A generdlization of local class field theory
by using K-groups. 11

By Kazuya KATO

Chapter II. Higher local class field theory.

Page
§1. Galois cchomology. 606
§2. The residue homomorphisms in algebraic K-theory. 630
§3. Local class field theory. 656
Bibliography. 682

Summary.

Here, we explain the main subjects and main results of Chapter II.

In §1, we shall study the Galois cohomology of a complete discrete valuation
field whose residue field is not assumed to be perfect. Next, in §2, we shall
generalize the residue homomorphism by using Quillen’s K-theory. Lastly, in §3,
we shall study the local class field theory of “higher local flelds” as a result of
the previous two sections.

The aim of §1 is to prove the following Th. L

TuEOREM L (Cf. §1.1, Th. 1 and Th. 2.) Let K be a complete discrete valu-
ation field with residue field F, and assume that the characteristic of K, ch(K), is
zero, ch(F)=p>0, and [F: FP]<co. Let q be the integer such that [F: FP1=p%
Then:

(1) The cohomological dimension of K relative to p, cd(K), is g+1 or q+2.
If F is separably closed, or more generally, if 1-—7: 2% 17— 8% 7 1s surjective
for any finite extension F' of F, then cd(K)=g¢+1. Here, 1 is the Cartier
operator.

(2) For each m=1, let prn be the group of all m-th roots of 1 in the algebraic
closure of K, and p& (vr=0) ifs r-th tensor power. Then, for each n=1, there is
a canonical surjective homomorphism

Py(F) —> HT™(K, p5#™),
g times

where PL(F) is a certain quotient of the group WAFYQF*Q -  QF* such that
PUFY= 0%, /(1= 0%z. This homomorphism is bijective if g=1(i.e. F is perfect
or [F: FPl=p), or if F=E(X)(Xo) (X)) for some perfect field E.



604 Kazuya KaTo

We conjecture that the canonical homomorphism in the above Th. I (2)
is bijective without the assumptions in (2). The proof of its surjectivity will be
completed in §1.3. For the injectivity in the case F=E(X)(Xp) - (X)), we
shall need the “ cohomological residue ” defined in §1.4, and complete the proof
of the above Th. Iin §1.6.

In §1.7, we shall prove that Milnor’s K-groups ([16]) have canonical norm
homomorphisms.

Next, the contents of §2 is as follows. We shall define the generalized
residue homomorphism in §2.1. A concrete computation of this homomorphism
will be stated in §2.2 Prop. 3 and proved in §25. An application of our residue
homomorphism is a complement to Bloch [3]; we can eliminate the hypothesis
g=p in [3] Ch. II (cf. §2.2, Prop. 2).

Lastly, the main result of §3 is the following Th. II. For any field &, let
(k) be Milnor’s K-group defined in Milnor [16] (which was denoted by Kxk in
[16]), and let K.(%) be Quillen’s K-group in Quillen [19].

THEOREM 1L (Cf. §3.1, Th. 1, Th. 2, and §34, Prop. 3.) Let N=0, and let
ko, -, ky be fields satisfying the following conditions (1) and (ii).

(1) ko is a finite field. \

(ii) For each i=1, ---, N, k; is a complete discrete valuation field and the
vesidue field of by is By,

Denote ky by K, and b, by k. Then:

(1) There exists a canonical homomorphism

U Ry(K) — Gal(K=*/K)

characterized by the following properties (iil) and (iv).

(iii) For each finite abelian extension L of K, Wy induces an isomorphism
SN /Ry xRy(L)=Gal(L/K). Here Wy x is the canonical norm homomorphism.

(iv) For each i=1, ---, N, let m; be a lifting to K of a prime element of ks.
Then, the image of ¥x({xy, -+, my}) under the canonical homomorphism Gal(K=*/K)
— Gal(k*>/k) coincides with the Frobenius automorphism over k.

(2) Let Nz1. Then, there exists a canonical injective homomorphism

@K . Br(K) —> H0m<t@N-l(K)7 Q/Z>’

where Br(K) denotes the Brauer group of K.
(3) In the case ch(K)>0, these homomorphisms ¥y and @y are induced by
canonical homomorphisms

Ty Ky(K) —> Gal(K**/K) and
O : Br(X) — Hom(Ky.(K), Q/2Z)
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respectively, and the canonical map S{K)— Ku(K).

For this Th. II, in the case ch(K)=0, we shall use the study of the Galois
cohomology of §1. In the case ch(K)>0, we shall use the generalized residue
homomorphism of §2. The following Th. IIl is a consequence of Th. I and will
be the key tool for Th. II (1) and (2).

TueoreM III. (Cf. §1.1, Th. 3 or §3.2, Prop. 1.) Let K be as in Th. 1L
Then, the cohomological dimension of K is N+1, and theve exists a canonical
1somorphism

HY (K, 18 E%L—Z/Z
for any integer m invertible in K.

The part I (=Chapter 1) of this paper was published in [26].

In the first draft of this part I, we defined the residue homomorphisms in
Milnor K-theory, and it was applied in the study of abelian coverings of surfaces
in Brylinski [27]. The author will publish latter that definition and related results.

Conventions.

“Ring ” means commutative ring with identity and “ field” means commuta-
tive field unless the word “ring” is used as “graded ring”. All the graded
rings in this paper are anti-commutative.

Let R be a ring. Then, we denote by R* the multiplicative group of all
invertible elements of R. For each ¢=0, the ¢-th exterior power over K of the
absolute differential module £2%,7 (cf. Grothendieck [8] Ch. 0 §20) is denoted by
2%. Furthermore, 2%,z is often denoted by £x.

Let % be a field. Then, we denote by ch(k) the characteristic of k, by ks
the separable closure of £, by %k** the maximum abelian extension of %, and by
X, the group of aill continuous homomorphisms Gal(k**/k)—@/Z. If m is an
integer invertible in k, we denote by pn.. (or simply by pgn) the Gal(k:/k)-
module of all m-th roots of 1 in &, and by & (r=0) the r-th tensor power of
tn over Z/mZ on which Gal(k:/k) acts in the natural way.

Let % be a discrete valuation fleld. Then, we denote by v, the normalized
additive valuation of &, by O, the valuation ring of %, and by m, the maximal
ideal of 0,. We denote by U, and U{’ (n=1) the multiplicative groups (O.)*
and {x€0,|v,(x—1)=n}, respectively. For each x=0,, we denote by X the
residue class in O,/m; of x.

For any abelian group A and for any integer n, we denote by A, the kernel
n
of the multiplication by n: A — A.
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§1. Galois cohomology.

§1.1. The main results.

The main results of the cohomological study in this Chapter 1I is the follow-
ing Theorems.

THEOREM 1. Let K be a complete discrete valuation field with residue field
F such that ch(K)=0, ch(F)=p>0, and [F: FP]=p%, 0<g<oco. Then,

(1) The cohomological dimension of K relative to p, cd(K), is g+1 or g+2.

(2) There is a canonical surjective homomorphism

B/(1=7)2 —> HEHK, p3e),

where 7 denotes the Cartier operator [5].

(3) Assume that for any finite exiension F’ of F, the homomorphism 1—7:
2% — 2% 1is surjective. (This assumption is satisfied, for example, 1f F 1s separably
closed.) Then, cd(K)=q+1.

(4) For each n=0, there is a canonical surjective homomorphism

P, oo P4(F) —> HTYK, p2atv),
where PL(F) is the group defined below.

DEFINITION 1. Let % be a field of characteristic p>0. Let ¢=0 and n=0.

We define the group P3%(k) by
g times

PUR)y=Wi(D)QE*Q - QEN/],

where W,(k) denotes the group of all p-Witt vectors of length »n over % (cf.
Demazure [7] Ch. IIl) and J denotes the subgroup of the tensor product gener-
ated by all elements of the following forms (1) (ii) (iii).
1 times
. /_——A— .

( 1 ) (Oy Ty 07 a, O: T 0)®a®bl® ®bq—1 <0§l<7’l, a, bl; Tty bq—lek*) .

(i) Fw)—w)Rb:Q -+ Qb, (we Wy(k), by, -+, by=k*), where § denotes the
homomorphism W, (B)— W,(k);

(a(b Ty an-l),_)<aé)y Ty ag—l)-

(i) w®bR - @b, such that b;=b; for some i+j.
We shall denote an element w®b,® -+ Qb, mod J of PL(E) by {w, by, -, bg}.

ReEMARK 1. Theorem 1 (2) is a special case of (4), since there is an isomor-
phism PYF)=02%/(1—-7)02% (cf. Corollary to Lemma 5 in §1.3).

REMARK 2. The group P%(k) is isomorphic to the cokernel of F—1:Cy(k)—
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Ca(k)/{Cy (%), T} of Bloch [3] Ch. I §7. For this, cf. §2.2 Cor. 4 to Prop. 2.
Hence, from the point of view of Milne [15], P%(k) is the group which will be
denoted by the notation H% (%, #%) when some cohomology theory justifies this
notation in the future even in the case ¢=2 and ch(k)=p>0.

DEFINITION 2. The definition of A% ,» is as follows. Let weW,(F) and
by, -+, by F*. By Witt theory [25], there is a canonical isomorphism
Wl Y /(F—1)Wa(F)=(Xp)pn. (Recall that X, denotes the character group of the
compact abelian group Gal(k**/k) for any field k) Since X is identified with the
unramified part of X, we have a homomorphism 7: W, {(F)—(Xg)pn— (Xg)pn =
HYK, Z/p"Z). Now, hk ,» is defined by

{w, by, =+, bh =)\ I Wy, B\ ++ I hhn, g (b)\I . k(%)

where 5, denotes any lifting of b; to Ox for each i, = denotes any prime element
of K, hhyn x denotes the canonical isomorphism K*/(K*)P*=HYK, ppn), and \J
denotes the cup product. It will be shown in § 1.3 that this homomorphism A% p»
is well defined.

It is probable that the canonical homomorphisms in the above Th. 1 (2) and
(4) are in fact bijective. For example, they are bijective in the case ¢=0, i.e.
in the case where F is a perfect field, by Serre [20] Ch. XII §3 Th. 2 and by
the isomorphism Py(F)=(Xpm)p. (Witt theory [25]). Next, they are bijective in
the case g=1, by Chapter I §5 Th. 1 (of this paper) and by the isomorphism
PLUF)=Br(F)yn (cf. §3.4 Lemma 16 for this isomorphism). They are also bijec-
tive in the following interesting case.

THEOREM 2. Besides the hypothesis of Theovem 1, suppose that F is a field
of the type E(X))(Xy) - (X)), where E is a perfect field. Then, for any n=0,
P, pn 1s bijective. Furthermore in this case, we have PY(E)=Pi(F); w—{w, Xi,
-, X}. Thus, '

HYHK, ps = PUEY=(Xg)pn .

Here E(X))(Xp)) -+ (X)) means the field defined inductively by the conven-
tion that E{(X))(Xy)) - (X;)) is the field of formal power series in the variable
X; over E((X))(Xy) -+ ((Xs-1) for each i.

The following Theorem 3 is an easy consequence of Theorem 2.

THEOREM 3. Let N=0, and let ky, -+, ky be flelds having the following
properties (1) and (ii).

(1) ko is a finite field.

(ii) For each i=1, -+, N, k; is a complete discrete valuation field and the
residue field of ks is kiy. Let K=Ey. Then, if m is an integer invertible in K,
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HY (K, oy E%Z/Z.

The basic idea for our cohomological study lies in the following relation
between Milnor’s K-groups and Galois cohomology.
For any field %, let 8,(k) (¢=0) be Milnor’s K-groups of Milnor [16], i.e.

Rk)=2Z, &(k)=F* and ‘
g times

RAB=(R*Q - Qk*)/]

for ¢g=2, where J is the subgroup of the tensor product generated by all elements
of the form x,& --- Rx, satisfying x;--x,=1 with 7 and j such that i#j. (Though
the notation Kk was used in [16] for Milnor’s K-groups, we use in this paper
the notation R«(k) for them, for we use the notation Ky(k) for Quillen’s K-groups.)
We shall denote the group structure of Milnor’s K-groups additively. We shall
denote the element & - Qx, mod J (xy, -, x, k%) of K& by {x,, -+, %}, and
for any x=8,(k) and yef,(k) (4, j=0), the image of x&y under the canonical
homomorphism K;,(F)QR(k)— &+ k) by {x, ;. We have {x, —x}=0 for any
xek*, and {x, y} =(—1D¥{y, x} for any x=Q;(k) and y=8&,(k).

Now, let m be an integer invertible in £ Then, the canonical isomorphism

moet BT =H(k, tn),

which comes from the exact sequence of Gal(k,/k)-modules

l—> pp — bE— kE—1,
induces for each ¢=0, a homomorphism
h%p: RfB)/m-RLk) — HUk, yZt
{xy, =, xgp = A1 (x)VY - URG (1),

where \U denotes the cup product. Concerning this homomorphism A% ,, the
experts perhaps have the following Conjecture in mind (cf. [16] §6).

Conjecture 1. The homomorphism h%, . is bijective for any field k, for any
g=0, and for any integer m which is invertible in k.

This Conjecture was verified in the case where 2 is algebraic over @, @,,
FT) or F,(T)) (where p is a prime number) by Tate (cf. Tate [23] Th. 2,
Bass and Tate [4] Ch. I, and Serre [21] Ch. II 6.3). In this §1, we prove the
surjectivity of A%, in the following cases.

ProroSITION 1. Let K be a complete discrete valuation field with residue
field F such that ch{K)=0, ch(F)=p>0, and [F: FP]=p'<oco. Then, the homo-
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morphism
RE2 Lt KoK/ P Rgsa(K) —> HTHK, )

P

1s surjective for any n=0.

Once we have Proposition 1, Theorem 1 can be reduced to a study of &,..(K)
(cf. §1.3).

PROPOSITION 2. Let k be a field, p a prime number which is invertible in k,
g=20 an integer and K an extension of k of finite transcendental degree d. Sup-
pose cdy(R)=q and suppose that the homomorphism h% s is surjective for any

Jinite separable extension E of k. Then, hit%, is surjective for any n=0.

COROLLARY. Let kb be a field, p a prime number which is invertible in
k, g=0 an integer and K an extension of k. Then h%n x is surjective for any n=0
if one of the following conditions is satisfied.

(1) k 1s separably closed and trans.deg, (K)=g.

(i) cdp(k)=1 and trans.deg, (K)=g—1.

(i) % is algebraic over @, or Fo{(T)) for some prime number p’ and
trans. deg (K)=<q—2.

(iv) k is algebraic over @ and trans.deg.(K)<q—2. Furthermore, if p=2,
k is totally imaginary.

Note that cd, (K)=g in each case (cf. Serre [21] Ch. II).
These Propositions will be deduced from the following

PROPOSITION 3. Let k be a field, S a Galois extension of k of infinite degree,
b a prime number which is invertible in k, and ¢=0 an integer. Suppose that
cd,Gal(S/k)=q and cd,(S)=1, and that for any open subgroup J of Gal(S/k), the

cup product )
g times

HY], Z/p2)Q - QH(], Z/ pZ) —> H], Z/pZ)

is surjective. Then, hG', is surjective for any n=0.

§1.2. Some preliminary Lemmas.

Here, we review briefly some properties of Milnor’s K-groups (cf. Bass and
Tate [4]) and prove some preliminary Lemmas.

1°. The homomorphism ¢. Let K be a discrete valuation field with residue
field F. Then, there is a homomorphism 0: 4. :(K)— &«(F) having the follow-
ing characterization: If ¢=0, and if x;, -+, x,€Ux and ye K*,

({xh vty Xy y}):UK(J’> {xly Ty xq} .
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2°. The norm homomorphisms. Let E be a finite extension of a field £ In
the case E=Fk(a) for some a=E, a norm homomorphism N,,;: 8(E)—Ru(k) is
defined in [4] Ch. I §5 depending on the choice of «, which we review below.
In fact, we can prove that for any finite extention E/k, the composite Ry ,=
Nayrye - °Nayp,_,: 84(E)— (k) is independent of the choice of the family
(aizi<n such that E=klas, -+, a,), where E; denotes kE(ay, ---, a;) for each i.
The proof of this fact is postponed until §1.7 for the reason that we hope to
prove the main results earlier, but we shall use the above notation %z, freely
in this § 1.

For any algebraic function field K in one variable over a field %, let B(K/k)
be the set of all normalized additive discrete valuations of XK which are trivial
on k. For each vePB(K/k), let (v) be the residue field of v, and let 3: fp:(K)
— & )Q*(fc(v)) be the homomorphism defined by the above 1°. Then, if K is

VEP(K /R
the rational function field £(X) and oo denotes the element of L(X/k) such that
o(X)=—1, B RKu&(v)) is generated by R4, (K)) and the oco-factor, and

VEB(CK /&)
there is a homomorphism (Nyewxs @ @ Re(k(v))— (k) which annihilates
v

0(R%4+,(K)) and induces the identity map on the co-factor. If E=k(a), N, is
defined to be N, where v is the element of B(K/E) corresponding to the minimum
polynomial over %z of a. (Cf. [4] Ch. I §5.)

The norm homomorphism RNz, satisfies Mu o ({x, y5})= Ttz (0), ¥y} (x€QUE)
and yeR,(%), and Rz, : KU(E)— (k) coincides with the usual norm homomor-
phism E*— k*,

3°. These homomorphisms 0 and N,,, are related via the homomorphism
h%.» with the following homomorphism § and the corestriction map of Galois
cohomology as in Lemma 1 and Lemma 3 below.

First, let K be a discrete valuation field with residue field F, m an integer
which is invertible in F, ¢=0, and r&Z. Let K be the completion of K. Then,
since cdp(f{m):l for any prime divisor » of m, we have a composite homomor-
phism §:

Hq“(K, ﬂ%(r+l)) s HQH(K, #%(ﬂl)) s Hq(F, HI(Knr> u1®n(r+1)))
— HYF, p&r QK& /RE)™) — HYF, p),

where the last isomorphism is induced by the valuation of K... Here in the case
r<0, ¢%& denotes Hom(u¢& ™, Q/Z) on which elements ¢ of the Galois groups act
by fofeo™t

LemMMA 1. Let K, F, m, and q be as above. Then, the following diagram is
commutative.
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+1
hi'x

Reea(K)/m &g+:1(K) H&YK, pEerv)
P l ; l (—1)2-5
RUFY/m-RF) HYF, 459).

This Lemma follows from the following Corollary to Lemma 2.

LEMMA 2. Let G be a pro-finite group, H a closed normal subgroup of G, p
a prime number, A and B p-primary torsion G-modules on which G acts con-
tinuously with respect to the discrete topologies on A and B. For any i, 7, J,
720 and for any x€ HYG/H, H¥(H, A)) and yeH"(G/H, H"(H, B)), denote by
Xy the element of H*(G/H, H**"(H, ARB)) obtained from the pair (x, y) by
taking the cup product over G/H and then that over H. On the other hand, let
\U be the cup product over G.

(1) Assume cd (H)=d<co and let

Ffe: H¥4G, ?)— H¥G/H, HYH, ?))
be the functorial homomorphism defined by this assumption. Let g, =0,
acs H*4G, A), be H{G/H, H*(H, B)). Then,
Foagl@IInEGH(B))=f(a)Tb
in H*YG/H, HY(H, AQB)). Here, Inf¢'¥ is the inflation map HYG/H, H'(H, B))

— HYG, B).
(2) Assume cd (G/H)Sg<o and let

g« HYG/H, H¥H, ?)) — H¥X(G, ?)
be the functorial homomorphism defined by this assumption. Let d, j=0,
ac HYG, A), be HAG/H, H¥(H, B)). Then,
aUgj(b)ng+j(ReS%(a)Ub)
in HHG, AQB). Here, Res} is the vrestriction map HYG, A)-
HYG/H, H¥H, A)).

Similar result can be obtained in any cohomology theory with cup product.
Since only the usual general methods in homological algebra are needed for the

proof, we left it to the reader.

COROLLARY. Let K be a complete discrete valuation field with residue field
F, and m an integer invertible in F. Then, if yeK*, ¢=0, r&Z, and be HYF, p3),
we have
(R gV Inf(B)=vx(y)-b in HUF, 5.

Heve, Inf denotes the inflation map
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HUF, p7)=H Gal(K,./K), H*(Ku, p30) —> HUK, p7).

Proor. This follows from Lemma 2 (1) if one considers the case in which
G=Gal(K,/K), H=Gal(K,/K,.), p is a prime number which is invertible in F
(then cdy(H)=1), A=ppn (n20), B=p%, d=1, i=0, g=q, a=hbn c(NEH K, ttpn)
and b=0). In this case, fix can be identified with §.

DEFINITION 3. Let % be a field, £ a finite extension of &, and M a discrete
Gal(k;/k)-module on which Gal(k,/k) acts continuously. We define the corestric-
tion map Corg/,: H¥E, MY)—H*(, M) to be [E: EJCorgyzoi™!, where E, is
the separable closure in £ of &, Corg,, is the usual corestriction map (cf. Serre

[217 Ch.1 §2.4) and i denotes the isomorphism H*(E,, M) -~ H *(E, M) induced
by the canonical isomorphism Gal(E,/E)— Gal((Ey)s/FEo).

Generally, let & be a field, K an algebraic function field in one variable over
k, m an integer invertible in b, ¢=0, and r€Z. For each veR(K/E), let J, be
the homomorphism 6: H*" (K, p57)— Hk(v), &) defined by v. It is not dif-
ficult to deduce the formula
(%) 2 Coreare°0,=0: HW(K, pS70) —> HU(k, pr

VEPCK /R
from cd(K-k;)=1 and from the usual summation formula

deg(v)-v(x)=0 for all x(K-k,)*,

>
VEP(K ksl kg
where K-k, denotes the composite field of K and %, over . Combining Lemma 1

with the above formula (%), we obtain;

LEMMA 3. Let £ be a field, E a finite extension of k, and m an integer
wnvertible in k. Then the following diagram is commutative for any ¢=0.

he

RUE) fm- R E) ——— HYE, 129)
Rz e l 4 l Corg,,
RBY/m-R,(k) mt H¥k, p20.

§1.3. The proofs of the Propositions and Theorem 1.
PROOF OF PROPOSITION 3. The key is the following Lemma 4.

LEMMA 4. Let G be a pro-finite group, H a closed normal subgroup of G,
and p a prime number. Let q,d=0 and suppose cd(G/H)=q and cd,(H)=d.
Then, H**4G, Z/pZ) is generated by elements of the form

Corg (a\UInf&/# (b))
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such that G’ is an open subgroup of G containing H and a=HYG’, Z/pZ) and
beHYG'/H, Z/pZ). Here, Cor§ denotes the corestriction map HYYG', Z/pZ)
—HYG, Z/pZ), Infg'? denotes the inflation map HNG'/H, Z/pZy—HNG', Z/pZ),
and \J denotes the cup product.

