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Abstract An on-ground observation program for high-energy atmospheric phenomena in winter
thunderstorms along the Japan Sea has been performed via measurements of gamma ray radiation,
atmospheric electric field, and low-frequency radio band. On 11 February 2017, the radiation detectors
recorded gamma ray emission lasting for 75 s, and then abruptly terminated with a nearby lightning
discharge. The gamma ray spectrum extended up to 20 MeV and was reproduced by a cutoff power
law model with a photon index of 1.36+0.03

−0.04, being consistent with Bremsstrahlung radiation from a
thundercloud (known as a gamma-ray glow or a thunderstorm ground enhancement). The low-frequency
radio monitors, installed ∼50 km away from the gamma ray observation site recorded leader
development of an intracloud/intercloud discharge spreading over ∼60 km area with a ∼300-ms duration.
The timing of the gamma ray termination coincided with the moment when the leader development
of the intracloud/intercloud discharge passed 0.7 km horizontally away from the radiation monitors.
The intracloud/intercloud discharge started ∼15 km away from the gamma ray observation site. Therefore,
the glow was terminated by the leader development, while it did not trigger the lightning discharge
in the present case.

Plain Language Summary This study presents high-energy radiation, atmospheric electric
field and low-frequency radio measurements of winter thunderstorms in Japan. Long-duration gamma
ray bursts, called “gamma ray glows,” are thought to originate from electrons accelerated and multiplied
by strong electric fields in thunderclouds. There are unsolved questions such as electron-acceleration
mechanisms, position of the acceleration site, lifetime, and life cycle of the bursts. We observed a gamma
ray burst lasting for ∼75 s from a thundercloud abruptly terminated with a lightning discharge. The gamma
ray source was destroyed by a cloud-to-cloud discharge over the gamma ray observation site but not related
to the triggering of the discharge in the present case.

1. Introduction

Gamma ray glows are long-duration gamma ray emissions with energy reaching up to several tens of mega-
electronvolts associated with thunderstorm activities. They have been observed inside thunderclouds by
airplane and balloon experiments (Eack et al., 1996; Kelley et al., 2015; McCarthy & Parks, 1985), under thun-
derclouds by high-mountain experiments (Brunetti et al., 2000; Chilingarian et al., 2010, 2011, 2016; Torii et al.,
2009; Tsuchiya et al., 2009, 2012), as well as by sea level measurements (Kuroda et al., 2016; Torii et al., 2002,
2011; Tsuchiya et al., 2007, 2011). Gamma ray glows are also referred as long bursts (Torii et al., 2011) and thun-
derstorm ground enhancements (TGEs; Chilingarian et al., 2011) when detected by on-ground measurements.
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Key Points:
• A gamma ray glow and its termination

with a lightning discharge was
observed in a Japanese winter
thunderstorm

• The glow was terminated by leader
development of a horizontally long
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passing nearby overhead
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The phenomena typically last for several minutes and are not generally accompanied with lightning. Gamma
rays are thought to be produced by the Relativistic Runaway Electron Avalanche process (RREAs; Dwyer,
2003; Gurevich et al., 1992; Kelley et al., 2015): energetic electrons seeded by, for example, cosmic rays are
accelerated by strong electric fields in thunderclouds and produce secondary electrons by ionizing ambient
atmosphere. The accelerated and multiplied electrons produce Bremsstrahlung photons in the atmosphere.
We consider the observations that have been called “gamma ray glows,” “long bursts,” and “TGEs” in the lit-
erature to all be cases of RREAs and their daughter products (including gamma rays and, when detectable,
neutrons) taking place in a strong thundercloud field.

There are reports of gamma ray glows and TGEs abruptly terminated by lightning discharges (Alexeenko et al.,
2002; Chilingarian et al., 2015, 2017; Eack et al., 1996; Kelley et al., 2015; McCarthy & Parks, 1985; Tsuchiya
et al., 2013). In the past studies, temporal relation between such a glow and lightning (Tsuchiya et al., 2013)
and types of lightning to terminate glows (Chilingarian et al., 2017) have been discussed. Gamma ray glows,
as evidence of stable electric field particle acceleration in thunderclouds, give us a few intriguing questions
to be revealed: (i) Where is the electron-acceleration region located? (ii) Which structure of thunderclouds
corresponds to the acceleration region? and (iii) How does the acceleration region emerge, grow, and disap-
pear? The sudden extinction of the acceleration region with lightning can provide a hint for the location of
the acceleration region because location of discharges can be well monitored with radio bands.

