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Bohr-Sommerfeld Quantization Rules Revisited:

the Method of Positive Commutators

By Abdelwaheb Ifa, Hanen Louati and Michel Rouleux

Abstract. We revisit the well known Bohr-Sommerfeld quanti-
zation rule (BS) of order 2 for a self-adjoint 1-D h-Pseudo-differential
operator within the algebraic and microlocal framework of Helffer and
Sjöstrand; BS holds precisely when the Gram matrix consisting of
scalar products of some WKB solutions with respect to the “flux norm”
is not invertible. It is simplified by using action-angle variables. The
interest of this procedure lies in its possible generalization to matrix-
valued Hamiltonians, like Bogoliubov-de Gennes Hamiltonian.

0. Introduction

Let p(x, ξ;h) be a smooth real classical Hamiltonian on T ∗R ; we will

assume that p belongs to the space of symbols S0(m) for some order function

m with

SN (m) = {p ∈ C∞(T ∗R) : ∀α ∈ N2,∃Cα > 0,(0.1)

|∂α(x,ξ)p(x, ξ;h)| ≤ Cαh
Nm(x, ξ)}

and has the semi-classical expansion

p(x, ξ;h) ∼ p0(x, ξ) + hp1(x, ξ) + · · · , h→ 0(0.2)

We call as usual p0 the principal symbol, and p1 the sub-principal symbol.

We also assume that p+ i is elliptic. This allows to take Weyl quantization

of p

P (x, hDx;h)u(x;h)(0.3)

= pw(x, hDx;h)u(x;h)

= (2πh)−1

∫ ∫
ei(x−y)η/hp(

x+ y

2
, η;h)u(y) dy dη

2010 Mathematics Subject Classification. 81S10, 81S30.
Key words: Bohr Sommerfeld, Weyl quantization, positive commutators, flux norm,

microlocal Wronskian.

91



92 Abdelwaheb Ifa, Hanen Louati and Michel Rouleux

so that P (x, hDx;h) is essentially self-adjoint on L2(R). In case of

Schrödinger operator P (x, hDx) = (hDx)
2 + V (x), p(x, ξ;h) = p0(x, ξ) =

ξ2 + V (x). We make the geometrical hypothesis of [CdV1], namely:

Fix some compact interval I = [E−, E+], E− < E+, and assume that

there exists a topological ring A ⊂ p−1
0 (I) such that ∂A = A− ∪ A+ with

A± a connected component of p−1
0 (E±). Assume also that p0 has no critical

point in A, and A− is included in the disk bounded by A+ (if it is not the

case, we can always change p to −p.) That hypothesis will be referred in

the sequel as Hypothesis (H).

We define the microlocal wellW as the disk bounded by A+. For E ∈ I,
let γE ⊂W be a periodic orbit in the energy surface {p0(x, ξ) = E}, so that

γE is an embedded Lagrangian manifold.

Then if E+ < E0 = lim inf |x,ξ|→∞ p0(x, ξ), all eigenvalues of P in I are

indeed given by Bohr-Sommerfeld quantization condition (BS) that we recall

here, when computed at second order:

Theorem 0.1. With the notations and hypotheses stated above, for

h > 0 small enough there exists a smooth function Sh : I → R, called the

semi-classical action, with asymptotic expansion Sh(E) ∼ S0(E)+hS1(E)+

h2S2(E)+· · · such that E ∈ I is an eigenvalue of P iff it satisfies the implicit

equation (Bohr-Sommerfeld quantization condition) Sh(E) = 2πnh, n ∈ Z.

The semi-classical action consists of :

(i) the classical action along γE

S0(E) =

∮
γE

ξ(x) dx =

∫ ∫
{p0≤E}∩W

dξ ∧ dx

(ii) Maslov correction and the integral of the sub-principal 1-form p1 dt

S1(E) = π −
∫
p1(x(t), ξ(t))|γE dt

(iii) the second order term

S2(E) =
1

24

d

dE

∫
γE

∆ dt−
∫
γE

p2 dt−
1

2

d

dE

∫
γE

p21 dt

where

∆(x, ξ) =
∂2p0
∂x2

∂2p0
∂ξ2

−
( ∂2p0
∂x ∂ξ

)2
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We recall that S3(E) = 0. In contrast with the convention of [CdV],

our integrals are oriented integrals, t denoting the variable in Hamilton’s

equations. This explains why, in our expressions for S2(E), derivatives with

respect to E (the conjugate variable to t) of such integrals have the opposite

sign to the corresponding ones in [CdV]. See also [IfaM’haRo].

There are lots of ways to derive BS: the method of matching of WKB

solutions [BenOrz], known also as Liouville-Green method [Ol], which has

received many improvements, see e.g. [Ya]; the method of the monodromy

operator, see [HeRo] and references therein; the method of quantization de-

formation based on Functional Calculus and Trace Formulas [Li], [CdV1],

[CaGra-SazLiReiRios], [Gra-Saz], [Arg]. Note that the method of quantiza-

tion deformation already assumes BS, it gives only a very convenient way to

derive it. In the real analytic case, BS rule, and also tunneling expansions,

can be obtained using the so-called “exact WKB method” see e.g. [Fe],

[DePh], [DeDiPh] when P is Schrödinger operator.

Here we present still another derivation of BS, based on the construction

of a Hermitian vector bundle of quasi-modes as in [Sj2], [HeSj]. Let KN
h (E)

be the microlocal kernel of P − E of order N , i.e. the space of microlocal

solutions of (P − E)u = O(hN+1) along the covering of γE (see Appendix

for a precise definition). The problem is to find the set of E = E(h) such

that KN
h (E) contains a global section, i.e. to construct a sequence of quasi-

modes (QM) (un(h), En(h)) of a given order N (practically N = 2). As

usual we denote by Kh(E) the microlocal kernel of P − E mod O(h∞) ;

since the distinction between KN
h (E) and Kh(E) plays no important rôle

here, we shall be content to write Kh(E).

Actually the method of [Sj2], [HeSj] was elaborated in case of a sep-

aratrix, and extends easily to mode crossing in Born-Oppenheimer type

Hamiltonians as in [B], [Ro], but somewhat surprisingly it turns out to be

harder to set up in case of a regular orbit, due to ”translation invariance”

of the Hamiltonian flow. In the present scalar case, when carried to sec-

ond order, our method is also more intricated than [Li], [CdV1] and its

refinements [Gra-Saz] for higher order N ; nevertheless it shows most useful

for matrix valued operators with branching points such as Bogoliubov-de

Gennes Hamiltonian [DuGy] (see [BenIfaRo], [BenMhaRo]). This method

also extends to the scalar case in higher dimensions for a periodic orbit (see

[SjZw], [FaLoRo], [LoRo]).
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The paper is organized as follows:

In Sect.1 we present the main idea of the argument on a simple example,

and recall from [HeSj], [Sj2] the definition of the microlocal Wronskian.

In Sect.2 we compute BS at lowest order in the special case of

Schrödinger operator by means of microlocal Wronskian and Gram matrix.

In Sect.3 we proceed to more general constructions in the case of h-

Pseudodifferential operator (0.3) so to recover BS at order 2.

In Sect.4 we use a simpler formalism based on action-angle variables, but

which would not extend to systems such as Bogoliubov-de Gennes Hamil-

tonian.

In Sect.5, following [SjZw], we recall briefly the well-posedness of

Grushin problem, which shows in particular that there is no other spec-

trum in I than this given by BS.

At last, the Appendix accounts for a short introduction to microlocal

and semi-classical Analysis used in the main text.

Acknowledgements. We thank a referee for his constructive remarks.

This work has been partially supported by the grant PRC CNRS/RFBR

2017-2019 No.1556 “Multi-dimensional semi-classical problems of Con-

densed Matter Physics and Quantum Dynamics”.

1. Main Strategy of the Proof

The best algebraic and microlocal framework for computing quantization

rules in the self-adjoint case, cast in the fundamental works [Sj2], [HeSj], is

based on Fredholm theory, and the classical “positive commutator method”

using conservation of some quantity called a “quantum flux”.

a) A simple example

As a first warm-up, consider P = hDx acting on L2(S1) with periodic

boundary condition u(x) = u(x+ 2π). It is well-known that P has discrete

spectrum Ek(h) = kh, k ∈ Z, with eigenfunctions uk(x) = (2π)−1/2eikx =

(2π)−1/2eiEk(h)x/h. Thus BS quantization rule can be written as
∮
γE
ξ dx =

2πkh, where γE = {x ∈ S1; ξ = E}.
We are going to derive this result using the monodromy properties of

the solutions of (hDx − E)u = 0. For notational convenience, we change
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energy variable E into z. Solving for (P − z)u(x) = 0, we get two solutions

with the same expression but defined on different charts

ua(x) = eizx/h,−π < x < π, ua
′
(x) = eizx/h, 0 < x < 2π(1.1)

indexed by angles a = 0 and a′ = π on S1. In the following we take

advantage of the fact that these functions differ but when z belongs to the

spectrum of P .

