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To the memory of Takwro Shintani

In this paper, we shall study the class field theory of a complete discrete
valuation field K whose residue field F is an algebraic function field in one
variable over a finite field. We shall define in §2 a topological abelian group
Cy(K) called the K,-idele class group of K, which plays the role of the usual idele
class group in the class field theory of F. Our aim is to prove the following
theorem which was stated in the introduction of [8].

THEOREM 1. There ts a canonical homomorphism Cy(K)—Gal (K K) which
induces an isomorphism Co(K)/ N xCo(L)=Gal (LIK) for each finite abelian ex-
tension L of K, where Ny z: ColL)—Co(K) is the canonical norm homomorphism.
The correspondence L—Nyp xCy(L) tnduces a bijection from the set of all finmite

abelian extensions of K to the set of all open subgroups of CyHK) of finite
" ¢ndices.

We shall also define the Ki-idele class group C,(K) which can be used to de-
scribe the Brauer group of K.

THEOREM 2. The Brauer group Br(K) of K is canonically isomorphic to
the group of all continuous homomorphisms from Cy(K) to the discrete group

Q/Z.

We wish to express our sincere gratitude to Professor Y. Ihara for his con-
sistent encouragement in the study and writing of these series of papers.

§1. A preliminary for liftings of rings.
In this section, we prove the following lemma.

LEmMMA 1. Let p be a prime number, A a ring, I a nilpotent ideal of A
such that p-1,e1. Let R=A/I, and let h: R—S be a ring homomorphism satis-
Sying the following condition (C).

(C) The S-homomorphism RP®,S—S®; a@y—h(x)y? is bijective, where
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R® denotes the ring over R with the underlying ring R and with the structural
map R—R®; gx?, and S® denotes the ring over S defined similarly.
Then, there exists a formally etale ring B over A such that B/IB is iso-
morphic to S over R. If S s flat over R, this ring B over A is characterized
by the properties that it is flat over A and BJ/IB is isomorphic to S over R.

Here, as in Grothendieck [1] Ch. 0 §19, we call a ring B over a ring A for-
mally etale if and only if for any ring C over A and for any nilpotent ideal J of
C, the induced map Hom,(B, C)—Hom,(B, C/J) is bijective. Hence, if B is as in
Lemma 1 and wu: B/IB=S is an R-isomorphism, and if (B’,«’) is another pair
satisfying the same condition as (B, #), there exists a unique A-isomorphism
v: B= B’ such that u=u"-(v@®A/I).

DEFINITION 1. Let 4,I, R and S be as in Lemma 1. We call the above ring
B endowed with a fixed R-isomorphism B/IB=S, the canonical lifting of S over
A (with respect to the ideal I). When the assumption that I is nilpotent is re-
placed by the more general assumption Azl(igl All*, we call l(i_rP B, the canonical
lifting of S over 4, where each B, denotes the canonical lifting of S over A/I™

PRrROOF OF LEMMA 1. Assume I"=0. Let ~ be an integer such that r=n—1,
N a suﬁimenﬂy large number, and let ¢,: Wy(R)—>A be the homomorphism (%, %1,

[ Z,‘ PR 2, where Wy(R) denotes the ring of p-Witt vectors over E of length
N and ml denotes a representative in A of #; for each 4. (Note that & ‘s
independent of the choice of the representative.) Define the ring B over 4 by
B=AQ®uw 5 Wn(S), where we regard A as a ring over Wi(R) via ¢,. To see that
B has the properties mentioned in Lemma 1, it suffices to prove the following

LEMMA 2. Let p be a prime number, B o ring of characteristic p (i.e.
p-1,=0), and h: R—S a ring homomorphism satisfying the condition (C) in
Lemma 1. Then, the induced homomorphism W(R)—>W(S) is formally etale
for any N=0. If S is assumed furthermore to be flat over R, Wy(S) is flat
over Wy(R).