We focus on high-energy phenomena in winter thunderstorms along the coast of Japan Sea, which has unique
characteristics such as low cloud bases and large discharge currents. We have continued gamma ray radi-
ation and atmospheric electric field (AEF) measurements in this area. In the present paper, we report the
first simultaneous detection of a gamma ray glow termination with a lightning mapping observation in the
low-frequency band.

2. Observation

Our observation site is at Kanazawa University Noto School (37∘27′04″N, 137∘21′32″E), located in the
northern edge of Noto Peninsula in Japan. We operated two independent gamma ray detectors on the roof of
the building with a 40-m separation between them. Detector A deployed by the GROWTH (Gamma Ray Obser-
vation of Winter Thundercloud) collaboration (Enoto et al., 2017) has a Bi4Ge3O12 (BGO) scintillation crystal
(𝜙7.62 cm × 7.62 cm) coupled with a photo-multiplier tube, observing 0.2- to 7.0-MeV photons. Detector B
deployed by the GODOT (Gamma ray Observations During Overhead Thunderstorms) collaboration (Bowers
et al., 2017) has a NaI scintillation crystal (𝜙12.7 cm× 12.7 cm) coupled with a photo-multiplier tube, observing
0.3- to 20.0-MeV photons. Detector B also has small (𝜙2.54 cm × 2.54 cm) and large (𝜙12.7 cm × 12.7 cm) plas-
tic scintillators for neutron and gamma ray detection at very high count rates, and a blank phototube which
is not coupled with any scintillation crystals for noise monitoring. Because most of signals seem to originate
from gamma rays, we concentrate on results from the gamma ray sensitive NaI and BGO scintillators in the
present analysis.

Both detectors A and B record energy deposits and arrival time of each photon event. Energy calibration was
performed by using persistent environmental-background lines of 40K (1.46 MeV) and 208Tl (2.61 MeV). This
calibration procedure for detector A was performed every 30 min to monitor and correct light yield variation
of BGO which is sensitive to temperature, while once a day for the NaI crystal used in detector B (See also
“Methods: Instrumental calibration” in Enoto et al., 2017, and Bowers et al., 2017, for the calibration accuracy).

An AEF monitor, termed a field mill (Boltek EFM-100), was installed on the ground beside the building. This
monitor measures vertical AEF strength with a dynamic range of±5.4 kV/m at 0.5-s interval. The AEF value was
calibrated at the plain ground surface so that the fair-weather AEF showed around 100 V/m originating from
the global electrical circuit. Because our AEF recording system lost the internet connection which was used for
absolute time calibration via the network time protocol during 4 February to 21 March, the absolute time of
the AEF sampling was adjusted by the comparison between the AEF pulses and a Global Positioning System
(GPS)-synchronized lightning catalogue provided by Japan Lightning Detection Network (JLDN) operated by
Franklin Japan Co, ltd.

We also operated a lightning mapping system based on low-frequency (LF) radio measurements, hereafter
the LF network, consisting of five stations which were located in the Toyama Bay area (∼60 km south from
the gamma ray observation site). Each station has a flat plate antenna, which is sensitive to 800-Hz to 500-kHz
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Figure 1. Histories of radiation count rates with a 5-s binning in the
0.2–7.0 MeV obtained with detector A (panel a), 0.3–20.0 MeV with detector
B (panel b), and calibrated atmospheric electric field (AEF) values (panel c)
from 08:00 to 08:15 UTC on 11 February 2017. Negative AEF values mean
upward electric field. Red dashed lines show time of the lightning at
08:10:08 UTC.

radio emission, and its waveforms are sampled by a 4-MHz digitizer
(Takayanagi et al., 2013). The LF network specializes in thunderstorm
observations around Toyama Bay and Noto Peninsula. It can determine
position and timing of radio emissions such as stepped leaders and
main return strokes/recoil leaders of cloud-to-ground and intracloud/
intercloud discharges (ICs) by time-of-arrival technique.

3. Analysis and Results

On 11 February 2017, heavy snowfall and lightning continued along Japan
Sea. Panels a and b of Figure 1 present count-rate histories obtained
by detector A and B from 08:00 to 08:15 UTC (17:00–17:15 in local
time), respectively. Both detectors A and B recorded a count-rate increase
around 08:09 with a time scale similar to other gamma ray glows in
winter thunderstorms (Torii et al., 2002; Tsuchiya et al., 2007). The total
background-subtracted photon counts are 6,640± 180 in the 0.2–7.0 MeV
range for detector A, and 9,750 ± 240 in the 0.3–20.0 MeV range for
detector B. Detection significance of this glow event is 61 𝜎 and 75 𝜎 for
detectors A and B, respectively, evaluated from background fluctuation of
2-min binned count-rate history above 3 MeV which energy range is not
affected by washout of radioactive isotopes such as 214Bi.

