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Hermaitian Tanno Connection and Bochner Type

Curvature Tensors of Contact Riemannian Manifolds
By Masayoshi NAGASE and Daisuke SASAKI

Abstract. On a contact Riemannian manifold, considering the
curvature of hermitian Tanno connection, we introduce Bochner type
curvature tensors. Some of them are pseudo-conformally invariant
under gauge transformation and so are the others if and only if the
associated almost complex structure is integrable.

Introduction

Let (M,0) be a (2n + 1)-dimensional contact manifold with a contact
form 6. We have, hence, a unique vector field £ satisfying #(§) = 1 and
L0 = 0, where L¢ is the Lie differentiation by ¢. Let us equip M with
a Riemannian metric ¢ and a (1,1)-tensor field J satisfying ¢(&, X) =
9(X), g(X,JY) = —df(X,Y) and J2X = —X + 6(X)¢ for any vector
fields X, Y. (In this paper we adopt such a notation as df(X,Y) =
X)) —Y(0(X)) —0([X,Y]).) To study the geometry of contact Rie-
mannian manifold (M, 0, g, J), Tanno ([10]) introduced a linear connection
*V = *V® called the Tanno connection in this paper (the TWT con-
nection, or, the Tanaka-Webster-Tanno connection, in [9], etc.), defined
by *VxY = V%Y — 20(X)JY — 0(Y)V%E + (V40)(Y)E (VY is the Levi-
Civita connection), which has really potential applications to the geometry
of contact Riemannian structure. In general its action does not commute
with that of the almost complex structure J, however. In fact, Tanno ([10,
Proposition 3.1]) indicated

(Vx )Y = QY X) = (VE )Y + (VEO)(JY) £+ 0(Y)TVLE.
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In [6] (and [5]), the first author adopted a modified connection V = V(@)
called the hermitian Tanno connection, defined by

X Vx(f€) 1Y = f¢ (f e Cx(M)),
VxY ="VxY ——-JO(Y,X)=<¢ 1

2 5 (VXY = J"VxJY) :Y €T(H)
(H := ker6), so that we have V.J = 0, which simplified the study of Kohn-
Rossi heat kernel on contact Riemannian manifolds. We expect the com-
mutativity will make it plainer to investigate into the case of general J. In
this paper, assuming n > 2, we intend to construct Bochner type tensors
associated with the curvature F/(V) (Theorems A and B and Corollary C in
the introduction): Some of them are pseudo-conformally invariant under the
gauge transformation 6 = e2/6 together with (2.1) (f € C*°(M)) (consid-
ered in [8], [12], etc.) and so are the others if and only if J is integrable, i.e.,
[(Hy),I'(Hy)] C T'(Hy), where weset H ={X € H®C | JX = +iX}.
In §4 (Theorems 4.2 and 4.4), as by-products, such tensors associated with
F(*V) canonically deduced from those will be also presented.

Study on conformal invariance of curvature tensors (in the Riemannian
case) will originate in the ones on the Weyl conformal curvature (e.g. [1,
Chap. 1.G]) and the Bochner curvature ([3]). In the contact Riemmanian
case, study on pseudo-conformal invariance has been developed as well.
Our study is motivated directly by such works related to the curvature of
canonical connection by Sakamoto-Takemura ([7]) and the curvature F(*V)
by Tanno ([11], [12], [13]).

Unlike F(*V)(X,Y), the action of F(V)(X,Y) = [Vx,Vy]—V|xy] on
I'(H ® C) is decomposed orthogonally into the direct sum of FI(V)(X,Y) :
I'(Hy) — T'(Hy) (cf. Proposition 1.2(2)) and, compared with those by
Tanno, our Bochner type tensors are expressed rather clearly. Indeed we
define the tensors B(V)? e I'(Hy ® HY @ H* @ H}) and B(V)" € I'(H} ®
H} ® HY @ HY) by

B(V)'(X,Y)Z = F(V)(X,Y)Z — - i 5 {RiCV(Z, Y)X +RicV(X,Y)Z
~ 9(Z.Y)ric% (X) - (X, V) ric¥ (2) |

sV

+ m{g(Z,?)X +9(X,?)Z},
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B(V)*(X,Y)Z = F(V)(X,Y)Z
! - {Ric(V)(Z, Y)X — Ric(V)(Z, X)Y}

n —

(X,Y,Z €T'(Hy)), where RicV, etc., are the pseudohermitian Ricci curva-
ture, etc., defined by

Ric¥ (X,Y) = try, (Z — F(V)(X,Y)Z),
ricV (V) = ricY (Y) € Hy with g(X ricY (Y)) = RicV(X,Y),
Ric(V)(X,Y) = trry (Z — F(V)(Z, Y)X)

and sV is the pseudohermitian scalar curvature, i.e., s¥ = > Ric¥ (£q, q)
({&a )P is a unitary basis of H.). It will be noteworthy that the tensor
B(V)? coincides with the Bochner curvature of Kihler manifolds of complex
dimension n in appearance and vanishes in the ignored case n = 1 (cf.
Proposition 1.2(3)).