Let also χa ∈ C∞
0 (S1) be equal to 1 near a, χa

′
= 1 − χa. We set

F a
± = i

h [P, χa]±ua, where ± denotes the part of the commutator supported

in the half circles 0 < x < π and −π < x < 0 mod 2π. Similarly F a′
± =

i
h [P, χa

′
]±ua

′
. We compute

(ua|F a
+) =

(
ua|(χa)′ua

)
=

∫ π

0
(χa)′(x) dx = χa(π) − χa(0) = −1

Similarly (ua|F a
−) = 1, and also replacing a by a′ so that

(ua|F a
+ − F a

−) = −2, (ua
′ |F a′

+ − F a′
− ) = 2(1.2)

We evaluate next the crossed terms (ua
′ |F a

+−F a
−) and (ua|F a′

+ −F a′
− ). Since

ua
′
(x) = ua(x) = eizx/h on the upper-half circle (once embedded into the

complex plane), and ua(x) = eizx/h, ua
′
(x) = eiz(x+2π)/h on the lower-half

circle we have

(ua
′ |F a

+ − F a
−) =

∫ π

0
eizx/h(χa)′e−izx/h dx−

∫ 0

−π
eiz(x+2π)/h(χa)′e−izx/h dx

We argue similarly for (ua|F a′
+ − F a′

− ), using also that (χa
′
)′ = −(χa)′. So

we have

(ua
′ |F a

+ − F a
−) = −1 − e2iπz/h, (ua|F a′

+ − F a′
− ) = 1 + e−2iπz/h(1.3)

It is convenient to view F a
+ − F a

− and F a′
+ − F a′

− as belonging to co-kernel

of P − z in the sense they are not annihilated by P − z. So we form Gram

matrix

G(a,a′)(z) =

(
(ua|F a

+ − F a
−) (ua

′ |F a
+ − F a

−)

(ua|F a′
+ − F a′

− ) (ua
′ |F a′

+ − F a′
− )

)
(1.4)
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and an elementary computation using (1.2) and (1.3) shows that

detG(a,a′)(z) = −4 sin2(πz/h)

so the condition that ua coincides with ua
′

is precisely that z = kh, with

k ∈ Z.

Next we investigate Fredholm properties of P as in [SjZw], recovering

the fact that hZ is the only spectrum of P .

Notice that (1.4) is not affected when multiplying ua
′
by a phase factor,

so we can replace ua
′

by e−izπ/hua
′
. Starting from the point a = 0 we

associate with ua the multiplication operator v+ �→ Ia(z)v+ = ua(x)v+ on

C, i.e. Poisson operator with “Cauchy data” u(0) = v+ ∈ C. Define the

“trace operator” R+(z)u = u(0).

Similarly multiplication by ua
′

defines Poisson operator Ia
′
(z)v+ =

ua
′
(x)v+, which has the same “Cauchy data” v+ at a′ = π as Ia(z) at

a = 0.

Consider the multiplication operators

E+(z) = χaIa(z) + (1 − χa)eiπz/hIa′(z), R−(z) =
i

h
[P, χa]−I

a′(z),

E−+(z) = 2h sin(πz/h)

We claim that

(P − z)E+(z) +R−(z)E−+(z) = 0(1.5)

Namely as before (but after we have replaced ua
′
by e−izπ/hua

′
) evaluating

on 0 < x < π, we have Ia(z) = eixz/h, Ia
′
(z) = e−iπz/heixz/h, while eval-

uating on −π < x < 0, Ia(z) = eixz/h, Ia
′
(z) = e−iπz/hei(x+2π)z/h. Now

(P − z)E+(z) = [P, χa]
(
Ia(z) − eiπz/hIa′(z)

)
vanishes on 0 < x < π, while

is precisely equal to 2h sin(πz/h) i
h [P, χa]Ia

′
(z) on −π < x < 0. So (1.5)

follows.

Hence the Grushin problem

P(z;h)

(
u

u−

)
=

(
P − z R−(z)

R+(z) 0

)(
u

u−

)
=

(
v

v+

)
(1.6)

with v = 0 has a solution u = E+(z)v+, u− = E−+(z)v+, with E−+(z) the

effective Hamiltonian. Following [SjZw] one can show that with this choice
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of R±(z), problem (1.6) is well posed, P(z) is invertible, and

P(z)−1 =

(
E(z) E+(z)

E−(z) E−+(z)

)
(1.7)

with

(P − z)−1 = E(z) − E+(z)E−+(z)−1E−(z)(1.8)

Hence z is an eigenvalue of P iff E−+(z) = 0, which gives the spectrum

z = kh as expected.

These Fredholm properties have been further generalized to a periodic

orbit in higher dimensions in several ways [SjZw], [NoSjZw], [FaLoRo] where

E−+(z) is defined by means of the monodromy operator as E−+(z) =

Id−M(z) (in this example M(z) = e2iπz/h). In fact our argument here

differs essentially from the corresponding one in [SjZw] by the choice of

cutt-off χa. We have considered functions on S1, but in Sect.4, we work on

the covering of S1 instead, using a single Poisson operator.

b) The microlocal Wronskian

We now consider Bohr-Sommerfeld on the real line. Contrary to the

periodic case that we have just investigated, where Maslov index is m = 0,

we get in general m = 2 for BS on the real line, as is the case for the

harmonic oscillator P = (hDx)
2 + x2 on L2(R). Otherwise, the argument

is pretty much the same.

Bohr-Sommerfeld quantization rules result in constructing quasi-modes

by WKB approximation along a closed Lagrangian manifold ΛE ⊂ {p0 =

E}, i.e. a periodic orbit of Hamilton vector field Hp0 with energy E. This

can be done locally according to the rank of the projection ΛE → Rx.

Thus the set Kh(E) of asymptotic solutions to (P −E)u = 0 along (the

covering of) ΛE can be considered as a bundle over R with a compact base,

corresponding to the “classically allowed region” at energy E. The sequence

of eigenvalues E = En(h) is determined by the condition that the resulting

quasi-mode, gluing together asymptotic solutions from different coordinates

patches along ΛE , be single-valued, i.e. Kh(E) have trivial holonomy.

Assuming ΛE is smoothly embedded in T ∗R, it can always be

parametrized by a non degenerate phase function. Of particular interest

are the critical points of the phase functions, or focal points which are re-

sponsible for the change in Maslov index. Recall that a(E) = (xE , ξE) ∈ ΛE
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is called a focal point if ΛE “turns vertical” at a(E), i.e. Ta(E)ΛE is no longer

transverse to the fibers x = Const. in T ∗R. In any case, however, ΛE can

be parametrized locally either by a phase S = S(x) (spatial representation)

or a phase S̃ = S̃(ξ) (Fourier representation). Choose an orientation on ΛE

and for a ∈ ΛE (not necessarily a focal point), denote by ρ = ±1 its oriented

segments near a. Let χa ∈ C∞
0 (R2) be a smooth cut-off equal to 1 near a,

and ωa
ρ a small neighborhood of supp[P, χa]∩ΛE near ρ. Here the notation

χa holds for χa(x, hDx) as in (0.3), and we shall write P (x, hDx) (spatial

representation) as well as P (−hDξ, ξ) (Fourier representation). Recall that

unitary h-Fourier transform for a semi-classical distribution u(x;h) is given

by û(ξ;h) = (2πh)−1/2
∫
e−ixξ/hu(x;h) dx (see Appendix for a review of

semi-classical asymptotics).

Definition 1.1. Let P be self-adjoint, and ua, va ∈ Kh(E) be sup-

ported microlocally on ΛE . We call

Wa
ρ (ua, va) =

( i
h

[P, χa]ρu
a|va

)
(1.10)

the microlocal Wronskian of (ua, va) in ωa
ρ . Here i

h [P, χa]ρ denotes the part

of the commutator supported on ωa
ρ .

To understand that terminology, let P = −h2∆ + V , xE = 0 and

change χ to Heaviside unit step-function χ(x), depending on x alone. Then

in distributional sense, we have i
h [P, χ] = −ihδ′ + 2δhDx, where δ de-

notes the Dirac measure at 0, and δ′ its derivative, so that
(
i
h [P, χ]u|u

)
=

−ih
(
u′(0)u(0) − u(0)u′(0)

)
is the usual Wronskian of (u, u).

Proposition 1.2. Let ua, va ∈ Kh(E) be as above, and denote by û

the h-Fourier (unitary) transform of u. Then

( i
h

[P, χa]ua|va
)

=
( i
h

[P, χa]ûa|v̂a
)

= 0(1.11)

( i
h

[P, χa]+u
a|va

)
= −

( i
h

[P, χa]−u
a|va

)
(1.12)

all equalities being understood mod O(h∞), (resp. O(hN+1)) when consid-

ering ua, va ∈ KN
h (E) instead. Moreover, Wa

ρ (ua, va) does not depend mod

O(h∞) (resp. O(hN+1)) on the choice of χa as above.
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Proof. Since ua, va ∈ Kh(E) are distributions in L2, the equality

(1.11) follows from Plancherel formula and the regularity of microlocal so-

lutions in L2, p + i being elliptic. If a is not a focal point, ua, va are

smooth WKB solutions near a, so we can expand the commutator in w =(
i
h [P, χa]ua|va

)
and use that P is self-adjoint to show that w = O(h∞). If a

is a focal point, ua, va are smooth WKB solutions in Fourier representation,

so again w = O(h∞). Then (1.12) follows from Definition 1.1. �

We can find a linear combination of Wa
±, (depending on a) which defines

a sesquilinear form on Kh(E), so that this Hermitean form makes Kh(E)

a metric bundle, endowed with the gauge group U(1). This linear combi-

nation is prescribed as the construction of Maslov index : namely we take

Wa(ua, ua) = Wa
+(ua, ua) − Wa

−(ua, ua) > 0 when the critical point a of

πΛE
is traversed in the −ξ direction to the right of the fiber (or equivalently

Wa(ua, ua) = −Wa
+(ua, ua) + Wa

−(ua, ua) > 0 while traversing a in the +ξ

direction to the left of the fiber). Otherwise, just exchange the signs. When

ΛE is a convex curve, there are only 2 focal points. In general there may

be many focal points a, but each jump of Maslov index is compensated at

the next focal point while traversing to the other side of the fiber (Maslov

index is computed mod 4), see [BaWe,Example 4.13].