The glow was then suddenly terminated and the count rate quickly
returned to the background level at 08:10:08. Hereafter, the elapse time t
is defined from 08:10:08 UTC. The World Wide Lightning Location Network
reported a lightning discharge at t = 7.4 ms. JLDN also reported nega-
tive and positive ICs around Noto peninsula at t = 7.3 and t = 224.9 ms,

respectively. The latter occurred 2.1 km south from the observation site. Based on these measurements, we
consider that the sudden termination of the gamma ray glow closely coincided with the lightning discharge.

Absolute timing of both detectors are conditioned by the GPS signals and the network timing protocol service.
Detector A successfully received GPS signals during the observation. To verify the absolute timing accuracy,
laboratory experiments were performed after the observation campaign: pulse-per-second signals from a
commercial GPS receiver were put into an analog input of detector A, and we confirmed that the timing tag

Figure 2. Time-averaged and background-subtracted 0.2- to 20.0-MeV
spectra accumulated for −75 s < t < 0 s, recorded by detectors A (black
cross) and B (red) with 1𝜎 statistical error bars. The best fit cutoff power law
model is overlaid by a solid line. In this panel, spectra are plotted as incident
photon spectrum that corresponds to the number density of gamma ray
photons reaching the detector, by correcting the detector energy response
and the effective area, while not correcting an atmospheric response.

of each photon is synchronized to the coordinated universal time within
a 5-ms-systematic uncertainty. However, detector B failed both to receive
the GPS signal by accident and to maintain the internet connection during
the observation. Therefore, we corrected detector B timing so that time
of the glow termination is consistent with that of detector A.

Fitting with a Gaussian function in the range of −300 s < t < 60 s which
becomes the background level in t > 0 to imitate the sudden termination,
the peak time and standard deviation of the detector A 0.2- to 7.0-MeV
count-rate history are−5.2±3.7 and 29.3±2.4 s, respectively (Hereafter, all
statistical errors in this paper are at 1𝜎 confidence level). In order to obtain
millisecond-precision termination timing of the glow, the 200-ms binning
count-rate history of detector A was fitted with a step function. The best
fit termination time was t = 93 ± 52(stat.) ± 5(sys.) ms.

Figure 2 presents background-subtracted energy spectra, accumulated for
−75 s < t < 0 s. The background is taken from −350 s < t < −150 s. To
fit and unfold the detector-response-included spectra, we utilized a spec-
tral analysis tool XSPEC (Arnaud, 1996), which has been used for X-ray
astronomy, and also available for gamma ray spectral analysis. A response
function of each detector was constructed by Geant4 Monte Carlo
simulation (Agostinelli et al., 2003) and utilized as an input to XSPEC.
We fitted the spectra of both detectors simultaneously. The spectra were
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Figure 3. Time evolution of the lightning discharge (filled circle) observed in the low-frequency band (panel a) and the
same evolution in a form of the east-west position and time history (panel b). The marker color corresponds to the
recorded time of discharge steps. The background gray-scale map is precipitation at 08:10 UTC from the C-band radar
observation operated by Japan Meteolorogical Agency. The crossed position of two red lines shows the gamma ray
observation site, magenta crosses the lightning positions reported by Japan Lightning Detection Network, and a
magenta triangle the lightning position reported by World Wide Lightning Location Network. The red shaded region
shows the moment of the gamma ray glow termination estimated with detector A.

reproduced by a power law function with an exponential cutoff, presented as A × E−Γ exp
[
−(E∕Ecut)𝛼

]
where

A, E, Γ, Ecut, and 𝛼 are normalization in units of photons cm−2 ⋅ s−1 ⋅ MeV−1, photon energy (MeV), power law
photon index, cutoff energy, and cutoff index, respectively. We added 5% systematic uncertainty to each bin.
This chi-square fitting gave a reduced chi-square 1.55 for 29 degrees of freedom, which is acceptable at 5%
acceptance level. The best fit parameters are obtained as Γ = 1.36+0.03

−0.04, Ecut = 11.1+0.8
−0.9 MeV, 𝛼 = 2.0 ± 0.3

and the 0.2- to 20.0-MeV on-ground gamma ray photon flux (4.14 ± 0.14) × 10−5 erg ⋅ s−1 ⋅ cm−2. The photon
index is consistent with Bremsstrahlung spectra of previous gamma ray glows (Tsuchiya et al., 2011).