ProoF. By the assumption on the cohomological dimensions,

HYG, Z/pZy=HYG/H, HYH, Z/pZ)).

Since the subgroups I of H which are open in H and normal in G form a funda-
mental system of neighbourhoods of 1 in H, we have

HYG/H, H¥H, Z/pZ)):qu(G/H, H¥H/I, Z[pZ)).

Fix a subgroup I of H which is open in H and normal in G. Then,

HYH/I, Z/pZ)=lim HYG'/1, Z/pZ),
&

where G’ ranges over all open subgroups of G containing H. Since HYH/I, Z/pZ)
is finite, there is an open subgroup G’ of G containing H such that the action of
G'/H on HYH/I, Z/pZ) is trivial and such that the restriction map

Res: HUG' /I, Z/pZ) — HYH/I, Z/pZ)

is surjective. For such G’, we have the following commutative diagram

HYG! T, 2] p7) QG [, 2] p2) —e 20t

HXG', Z/pZYRQHNG', Z/ pZ)

Res®1l

(1) cup product
HYH/I, Z] pZ)QHYG'/H, Z] pZ)

z;l !

H(G'/H, HYH/I, Z| pZ)) ~ ————> H (G, Z/pZ)
Cor§/F (it) Cor&
Y
HYG/H, H(H/I, Z/pZ)) — ——————> H G, Z/ pZ),

in which the vertical arrows in the left side are all surjective by the assumption
on G’ and by c¢d(G/H)=q. Here the commutativity of the square (i) is deduced
from Lemma 2 (2) by taking G'/I, H/I, q, d, 0 as G, H, q, d, j of Lemma 2 (2),
respectively. The commutativity of the square (ii) is shown easily. This diagram
proves Lemma 4.

Now, for the proof of Prop. 3, we present some remarks. Generally, let %
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be a field, p a prime number invertible in %, and ¢=0. Then;

(1) If k%, is surjective, hn,, are surjective for all n=0.

2) If cd(R)=q and if h% .y is surjective for some finite extension E of k,
h,, IS surjective.

Indeed, (1) can be proved by induction on #, and (2) follows from Lemma 3
and from the fact that Corg,,: HXE, p39— H¥k, 3% is surjective by cdy(k)=q.

Let &, S and ¢ be as in the hypothesis of Prop. 3. Since c¢d(k)=g+1, the
above (1) and (2) show that it is sufficient to prove the surjectivity of 4%; and
that we may assume k contains a primitive p-th root of 1. Now, apply Lemma 4
by taking Gal(k,/k), Gal(ks/S), ¢ and 1 as G, H, ¢ and d, respectively. Then we
see that H9"(k, 459+V) is generated by elements of the form

Corgsx(h,x(2)\/Inf &R/ (D)

such that E is a finite extension of % contained in S, and such that x€E* and
be HYGal(S/E), #3%. By hypothesis, H4Gal(S/E), #3% is generated by the cup
products of elements of H¥Gal(S/E), up). It follows that He Yk, p89?) is

generated by
KEJ Corg/ao h§a(Re i (E))= g h%EeTg (R E))

PROOF OF PROPOSITION 1. We prove here Prop. 1 and the fact cd(K)=q+2
together. Since K is not formally real, for the proof of cdy(K)=gq+2, it suffices
to prove cd,(K')<g+2 for some finite extemsion K’ of K by Serre [22]. For
each i=0, let {,: be a primitive p’-th root of 1. As is easily seen, there is a
natural number »=2 such that for any i=7, K({,+1) is a totally ramified exten-
sion of degree p of K({,:). By the above remark (2), we may assume K=K({yr).

Take elements by, -+, by of Og such that the residue classes b;, -, b, form
a p-base of F (over F,) in the sense of Grothendieck [8] Ch. 0 §21. Take ele-
ments x;; (1==0, 1, 2, --; 1£j=<¢) of K, satisfying the conditions x, ;=b; and

%P1 ,=x:; for any i and j. Let M=\ K((), N=K({x;;11=20, 1=j=q}) and
S=M-N.
We claim cd,(S)<1. Indeed, generally, if % is a Henselian discrete valuation

field as N is, Gal((B)s/B) —> Gal(k,/k) by Artin [1] Lemma 2.2.1, where % denotes
the completion of &. If ch(k)=0, Br(k)EBr(l_Ae) follows easily from this fact. If
furthermore % has a perfect residue field of characteristic p>0 as N does, we
have a commutative diagram for each finite extension k'/k,

w  Br(k), = (Xi), X

v Y
we Br(E), = (Xp)y  ex il

by Serre [20] Ch. XII §3, where £ and £ are the residue fields of & and &’
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respectively, and e, is the ramification index of the extension %’/k This
diagram proves Br(S),=0 for any finite extension S’ of S (cf. the proof of Serre
[217 Ch. II §3.3 Prop. 9). The conclusion cd,(S)=1 follows from it by [21]
Ch. 1I §2.3 Prop. 4.

Now, we can apply Prop. 3 by taking K as . of Prop. 3, g1 as ¢, and S
as S. It suffices to prove cd,(Gal(S/K))=g-+1 and the fact that the cup product

g-+1 times
() HY], ZpZ2)Q - QHX], Z/pZ) — HTX], Z/pZ)

is surjective for any open subgroup J of Gal(S/K). Regard Gal(S/M) as a
Gal(M/K)-module, on which an element ¢ of Gal(M/K) acts by the inner auto-
morphism o—%g%"%, where 7 is a representative of r. Let Z,(1) be the inverse
limit of the inverse system of Gal(M/K)-modules (gtp:)izo whose transition maps
are fpiv1— pgi; x—x?. Then, as is easily seen, we have an isomorphism of
Gal(M/K)-modules

g times
e e
Gal(S/M)y=Z ,(1)X - X Z (1)

o= ((o(xs, 0/ %01 (U<xi,q)/xi,q)i>~

Furthermore, the homomorphism Gal(M/K)—Z% induced by the action of Gal(M/K}
on Z,(1) gives an isomorphism from Gal(M/K) onto the multiplicative group
1+p"Z,, which is isomorphic to the additive group Z, because r=22. It is easy
to deduce cd (Gal(S/K))=¢+1 and the surjectivity of the above homomorphism
(x) from these informations of the structure of Gal(S/K).

PROOF OF PROPOSITION 2. By induction on d, we may assume d=1. Since
cd(K)=<g¢+1 in this case, we may assume that K contains a primitive p-th root
of 1 by the remarks (1) and (2) in the proof of Prop. 3. We can apply Prop. 3
by taking K, K-k, g as k, S, ¢ of Prop. 3, respectively.

PrOOF oF COROLLARY TO PROPOSITION 2. Prop. 2 can be directly applied
to the cases (1) and (ii). For the cases (iii) and (iv), it suffices to recall that
cdp(k)=<2 in these cases (cf. Serre [21] Ch. Il §4 and §5) and the bijectivity of
h% . for these fields (Tate [23] Th. 2).

Proor oF THEOREM 1 except the part cd (K)=g-+1 in Th. 1 (1). (The part
cd (K)=¢+1 will be obtained in §1.4 Cor. 2 to Prop. 4.) Since we have obtained
the inequality c¢d,(K)=¢+2 in the proof of Prop. 1, it remains to prove the
following (i) (ii) (iii).

(i) PUF)y=0%/1-71)%%.

(ii) The homomorphism h% ,a 1s well defined.

(iil) A% pn is surjective.
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(The assertion (3) of Th. 1 is a consequence of (2) by the proof of Serre [21]
Ch. I §2 Prop. 4 if one admits cd(K)=g-+1.)
We need the following Lemmas.

LEMMA 5. Lef R be a ring such that the additive group R is generaied by
R*, Let q20. Then, there is an isomorphism

g times
(RQR*Q) - QR*)/J=2%

d d
x®y1® ®qux.i1_/\ /\&)
Y1 Y
where J is the subgroup of the tensor product gemervated by all elements of the
Following forms (1) and (ii).

(D) (B x)&( 2 x)— B 5®x@3:® ~ @i

n
(nzO, each xi, 23 Xu ¥i, yq~1€R*)-
&
(i) 2@y - Qu, satisfying y,=y; with 1 and j such that i#j.

Proor. This follows easily from the fact that £ is the quotient of the free
R-module with basis ([a])scr by the R-submodule generated by all elements of
the forms [a+b]—[a]—[b] and [abl—alb]—b[a].

COROLLARY. For any field k of characteristic p>0, PXk) is isomorphic to
the cokernel of 1—7: 83 40— 823, where 2% 4., denotes the kernel of the exterior
derivation d: 23— Q¢

ProoF. This follows from the fact that £2%,., is additively generated by
ﬂ/\ /\_d.yy_q (X, Vi, o, yqek*>'

1 g

elements of the forms dw (we 29 %) and x?-

DEFINITION 4. Let £ be a discrete valuation field. Let ¢=1 and n=1. We
denote by U™(k) (or simply by U{) the subgroup of ®,(k) generated by all
elements of the form {l-+x, y;, -, ¥g-1} such that xem} and y,, -+, ¥, Ek*

LEMMA 6. Let K be a discrete valuation field with residue field F. Let q=1.
(1) (Bass and Tate [4] Ch. | §4 Prop. 43.) There is an exact sequence

i 0
0 —> Ry(F) —> R /UDK) —> R, 1(F) —> 0.

Here t denotes the homomorphism {Zy, -, Ep—{xy, -, x (x5, -, x,€Ux) and
FYoisasin §1.2, 1% It splits by K- o(F) = RLEK)/UL 5 {Xy, -+, Fo-rb—{xy, -, %00, 7},
where © 1s any fixed prime element of K.
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(2) Assume n=1. Fix a prime element =« of K, and elements ¢ and ¢’ such
that v(c)=vg(c")=n. Then, there is a surjective homomorphism

‘P% . ‘Q%’—l@gg,—z —_ u((ln)/ul(ln-%l) ;

w%(z.i&/\ /\@1} g.fl:&/\ /\%3)

5 Vo1 Uy fg-»
= {1+XC, Vi =7 yq—l} + {1+ZC,, Uyy =y 7/lq_2, ﬂ-’}
(x: ZEOK, Vi, 7 Yg-15 Uy, 'y z’L11—2E[]K)°

If n is invertible in F, ¢4(x, 0): Q& —UP /NS s surjective.

(3) Assume ch(F)=p>0, and assume 1= n<exp/(p—1) and pln, where ex=
ve(p). Take elements b, b’ K such thal ve(B)=vx(b")=n/p, and let the elements
cand ¢ in (2) be b? and b'?, rvespectively. Then, ¢ induces a surjective homo-
morphism

7L 05/ 053-BRY /55 -0 —> U+ p- KU)WV +-p- §(KD)

4y Assume ch(Fy=p>0 and ch(K)=0, and that K contains a primitive p-th
root & of 1. Let n=exp/(p—1) and let c=c'=(C—1)". Then, ¢% induces a surjec-
tive homomorphism

L1 Q5 /(L= 2% i-0)DLF [ A—1)N2F =0)
—— (U2 p- RLEN /NP4 p- R(K)) -

Note that U C p- {K) for n>exp/(p—1), if K is complete and ch(F)=p>0.

REMARK 3. Let K, F and ¢ be as in Lemma 6. Assume ch(F)=p>0, and
let 1<n<exp/(p—1). In the case that n is prime to p, let % be the homomor-
phism Q% —UP +p- KK ) /UG +p- R(K)) induced by ¢i(x, 0). In the case
pln, let ¢4 be as in Lemma 6 (3). We shall claim in §1.4 Prop. 4, that ¢% is
bijective. Thus we can obtain exact knowledge of a large part of 8(K)/p- &LHK).

PROOF OF LEMMA 6. The homomorphisms ¢% are well defined by virtue of
Lemma 5. All things can be checked easily, as in the proof of Chapter 1 §2
Prop. 1.

LEMMA 7. Let k be a field of characteristic p>0. Let g=1 and by, -, b, k*.
Then, the condition [R(bY? (1=<i=¢q)): R1<p? is equivalent to {by, -+, b} Ep- Kk
In particular, k) is p-divisible if and only if Tk RP]< A

PROOF. First, assume [k(bY? (1=<i<gq)): k1<p%. We can take n<qg and fields
E,, -, E, such that k=FE,C - CE,, [E:: E;.]J=p and bY?EE; for each i=
1, -, n, and byP, € E,. Then,
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{01, -+ bastt =Fgyme - Repim,  0V?, -, Y}, byes}
=pTeg, ({017, -, BB}

Conversely, assume {b;, -+, b} €p-R,(k). Then, the existence of the homomor-
phism

RUBY/ - ReB) —> 08; (xy, -, 2} —> TFEp o fLHe
X1 Xq
shows Cébl A A (ébq =0. Hence [£(B)/? (1<i=¢q): E]<po
1 q

Now, we start the proofs of (i), (ii) and (iii) at the beginning of this Proof
of Theorem 1. We have already proved (i) in Corollary to Lemma 5. To prove
(i), let K, be the cyclic extension of K corresponding to i(w) (cf. Definition 2).
Then, (ii) can be reduced to Ul hpn, k(Ng 12K %)=0. Indeed, UPCTNg i x(KE),
for K, /K is unramified. Furthermore, if we W,(F) has the form

i times

0, ,0a0 ,0 (0Zi<n aesF*
and F,, denotes the cyclic extension of F corresponding to w via the isomorphism
WAFY/(F—DW(F)=(Xp)pn (i.e. F, is the residue field of K,,), then a € Np,, 7{(FE)
by Teichmiiller [24] Satz 1 and hence @& Ng  x(K5).

Lastly, we prove (iii). This is reduced to the surjectivity of h%,» by induc-
tion on n using the commutative diagram of exact sequences

a g
PLF)  — PL(F) — PYF) —0
e Wopn | Wi

HUHE, pe) —> HUHK, p5070) —> HO(K, pge),

where
a( {(aO: Ty Gn—z), b1, Ty bq}>: {(O) Qoy **° an-Z)’ bly Tty bq}:
ﬂ({(am Tty an—l)’ bly Ty bq}): {aO; bh Ty bq}'

Thus, we are reduced to the surjectivity of the homomorphism £%/(1—7)R2%
— HTHEK, p5@*). As is easily seen, we may assume that X contains a primitive
p-th root { of 1. In this case, this homomorphism coincides with the composite
Y 38 -1 h%%
S?QHUQ/P' Qq+2<K)
But the first arrow in this composite is surjective by Lemma 6, for K1(F) 1s
p-divisible by Lemma 7, and the second is surjective by Proposition 1.

b
Q%’/Q“?’)Q% HYK, #%@Jrz)) .
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§1.4. The cohomological residue.

In this § 1.4, we define a homomorphism called the cohomological residue.
This homomorphism will play a key role in the proofs of Theorem 2 and Theo-
rem 3, and the following Proposition 4. (Cf. § 1.6.)

PROPOSITION 4. Let K be a discrete valuation field with residue field F.
Assume ch(F)=p>0, and let n be an integer such that 1=n<exp/(p—1). Then,
the homomorphism 3% in §1.3 Remark 4 is bijective for any q=1. Assume further
ch(K)=0 and let UWCHYK, 129 be the image of UY" under the homomorphism
h%.x for each g=1. Then, h% x induces an isomorphism

(U +p- KON WL+ - RN =TE /WP

COROLLARY 1. Suppose ch(K)=0, K is complete, and F is separably closed.
Then, the restriction of h% x to MP+p  KLKN/D-RLK) is injective.

COROLLARY 2. Let K be any field and let ¢=0. Suppose that ch(K)=0 and
that there is -a discrete valuation of K such that the residue field F satisfies
ch(F)=p>0 and [F: FP]=p% Then, cd(K)=g+1.

PrOOF. Since £%+0, UR,/UR,#0 by Prop. 4. This proves H¥ (K, p§@+)+#0.
This Cor. 2 completes the proof of Theorem 1.

DEFINITION of the cohomological residue. Let 2 and K be complete discrete
valuation fields such that kCK, and E and F their residue fields, respectively.
Suppose that the following conditions (1), (ii), and (iii) are satisfied.

(1) The inclusion kC K satisfies O,COx and m,Cmg.

(ii) F is a Henselian discrete valuation field such that its valuation ring
contains E and iis residue field F is of finite degree over E if we regard F as
an extension of E via the composite E—Qp— F.

(ili) The transcendental degree of F over E is one.

(The conditions (ii) and (iii) are satisfled, for example, if F is the algebraic
closure of E(X) in the field of formal power series E((X)).)

Let ¢=0 and r€Z, and let m be an integer invertible in 2. We define now

a homomorphism
Res% : HTY(K, p&t) —> H%k, %),

called the cohomological residue. We need the following two Lemmas.

LEMMA 8. Let k and K be as above. Then:

(1) There is a homomorphism tx,,: K*—2Z characterized by the properties
tX/k<k*):O and
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txil)=[F: E]-ex,s-v(X) for all x€Uyg,

where ex;, denotes ve(rn) for prime elements = of k.
(@) There is a Gal(ks/k)-homomorphism T,y (ks(%K)*—>Z, where Gal(ky/k)

acts on Z trivially, characterized by the following property: If F is a finite
separable extension of k and if k’@K:HK‘” a finite product of fields, the

restriction of Tgp to K% coincides with txw,; of (1)

LEMMA 9. Let k and K be as above. Then, cd(ks- K)=1.

Now, we define the cohomological residue as the composite
HQ+1(K, IUS?L(T-)—D) > Hq(k’ Hl(k3®K, IU%L(T-}-I)))
k

= Hik, QDK (R QK™
- H(I(k’ ﬂ?;[) 2
where the first arrow is obtained by Lemma 9 and the last arrow is the homo-

morphism induced by the Gal(k,/k)-homomorphism Tx,, of Lemma 8 (2). (Since
ks@K is a finite product of fields, H*(ks@K, ?) can be defined as the direct

sum of the Galois cohomology groups of the fields.)

REMARK 4. The appropriateness of the name “ cohomolegical residue ” will
be explained in §1.8 Lemma 19.

REMARK 5. It is probable that there is a canonical homomorphism RAeS%J:
HYYK, p5 ) —H¥k, p2) in the case that the above condition (iii) is replaced
by the condition F is complete, which induces the above cohomological residue
Res%”. It is this homomorphism R/gs‘;;f that is truly desired, but the author has
not defined it.

PROOF OF LEMMA 8 AND LEMMA 9. The proof of Lemma 8 (1) is easy and
left to the reader. Next, from the above assumptions (ii) and (iii), we can
deduce the following (iv) and (v).

(iv) Let « be an element of F which is transcendental over E. Then, F is
a finite extension of the separable closure in F of E(a).

(v) The completion £ of F is a separable extension of F. It follows that
[F’: Fl=ep,»-[F’: F] for any finite extension F’ of F, where ep,r denotes
the ramification index and F’ denotes the residue field of F’.

Now, Lemma 8 (2) is a consequence of (1) and the above (v). To prove
Lemma 9, let « be an element of Oy such that the residue class @ is tran-
scendental over E. Then, the valuation of K induces on A(a) a discrete valuation
with residue field E(@). Let M be the completion of E(e), N the unramified
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extension of M corresponding to the separable closure in F of E(a), and N the
completion of N. Since [K: N]<oo by the above (iv), the cancnical homomor-
phisms

Gal(K,/K) —> Gal(N./ ) —— Gal(N,/N) —> Gal(M,/M) —> Gal(k(c),/k(c))

are all injective. Hence Gal(K;/(ks- K)) is isomorphic to a clesed subgroup of
Gal(k(a)s/ks(a)). 1t follows

cd(k;- K)=cd(ky{a)=1
by Serre [21] Ch. I §3 Prop. 14 and Ch. Il §4 Prop. 11.

§1.5. Constructions of complete discrete valuation fields.

This §1.5 is a preliminary for the proofs of Th. 2 and Th. 3, and Prop. 4.

Lemma 10. Lef R be a ring and p a prime ideal of R. Lel I be a field
containing R/pR as a subring. Then, there ave a divect system (R;, f;) of rings

over R with divected index set, and an R-isomorphism g: lim Ri/pRii F such
that 7

(i) Each R; 1s finilely generated as a ring over R, and flat over R.

(ii) Each induced homomorphism R;/pR;— F 1is injective.

PrOOF. Endow the set F' with a structure of a well-ordered set. By trans-
finite induction, we can construct for each aeF a direct system ¥,=(R;, f;;) of
rings over R with directed index set /,, and an R-homomorphism g, : lim R,;/pR;

—_—

— F, satisfying the above conditions (i) and (ii) and the following Ic%nditions
(iii) and (iv).

(ifi) If a=p, I, is a sub-ordered set of I;. For any i, j&l, such that i<j,
R; and f;; of ¥, coincide with those with respect to ¥} respectively, and the
restriction of g to mRi/pRi coincides with g,.

Ty
(iv) For each a, {f=F|B=a}Clmage(g,).
Indeed, suppose we have defined ¥, and g, for all e<ex,. LetI=UT,, = T,

alag a<ayg
g= _1131) g+ Here agyo ¥, means the direct system whose index set is / and whose
R; :1?1‘210 Sy are those of ¥, (w<a,). Asis easily seen, there are i, /, b€ R; —pR;,
and fe R, [b'][X] such that f is monic or zero, fla;)=0 when we regard f as
a polynomial over F via g, and the homomorphism (R,[6-*]/pR;[b*DLXT/(AX)
—F; X—q, induced by g is injective for any i1=i, ((€I). Let I’ be a copy of
the set {i=]]i=1,} and denote by ¢’ the element of I’ corresponding to i=J such

that 7=14, Let I,, be the disjoint union of I and [I’, and endow it with the
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following order: If ¢, j&/, 1=/ in I,, is equivalent to i=j in I. If 7, j/er’,
V=j in I, is equivalent to i=j in [. If ieland j€l’, 1=j in I,, is equivalent
to ¢=j in I, and i=j" in I,, does mnot occur. Now we can define the direct
system ¥, with index set I, as follows. For each ieIC]/,, let R; be the R;
of ¥. For each vel'Cl,, (i€l, i=1,), let Ry,=R.JIb"JLX]/(fX)). Let fiu
(i1=7, i, j€l,,) and g,, be the natural homomorphisms. Thus we have obtained
¥, and g, for all acF. Now the direct system U ¥, and the homomorphism
g:m g satisfy all the conditions in Lemma 10. :

COROLLARY 1. Let k and K be complete discrete valuation fields such thal
kCK, and E, F the residue fields of k and K, respectively. Suppose that any
prime element of k is still a prime element in K, and that F is separable over
E. Then, there are a divect system (A, f;) of rings over O, with divected index
set, and an Op-homomorphism g:_li_m)Ai—>OK having the following properties
(1i)~(@v).