THEOREM A. The tensor B(V)? is pseudo-conformally invariant and
so is the tensor B(V)T in the case n = 2. In the case n > 3, B(V)" is
pseudo-conformally invariant if and only if J s integrable.

REMARK. By referring to (2.6) and (2.7), it is obvious that the ten-
sor B(V)? with (RicV,ricY,sV) replaced by (Ric(V),—ric(V),s(V)/2) is
also pseudo-conformally invariant, where ric(V)(Y) = ric(V)(Y) is de-
fined similarly and s(V) is the ordinary scalar curvature.

Following the idea in [13, §3] (and [12, §3]), let us choose arbitrarily a
nowhere vanishing (2n+1)-form w and take a smooth function h defined by
dVy = +elw, where dVj is the volume element, i.e., dVy = OA(df)™/n!. Then
we denote by =4 = grad . h the Hi-components of the gradient vector field
E% = grad h and consider the tensor U (2% :) € T'(Hy @ Hi @ Hi @ H})
defined by

1
Ut X,v.2) = ——={(Q(2,X) - 20(X, 2), JE2)Y

—9(Q(Z,Y) — 2Q(Y, 2), JE%;)X}
g(Q(X, Z)vy)‘]‘—‘—f— + g(Q(Xv Y) - Q(Y7X)7 JEU—:—)Z’
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which vanishes in the case n = 2 (cf. Proposition 3.1).

THEOREM B. In the case n > 3, the tensor B(V)" — [;?Tgi)) is pseudo-

conformally invariant.

REMARK. Referring to [12, §3] (and [13, §3]), instead of w one may
take a linear connection on T'M to define similarly an associated pseudo-
conformally invariant tensor.

By  considering  the identity  g(F(V)(X,Y)Z, W) =
—9(Z, F(V)(X,Y)W), the above tensors obviously provide the other types
of tensors, B(V)™, U (E¥:) e I'(Hy ® H* ® H* @ HY) defined by

B(V)_(Y, ?)Z = F(v)(y7 ?)Z
+ ﬁ{g(z, X)ric(V)(Y) - g(2.Y) ric<v)<7)},

U=(

(1]

v X,Y,Z) = —ﬁ{g(Z,?)(Q( 24 X) - 209(X, JE“i))

— 4(2,X) (Q(JE“_’,?) —20(Y, JE“_’))}
—g(Q(X,JE¥),Y)Z
- 9(2,72%)(QX,Y) - ¥, X)),

the latter of which vanishes in the case n = 2.

COROLLARY C. (1) In the case n = 2, the tensor B(V)™ is pseudo-
conformally invariant. In the case n > 3, B(V)™ is pseudo-conformally
invariant if and only if J is integrable. (2) In the case n > 3, the tensor

B(V)” — % is pseudo-conformally invariant.

After preliminaries in §1 and §2, we will prove Theorems A and B in
§3. Here we will assemble some properties of the connections for quick
reference. Refer to [10], [6], [5] for more detailed explanation. We have
Vo = VO = 0, *Vg = Vg = 0, but the torsion tensors do not van-
ish: in fact, T(*V)(Z,W) = 0, T(*V)(Z,W) = ig(Z,W)¢, T(V)(Z,W) =
(L J(Z,W)/4 = (=[Z,W] + [JZ,JW]| — J[JZ, W] — J[Z,JW])/4,
T(VY(Z,W) =ig(Z,W)¢ (Z,W € T(Hy)). If we set *7X = T(*V)(£, X),
etc., then *7 = 7 and ToJ+Jo7 = 0. We take and fix a local unitary frame
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o= (&0=¢&,&1,.. 80,8, .,&n) of the bundle TM @ C=C{® Hy @ H-
(¢a =& € H_, g(&a,&5) = 0, 9(6a,€5) = bap, 1 < @, 8 < n) and denote
its dual frame by 6* = (0° = 0,0, .. om0t .,0™). As usual, the Greek
indices «, 3, ... vary from 1 to n, the block Latin indices A, B, ... vary
in {0,1,...,n,1,...,7} and the symbol >_ may be omitted (in an unusual
manner). Then we have

T=600 S +&Ge0 Y (17 =1)),
Q=¢00 207 Q%
téa00l 0 -Q) (% =-0) =-07, — Q).
If we set *Vép = &4 - w(*V)3, Vép = €4 - w(V)4, then
w(*V)

=w(V)g, w(V)5=w(V)

)

g
W(V)§(E&) = =55 w(VI5(E

@R
~ I

_ha
_QQBW

and the others vanish. Recall that J is integrable if and only if the Tanno
tensor Q vanishes ([10, Proposition 2.1]), and if @ = 0, then obviously
the connections *V and V coincide and, further, they coincide with the
Tanaka-Webster connection (cf. [10, Proposition 3.1], [6, Lemma 1.1], [4,

§1.2]).
It is a pleasure to thank K. Sakamoto for suggestions which led to im-
provement of this paper.