As before our method consists in constructing Gram matrix of a gen-

erating system of Kh(E) in a suitable dual basis; its determinant vanishes

precisely at the eigenvalues E = En(h).

Note that when energy surface p0 = E is singular, and ΛE is a separatrix

(”figure eight”, or homoclinic case), equality (1.11) does not hold near the

“branching point”, see [Sj2] and its generalization to multi-dimensional case

[BoFuRaZe].

2. Bohr-Sommerfeld Quantization Rules in the Case of a

Schrödinger Operator

As a second warm-up, we derive the well known BS quantization rule

using microlocal Wronskians in case of a potential well, i.e. ΛE has only 2

focal points. Consider the spectrum of Schrödinger operator P (x, hDx) =

(hDx)
2 + V (x) near the energy level E0 < lim inf |x|→∞ V (x), when {V ≤

E} = [x′E , xE ] and x′E , xE are simple turning points, V (x′E) = V (xE) = E,

V ′(x′E) < 0, V ′(xE) > 0. For a survey of WKB theory, see e.g. [Dui],
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[BaWe] or [CdV]. It is convenient to start the construction from the focal

points a or a′. We identify a focal point a = aE = (xE , 0) with its projection

xE . We know that microlocal solutions u of (P −E)u = 0 in a (punctured)

neighborhood of a are of the form

ua(x, h) =
C√
2

(
eiπ/4(E − V )−1/4eiS(a,x)/h(2.1)

+ e−iπ/4(E − V )−1/4e−iS(a,x)/h + O(h)
)
, C ∈ C

where S(y, x) =
∫ x
y ξ+(t) dt, and ξ+(t) is the positive root of ξ2 +V (t) = E.

In the same way, the microlocal solutions of (P −E)u = 0 in a (punctured)

neighborhood of a′ have the form

ua
′
(x, h) =

C ′
√

2

(
e−iπ/4(E − V )−1/4eiS(a′,x)/h(2.2)

+ eiπ/4(E − V )−1/4e−iS(a′,x)/h + O(h)
)
, C ′ ∈ C

These expressions result in computing by the method of stationary phase

the oscillatory integral that gives the solution of (P (−hDξ, ξ) − E)û = 0

in Fourier representation. The change of phase factor e±iπ/4 accounts for

Maslov index. For later purposes, we recall here from [Hö,Thm 7.7.5] that

if f : Rd → C, with Im f ≥ 0 has a non-degenerate critical point at x0, then∫
Rd

e
i
h
f(x) u(x) dx ∼ e i

h
f(x0)

(
det(

f ′′(x0)

2iπh
)
)−1/2

∑
j

hj Lj(u)(x0)(2.3)

where Lj are linear forms, L0u(x0) = u(x0), and

L1u(x0) =

2∑
n=0

2−(n+1)

in!(n+ 1)!
〈(f ′′(x0))

−1Dx, Dx〉n+1
(
(Φx0)

nu)(x0)(2.4)

where Φx0(x) = f(x) − f(x0) − 1
2〈f ′′(x0)(x− x0), x− x0〉 vanishes of order

3 at x0.

For the sake of simplicity, we omit henceforth O(h) terms, but the com-

putations below extend to all order in h (practically, at least for N = 2),

thus giving the asymptotics of BS. This will be elaborated in Section 3.

The semi-classical distributions ua, ua
′
span the microlocal kernel Kh of

P−E in (x, ξ) ∈]a′, a[×R ; they are normalized using microlocal Wronskians

as follows.



Bohr-Sommerfeld Quantization Rules 101

Let χa ∈ C∞
0 (R2) as in the Introduction be a smooth cut-off equal to

1 near a. Without loss of generality, we can take χa(x, ξ) = χa1(x)χ2(ξ), so

that χ2 ≡ 1 on small neighborhoods ωa
±, of supp[P, χa] ∩ {ξ2 + V = E} in

±ξ > 0. We define χa
′
similarly. Since i

h [P, χa] = 2(χa)′(x)hDx − ih(χa)′′,
by (2.1) and (2.2) we have, mod O(h):

i

h
[P, χa]ua(x, h) =

√
2C(χa1)

′(x)
(
eiπ/4(E − V )1/4eiS(a,x)/h

− e−iπ/4(E − V )1/4e−iS(a,x)/h
)

i

h
[P, χa

′
]ua

′
(x, h) =

√
2C ′(χa

′
1 )′(x)

(
e−iπ/4(E − V )1/4eiS(a′,x)/h

− eiπ/4(E − V )1/4e−iS(a′,x)/h
)

Let

F a
±(x, h) =

i

h
[P, χa]±u

a(x, h)(2.5)

= ±
√

2C(χa1)
′(x)e±iπ/4(E − V )1/4e±iS(a,x)/h

so that:

(ua|F a
+ − F a

−)

= |C|2
(
eiπ/4(E − V )−1/4eiS(a,x)/h|(χa1)′eiπ/4(E − V )1/4eiS(a,x)/h)

+ |C|2(e−iπ/4(E − V )−1/4e−iS(a,x)/h|(χa1)′e−iπ/4(E − V )1/4e−iS(a,x)/h)
)

+ O(h)

= |C|2(
∫ a

−∞
(χa1)

′(x)dx+

∫ a

−∞
(χa1)

′(x)dx) + O(h) = 2|C|2 + O(h)

(the mixed terms such as
(
eiπ/4(E−V )−1/4eiS(a,x)/h|(χa1)′e−iπ/4(E−V )1/4 ·

e−iS(a,x)/h) are O(h∞) because the phase is non stationary), thus ua is

normalized mod O(h) if we choose C = 2−1/2. In the same way, with

F a′
± (x, h) =

i

h
[P, χa

′
]±u

a′(x, h)(2.6)

= ±
√

2C ′(χa
′

1 )′(x)e∓iπ/4(E − V )1/4e±iS(a′,x)/h

we get

(ua
′ |F a′

+ − F a′
− ) = |C ′|2(

∫ ∞

a′
(χa

′
1 )′(x)dx+

∫ ∞

a′
(χa

′
1 )′(x)dx) + O(h)

= −2|C ′|2 + O(h)
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and we choose again C ′ = C which normalizes ua
′
mod O(h). Normalization

carries to higher order, as is shown in Sect.3 for a more general Hamiltonian.

So there is a natural duality product between Kh(E) and the span of

functions F a
+ − F a

− and F a′
+ − F a′

− in L2. As in [Sj2], [HeSj] we can show

that this space is microlocally transverse to Im(P −E) on (x, ξ) ∈]a′, a[×R,

and thus identifies with the microlocal co-kernel K∗
h(E) of P −E; in general

dimKh(E) = dimK∗
h(E) = 2, unless E is an eigenvalue, in which case

dimKh = dimK∗
h = 1 (showing that P − E is of index 0 when Fredholm,

which is indeed the case. )

Microlocal solutions ua and ua
′
extend as smooth solutions on the whole

interval ]a′, a[; we denote them by u1 and u2. Since there are no other focal

points between a and a′, they are expressed by the same formulae (which

makes the analysis particularly simple) and satisfy :

(u1|F a
+ − F a

−) = 1, (u2|F a′
+ − F a′

− ) = −1

Next we compute (still modulo O(h))

(u1|F a′
+ − F a′

− )

=
1

2
(eiπ/4(E − V )−1/4eiS(a,x)/h|(χa′1 )′e−iπ/4(E − V )1/4eiS(a′,x)/h)

+
1

2
(e−iπ/4(E − V )−1/4e−iS(a,x)/h|(χa′1 )′eiπ/4(E − V )1/4e−iS(a′,x)/h)

=
i

2
e−iS(a′,a)/h

∫ ∞

a′
(χa

′
1 )′(x)dx− i

2
eiS(a′,a)/h

∫ ∞

a′
(χa

′
1 )′(x)dx

= − sin(S(a′, a)/h)

(taking again into account that the mixed terms are O(h∞)). Similarly

(u2|F a
+ − F a

−) = sin(S(a′, a)/h). Now we define Gram matrix

G(a,a′)(E) =

(
(u1|F a

+ − F a
−) (u2|F a

+ − F a
−)

(u1|F a′
+ − F a′

− ) (u2|F a′
+ − F a′

− )

)
(2.7)

whose determinant −1 + sin2(S(a′, a)/h) = − cos2(S(a′, a)/h) vanishes pre-

cisely on eigenvalues of P in I, so we recover the well known BS quantization

condition ∮
ξ(x) dx = 2

∫ a

a′
(E − V )1/2 dx = 2πh(k +

1

2
) + O(h)(2.8)

and detG(a,a′)(E) is nothing but Jost function which is computed e.g. in

[DePh], [DeDiPh] by another method.



Bohr-Sommerfeld Quantization Rules 103

3. The General Case

By the discussion after Proposition 1.1, it clearly suffices to consider the

case when γE contains only 2 focal points which contribute to Maslov index.

We shall content throughout to BS mod O(h2).

a) Quasi-modes mod O(h2) in Fourier representation

Let a = aE = (xE , ξE) be such a focal point. Following a well known

procedure we can trace back to [Sj1], we first seek for WKB solutions in

Fourier representation near a of the form û(ξ) = eiψ(ξ)/hb(ξ;h), see e.g.