(i) FEach A; is a Noetherian ring, flat over O, and complete with respect
to the myA;-adic topology.

(i) Each induced homomorphism A;/m,A;—F is injective, and _Ii_rgAi/mkA,-

~

— F.

(i) Each A;/m,A; is finitely generated as a ring over E.

(iv) lim A; is a Henselian discrete valuation ving and its completion is iso-
morphic zTéK via g.

PROOF. Let R=0;, p=m,;, and F'=F in Lemma 10. Let A, be the completion
of R; with respect to the m,R;-adic topology for each i. Since F is separable
over E, the completion of lim A; is isomorphic to Ox over O, by Grothendieck
{8] Ch. 0 §19 Th. 19.8.2.

COROLLARY 2. Let K be a complete discrete valuation field with residue field
F. Then, there is a divect system (ki f;:) of complete discrete valuation fields
with directed index set having the following properties (i )~(iii).

(i) IfiZj and w is a prime element of ki, f;(7) is a prime element of k.

(ii) lim k; is @ Henselian discrete valuation fleld whose completion is isomor-
phic to K?a discrete valuation field.

(i) The residue field of each k; is finitely genevated as a field over the
prime field.

PrROOF. We may assume that ch(F)=p>0 and ch(K)=0, for in the other
cases, K=F(T)) by Nagata [18] §31 Th. 31.1. By [18] §31 Th. 3112, Ox=x
Ox. [X]/((X)) where K’ is a complete discrete valuation field with residue field
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F having p as a prime element, and A(X) is an Eisenstein polynomial over Og..
Apply Cor. 1 by taking Q,, K’, ¥,, and F as k, K, F, and F. Let (4;, f;) be
the resulting direct system and let A= lim A,. Then, for some Eisenstein poly-
nomial A(X) over A which is sufﬁcientlﬁear to A(X), Og is isomorphic to the
completion of A[XT/(h(X)). Take an index i, such that h(X) is defined over
Az, Then, the direct system (AL X1/(ho(X)))iz¢, induces by localization and com-
pletion, the desired system (%;)izs,

The above Cor. 1 has the following consequence Lemma 11. Consider the
following property (P) of a field-extension K/k.

(P) Any finitely generated subring A over %2 of K has a k-homomorphism
A—Pk,

Example 1. Any purely transcendenial extension of an infinite field has the
property (P).

Example 2. If k'/k and k”/k has (P), so does k”/k.

Example 3. Let k be a Henselian discrete valuation field and B oits completion.
If ks separable over k, then the extension I%/k has the property (P).

This Example 3 can be easily deduced from Greenberg [9]1.

LeMMA 11. Let b and K be complete discrete valuation fields such that kCK,
and E, I the vesidue fields of k and K, respectively. Suppose that any prime
element of k is still a prime element in K, and that the extension F/E has the
property (P). Then:

(1) The extension K/k also has (P).

2y For any discrete Gal(k/R)-module M on which Gal(k,/k) acts continuously,
the canonical homomorphism H*(k, M)— H*(K, M) is injective.

ProoF. We can easily prove that any extension having the property (P) is
separable. If ch(k)=p>0 and k=FE((T)), take a direct system of finitely gener-
ated subrings R; over E of F with directed index set such that lim R;=F, and
let A,=R,[[TT]. If ch(k)=0, let (A;); be a direct system given—bgf the above
Cor. 1. Since F/E has the property (P), the set of FE-rational points in
Spec(A;/m,A;) is a dense subset for each i. Hence Spec(A;/m;A;) has a smooth
E-rational point A;/m,A;— E. But such E-homomorphism can be lifted to an
O,-homomorphism A;—0,. Let K° be the fleld of fractions of lim A4,. The
completion of K° is isomorphic to K over k, and separable over K fThus, the
extensions K°/k and K/K° have the property (P) (cf. Example 3).

Next, (2) follows from the following easy lemma, by taking the etale coho-

mology functor HZE(, M) (cf. Artin, Grothendieck and Verdier [2]) as F.
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LEMMA 12. Assume that K/k is a field-extension having the property (P).
Let F be a functor from the category of all k-rings to the category of all sets
which preserves all filtering divect limits. Then, F()—F(K) is injective.

§1.6. The proofs of Theorem 2, Theorem 3, and Proposition 4.

PrROOF OF THEOREM 2. Let K, F, and E be as in the hypothesis of Th. 2.
We may assume that the prime number p is a prime element of K, for K is a
totally ramified finite extension of a complete discrete valuation field X’ in which
p is a prime element and Corg,x °h% p,n=h% ,n. Since E is perfect, there is a
unique subfield z of K which is complete with respect to the induced discrete
valuation and whose residue fleld is £. Note that p is a prime element both in
k and in K. Consider the following commutative diagram.

(Xp),a= PUE) ————>  PYF)

H¥k, 1) ————— HOK, p30%0).

Here a denotes the homomorphism w—{w, X,, ---, X;} and pB denotes the homo-
morphism wr—»wKUh%n,K({Xl, e )?q} ), where X, denotes a lifting of X, to Ox for
each i. By Th. 1 (4), h% = is surjective. Since E is .perfect, hf,» is bijective
by Serre [207 Ch. XII §3 Th. 2. Furthermore, « is surjective by the following
Lemma 13 and induction on n and ¢g. Thus, it remains to prove the injectivity
of B, which follows from Lemma 14 below by induction on g.

LEMMA 13. Let E be a field of characteristic p>0 such that [E: EP]=p*<oco.
Let F=E({(X)). Then, the homomorphism
L1 —> QF DA w0 on

s bijective.
This follows from a simple computation of the action of 7.

LEMMA 14. Let bk, K, E and F be as in Cor. 1 to Lemma 10. Assume further
that theve is an isomorphism i: E(X)=F over E. Let X be a lifting of i(X) to
Ox. Then, the homomorphism

B: H%k, p5r) —> H@ (K, p57V); th%n,K(X)UwK

1s njective for any q=0 and rEZ and for any integer m invertible in k.
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ProoF. Let F° be the algebraic closure in F of E(i(X)). Then, there is a
subfield K’ of K, complete with respect to the restriction of the valuation of K,
such that k()? YCK'CK and such that the induced inclusions of the residue fields
coincide with E({(X))CF°CF. Then, 8 can be decomposed as

e, 2 R (BO\UP ks
y U

HQ+1<K/, #%(r+1>> - Hq+1(K’ #?n(r+1)> .

The first arrow is injective, for the cohomological residue gives its left inverse
as is deduced from §12 Lemma 2 (1) by taking Gal(K{/K’) Gal(Ki/(ks-K"), g,
1, 0 as G, H, g, d, i, respectively.  The second is injective by Lemma 11 (2), for
the extension F/F° has the property (P) by § 1.5 Example 3.

Proor oF THEOREM 3. Our proof is by induction on N. If N=0, there is a
canonical isomorphism X, =Q/Z; y—y(¥s,) where T, is the Frobenius auto-
morphism over k,. Hence

H*(ko, Z/mZ)z(Xko)m%%Z/Z.

Let N>1 and let F=ky.,. We may assume m=»" for some prime number p
which is invertible in K. If ch(F)=p,

HY(K, pgmzmko)pns—j;lﬂ/z

by Th. 2. If ch(F)#p, cd(F)<N by induction on N. Hence we have in this
case,

HY (K, )= HY(F, H(Kye, pgi )2 HY(F, pg> z%Z/Z
by induction on N.

ProOOF OF PrOPOSITION 4. In the case ch(K)=p>0, the first assertion can
be proved by the computation using the homomorphism

KUK p- QLK) —> Q% ; {x1, =, x} — .
X1 Xxq
(In this case, more is known about the structure of 8(K) by Bloch [3] Ch. 1I.)
So, in the following, we assume ch(KX)=0. It suffices to prove that the homo-
morphism from 2% or Q%1/Q% 3 PR/ 2%, to UP/NP*D induced by @4 is
injective. We may assume that K is complete and contains a primitive p-th root
of 1. Furthermore, by virtue of Cor. 2 to Lemma 10, we may assume that F is
finitely generated over the prime field F,. Since there is a separable extension
F’ of F such that F/'=E(X)) - (Xy) for some finite field E and for some
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natural number N=0, and since the homomorphism 2%— Q% is injective, we may
assume F=E(X)) - ((Xy)) (E is finite). In this case, by virtue of Th. 2,

Blepicp-1» induces a mnon-zero isomorphism QF/(1—nQF — WEEp/*-D  For
brevity, let e;=exp/(p—1). We may assume N is sufficiently large. Assume
Nzg. In the case p/n, the diagram

Qi Qo RS

Wy /T g, Mg

exterior product cup product
.Q%: by ¢év+2 ——5511'-)2;
1

which commutes for some suitable choices of elements =, ¢, ¢/ of Lemma 6 (2),
proves the injectivity of 2¢'—UP /UMD ; for the pairing 24X Q¥ QF is
non-degenerate and 2F is one dimensional over F. In the case p[n, if one
replaces Q% Q¥-*1 and QF in the above diagram by Q%32/0% 1 DL/ 0L,
QE- T QFLIPY-1/2F 72, and QF/dQ¥-" respectively, and the “exterior prod-
uct” by the pairing

(0. Pw,, 7]1@72) —> doy Antdw. A7,

the rewritten diagram similarly proves the injectivity of

0 QDO e — T [+

§1.7. The norm homemorphisms of Milnor’s K-groups.

In this §1.7, we prove the following Prop. 5, which implies that the norm
homomorphisms of Milnor’s K-groups defined in Bass and Tate [4] §5 are ca-
nonical homomorphisms.

PROPOSITION 5. Let k be a field and E a finite extension of k. Then, there
exists a {clearly unique) homomorphism Rz RK(E)—R(E) such that; for any
choice of finite family (@i)isicn 0f elements of E which generates E over k, Tgs
coincides with the composite NeayzyNagig® - °Nayig, 2 RK(E)—Ru(k), where
E,=ka,, -, a;) for 1=0, ---, n—1.

We begin with the following Lemmas.

LEMMA 15. Prop. 5 is true in the case where E is a normal extension of k
such that [E: k] is a prime number.



Generalization of local class field theory 627

Proor. The arguments in [4] Ch. I §5 show that we may assume that £
has the following property (E), for some prime number p.

(E), Every finite extension of k 1s of degree a power of p.
In this case, by [4] Ch. I Cor. 5.3, 8(E) (¢=1) is generated by elements of the
form {x, y5} (xERUE), yE&,-:(k). But Nusw(lx, y5})={Ngx(x), y} for any ackE
such that E=£k(«), where Ng,, is the usual norm homomorphism E*— k*,

By virtue of this Lemma, we may use the notation gz, in the case where
the extension E/k is as in Lemma 15 or trivial (E=k).

LEMMA 16. Let K be a complete discrete valuation field and L a finite normal
extension of K such that [L: K] is a prime number. Let F and E be the residue
fields of K and L, respectively. Then, we have the following commutative diagram.

Ruer1(L) Rx(E)
SJ’tL/K l 5 lSRE/F
Q*+1<K) ‘@*<F> .

PROOF. Let z be a fixed element of &,.,(L) (¢=0). By [4] Ch.ICor. 5.3, for
each prime number p, there is a finite extension K’/K such that [K’: K] is
prime to p and z;, (L’=L-K’) is generated by elements of the form {x, y..}
(xeR(L"), yERLK"). By this fact, we are reduced to the case where z itself
has the form {x, y;} (x8(L), yE&(K)), and it is easy to prove 0N x(z)=
Rz ro0(z) for such z.

LEMMA 17. Let k be a field and E a finite normal extension of k such that
[E: k]l is a prime number. Let B'=Fkla) be a finite extension of k, and let E'=
E(a). Then, NajpRe 1o =Rp/e°Najp: R(E)— Re(B).

Proor. By Lemma 16 and by [4] Ch. I §5 the diagram (15), we obtain the
following commutative diagram for any vePB(R(X)/k).

Re+1(E(X)) DR (w))
Recx e l 5 \1, % Mecwrremw
‘Q*+1(k(X)) Ryle(v)) .

Here w ranges over all elements of P(E(X)/E) which lie over v. Lemma 17
follows from this diagram and the definitions of N,,, and Ny (cf. §1.2).

PROOF OF PROPOSITION 5. Let 2 and E be as in the hypothesis of Prop. 5.
By [4] Ch. 1 §5, we may assume that & has the property (E), for some prime
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number p (cf. the proof of Lemma 15). In this case, the Galois group of any finite
Galois extension of % is nilpotent. Hence, there is a sequence of fields k=FE,C
E;C - CEL=F such that for each j, Ejis a normal extension of Ej., of degree
». By applying Lemma 17 to fields E;- Ej, we obtain

ATal/EO(’"'°Nan/En_1:mEi 1B °"'°mE”m/E’m_1 .

§1.8. Computation of the cohomological residue.

In this § 1.8, we compute the cohomological residues, showing the appropriate-
ness of the name “cohomological residue”. Since we shall not use later the
results of this § 1.8, we omit the details of the proof.

Let 2 be a complete discrete valuation field with residue field E, and

A the Henselization of the two dimensional local ring Ol Xm0

M the field of fractions of A,

K the field of fractions of the completion of the local ring A, A
(Here (m,, X) denotes the maximal ideal of O,[X] generated by m, and X))
Since the local ring A, ,4 is a discrete valuation ring, K is a complete discrete
valuation fleld, and the residue field F of K is isomorphic to the algebraic closure
in E((X)) of E(X). Thus, the pair (¢, K) satisfies the assumptions ( i ), (ii) and (iii)
in §1.4, and defines the cohomological residue Res%": HY (K, p&+0)— HYk, 15
for each ¢=0 and r=Z, and for each integer m which is invertible in & In
the following, we compute the composite

h&s Res%?
Ro:1(K)/m- Ry 1(K) HeYK, pgat) H¥k, p38).
Note that since M is dense in K, the homomorphism M*/(M*)™— K*/(K*)™ and
hence the homomorphism &..(M)/m: R4 (M) — 1(K)/m- 8,.:(K) are surjective.

First, we show that there is a kind of reciprocity law. Let © be the set of
all prime ideals of height one of A, and let & =&—{m,A}. For each p=&’, let
£(p) be the residue field of A at p, and J, the homomorphism §: HT (M, p@r+b)
— H¥&(p), %) of §1.2 defined with respect to the p-adic valuation. Note that
for each pe@’, () is a finite extension of k.

LEMMA 18. Let k, M, K, &, g, r and m as above. Then, the composite
ResZr

HT (M, ﬂ7®n<r+1))__)Hq+1(K, #gn(ﬂ»l)) HYE, /l%[

coincides with 2, Col.cy/2°0,.
ez

ProOOF. Since trans. deg,(M)=1, cd(k;-M)=<1. Hence the above composite
can be rewritten as

HO(M, p570) — H(k, H'kyr M, p57*)



Generalization of local class field theory 629

~——>H‘1(k P ks M)* (ks M)Y*)™)
—> H¥E, %) ®Y Tkie).

Thus we are reduced to the fact:
For each x= M*, z‘K,k(x):pE [e®): k) vy(x) in Z, where v, denotes the
Sy

y-adic normalized additive discrete valuation for each p, but this can be proved
easily. (Here Tx,, and fx,, are the homomorphisms defined in §1.4 Lemma 8.)

COROLLARY. The following diagram commutes.

by o

Ron(M) HE (K, p55)
BRowd| | (=1 Resgs
R(k) H(k, 139).

By simple computation using this Corollary, we can obtain the following
result.

LEMMA 19. Let k, K, E, F, ¢ and m be as above. Then,
Res{ (A k(U EONT 1, (B (R))

for each n=1. Furthermore, the diagram

Y SD;z‘L-l—l
GO PSR ) e O ()
res g P-—~res ., (—1)? Resg?
by ¢f
o B3, s UG (RD)/ g, (MO ()

commutes if one takes common =, ¢, and ¢’ (§ 1.3 Lemma 6 (2)) for the definitions
of the above ¢%t* and ¢} satisfying =, ¢, ¢'€k. Here for any ¢=0, res,: £%F'—
0% denotes the unique homomorphism such that

dyx A Dt
res,l x 0
q< Y1 Va+1 >
Jor any x€0p, 31, -+, Y1 EUr, and
duy dug, ., .
du, ,dX z by /\~-~/\—;— if 1=0,
resy{ z e AX e > 1 q

0 if 0#ieZ,
for any z€E, uy, -+, uus E*. Here X is the variable in the definition of A.
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Note that res,: 2z—E coincides with the usual residue homomorphism

> a; X idTXr—» ao. This is the reason for the naming “cohomological residue ”.
K3

In the following §2, we shall define residue homomorphisms in algebraic
K-theory. The analogy with the cohomological residue can be illustrated as
follows:

§14 E Oy F k K H¥k (resp. K), p&r

§21 A B Bs ALLTINT™] Bs[[TIIT ] CK4A (resp. Bs)).

§2. The residue homomorphisms in algebraic K-theory.

In this §2, we generalize the residue homomorphisms 3 aindT—Hao, by

using Quillen’s K-groups. These generalized residue homomorphisms will be
used in §3 for the construction of the canonical homomorphism ¥ : Ky(K)—
Gal(K**/K) for “higher” local fields K of positive characteristics. Another
application is a complement to Bloch’s computation of SC‘KQ(R) in Bloch [3].
The generalized residue homomorphisms provide a new method for the compu-
tation of SéKq(R) and we can eliminate the assumption g=<p of [3] (cf. §2.2
Prop. 2).

§2.1. The definition and general properties of the residue homomorphisms.

For a ring R, let K(R) (¢=0) be Quillen’s K-groups in Quillen [19]. We
denote the group law of K, (R) additively. As in Bloch [3], let

CH(R)= lim Ker(K(RLTI/(T™)—> K(R)).

Let f: A—B be a ring homomorphism, and S a multiplicatively closed subset
of B. Assume that

(i) B is flat as an A-module (via f).

(ii) Every element of S is a non-zero divisor of B.

(iil) For any s€S, B/sB is finitely generated and projective as an A-module.

Let Bs=B[s"(seS)]. Under these assumptions, we shall define a canonical
homomorphism

Rescs.sy 1 CKisr(Bs) —> CKu(A),

which we shall call the residue homomorphism, having the properties as in the
following Prop. 1. Recall that for any ring R, a natural W(R)-module structure
on CK,(R) (g20) and operators V, and F, (n=1) on CK,R) are defined by
Bloch [3] Ch. II §1 and §2, where W(R) denotes the ring of all generalized
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Witt vectors over R in Cartier [6].

PROPOSITION 1. (1) Res¢s.sr: CKysi(Bs)—CKx(A) is a homomorphism of
W(A)-modules, and commutes with the actions of V. and Fn for each n=1.

(2) Let (A’, B, f', §') be another 4-ple satisfying the above assumptions (1),
(i) and (iii), and g: A—A’ and h: B— B’ ring homomorphisms such that hef=
fleg. Then:

(i) Assume that the induced homomorphism A’@B—»B’ is bijective and

WS)CT(BsY*. Then the following diagram is commutative.

. Res ¢, -
CKyi(Bs) D e CKW(A)

. ‘ Res (/. ¢ A L
CKyri(BE) L2 CKA(AY).

(ii) Assume that A’ and B’ are finitely genevated and projective as modules
over A and B, respectively, and that Bjsy is isomorphic to Bl over B'. Then,
the following diagram is commutative, where the notation Tr is as in Definition 1
below.

. Res ¢fr, A ,
CKysr(BS) I w CKW(A)

Tr B:gl IBg Tr AYA

Res ¢y,
CKyri Bg) ——————s= CK:(A).

DEFINITION 1. Let g: R—R’ be a ring homomorphism such that R’ is
finitely generated and projective as an R-module. We denote by Trg,r the
homomorphism C‘K*(R’)—>C‘K*(R) induced by the system of transfer maps (cf.
Quillen [197 §4) {K R [TI/(T™)—K«R[T1/(T™)}. On the other hand, we
often use the notation Nz & for the transfer map Ku«(R')— Kix(R) itself.

Now, we define the residue homomorphisms. Let (4, B, f, S) be as above,
and H} s the category of all B-modules which admit a resolution of length one
by finitely generated projective B-modules and which are annihilated by some
element of S. By Grayson [11] ¢ the localization theorem for projective medules ”,
there is a canonical homomorphism

0: Kysi(Bs) —> Ku(Hi s),

which is the boundary map in a certain long exact sequence of homotopy groups.
(Cf. §2.3 and §2.4 to avoid the possible change of the sign of 9 which arises
from the variance of the definitions of the boundary map. In the place where
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we must make it clear which definition of the boundary map is adopted, we take
the homomorphism 0¢,5 of §2.4 Prop. 5 as 0.) By Lemma 1 below, we have
an exact functor from Hj s to the category P(A) of all finitely generated projec-
tive A-modules, which assigns to each object of Hj s its underlying A-module,
and hence have d homomorphism Ky(Hj s)— K«(P(A)=K«(A) by Quillen [19].
By composing these homomorphisms, we obtain a homomorphism

a(f,S) t Kyua(Bs) —> Ki(A).
For each m=0, let fn: A[T]/(T’")—»B[T]/(Tm) be the homomorphism >3 a;T*
— 3 fa)T* By Lemma 2 (i) below, we obtain an inverse system of homomor-

phisms
{08 1 K BsLTT/(T™)) — Kl ALT 1/ (T™D} 21 -

Hence, in the limit, we obtain the desired fe'sidue homomorphism
ReS(f,S) M C\‘JK'*.;.I(BS).H éK*(A) .

LEMMA 1. Let (A, B, f, S) be as above. Then, every object of Hj s is finitely
generated and projective as an A-module.

The proof is not difficult and is left to the reader. .

LEmMMA 2. T, h_e, assertions in Prop. 1 (2) ave wvalid. when we replace the
diagrams in (i) and (ii) by the following diagrams (1Y and (i), respectively.

o ac,. S
KiBs) ——L2 o KA

iy l 1
O, 50

Kesi(By) ———> K (A)

degrs0

Kyi:(By) ————— Ky(A)

Y . Ny
(i) Ny, 15 l 414

0
Kyi(Bs) ——F " Ky(A).

Proor. For any ring R, let P(K) be the category of all finitely generated
projective K-modules, and PR) the category of all R-modules which admit a
resolution of length one by finitely generated projective R-modules. If a ring
homomorphism R—R’ is given, let PA(R) be the full subcategory of PYR)
consisting of all objects M such that Torf(M, R')=0. By Quillen [19] §4 Th. 3,
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the inclusions P(RYCPA(R)CPYR) induce bijections K*(R):K*(P(R))—i

K*(Pé,(R))-:—»K*(Pl(R)). The commutativity of the diagram (i)’ follows from
that of the following diagram and from the naturality of the boundary map in a
long exact sequence of homotopy groups. The commutativity of (ii)’ is proved
similarly.