1. The Curvature Tensor of the Hermitian Tanno Connection
Since, by definition,
9(VxY, Z) = g(VY, Z) — g(0(Y) X, Z) + g(9(rX,Y )¢, Z)
5] - 9(00)7Y.2) — g0(V)IX. 2) - glo(X, V), 2)}
for any X,Y,Z € I'(TM), we have

1
VLY =*VxY —g((t + §J)X’ Y)¢

FOY)(r 4+ %J)X +O(X)(r + %J)Y _o(X) 7Y
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In addition, obviously
[X,Y] = *VxY - *VyX - T(*V)(X,Y)
= *VxY — *Vy X + (X, JY)¢ — 0(X) 7Y +0(Y) 71X
Therefore we obtain:
PRrOPOSITION 1.1 (cf. Tanno [10, §6 and §8]).
(1) (¢f. Blair-Dragomir [2,(36)]) For any X,Y,Z € I'(TM), we have
F(VI)(X,Y)Z = F('"V)(X,Y)Z + (LX ALY)Z
_ %g(X IYVJIZ +6(2)S7(X,Y)
—9(57(X,Y), 2)€+0(2)(0 N O)(X,Y) = g((6 A O)(X,Y), 2)¢
+ {0257 (x.¥) — 9(87 (X, ), 2t
—0(X)(VyI)Z +0(Y)(VxI)Z},
where we set
L=1+ %L O=7*+Jr— i, (XAY)Z =g(X,2)Y —g(Y, 2)X,
O NO)X,Y) =0(X)OY) - 6(Y)O(X),
ST(X,)Y)=("Vx7)Y — (*Vy7)X, S‘](X7 Y)=("VxJ)Y — (*VyJ)X.

(2) (¢f. Blair-Dragomir [2, Theorem 3], Seshadri [9, Proposition 3.2]) As
for the curvature form F(*V) = dw(*V) +w(*V) Aw(*V) : 1t is reduced to
F('V) =X 4z0p:084® 08 - F(*V)4, F(*V)a = —F(*V)2, and, setting
F(*V)gﬂ = g(F(*V)(&,£3)88:€a), etc., we have

(1.1) F(V)§= F(*V)[m 07 A 9* +ir® 67 N ON — il g7 A 6°

+ s + TQ }07/\0

{Cver
~{(Ver) 57;;99@}9@ N B
%v%g 507 N0+ 1"V, Q) 67 N6,
* A
F( V)ﬂry,\ F( V)'yﬁaa )
(1.2) F('V)§,507 A 0 = F(Vg) A A

1
07/\e9>‘+49a/\96+ %mAm
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and
FV) = {(*vw) — ("Ve, )] }m NG+ T {an o }97 A
%( Ve, Q)5 07 A 0N+ 5(*% Q)5 07 A 0>
%( Ve, Q)5 67 A 6N
(3) We have

Ric ™V (£, &5) = ( Ves Q)

Ric(*V)(€a, €3) = 5{(*% Q). + (Ve Q)i“ﬁ} +i(n —1)77,

Ric'Y (6a:65) = F("V)A,5  Ric("V)(€ar &5) = Ric™Y (€ar &5) — 598,95,

PROOF. As for (1) and (2): By lengthy calculation following [4, §1.4]
and [2, §4] we obtain the formulas. (The terms in the last line of the above
expression of F'(V9)(X,Y)Z are omitted from [2, (36)] and the last term in
the above one of F' (*V)g is omitted from the corresponding expression in
[9, Proposition 3.2].) As for (3): By (2),

Ric™Y (€a,€8) = 9(F(*V)(€a,€8)60 &3) = F(*V)ag

= VG Q) — LV D — it +imhbr = SV Oy,
Ric("V)(&o: £5) = 9(F("V)(Ex,£)6e &) +9(F <* ><£A,£ﬂ>5a,@>
(Ve QR +iln— 7 + 5 (Ve Q)5

mlN

and

(1.3) Ric("V)(£a,€5) = g(F("V)(Ex:€5)8as €3) + 9(F("V)(€x:€5)8as E)
= 9(F(V)(€as €5)60,€3) + 29(F ("V)(€5:E5)Ear €x)

= Ric*v CwiB) - _Qiu,ggﬁ

~— ~

Note that g(F(*V)(€y,€3)6a. €2) is equal to

. _ _ 1 _
Ve, Qs — 5 (Ve Q5 = 7980k~ i} = 13,05,
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L & A3
4 /\uQXﬂ'D

