f annihilates U;"”’, and then fix a sufficiently large number ». Let I
be the set of all integers 7 such that 0<i<unp and such that 7 is prime to p.
Then, the map

Ur/UE x F'U U™
(x( 5 aﬁ’;-gf‘) )Hx- I (—a5-g'7) mod US”  (ai;€0x)
‘el

0S5 < p” 0s7<p”
ierl
is a homeomorphism. Since

Nyxlz, ay={w, Ni/x(7)} for all xeUx

and since
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Nux{l—a”g’n’,n}  (aeOx,iel)
314

=Nyx{l—a” ¢’t*, g}~
={Nyx(1—a"¢’z"), g™"* mod K(K)™" ,

it follows that f is continuous.

(iii) Suppose [L: K]=p, and suppose the residue extension is inseparable and
of degree p. Let % be an element of Oy such that z¢F. By §7 Proposition 1,
it suffices to show that the homomorphism

UKol K) Ko K™ 5 w—Nyele, b}

is continuous. But this follows immediately from § 7 Lemma 5, since that Lemma
claims that the map

U x U= E(B) KA K" 5 (@, ¥)—~>Nuxlz, v)

is continuous.

Step 2.4. We claim here that we may assume K contains a primitive p-th
root of 1, and that we may assume pep=0. By virtue of Step 2.3, the proofs of
these claims proceed just as Proof of Th. 1 Step 2.3, and 2.4, using the exact
sequence

0—H*G, Z)—Xx—(X1)*—0

where G acts on Z ftrivially. The details are left to the reader.

Step 2.5. Suppose K contains a primitive p-throotof 1. Let ¢: K, (K)/KA(K)*—
(1/p)Z]Z be a continuous homomorphism. We claim that ¢=0"(y) for some y¢
(Xx)p. Indeed, by induction starting with i=(exp/(p—1))+1 (until i=0), we can
prove that for each i, each continuous homomorphism V'* Ky(K)*/ K. K)"—1/p)Z|Z
coincides with the restriction of @"(y) for some x € (Xx),; for we can proceed just
as in Step 2.5 of the proof of Th. 1 and we can use the fact that the homomor-
phism p; (§2 Prop. 1) is continuous (this is shown easily) instead of the fact that
the homomorphism A;— U (K*?/UZ™ (K*Y is continuous.

Thus, we have proved Th. 1 and Th. 2.
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