P(A) = s = P (B) —= Py (Bs)
e l |
P(A7) = Hp s —= PY(B’) - PYBg)

PROOF OF PROPOSITION 1. For a ring R and a&R, let [a]: CK«(R)— CK«(R)
be the homomorphism induced by the ring homomorphism over R; R[T1/(T™)—
R[T1/(T™; T—aT (m=1). For the proof of (1), it suffices to prove that Res¢.s
commutes with any V,, F, and [a] (n=1, aeA) (cf. [31 Ch. II §2). Hence
Prop. 1 follows from Lemma 2 by replacing A, B, - by ALTI/T™), B[T]'/(T"‘),
{(m=1).

§2.2. The computation of the residue homomorphisms.

Here we describe the restriction of the residue homomorphism to the sub-
group of CK.(Bs) generated by symbols (cf. Prop. 3 below). In the course of
the study, we can compute SCK* and eliminate the assumption ¢=<p in Bloch [3]
{(cf. Prop. 2 below). This §2.2 contains only the statements of Prop. 2, Prop. 3
and the Corollaries to Prop. 2. The proofs will be completed in §2.5. '

We fix some notations.

By Loday [14] Ch. II, there is a natural anticommutative graded ring struc-
ture on %KQ(R) for any commutative ring R. We shall denote

by {x, y} the multiplication for this structure.
Since there is a canonical injective homomorphism R*— K(R), we have for any
¢=0 and x;, -, x,€R* an element {x;, -, %t of K(R). The following identities
are known to be valid (cf. Loday [14] Ch. II Th.2.1.12 and Milnor [17] 89
Lemma 9.8; note that Loday’s product K(R)X K, (R)— K,(R) coincides up to sign
with the product in [17] by [14] Ch. Il Prop. 2.2.3).

{x, ¥ =(—D¥{y, x} for any 1, j=0 and x€K{(R), ye K{R).
{u, 1—u} =0 for any usR* such that 1—uesR*,
{u, —u}=0 for any usR*.

We shall denote
by Ky=(R) the subgroup of K (R) generated by all symbols {xi, -+, xg}
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(X1, -+, %, ER*).
According to Bloch [3], we shall use the notations ;
SCE(R)=Ker(Kg™(RLTI/(T™") —> K¥™(R)) (n=0),
SCK(R)= lim SC.E(R),
SCK(R)=Ker(Kg™(R[[T1]) — Ky=(R)),
filt"SC.K(R)=Ker(SC.K(R) —> SC,K(R)).

In addition, we shall often use the following group.

DEFINITION 2. Let g}o S¢(R) be the sub-graded-ring of q@zao K(RLTIALTD
generated by the image of q@ K¥=(R[[T1] and TeK(R[[TII[T-Y]). For each
nzl, let qEB S§(R) be the graded ideal of ;(QOSQ(R) generated by 14-7T™ R[[T]]
(CS(R)).

LEMMA 3. Suppose R is additively generated by R*. Then:
() AST(R), SR CSTF(R) for any i, j, m, n=1.
(2) For each g=1 and n=1, there is a surjective homomorphism

p% : Q%ﬁl@gl}e—z — Sén)(R)/Sf{H—D(R) ;

SD%( dyl dyq_l, Zdul

X—ZENA e A /\.../\ﬂ‘ﬂ)
Y1

Yg-1 Uy Ug-2

:{1+XTn’ Vi, =0y yq-l} + {1+2Tn; Uy ", Ug—2, T} mod szn+1)(R> .

Proor. Indeed, (1) can be proved just as Chapter 1 §2 Lemma 2, by re-
placing the field S there by RILTTILT-*]. Next, (2) follows from (1) and §1.3
Lemma 5.

COROLLARY. Suppose that R is additively generated by R*. Then, S;(R) is
topologically generated with respect to the topology defined by the filtration
{S§(R)} m=n, by elements of the forms

{1+anr [ETIRAA 7’q—l} and {l+any Tie 0y Voo T}
(FERLLTIL, 71y -+, 1741 ER®).
LEMMA 4. Suppose that R is a regular Noetherian ving. Then;
(1) The canonical homomorphism K R[[T1D— K«(RULTIALT D) is injective.

(2) If one regards SC.KLR) as a subgroup of KARIITIILT D) by (1), we

have
SEPRCHI™SCLE(R)  for any nz1.

If R is additively generated by R*, we have SPRY=SCL.K/(R).
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PrROOF. Indeed, (1) is shown in the proof of Bloch [3] Ch. II §3 Prop. 1.1
when R is a regular local ring. But the proof there can be applied to the case
where R is assumed only to be regular Noetherian, for R[[TJ] is regular
Noetherian if R is so. Next, the first assertion in (2) is proved in [3] Ch. I §3
Cor. 1.5, and the second is proved easily.

The following Prop. 2 computes the structure of SC‘Kq, and Prop. 3 computes
the restriction of the residue homomorphism to SC‘KQ(BS).

PROPOSITION 2. Let p be a prime number and R a ring over F,. Suppose
that R is regular Noetherian rving having a p-base (over Fj) in the sense of
Grothendieck [8] Ch. 0 §21, and that R is additively generated by R*. Then, we
have, for any g=1;

(1) Assume n=mp", pfm. Then, ¢% in Lemma 3 induces an isomorphism

(QEBRED/ L g — SPR)/STR)

where L, denotes the subgroup of Q%'@BLR%*" generated by all elements of the
forms

<az>id7‘al/\ /\EE‘LZ_/\df‘a, 0>’

1 Qg-2
(0, a0 p o p o d2y,
a; Qg-3 a
(apT da, A A dag-s A da mea? da, Ao A daq_2>
aq aq_z a a; ag_g

such that 0<i<r, 0=j<7r, and a, a;, -, G4-2 S R*.
2) S P(R)CHI"SCLK(RYCSTO(R) for all nz0.

REMARK 1. This Prop. 2 and the following Cor. 1 and Cor. 2 were proved
in Bloch [3] Ch. II under the assumptions ¢=<p and the assumption that R is a
local ring. The assumption “local” can be easily replaced by the assumption
that R is additively generated by R* without essential change of the argument
in [3]. But it is not easy to eliminate the assumption g=p. For this, we use
the residue homomorphisms instead of the methods in [3] Ch. I §3 and §4.

REMARK 2. By Deligne and Illusie, it was shown that the results of Bloch
[3] Ch. Il are obtained without the hypothesis on p and dim(X) of [3] if one
uses a certain complex W2% (de Rham-Witt complex) instead of the K-theoretic
groups of [3]. Cf. Illusie [13]. The complex WQ% is defined without K-theory,
and so, [13] does not compute the group SCK*. The above Prop. 2 and the
following Cor. 1 and Cor. 2 show that the results of [3] Ch. Il can be still
obtained without the hypothesis on » and dim(X) by using the K-theoretic groups.
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COROLLARY 1. Let R be as in Prop. 2. Then,

SCK(R)= lim SP(R)/S{(R) .
q — q
n

Proor. This follows from Prop. 2 (2).
By Cor. 1, if R is a ring satisfying the hypothesis of Prop. 2, EBSC‘KQ(R)
g0

has the structure of a left and right graded-EBO S¢(R)-module induced by those of
gz
EBIS§”>(R). In particular, Te K(R[[LTII[T-Y]) defines the multiplications x—
qz
{x, T} and 2~ {T, } on @ SCK/R).
qz

Assume Prop. 2 and let R be as in the hypothesis of Prop. 2. Then, SéKq(R)
is a sub-W(R)-module of éKq(R). (The proof of this fact is the same as the proof
of [3] Ch. Il §5 Prop. 1.1.) According to [3] Ch. II §7, let TC‘KQ(R) be the
typical part of the W(R) module SCK,(R), and for each n=0, let filt"TCK,(R)
be the closed subgroup of SC‘KQ(R) topologically generated by elements of the
forms

{E@T?™), 11, »+, 7g-1} and {E(aT?™), 7y, -, 74, T}

(mzn, a€R, 1y, -, 1;-1ER*), where E is the Artin-Hasse exponential E(x)=

, (I—x™)~#™i  Since we have assumed Prop. 2, the argument in [3] Ch. I
nzl,pin

§7 shows
il TCK(R)=TCKLR).
As in [3] Ch. II §7, let
CLR)=TCK(R)/8lt"TCK,.(R) for n=0.

Since we have Prop. 2 without the hypothesis ¢=p, we can prove [3] Ch. II §7
Th. 2.1 without this hypothesis; i.e,,

COROLLARY 2. Let R be as in Prop. 2. For each n=0 and ¢=1, let
T(Dan(R)——-ﬁlt"TC‘Kq(R)/ﬁIt”“‘lTéKq(R). Then, there is an isomorphism

B4 (RF ' DRED/ Lpn =T P, K(R);

N d”q‘z)

1 Ye-1 Uy Ug-2

:{E(pr'”')’ Y =y yq—l}_'_{E(ZTpn): Uy, =ty Ug-2, T}

where Lyng ts as in Prop. 2 (1). Egquivalently, there is an exact sequence 0—
Q%D —»TO . K(R)~Q%*/E,—0, where D, and E, are as in [3] Ch. 1l §7
Th. 2.1.

We can obtain an explicit presentation of Ci(R). Let W (R) be the group
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of all p-Witt vectors over R, i.e. the group denoted by W(R) in Serre [20] Ch. Il
§6, and let W, (R) be the group of all p-Witt vectors of length n over R. We
identify W<®(R) with the typical part TCKy(R) of CK,(R)=1+T-R[[T]] via the
isomorphism (ao, ai, as, -'-)HEOE(anTP”).

COROLLARY 3. Let R be as in Prop. 2. Let ¢=0 and n=0. Then, the homo-

morphism ) )
g times g—1 times

WARBRE —~ @RIBW P(RISRED - QR —> TCK,1(R);
(w®7’1® ®7’q: w/®7’£® ®7/(’1—1>’——> {w’ (ST Vq} +{w/; 7/_() Y Té—l) T}

mduces an isomorphism

WuRYD A (ROBWARID D (RN)/ Mo 1 =CHR)

*
Here /Z\ (R*) denotes the exterior power of the abelian group R*, and My, denotes

the subgroup generated by all elements of the forms

(ed@)QAriA - Argeina), pHed@)R(rA - Arg-1)

and
(07 ei(a)®<71 /\ i /\Tq—Z/\a))
such that 0=i<n, a, 1y, -+, 1.1 ER*, where ea) denotes the element
7 times

—————\
©, ~,0,a 0, -, 0 of Wa(R).
We can deduce from this Cor. 3, the following

COROLLARY 4. Let b be a field of chavacteristic p>0, and let P§(k) be as in
§ 1.1 Definition 1 for each n, g=20. Then, therve is an exact sequence

F—1
C4(k) —> Ci(k)/{C4(R), T} —> Pi(k) —> 0.

Here, F is the homomorphism induced by Fp: SCK,:(k)—SCKyui(k).

PrOPOSITION 3. Let (A, B, f, S) be as in §2.1. Let p be a prime number,
and suppose that both A and B satisfy the hypothesis on R in Prop. 2, and that
there is an element w of S such that A— B/xB is bijective and (Bs)* is generated
by B* and =. Then, Bs satisfies the hypothesis on R in Prop. 2, and we have:

(1) Resc,(SCKxn(B)TSCKL(A),

Res ;.5 TCKsi(B)CTTCKA(A),
Res¢s s (t"TC K, ( BOYCHPTCKLA)  for all n, ¢=0.
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(2> The family of homomorphisms
{Rescr,sr 1 SCKui(Bg) —> SCK A} gzo

is the unique family of continuous homomorphisms such that:
(i) The induced homomorphism

q@l SCK(Bs) —> ;(290 SCK(A)

is @ homomorphism of left- @ S(A)-modules (cf. the remark under Cor. 1 to
qz0
Prop. 2) and annihilates the image of GBISC‘KQ(B).
gz

14+aT® if r=0

(ii) Rese,s({I+an"T", ﬂ})={
0 of r#0

Jor all ac A, reZ and n=1.
(3) The induced diagram

g+l
2 005 2 o TO,K,. (B
res g1 D(—res . s) by Res s,
bn
QUL TO,.K(A)

(cf. Cor. 2 to Prop. 2) is commutative, where {res,: Q%4 — 029} 20 is the unique
Jamily of homomorphisms such that:
(i) The induced homomorphism @IQ%S—»EBO.Q‘Q is a homomorphism of left-
qz gz

$2%-modules and annikilates the image of @ Q4.
gz1
{ a if r=0
0 if r+0

qz0
(i) reso<a7rriiﬁ£>:

for all ac A and v Z.

§2.3. A product structure in algebraic K-theory.

In this §2.3, we prove the following Prop. 4.

DEFINITION 3. An exact category over a ring R is an exact category M in
the sense of Quillen [19] §2 whose every object X is endowed with a ring
homomorphism 6y: R—End,(X) satisfying h-0y(a)=8y(a)-h for any morphism
h: X—Y in M and for any a€R. If M and M’ are exact categories over R,
an exact functor f: M— M’ is called an exact functor over R if f0x(@)=0;x(a)
for any object X of M and for any e¢=R.

For example, the category P(R) of all finitely generated projective R-modules
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is, in the natural way, an exact category over K.

PROPOSITION 4. For any exact category M over a commutative ring R, there
exists a canonical graded-left-Z@® P K (R)-module structure on GBOKQ(M) satisfying
gzl gz

the following conditions (1) and (2). Heve we regard Z EBqu(R) as a sub-graded
gz
ring of GBOKQ(R) which is endowed with the graded ring structuve of Loday [14]
gz

Ch. 1L
(1) If M and M’ are exact categorvies over R and f: M—M’ is an exact
Sfunctor over R, the induced homomorphism fy: @Kq(M)—)Gaqu(M’) (cf. Quillen
gz gz

(191 §2) is a homomorphism of left-Z@EBqu(R)-modules.
qz

(2) If M=P(R), this graded module structure cotncides with the one induced
by Loday’s graded ring structure on EBOKQ(R).
gz

We fix some notations in algebraic topology. Let X and Y be pointed topol-
ogical spaces with base points x, and y,, respectively. Then,

F(X, Y) denotes the space of all continuous maps X— Y endowed with the
compact-cpen topology, and

F{X, V) the subspace of F(X, Y) consisting of all maps preserving the base
points.

For ¢=0, let n(X) be the g-th homotopy group, 27X=F,(S% X), and 2X=
2*X where S? is the g-sphere as usual. We identify 7mpn4.(X) with z,(2"X) via
the general canonical map F(YAZ, X)—F(Y, F(Z, X)).

If h: X—Y is a continuous map preserving the base points,

I, denotes the homotopy fiber of 4, that is, the subspace of XXF(I, Y)
consisting of all elements (x, w) such that w(0)=y, and w(1)=h(x), where I is the
closed interval [0, 17,

O : Y —1I, denotes the inclusion w— (x,, w).

Let Z —Z—> X —> Y be a sequence of pointed topological spaces and continuous
maps preserving the base points. Assume

(F) hei=0 and the inclusion map j: Z—1%; z—(i(z), 0) is a homotopy equiv-
alence.

Here 0 denote the constant maps with value y,. Then, we have a long exact
sequence of homotopy groups (cf. for example, Hilton [12])

740 7ol h) Tg1(f) e mg-1(0r)
- —> 1 (Z) T X) 2Y)————————— g Z) > -

1 h
DEFINITION 4. Let Z—> X——> Y be as above. We denote by 8¢, the
above homomorphism 7. ,(Y)—7(Z); me(f) roms(0p).
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The following Lemma 5 and Lemma 6 will be useful later.

1 h
LEMMA 5. Let Z—> X — Y be as above. Then, for any q=0, the sequence
024 2%
27 —> QX — Y also satisfies the condition (F), and

a(gqi,!ﬂm:(—‘l)qa(i,ml Tnsi(Y) —> zn(Z) for all m=gq.
Here 00%:.0%) ¢ Tmei(Y)—wn(Z) is, in the precise form, the composite wm (Y )=

0¢0%, 0%
7Tm—q+1<~QqY)

Tm-o 2 Z)=rn(Z).

7 h i n
LeMMA 6. Suppose that Z—> X—>Y and 7' —> X' — Y’ satisfy the
above condition (F), A is a pointed topological space, and

pr ANZ—> 7', q: ANX— X', v: ANY — Y’

are continuous maps presevving the base points such that the diagram

AN AN
ANZ ANX ANY
oo, 7l
z X Y’

1s commutative. Then, for any m, n=0 and for any aSa,(A) and ber, . (V),
we have
0 1@ 0Yy=0a-0¢.55(0) (ETman(Z")).

Here a-bE wpine(Y") and a0 py(B)Ewpnaa(Z’) denote the classes of continuous
maps

a/Nb

”
Smntl=Sm A S ANY — Y’ and

AN0q.n(b)

p
SmHr=S"mAS" ANZ — 77,

respectively.

The proofs of these lemmas are left to the reader.

PROOF OF PROPOSITION 4. Let M be an exact category over R and let QM
be the category in Quillen [197 §2. Let n=1! and identify GL,(R) with the
category with unique object ¢ such that the semigroup of all endomorphisms of
e is GL.(R). Let AL (resp. AP) be the functor GL(R)XQM—QM induced by
the functor QM—QM ; X—X"=XD --- X (n times) and by the trivial action
(resp. the action via fy) of GL,.(R) on X"
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For a small category C, let BC be its geometric realization (cf. [19]). Then,
for any small categories C and C’, the canonical map B(CXC)—BCXBC’ is a
homotopy equivalence. Hence we have continuous maps up to homotopy equiva-
lence; ’

BhY, BRY © BGLUR)XBQM — BQM .

Let B’RY and B'AY: BGL(R)— F(2BQM, 2BQM) be the continuous maps
induced by these BhY and BA{Y, respectively. Since F(L2BQM, 2BQM) is a
commutative H-group, we can define the difference B'AP—B’A®. It is easy to
see that the diagram

BGL(R) ——= BGL,.:(R)

BB h(o\ /3//1;1;1—3'/1;?;1

F(2BQM, 2BOM)

is commutative up to homotopy for any n=1. Thus we have a continuous map
BGL(R)— FA2BQM, 2BQM). Since any continuous map from BGL(R) to an
H-space H is decomposed as BGL(R)— BGL(R)*— H uniquely up to homotopy (cf.
Gersten [107 § 2 Th. 2.5), we obtain a continuous map BGL(R)*—F(2BQM, 2BQM).
Now, by the following Lemma 7 below, this gives a continuous map

Orar: BGL(RY*N2BQM — QBQM,
and consequently, a canonical pairing compatible with the graduation;

ZEBgB1 K{R)X j@o K{M) —>J§90 KMy,
which we shall denote also by Ox .

LEMMA 7. Let X and Y be pointed topological spaces having the homotopy
type of CW-complexes. Then, the homotopy classes of continuous maps XANY —Z
preserving the base points and those of X—F\Y, Z) are in one-to-one correspond-
ence. -

This lemma can be reduced to the well known fact that the canonical map
(XX, V)/(XVY)—XAY is a homotopy equivalence, where XX, Y denotes the
set XX Y endowed with the compactly generated topology.

It remains to prove the following

LEMMA 8. (1) The above pairing Op y satisfies

Oru{x, ¥}, 2)=0r x(x, Orx(y, 2))
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for all x, yeZEB@IKi(R) and zE @OK]-(M), where {x, y} denotes the product of
(3 J

Loday’s graded ring structure ([14] Ch. ID).
(2) If M’ is another exact category over R and f: M—M' is an exact func-
tor over R,
TslOrulx, 2)=0r x(x, Fe(@).

@) If M=P(R), Orulx, 2)={x, 2}.

PROOF. Recall that Loday’s product is defined as follows. For each m, n>1,

let f%la, fola, fhl, and f%!, be the functors (i.e. group homomorphisms)
GLn(R)XGL(R)—GLAn(R);

mnl@, B)=12QL,, fhlla, B=1.QB

%l?n(a; ,B):a®lm ;rl}n(ay ﬁ):a®‘8 .
Let j;: BGL(R)— BGL(R)* (¢=1) be the canonical map. Since BGL(R)* is a
commutative H-group, we can define a map

jmn"Bf}ﬁ}n—jmn"Bf;lyz?n_].mn°Bf2ﬁ}n+jmn°Bf%b(»)n :
BGL ,(R)A\ BGL,(R)— BGL(R)*,

and in the limit, a map BGL(R)ABGL(R)— BGL(R)*. This map is decomposed
as BGL(R)A BGL(R)— BGL(R)* ABGL(R)*— BGL(R)* uniquely up to homotopy,

and the resulting map
7 : BGL(R)* A BGL(R)*— BGL(R)*

induces on @ K (R) the structure of a graded ring.
PEG

Now, for the proof of (1), it suffices to prove the commutativity of the fol-
lowing diagram
BGL(R)*Abg. »

BGL(R)* ABGL(R)* ANQBQM BGL(RY*ANL2BQM
sANQBQM Or y
01?, M
BGL(RY*ARBQM - Q2BOM

up to homotopy. But this can be reduced to the commutativity of the diagram
of functors

GLn(R)XGLA(R)x QM _SLnlB)X 1P

- GL,(RYXQM

i @)
m,n hm

a1
R,

GL . (R)X QM > QM
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(0=<i<1, 0=j=1). Next, (2) follows easily from the naturality of the construc-
tion of Oz . Lastly, for the proof of (3), it suffices to show that the canonical

isomorphism
q@zaofrq(.QBQP(R))z q@o 7 BGL(R)* X K(R))

(cf. Grayson [11]) is a homomorphism of left Z @qu(R)-moduIes when the
gz

module structure of the former group is given by 6z and that of the latter is
given as in Loday [14] Ch. Il Let S, E, S'S and S™'E be the categories in
[11] “the extension construction” defined with respect to P=P(R). There is a
commutative diagram of functors

GLA(R)X SIS —— GL,(R)XS™'E GL(R)XQP(R)
® i gw l R l
S-S —_ STE QP(R)

(=0, 1). In this diagram, A and 2{’ are as above, [ (resp. /) is the functor
induced by

S8 — 518, (X, V) (X™, YT

and by the trivial (resp. canonical) action of GL,(R) on (X7, Y™), and 29 (resp.
g®) is the functor induced by

SHE —> STE; (V, 0 X>Y—>Z—0)— (V" 0-X"—=Y "> Z"—0)

and by the trivial (resp. canonical) action of GL,(R) on (V", 0—-X"—Y"—Z"—0).
Here the canonical actions mean the ones defined by the fact that for any
R-module M, each element ¢ of GL,(R) acts canonically on M” by o@ly:
R”(%)M%R"(?M. Since S™S is a commutative H-group, the functors [ and

f® (n=1) define a continuous map
BGL(R)*ABS-S —> BS™'S
in the same way in which the functors A%’ and AY’ (n=1) defined the continuous
map Oz . This map induces a graded Z@EB1 K(R)-module structure on P K (R)
gz gz0

via the homotopy equivalence BGL(R)* X K(R)=BS~'S of Grayson [11] “the plus
construction”. But it is easy to see that this structure coincides with the one
defined by Loday [14] Ch. II. Now, since the sequence BS™S— BS"*E— BQP(R)
satisfies the condition (F) and BS'E is contractible by [11] “ the extension con-
struction 7, the above commutative diagram proves that the canonical isomorphisms

qEzBonq(.QBQP(R))z q@ T BSTS)= q@o 7 BGL{R)Y* X Ko(R))

z0

preserve the left action of Z&B 691 K{R).
qz
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§2.4. Properties of the boundary maps in algebraic K-theory.