The AEF history is shown in the panel c of Figure 1. The AEF values were negative before, during and after
the gamma ray glow, except at the timing of the lightning. A steeply rising positive pulse was detected at
08:10:08.0, corresponding to the lightning discharge, and then the AEF exponentially decayed following the
time constant of a low-pass filter embedded in the field mill.

The LF network detected radio pulses at all stations at 08:10:08. Figure 3 presents position and time series
of the LF pulse sources. The altitude of each LF pulse cannot be estimated because the LF stations are too
far from each LF source. No other discharges were detected by World Wide Lightning Location Network,
JLDN, the LF network, nor the AEF monitor during the gamma ray glow.

The LF-emitting sources spread∼70 km wide in east-west direction and lasted for∼300 ms. C-band radar oper-
ated by Japan Meteorological Agency provided a composite precipitation map at 08:10, shown as a gray-scale
background in Figure 3a. The LF emission started around 137∘21′E, 37∘27′N at t ∼ −10 ms and headed
toward east, which seems to have traced the intense echo area shown by the precipitation map in Figure 3a.
The LF sources intermittently emerged until t ∼ 120 ms and then split into westward and eastward paths.
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Figure 4. Distance from the observation site to the LF sources as a function
of time, converted from Figure 3 (panel a), LF waveforms observed at the
Nyuzen station (panel b). The expanded waveforms are shown in panel c for
JLDN/WWLLN events (left and right) and LF emissions near the observation
site (center). Determination errors of the source position are estimated as
typically 0.1 km. The time stamp of waveforms is uniformly shifted in order
to correct propagation delay between the observation site and the Nyuzen
station (57 km). The red shaded region in panel a and b is the same as
Figure 3. The red-dashed lines show timing of the JLDN/WWLLN events in
panels a and b, and timing of LF pulses within 1 km from the observation
site in panel c center. JLDN = Japan Lightning Detection Network; WWLLN =
World Wide Lightning Location Network; LF = low-frequency.

The eastward path passed over Noto School. Such a long-distance hor-
izontal discharge (>10 km) is one of the still mysterious features of
winter thunderstorms in the coastal area of Japan Sea (Kitagawa, 1992;
Michimoto, 1991).

Figure 4 presents horizontal distances between each LF-emitting source
and the gamma ray observation site in panel a, and LF waveforms
observed at Nyuzen station (137∘30′E, 36∘57′N: 57 km south from the
observation site) in panels b and c. Most of the LF pulses originate from
leader development of an IC. Large-amplitude bipolar pulses detected
at t ∼ 7 and t ∼ 225 ms correspond with the negative and positive ICs
reported by JLDN, respectively. Although the present LF observation did
not allow us to determine lightning types of the two large-amplitude
pulses independently of the JLDN report, the pulses do not have strong
physical connection to the present gamma ray event since they are not
temporally coincident with the glow termination.

One of the LF sources emerged 0.7 km southeast, at the closest point, from
the observation site at t = 142.3 ms. There are also five other sources
within 1 km from the observation site. Therefore, the IC leader develop-
ment heading eastward passed by the observation site. The timing of
the six sources is consistent with the moment of the gamma ray glow
termination within 1𝜎 confidence level.

There are additional information of cloud altitude. A ceilometer installed
also on the roof of Noto School building measured the cloud base alti-
tude of 280 m at 08:09 UTC, which is a typical base height for winter
thunderclouds (Goto & Narita, 1992). The low cloud base at 08:10 and
heavy snowfall during 08:10–08:20 were also confirmed by 10-min inter-
val images of a weather camera in Noto School. The C-band radar of Japan
Meteorological Agency measured the radar-echo top altitude of 7 km at
08:10 over the gamma ray observation site.

Short-duration gamma ray bursts associated with lightning discharges,
called “downward terrestrial gamma ray flashes,” and evidence for pho-
tonuclear reactions induced by such bursts have been detected at ground
level (Abbasi et al., 2017; Bowers et al., 2017; Enoto et al., 2017). However,
neither such gamma ray bursts nor evidence for photonuclear reactions
at the glow termination were detected in the present case, despite the IC
leader development having passed near the observation site.