[CdV2] and Appendix below. Here the phase ψ = ψE solves Hamilton-

Jacobi equation p0(−ψ′(ξ), ξ) = E, and can be normalized by ψ(ξE) = 0;

the amplitude b(ξ;h) = b0(ξ) + hb1(ξ) + · · · has to be found recursively

together with a(x, ξ;h) = a0(x, ξ) + ha1(x, ξ) + · · · , such that

hDξ

(
ei(xξ+ψ(ξ))/ha(x, ξ;h)

)
= P (x,Dx;h)

(
ei(xξ+ψ(ξ))/hb(ξ;h)

)
Expanding the RHS by stationary phase (2.3), we find

hDξ

(
ei(xξ+ψ(ξ))/ha(x, ξ;h)

)
= ei(xξ+ψ(ξ))/hb(ξ;h)

(
p0(x, ξ) − E + hp̃1(x, ξ) + h2p̃2(x, ξ) + O(h3)

)
p0 being the principal symbol of P ,

p̃1(x, ξ) = p1(x, ξ) +
1

2i

∂2p0
∂x∂ξ

(x, ξ),

p̃2(x, ξ) = p2(x, ξ) +
1

2i

∂2p1
∂x∂ξ

(x, ξ) − 1

8

∂4p0
∂x2∂ξ2

(x, ξ)

Collecting the coefficients of ascending powers of h, we get

(p0 − E)b0 = (x+ ψ′(ξ))a0(3.1)0

(p0 − E)b1 + p̃1b0 = (x+ ψ′(ξ))a1 +
1

i

∂a0

∂ξ
(3.1)1

(p0 − E)b2 + p̃1b1 + p̃2b0 = (x+ ψ′(ξ))a2 +
1

i

∂a1

∂ξ
(3.1)2
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and so on. Define λ(x, ξ) by p0(x, ξ) − E = λ(x, ξ)(x+ ψ′(ξ)), we have

λ(−ψ′(ξ), ξ) = ∂xp0(−ψ′(ξ), ξ) = α(ξ)(3.2)

This gives a0(x, ξ) = λ(x, ξ)b0(ξ) for (3.1)0. We look for b0 by noticing that

(3.1)1 is solvable iff

(p̃1b0)|x=−ψ′(ξ) =
1

i

∂a0

∂ξ
|x=−ψ′(ξ)

which yields the first order ODE L(ξ,Dξ)b0 = 0, with L(ξ,Dξ) = α(ξ)Dξ +
1
2iα

′(ξ) − p1(−ψ′(ξ), ξ). We find

b0(ξ) = C0|α(ξ)|−1/2ei
∫ p1

α

with an arbitrary constant C0. This gives in turn

a1(x, ξ) = λ(x, ξ)b1(ξ) + λ0(x, ξ)(3.3)

with

λ0(x, ξ) =
b0(ξ)p̃1 + i∂a0

∂ξ

x+ ∂ξψ

which is smooth near aE . At the next step, we look for b1 by noticing that

(3.1)2 is solvable iff

(p̃1b1 + p̃2b0)|x=−ψ′(ξ) =
1

i

∂a1

∂ξ
|x=−ψ′(ξ)

Differentiating (3.3) gives L(ξ,Dξ)b1 = p̃2b0+i∂ξλ0|x=−ψ′(ξ), which we solve

for b1. We eventually get, mod O(h2)

ûa(ξ;h) = (C0 + hC1 + hD1(ξ))|α(ξ)|−1/2(3.4)

× exp
i

h

[
ψ(ξ) + h

∫ ξ

ξE

p1(−ψ′(ζ), ζ)

α(ζ)
dζ]

where we have set (for ξ close enough to ξE so that α(ξ) �= 0)

D1(ξ) = sgn(α(ξE))(3.5)

×
∫ ξ

ξE

exp[−i
∫ ζ

ξE

p1
α

]
(
ip̃2b0 − ∂ξλ0|x=−ψ′(ζ)

)
|α(ζ)|−1/2 dζ
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The integration constants C0, C1 will be determined by normalizing the

microlocal Wronskians as follows. We postpone to Sect.3.c the proof of this

Proposition making us of the spatial representation of ua.

Proposition 3.1. With the hypotheses above, the microlocal Wron-

skian near a focal point aE is given by

Wa(ua, ua) = Wa
+(ua, ua) −Wa

−(ua, ua) =

2 sgn(α(ξE))
(
|C0|2 + h

(
2 Re(C0C1) + |C0|2∂x

( p1
∂xp0

)
(ξE)

)
+ O(h2)

)

The condition that ua be normalized mod O(h2) (once we have chosen

C0 to be real), is then

C1(E) = −1

2
C0∂x

( p1
∂xp0

)
(aE)(3.6)

so that now Wa(ua, ua) = 2 sgn(α(ξE))C2
0

(
1 + O(h2)

)
. We say that ua is

well-normalized mod O(h2). This can be formalized by considering {aE} as

a Poincaré section (see Sect.4), and Poisson operator the operator that

assigns, in a unique way, to the initial condition C0 on {aE} the well-

normalized (forward) solution ua to (P − E)ua = 0: namely, C1(E) and

D1(ξ), hence also ûa, depend linearly on C0. Using the approximation

C0 + hC1(E) + hD1(ξ) =
(
C0 + hC1(E) + hRe(D1(ξ))

)
× exp

[ ih
C0

Im(D1(ξ))
]
+ O(h2)

the normalized WKB solution near aE now writes, by (3.4)

ûa(ξ;h) =
(
C0 + hC1(E) + hRe(D1(ξ))

)
|α(ξ)|− 1

2(3.7)

× exp
[
iS̃(ξ, ξE ;h)/h

]
(1 + O(h2))

with the h-dependent phase function

S̃(ξ, ξE ;h) = ψ(ξ) + h

∫ ξ

ξE

p1(−ψ′(ζ), ζ)

α(ζ)
dζ +

h2

C0
Im(D1(ξ))
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The modulus of ûa(ξ;h) can further be simplified using (3.6) and formula

(3.10) below:

C0 + hC1(E) + hRe(D1(ξ)) = C0

(
1 − h

2
∂x

( p1
∂xp0

)
|x=−ψ′(ξ)

)
= C0

[
exph∂x

( p1
∂xp0

)
|x=−ψ′(ξ)

]−1/2
+ O(h2)

which altogether, recalling α(ξ) = ∂xp0(−ψ′(ξ), ξ) near ξE (and assuming

α(ξE) > 0 to fix the ideas), gives

ûa(ξ;h) =
1√
2

(
(∂xp0)(3.8)

× exp
[
h∂x

( p1
∂xp0

)])−1/2
exp

[
iS̃(ξ, ξE ;h)/h

]
(1 + O(h2))

b) The homology class of the generalized action: Fourier representation

Here we identify the various terms in (3.8), which are responsible for the

holonomy of ua. First on γE (i.e. ΛE) we have ψ(ξ) =
∫
−x dξ + Const.,

and ϕ(x) =
∫
ξ dx+ Const. By Hamilton equations

ξ̇(t) = −∂xp0(x(t), ξ(t)), ẋ(t) = ∂ξp0(x(t), ξ(t))

so
∫ p1

∂xp0
dξ = −

∫ p1

∂ξp0
dx = −

∫
γE
p1 dt. The form p1 dt is called the sub-

principal 1-form. Next we consider D1(ξ) as the integral over γE of the

1-form, defined near a in Fourier representation as

Ω1 = T1 dξ = sgn(α(ξ))
(
ip̃2b0 − ∂ξλ0

)
|α|−1/2e−i

∫ p1
α dξ(3.9)

Since γE is Lagrangian, Ω1 is a closed form that we are going to compute

modulo exact forms. Using integration by parts, the integral of Ω1(ξ) in

Fourier representation simplifies to

√
2 ReD1(ξ) = −1

2

[
∂x

( p1
∂xp0

)
]ξξE = −1

2
∂x

( p1
∂xp0

)
(ξ) − C1(E)

C0
(3.10)
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√
2 ImD1(ζ) =

∫ ξ

ξE

T1(ζ) dζ +
[ψ′′

6α
∂3
xp0 +

α′

4α2
∂2
xp0

]ξ
ξE

(3.11)

T1 =
1

α

(
p2 −

1

8
∂2
x∂

2
ξp0 +

ψ′′

12
∂3
x∂ξp0 +

(ψ′′)2

24

(
∂4
xp0

))
+

1

8

(α′)2

α3
∂2
xp0 +

1

6
ψ′′ α

′

α2
∂3
xp0

− p1
α2

(
∂xp1 −

p1
2α
∂2
xp0

)
(3.12)

There follows:

Lemma 3.2. Modulo the integral of an exact form in A, with T1 as in

(3.12) we have:

ReD1(ξ) ≡ 0

√
2 ImD1(ξ) ≡

∫ ξ

ξE

T1(ζ) dζ
(3.13)

Passing from Fourier to spatial representation, we can carry the inte-

gration in x-variable between the focal points aE and a′E , and in ξ-variable

again near a′E . Since γE is smoothly embedded, the microlocal solution ûa

extends uniquely along γE .