PrROOF. For any ring A of characteristic », let &: Wxy(4)>Wy(A4) be the
homomorphism (%, -+, Ty_ )8, «++, £5.1), and for r=0, let Wx{A)3” be the
ring over Wx(A4) with the underlying ring Wx(A4) and with the structural map
Kr=Fo-++oF (r times). It follows easily from the condition (C) that the W (S)-
homomorphism

(1) W R)F @y iy Wa(S) — Wx(S)®7; 2@y —— Walk)(2)- 8" (1)
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is bijective for any »=0. Let C be a ring over Wy(R) and J a nilpotent ideal
of C containing p-15;. For the proof of the first assertion in Lemma 2, it suffices
to prove that any Wy(R)-homomorphism ¢: W{(S)—>C/J can be uniquely lifted to
a Wy(R)-homomorphism @: Wx(S)—>C. Take a sufficiently large number . By
virtue of the bijectivity of the above homomorphism (1), & can be defined to be
the Wy(R)-homomorphism such that

N—-1 -~~~ .
B (80, +*+, 8y-1))= i;) Pho(s)?™™ " for any (sq, *++, Sw-1) € Wx(S),

where QZ(\S:) denotes any representative of ¢(s;) in C.

Next assume furthermore that S is flat over R. For the second assertion of
Lemma 2, it suffices to prove that Tor?~® (M, Wx(S))=0 for all Wy(R)-modules
M. For each =0, -++, N, let =Ker{Wy(R)>W.R)). Since I, is nilpotent, we
may assume I, M=0. Since S=Wy(S)/[LW,(S) is flat over R=Wy(R)/I,, we are
reduced to proving Torl!»®(R, W,(S))=0. For this, by a downward induction
starting with =N, we can prove TorV/~®(Wy(R)/IL;, Wx(S))=0 for all 4, as a
consequence of the bijectivity of the homomorphisms

Ii/I'i+1®WN(R) Wu(S) —— LWn(S)/ L+ Wx(S).

§2. Adeles and ideles.

Let F be an algebraic function field in one variable over a finite field, and
let K be a complete discrete valuation field with residue field F. If we denote
by A(F) the adele ring of F, the canonical homomorphism F—A(F") satisfies the
condition (C) in Lemma 1. Hence we can define the canonical lifting of A(F) over
the valuation ring Ox of K, which we denote by A(Ox). We define the adele ring
A(K) of K to be A(Ox)@o K. For ¢=0, we call K(A(K)) the K idele group of
K (here Ky denotes Quillen’s K-functor), and call the cokernel Cy(K) of K (K)—
K(A(K)) the K, idele class group of K. We shall be concerned only with the
cases ¢=1,2.

If I is a finite extension of K, then A(L)=A(K)®xL. So, we have norm
homomorphisms K (L)—K,(K) and K(A(L)—-K A(K)), which induce a norm homo-
morphism Ny x: C{L)—C(K).

Tt is possible to write the adele ring A(K) in the form of a restricted product
with respect to the places of F. For each place v of F, let F, be the v-adic
completion of F. Let O, be the canonical lifting of F, over Ox and let K,=
Ox,®0, K. Then, Og, is a complete discrete valuation ring with residue field F,
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and K, is the field of fractions of Og,. The canonical projection A(F)—F, induces
a K-homomorphism A(K)-—>K, by the formally etale property, and thus we obtain a
homomorphism A(K)— gI K,. We determine the image of this homomorphism in

Lemma 4. We need the following lemma.

LEMMA 8. Let k be a perfect field of characteristic p>0, F o finitely
generated field over k, and K a complete discrete valuation field with residue
field F'. Then, there exists a subring I of Ox and @ prime element = of K
contained in I, having the following properiies; Izl(iLn Iiz"1, the canonical
homomorphism Ilnl->F s injective and its image is a finitely generated
smooth ring over k having F as its field of fractions, and Oy is the canonical
lifting of F over I with respect to the ideal zI of I.

The proof will be postponed for a while. Now let X and F be as before, let
k be the finite constant field of ¥, and let ¥, be the smooth proper curve over
k whose rational function field coincides with F. Then we can find a subring I
and a prime element = of K in I satisfying the conditions in Lemma 3. The
image of I/zI in F is the affine ring O(U) of some non-empty affine open sub-
scheme U of %;. For each closed point v of U, which we regard as a place of
F in the usual way, let I, be the canonical lifting of Op, over I. Then, I, is a
two dimensional complete regular local ring with finite residue field. Let =
Llz™'], and let J=I[z"']. Thus, corresponding to O(U), F, Oz, F,, A(F), we have
1,04, I, Og,, A (Og) as their liftings, and J, K, J,, K,, A(K) by adding =%, re-
spectively (note that I, and J, are defined only for ve U).