In this §2.4, we prove the following Prop. 5, which will play an important
role in the computation of the residue homomorphisms.

Let R be a ring and S a multiplicatively closed subset of R consisting of
non-zero-divisors in R. By Grayson [11] “the localization theorem for projective
modules ”, the sequence

i h
QBQHY s —> QBQPYR)—> 2BQPYRs)

C
induced by the canonical functors Hy s —— PYR) and PYR) —— PY(Ry), satisfies
the condition (F) in §2.3 (for the notations, cf. the proof of §2.1 Lemma 2).
Since Hi s is an exact category over R, the group GBO K, (Hk s) has the structure
gz

of a graded left GBOKQ(R)-moduIe by 82.3 Prop. 4 (the action of K (R) is defined
qz
by tensor product).
PROPOSITION 5. Let R, S, 1t and h be as above. Then:

(1) The homomorphism Ocny: @ K(Rs)—P K(Hks) is a homomorphism of
gz1 gz0
left EBOKQ(R)-modules.
gz

(2) Let s=S. Then, the composite

a—{a, s} Tesnd

a: K(R)— Ky(Rg) Kiii(Rs)

Ky(Hk,s)

coincides with the homomorphism B: Ku(R)— K (Hk s) induced by the exact func-
tor P(R)=Hks; M—M/sM.

This Prop. 5 has the following Corollaries.
DEFINITION 5. For any field %, let
tr: R4(k) —> Ky(k)
be the homomorphism {x;, -, x}—=1{x,, -+, x} (xy, -, PRV

DEFINITION 6. Let K be a discrete valuation field with residue field F, and
take Og and Ox— {0} as the above R and S, respectively. We denote by 9§ the
{d n>
composite Ky (K) —> K (H% )= K (F), where the last isomorphism is induced
. . C .
by the inclusion P(F) — HL s We also use the same notation 9% for the

homomorphism 0: £.(K)—(F) in §1.2, 1°.

COrROLLARY 1. Let K and F be as above. Then, we have the following com-
mutative diagram.
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[%:4
Riesa(K) Ksn(K)
aK AK
Ao, e
f:(F) Ky(F).

COROLLARY 2. Let k be a field and E a finite extension of k. Then we have
the following commutative diagram.

R:(E) K(B)
Ren| [N
R:(B) Kilh).

(Cf. §1.7 Prop. 5 for the homomorphism Mgz, and § 2.1 Definition 1 for Ng,.)

COROLLARY 3. Let (A, B, f, S) be as in §2.1. Then, the homomorphism
dret EBIKQ(BS)A@OKLI(A) (cf. §2.1) is a homomorphism of lefi @OKQ(A)-modules.
gz gz qz

PROOF OF PROPOSITION 5. The fact that 0. is a left-ZD EBIKQ(R)-homo-
gz

morphism is deduced immediately from §2.3 Lemma 6. The commutativity with

the action of Ky(R) can be seen easily. Next, we prove Prop. 5 (2). Since a

and 8 are left- P K, (R)-homomorphisms, it suffices to prove that the image of
gz0

1eKR) under a is the class of R/sR in K(Hkgs)- Let ¢: Z[ X]— R be the
ring homomorphism such that ¢(X)=s, and let Se={X"n=0CZ[X]. The
commutative diagram

Horxy 5y ——— PHZLX]) PrZLX, X1

7R LR 1 l
Piielond
g '

Hi. s PYR) ———> PU(Ry)

(cf. the proof of §2.1 Lemma 2 for the definition of P%) shows that we may
assume R=Z[X7], S=S, and s=X. On the other hand, by Grayson [11] “the
fundamental theorem ”, the functor ?(%)Z[X]/(X ) induces an isomorphism Ki(Z)

= Ki(Hyrxys,). Hence, our task becomes to prove that the sequence

) h
RBQPZ) —lé QBQPYZ[X])—> 2BQPYZLX, X'

satisfies 3¢ n(X)=1€K(Z), where X is regarded as an element of K(Z[ X, X'
and 7 is the map induced by ?@Z[X]/(X). Let CZ and SZ be the cone and
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the suspension of the ring Z, respectively, as in [11] “ the suspension of a ring”.
Let
0 1
10 0
10 e= 0
1. p

T=

be elements of CZ. The homomorphism Z[ X1 —-CZ; X—r¢ induces a commuta-
tive diagram

R ZXT/(X
pzy (V) o AXY —— e PLEX, X

I i l

P(Z) °R.0.CZ PCZ) ——————= PYSZ).

Now, ¢-CZ is finitely generated and projective as a right CZ-module, and the
sequence

by @e-CZ
2BQP(CZ)

LBOPZ) L2BQP(SZ)

satisfies the condition (F) in §2.3. Since this sequence can be identified with

e ’

BS~'S(CZ) — BS™'S(SZ)

BSS(Z)
(by (?@CZ)

by [11] “the suspension of a ring ”, our task finally becomes to prove
O wnD=1eK(Z).

Here 7 denotes the image of r in SZ regarded as an element of K(SZ). Let
u (resp. v): [—BS™1S(CZ) be the path from the vertex (0, 0) (resp. (¢-CZ, 0)) of
BS™'S(CZ) to the vertex (CZ, t-CZ) induced by the morphism in S-1S(CZ):

X—=TX

- CZ)

1
0,0 —(CZ, z-CZ); (CZ— CZ, CZ

(resp. (¢-CZ, 0) —>(CZ, =-CZ);

1 1
(- CZDe-CZ —> CZ, - CZ —> t-CZ)).

Let w: I—-BS-*S(CZ) be the path defined by
w(t)y=u(2t) for 0=1<1/2,
w()=v(2(1—1t)) for 1/2=1=1.
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Then, h'ew: I—BS 'S(SZ) satisfies A’ cw(0)=h -w(l), and the induced map S'—
BS-1S(SZ) represents the element 7 of m(BS™S(SZ)=K,(SZ). This proves
aw,w(f):l.

REMARK 3. If one changes the definition of I} in §2.3 as
I={(x, wye XX FU, )| w0)=h(x), w(l)=y.}

and define 0, using this definition of [, the resulting equation becomes
O n(T)==—1. Thus, (and as in Lemma 5) the definition of the boundary map
of the long exact sequence of homotopy groups tends to change by sign.

ProorFs oF THE COROLLARIES. Cor. 1 and Cor. 3 follow from Prop. 5 im-
mediately. Now we prove Cor. 2. Generally, let K be an algebraic function
field in one variable over a field % and C the regular, proper and irreducible
curve over & with function field K. The set of all closed points of C can be
identified with R(X/%) in §1.2. For each vePB(K/E), let 0y: Kips(K)— Kila(v))
be the homomorphism 8%, in Definition 6 defined with respect to v. By Quillen
[197 §7 Prop. 3.2, we have a long exact sequence

(av)u
= Kgn(K) —> B K (&) —> K{C) —> K(K) .
YER(K B
Since C is proper over k, the structural morphism p: C—Spec(k) induces a
homomorphism py : Ki(C)— Ky(k) {cf. Quillen [19] §7, 2.7), and for any veP(X/E),
the composite Kyx(£(v))— K«(C)— Kx(k) coincides with the transfer map N.uy/z-
Thus, we have shown

New15°0:=01 Ky i(K) — Ki(k).
VER(K /B
Hence, when we take the rational function field £(X) as K, the commutativity of
the diagram in Cor. 2 follows from Cor. 1 and from the definition of the norm
homomorphisms of Milnor’s K-groups.

§2.5. The proofs of Proposition 2 and Proposition 3.

First, we prove the following Lemma 9.

LEMMA 9. Let (A, B, /, S) be as in $2.1 and n an element of S. Suppose
that:

(1) A and B are Noetherian rings and additively generated by A* and B*,
respectively.

(ii) The induced homomorphism A— B/nB 1s bijective.

(iti) (Bg)* is generated by B* and .
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Then:
(1) The left EBOQ‘Q-module @OQ%S is generated by the image of P 2% and the
q2 gz qz0

elements ﬂrizﬂ—EQBS and w2y =Bs (reZ).
(2) Let 1=i=j. Then, the left GBOSQ(A)-module @IS;”(BS)/S;”(BS) (cf. §2.2
qz qz
Definition 2) is generated by the image of G%Séi’(B)/S;f’(B) and elements of the
qz

forms {14an"T", } €SP(Bg)/SP(Bs) and 1+an™T"e SP(Bg)/SY¥(Bs) (ac A, reZ,
i=n<g).

(3) Denote by f the homomorphism AL[TIILT-*1—B[[TIIT*] induced by
f, and let S= {geB[T]]lgmod(T)eS}. Then, the assumptions (i), (ii) and (iii)
at the beginning of §2.1 ave still satisfied when we replace A, B, f and S by
ALLTTLT-'1, BILTTILT],  and S, respectively. We have,

{ 1+aT™ if r=0

0G5 ({1+aen'T", n})= .
if v=#0

03,351 +ax"T™=0

for all ac A, reZ and n=1.
4y Assume further that A and B are regular and the homomorphisms

lim SP(A)/S{(A) —> SCKLA)

defined by §2.2 Lemma 4 are bijective for all g=1. Regard @SCKQ(A) as a
gzl
left EBOSq(A)-module via these isomorphisms. Then,
gz

Res;,5:(SCKyi(Bo)CTSCK(A)  for all g=1,
1+aT* if v=0
Res,s({l+az"T", z})= ‘
if v#0
for all ac A, r&Z and nzl. The induced composite

ReS(f,s)

;g SO(Bg) —> 5‘2 SCK,Bs) q@ SCK,(A)

1s a homomorphism of left EBOSq(A)-modules.
gz

PrOOF. The proof of (1) is easy, and (2) follows from (1) and §2.2 Lemma 3
(2). Next, the proof of the fact that the 4-ple (A[[7JILT-4], BL[TII(T], /, §)
satisfies the assumptions (i )~(iii) in §2.1 can be reduced to the following

LeEMMA 10. Let R be a Noetherian ring, I an ideal of R, and M an R-module
such that M/I™M is flat over R/I™ for every n=l. Then, lim M/I"M is flat
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over R.

This Lemma can be proved by the standard methods in commutative algebra,
and so we leave the proof to the reader. :

The formula dg%({l+aT" z})=1+aT™ (a€A, nzl) follows from §2.4
Prop. 5 (2), and 03,5(1+ax"T™=0 (a€ A, reZ, n=1) follows from the fact
CK,(R)=0 for any ring R. To prove 8z ({l+ax"T™, 7})=0 (e€ A, r#0, n=1),
we may assume a= A* and r<0. We use the following Definition 7.

DEFINITION 7. Let R be a ring. We denote by V, (n=1) (resp. F, (nz1),
resp. [a] (aeR*)) the covariant (resp. transfer, resp. covariant) homomorphism
K (RIITII[T " D—K«(RULTJILT 1) defined by the ring homomorphism
RI[TIT-"]J—RILTILTY]; T—T" (resp. T—T", resp. T—aT).

By §2.1 Lemma 2, 373 commutes with the actions of V, (nzl), F, n=1)
and [a] (ae A¥). It follows

{1—az"T?, 7} =Vyelals F-({1—57'T, a})=—Vaelal-F-({T, 1—x7'T}),
dg»({l—an™T", x})=—VyelaleF 05T, 1—x7'T})=0

(ac A%, r<0, nz1). (Note that {T, ?} commutes with 3% by 8§24 Cor. 3 to
Prop. 5.) Lastly, we prove (4. Let M be the left EBO Sy (A)-submodule of
gz

& K,(BILTTILTJx) generated by all elements of the form {l+ax'T", =} and
;:—l—aann (ac A, reZ, n=1). By Cor. 3 to Prop. 5, 0G.%: quKq(B[[T]][T—X]g)
_ﬁgequ(A[[T]][T‘l]) is a homomorphism of left (?;OKq(A[[T]][T_lj)-mOduleS.
Hence, by (3) and §2.1 Lemma 2, we have a commutative diagram

GEBITIT ) > M — CK(B)

03 0F.% Res¢r.o

qu(A[[T]][T”D 2 B SPA) — q@)C‘KqM),

and now, the assertions in (4) follows from (2) and (3).

PROOF OF PROPOSITION 2. The proof of ¢%4(L, =0 is easy. To prove the
rest, we need several steps (Step 1, 2, 3).

Step 1. In this Step 1, we prove that we may assume R=R{(XNUX)) - ((Xn))
for some perfect field & of characteristic >0 and for some N=0. We need the
following Lemma.

LEMMA 11. Let R and R’ be rings satisfying the hypothesis of Prop. 2, and



650 Kazuya Kato

R—R’" a ring homomorphism such that the induced homomorphism @ £%— @ £2%.
g=0 q20

is injective. Then, the induced homomorphism (P5'BLRE ™/ La o R)— (2%'D0R%?)

/Lo {R') is injective for any n, g=1.

ProoF. Let £% ., be the kernel of the exterior derivation d: 0% — QL
and let 7: 2% 40— Q% be the Cartier operator for each q=0. If ptn, there is a
bijection

05— (5 DR/ Lo R); 0—(w, 0).

If pln, Lo (R)C2%3-0D2% %, and there is an injective homomorphism

(L% 3-oBREE-0)/ L R) (QFDLE)/ Lo R).

Lemma 11 follows from these facts by induction on x.

By Lemma 11, if the assertions in Prop. 2 are true for F’, then they are
also true for R. By applying this to the case where R’ is the ring of total
quotients of R, which is a finite product of flelds, we see that the ring R in
Prop. 2 may be assumed to be a field. Since the functors SC,K, (0=n<co) and
the functors (25'DL2% /L, (R) (in R) preserve all filtering direct limits, R may
be assumed to be finitely generated over the prime field F,. Then, there is a
separable extension R’ of R of the form R'=k(X,)) - {Xy)) where £ is a finite
field. Again by Lemma 11, we may assume R=Fk(X})) --- (Xn)).

Step 2. Here we study the composite of residue homomorphisms.

LEMMA 12. Let N=0, by a perfect field, and let ky, -+, by be complete dis-
crete valuation fields such that the residue field of k; is ki—y for each i. Denote
ky by K, and k, by k. Assume ch(K)=p>0. Then, there is a homomorphism
Resg,z: C‘K*+N(K)—>C‘K*(k) having (and clearly characterized by) the Sollowing
property: For each i=1, ---, N, take any ring homomorphism f;: ki-1— Oy, such

that the composile k-, s Oy, —> Oy, /My, =Fki_y 1S the identity map, which exists
by Nagata [18] §31 Th. 311, and let S;=0,,—{0}. Then, for any choices of fi,

-, fu, the composite
Resc;, s -+ oResesy s 1 CRurn(K)— CKy(k)

always coincides with Resg,,. Furthermore, this homomorphism Resg,, has the
Sollowing property: Let K’ be a finite extension of K, and ki, ---, kY the fields
determined by the conditions kiy=K' and ki_, is the residue field of R} for each
i=1, -, N. Denote k; by k. Then we have the following commutative diagram.
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K'[ k'

N Res R
CKery(K) ——— CKyu (k)
Trrox Tr s

€S kin

A R ~
CKysn(K) ————— CK(h)
(¢f. §2.1 Definition 1 for the notation Tr).

For the proof of this Lemma, it is useful to define an operator 7: CK.—CKx
as follows.

DEFINITION 8. Let p be a prime number, and R a ring over F,. With
respect to the homomorphism R—R: x—x?, let Ry be the former R and let R,
be the latter R. When R, is finitely generated and projective as an R,-module,
we denote by 7 the homomorphism Trzy e, : C‘K*(R)—»CK*(R). (Cf. Lemma 15
below for the relation between this operator 7 and the Cartier operator on dif-
ferential modules.)

PROOF OF LEMMA 12. For each i=1, .-, N, take a ring homomorphism
fit ki —0y, such that the composite ké_lﬁOk;HOk;/mk'i:kg_l is the identity
map, and let Sé:Ok'i—{O}. 1t is sufficient to prove

ReS(f1 Sp° T °R€S(fN,SN)°TrK,/K:Trk:/k°ReS(f’1,S’)° °Res(f,N"SIN) .

(For the proof of the existence of Resg,, consider the case K'=K.) Let the
operator 7 be as above. Since & is perfect, the covariant homomorphlsm CK*(k)
— CKy(k) induced by k—Fk; x—x? is the inverse of 7: CK*(k)—>CK*(k) By
this fact and by Prop. 1 (2) (i), we are reduced to the following

LeMMA 13. Let A and B be vings over F, S a multiplicatively closed subset
of B, and f and f'1 A—B ring homomorphisms such that the 4-ples (A, B, f,S)
and (A, B, f', S) satisfy the assumptions at the beginning of §2.1. Suppose that
there is an element m of S such that (Bg)* is generated by B* and =, and such
that fx)=f(x)mod xB for all x€A. Suppose further that via the homomorphism
A— A x—x?, the latter A is finitely generated and projective as a module over
the former A. Then, for each x< C‘Kq+1(BS) (g=0), the sequence {y™(Rescys,s(x)—
Res¢qr s (X)} nzo converges to zero n CKQ(A).

PrOOF. Let &: A— A be the homomorphism x—xP?. Fix mz=l, and let
Fos font ALTI/T™—BITI/T™) and Fn: ALTI/(T™)—ALTI/(T™) be the ring
homomorphisms over Z[TJ/(T™) induced by f, f’ and § respectively. It suffices
to prove the following assertion (A);
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(A) For each ¢20, and for each x€ Kyui(BsLT1/(T™), 0¢spp(x)—0cs! 55(%)
1s annihilated by a power of Fmx, Wheve Fux 1S the transfer map defined by Fn.

Let H=Hryrmy. s and for each n=1, let H(n) be the full subcategory of H
consisting of all objects M such that z"M=0. As is easily seen, if »=n—-1 and
if & denotes Fe .- «F (r times), the homomorphisms f-F and f/-F coincide
modulo z"B. Hence f,°%n and [T coincide modulo =*-B[TI1/(T™) for
r=n—1. It follows that the restriction of scalars,

via frnoTn via froThn

PCALTIAT™)) and H PCALTI/(T™)

coincide on H(n). Since H=\J H(n), we have K (H)=lim K (H(n)) and hence
the assertion (A). " *—)

Step 3. Now, we apply the homomorphism Resg,, defined in Lemma 12 to
the proof of Prop. 2. As was seen in Step 1, we may assume R=2((X.)) --- (X»))
for some perfect field & of characteristic p>0 and for some natural number N.
We proceed by induction on N. Let k;=k(X))) - (X)), f: the canonical inclusion
£;.1CO0,,, and S;=0;,—{0} for each i=1, ---, N. By induction on N, we may
assume that Prop. 2 was proved when R=k;, i=N—1. Hence we may assume
lim S“)(kz)/S"”(kl) SCKq(kz) for 1=N—1 (cf. Prop. 2 (2)). Let K=ky and let
i S“>(K)~+SCK*(K) be the canonical homomorphism defined by §2.2 Lemma 4.
Since Resg/z=Ress, s° -+ *Res¢s .50, Lemma 9 (4) shows

Resg/:(J{T, x})=0 for all xeSPK).
Hence the definition of the residue homomorphisms shows
Resg/ . (J(S¥(K))CI+T* k[[T1] for all n=1.
The following Lemma 14 will be our main tool.

DEFINITION 9. Let K and 2 be as above. Take n=1. We denote by resg,s

the composite
N+l

©On
y — SPUK)Y/SHP(K) (cf. §2.2 Lemma 3)

by Resg/zej 1+aT*—>a
QA+T R(LT1D/A+T™ - RILTID

k.

LEMMA 14. (1) The homomorphism resg,, : 2% —k is independent of the choice
of n.

(2) resg pey=reresg;, where v is the Cartier operator. (Note that 7: k—k
1s x—xMP)

(3) resg/pod(2%H=0.

4) Let n=p'm, pYm, 1=¢=N+1 and (o, )= Q%5 DR%* Assume that for
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any x, yi, -, Yy+1-eE K*,

d d d -
reSK/k< <0)_\+a)z/\—£' N —=— yl VANEER Aﬂl):o.
Y1 YN+1-g

Then, (w;, @)E Ly where Ly, is the group defined in Prop. 2 (1).

ProoF. Note that [ K : K?]=p", dimx(2x)=N, dimg(2%)=1, 2%=0if ¢>N,
and (2%°PR%H/L,,=0 if ¢>N+1.

First, (1) follows from the commutativity of Resg,, with the operator V, on
CKy (cf. §2.1).

Next, (2) follows from Lemma 15 below, which describe the relation between
the operator 7 in Definition 8 and the Cartier operator, and from Resg,r°7=
7°Resg,, (cf. Lemma 12).

(3) is easily reduced to Res(j({T, })=0.

Lastly, (4) is proved as follows. It sufﬁces to prove the following (A) and (B).

(A) If p I n, no=(—1)w..

B) If pln, dw,=dw,=0.

Indeed, if (A) and (B) are proved, we can proceed by induction on n. If pin,
since we have dw;=dw,=0, we can define 7{w,) and r(w,). By (2),

0:7°reSK/k<Xn‘<w1+sz L;)/\% A A M)

YN+1-¢

:reSK/k< mP. (7’(0)1)4“7”(0)2)/\*—)/\ 47 VAN Am);

VYN+1-¢
so, the induction on n can be applied (cf. the proof of Lemma 11). Next, it is
easily seen that for the proofs of (A) and (B), we may assume ¢=N-+1. Now
we prove (A) and (B) in the case ¢g=N-+1. In this case, since d(2¥)=0, for any
n, it suffices to prove nw;=(—1)"**-dw,. We may assume N=1. Denote ky.;

by F, and Xy by z. Then, w,€ 2% can be written in fhe form 0=

and w,= %! can be written in the form w,= ZZ&
i€,

Where G;,-

n, Q¥ and &c02F ¢ for all i€ Z, and 0,=&,=5,=0 1f i is sufﬁmently near to
—oo. The equation noy=(—1)"*'-dw, is equivalent to
(©) nl,=(—1¥"db,+1iy, for all ieZ.