If f(x, ξ), g(x, ξ) are any smooth functions on A we set Ω(x, ξ) =

f(x, ξ) dx+ g(x, ξ) dξ. By Stokes formula∫
γE

Ω(x, ξ) =

∫ ∫
p0≤E

(∂xg − ∂ξf) dx ∧ dξ

where, following [CdV], we have extended p0 in the disk bounded by A− so

that it coincides with a harmonic oscillator in a neighborhood of a point

inside, say p0(0, 0) = 0. Making the symplectic change of coordinates

(x, ξ) �→ (t, E) in T ∗R:

∫ ∫
p0≤E

(∂xg − ∂ξf) dx ∧ dξ =

∫ E

0

∫ T (E′)

0
(∂xg − ∂ξf) dt ∧ dE′

where T (E′) is the period of the flow of Hamilton vector field Hp0 at energy

E′ (T (E′) being a constant near (0,0)). Taking derivative with respect to
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E, we find

d

dE

∫
γE

Ω(x, ξ) =

∫ T (E)

0
(∂xg − ∂ξf) dt(3.14)

We compute
∫ ξ
ξE
T1(ζ) dζ with T1 as in (3.12), and start to simplify J1 =∫

ω1, with ω1 the last term on the RHS of (3.12). Let g1(x, ξ) =
p2
1(x,ξ)

∂xp0(x,ξ) ,

by (3.14) we get

J1 =
1

2

∫
γE

∂x g1(x, ξ)

∂x p0(x, ξ)
dξ = −1

2

∫ T (E)

0
∂xg1(x(t), ξ(t)) dt(3.15)

= −1

2

d

dE

∫
γE

g1(x, ξ) dξ

= −1

2

d

dE

∫
γE

p21(x, ξ)

∂xp0(x, ξ)
dξ =

1

2

d

dE

∫ T (E)

0
p21(x(t), ξ(t)) dt

which is the contribution of p1 to the second term S2 of generalized action

in [CdV,Thm2]. Here T (E) is the period on γE . We also have∫
γE

1

α(ξ)
p2(−ψ′(ξ), ξ) dξ =

∫
γE

p2(x, ξ)

∂xp0(x, ξ)
dξ(3.16)

= −
∫ T (E)

0
p2(x(t), ξ(t)) dt

To compute T1 modulo exact forms we are left to simplify in (3.12) the

expression

J2 =

∫ ξ

ξE

1

α

(
−1

8

∂4p0
∂x2 ∂ξ2

+
ψ′′

12

∂4p0
∂x3∂ξ

+
(ψ′′)2

24

∂4p0
∂x4

)
dζ

+
1

8

∫ ξ

ξE

(α′)2

α3

∂2p0
∂x2

dζ

+
1

6

∫ ξ

ξE

ψ′′ α
′

α2

∂3p0
∂x3

dζ

Let g0(x, ξ) = ∆(x,ξ)
∂xp0(x,ξ) , where we have set according to [CdV]

∆(x, ξ) =
∂2p0
∂x2

∂2p0
∂ξ2

−
( ∂2p0
∂x ∂ξ

)2
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Taking second derivative of eikonal equation p0(−ψ′(ξ), ξ) = E, we get

(∂xg0)(−ψ′(ξ), ξ)

α(ξ)
=
ψ′′′

α

∂3p0
∂x3

+ 2ψ′′ α
′

α2

∂3p0
∂x3

+
α′′

α2

∂2p0
∂x2

− 2
α′

α2

∂3p0
∂x2∂ξ

+
(α′)2

α3

∂2p0
∂x2

Integration by parts of the first and third term on the RHS gives altogether∫ ξ

ξE

(∂xg0)(−ψ′(ζ), ζ)

α(ζ)
dζ = −3

∫ ξ

ξE

1

α

∂4p0
∂x2 ∂ξ2

dζ + 2

∫ ξ

ξE

ψ′′

α

∂4p0
∂x3 ∂ξ

dζ

+

∫ ξ

ξE

(ψ′′)2

α

∂4p0
∂x4

dζ

+ 3

∫ ξ

ξE

(α′)2

α3

∂2p0
∂x2

dζ + 4

∫ ξ

ξE

ψ′′ α
′

α2

∂3p0
∂x3

dζ

+
[ψ′′

α

∂3p0
∂x3

]ξ
ξ(E)

+
[ α′
α2

∂2p0
∂x2

]ξ
ξE

+ 3
[ 1

α

∂3p0
∂x2∂ξ

]ξ
ξE

and modulo the integral of an exact form in A

J2 ≡ 1

24

∫
γE

(∂xg0)(−ψ′(ζ), ζ)

α(ζ)
dζ = − 1

24

∫ T (E)

0
∂xg0(x(t), ξ(t)) dt

= − 1

24

d

dE

∫
γE

g0(x, ξ) dξ

= − 1

24

d

dE

∫
γE

∆(x, ξ)

∂xp0(x, ξ)
dξ =

1

24

d

dE

∫ T (E)

0
∆(x(t), ξ(t)) dt

Using these expressions, we recover the well known action integrals (see e.g.

[CdV]):

Proposition 3.3. Let Γ dt be the restriction to γE of the 1-form

ω0(x, ξ) =
(
(∂2

xp0)(∂ξp0) − (∂x∂ξp0)(∂xp0)
)
dx

+
(
(∂ξp0)(∂ξ∂xp0) − (∂2

ξp0)(∂xp0)
)
dξ

We have Re
∮
γE

Ω1 = 0, whereas

Im

∮
γE

Ω1 =
1

48

( d
dE

)2
∮
γE

Γ dt−
∮
γE

p2 dt−
1

2

d

dE

∮
γE

p21 dt
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c) Well normalized QM mod O(h2) in the spatial representation

The next task consists in extending the solutions away from

aE in the spatial representation. First we expand ua(x) =

(2πh)−1/2
∫
eixξ/hûa(ξ;h) dξ = (2πh)−1/2

∫
ei(xξ+ψ(ξ))/hb(ξ;h) dξ near xE by

stationary phase (2.4) mod O(h2), selecting the 2 critical points ξ±(x) near

xE . The phase functions take the form ϕ±(x) = xξ±(x) + ψ(ξ±(x)).

Lemma 3.4. In a neighborhood of the focal point aE and for x < xE,

the microlocal solution of (P (x, hDx;h) − E)u(x;h) = 0 is given by (with

±∂ξp0(x, ξ±(x)) > 0)

ua(x;h) =
1√
2

∑
±
e±iπ/4

(
±∂ξp0(x, ξ±(x))

)−1/2
(3.17)

exp
[ i
h

(
ϕ±(x) − h

∫ x

xE

p1(y, ξ±(y))

∂ξp0(y, ξ±(y)
dy

)]
×

(
1 + h

√
2
(
C1 +D1(ξ±(x)) + hD2(ξ±(x)) + O(h2)

)
with

D2(ξ) = − 1

2i
(ψ′′(ξ))−1 b

′′
0(ξ)

b0(ξ)
(3.18)

+
1

8i
(ψ′′(ξ))−2

(
ψ(4)(ξ) + 4ψ(3)(ξ)

b′0(ξ)

b0(ξ)

)
− 5

24i
(ψ′′(ξ))−3 (ψ(3)(ξ))2

The quantity
√

2(C1 +D1(ξ))) has been computed before; with the par-

ticular choice of C1 = C1(E) in (3.6) we have:

√
2(C1 +D1(ξ))) = −1

2
∂x

( p1
∂xp0

)
(−ψ′(ξ), ξ) + i

√
2 ImD1(ξ)

Moreover

b′0(ξ)

b0(ξ)
= − α

′(ξ)

2α(ξ)
+
ip1(−ψ′(ξ), ξ)

α(ξ)

b′′0(ξ)

b0(ξ)
=

(
− α

′(ξ)

2α(ξ)
+
i p1(−ψ′(ξ), ξ)

α(ξ)

)2
+
d

dξ

(
− α′(ξ)

2α(ξ)
+
ip1(−ψ′(ξ), ξ)

α(ξ)

)
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First, we observe that D2(ξ±(x)) does not contribute to the homology class

of the semi-classical forms defining the action, since it contains no integral.

Thus the phase in (3.17) can be replaced, mod O(h3) by

S±(xE , x;h) = xEξE +

∫ x

xE

ξ±(y) dy − h
∫ x

xE

p1(y, ξρ(y))

∂ξp0(y, ξρ(y)
dy(3.19)

+
√

2h2 Im
(
D1(ξ±(x))

)
with the residue of

√
2 Im

(
D1(ξ±(x))

)
, mod the integral of an exact form,

computed as in Lemma 3.3.

Proof of Proposition 3.1. We proceed by using Proposition 1.2,

and checking directly from (3.17) that normalization relations (ua|F a
+) = 1

2

and (ua|F a
−) = −1

2 hold mod O(h2) in the spatial representation, provided

C1(E) takes the value (3.6). So let us compute F a
±(x) by stationary phase

as in (3.17). In Fourier representation we have

i

h
[P, χa]û(ξ) = (2πh)−1

∫ ∫
ei
(
−(ξ−η)y+ψ(η)

)
/h(3.20)

× c(y, ξ + η

2
;h)(b0 + hb1)(η) dy dη

with Weyl symbol

c(x, ξ;h) ≡ c0(x, ξ) + hc1(x, ξ)(3.21)

=
(
∂ξp0(x, ξ) + h∂ξp1(x, ξ)

)
χ′1(x) mod O(h2)

Let

u±x (y, η;h) = c(
x+ y

2
, η;h)

(
± ∂ξp0(y, ξ±(y))

)−1/2

× exp
[
−i

∫ y

xE

p1(z, ξ±(z))

∂ξp0(z, ξ±(z))
dz

]
×

(
1 + h

√
2
(
C1 +D1(ξ±(x)

)
+ hD2(ξ±(x)) + O(h2)

)
with leading order term u

(0,±)
x (y, η). Applying stationary phase (2.3) gives

F a
±(x;h) =

1√
2
e±iπ/4 e

i
h
ϕ±(x)

×
(
u±x

(
x, ξ±(x);h

)
+ hL1u

(0,±)
x (x, ξ±(x)) + O(h2)

)
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which simplifies as

F a
±(x;h) = ± 1√

2
e±iπ/4 exp

[ i
h

(
ϕ±(x) − h

∫ x

xE

p1
(
y, ξ±(y)

)
∂ξp0

(
y, ξ±(y)

) dy)]
×

(
± ∂ξp0(x, ξ±(x))

)1/2

(
1 + hZ(ξ±(x)) + h

c1(x, ξ±(x))

c0(x, ξ±(x))
+ h

2s±(x) θ±(x) + s′±(x)

2ic0(x, ξ±(x))

)
χ′1(x)

mod O(h2), where we recall c0, c1 from (3.21). Here we have set

Z(ξ±(x)) =
√

2
(
C1(E) +D1(ξ±(x))