LEMMA 4. The homomorphism A(K)-> 1K, is wnjective, and its image
conststs of all elements (a,), such that orde(a:) 1s bounded below when v varies,
and such that for any n=1, @, mod m%, belongs to (Jotm3 Mm%k, for almost
al veU. (mx, is the mawimal ideal of Og,.)

This follows from the characterization of the canonical lifting in the flat case
in Lemma 1.

Now we consider the idele groups. Reeall that for any commutative ring R,
the group R* of all invertible elements in R is regarded canonically as a direct
summand of K, (R), and there is a canonical homomorphism R*@Q@R*— K (R);
2Qy—{z, y}.

LEMMA 5. (1) K(AK)=AK)".
(2) K,(A(K)) is generated by symbols {z, y} (z, y € AK)*) and all relations
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between symbols are generated by
{f, 1—71=0 for all fe A(K) such that f,1—f¢c A(K)

COROLLARY. The homomorphism K (AK))=A(K)*— 1 K} 1s injective, and
the image consists of all elements (a,), such that the 'ivmage of the map v—
orde,(@,) € Z is finite, and such that for any n=1, a,mod(l-+-m%,) belongs to
the image of J; in Kj/(1+m%,) for almost all ve U.

PROOF OF LEMMA 5. According to [2], for k=0, we say that a commutative
ring R is k-fold stable if R satisfies the following property. For any & pairs
(a;, b)) (1=<¢=<k) of elements of R such that ¢;R+b.R=R for 1=1=Fk, there is an
element r of R such that a,»+b;€ R* for all 4. By using the definition K,(E)=
lga GL,(R)/E,(R) where E,(R) denotes the subgroup of GL,(R) generated by ele-

n;Lentary matrices, we see without difficulty that K, (R)=R* if R is 1-fold stable.
On the other hand, if R is 5-fold stable, by Kallen [2], K.(R) is generated by
symbols and all the relations of symbols are generated by the Matsumoto relation
{f,1—f1=0. As is easily seen, A(K) is k-fold stable for any k.

Lastly we define a canonical topology on K (A(K)) for g=1,2. Take a prime
element = of K. Then, we have a direct decomposition

1" ZX Al0x)" — AU ((no), (@)} —— (7" ),

where we regard A(K) as a subring of H K and H’ Z denotes the subgroup of
the direct product ]_’I Z consisting of all elements (nu),, such that the image of the
map v—n, € Z is ﬁmte. We endow II’ Z with the topology induced by the product
topology on MIXIVZ (each Z is regardgd to be discrete). On the other hand, we
endow A(Og)* with the following topology.

For each n=1, let A(Ox/m%) be the canonical lifting of A(F) over Ox/m%.
Then, A(OK)legnA(OK/m’;{)X. We first define a locally compact topology of
A(Og/m%)* for each n, and then take the inverse limit of these topologies as the
topology of A(Ox)*. Take ICOx and UC¥y as before. Then, for any place v of
F, (Og,/m% )" is regarded as a locally compact group by [8] §7. The group
A(Ox/m%)* is isomorphic to the restricted product II’ (Og,/m%,Y* with respect to
the open compact subgroups (I,/m%L)* (weU) of (OKv/va)x, and hence it is
endowed naturally with the topology of the restricted product. It is not diffieult
to see that this topology is independent of the choices of I and U.

We endow A(K)* with the product topology of the above topologies of I’ Z
and A(Ogp)*. This topology is independent of the choice of the prime elemezlt Fir
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of K.

We endow K (A(K)) with the finest topology which is compatible with the
group structure and for which the map A(K)*x A(K)*—K,(AK)); (z, y)—{z, y}
is continuous.

Lastly we endow Cy(K) and C,(K) with the topologies as quotients of K,(A(K ))
and K,(A(K)) respectively.

Now we give the proof of Lemma 8.

If ch(K)=p, we can suppose K=F((T)). Let R be any finitely generated
smooth domain over & having F as its field of fractions. It suffices to define I=
ERI[T]] and ==T. Now, suppose ch(K)=0. First, consider the case that p is a
prime element in K. Since k is perfect, there is 2 smooth integral domain R
over &k having F as its field of fractions, and an etale k-homomorphism E[X,, ---,
X, >R for some m=0. Let I be the canonical lifting of R over A=
LiLn(Wn(k)[Xl, .-+, X,]) with respect to the ideal pA, and let =#=p. Since Oy is
the canonical lifting of F' over A, I can be naturally regarded as a subring of
Ox. Next, in general, there is a complete discrete valuation field K’ having p
as a prime element such that K is a totally ramified extension of K’ of finite
degree (cf. Nagata [5] 81.12). Hence, it suffices to apply Lemma 7 below.