For each integer i, take a sufficiently large natural number ¢ such that
¢=—imodn and such that §,=&,=7,=0 for any j=<i—c. Let e=(c+i)/n, u any
element of F, and x=(1+uz®-z"% Since the residue homomorphism Res s>
annihilates C‘K*(OK) and satisfies Ress,.s»({a, n})=a for all aEC‘K*(F) (8§24
Prop. 5 (2)), we can easily deduce the following equation for the above choice
of x.
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O:resK,k(x”- (w;!—wﬂ\ ﬂ—))

x
=resg/(nul;—&; Ndu—iuy;)
=resp/a(u-(nfs+(—1)V-d&i—1in:))  (by resg/zod=0).

Since resp,,#0, and since u is arbitrary and 2§~ is one-dimensional over F, we

obtain nf;+(—1)".d&;—in,=0 which proves (C).
Thus, for the proof of Lemma 14, it remains to prove the following

LEMMA 15. Let p and R be as in the hypothesis of Prop. 2. Suppose that
the rank N of the free R-module RY? is finite and that theve isa p-basis (by)igisnw
of R consisting of elements of R*. For each n=1 and ¢=1, let S¢M(Ry=
Image( lim S&"KR)/S;”(R).—»SCKQ(R)) (cf. §2.2 Lemma 4). Then, SE.(R) is stable
under thle action of 7 in Definition 8, and the induced diagram

QEDRE SW(R)/SH(R)
70| [ by 7
ooy SE(R)/SHP(R)
is commulative, where the v in the left side is the Cartier operator, the v in the

right side is the operator in Definition 8 and the horizontal arrows are the homo-
morphism induced by p¥*i.

PrOOF. Let j be the canonical homomorphism S{(R)—SCK,R). Let R;=
R[bY?, -, bY/7] for each =0, -, N,

g RILTIIIT1CRYP[LTTILT "] and gi: Re [[TTILT-JCRILTIIT ]

the canonical inclusions, and g« and g the transfer maps of the K-groups defined

by g and g respectively. Note that 2§ is additively generated by &(2¥-!) and

db, dby
1

elements of the form x? b FANREE /\W (xeR). All things are reduced to the
following computations :
FGULF2PT™, by oo, by} )=j(g«({L+xT", b2, -, bY#}))
=j(guxo - o gua({1+xT", 612, -, DYP}N={1+xT", by, -, by},
TGULFXT™, by, -y byoy, TIN=j(gu({14+ 22T, bi/?, -, bY2,, T))
=(similarly as above)={l14+xT"?, b, ---, by.s, T}.
Here we used the projection formula (cf. Bloch [3] Ch. 1 §2 Th. 4.1)
Tals, F*=1{fls), 7},

where f: R—S is any ring homomorphism between any rings R and S such
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that S is finitely generated and projective as an R-module, 7€ K(R), sE KS)
(1, 7=0), and f* is the covariant homomorphism K, (R)—K(S) and fx are the
transfer maps.

Now, we can complete the proof of Prop. 2. Let K and 2 be as at the
beginning of this Step 3. Assume 1=¢=<N-+1 and (w, w,)E Q% 'P2%E n=p'm,
p ¥'m, and that the image of p4(w;, wy) in SPK)/(SFTE)+{ilt*SC.E(K)) is zero.
For the proof of Prop. 2, it is sufficient to prove {(w;,, w;)eL,, The groups
S{M(K) and ilt"SC.K(K) are clearly stable under the action of [x] (cf. Defini-
tion 7) for any x= K*, and the induced diagram

(@, wy) Q5P RL? SE(K)/SE+I(K)

| L im

(2" (@ntwen —dxi) o) QD SP(K)/SFH(K)

is commutative. Hence, it follows that for any x, yi, '+, Ya+1-= K*, the image
of

- d -
@é"“(xn.(wl_*_wz/\_di)/\@/\ /\EM’ x"ws A\ 4y A - /\J,Ni_q)

Vw+1-¢ Y1 YN+1-¢q

in SELK)/(SEP(K)HAI"SCLK y4:(K)) is zero. Thus we have

dyl

A - dyN+1 q) 0.

reSK/k( (w1+sz———>A
YN+1-g

Hence, by Lemma 14 (4), we have (o, w:)EL, 4
Proof of the Corollaries of Prop. 2. Cor. 1 and Cor. 2 are immediate. For
the proof of Cor. 3, let

CHR=(Wo(R® } (RIDWARID' ]\ (R*)/ Mz,

where M,, is the group defined in Cor. 3. Our task is to prove CHR)=Ci(R).
Let TYUR)=Ker(C/5HR)y—Cg™(R)). It suffices to prove P R)=T®,K,(R). But
this follows from the fact that the homomorphism

dYq-1 du, A A duq_2>

d 1
i/\ e /\’, z
Y1 Va-1 Uy Ug-2

= (en(XQIA =+ AYgor, enlD@uUiA - Atigs)

(OF D Loy~ UHR); (x

is surjective and the composite
(R4002%3/ Lng —> ViR) —> TO,K(R)

is bijective by Cor. 2. Lastly, Cor. 4 is a consequence of Cor. 3, for the action
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of F, on TéKl(k): W (k) coincides with (ao, a1, as, -+ )—(a?, a?, af, ).

PROOF OF PROPOSITION 3. Since Prop. 2 has been proved, all assertions in
Prop. 3 follows from Lemma 9, and from the fact that the residue homomorphism
commutes with the action of W(A) and hence preserve the typical parts.

§3. Local class field theory.
§3.1. The results.

The aim of §3 is to prove the following Theorems.
Recall that we denote by (k) (¢=0) the Milnor's K-groups of k, whereas
we denote by K (&) the Quillen’s K-groups of %.

THEOREM 1. Let N=0, and let ko, -+, by be fields satisfying the following
conditions.

(i) ko is a finite fleld.

(ii) For each i=1, ---, N, k; is a complete discreie valuation field with residue
field kyi-s.

Denote ky by K, and ky by k. Then, there exists a unique homomorphism

Ty : Ry(K) —> Gal(K*/K)

having the following properties (1) and (2).
(1) For each finite abelian extension L of K, ¥y induces an isomorphism
RN(K) /R xRy L)=Gal(L/K), where Ny,x is the norm homomorphism of §1.7

Prop. b.
(2) For each 1=1, ---, N, let r; be any lifting to K of any prime element of
ki Then, the image of ¥x({m., -, my}) under the canonical homomorphism

Gal(K#*/K)— Gal(k**/k) coincides with the Frobenius automorphism over k.

THEOREM 2. Besides the hypothesis of Th. 1, assume ch(K)=p>0. Then,
there is a canonical homomorphism

T g Ky(K) — Gal(K®=*/K)

such that the composite with the canonical map tx: Sy(K)— Ky(K) (§ 3.4 Defini-
tion 5) coincides with Ux.

The definitions of these homomorphisms ¥x and 7" x are contained in § 3.2
with their functorial properties. In §3.3, we compute the norm group Rz, x®x(L)
and complete the proofs of Th. 1 and Th. 2. In §3.4, we study the Brauer
group of K.

In §3.5, we shall study the case N=2. This case was closely studied in
Chapter 1 in the mixed characteristic case. Here we study the equal character-
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istic case and prove the following Theorem 3. Recall that in Chapter 1 §7, we
have defined natural topologies of K* and Ky(K) in the case ch(k)=p>0. In the
case ch(k,)=0, we can take the discrete topologies of K* and K,(X) in the fol-
lowing Theorem 3 (cf. § 3.5 Remark 3).

THEOREM 3. Besides the hypothesis of Th. 1, assume N=2. Then;

(1) The map L— Ny, xK{L) is a bijection from the set of all finite abelian
extensions of K in a fixed algebraic closure of K to the set of all open subgroups
of Ky(K) of finite indices.

(2) There is a canonical isomorphism

@K . Br(K)%Homc(K*, Q/Z>tor
such that for any central simple algebra A over K,
Ker(@x({A}): K* —> Q/Z)=Nrdu/x(A%).

Here Hom(K*, Q/Z).,, denotes the torsion part of the group of all continuous
homomorphisms K*—Q/Z.

§3.2. The definitions of ¥; and 1 k.

The definition of ¥x will be given by a kind of duality. For the description
of this duality, it is useful to pay attention to the following groups and denote
them by simple notations H*(k).

DerFmNITION 1. Let & be a field and tet ¢=0.
(1) If ch(k)=0, let
HYE)= lim HYk, p5?),

where m ranges over all non-zero integers.
(2) If ch(k)=p>0, let

HeR)=lim HYk, p5e>) in the case ¢=0, and
HYk)=lim H(k, p24 V) @ lim P{ (k) in the case g=1,

where m ranges over all integers which are invertible in %, and n ranges over
all natural numbers.

Here the transition map of the system {H¥E, p59 )}, is given for each
pair (m, n) such that m|n, as follows. Let { be a primitive n-th root of 1. Then,
the isomorphisms as abelian groups Z/nZ=p,; 1—={ and Z/mZ=p, ; 1™
naturally induce isomorphisms Z/nZ=p$® and Z/mZ=p5*". The transition
map is induced by the injection pE9 ¥ — p$9 0 which corresponds to Z/mZ—Z/nZ ;
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1*—)77;— via the above isomorphisms, and which is in fact independent of the
choice of {. The transition map of the system {P%(k)}, is given by
PE(k) — PE(R);
{0, =+, @ner), by, v, boost — {0, oy =+, Gnes), by, -+, byos}
(Go, =+, Q1 €k, by, -, bgr ERF).
Example. HYE)=X, (via H'k, Z/mZ)=(X)n and Witt theory).
H*k)=Br(k) (cf. §34 Cor. to Lemma 16).

We shall often identify H'(k) with X, via the canonical isomorphism.

These groups H*k) have the following elementary properties.

First, @0 H%k) have the structure of a right @Oé’?q(k)-module which is induced
2z qz

by the pairings
H¥(k, p2)QR (k) —> H (&, p570); xQy +—> x\Jhi (),
PLURIQR (k) —> PiH(k);
{w, ay, -, @} @by, -+, by {w, ay, -, as, by, -, bj}.

We denote the product of this module structure by {w, a} (we EPO HYk), ac=
DR =

Next, let E be an extension of k. Then, the covariant homomorphism
H*Rk)y—H*E); w—wg is defined in the obvious way. If [E: k]<co, we can
define a natural corestriction map H*(E)—H*(k) as follows. On the part
ELH‘Z( , #5@V), this is the corestriction map in § 1.2 Definition 3. Assume
ch(k)=p»>0. Let Trg,: C‘K*(E)—>CA‘K*(k) be the homomorphism in §2.1 Defini-
tion 1. We can prove as follows that Trgz,, induces a homomorphism P YFE)—
PE(k) (n, ¢=1), whose limit (n—c0) we shall adopt as the corestriction map for
the p-primary part. By §2.2 Cor. 4 to Prop. 2, it is sufficient to prove

Tre (" TCK L ENC Al TCK (k) for all n=0.

But this can be proved using the projection formula fi{s, f*(#)} = {fu(s), 7} (cf.
the proof of §2.5 Lemma 15), for the subquotients ﬁlt"TéK/ﬁlt”“TCK can be
described in terms of differential modules as in §2.2 Cor. 2 to Prop. 2.

LEMMA 1. Let k be ¢ field and E a finite extension of k. Then:
(1) Corz/a({w, agh)={Corzs(w), a} for all we @ HYE) and a& @ Ry(k).
qz gz

2) Corg({ws, a})={w, Rg/:(@)} for all we q@OH‘Z(k) and a< g}o@q(E), where
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Ng» is the norm homomorphism of § 1.7 Prop. 5.

ProOOF. We can relate Ng, . with Corg, and Ng,, by § 1.2 Lemma 3 and § 2.4
Cor. 2 to Prop. 5.

COROLLARY. Let k be a field, ye H{k)=X,, and a=8&,(k), ¢=0. Let £ be
the cyclic extension of k corresponding to y. Then, if a=Ng (KLE)), we have
iy, a} =0 in H*Y (k).

Lastly, let K be a complete discrete valuation fleld with residue field F. We
consider the relation between H*(K) and H*(F) in the following Lemma 2 and
Lemma 3.

DEFINITION 2. Let K and F be as above. Let i%: H*(F)—H*K) be the
homomorphism induced by

Inf
HYF, pea)=HYGal(K,,/K), HKp:, p5977) —> HUK, p597),
where m ranges over all integers which are invertible in F, and (in the case
ch(F)Y>0)
P%—I(F)__)HQ<K); {w} bh Tty bq—l} — {Z(w)y 5? R 5(2—1}’

where i is the canonical homomorphism P4(F)=(Xp)pn—(Xx)pnCHYK) and b;
denotes a lifting of b; to Uk.

LeMMA 2. Let K and F be as above. For each ¢=0, let HKF) and HYK)
be the subgroups of HYF) and HYK), respectively, consisting of all elements
whose orders ave invertible in F. Then, we have a splitting exact sequence

ik

0
0 — H{*(F) — H{"™(K) — HY(F) — 0,

where § is the divect limit of the homomorphism 8 in § 1.2. For any prime element
z of K,
HYF) — HFYK); w— (=1 {i%(w), =}

is a right inverse of 0.
ProoF. This follows from the spectral sequence
H*(F, H¥(K,., N> H*K, )

and §1.2 Corollary to Lemma 2.

LEMMA 3. Let K and F be as above. Let ¢=0, and assume H?'(F)=0.
Then, the homomorphism
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Rk HAF) —> H*YK); w—> {i%(w), x},

where © is a prime element of K, does not depend on the choice of z. Assume
Jurther [F: FPl=pt if ch(F)=p>0. Then, h% is bijective in the case ch(K)=
ch(F). In the case ch(K)=0 and ch(F)=p>0, the non-p-part of h% is bijective
and its p-primary part coincides with the direct limit of the homomorphisms

h pn: PENF) —> HYYK, p8) (n=0)
(c¢f. § 1.1 Definition 2).

PrROOF. In the case ch(K)=p>0, we may assume K=F(=)). K [F: FP]=
%%, the homomorphism P4 Y(F)— PLK); w— {w, =} is surjective by §1.6 Lem-
ma 13, but the residue homomorphism CKQ+1(K)~—>CKQ(F ) induces its left inverse
by §2.4 Prop. 5 (2).

Now we can prove the following Proposition. For any finite field k, let

hy: X, = Q/Z be the isomorphism y—x(%¥,) where &, is the Frobenious auto-
morphism over .

PROPOSITION 1. Let N, ko, =, by, K and k be as in the hypothesis of Theo-
rem 1. Then:

(1) HYAK)=0 for all ¢>N+1, and there is a unique 1somorphism
hi: HYEK) = Q)7

which satisfies hx({y, 71, -+, an})=hy(y) for any y€X, and for any =z, -, 7x
such that m; is a lifting of a prime element of k; to K for each i. (Here h, is
as above, and we identify X, with its canonical image in Xg.)

(2) Let L be a finite extension of K. Since L is of the same type as K, we
obtain the isomorphism hy by (1). Then, the following diagrams are commuiative.

hK ‘ hL
HVYK) = Q/Z HYY]) = Q/Z
(i) l i[L: K] () COI‘L/Kl ”
HY+(L) = Q/Z HY*(K) = Q/Z.
hL hK

(8) Let N=1, and let F=ky_,. Then, the following diagram is commutative.

hrp
HYF) = Q/Z
|

HY (K h% Q/Z.

K
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Heve h¥% is the homomorphism in Lemma 3.

ProoF. The first assertion in (1) follows from § 1.6 Proof of §1 Th.3. The
rest of (1) follows from Lemma 3 and §1 Th. 2. Indeed, we can define Ax by
the diagram

=
o
ZE
>

HY (K h Hi(E) ——mQ/Z.

IR

I

The commutativity of the diagram (i) in (2) is proved easily by the characteri-
zations of hx and h; in (1), and the commutativity of (ii) is deduced from that
of (i). The assertion (3) follows from the above definition of Ag.

This proposition enables us to define the desired homomorphism ¥x. Let K
be as in Prop. 1. Then, we have a pairing

¥&a—{y, a}
XeRRu(K)y=H'(K)QRy(K)  ——

hg
HYYK)—=Q/Z .
We define ¥x as the homomorphism Rx(K)— Gal(K=*/K) induced by this pairing.

COROLLARY 1. Let N=0, and let K and L be as in Prop. 1 (2). Then, the
diagrams

WL w‘K
Ry(LYy —> Gal(L®/L) y(K) — Gal(X=**/K)
(i) FNux i 7. i (i) j/ 7, l transfer
y(K) — Gal(K**/K) Ry(L) —> Gal(L=?/L)

are commutative. Here Gal(L?*/L)—Gal(K**/K) is the canonical restriction, and
the “transfer” is the dual map of the corestriction map Cory,x: HYL)—HY(K).

COROLLARY 2. Let N=1, and let K and F be as in Prop. 1 (3). Then, the
diagram

U v
Ry(K) — Gal(K*/K)
|, |
Ry-(F) —> Gal(F'*/F)

is commutative, where 0F is as in §2.4 Definition 6 and Gal(K**/K)—Gal(F=*/F)
is the restriction to the residue field.

QOur next task is to define the homomorphism 7"x in the case ch(X)=p>0.
Let N=0, and let K and % be as in the hypothesis of Theorem 2. In this case,
the pro-p part Kn(K)—Gal(K2*/KXp) of Tx and the non-p part Ky(K)—
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Gal(K**/K)(non-p) of 7" x will be defined by rather different methods. Here and
in the following, for any pro-finite (resp. torsion) abelian group G, G(p) denotes
the pro-p (resp. p-primary) part of G, and G(non-p) denotes the non-p part of G.

Recall that we have defined in §2.5 Lemma 12 a canonical homomorphism
Resg/r: CKusn(K)—CKy(k). Let Resg be the composite

€Sk/e

A R A Trlep ~
Resg: CKy.(K) CK\(k) CK(F,).

Then, Resg is a homomorphism of W(F,)-modules and commutes with the action
of the operators V, and F, (n=1) by §2 Prop. 1. By these properties, Resg
induces a pairing

WPKQKN(K) —> WP(F,); w@a— Resg {w, a},

and induces for each n=1,
WiE)YQKN(K) —> Wo(F)=Z/p"Z
(cf. §2.2 for the notations W and W,). For any we W®(K) and ac Ky(K),
Resg {Fy{w), a} =Resg+F,{w, a} =F,°Resg {w, a} =Resx {w, a}.
Hence we have a pairing
Wi (K)/(F-DWA(KOQKNK) — Z/p*Z,
where ¥ is the homomorphism (a,, -+, @n-1)—{a?, ---, a%_,). Since
WalK)/(F—DW oK)= (Xk)pn,

we have a pairing
I—pn

(Xz)pnQKN(K) —> Z/p"Z

Q/Z.

When = varies, as is easily seen, this pairing induces a pairing Xz(p)QKy(K)—
Q/Z and equivalently, induces a homomorphism

Kw(K) —> Gal(K*>/K)(p),

which is the definition of the pro-p part of 1 %.

Next, we are concerned with the non-p part of 7. We define it as the
homomorphism Ky(K)—Gal(K*/K)non-p) induced by the following pairing zx
in Lemma 4.

DEFINITION 2. Let K be as in the hypothesis of Th. 1. We denote by 9%
the composite

Kyrn(K)

Oy s %

K*+N—1(kN-x) K*(k),

where the homomorphisms 9%i_, (=1, ---, N) are as in § 2.4 Definition 6.
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LEMMA 4. Let K be as in the hypothesis of Th. 2. Then, there exists a
unique homomorphism

g Xg(non-p)QKy(K) — Q/Z

having the following properties (1) and (2).
(1) For any y€X; and ae Ky(K),

7x(Ra)y=h(0F(a) ) .

Here h, is the canonical isomorphism X,=Q/Z (cf. Prop. 1) and we regard
OF(a)= K,(k) as an element of Z.
(2) For any 6= HY(K)=Hom(k*, Q/Z), ue K*, and a< Ky(K),

({6, u} Ra)=0-0F({u, a}).
Here we regard 0F({u, a})= Ki(k) as an element of R*.
For the proof of Lemma 4, we need the following Lemma.

LEMMA 5. Let k be a field, and let = H(k) and usk*. Take a natural
number m invertible in k such that p,Ck and 8€Hom(pnm, Q/7), and take an
element v of ks such that v™=u. Then, {0, u} e H(B)y=X, coincides with

Gal(k*®/ k) —> Q/Z ; 0 — O(a{v)v™1).

PrROOF OF LEMMA 4. We prove Lemma 4 by induction on N. In the case
N=0, we must prove that 4,({0, u})=0(u) for "any g H(k)=Hom(k*, Q/Z) and
for any u€k*, but this is deduced from Lemma 5. Next, assume N=1. Denote
Ey.: by F and fix a prime element = of K. Then, by Lemma 2, we have an
isomorphism

HPYDHIF) —— HYK); (, ) —> i)+ E0), 7).
Hence, we can define a homomorphism 7 : Xx(non-p)QRQRy(K)—Q/Z by
R+ %), n}HQar— (3 Q0E(a)+0-08({=, a}).

(Note that H(F)=HYK)=Hom(k*, @/Z), and HY(?)=X,(non-p).) It is easy to see
that 7, has the properties (1) and (2).

Thus we have defined the homomorphism 2 . The relation Y gotxg=Tx will
be proved in §3.3. In the rest of this §3.2, we prove the following Lemma 6.

LEMMA 6. Let K be as in the hypothesis of Th. 2.
(1) If L is a finite extension of K, the following diagrams ave commutative.
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YL 2/'K
Ky(L) — Gal(L=*/L) Ky(K) — Gal(K**/K)
(i) NL/Kl r. l (i) l r. ltransfer
Ky(K) — Gal(K=*/K) Ky(L)y — Gal(L*®*/L).

(2) Let Nz1 and denote ky-1 by F. Then, the following diagram is commu-
tative.

I
Ky(K) — Gal(K=*/K)

ow |

F
Ky (F) —> Gal(F=/F).
ProOoOF. First, we prove (1). The pro-p part follows from the projection
formula {(cf. the proof of §2.5 Lemma 15) and the relation
Res;=ResgTry/x: CKyu (L) —> CK(F,)

(cf. §2.,5 Lemma 12). For the non-p part, we need the following Lemmas.

LEMMA 7. Let K be a complete discrete valuation field with residue field F.
Let L be a finite extension of K and E the vesidue field of L. Then, the follow-
ing diagrvams (1) and (2) are commutative.

ok oF
KinD) —> Ku(E) Kl K) —> Ks(F)
W Nuxy o | Ner o @ n o et
Kyl K) —> Ki(F) Kin(L) —> Ki(E)

Here er,x denotes the ramification index of the extension L/K.