)
+D2(ξ±(x)

s±(x) = (
∂2p0
∂ξ2

)(x, ξ±(x))χ′1(x) = ω±(x)χ′1(x)

θ±(x) = − 1

ψ′′(ξ±(x))α(ξ±(x))

(
i p1

(
x, ξ±(x)

)
− ψ

′′′(ξ±(x))α(ξ±(x)) + ψ′′(ξ±(x))α′(ξ±(x))

2ψ′′(ξ±(x))

)
and used the fact that

c0
(
x, ξ±(x)

) (
± ∂ξp0(x, ξ±(x))

)−1/2
= ±

(
± ∂ξp0(x, ξ±(x))

)1/2
χ′1(x)

Since ∂ξp0(x, ξ±(x)) = ψ′′(ξ±(x))α(ξ±(x)) we obtain

F a
±(x;h) = ± 1√

2
e±iπ/4 exp

[ i
h

(
ϕ±(x) − h

∫ x

xE

p1(y, ξ±(y))

∂ξp0(y, ξ±(y))
dy

) ]
(3.22)

×
(
± ∂ξp0(x, ξ±(x))

)1/2
χ′1(x)(

1 + hReZ(ξ±(x)) + h
∂ξp1(x, ξ±(x))

∂ξp0(x, ξ±(x))
− ih ω±(x) θ±(x)

∂ξp0(x, ξ±(x))

− ih
2

d
dx

(
ω±(x)χ′1(x)

)
∂ξp0(x, ξ±(x))χ′1(x)

+ O(h2)
)

Taking the scalar product with ua± gives in particular

(ua+|F a
+) =

1

2

∫ +∞

xE

χ′1(x) dx(3.23)
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+
h

2

∫ +∞

xE

(
2 ReZ(ξ±(x)) +

∂ξp1(x, ξ+(x))

ψ′′(ξ+(x))α(ξ+(x))

+ iω+(x)θ+(x)ψ
′′
(ξ+(x))α(ξ+(x))

)
χ′1(x) dx

+
ih

4

∫ +∞

xE

1

ψ′′(ξ+(x))α(ξ+(x))

d

dx

(
ω+(x)χ′1(x)

)
dx

+ O(h2)

=
1

2
+
h

2
K1 +

ih

4
K2 + O(h2)

There remains to relate K1 with K2. We have

2 ReZ(ξ±(x)) +
∂ξp1(x, ξ+(x))

ψ′′(ξ+(x))α(ξ+(x))
+

i ω+(x) θ+(x)

ψ′′(ξ+(x))α(ξ+(x))

=
ω+(x)

ψ′′(ξ+(x))α(ξ+(x))

(
i θ+(x) +

p1(x, ξ+(x))

ψ′′(ξ+(x))α(ξ+(x))

)
(3.24)

=
i ω+(x)

2
(
ψ′′(ξ+(x))

)3 (
α(ξ+(x))

)2

×
(
ψ′′′(ξ+(x))α(ξ+(x)) + ψ′′(ξ+(x))α′(ξ+(x))

)
whence

K1 =
i

2

∫ +∞

xE

ω+(x)(
ψ′′(ξ+(x))

)3 (
α(ξ+(x))

)2

×
(
ψ′′′(ξ+(x))α(ξ+(x)) + ψ′′(ξ+(x))α′(ξ+(x))

)
χ′1(x) dx

Here we have used that

2 ReZ(ξ+(x)) = −∂x
( p1
∂xp0

)
(−ψ′(ξ), ξ) + 2 ReD2(ξ+(x))

ω+(x) = ψ′′′(ξ+(x))α(ξ+(x)) + 2ψ′′(ξ+(x))α′(ξ+(x))

+
(
ψ′′(ξ+(x))

)2∂2p0
∂x2

(x, ξ+(x))

On the other hand, integrating by parts gives

K2 =
[ ω+(x)χ′1(x)

ψ′′(ξ+(x))α(ξ+(x))

]+∞
xE

−
∫ +∞

xE

d

dx

( 1

ψ′′(ξ+(x))α(ξ+(x))

)
ω+(x)χ′1(x) dx
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= −
∫ +∞

xE

ω+(x)(
ψ′′(ξ+(x))

)3 (
α(ξ+(x))

)2

×
(
ψ′′′(ξ+(x))α(ξ+(x)) + ψ′′(ξ+(x))α′(ξ+(x))

)
χ′1(x) dx

= 2iK1

This shows (ua+|F a
+) = 1

2 + O(h2), and we argue similarly for (ua−|F a
−), and

Proposition 3.1 is proved. �

Away from xE , we use standard WKB theory extending (3.17), with

Ansatz (which we review in the Appendix)

ua±(x) = a±(x;h)eiϕ±(x)/h(3.25)

Omitting indices ± and a, we find a(x;h) = a0(x) + ha1(x) + · · · ; the usual

half-density is

a0(x) =
C̃0

C0
|ψ′′(ξ(x))|−1/2b0(ξ(x))

with a new constant C̃0 ∈ R ; the next term is

a1(x) = (C̃1 + D̃1(x))|β0(x)|−1/2 exp
(
−i

∫
p1(x, ϕ

′(x))

β0(x)
dx

)

and D̃1(x) a complex function with

Re D̃1(x) = −1

2
C̃0
β1(x)

β0(x)
+ Const.

Im D̃1(x) = C̃0

(∫ β1(x)

β2
0(x)

p1(x, ϕ
′(x)) dx−

∫
p2(x, ϕ

′(x))

β0(x)
dx

)(3.26)

and β0(x) = ∂ξp0(x, ϕ
′(x)) = −α(ξ(x))

ξ′(x) , β1(x) = ∂ξp1(x, ϕ
′(x)). The ho-

mology class of the 1-form defining D̃1(x) can be determined as in Lemma

3.2 and coincides of course with this of T1 dξ (see (3.9)) on their common

chart. In particular, Im D̃1(x) = ImD1(ξ(x)) (where ξ(x) stands for ξ±(x)).

We stress that (3.17) and (3.25) are equal mod O(h2), though they involve

different expressions.
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Normalization with respect to the “flux norm” as above yields C̃0 =

C0 = 1/
√

2, and C̃1 is determined as in Proposition 3.1. As a result

u(x;h) =
(
2∂ξp0 exp

[
h∂x

( p1
∂ξp0

)])− 1
2(3.27)

exp
[
iS(xE , x;h)/h

]
(1 + O(h2))

This, together with (3.8), provides a covariant representation of microlocal

solutions relative to the choice of coordinate charts, x and ξ being related

on their intersection by −x = ψ′(ξ) ⇐⇒ ξ = ϕ′(x).

d) Bohr-Sommerfeld quantization rule

Recall from (3.19) the modified phase function of the microlocal solutions

ua± mod O(h2) from the focal point aE ; similarly this of the other asymptotic

solution from the other focal point a′E takes the form

S±(x′E , x;h) = x′Eξ
′
E +

∫ x

x′
E

ξ±(y) − h
∫ x

x′
E

p1(y, ξ±(y))

∂ξp0(y, ξ±(y)
dy(3.28)

+ h2

∫ x

x′
E

T1(ξ±(y))ξ′±(y) dy

Consider now F a
±(x, h) with asymptotics (3.22), and similarly F a′

± (x, h). The

normalized microlocal solutions ua and ua
′
, uniquely extended along γE , are

now called u1 and u2. Arguing as for (3.23), but taking now into account

the variation of the semi-classical action between aE and a′E we get

(u1|F a′
+ − F a′

+ ) ≡ i

2

(
eiA−(xE ,x′

E ;h)/h − eiA+(xE ,x′
E ;h)/h

)
(u2|F a

+ − F a
+) ≡ i

2

(
e−iA−(xE ,x′

E ;h)/h − e−iA+(xE ,x′
E ;h)/h

)(3.29)

mod O(h2), where the generalized actions are given by

Aρ(xE , x
′
E ;h) = Sρ(xE , x;h) − Sρ(x′E , x;h)(3.30)

= xEξE − x′Eξ′E +

∫ x′
E

xE

ξρ(y) dy

− h
∫ x′

E

xE

p1(y, ξρ(y))

∂ξp0(y, ξρ(y)
dy + h2

∫ x′
E

xE

T1(ξρ(y))ξ
′
ρ(y) dy
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We have∫ xE

x′
E

(
ξ+(y) − ξ−(y)

)
dy =

∮
γE

ξ(y) dy

∫ xE

x′
E

( p1(y, ξ+(y))

∂ξp0(y, ξ+(y))
− p1(y, ξ−(y))

∂ξp0(y, ξ−(y))

)
dy =

∫
γE

p1 dt∫ xE

x′
E

(
T1(ξ+(y))ξ′+(y) − T1(ξ−(y))ξ′−(y)

)
dy = Im

∮
γE

Ω1(ξ(y)) dy

On the other hand, Gram matrix as in (2.7) has determinant

− cos2
(
(A−(xE , x

′
E ;h) −A+(xE , x

′
E ;h))/2h)

which vanishes precisely when BS holds. This brings our alternative proof

of Theorem 0.1 to an end.

4. Bohr-Sommerfeld and Action-Angle Variables

We present here a simpler approach based on Birkhoff normal form and

the monodromy operator [LoRo], which reminds of [HeRo]. Let P be self-

adjoint as in (0.1) with Weyl symbol p ∈ S0(m), and such that there exists a

topological ring A where p0 verifies the hypothesis (H) in the Introduction.