PROPOSITION 1.2.
(1) For any X,Y,Z € I'(TM), we have

F(VI)(X,Y)Z =F(V)(X,Y)Z + (LX N\LY)Z — %g(X, JY)JZ

+0(2)SVT(X,Y) —g(SVT(X,Y), Z)¢

+0(2)ONO)X,Y)—g((ONO)X,Y), 2)¢

H{(VxQ)(ZY) ~ (Vv Q)(Z.X) + QAZT(V)(X.Y))}

+ —{Q(Q(Z, Y),X)—-9(Q(Z, X),Y)} - %Q(X)Q(Z, Y)

+-0(Y)Q(Z,X)

NN ] =D

+ 9(2){@(1/, X) + JO(rY, X) + JrQ(Y, X)
—Q(X,Y) — JO(TX.,Y) — JTQ(X,Y)}

— 5 {9(Q. X0, 2) + 9UQ(rY. X), 2) + g(JTQ(Y. X). Z)

N —

- Q(Q(Xa Y)aZ) - g(JQ(TXa Y),Z) - g(JTQ(Xa Y),Z)}f,

where we set SV (X,Y) = (Vx1)Y — (Vy71)X

(2) As for the curvature form F(V) = dw(V) +w(V) Aw(V) : It is
reduced to F(V) = £a @67 - F(V)§ + & @67 - F(V), F(V)§ = —F(V)a,
and we have
(1.4) F(V)§ F(V)Wemouw N A AN

+{(Veur) Tajo A

~{(Ve,m)d - Tﬁgza}ame
Lt
4

(Ve Q) 07 A O + (vgﬁ Q)2 07 N O,
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1 . N
(V)55 = F(VPa + {9395, — Qe s}
(15) § F(V)55607 A 0 = F(V9)5.507 A6
1 sl 1 i
_ 108 o~ YA L ZP2AQ° 1+ = YA QY
{790, Q05 + 705 }07 N OY + 2 0% N 07 + S0, 07 007,

(3) We have

Ric” (60, €) = 5(Ve, @0y, Ric(V)(€a,5) = & (Ve, @R, +iln — )7

RicY (€, 65) = F(V)3,5  Ric(V) (b, €5) = RicY (&, €5) — ZQ%Q,@;-

PRrROOF. (1) follows from Proposition 1.1(1) and the formulas

(1.6) FOVY(X,Y)Z = F(V)(X,Y)Z + %J(VX 0)(2,Y)

_ lj(vyg)(z,x) + %JQ(Z, T(V)(X,Y))

2
n ig(g(z, V), X) - iQ(Q(Z,X),Y),

(VxQ)(Z.Y) = (VxQ)(ZY)
+570Z,QY, X)) + 5JQ(QZY), X)

1

1 1
As for (2): Obviously we have

« * (e * « * 1
F(V)§ = F(CV)5—w(V)G Aw(V)g = FCV)5+ 5 MAQ[;,YG”/\HA

RE

Hence, (1.4) follows from (1.1) and the identities

.7 FOV)n = F(V)3 ~ 9%y ,

("Vear >ﬂ = (Vear )g7 ("Ve, Q)w = (Ve, Q)f;ﬁ
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which the above formulas imply. (1.5) can be also easily deduced from (1.2).
As for (3): We have

Ric” (€. €5) = 9(F(V)(€a, £9)60,61) = & (Ve Q)3
Ric(V) (8o, €8) = 9(F(V)(Ex, )80 €3) + 9(F (V) (65, 68)8a: 1)

= 9(F(V)(6,€8)a: &) = 5(Ve; Q3 +iln — 175,
and, by (1.7) and the argument at (1.3), we obtain
Ric(V)(€as €5) = 9(F(V)(6x,€5)6a,&3) = F(V)a 5
= POVt Q9 = POV, - 105,00 + Lador,
= PV}~ 1205 @h — 195,90, + 19090,
= RicY (€a, &5) — igi‘#gg. O

2. The Curvature Tensor of the Gauge Transform vV = v

According to [12] (or [8]), we consider the gauge transformation & = &,,
0°® = 0° given by

fo =& — e M 2Eu ()6 + e 2i(F)Ep,
(21) ga = eifgou 556 = eifé.@a
0= €290, 67 =98 1 ef2ig5(£)6°, 07 = el 07 — el 2ig5( )00

We set 0 = w(V)34 = §(VEg, £4) and (*@ng)ég =5 ng etc.

LEMMA 2.1. We have
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PROOF. The lemma is shown in a way similar to [2, Lemma 10]. As
for le%g‘: As in [2] we know

75 = 1§ +i€stalf) + i€als(f) — 4is(f)Ea(f)
— iwh(&a) Eu(f) — iwh(€s) &u(f) + iwh(Ea) Ea(f) + iwhi(Es) &a(f)
= 75 +1(¢abs — Ve, &) () + (690 — Veaba) ()
— 4ia(f)Ep(f) + %(Qﬁg + Q5 )6 ().