4. Discussion

The termination of gamma ray glow events observed with AEF and radio
observations has been already reported via single-station measurements
(Chilingarian et al., 2015, 2017). However, in the present paper, we report

the first simultaneous observation of these phenomena via gamma ray, AEF, and multiple-station LF measure-
ments, which enable us to determine temporal and spatial evolution of discharges.

A part of LF emissions, originating from the IC leader development, was detected less than 1 km away from
the observation site (Figure 4). The moment of the gamma ray termination is consistent with the time of the
nearby LF emissions, not consistent with that of the two large-amplitude pulses. Therefore, it is clear that
the IC leader development destroyed a local structure of electric field in the thundercloud, which causes the
termination of the gamma ray glow, despite discharge current of the IC pulses being smaller than that of the
large-amplitude pulses.

In the case of Tsuchiya et al. (2013), a gamma ray glow was terminated ∼800 ms before a lightning flash. On
the other hand, JLDN detected no lightning discharges within 5 km from their observation site. As shown in
the present study (Figure 3), the IC leader development can spread out to ∼70 km size. Among this process,

WADA ET AL. 5704



Geophysical Research Letters 10.1029/2018GL077784

the JLDN system can only detect large-amplitude pulses of return strokes/recoil streamers, but sometimes
miss precursory discharge processes. Therefore, it is reasonable to assume that faint discharges before main
discharges terminated the gamma ray glow event in Tsuchiya et al. (2013).

As discussed in Chilingarian and Mkrtchyan (2012), gamma ray glows or TGEs observed by their mountain-top
experiment are often accompanied with a lower positive charge region (LPCR) which is a candidate of the
electron-acceleration region, revealed from AEF measurements. In the present AEF observation (Figure 1c),
the AEF values were negative during the gamma ray glow, which basically indicates that the cloud base was
negatively charged. On the other hand, the AEF value showed a slight positive excursion between 08:09 and
08:10. We can propose two possible interpretations on this result.

One interpretation is that an LPCR does exist and is responsible to the electron acceleration. Kitagawa and
Michimoto (1994) reported that matured winter thunderclouds have the classical tripolar charge structure
including an LPCR with AEF showing W-shaped temporal variation. While no clear W-shaped variation indi-
cating an LPCR was found in the present data, the charge structure in the thundercloud should be changed
by the IC. Therefore, it is possible to interpret that the AEF was disturbed by the IC in the middle of W-shaped
temporal variation. Although the AEF value was not positive before the IC, the positive excursion may origi-
nate from a weak or off-center LPCR. The main electric field provider of the gamma ray glow should be located
between the LPCR and a negative charge layer above the LPCR.

The other interpretation is that the cloud base was negatively charged entirely without any LPCR structure.
In this case, negative charge was at the bottom of the thundercloud and positive image charge was on the
ground. A candidate of the electron acceleration site is between the negative and positive image charge layer.
However, they were not the main electric field provider of the gamma ray glow because the AEF was not min-
imum when the count rate of the gamma ray glow reached its maximum. A probable idea is that the charge
structure for the electron acceleration was located higher than the negatively charged cloud base. Namely,
a local structure consisting of a negative and positive charge layers, located above the cloud base at 280 m,
should be the main electric field provider of the gamma ray glow. Since the negatively charged cloud base
screens electric field of this local structure, the structure cannot be clearly observed by AEF measurements.
This model requires the acceleration region to be located at higher than 280 m. Assuming the intensity of
gamma rays produced via an relativistic runaway electron avalanche (RREA) process (e.g., an typical energy
distribution of terrestrial gamma ray flashes) are attenuated in the atmosphere exponentially with a folding
length of 45 g/cm2 (Smith et al., 2010), the Bremsstrahlung gamma ray intensity at 500-m altitude will decrease
∼25% at ground level.

Kelley et al. (2015) also discussed, based on their airborne observation, that their instrument was flying at a
cruise altitude of 14–15 km and then observed downward avalanches between a main upper positive layer
and a negative screening layer above. In our case, the cloud top altitude was measured as 7 km. Assuming
that avalanches were developed at higher than 5-km altitude, Bremsstrahlung gamma rays can hardly reach
the on-ground detectors (less than 10−2%). Therefore, this scenario is not applicable to the present glow, even
though another glow might have occurred at the higher region.

Based on the discussions above, we cannot conclude the charge structure corresponding to the electron
acceleration in the thundercloud. The LF network failed to evaluate the altitude of LF sources in this case,
simply because the LF stations were located too far from the sources. When the source height is accurately
evaluated by the LF network in similar events, we will obtain an unambiguous answer to the structure of
electron-acceleration regions.