Notation 1. In Definition 1, in the case S=R[b~*] for an element b of R, we
denote by A, the canonical lifting of S over A.

LEmMMA 6. Suppose that = is @ non-zero-divisor of a ring I such that I=
1<iinI/7r"I and BR=1I/zI is an integral domain of characteristic p>0. Let D°=
l1_r§1 Loy, F the field of fractions of R, and D the canonical Ui fting of F over I

beR
b0

with respect to the ideal 1. Then, D° is a Henselian discrete valuation ring and
18 dense in the complete discrete valuation ring D. Consequently, if K° and
K denote the fields of fractions of D° and D, and K° and K, denote their sepa-
rable closures, respectively, the restriction Gal(K,/K)—>Gal(K?/K®) is bijective.

The proof of the fact that D° is Henselian goes just as the well known proof
of the fact that a complete local ring is Henselian.

LEMMA 7. Let I, z, R and K be as in Lemma 6, and let L be a finite

separable extension of K. Then, there are b, B and I satisfying the Jollow-
ing conditions.

(1) b %5 a non-zero element of R.

(2) B is a subring of O, containing I, and is free as an I oy-module.
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(8) The homomorphism B®I<b>OK—>OL 18 bijective.

(4) II is an element of B such that II'’% € B*z, where e, x denotes the
index of the ramification of L/K.

If LIK is totally ramified, there are b, B and II which satisfy the con-
ditions (D~@) and the following condition; the induced homomorphism
I /7l — B/IIB is bijective.

ProoF. Let K° be as in Lemma 6. By Lemma 6, there are a finite separa-
ble extension L° of K° and a K-isomorphism L°®z-K=L. If one reforms the
conditions in Lemma 7 by replacing K by K° and replacing L by L°, it is easy
to define b, B and II which satisfy the reformed conditions. But such b, B and
IT satisfy the original conditions at the same time.

§3. The reciprocity maps.

Let K and F be as at the beginning of §2. In this section, we define ca-
nonical homomorphisms C(K)—-Gal(K**/K) and Br(K)—Hom(C,(K), Q/Z).

For a field & and ¢=0, let H«%) be the group defined in [4] §3.2. In par-
ticular, H*(k) is the group of all continuous characters of the compact abelian
group Gal(k**/k), and H*(k)=Br(k).

For each place v of F, the field K, defined in §2 is a 2 dimensional local
field, that is, a complete discrete valuation field whose residue field is also a com-
plete discrete valuation field with finite residue field. Hence by [4] §3, we have
a canonical isomorphism hg,: H*(K,)=Q/Z, and a canonical pairing

HYK,)RK,_(K,) — HK,)=Q|Z, s@a+—> hg ({x,a})
for g=1,2. In what follows, let g=1 or 2. We shall prove the following lemma.

LEMMA 8. (1) For each »€ HYK) and a € K;_(A(K)), he,({2x,, ¢z, })=0 for
almost all places v of F. (Here ng, (resp. ax,) denotes the image of x (resp.
a) in HYK,) (resp. K;—(K,)).)

(2) For x€ H(K) and aeKs_q(K),aglthﬂ({va, Gx,)=0.

By this lemma, we obtain a canonical pairing
<ot HIK)QRC:-(K)—— Q1 Z;  (z, @) i-——>a§vhz<v({wxv, ax,})

(@ € K, (A(K)) and @ denotes its image in C,_(K)). This induces canonical homo-
morphisms Cy(K)—Gal(K*®/K) and Br(K)—»>Hom(C.(K), Q/Z). The rest of this
section is devoted to the proof of Lemma 8.
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For any ring R, let H'(R) be the etale cohomology group H.(Spec(R), Q| Z)
and let H*R) be the Brauer group Br(R). Take ICOy, UC¥y, z, J=I[z"] as in
§2, and let K° be the field given by Lemma 6. Then, H‘-‘(K")EHQ(K). Since H?
commutes with filtered direct limites, by replacing U by its non-empty open sub-
set using the localization in the sense of §2 Def. 2, we see that each element of
HYK) comes from H%J) for some choice of I,z and U. The first key point is
the following

LEMMA 9. If @ comes from HJ), hx,({&x,, 1): Ki (K)>Q/Z annihilates
the image of K, (J,) for any ve U.