In addition,

(€ats — Veut) — (5 — Veuta) = T(V) (651 0)
= T(V)(E,£a) — (" VIE(E)E + 0 V)A(E)E = 5(Q5 — Qi )E
Thus we obtain the formula for e2/7§. O
ProproOSITION 2.2. We have
(22) F(V)(&,60)8 = F(V)(& €08
= 2(&65 — Ve, &) (N6 — 46(NE (N6r — 2(8385 — Ver&s) (NG
+4E5(NENNE + &) i(Q\ — Q&5 + Eal(f) 1D,

(23) F(V)(&, )¢ — F(V)(&. &)8s
= —2(&:6 — Ve, &) (N — o d&(NE(NE,

= 2(&& ~ Ve & ) (Ngs — 8046 (NEr(N)és
— 80326468 — Ve, &) (N — 6:32(Es8a — Vs ) (N

PROOF. As for (2.2): Referring to Lemma 2.1, etc., we know

Ve, & — Ve, & = 26,(£)és + 26(£)&,
(2.4) Ves€s — Ve s = —85,26(F)Eu,

[g'yab\] = *ngf)\ - *v§>\£7 = Vfwg/\ — Ve, &y + %(ng - Q‘iw)gﬂ
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Hence

Ve Ve&s = Ve, Ve, &g+ 26, (F)Ve, &g + 2(Ve, €3) ()&,
+ 260 (f)Ve, &5+ 285(f) Ve, Ex + 26,60 (F)Es + 26,85(f)EN
) + 46\ (F)E4(F)Ep + 4Ea(F)E (F)Exn + 8Ea(F)En(f)Er,
Vie, 688 = Vie, .88 + 2(Ve, 60 (f)€p + 285(f) Ve, &0 ) ]
- 2(v5>\£'y)(f)§ﬁ - 2§ﬁ(f)v§>\€’y - fﬂ(f) Z(Qf)\ - ngy)éuv
which imply (2.2). As for (2.3): In addition to (2.4), we have
[fw fi\] = Vﬁwa\ - V&;f“/ - i‘ska'
Hence
Ve, V&g = Ve, Ve 65 + 26, (F) Ves & + 2(Ves €8) ()G
+ 68x2(Ve, &) (F)En — 6048 (F)Ea(f)Eu
) — 048 (F)Ea()Ey — 68328, Ea(f)Eu;
Vie,ex168 = Vie, 5168 — 9(€a: Ve, E)28a(f)Eu
2V )()Es — 265(F) Ves&y — iboa (Ve — Vet ).
which imply (2.3). O
ProrosITION 2.3. We have
RicY (€, €5) — RicY (€a, £5) = (n + 2)éa(f) Q0.
(2.5) Ric(V)(éa &) — Ric(V)(€a, &) = €a(f) i(Qh s — 295,)
—2(n —1)(&a€a — Ves€a)(f) +4(n — 1)Ea(f)E(S),
(2.6) RicY (£a, &) — RicY (bar §5) = Ric(V)(6as £5) — Ric(V)(6as &5)
= —2(n +2)(§ga — Vezéa)(f)
+ 8ap{ = 266 — Ve &)(F)

— A(n+ DENES) + 2+ 1) ()}
and
(2.7) 2V _ gV = %{e%(@) — (V)

= —4(n+ 1)(&& — Ve, &) (f) — An(n + 1)& ()& (f)
+ 2n(n + 1) i€(f).
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PRrROOF. Referring to Proposition 1.2(3) and Lemma 2.1, we have
Ric¥ (6, €9) = M Ric (€, &) = £ (V¢ O,
= (Ve Q)+ i6n (1) Qg + (1) + 16 £) Q0+ brr ()OS,
= Ric¥ (£a, &5) + (n +2)&a(f) Q0.
Similarly we know
Rlc( )(Ear€8) = 2 ¢ (Vg O, +i(n — 1)/ 7§
<vgk Q)5 + z@(f)@M +6ax&a(f) Q% + o3Ea(f) Q0
+ ar &(1)iQF, +i(n — 1) — 2(n = 1) (€560 — VeuSa ) ()
+4(n = Déa(f)E(F) + (n = 1)Ea(f)iQh,
= Ric(V)(€ar €p) + &a(f) i(Qhg — 2Q5,)
= 2(n = 1)(€5a — Vesba ) () +4(n = Déa()Es(F).
Last, referring also to (2.3),
RicY (€. £5) = 9(F(V)(€ar €5). €3)
= Ric" (6a€3) — 2(n +2)(€56a — Ves6a ) (/)
+tag{ = 2(&06 — Ve, & ) () + 200+ DES) — 40+ V&GS |
ete. OJ
3. The Proofs of Theorems A and B