Without loss of generality, we can assume that p0 has a periodic orbit γ0 ⊂ A
with period 2π and energy E = E0. Recall from Hamilton-Jacobi theory

that there exists a smooth canonical transformation (t, τ) �→ κ(t, τ) = (x, ξ),

t ∈ [0, 2π], defined in a neighborhood of γ0 and a smooth function τ �→ f0(τ),

f0(0) = 0, f ′0(0) = 1 such that

p0 ◦ κ(t, τ) = f0(τ)(4.1)

It is given by its generating function S(τ, x) =
∫ x
x0
ξ dx, ξ = ∂xS, ϕ = ∂τS,

and

p0(x,
∂S

∂x
(τ, x)) = f0(τ)(4.2)

Energy E and momentum τ are related by the 1-to-1 transformation E =

f0(τ), and f ′0(E0) = 1.

This map can be quantized semi-classically, which is known as the semi-

classical Birkhoff normal form (BNF), see e.g. [GuPa] and its proof. Here we
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take advantage of the fact (see [CdV], Prop.2) that we can deform smoothly

p in the interior of annulus A, without changing its semi-classical spectrum

in I, in such a way that the “new” p0 has a non-degenerate minimum,

say at (x0, ξ0) = 0, with p0(0, 0) = 0, while all energies E ∈]0, E+] are

regular. Then BNF can be achieved by introducing the so-called “harmonic

oscillator” coordinates (y, η) so that (4.1) takes the form

p0 ◦ κ(y, η) = f0(
1

2
(η2 + y2))(4.3)

and U∗PU = f(1
2

(
(hDy)

2 + y2
)
;h), has full Weyl symbol f(τ ;h) = f0(τ) +

hf1(τ)+· · · . Here f1 includes Maslov correction 1/2, and U is a microlocally

unitary h-FIO operator associated with κ ([CdVV], [HeSj]). In A, τ �= 0,

so we can make the smooth symplectic change of coordinates y =
√

2τ cos t,

η =
√

2τ sin t, and take 1
2

(
(hDy)

2 + y2
)

back to hDt.

We do not intend to provide an explicit expression for fj(τ), j ≥ 1 in

term of the pj , but only point out that fj depends linearly on p0, p1, · · · pj
and their derivatives. Of course, BNF allows to get rid of focal points.

The section t = 0 in f−1
0 (E) (Poincaré section) reduces to a point, say

Σ = {a(E)}.
Recall from [LoRo] that Poisson operator K(t, E) here solves (globally

near γ0)

(f(hDt;h) − E)K(t, E) = 0(4.4)

and is given in the special 1-D case by the multiplication operator on

L2(Σ) ≈ C

K(t, E) = eiS(t;E)/ha(t;E, h)

where S(t, E) verifies the eikonal equation f0(∂tS) = E, S(0, E) = 0, i.e.

S(t, E) = f−1
0 (E)t, and a(t, E;h) = a0(t, E)+ha1(t, E)+ · · · satisfies trans-

port equations to any order in h.

Applying (3.25) in the special case where P has constant coefficients,

one has

a0(t, E) = C0

(
(f−1

0 )′(E)
)1/2

eitS̃1(E)

a1(t, E) =
(
C1(E) + C0(β(E) + itS̃2(E))

)(
(f−1

0 )′(E)
)1/2

eitS̃1(E)
(4.5)
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with C0 ∈ R a normalization constant as above to be determined as above

S̃1(E) = −f1(τ)(f−1
0 )′(E)

β(E) = −1

2
(f−1

0 )′(E)f ′1(τ)

S̃2(E) = (f−1
0 )′(E)

(1

2

df2
1

dE
− f2(τ)

)(4.6)

where we recall τ = f−1
0 (E), so that

K(t, E) = eiS(t;E)/h
(
(f−1

0 )′(E)
)1/2

(4.7)

× eitS̃1(E)
(
C0 + hC1(E) + hC0β(E) + ithC0S̃2(E)

)
Together with K(t, E) we define K∗(t, E) = e−iS(t,E)/ha(t, E;h), and

K∗(E) =

∫
K∗(t, E) dt

The “flux norm” on C2 is defined by

(u|v)χ =
( i
h

[f(hDt;h), χ(t)]K(t;h)u|K(t, h)v
)

(4.8)

with the scalar product of L2(Rt) on the RHS, and χ ∈ C∞(R) is a smooth

step-function, equal to 0 for t ≤ 0 and to 1 for t ≥ 2π. To normalize K(t, E)

we start from

K∗(E)
i

h
[f(hDt;h), χ(t)]K(t, E) = IdL2(R)

Since i
h [f(hDt;h), χ(t)] has Weyl symbol (f ′0(τ)) + hf ′1(τ))χ

′(t) +O(h2) we

are led to compute I(t, E) = i
h [f(hDt;h), χ(t)]K(t, E) where we have set

Q(τ ;h) = f ′0(τ) + hf ′1(τ). Again by stationary phase (2.3)

I(t, E) = eiS(t,E)/h
[
Q(τ ;h))χ′(t)a(t, E;h) − ih∂τQ(τ ;h)

(1

2
χ′′(t)a(t, E;h)

+ χ′(t)∂ta(t, E;h) + O(h2)
]

Integrating I(t, E) against e−iS(t,E)/ha(t, E;h), we get

(u|v)χ = uv
[
Q(τ ;h)

∫
χ′(t)|a(t, E;h)|2(4.9)

− ih
2
∂τQ(τ ;h)

∫
χ′′(t)|a(t, E;h)|2 dt
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− ih∂τQ(τ ;h)

∫
∂ta(t, E;h)a(t, E;h)χ′(t) dt+ O(h2)

]
Now |a(t, E;h)|2 = (f−1

0 )′(E)
(
C2

0 + 2hC0C1(E) + 2hC2
0β(E)

)
+ O(h2) is

independent of t mod O(h2), and

(u|v)χ = uv
(
C2

0 + 2C0C1(E)h− C2
0α(E)(f−1

0 )′(E)f ′′0 (τ) + O(h2)
)

so that, choosing C0 = 1 and

C1(E) =
1

2

(
(f−1

0 )′(E)
)2
f1(τ)f

′′
0 (τ)

we end up with (u|v)χ = uv(1 + O(h2), which normalizes K(t, E) to

order 2.

We define K0(t, E) = K(t, E) (Poisson operator with data at t = 0),

K2π(t, E) = K(t− 2π,E) (Poisson operator with data at t = 2π), and recall

from [LoRo] that E is an eigenvalue of f(hDt;h) iff 1 is an eigenvalue of the

monodromy operator M(E) = K∗
2π(E) i

h [f(hDt;h), χ]K0(·, E), which in the

1-D case reduces again to a multiplication operator. A short computation

shows that

M(E) = exp[2iπτ/h] exp[2iπS̃1(E)]
(
1 + 2iπhS̃2(E) + O(h2)

)
so again BS quantization rule writes with an h2 accuracy as

f−1
0 (E) + hS̃1(E) + h2S̃2(E) ≡ nh, n ∈ Z

Let S1(E) = 2πS̃1(E), and S2(E) = 2πS̃2(E). Since f−1
0 (E) = τ(E) =

1
2π

∮
γE
ξ dx, and we know that S3(E) = 0, we eventuelly get

S0(E) + hS1(E) + h2S2(E) + O(h4) = 2πnh, n ∈ Z

Note that the proof above readily extends to the periodic case, where

there is no Maslov correction in f1.

5. The Discrete Spectrum of P in I

Here we recover the fact that BS determines asymptotically all eigen-

values of P in I. As in Sect.1 we adapt the argument of [SjZw], and con-

tent ourselves with the computations below with an accuracy O(h). It is
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convenient to think of {aE} and {a′E} as zero-dimensional “Poincaré sec-

tions” of γE . Let Ka(E) be the operator (Poisson operator) that assigns

to its “initial value” C0 ∈ L2({aE}) ≈ R the well normalized solution

u(x;h) =
∫
ei(xξ+ψ(ξ))/hb(ξ;h) dξ to (P − E)u = 0 near {aE}. By construc-

tion, we have:

±Ka(E)∗
i

h
[P, χa]±Ka(E) = IdaE = 1(5.1)

We define objects “connecting” a to a′ along γE as follows: let T̃ = T̃ (E) >

0 such that exp T̃Hp0(a) = a′ (in case p0 is invariant by time reversal,

i.e. p0(x, ξ) = p0(x,−ξ) we take T̃ (E) = T (E)/2). Choose χaf (f for

“forward”) be a cut-off function supported microlocally near γE , equal to 0

along exp tHp0(a) for t ≤ ε, equal to 1 along γE for t ∈ [2 ε, T̃ +ε], and back

to 0 next to a′, e.g. for t ≥ T̃ +2 ε. Let similarly χab (b for “backward”) be a

cut-off function supported microlocally near γE , equal to 1 along exp tHp0(a)

for t ∈ [− ε, T̃ − 2 ε], and equal to 0 next to a′, e.g. for t ≥ T̃ − ε. By (5.1)

we have

Ka(E)∗
i

h
[P, χa]+Ka(E) = Ka(E)∗

i

h
[P, χaf ]Ka(E) = 1(5.2)

−Ka(E)∗
i

h
[P, χa]−Ka(E) = −Ka(E)∗

i

h
[P, χab ]Ka(E) = 1(5.3)

which define a left inverse Ra
+(E) = Ka(E)∗ i

h [P, χaf ] to Ka(E) and a right

inverse

Ra
−(E) = − i

h
[P, χab ]Ka(E)

to Ka(E)∗. We define similar objects connecting a′ to a, T̃ ′ = T̃ ′(E) > 0

such that exp T̃ ′Hp0(a) = a′ (T̃ = T̃ ′ if p0 is invariant by time reversal),

in particular a left inverse Ra′
+(E) = Ka′(E)∗ i

h [P, χa
′

f ]+ to Ka′(E) and a

right inverse Ra′
−(E) = − i

h [P, χa
′

b ]Ka′(E) to Ka′(E)∗, with the additional

requirement

χab + χa
′

b = 1(5.4)

near γE . Define now the pair R+(E)u = (Ra
+(E)u,Ra′

+(E)u), u ∈ L2(R)

and R−(E) by R−(E)u− = Ra
−(E)ua− +Ra′

−(E)ua
′

− , u− = (ua−, u
a′
−) ∈ C2, we

call Grushin operator P(z) the operator defined by the linear system

i

h
(P − z)u+R−(z)u− = v, R+(z)u = v+(5.5)
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From [SjZw], we know that the problem (5.5) is well posed, and as in (1.7)-

(1.8)

P(z)−1 =

(
E(z) E+(z)

E−(z) E−+(z)

)
with choices of E(z), E+(z), E−+(z), E−(z) similar to those in Sect.1. Actu-

ally one can show that the effective Hamiltonian E−+(z) is singular precisely

when 1 belongs to the spectrum of the monodromy operator, or when the

microlocal solutions u1, u2 ∈ Kh(E) computed in (3.29) are colinear, which

amounts to say that Gram matrix (2.7) is singular. There follows that the

spectrum of P in I is precisely the set of z we have determined by BS

quantization rule.