This is proved by using the following reciprocity law of the 2 dimensional
complete regular local ring I, with finite residue field. For each prime ideal p of
height one of I,, the p-adic completion M, of the field of fractions M of I, is a 2
dimensional local field. Hence we have a canonieal isomorphism ha s (M) =Q/ Z.
The reciprocity law states that

2 by () =0 for any ze HYM)
»

where p ranges over all prime ideals of height one of I,. For the proof of this
reciprocity law, ef. Saito [7] Ch. I. Let p, be the prime ideal =I,. Then, K,=M,,.
For any p=£p,, J, is contained in the valuvation ring O.r, of M,. By the class field
theory of M,, we see that the pairing HQ(OMp)®KS_Q(O_Up)—>H3(Mp) is the zero
map. Hence the reciprocity law shows that for any xe H%J,) and ac K, (J,),

he,({og,, ax,)=— 2 hﬂp({mﬂ[p] @y, =0.
¥y

The next key point is the following Lemma 10. For a discrete valuation field
k and for n=1, let UK (k) be the subgroup 1+m? of k* and let U"K.(k) be the
image of U K, (k)QK.(k)—>K,(k).

LEMMA 10. For each zc HYK), there is an integer nzl, such that zg,
annthilates UK, (K,) for all places v of F.

ProoF. There is a finite separable extension L of K such that the image 2
of ¢ in HYL) is zero. An easy observation of the norm homomorphism N;,z: L*—
K* shows that there is an integer #==>1 such that UK,(K,)CN, 1o, (K1 (L)) for all

places v where L,=K,®«L, and hence U"Ky(K,)C N, /x (K:(L,) for all v. But
for any a € K, (L,),

{z, NLV/K,U(G‘)} = Coer/K,u({vay ah)=0 in HYK,)
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where Cory,x, is the corestriction map H¥(L,)—>H¥K,).

Now Lemma 8 (1) follows from the above Lemma 9 and Lemma 10 combined
with the deseription of K.(A(K)) in Cor. to Lemma 5 and the surjectivity of
K(AK))YRK(AK)) - K:(A(K)).

PRrOOF OF LEMMA 8 (2). By [3] §5 and [4] §3.2 Lemma 3, we have a canoni-
cal isomorphism H*(K)=H*F). For each € HYK) and a € K; ((K), hg,{2x,, @z,})
is the image of {z,a}€ H*(X) under the homomorphism H{(K)=HF)>HF,)=
Q/Z. Hence Lemma 8 (2) follows from the usual Hasse’s reciprocity law which
states that the composite

sum

QI Z

H*(F) —%MG?WH%F,)) EMGPWQ/Z

is the zero map.

§4. Proofs of Th. 1 and Th. 2.

Let ¢g=1 or 2. Our task is to prove the following (A)-(D).

(A) For any « € HYK), the homomorphism {2, Dt Cs- K)>Q/Z is continuous.

(B) The homomorphism HYK)—Hom(C, (K), @/Z) is injective.

(C) Any continuous homomorphism C;_,(K)—>@Q/Z is of finite order, and comes
from HYK).

(D) For any finite abelian extension L of K, Cy(K)—Gal(L/K) annihilates
N.,Co(L) and induces Co(K)/NyxColL)=Gal(L/K).

Since the proofs of these facts are the simple modifications of the proofs of
the corresponding facts in the class field theory of K, in [8] §6, §8 and [4] §8.5,
we shall often omit the details of the proofs.

First, (A) follows from the definition of the topology of C;_(K) and the fol-
lowing facts; (1) For each place v of F, the homomorphism hx,({2x,, 7}): K, (K,)—
Q/Z is continuocus ([3] §8, [4] §3.5), (2) For almost all ve U, hg,({#x,, 7)) annihi-
lates the image of K,_(J)—K;-f(K,) by Lemma 9 (U and J, are as in §2), 3
For some n=1, hg,({#x,, ?}) annihilates UK, ,(K,) for all v by Lemma 10.