In the present case, the start position of the lightning discharge is 15 km west from the acceleration site
(Figure 3). Because the start point is far from the observation site and its timing is prior to the moment when
the gamma ray was terminated, it is clear that the gamma ray source did not trigger the lightning discharge.
On the other hand, our observation directly confirmed that the discharge path can pass through the charge
structure emitting gamma rays. Continuous observations of the LF band emission and gamma ray radiation
are also important to reveal whether gamma ray glows can trigger lightning discharges.

5. Conclusion

A gamma ray glow and its sudden termination with a lightning discharge was observed in a Japanese winter
thunderstorm. A part of the IC leader development passing 0.7 km nearby the observation site destroyed
the electron-acceleration region in a thundercloud and thus terminated the gamma ray glow. The IC started
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∼15 km far from the observation site and prior to the glow termination timing. Therefore, the glow did not
trigger the IC in the present case. These results show that observations of gamma ray glow termination events
with AEF and LF lightning position measurements can provide clues to understand the electron-acceleration
mechanisms of gamma ray glows.

References
Abbasi, R., Abe, M., Abu-Zayyad, T., Allen, M., Anderson, R., Azuma, R., et al. (2017). The bursts of high energy events observed by the

telescope array surface detector. Physics Letters A, 381(32), 2565–2572. https://doi.org/10.1016/j.physleta.2017.06.022
Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., et al. (2003). Geant4—A simulation toolkit. Nuclear Instruments

and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303.
https://doi.org/10.1016/s0168-9002(03)01368-8

Alexeenko, V., Khaerdinov, N., Lidvansky, A., & Petkov, V. (2002). Transient variations of secondary cosmic rays due to
atmospheric electric field and evidence for pre-lightning particle acceleration. Physics Letters A, 301(3–4), 299–306.
https://doi.org/10.1016/s0375-9601(02)00981-7

Arnaud, K. A. (1996). XSPEC: The first ten years. In G. H. Jacoby & J. Barnes (Eds.), Astronomical Data Analysis Software and Systems V,
Astronomical Society of the Pacific Conference Series (Vol. 101, pp. 17). San Francisco: Astronomical Society of the Pacific.

Bowers, G. S., Smith, D. M., Martinez-McKinney, G. F., Kamogawa, M., Cummer, S. A., Dwyer, J. R., et al. (2017). Gamma ray signatures of
neutrons from a terrestrial gamma ray flash. Geophysical Research Letters, 44, 10,063–10,070. https://doi.org/10.1002/2017GL075071

Brunetti, M., Cecchini, S., Galli, M., Giovannini, G., & Pagliarin, A. (2000). Gamma-ray bursts of atmospheric origin in the MeV energy range.
Geophysical Research Letters, 27(11), 1599–1602. https://doi.org/10.1029/2000GL003750

Chilingarian, A., Daryan, A., Arakelyan, K., Hovhannisyan, A., Mailyan, B., Melkumyan, L., et al. (2010). Ground-based observa-
tions of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons. Physical Review D, 82(4), 43009.
https://doi.org/10.1103/physrevd.82.043009

Chilingarian, A., Hovsepyan, G., & Hovhannisyan, A. (2011). Particle bursts from thunderclouds: Natural particle accelerators above our
heads. Physical Review D, 83(6), 62001. https://doi.org/10.1103/physrevd.83.062001

Chilingarian, A., Hovsepyan, G., Khanikyanc, G., Reymers, A., & Soghomonyan, S. (2015). Lightning origination and thunderstorm ground
enhancements terminated by the lightning flash. EPL (Europhysics Letters), 110(4), 49001. https://doi.org/10.1209/0295-5075/110/49001

Chilingarian, A., Hovsepyan, G., & Mnatsakanyan, E. (2016). Mount Aragats as a stable electron accelerator for atmospheric high-energy
physics research. Physical Review D, 93(5), 52006. https://doi.org/10.1103/physrevd.93.052006

Chilingarian, A., Khanikyants, Y., Mareev, E., Pokhsraryan, D., Rakov, V. A., & Soghomonyan, S. (2017). Types of lightning discharges that
abruptly terminate enhanced fluxes of energetic radiation and particles observed at ground level. Journal of Geophysical Research:
Atmospheres, 122, 7582–7599. https://doi.org/10.1002/2017JD026744

Chilingarian, A., & Mkrtchyan, H. (2012). Role of the Lower Positive Charge Region (LPCR) in initiation of the Thunderstorm Ground
Enhancements (TGES). Physical Review D, 86(7), 72003. https://doi.org/10.1103/physrevd.86. 072003