As for the tensor B(V)%: (2.3) implies

9(F(V)(&63)8p:6a) — 9(F(V) (&, 63)68€5)

= —5,02(&: — Vs &) () — 6502856 — Ve & ) (1)
— o2(8aty — Vel ) (/) %2(&@ ~ Veuts ) (f)
+ 260857 + bagbo) (i€(F) = 26, (N (1))
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and, by (2.6) and (2.7), we have

e2f sV _ gV
2n(n+1)

(€380 — Vesa) (1) = — 5t { Ric¥ (6, £5) — Ric” (6, £5) }
BSa £S5 = 2(n+2) ar S oS3

() — 261 (f) = +2 (56 - Ve,6) ()

ezfs6 Y 1
60{ a1 a\ - vSy T oSV .
oo Gyt (68 - Vet ) ()
Thus we obtain the equality

9(F(V)(&, 63088, Ea) —

6'yoz AV _ 6,301 v _
n+2RlC (§ﬂ7§A) n+2R’1C (5775/\)

N iV (en £y 1 00200 T 0n0sa of &
2R1C (&8, €a) CESCE) e*’s

6 for . 6504 .
g RiCY (6, 65) — SIS RICY (6,67

08A 4. €
- n—HRlcv(ﬁv,ﬁd) -

= 9(F(V)(&,63)€s:€a) —

6gr0ya + 092080 v
S b
(n+1)(n+2)

which means that B(V)? is a pseudo-conformal invariant.
As for the tensor B(V)™: Since (2.2) and (2.5) imply

9F (V) (& 6)68,€) — 9(F (V) (€, €0)65, &)

= 6x2(&65 = Ve, 6) () — 6ard&(H& () = 6ar2(6085 = Ver& ) (/)
+ 8oy A8 (NENS) + Ea(f) 1Q5 + bapli(£) i(QLy — QL)

= L barRie(9)(E5,62) — barRic(V) (65,6,) )

b Rie(9)(E5.60) — B Ric(V)(€5.£1)

+ 9(U (grad | : &6, €5), Ea),

we have

(3.1) B(V)'(&,8)& — B(V) (&, 6)& = Ut (grad f : &, &, &p).

In addition, we know

o ) o
- 0 RicT (6, 8a) — 2

.V B
n+2 ZRIC (fﬁaéa)"_

(3.2) Ut(grad f:) = ——— 7 _
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where the first term on the right hand side is the one associated with
6. (Note that the form w has been fixed.) Indeed we have Ut (Z¥ :) =
Ut(ef2% :) and e¥E% — 29 = ¥ (2(n + 1)f + k)€, — &u(h) €, =
2(n + 1) grad, f. Consequently Theorem B holds. Next, let us consider
the tensor U_ € T'(H_ @ H} ® Hf ® Hf @ H*) defined by g(U™ (grad f :
XY, Z),W) = gU-_(X,Y,Z, W), Jgrad f). For justifying the remaining
assertions for B(V)™", then it will suffice to prove:

PROPOSITION 3.1. The tensor U't(grad f :) wvanishes for any f €
C>®(M) if and only if the tensor U—_ vanishes. In addition, we have:

(1) In the case n =2, U_ vanishes.

(2) In the case n > 3, U— wvanishes if and only if the Tanno tensor Q
vanishes.

ProOF. The first assertion is valid because, for a given point P and
a given &g, there exists a smooth function f such that &;(f)(P) # 0 and
&5(f)(P) =0 (v # u). Let us show (1) and (2). We have

U- (éw 5)\7 §,37 564)

1

Tn-1 {60‘)‘( gv - ZQ%)SIE - 6047(QgA - ZQ%)&Q}

+ Quta + 6456

As for (2): It is obvious that, if Q@ = 0, then &/_ = 0. The converse is also
true because, if o € {y, A}, thenU_ (&, &), én, &a) = 2Q,);a §atdza Qf}u -

As for (1): Obviously we have U_(&,61,85,8a) = —U-(E1,&,€8:8a)-
By straightforward computation we know U_(&1,82,88,67) =

U_(&1,62,83,&) = 0. Thus (1) is certainly true. O
4. The Tanno Connection and Bochner Type Curvature Tensors

In this section, we will present Bochner type tensors associated with
F(*V) deduced immediately from those associated with F'(V). As stated
in the introduction, Tanno ([11], [12], [13]) also proposed some tensors of
those kinds, which are too involved to be reviewed quickly. We notice that,
whatever they may be, the differences from ours merely consist of pseudo-

conformally invariant terms and gap terms such as UJ;E:)) at (3.2).
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From now on, we assume X,Y,Z € I'(H) and decompose them into
X=X,+X_e€l'(H®C)=T(Hy)®I'(H_), etc. We set

b(VIR(X,Y)Z = 2Re (b(V)C(X, Y)Z)
= 2Re{(B(V)O — F(V))(X4,Y-)Z4 + (B(V)" = F(V))(X-, Y1) Z4
+(B(V)" = F(V))(X4,Y)Zs + (B(V)” = F(V))(X-, Y—)Z+},
where we put B(V))(X_,Yy)Zs = —B(V)(Yy, X_)Z4.
PROPOSITION 4.1. We have