To prove (B), it is sufficient to show that for any prime number [, the in-
duced homomorphism HYK),=Ker(l: H(K)—>H4K))—Hom(C;_(K), Z|l) is injective.
The proof of this injectivity and that of the fact

(C) Any continuous homomorphism C,_(K)—>Z/l comes from HYK),, are al-
most same as the proof of HYK,),=Homeont(Ks—o(K,), Z/l) given in [3] §6, §8 and
[4] §8.5. Here instead of the results about the structure of Ky (KK, (K,)
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studied in [3] and [4], we use the similar results about the structure of K,_(A(K))/
IK, (A(K)). For each n=1, let UK (A(K)) be the subgroup 1+m%2 A(Og) of
K (A(K))=A(K)*, and let UK, (A(K)) be the image of UK (AK))RK (AK))—
K,(A(K)).

LEMMA 11. Let p be the characteristic of F.
(1) UK AK)) is l-divisible for any prime number l£p.
(2) K(AK))/ UlKl(A(K))%le’ Z D K (AFY),

KA AK) UK (AK) = K (A(F)DE(AF)).

(3) K(AF)=AIEF)*. Let S be the subgroup of K.(A(F)) generated by
all elements {x, ¥} such that x,ye H OF,. Then, S is a divisible group and
K{A(F))/S= 69 Kl(x(v)) by the boundaly map of the K-theory, where x(v) denotes
the residue ﬁeld of v. Moore’s exact sequence gives an exact sequence K(F)—
K(A(F))/S8—k*—0 where k& is the constant field of F.

(4) Let g=1 (resp. q=2). For n=1,

(UK AK))+pE(AFONNU K (AK) +pK (A(K)))

is isomorphic to A(F){x?; xe A(F)) if 0<n<exp/(p—1) and pln, A(F) (resp.
Qaryz) i 0<n<lexp/(p—1) and » is prime to P, A(F)/{W—ax;xeA(F)} (resp.
AP P —aw; 5 € AF NP2 r 2l{w—arw); w € Qyery,z)) if n=exp/(p—1) and this
is an integer, where @ is a certain element of ¥ defined in [8] §2 Prop. 1 and 7
denotes the Cartier operator, and 0 if n>exp/(p—1).

Note that 2%,z is isomorphic to the usual restricted product H' 2%,z of the
one dimensional F,-spaces 2%,z

The proof of the K, part of (2) uses the explicit presentations of K,(A(K))
and K,(A(F)) by symbols and Matsumoto relations (cf. the proof of Lemma 5;
A(F) is also k-fold stable for any k). The K, part of (4) is proved by using the
method and the result in the computation of (UrKAK )+ KA KN(UK(K,)+
PKy(K,)) in [3] §2 Prop. 1.

By using this lemma and the theory of the autoduality of the adele ring A(F)
(which states for example, that the dual of 2%y /2/2%/z is F) instead of the theory
of the autoduality of a locally compact field, we ean prove the claims (B) and (84
just as in [3] §6, §8 and [4] §3.5.

The finiteness of the order of a continuous character is proved by the same
method as in the case of K, (K,) by using the above lemma.

Now we show by induction on the order of a continuous character ¢: C;_(K)—
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Q/Z, that ¢ comes from HYK). Let ! be a prime divisor of the order of ¢. By
induction, there is an element © of H%K) such that lo=<z, >x. If l=ch(X),
" HY(K) is l-divisible and hence z=Iz’ for some %’ € H(K). Then ¢—<a’, Dx is an-
nihilated by ! and we are reduced to the claim (C/). If Is=ch(K), let d: H(K)()—>
He (K, p®9D) be the connecting homomorphism defined by the exact sequence

0__,#8)((1 n___, hm ﬂ®(q 1)_1’.,,hm e Re-1) (),

(H«(K)(1) denotes the l-primary part). By the class field theory of K,, the re-
striction of ¢ to the component K,(K,) of K:(A(K)) is induced by an element y
of H%(K,). Hence wx,=ly and this shows 3()g,=0 in H"XK,, xP") for all
places v. Since H@YK, )~ 1',[ Hq“(K #PUV) is injective (this faet is re-
duced to the case where K contams a primitive I-th root of 1, and then reduced
to the injectivity of H*"{{K)— H Hq“(K,,), which is contained in (B) m the case
g¢=1 and follows from the 1nJect1v1ty of H¥F)— H HZ(F,)) in the case q=2), we"
have 6(z)=0. Hence xz=Ilz’ for some 2’¢ HY(K), and we can proceed as in the
case [=ch(K) above.