Dwyer, J. R. (2003). A fundamental limit on electric fields in air. Geophysical Research Letters, 30(20), 2055.
https://doi.org/10.1029/2003GL017781

Eack, K. B., Beasley, W. H., Rust, W. D., Marshall, T. C., & Stolzenburg, M. (1996). Initial results from simultaneous observation of X-rays and
electric fields in a thunderstorm. Journal of Geophysical Research, 101(D23), 29,637–29,640. https://doi.org/10.1029/96JD01705

Enoto, T., Wada, Y., Furuta, Y., Nakazawa, K., Yuasa, T., Okuda, K., et al. (2017). Photonuclear reactions triggered by lightning discharge.
Nature, 551(7681), 481–484. https://doi.org/10.1038/nature24630

Goto, Y., & Narita, K. (1992). Observations of winter lightning to an isolate tower. Research Letters on Atmospheric Electricity, 12, 57–60.
Gurevich, A., Milikh, G., & Roussel-Dupre, R. (1992). Runaway electron mechanism of air breakdown and preconditioning during a

thunderstorm. Physics Letters A, 165(5–6), 463–468. https://doi.org/10.1016/0375-9601(92)90348-p
Kelley, N. A., Smith, D. M., Dwyer, J. R., Splitt, M., Lazarus, S., Martinez-McKinney, F., et al. (2015). Relativistic electron avalanches as a

thunderstorm discharge competing with lightning. Nature Communications, 6, 7845. https://doi.org/10.1038/ncomms8845
Kitagawa, N. (1992). Charge distribution of winter thunderclouds. Research Letters on Atmospheric Electricity, 12, 143–153.
Kitagawa, N., & Michimoto, K. (1994). Meteorological and electrical aspects of winter thunderclouds. Journal of Geophysical Research, 99(D5),

10,713–10,721. https://doi.org/10.1029/94JD00288
Kuroda, Y., Oguri, S., Kato, Y., Nakata, R., Inoue, Y., Ito, C., & Minowa, M. (2016). Observation of gamma ray bursts at ground level under the

thunderclouds. Physics Letters B, 758, 286–291. https://doi.org/10.1016/j.physletb.2016.05.029
McCarthy, M., & Parks, G. K. (1985). Further observations of X-rays inside thunderstorms. Geophysical Research Letters, 12(6), 393–396.

https://doi.org/10.1029/GL012i006p00393
Michimoto, K. (1991). A study of radar echoes and their relation to lightning discharge of thunderclouds in the Hokuriku District. Journal of

the Meteorological Society of Japan. Series II, 69(3), 327–336.
Smith, D. M., Hazelton, B. J., Grefenstette, B. W., Dwyer, J. R., Holzworth, R. H., & Lay, E. H. (2010). Terrestrial gamma ray flashes correlated to

storm phase and tropopause height. Journal of Geophysical Research, 115, A00E49. https://doi.org/10.1029/2009JA014853
Takayanagi, Y., Akita, M., Nakamura, Y., Yoshida, S., Morimoto, T., Ushio, T., et al. (2013). Upward lightning observed by LF broadband

interferometer. IEEJ Transactions on Fundamentals and Materials, 133(3), 132–141. https://doi.org/10.1541/ieejfms.133.132
Torii, T., Sugita, T., Kamogawa, M., Watanabe, Y., & Kusunoki, K. (2011). Migrating source of energetic radiation generated by thunderstorm

activity. Geophysical Research Letters, 38, L24801. https://doi.org/10.1029/2011GL049731
Torii, T., Sugita, T., Tanabe, S., Kimura, Y., Kamogawa, M., Yajima, K., & Yasuda, H. (2009). Gradual increase of energetic radiation associated

with thunderstorm activity at the top of Mt. Fuji. Geophysical Research Letters, 36, L13804. https://doi.org/10.1029/2008GL037105
Torii, T., Takeishi, M., & Hosono, T. (2002). Observation of gamma-ray dose increase associated with winter thunderstorm and lightning

activity. Journal of Geophysical Research, 107(D17), 4324. https://doi.org/10.1029/2001JD000938
Tsuchiya, H., Enoto, T., Iwata, K., Yamada, S., Yuasa, T., Kitaguchi, T., et al. (2013). Hardening and termination of long-duration 𝛾 rays detected

prior to lightning. Physical Review Letters, 111(1), 15001. https://doi.org/10.1103/physrevlett.111.015001
Tsuchiya, H., Enoto, T., Torii, T., Nakazawa, K., Yuasa, T., Torii, S., et al. (2009). Observation of an energetic radiation burst from mountain-top

thunderclouds. Physical Review Letters, 102(25), 255003. https://doi.org/10.1103/physrevlett.102.255003