(4.1)  {FCV(X,Y)Z +b(V)R(X,Y)Z}
—{FCV)(X,Y)Z+b(V)R(X,Y)Z}

- 2Re{U+(gradf XYy, Z) 4 U (grad f - X_, Y., Z+)}
+3{(Fx0)(2,Y) - (VxQ(27)}
-5z, - (Vv Q2. x))

- 21m{iU+(gradf X Yy, Zy) + iU (grad f : X_, Y., Zy)

+ 9(X, grad, f)Q(Z,Y) — g(Y,grad [)Q(Z, X)
+9(Z,grad  f)(QUX.Y-) = QY- X))

(
(

+9(Q(Z,Y), grad f) X — g(Q(Z, X), grad, f)Y-
(Z, ) (grad+f, X)+ 9(Z2, X )Q(grad, f,Y)

_I_

—9
(90x - X)) Q(Z,grad, )
( 9(Q(Z,Y), X_ ))gradJrf}

—: 2Im (U (gradf.X,Y,Z)) = UR(grad f : XY, 2).

PrROOF. Referring to (1.6), (3.1), etc.,

FOV)(X,Y)Z = F(V)(X,Y)Z = {F(V)(X,Y)Z = F(V)(X,Y)Z}
H{F("V)(X,Y)Z - F(V)(X,Y)Z}
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_{F(V)(X,Y)Z — F(V)(X,Y)Z)
= - b(VRX, ) Z +b(V)R(X,Y)Z
n 2Re{U+(gradf XY, Zy) U (grad f - X_, Y., Z+)}

. %J{(@XQ)(Z, Y) = (VxQ)(Z,Y)}

- SHrQ)(Z,X) - (Vv Q)2 X)}
+5IQZTR)(X, V) + 7002, Y), X) - 12(0(2,X),Y)

- STQUZT(VX,Y)) - Q(Q(Z,Y ), X) + {Q(Q(Z, X),Y)

The last two lines vanish because Q(Z,T(V)(X,Y)), Q(Q(Z,Y), X), etc.,
are pseudo-conformally invariant. Hence we obtain the first equality at
(4.1). The second one follows from Lemma 2.1. Indeed, we have

(Ve, Q)(€5.60) = (Ve, Q)(€5: 1) = € (Vg Q)(65,60) — (Ve, Q)(65.6n)

= { —46,(1)Qh — 26, (N Q) — 261 Qs — 260() 5, } 6o,
(Ve, Q)(€3,60) — (Ve, Q)(€5,6n) = e?’f(@gW 9)(€s.6)) — (Ve Q)(65.60)

= {265(/)Q + 80 26(£) QB + 83, 26a(£) Qi + 83y 26a(f) Qi } 5
(Ve, Q)(€5:63) — (Ve, Q)(65,63) = (Ve; Q)(65,63) — (Ve @)(65,&5) = 0. O

THEOREM 4.2. The tensor F(*V) + (V)R e T(H ® H* @ H* ® H*)
is pseudo-conformally invariant if and only if J is integrable. The tensor

F(*V) +b(V)R - mUR(E‘” 1) is pseudo-conformally invariant.

ProOF. The second half is obvious. Indeed,
(4.2) {F("V) +b(V)F} = {F("V) + b(V)*} = UR(grad f )
COREY)  UREv

C2(n+1) 2(n+1)°

As for the first half: If Q = 0, then obviously we have UR(grad f :) = 0. We
want to prove the converse. Let us complexify the domain of U R(grad f)
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naturally. Then we have

UR(grad f: Xy, Yy, Zy) = U (grad f : X4, Yy, Zy)
— 9(X4, Jgrad_f)Q(Z4,Y5) + g(Ys, Jgrad_f)Q(Z4, X4)
—9(Z, ng"ad_f)<Q(X+7Y+) - Q(Y+,X+))
+ (g(Q(Z+7X+)aY+) - Q(Q(Z+,Y+),X+)) Jgrad_f.
We define the tensors Z/{ celN(H:®H®H®H®H}) by g(UR(grad f :

XY, Z0),We) = g(Z/{R(X+, Yy, Z,Wx), Jgrad, f), which are expressed
as

UiR(X+, Yy, Zyp Wo) =U(X4, Yy, Zy W),
u—il—{(X-H Y—l—: Z—H W—l—) = g(Q(W+7 Y+)7 Z+)X+ + g(Q(Z+7 X+)7 W+)Y+
+9(QY4, W), X) Z1 4+ 9(QX . Z4), Y3 )W,

Now, in the case n > 3, if UR(grad f :) = 0 for any f, then we have
U_ =UR =0, which yields Q = 0 (cf. Proposition 3.1). In the case n = 2,
UR(grad f :) = 0 for any f implies that L{B(fl,gg,ﬁl,fg) =205,8 +20%,&
vanishes. Namely we have Q@ = 0. [J

Last, let us introduce another pair of such tensors, which are expressed
only in components explicitly related to *V.