Note that the argument used in Sect.4 would need a slightly different

justification, since we made use of a single “Poincaré section”.

Appendix. Essentials on 1-D Semi-Classical Spectral Asymp-

totics

Following essentially [BaWe] [CdV2], we recall here some useful notions

of 1-D Microlocal Analysis, providing a consistent framework for WKB ex-

pansions in different representations.

a) h-Pseudo-differential Calculus

Semi-classical analysis, or h-Pseudodifferential calculus, is based on

asymptotics with respect to the small parameter h. This is a (almost

straightforward) generalization of the Pseudo-differential calculus of [Hö],

based on asymptotics with respect to smoothness, that we refer henceforth

as the “Standard Calculus”.

The growth at infinity of an Hamiltonian is controlled by an order func-

tion, i.e. m ∈ C∞(T ∗R), m ≥ 1, of temperate growth at infinity, that

verifies m ∈ S(m); for instance we take m(x, ξ) = 1+ |ξ|2 for Schrödinger or

Helmholtz Hamiltonians with long range potential, m(x, ξ) = 1 + |x, ξ|2 for

Hamiltonians of the type of a harmonic oscillator (with compact resolvant),

or simply m = 1 for a phase-space “cut-off”.

Consider a real valued symbol p ∈ S(m) as in (0.1), and define a self-

adjoint h-PDO pw(x, hDx;h) on L2(R) as in (0.3).

As in the Standard Calculus, h-PDO’s compose in a natural way. It

is convenient to work with symbols having asymptotic expansions (0.2).
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A h-PDO Pw(x, hDx;h) is called elliptic if its principal symbol p0 verifies

|p0(x, ξ)| ≥ const.m(x, ξ). If Pw(x, hDx;h) is elliptic then it has an inverse

Qw(x, hDx;h) with q ∈ S(1/m). Ellipticity can be restricted in the microlo-

cal sense, i.e. we say that p is elliptic at ρ0 = (x0, ξ0) ∈ T ∗R if p0(ρ0) �= 0,

so that Pw(x, hDx;h) has also a microlocal inverse Qw(x, hDx;h) near ρ0.

b) Admissible semi-classical distributions and microlocalization

These h-PDO extend naturally by acting on spaces of distributions of

finite regularity Hs(R) (Sobolev spaces).

It is convenient to view h-PDO’s as acting on a family (uh) of L2-

functions, or distributions on R, rather than on individual functions. We

call uh admissible iff for any compact set K ⊂ R we have ‖uh‖Hs(K) =

O(h−N0) for some s and N0. We shall be working with some particular

admissible distributions, called Lagrangian distributions, or oscillating inte-

grals.

A Lagrangian distribution takes the form

uh(x) = (2πh)−N/2

∫
RN

eiϕ(x,θ)/ha(x, θ;h) dθ(A.1)

where a is a symbol (i.e. belongs to some S(m)) and ϕ is a non-degenerate

phase function, i.e. dx,θϕ(x0, θ0) �= 0, and d∂θ1ϕ, · · · , d∂θNϕ are linearly

independent on the critical set

Cϕ = {(x, θ) :
∂ϕ

∂θ
(x, θ) = 0}(A.2)

Such a distribution is said to be negligible iff for any compact set K ⊂ R,

and any s ∈ R we have ‖uh‖Hs(K) = O(h∞).

Remark. Negligible Lagrangian distributions up to finite order, as

those constructed in this paper, can be defined similarly. Including more

general admissible distributions requires to modify the concept of negligible

distributions, as well as the frequency set below, in order to take addi-

tional regularity into account. The way to do it is to compactify the usual

phase-space T ∗R by “adding a sphere” at infinity [CdV2]. For simplicity,

we shall be content with microlocalizing in T ∗R, let us only mention that

microlocalization in case of Standard Calculus is carried in T ∗R \ 0, where

the zero-section has been removed, and the phase functions enjoy certain

homogeneity properties in the phase variables.
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Microlocal Analysis specifies further the “directions” in T ∗R where uh is

“negligible”. To this end, we introduce, following Guillemin and Sternberg,

the frequency set FSuh ⊂ T ∗R by saying that ρ0 = (x0, ξ0) /∈ FSuh iff there

exists a h-PDO A with symbol a ∈ S0(m) elliptic at ρ0 and such that Auh
is negligible. Since this definition doesn’t depend of the choice of A, and

we can take A = χw(x, hDx) where χ ∈ C∞
0 (T ∗R) is a microlocal cut-off

equal to 1 near ρ0. On the set of admissible distributions, we define an

equivalence relation at (x0, ξ0) ∈ T ∗R by uh ∼ vh iff (x0, ξ0) /∈ FS(uh − vh),
and we say that uh = vh microlocally near (x0, ξ0).

As in Standard Calculus, if P ∈ S(m) we have

FSPuh ⊂ FSuh ⊂ FSPuh ∪ CharP(A.3)

where CharP = {(x, ξ) ∈ T ∗R : p0(x, ξ) = 0} is the bicharacteristic strip.

For instance, eigenfunctions of Pw(x, hDx;h) with energy E (as admis-

sible distributions) or more generally, solutions, in the microlocal sense, of

(Pw(x, hDx;h) − E)uh ∼ 0 are “concentrated” microlocally in the energy

shell p0(x, ξ) = E, in the sense that FSuh ⊂ Char(P − E). It follows

that FSuh is invariant under the flow t �→ Φt of Hamilton vector field Hp0 .

Assume now that P − E is of principal type (i.e. Hp0 �= 0 on p0 = E),

the microlocal kernel of P − E is (at most) one-dimensional, i.e. if uh, vh
are microlocal solutions and uh ∼ vh at one point (x0, ξ0), then uh ∼ vh
everywhere. The existence of WKB solutions (see below) ensures that the

microlocal kernel of P − E is indeed one-dimensional. This fails of course

to be true in case of multiple caracteristics, e.g. at a separatrix.

It is convenient to characterize the frequency set in terms of h-Fourier

transform

Fhuh(ξ) = (2πh)−1/2

∫
e−ixξ/huh(x) dx(A.4)

Namely ρ0 /∈ FSh(uh) iff there exists χ ∈ C∞
0 (R), χ(x0) �= 0, and a compact

neighborhood V of ξ0 such that Fh(χuh)(ξ) = O(h∞) uniformly on V .

Note as above that the frequency set may include the zero section ξ = 0,

contrary to the standard wave-front WF, see also [Iv].

Examples.

1) “WKB functions” of the form uh(x) = a(x) eiS(x)/h with a, S ∈ C∞, S

real valued. We have FSh(uh) =
{
(x, S′(x)) : x ∈ supp(a)

}
. More generally,
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if uh is as in (A.1) then FSh(uh) is contained in the Lagrangian manifold

Λϕ = {(x, ∂xϕ(x, θ)) : ∂θϕ(x, θ) = 0}, with equality if a(x, θ;h) �= 0 on the

critical set Cϕ was defined in (A.2).

2) If u(x) is independent of h, then FSh(u) = WFu ∪ (supp(u)× {0}).

Fourier inversion formula then shows that if U ⊂ Rn is an open set, an

h-admissible family (uh) is negligible in U iff πx(FS(uh)) ∩ U = ∅, where

πx denotes the projection T ∗R → Rx. So FSuh = ∅ iff uh are smooth and

small (with respect to h) in Sobolev norm.

c) WKB method

When P − E is of principal type, and Hp0 is transverse to the fiber in

T ∗R, we seek for microlocal solutions of WKB type, of the form uh(x) =

eiS(x)/ha(x;h), where a(x;h) ∼
∞∑
j=0

(h
i

)j
aj(x). Applying P − E, we get an

asymptotic sum, with leading term p0(x, S
′(x)) = E, which is the eikonal

equation, that we solve by prescribing the initial condition S′(x0) = ξ0,

where p0(x0, ξ0) = E. The lower order terms are given by (in-)homogeneous

transport equations, the first transport equation takes the invariant

form LHp0
a0 = 0, where LHp0

denote Lie derivative along Hp0 . Hence

eiS(x)/ha0(x) gives the Lagrangian manifold ΛS together with the half den-

sity a0(x)
√
dx on it. The right hand side of higher order (non-homegeneous)

transport equations or order j involve combinations of previous a0, · · · , aj−1.

When Hp0 turns vertical, we switch to Fourier representation as in

Sect.3. Matching of solutions in such different charts can be done using

Gram matrix since, P −E being of principal type, there is only one degree

of freedom for choosing the microlocal solution.
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