ProoF. By §2.1 Lemma 2, it remains to prove the following fact; the

functors
F=0:R0x? g=EQp?: P(F) —> Hp, 0,00

satisfy fa—=er/x 8%t Ku(F) = Ku(Hb, 0, -0)=K(E). Let m; be a prime element
of L. Then, all the functors M—rif(M)/zmi M) (0=i<ey k) are exact functors
isomorphic to g, and zfL/k. f=0. Hence by Quillen [19] §3 Cor. 2 to Th. 2, we

have fi=er k-2«

COROLLARY. Let K and k be as in the hypothesis of Th. 1, L a finite exten-
sion of K, and kg, -, kv the fields determined by the conditions Ey=L and ki,
is the residue field of ki for each i=1, ---, N. Denote ki by k'. Then, when we
replace F, E, Kxy1 and ep;x in the diagrams of Lemma 7 by b, B, Ku.x, and
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[L: KJ-[& 1 B respectively, the resulting diagrams are commutative.

LEMMA 8. Let k& be a finite field and E a finite extension of k.
(1) For any 8= Hk)=Hom(k*, Q/Z), 0z (c H(E)) coincides with the compo-

. . Ngix 0
site E¥ —> k¥ —>Q/Z.
(2) For any 8= H(E)=Hom(E*, Q/Z), Corg,(8) coincides with the composiie

)
k¥ — E* — Q/Z.

The proof is easy and left to the reader.

Now, we return to the proof of the non-p part of Lemma 6 (1). It suffices
to prove the formulae

(1) tx(r®Npra)=7.(Qa) (x€ Xx(non-p), as Ky(L)),

(i) zx(Corrx(@0=r,(Raz) (3= X (non-p), a& Ky(K)).
These formulae can be proved using the following remarks. By Lemma 2 and
by induction on N, Xg(non-p) is generated by X,(non-p) and elements of the
form {4, u} (B=H(K)=Hom(k*, Q/Z), uc K*). For the proof of (iiy, it suffices
to consider the case £'=F and the case [£': E1J=[L: K], where 2’ is as in
Corollary to Lemma 7. In the latter case, as is easily seen, X;(non-p) is gener-
ated by X,.(non-p) and elements of the form {4, u} (@< H(L)=Hom((&")*, Q/Z),
we K* (not onlye L®). For example, in (i), assume [k': E]=[L: K], 0= H(L)
=Hom((")*, @/Z), uc K* and a= Ky(K). Then,

rx(Cory, x(18, u} )Qa)=1x({Corr (@), u} Ra)=0((0F({u, a}));.) (Lemma 8)
=6(0F({u, a} 1)) {(Cor. to Lemma 7) =7,(16, 1} Raz).

The proofs of the other cases are easier and left to the reader.

Next, we prove Lemma 6 (2). The non-p part is clear from the definition of
7 in the proof of Lemma 4. The pro-p part follows from §2.4 Cor. 3 to Prop. 5
applied to the case in which A=F[T1/(T™), B=0[TI/(T" (n21), S=0x—{0}
and f is the homomorphism FLTI/{T™"—0x[T1/(T") induced by a ring homo-
morphism F—Ox such that the composite F—Ox~Og/mxg=F 1is the identity
mabp.

§3.3. The norm groups.

In this §3.3, we compute the norm homomorphisms of the Milnor’s K-groups
of complete discrete valuation fields, and prove Th. 1 as a consequence.

Recall that for any field 2 and for any finite cyclic extension £ of %, there
is an exact sequence

Nz
E*

b* — Br(k) —> Br(E)
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(cf. Serre [20] Ch. XIV §1). In the usual local class field theory, this exact
sequence enables us to prove k*/Ng,  (E¥*)=Gal(E/k) if we assume the well known
results on the Brauer groups of the local fields 2 and E. Similarly, in the local
class field theory of this section, it is natural to expect that a sequence of the
type

9'a:E/k

R+(E)

will play the same role.

Conjecture 1. Let k be a field, y€X,, and E the cyclic extension of k cor-
responding to y. Then the sequence

= {X,
() — 2w 3 (1) — i

H¥Y(E)
s exact for any ¢q=0.

Though we can not prove this Conjecture, we take it as the basic idea of
the study in this §3.3. In the following, we shall prove that the assertion in
Conjecture 1 is true in the case where we take K and N in Th. 1 as & and ¢
respectively, and we shall prove Th. 1 by this fact. In the course of the proofs,
we obtain the following result.

DEFINITION 3. (Cf. Chapter 1 §4.) Let i=0 and let p be a prime number.
We call a field &, a B;-field (resp. Bp)-field) if and only if for any finite ex-
tension E of 2 and for any finite extension F of E, the group (resp. the p-primary
part of the torsion group) Q({E)/RreR(F) is zero. Of course, a field £ is a B,-
field if and only if it is B(p) for all p.

PROPOSITION 2. Let K be a compleie discrete valuation field with vesidue
field F, p a prime number, and 1=0. Then the following conditions (i) and (ii)
are equivalent.

(1) F is a Bp)-field.

(i) K is a B (p)-field.

Furthermore, if these equivalent conditions are satisfied, and if ch(F)=p and
ch(K)=0, we have cd(K)=i+1.

REMARK 1. It is probable that the property B,(p) is closely related to the
cohomological p-dimension cd,. In fact, if the above Conjecture 1 is true for
any field £ and for a fixed g, it is easily deduced that a field £ such that ch(k)#p
is B(p) if and only if H?Y(R)p)=0 for any finite extension %’ of 2. If §1.1
Conjecture 1 is true for any field &, for ¢ and ¢+1 and for all m=p" (n=0), it
is deduced that a fleld & such that ch(k)#p is B,(p) if and only if cd(B)=g.
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Before we start the proofs of Prop. 2 and Th. 1, we prove some preliminary
Lemmas.

LEMMA 9. A field & is Bp) if and only if for any finite extension E of k
and for any finite normal extension ' of E of degree p, Rpip: SUF)—KLE) is
surjective.

LEMMA 10. If k is a By(p)-field, it is By(p) for all g=i and R(k) is p-divis-
ible for all g>1.

LEMMA 11. Let k be a By(p)-field and assume ch(k)=p. Then,
(1) [k: kP]=p"
(2) Pi(k)y=0 for all n.
In particular, 1—y: 21— 02} is surjective, where 1 is the Cartier operalor.

LEMMA 12. Let £ be a field and assume ch(k)=p>0, [k: kP]=p?<co, Then,
N0, 0 KURVP)— & (k) coincides with the isomorphism {xi, -, xg—={xF, -, xf}.

LEMMA 13. For a discrete valuation jield K with residue field F, and for a
prime element = of K, let 8,1 Qui(K)— R (FYDORLF) be the surjective homo-
morphism with kernel WR(K);

an({xly U Xq+1}+{y1) Yoo ﬂ}>:({7€1; Tty xq+1}: {yly Ty yq})

(X1, =y Xgrn Yo s Ye€ Uk, g=0) (cf. Bass and Tate [4] Ch.1 Prop.4.3). Let K
be a complete discrete valuation field, L a finite extension of K, F and E the
residue fields of K and L, and g and my prime elements of K and L, respectively.
Let ny=u-n% wuelUy;, eeZ). Then, the following diagrams (1) and (i) are com-

mutative.

aﬁK aﬁL
Ruri(K) —= Rosr( IDRYUF) Ro(L) —5 R EXDRLE)
@ | [iepes G0 Rux| | Fere
RpiL) —> R, (EYDRLE) Ru(K) =5 R (FYDRLF)

Here jryap and gy, are the homomorphisms defined by :
jﬂL,T:K(ai b):(aE+ {bE» ﬁ} , € bE) s
SREK,;:L(G, by=(e-Ngr(a)—Ng, # {b, a}), g w(0)) .

PrOOF OF LEMMA 9. This is proved easily using the Sylow subgroups of
Galois groups.

PrOOF OF LEMMA 10. The first assertion is obvious. For the rest, let x be
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any element of k% y a solution of y*=x, and E=k(y). For ¢g>i, K-i(R)=
D Re-1(R)+Rg/28,-1(E), and Mg/ 1R i(E), x} Cp-Ngyy {R1(E), 3}.

PrOOF oF LEMMA 11. By Lemma 10, 8..:(k) is p-divisible. Hence, by §1.3
Lemma 7, we have [k: kP]=p’. On the other hand, it is easily seen that in §3.2
Corollary to Lemma 1, we may replace HYk) by P%(k) and H¥YE) by Pi(k).
Since £ is Bp), we have {x, a} =0 in Pi(k) for all rE Po(k) and a=®,(k). Thus
PiL(E)=0.

PROOF OF LEMMA 12. Let x;, -, xS(RVP)*. We can take a sequence k=
E,CE,C - CE;=FY? such that LE:: E;.J=p and x;€E, for all =1, -, g.
We have

Rrrrpsn{x, - ) Xg} :%EIIEO" °%Eq/Eq_1{x1: oy Xgb=A{xp, e xp}.

PROOF OF LEMMA 13. The commutativity of (i) is easily seen. Next, we
prove (ii). By %nK’nLojﬁL,,rK:[L: K7, and by [4] Ch.1 §5 diagram (15) and [4]
Ch. I Cor. 5.3, it is sufficient to prove

aer°%L/K(Z):ERKK,‘1L°87~L<Z)

for elements 2ER,4(L) of the form {x, yi} (xe8,(L), YERLK)) assuming that
[L: K] is a prime number. But this can be proved by easy computation.

PROOFS OF PROPOSITION 2 AND THEOREM 1. Now, we are ready to prove
Prop. 2 and Th. 1. Generally, let K be a complete discrete valuation field with
residue field F, p a prime number, L a cyclic extension of K of degree p, and
E the residue field of L. We study the group 8(K)/N;, g®(L) in the following
cases (A), (B), (C) and (D).

(A) Assume that L is unramified over K. We claim

R/ Re) xR LYZRYF) /R s R EYDRy—1(F) /Ty 58, (E) .

Indeed, since UPTN,,; (L"), UPE)TR,, 1 8(L) for all g=1. So, our claim fol-
lows from Lemma 13.

(B) Assume that L is totally ramified over K, and that p#ch(F). We claim
R/ Rr xRALY=R(F)/p-R(F) .

Indeed, as above, u;l’(K)CSRL,KS?q(L) for all ¢=1, and our claim follows from
Lemma 13.

(C) Assume p=ch(F), [F: FP1<p** and that L is totally ramified over K.
Let np be a prime element of L, ixg=N;,x7;, ¢ a generator of Gal(L/K), a=
alzx)ri'—1, and b=Nyx(a). We claim -

There is a unique surjective homomorphism
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Fi Q5 /(1—02F — 8(K) /N1, x8(L)

dy P
such  that f(f—_y—l/\ A‘L_yq_‘):{uxb, Vi eou} mod Ty, xRUL) for all
Y1 Vg1

xE0g, and yy, -+, Yg-1€ Ug.
Indeed, since [F: FP]=p?' by the assumption, RLF) is p-divisible by §1.3
Lemma 7. Hence we have

RLECUPE) T £ 8(L)

by Lemma 13. Next, since [F: FP1=<p%?, Q%' is additively generated by d(2%?)

and elements of the form xpﬂ/\ /\%}2ﬂ (x€F, y1, -, y-1€F*). Hence,
1 g-1
it follows from § 1.3 Lemma 6 (2) that for any n=1, UK /VPH2(K) is generated

by elements of the forms {1-+x?n%, i, =, Y-} and {l+xz%, 1, -, Yg-2r Tx}
(x€0x, y1, =+, Yg-1€Ug). Let t be the ramification number of L/K, i.e. t=vg(b),
which is independent of the choices of z; and ¢. If 0<n<t, by Serre [20] Ch.
V §3, we have

1+xP2%=Np, g1 +x22) mod UE™™ for all x€0y,

which proves
WEYCRIEK) R o R(LY  for 0<n<t.

On the other hand, U%"CN g(L*) by [20] Ch. V §3, and hence US*P(K)C
R x8(L). Furthermore, (1—7)2% ! is generated by d(£2%?) and elements of the

form (xp_x)ﬂ/\ A%.

Now, our claim follows from ;
Y1 Vg1

Npg(l+xa)=1+xP—x)b mod UE for all x€0k

([203 Ch. V §3).

(D) Assume p=ch(F), [F: FP]=p??, g=1 and that E is purely inseparable
over F. Let h be an element of Oy such that E=F(h), g=Ny,x(h), ¢ a generator
of Gal(L/K), a=o(h)h™'—1, and b=Ny,x(a). We claim :

There is a unique surjective homomorphism

F2 Q5 /A=N02F" — QLK) /Ter xR(L)

dy S.»  dB
such that f(;?—_y—l/\ /\—dgﬂA—?—):{be, Vi ) Vaoss 7} mod Tz, xRe(L)
yl yq»2 g

for all x€0g, 1, -, Y- Ux and for all prime elements = of K.
Indeed, since [F: FP]=<p?% the sequence

g

ag dag
? —_— ? -
[AN z A

O
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is exact and we can deduce from this fact that £%? is additively generated by
g A dy,- .
d(Q2%®), Q%“"/\*ég , and elements of the form xl’gl-—dyy LA A2 0y,

1 g-2
xEF, y1, -, ¥g-2=F*). It follows that for any n=1, U (K)/UP P(K) is gener-
ated by {IM(K), g} and elements of the form {l+x?g’n®, yi1, ', Y4-2» T} Where
7 is a prime element of K, and if p/t#n, it is generated by {UP(K), g}. Let
t=wvg(b), which is in fact independent of the choices of 4 and ¢ (cf. Remark 1
at the end of Chapter I §1). Then, since ge Ny, x(L*), and since

1+ xPgin" =Ny x(1+xh'z™?) mod UZHY

in the case p|n and 0<n<if (cf. Chapter I §1 (17) and Remark 1 of that section),
we have
UPEOCUTDE) R o 8(L) i 0<n<t.

On the other hand, U¥™PC Nz x(L*) (cf. Ch. I §1 Remark 1 (iii)) and hence
S K)C R x8(L). By these facts, our claim follows from;

Noye(14°S xihta)=1+(xf—xt 'S, 7 )b mod U™

for all x, -+, xp-:€0gk, which is a consequence of Chapter I §1 (17), and of
Npix(o(hh =1 and Try,x(c(h*)—hr%)=0.

These claims in (A)~(D) are sufficient for the proof of Prop. 2. Indeed,
first, assume that F is a B(p)-field. For the proof of the fact K is By.(p), by
Lemma 9, it suffices to prove & (K)=N;xR:.(L) in the case where L is a
cyclic extension of K of degree p, and in the case where ch(K)=p and L is a
purely inseparable finite extension of K. By Lemma 10, we have &;..(F)/p-8:.(F)
=0. By Lemma 11, if ch(F)=p, we have [F: FF]=p' and L£L/(1—7)8R=0.
When we apply the above (A)~(D) by taking g=1i41, these facts show &;,.(K)
=R x8:+:1(L) in the case where L is a cyclic extension of K of degree p. On
the other hand, if ch(K)=p, [K: KP]=p*** by [F: FP]=<7'. Hence Lemma 12
shows &+, (K)=NR;,z%:1(L) in the case where L is a purely inseparable finite
extension of K. Conversely, assume that K is 3B;,,(p). Then, by (A), K(F)=
Ne rRi(E) for any cyclic extension E/F of degree p. Furthermore, if ch(F)=p,
we can deduce 8;,,(F)=p -8,.(F) from Lemma 13 by taking a totally ramified
cyclic extension L of K of degree p. Hence [F: FP1=p% and by Lemma 12,
KF)=Rg 2R(E) for any purely inseparable finite extension £ of F. The asser-
tion concerning the cohomological dimension follows from §1.1 Th. 1 (8) with
the help of Lemma 11.

COROLLARY (to Prop. 2). Let N and K be as in the hypothesis of Th. 1.
Then, K 1s @ By.,-field. For any ¢=N-+2, 8(K) is a divisible group.
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Now we proceed to the proof of Th. 1. Let N and K be as in the hypothesis
of Th. 1. Our tasks are to prove the bijectivity of the homomorphism
Sn(K)/ Ry xkRy(L)—Gal(L/K) induced by ¥ and by Cor. 1 to §3.2 Prop. 1 for
any finite abelian extension L of K, and to prove the uniqueness of ¥%. The
former can be reduced to the case where L is a cyclic extension of a prime
degree by the induction using the commutative diagram of exact sequences

SRK'/K

KK/ Ry 5 85(L) Ky(K)/ R x&n(L) —> Ku(K) /Mg 1 g Ry(K') —> 0
by |v by le by i”xl
0 — Gal(L/K) Gal(L/K) Gal(K’/K) —> 0

(KCK’'CL). Furthermore, in the case where L is cyclic over K, the former is
equivalent {(modulo Prop. 1 (2) (ii)) to the exactness of the sequence

Nz {X, ?}

fx(K)

(L)

HY*YK) — H¥*(L),

where y is an element of Xy to which L corresponds. Thus, for the former, it
is sufficient to prove the following assertion (H).

(H) Let K be as in the hypothesis of Th. 1, p a prime number, y an element
of Xk of ovder p, and L the cyclic extension of K of degree p corresponding to
v Then, {y, ?} induces an isomorphism from Kx(K)/Rp,x®x(L) onto HY"(K)p.

Now, we prove this assertion by induction on N. The case N=0 is easy
and so we assume N=1. Let F and E be the residue fields of K and L, respec-
tively. We consider again the cases (A)~(D) taking N as g.

In the case (A), we may regard y as an element of the subgroup X of Xg.
By the above Corollary, we have Ky(F)=%g, Ry(E). Thus we have the follow-
ing commutative diagram, which proves the assertion (H) in this case by induc-
tion on N.

{6 7

Ry -1lF) /g1 &y -1(E) HY(F)p

Al l Al lh‘}}
{, °}
KK /Ry xRy(L) HY* KD, .

In the case (B), y=1{0, =} for some non-zero element & of H(K),=H(F),
and for some prime element 7w of K (cf. §3.2 Lemma 2). We have a commutative
diagram

N
hor

K(F)/ p-Ry(F)
ll

HY(F, u3")=HY(F),
U (=Y rE
HNH(K)p ,

¥

{x ?t
KyE /Ny 2 85(L)
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where HY(F, p$¥)=H¥(F), is the isomorphism induced by 6. Hence, in this
case, the assertion (H) follows from Corollary to Lemma 14 below.

LEMMA 14. Let K be a complete discrete valuation field with residue field F.
Let g=1.

(L) If m is an integer invertible in F, h% x is bijective if and only if hi.r
and h%% are bijective.

2) Assume ch(F)=p>0, ch(K)=0, [F: FP]=p%?% and that K contains a
primitive p-th root of 1. Then, h% x is bijective if h% ,: PT¥F)—HYK, p§“ ")
1s bijective.

Proo®r. The proof of (2) is contained at the end of §1.3.

COROLLARY. Let N and K be as in the hypothesis of Th. 1. Then, h5% is
bijective for any prime number p which is invertible in K.

Proor. This follows from the above Lemma 14, Cor. to Prop. 2, and § 1.1
Th. 2 by induction on A.

In the cases (C) and (D), the assertion (H) follows from the following com-
mutative diagram by induction on N.

QEA—QEr =  HYF),
EN F
fl - | = hk
KR(F /Ny x8w(L) HYYK),

The commutativity (up to sign) of this diagram is a consequence of

LEMMA 15. Let K be a complete discrete valuation field with residue field F.
Let p be a prime number, y an element of Xg of ovder p, L/K the cyclic exten-
sion corresponding to g, o the element of Gal(L/K) such that y(o)=1/p. Suppose
ch(F)y=p and that L/K is not unvamified. Let hel*, a=c(h)h'—1, and b=
Niix(a). Then, for any ueOy,

{x, I+uby=—{ua), Ny, (W)} m HYK),
where (it) denotes the tmage of @ under the canonical homomorphism
[ont
F— F/{x?—x|x€F} 2(Xp)p, — (Xg)p -

PrOOF. Let t=vg(b). Then, 1=<¢<co. By Chapter I §1 (17), we have U%™
CNpx{Ll*) and

(%) Nyg(l+xa)=1+(xP—x)b mod UYY
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for any x€0gk. Hence, if @< {x?—x|xeF}, {y, 14+ub}=0 by §3.2 Cor. to Lem-
ma 1. Assume #Z& {x?—x|xeF}. Let T/K the unramified cyclic extension of
degree p corresponding to #(#), v an element of Oy such that 5?—#=#, M the
composite field L(?T, T the unique element of Gal(M/K) such that 7|,=¢ and
T()=5-+1, L’ the fixed field of ¢ in M. Since yr)y=1(a)z)=1/p, it follows that
L’/K is the cyclic extension corresponding to y—i(#). Since M/L’ is unramified,

T—l NM/L’
the sequence U Uy U is exact for any n=1. From this,

we can deduce that there is an element w of Oy such that =7 and z(14+wa)
(I4wa) *=14+a. We have (I+wa)h*eL’ and

Npox((I+wa)h )=Ny,71+wa) Ny, g(h)™?
={+4ub) Np/x(h)™* mod UE™

by the above (x). Hence (note that UPC Ny x(T*), by Cor. to Lemma 1, we
have

0={x—i@), A+ub) Ny;x(h)™} ={y, 1+ub}+ {ia), Ny, =},

which proves Lemma 15.

Thus, we have proved the assertion (H), and hence, ¥% induces an isomor-
phism &y(K)/Np, x&y(L)=Gal(L/K) for any finite abelian extension L of K, and
Conjecture 1 holds in the case 2=K (K is as in Th. 1) and ¢g=N.

Lastly, we prove the uniqueness of ¥%. Let ¥” be a homomorphism fx(X)
—Gal(K#*/K) having the following properties (1) and (2).

(1) For any finite abelian extension L of K, the homomorphism &y(K)-
Gal(L/K) induced by ¥" annihilates Ny, x&x(L).

(2) For each 1=1, ---, N, let z; be a lifting to K of a prime element of k.
Then, the image of ¥'({zy, -, wy}) under the canonical homomorphism
Gal(K*»/K)—Gal(k**/k) coincides with the Frobenius automorphism over £.

Since &y(K) is generated by elements of the form {m,, ---, mx} as above, it
is sufficient to prove ¥(a)=¥x(a) for any a=/{z,, -+, #x}. Let S be the fixed
field of ¥x(a) in K**, and T the unramified extension of K corresponding to
ks/k. Then, for any finite extension L/K contained in S, ¥x(a)|s=1 shows
asN x¥x%(L). Hence by (1), we have ¥'(a)|s=1. Since ¥ (a)|r=¥x(a)|r by
(2) and since K**=S-T, ¥ (a)=Tx(a) on K?=b,

Now we completed the proof of Th. 1.