ProroSITION 4.3. We have

¥ (Ear 9) — Ric (€a, £5) = Ric™ (€a, €5) — Ric'¥ (€a, &),
RicY (€, &5) — RicY (£, &5) = Ric™ (€, &) — RicV (£a, £5),
(4.3) Ric<ﬁ><sa, €5) — Ric(V)(£a, £5) = %{Rie(*%(&a, &) +i(n—1) "7}
— SRIC(V) (€, ) +iln — 1) 1)
"2 i(Qus — Qe (1),
Ric(V)(€a, €5) — Rw( )(€a:€5) = Ric(*V)(€a, €5) — Ric(*V) (€, £5)-
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PrOOF. By Propositions 1.1(3) and 1.2(3), etc.,
Ric"Y (£a, €5) = Ric¥ (€a,85),
Ric(*V)(€as &p) +i(n — 1) *7)) = Ric(V)(éa, €p) + Ric(V) (€5, €a),
Ric" (6, &) = Ric¥ (€0, 65) — ;4@
Ric("V) (€a &5) = Rie(V)(E,€3) + 1 23,205,

which imply the proposition except (4.3). As for (4.3): The second formula
says

Ric(V) € 69) = 5 (Ric(* V) (6as 5) +i(n — 1) *7F)

+ 3 {Rie(V)(Ea &) ~ Ric(V) (€3, &)

and, referring to (2.5), we have

{Ric(V)(£a: €p) — Ric(V)(Ep,6a)} — {Ric(V)(£a; §p) — Ric(V)(E5,6a)}
= 3i(Qap — Qpa)(f) = 2(n = DNT(V)(&a, &) (f)
= (n+2)i(Qap — Lpa) (f)-

Hence we obtain (4.3). O

Accordingly, let us define b(*V)E(X,Y)Z to be b(V)C(X,Y)Z with
(RicV,ricY, sV) replaced by (Ric V,ric'V,s V) and with Ric(V)(Wy, W),
ric(V)(W) replaced by

%{Ric(*V)(Wl, Wa) +i(n — 1) g("rW1, Wa)},
%{ric(*V)(W) —i(n—1)"TW},

and set b(*V)R(X,Y)Z = 2Re(b(*V)C(X, Y)Z). Further, recalling n > 2,
let us set

“Ugrad f : X,Y,Z) = U%(grad f : XY, Z)
2
31 (92, X) ~ O(X. 2).grad )Y,
- Q(Q(Zv Y) - Q(Y7 Z)v grad-i—f)X-i-
+9(Z-,Y)Q(X grad, f) — g(Z-, X)Q(Y.grad, f) |
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and *UR(grad f : X,Y, Z) = 2Im (*U(C(grad fi XY, Z)). Then we have:

THEOREM 4.4. The tensor F(*V) +b(*V)R e I'(H © H* ® H* ® H*)
s pseudo-conformally invariant. if and only if J is integrable. The tensor

F(*V) +b(*V)R - 2(an)*UR(E“’ 1) is pseudo-conformally invariant.

PROOF. (4.2) and Proposition 4.3 imply

{F(V) + (V) = {F (V) +b("V)*} = *UX(grad f :)
UREw ) *UuREe:)
2n+1)  2(n+1) "

Hence the second half holds. As for the first half: The H,-component of
*UR(grad f : X4,Yy, Z,) is equal to

UR(grad f: X4, Yy, Zy) = Ut (grad f : X4, Y., Z,)

S {9920 Ye) = QY Z4) Jarad )X

— 9(Q(Z4, X4) = QX+, Z4), Jgrad, )Yy |-

Let us define the tensor *UR e T(H_ ® HY @ H} ® Hf ® H*) by
g(URgrad f = X1, Yy, Z0), W) = g(UNXy, Yy, Zy, W), Jgrad, f).
Then

UL, Y, 2o W) =U_ (X4, Y, Zp W)

%{gm, W) (QZ4,Y4) = QY Z4))

—g(Va, W) (Q(Z4, X1) - Q(X4, Z4) ) |

We assume *UR(gradf :) =0 for any f, so that *UR = 0. In the case n > 3,
if a @ {7, A}, then U (€, &, €us €a) = "UR(&,, Ex, Eas &) = 0. Consequently
we know Q = 0 (cf. the proof of Proposition 3.1(2)). In the case n = 2,
since “UR(&1, &2, 8,&1) = 293, &5, "UR = 0 certainly implies Q = 0. O
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