Acknowledgments
We deeply thank Shusaku Takahashi in
Tokyo Gakugei University and staffs of
Kanazawa University Noto School for
helping deploy and maintain the
gamma ray and AEF monitors.
This research is supported by the
cooperative research program of
Institute of Nature and Environmental
Technology, Kanazawa University
(Accept No.16004 and No.17008), by
JSPS/MEXT KAKENHI grants 15K05115,
15H03653, 16H06006, 16K05555, by
Hakubi project and SPIRITS 2017 of
Kyoto University, and by the joint
research program of the Institute for
Cosmic Ray Research (ICRR), the
University of Tokyo. The GODOT
deployment was supported by award
AGS-1613028 from the National
Science Foundation (NSF) of the United
States. Our project is also supported by
crowdfunding named Thundercloud
Project, using the academic
crowdfunding platform “academist.”
Y. W. is supported by the Junior
Research Associate program in RIKEN.
The C-band radar data of Figure 3a were
supplied from Japan Meteorological
Agency via Japan Meteorological
Business Support Center. The
geographic information in Figure 3a
was supplied from Japan Ministry of
Land, Infrastructure, Transport and
Tourism, and plotted by the authors.
Our GROWTH, GODOT, AEF, and LF data
are available at https://thdr.info/files/
Wada_et_al_2018_GRL_Suzu.tar.gz.

WADA ET AL. 5706

https://doi.org/10.1016/j.physleta.2017.06.022
https://doi.org/10.1016/s0168-9002(03)01368-8
https://doi.org/10.1016/s0375-9601(02)00981-7
https://doi.org/10.1002/2017GL075071
https://doi.org/10.1029/2000GL003750
https://doi.org/10.1103/physrevd.82.043009
https://doi.org/10.1103/physrevd.83.062001
https://doi.org/10.1209/0295-5075/110/49001
https://doi.org/10.1103/physrevd.93.052006
https://doi.org/10.1002/2017JD026744
https://doi.org/10.1103/physrevd.86. 072003
https://doi.org/10.1029/2003GL017781
https://doi.org/10.1029/96JD01705
https://doi.org/10.1038/nature24630
https://doi.org/10.1016/0375-9601(92)90348-p
https://doi.org/10.1038/ncomms8845
https://doi.org/10.1029/94JD00288
https://doi.org/10.1016/j.physletb.2016.05.029
https://doi.org/10.1029/GL012i006p00393
https://doi.org/10.1029/2009JA014853
https://doi.org/10.1541/ieejfms.133.132
https://doi.org/10.1029/2011GL049731
https://doi.org/10.1029/2008GL037105
https://doi.org/10.1029/2001JD000938
https://doi.org/10.1103/physrevlett.111.015001
https://doi.org/10.1103/physrevlett.102.255003
https://thdr.info/files/Wada_et_al_2018_GRL_Suzu.tar.gz
https://thdr.info/files/Wada_et_al_2018_GRL_Suzu.tar.gz


Geophysical Research Letters 10.1029/2018GL077784

Tsuchiya, H., Enoto, T., Yamada, S., Yuasa, T., Kawaharada, M., Kitaguchi, T., et al. (2007). Detection of high-energy gamma rays from winter
thunderclouds. Physical Review Letters, 99(16), 165002. https://doi.org/10.1103/physrevlett.99.165002

Tsuchiya, H., Enoto, T., Yamada, S., Yuasa, T., Nakazawa, K., Kitaguchi, T., et al. (2011). Long-duration 𝛾 ray emissions from 2007 and 2008
winter thunderstorms. Journal of Geophysical Research, 116, D09113. https://doi.org/10.1029/2010JD015161

Tsuchiya, H., Hibino, K., Kawata, K., Hotta, N., Tateyama, N., Ohnishi, M., et al. (2012). Observation of thundercloud-related gamma rays and
neutrons in Tibet. Physical Review D, 85(9), 92006. https://doi.org/10.1103/physrevd.85.092006

WADA ET AL. 5707

https://doi.org/10.1103/physrevlett.99.165002
https://doi.org/10.1029/2010JD015161
https://doi.org/10.1103/physrevd.85.092006

	Abstract
	Plain Language Summary
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