Lastly, the first assertion of (D) is reduced to its local version in the local
class field theory of K,. For the rest, it is sufficient to show

(D) If L is a cyclic extension of K of degree a prime I, the order of
CAR)NuxCoD) is <1

We present here only the proof of the case in which I=p (=ch(¥)) and L/K
is totally ramified. Let ¢ be the ramification number of L/K. By using the com-
putation of Ny L*—K* in Serre [6] Ch. V §8 and by the above Lemma 11 (4),
we have

(1) Ky(AK)CUK(AK) + Naczyraco KAL),

(2) UK AEK)C UK (AK)+ Nawyraco KAL) if 1=0<8,

(8) UKy (AK))C Nacwyraco K(AL)),

(4) If n, is a prime element of L and g is an element of 0% whose residue
class § is not in F'?, there is a commutative diagram

—1N?2.da/a
Ay L0 o A AR

1)

UK (A(Ly) U+ et 0D 1 g 4 (o) (U Ky(AKY) H UK AK)), Ni/s(zo)})

in which the right vertical arrow is surjective. The similar commutative diagram
exists when we replace A(K), A(L) and A(F) by K, L and F respectively, and is
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compatible with the above diagram. Hence (D/) follows from the commutative
diagram

~1

l._
Oz o QL dF — Bi(F),

Lo l

1—r
R4z — Lawy izl FAF) — @? Br(Fv)p—>0
L7z
P

|

0

in which all sequences are exact.

§5. The K,-idele group of the restricted produet type.

The following slight modification of the K-idele group also describes the class
field theory of K. Take (I,z, U) as in §2. Let I/ K, (K,) be the subgroup of the
product aEIVKg(K,,) consisting of all elements (a,), s:uch that for any n=1, a, is con-
tained in the sum of U"K,(K,) and the image of K,(J,) for almost all v& U. Then,
L1’ K,(K,) is in fact independent of the choice of (I,z,U). There is a canonical homo-
ngorphism K (AK)—-11" Ky(K,). Let CiK) be the cokernel of K (K)-TI’ KAK,).
Then, the reciprocity immomorphism factors as Cz(K)—>C’§(K)*>GaI(K&b/Iz'), where
the second homomorphism is defined by the same method in §3. By using Lemma
7, it is shown that the norm homomorphisms of K, induce a norm homomorphism
N2 CHL)~>CYK) for a finite extension L of K. We define the topology of CiK)
as follows. For n=1, let V“—H' KZ(K)DH U K,(K, )C:H K (K,). We define the
topology of (H’ KK N V™ as follows F01 each v, we 1ega1d K (K, as a topol-
ogical group by the method in [8] §7. For each » in U, let S, be the image of
K,(J,) in K(K,). We endow S, with the topology induced by the topology of
Ky(K,). We endow (I’ Ky(K,))/V* with the finest topology which is compatible
with the group struct{;re and for which the canonical homomorphisms

E/'va gle(Kv)'_> (H/ Kz(Ku))/Vn

are continuous for all non-empty open subsets U’ of U. We endow I’ K,(K,) with
the topology induced by the topologies of (IT’ K(K,))/V™ (r=1), and CHK) with
the quotient topology.
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The homomorphism C,(K)—C4K) is continuous and the image is dense.
The following result is proved in the same way as Th. 1, and in fact it is

deduced from Th. 1 without difficulty.

THEOREM 1. All the assertions tn Th. 1 are still valid when we replace

CyK) by CUK).

This is the form of the class field theory of K stated in the summary [8].

Bibliography

Grothendieck, A., Elements de géométrie algébrique IV, Premiére partie, Publ. Math.
L.H.E.S., N°20, 1964.

Van der Kallen, The K of rings with many units, Ann. Sci. Ecole Norm. Sup. 10 (1977),
473-516.

Kato, K., A generalization of loeal class field theory by using K-groups, I, J. Fae.
Sci. Univ. Tokyo, Sect. TA 26 (1979), 303-376.

Kato, K., ditto II, J. Fac. Sci. Univ. Tokyo, Sect. IA 27 (1980), 603-683.

Nagata, M., Local rings, Interseience Tracs, 13, Interscience, New York, 1962.

Serre, J.-P., Corps locaux, Hermann, Paris, 1962.

Saito, S., Class field theory of curves over a local field, preprint.

Kato, K., A generalization of local class field theory by using K-groups, II, Proc.
Japan Acad. 54 (1978), 250-255.

(Received October 17, 1981)

Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Tokyo

113 Japan