Concerning Th. 2, it remains to prove 1 gocx=¥% in the case ch(K)=p>0.
Let ¥"=Yxotx. Then, by §3.2 Lemma 6 (1) (i) and by §24 Cor. 2 to Prop. 5,
¥’ has the above property (1). Furthermore, by §3.2 Lemma 6 (2) and by §2.4
Cor. 1 to Prop. 5, ¥ has the above property (2). Hence U=V as was seen
above.
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§ 3.4. The Brauer groups.

In this § 3.4, we prove the following Prop. 3 and Prop. 4.
For any field &, let X,@~k*—Br(k); y&Qa— (3, a) be the pairing in Serre [20]
Ch. XIV §1.

PROPOSITION 3. Let N=1, and let K be as in §3.1 Th. 1. Then, there is a

canonical injective homomorphism
Oy : Br(K) — Hom(®y-,(K), Q/Z)
such that @ g((y, )Y O)y=x(¥x{{a, b})) for any y€Xg, a€K* and bely-(K).

PROPOSITION 4. Let N and K be as in §3.1 Th. 2. Then for each 1=g=
N1, there is a unique homomorphism

@%{ : H{K) —> Hom(KN+1—q(K)y Q/Z)

such that O%({y, a5, -+, ag-} XO=yxT x({as, -, ag-1, b}) for all y&Xx=HXK),
sy vy Qg EK*, and bEKyu-K). Here Y is the homomorphism Ky(K)—
Gal(K®**/K) defined in §3.2.

REMARK 2. If ch(K)=p>0, the homomorphism @, in Prop. 3 is character-
ized by the mentioned relation with %%, for Br(K) is generated by elements of
the form (y, a) (yXg, a=K*) in this case. It is probable that for any field &,
HYE) (g=1) is generated by elements of the form {y, a;, -+, a,-1} (€ X =H(k),
ay, v, Qg1 ERF).

We begin with the following Lemma.

LEMMA 16. Let k be a field of characteristic p>0, and let n=0. Then, there
1s a canonical isomorphism

PL(k) —> Br(k)pn; {1, a}—=(y, @) (y=Pk), ask®),
where we identify PY(E) with (X,)pn via Witt theory [25].

COROLLARY. For any field k, H¥k) is canonically isomorphic to Br(k).

Proor OoF LEMMA 16. The pairing (X,;),»&k*—Br(k),» ; y®a—(y, a) induces
via Witt theory a pairing P%(kE)®~k*—Br(k),». By Teichmiller [24] Satz 1, this
pairing induces a homomorphism Pi(k)—Br(&),»; {3, a}—(y, a). It remains to
prove the bijectivity of this homomorphism. By induction on n, we may assume
n=1. But in this case, PX{%)—Br(%k), is the homomorphism 2,/(1—7)2: a-0—
Br(%), induced from the exact sequence
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dx
X 1—7

Prgamo—> Ly —>0

by taking the Galois cohomology, and hence is bijective.

P ad

0—> k¥ —> k¥

PROOF OF PROPOSITION 3. The homomorphism @ is defined by the isomor-
phism Br(K)=H*K) (the above Corollary) and by the pairing

wQa— {w, a}

hx
HYE)YQRy -(K) HY*YK) = Q/Z.

The relation with ¥% is clear. The injectivity of @ is non-trivial, and is proved
as follows. It is sufficient to prove for each prime number p, that the homomor-
phism Br(K),—Hom(®y_(K), @/Z) induced by @y is injective. We prove this
by induction on N. Assume weBr(K), and @x(w)=0, and let L/K be a finite
Galois extension of K such that w,=0. (We hope to prove w=0.) Let K’ be the
fixed field of a Sylow-p-subgroup of Gal(Z/K). Then, Br(K),—Br(X”’), is injec-
tive, and there is a sequence K’'=FE,C .- CE,=L such that E; is a cyclic
extension of E;_; of degree p for each i=1l, -+, n. Since @z (wg)=Px(w) Ny, 1x
=0, it follows that we may assume the extension L/K to be cyclic and of
degree p. Let y be an element of Xy to which L corresponds. Since the

sequence
N, LIK (X, ?)
K*

Br(K) — Br(L)

is exact, all things are reduced to the following assertion (I).
() Let p be a prime number, y=(Xg)p x#0 and L/K the cyclic extension of
degree p corresponding to y. Then the homomorphism

@rx * K*/Npjx(L*) —> Hom(&x-(K), €/Z) ;
a—> (b0 ({y, a} )=y ¥x({a, b}))

is injective.

Fortunately, by Serre [20] Ch. V §3, and by Ch. I §1 of this paper, the
group K*/Nyp;z(L*) can be known exactly. Let F and E be the residue flelds of
K and L respectively. We may assume N=2, for the case N=1 is well known
in the usual local class field theory. There are four cases (A)~(D).

(A) Assume that L/K is unramified. Then, we can regard y as an element
of XpC Xx. We have a commutative diagram

K*/Nyx(L%)
Ul Ul
@Z,FEB“ Lo w[«‘ i
F*/Ng o EXYDZ/ pZ Hom(Ry -o(F), Q/Z)PHom(&y-,(F), Q/Z),

Hom(Ry (KUY (K), Q/Z)
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where “ye¥r” denotes the homomorphism 1—y- ¥, Hence ¢, is injective in
this case by induction on N.

(B) Assume that L/K is totally ramified and ch(F)+p. Then F contains a
primitive p-th root of 1. We have a commutative diagram

®x,
K*/Nyx(L¥) ———s Hom(Ry () p-Ry-rK), Q/Z)

Ul
F*[(F*)? = (Xp)p Hom(&y-.(F), Q/Z)

where F*/(F*)?=(Xg), is the isomorphism in Kummer theory. Since the homo-
morphism Xrp—Hom(Ry-«(F), Q/Z) induced by ¥ is injective by §3.1 Th. 1,
@1.x is injective in this case.

(C) Assume that L/K is totally ramified and ch(F)=p. Let ¢ be as in §3.3
Proofs of Prop. 1 and Th. 1 case (C). If i+;5>1¢

2 Tx({UR, U (FON Cye Tx(U§H(K)=0,

for UFHP(K)CH, x8x(L). Hence ¢y x induces the upper horizontal arrow in the
following each diagram below. Let h: 2F-—@Q/Z be the composite

QF7 — QF Y/ (1—nQF = PY-\(F) — HY(F)=Q/Z,

and note that 4 is not the zero map. By §3.3 Lemma 15 and by the computation
of Npyjg: L*—K* in [20] Ch. V §3, the following diagrams are commutative
for some suitable choices of L and @&~ (cf. §1.3 Lemma 6 (2)).

K*[(UP- ZVL/K<L‘))—> Hom (M¥..(K)/u§ (K, Q/Z)
U by oF “!(x, 0)

x»—>h< (l; /\?>
F*/(Fx)r - Hom (2%, Q/Z).

O,
(U~ Nis o (LU - Ny e L))~ Hom (4= PE)/ UKD, Q/Z)

Ul vV ¢ R (x 0)
x\—>/z< d: /\?)
F/F? - Hom (27% Q/Z)
(I=n<).
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Oy, 1

(U9 Ny x( L)/ Ny e L¥) ———=Hom (R .(KO)/UF-(K), Q/Z)

Ul l

by ¥,
B {7 x| 1 € F} 2= (X ———m Hom (Ry_(F), Q/Z) .

Hence the upper horizontal arrow in each diagram is injective, and this proves
the injectivity of ¢y x.

(DY Assume that E/F is a purely inseparable extension of degree p. Let A,
g, o, a,band t be as in §3.3 Proofs of Prop. 1 and Th. 1 case (D). Then,
Chapter I §1 (cf. Remark 1 at the end of that section) shows USSP Ny x(L*),
and shows that there are diagrams which are commutative for some choices of
giTand ¢¥* by §3.3 Lemma 15:

K*[(UR - Nyyx(L¥)) o Hom (W ,(K)/U§H(K), @/ Z)

] lby ot
Z [ pZDF*[(EX)P Hom(2¥ 2, Q/Z)YDHom(2F %, Q/Z)

- h(ij— A?)@h(%/\ %g_/\?) ,

mépu

(U Ny g (LN /UEH - Ny L) — 225 o Hom (U= (K)/Ug1+0(K), Q/Z)

Ul ) by o3, 0)
xHh(x c:fgg /\?)
F » Hom (2472, Q/Z)

(1=n<t, pln),

(UP+ Ny (L) /(UEH - N g (L*)) X Hom ME=P(K)/BE (KD, Q/Z)
2l iz by ¢i7(0, %)
x»->/z(dx/\ (_;g /\?)
F/E? — Hom (2§, Q/Z)

(d=n<t, pln).

Hence the upper horizontal arrow in each diagram is injective. It remains to
prove the injectivity of
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UP Nyl Ny LF) — 2
(UP-NpygL¥)/Npyg(L*)

Hom(®y -.(K)/UF-(K), Q/Z)

(7_'1 ATL/K
By Hilbert’s Satz 90, the sequence L* L* K* is exact. From

this and Chapter I §1, we can deduce that the sequence

= Aol N
- Foo(x)x iy 7 repnet LIE ) ) [Ta+D
0 —m Fr —— = U U ———= U/ Uk

-1 )
is exact and the homomorphism Ny g : ULP™D/UEP D LU /U is 1+ S x,4a
$=0
p_l ; - . . .
=14+ (xf—xo+ 2 x7gMb (each x;&0%). Since this sequence is still exact when
i=1

we replace F, E, K and L by Fy, E,, K, and L., respectively, it is continued as

H—bu[x df] .

N, o
Npg Up UL+ Z_ = Br (F)p

-1 -1
Ugr b [Ugr e

by taking the Galois cohomology. Here, for each we 25, [w] denotes the image
of ® under the canonical isomorphism 25/(1—7)2p 4—o=Br(F )p- Now, the follow-
ing commutative diagram completes the proof of the injectivity of ¢y x by induc-
tion on N.

. . . . 9’72, {
(U@ Npyg( L)/ Ny (L) —2% o Hom Ry (FKO/UP_ (KD, Q/Z)

N d

l+xb\ Hom ®y_«(F), Q/Z).

o2

(=4

Thus we have proved the assertion (I) and hence Prop. 3.

PrOOF OF PrROPOSITION 4. Let K be as in §3.1 Th. 2. First we define the
p-primary part of ©%4. Let Resg: CA‘KNH(K)—»(:‘KI(FF) the homomorphism defined
in §3.2. Then, the induced homomorphism

CHK) —> Hom(K .o K), CK(F,)); w—> (a—Resx({w, a})

is compatible with the actions of W(¥,), V., (n=1) and F, (n=1) (on C‘K’Q{I{}
and (A?KI(FP)). Hence we obtain a homomorphism

6% : TCK(K) — Hom(K y11-oK), WP(F )=Hom(Ky.:-(K), Z,),

which satisfies
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(1) 0%-Vy=p-0% (2) 0k Fp=0%.
Furthermore, we can prove
3y GL({TCK,-«(K), TH)=0
as follows. By easy computation, for any 120, we have
V(AT CK, oK), THCAIH T CR(K).

Since the image of flt®T CKQ(K) in Kq(K[T]/(Tp“‘l)) is zero, the image of
6%{°Vpi({TéKq-1(K), T}) in Hom(Ky.:-(K), K(F [T1/(T?-1) is zero by the
definition of the residue homomorphisms. By the above (1), this implies

P 0 ({TC K, (K), THCHom(Ky1-o(K), p%Z,) for all i20,

and hence we have 8% {TéKq_l(K), TH=0. By §2.2 Cor. 4 to Prop. 2, these (2)
and (3) show that 6% induces a homomorphism

PEHK) —> Hom(Ky41-o(K), Z/p"Z);
{w, a1, -, Gg-1} —— (b—Resxg({w, as, -+, ag-1, b})
for each n=0, and in the limit, a homomorphism
HYK)(p) —> Hom(Ky+:-(K), Q/Z).

We adopt this homomorphism as the p-primary part of 6%.

Next, the non-p part of @% is defined by induction on N as follows. We
may assume N=1 and ¢=2: Let F be the residue field of K, and = a fixed
prime element of K. Then, by §3.2 Lemma 2, we have an isomorphism

HYF)non-p)H**(F)(non-p) = H(K non-p);
w P w, — ik(w)+ {ik(w.), n}.
Hence, by induction on N, we can define a homomorphism
HYK)(non-p) —> Hom(Ky 1K), @/ Z)

by i&(w)+ {1%(w,), w}—(b— O w:)(0F (0))+0O%F (w:)OF {x, b})).

Thus, we have defined the homomorphism ©%. The relation with X'« is
clear on the p-primary part and can be easily checked by induction on N on the
non-p part. The uniqueness of % follows from the fact that HUK) (g=1) is
generated by elements of the form {y, a, -, a;-} GEHK), ay, -, g€ K*),
which can be proved easily by induction on N and by §3.2 Lemma 2.

§3.5. The case N=2.

In this §3.5, we prove Th. 3 stated in §3.1. We have already proved this
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Theorem in the mixed characteristic case in Chapter I. It is easily seen that
the definitions of the homomorphisms ¥, and @y of this Chapter II coincide
with those of Chapter I §6 in this case. So, in the following, we consider only
the case ch(K)=ch{k,).

Let K be as in the hypothesis of Th. 3 (N=2), F=k,, and assume ch(X)=
ch(F). We have already seen in Th. 1 the injectivity of the homomorphism
Xx—Hom(K(K), Q/Z) induced by ¥%, and that of the homomorphism @ : Br(K)
—Hom(K*, @/Z) in Prop. 3. It remains to prove the following assertions (i)~
(v). In the following, the topologies of K* and K,(K) mean the ones defined in
Chapter [ §7 in the case ch(K)=ch(F)=p>0, and the discrete topologies in the
case ch(K)=ch(F)=0.

(i) For each yeXg, y°¥x: K(K)—Q/Z is continuous.

(ii) For each continuous homomorphism ¢: K, (K)—Q/Z of finite order,
there is an element y of Xx such that p=y-¥%.

(iii) For each weBr(K), Ker(®x(w))=Nrd(w/K).

(iv) For each weBr(X), @x(w): K*—@Q/Z is continuous.

(v) For each continuous homomorphism ¢: K*—@Q/Z of finite order, there
is an element w of Br(X) such that p=0x(w).

ReMARK 3. Though we adopt above the discrete topologies in the case
ch(K)=ch(F)=0, we can define more reasonable topologies, which take the usual
topology of the residue field into account, if a ring homomorphism f:Q,—0Ox is

fixed satisfying the condition that the composite @, —f> Ox—Og/mg=F coincides
with the canonical inclusion. Then, for each non-zero element ¢ of mg, Ok
becomes a free module of finite rank over @,[[f]] via f. We can endow @Q,[[{]]
with the product topology of the usual topology of @,, and Ox with the topology
as a finite product of copies of Q,[[r1]. This topology of Ox induces in the
way of Chapter I §7, the topologies of K* and K,(K). These topologies are
independent of the choices of ¢ and a basis of Ox over @,[[#]], but unfortunate-
ly, really depend on the choice of the homomorphism f, for the image under f
of a transcendental basis (b;); of @, over @ can be arbitrarily chosen satisfying
f(b) modmg=>0; for all i.

REMARK 4. In the case ch(F)=p>0, any continuous homomorphism K*—
Q/Z or K«(K)—Q/Z is automatically of finite order. This can be proved just
as in Chapter I §8.

Now we prove the assertions (i)~(v). We shall omit the details of the
proofs in the case where they are just the repetitions of those in Chapter L
First, we prove (iii). Let weBr(K). By §3.2 Lemma 1 (2) and Prop. 1 (2) (ii),
we have the formula
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O (wrXa)=Px(w)Np k(@) (weBr(K), asl?),

where L is any finite extension of K. By virtue of this formula, the proof of
(iii) goes just as in Chapter I §6. We do not repeat here the same argument.
The proof of (iv) is the repetition of Chapter I §8 Proof of Th. 1 Step 1, and
(i) follows from (iv) just as in Chapter 1 §8 Proof of Th. 2 Step 1. Lastly, we
prove the existence theorems (i) and (v). The case where the order of ¢ is
invertible in F is easy, and so, we assume that ch(X)=p>0 and that the order of
¢ is a power of p. Since X, and Br(k) are p-divisible for any field 2 of charac-
teristic p>0, we are reduced to the case p-o=0. Our task becomes to the
surjectivity of the injective homomorphisms

a: K/ {x*— x| xe K} —> Hom KK/ p KoK, —;-Z/Z)

xH({y, z}'—>h<x~ag~/\%>) R

Bt Q11D smo — Hom(K* (K, -7/ Z)
@ (xHh(wA —%?—)) .

where Hom, denotes the group of all continuous homomorphisms, and % denotes
the composite

h
Q4 /(1—1)2% = PUK) —= HY(K) = Q/Z.

For each n=—1, let N, be the image of {xeK|vg(x)=—n} in K/{x*—x{xEK},
and M, the subgroup of Qx/(1—7)2k, ¢~ defined in Chapter I §4 Proof of Lem-
ma 5. Recall that we have computed the groups M,/M,., (n=0) in that place.
Similarly, we have N.,=0, No/N.,=F/{x?—x|x<F} canonically, and

No/Npi=F/F?; x—> xbPmod F? if n=1 and pin,
N, /Ny =F; xr—>xc if nz1 and p/n,

where b and ¢ are fixed elements of K such that vx(b)=n/p and vg(c)=n. On
the other hand, the subquotients of K,(K)/p- K(K) were computed in Chapter I
§2 Prop. 1 and those of K*/(K*)? were computed in Chapter I §6 Figure 2. It
is easy to prove that N, annihilates (UT2(K)+p- K (K)/p-Ko(K) via a and M,
annihilates UGTP(K¥)P/(K*)? via B for any n=0. The analogues of Chapter I
§ 6 Figure 3 are obtained as follows.
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K/{xP—x|x=K} KK/ p- KAK) Lo/ 2% aue
E _( FEJ(Fxp s W-Z/pZ.‘LF*/(F*)P
F/F? 0, | FyEr Tr
T F L T o, L
1 F/F? + 1 F/Fe
1
' H
No+ ' Mo+ ‘
oJ- F/{x?—x|xeF} ; ol 2e/(1-12F ;
OF/ {x?—x|xaF}
. . . 1 1 .
Since a continuous homomorphism KZ(K)—>—Z~>—Z /Z (resp. K*—»;Z /Z) annihi-

lates WW(K) (resp. UP) for sufficiently large n as is easily seen, we can prove
the surjectivity of « and § just as in Chapter 1 §8 Proof of Th. 2 Step 2.5 and
Chapter I §8 Proof of Th. 1 Step 2.5, respectively.

[13]

[2]
(3]
[4]
5]
(6]
L7]
£8]
£9]
(103
(113
(12}

Bibliography

Artin, M., Dimension cohomologique; premiers résultats, Théorie des topos et
cohomologie etale des schémas, Tome 3, Exposé X, Lecture Notes in Math. n°
305, Springer-Verlag, Berlin, 1973, 43-63.

Artin, M., Grothendieck, A. and J.L. Verdier, Théorie des topos et cohomologie etale
des schémas, Tome 2, Lecture Notes in Math. n°® 270, Springer-Verlag, Berlin, 1972.
Bloch, S., Algebraic K-theory and crystalline cohomology, Publ. Math. Inst. H.E. S.
47 (1977), 187-268.

Bass, H. and ]J. Tate, The Milnor ring of a global field, Algebraic K-theory II,
Lecture Notes in Math. n°® 342, Springer-Verlag, 1972, 349-446.

Cartier, P., Une nouvelle opération sur les formes différentielles, C.R. Acad. Sci.
Paris 244 (1957), 426-428.

Cartier, P., Groupes formels associés aux anneaux de Witt généralises, C.R. Acad.
Sci. Paris 265 (1967), 50-52.

Demazure, M., Lecture on p-divisible groups, Lecture Notes in Math. n° 302,
Springer-Verlag, Berlin 1972.

Grothendieck, A., Elements de géométrie algébrique IV, Premiére partie, Publ.
Math. Inst. H.E.S. N°20, 1964.

Greenberg, M.J., Rational points in Henselian discrete valuation rings, Publ. Math.
Inst.H.E.S. 31 (1966), 59-64.

Gersten, S., Higher K-theory of rings, Algebraic K-theory I, Lecture Notes in
Math. n°® 341, Springer-Verlag, Berlin, 1973, 3-42.

Grayson, D., Higher algebraic K-theory II, Algebraic K-theory, Lecture Notes in
Math. n® 551, Springer-Verlag, Berlin, 1976, 217-240.

Hilton, P.J., Homotopy theory and duality, Cornell University 1959 (mimeographed
lecture notes) ; Gordon and Breach, 1965,



[13]
[14]
{15]
[16]
[17]

(18]
[19]

[20]
[21]

[22]
(23]
[24]
[25]
[26]
L27]

Generalization of local class field theory 683

Ilusie, L., Complexe de De Rham-Witt, Journées de géométrie algébrique de Rennes
I, Astérisque 63 (1979), 83-112.

Loday, J.-L., K-théorie algébrique et représentation de groupes, Ann. Sci. Eéole.
Norm. Sup. (4) 9 (1976), 309-378.

Milne, J.S., Duality in flat cochomology of a surface, Ann. Sci. Eéole. Norm. Sup.
4) 9 (1976), 171-202.

Milnor, J., Algebraic K-theory and quadratic forms, Invent. math. 9 (1970), 318-
344,

Milnor,%]., Introduction to algebraic K-theory, Ann. of Math. Studies, No. 72
1971.

Nagata, M., Local rings, Interscience Tracts, 13, Interscience, New York, 1962.
Quillen, D., Higher algebraic K-theory 1, Algebraic K-theory I, Lecture Notes in
Math. n® 341, Springer-Verlag, Berlin, 1973, 85-147.

Serre, J.~-P., Corps Locaux, Paris, Hermann, 1962.

Serre, J.-P., Cohomologie Galoisienne, Lecture Notes in Math. n° 5, Springer-
Verlag, 1965.

Serre, J.-P., Sur la dimension cohomologique des groupes profinis, Topology 3
(1965), 413-420.

Tate, J., Symbols in arithmetic, Actes du Congreés International des Mathématiciens
1970, Tome 1, Gauthier-Villars, Paris, 1971, 201-211.

Teichmiiller, O., Zerfallende zyklische p-algebren, J. Reine Angew Math, 176 (1936),
157-160.

Witt, E., Zyklische Korper und algebren der charakteristik p vom grade 77, J.
Reine Angew Math. 176 (1936), 126-140.

Kato, K., A generalization of local class field theory by using K-groups, I, J. Fac.
Sci. Univ. Tokyo Sect. IA 26 (1979), 303-376.

Brylinski, J.-L., Théorie du corps de classes de Kato et revétements abeliens de
surfaces, preprint.

(Received June 18, 1979)

Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Tokyo

113 Japan



