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0. INTRODUCTION 

In this paper we will study some probrems related to mathematical finance. Section 
1-4 are taken from [1]. In section 1, a new interest rate models given. This is in fact an 
extention of the one given by Ritchken and Sankarasubramanian [17] [18]. In section 
2,3,4, we will deal with a case of a stochastic integral equation. In section 2 pathwise 
uniqueness of the solution will be discussed. We should remark that in [17] and [18] , 
the global existence of the solution is not clear. In section 3 and 4, some explosion 
tests will be given . 

Section 5 and 6 are taken from [2]. In section 5, tha arc-sine law for a Brownian 
motion with drift will be given. With this, in section 6, we will calculate the fair price 
for a new type of a path-dependent option. The idea of this option is originated from 
Miura [15]. 

Section 7 and 8 are taken from [3] . Dassios [5] derived an interesting relationship 
between law of Brownian quantile and its running mixima. This was done through 
the Feynman-Kac method . There are atempts to avoid Feynman-Kac. Embrechet, 
Rogers and Yor [19] is among these. In section 7 we wi ll give a modification of 
Williams' formula, and with this, we will have Dassios' representation in section 8. 

1. A NEW INTEREST RATE MODEL 

Let us consider the financial bond market model. Let (O,.F, P, {.Ft}tE[O,oo)) be an 
appripriate filtered probability space. 

Set the model as follows: 



(i) p(-, T) (prices of zero coupon bond with maturity T) is an {Ft}- adapted con
tinuous semimartingale up to time T E (0, oo) and assume some differentiability in 
Tso that the folioing would be valid. 

(ii) f(·, T) (instantanious forward rates) is given by 

J(t, T) ~- :r logp(t, T) , t ~ T. 

(iii) (the short rate process) rt ~ J(t , t). 

In the context of mathematical finance, once we are given 'the equinalent martingale 
measure' P* and the short rate process, we can compute the bond price at time t by 
the following formula. (See e.g. Duffie [6]) 

Propsition 1.1. 

where E* (-) denotes an expectation with respect to P*. 

Here we give a rather general model for the bond market . 
Let M. be a continuous local martingale and ~- E Lf

0
c[O, oo). 

Set 
· def1t 

Xt = 
0 

~. [M].ds + Mt·* 

and 

Lemma 1.2. Then we have 

where 

{Proof). 

*For a mart ingale N., [N]. denotes its quadraic variation process. 
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1u Xtdt = 1u ~tMtdt + 1u ~t (l ~5 [M]5 ds) dt 

= J ~t (l dMs ) dt + 1u ~t (l ~s ([ d[M]v) ds) dt 

= 1u (iu ~.ds) dMt + 1u ~tdt l (1u ~.ds) d[M] v 

= 1u (iu ~.ds) dMt + 1u d[M]t iu ~t ([ ~.ds) dt 

= 1u (iu ~.ds) dMt + ~ 1u (lu ~.ds) 2 

d[M]t. (1.6) 

D 

We set the model by giving the equivalent martingale measure implicitly and the 
fluctuation of the short rate process r·t as follows: 

(1.7) 

Assumption 1.3. For all u > 0 

(1.8) 

holds for all 0 :S: t :S: u. 

Proposition 1.4. Under the the assumption 3.3, the bond prices are given by the 
following. 

(Proof) . By propsiton 1.1, it suffices to calculate 

(1.10) 
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By (1.4) and (1.5), 

(1.11) 

where E(·) denotes its exponential semimartingale. By (1.10) and (1.11), 

(1.12) 

Easy calculation leads to ( 1.9). 0 

REMARK.l.S. Ritchken and Sankarasubramanian [17] [18] 's interest rate model has 
also the form of (1.9). But theirs are ristricted the case when the short rate is a 
solution of a 2 dimentional (Markovian) stochastic differential equation which is in 
fact a 1-dimentional stochastic integal equation. As we shall see the sections to come, 
this S.I.E. might explode in many cases including the ones given in [17], [18]. 

REMARK.1 .6. This model has some superiority to others. That is, (i) the bond 
prices are the function of Mt and [M]t. (ii) the short rate process never go negative. 
(iii) it can be ' n-state Markov' if we wish it to. (iv) and it has the memory of the 
past. Takahashi [22] reported that it would be better to use S.I.E. in stead of simple 
1-dim S.D.E. if we wish to model the actual data. ( In [22] , the price processes are 
modelled by those slightly different from ours. See Kannan-Bharucha-Reid [14].) 

2. A STOCHASTIC INTEGRAL EQUATION 

In this section we will study rather special case of (1.7) (or (1.2)). 
Let (r!, :F) be an appropriate measurable space and let us consider the following 

stochastic integral equation. 

Xt = 17(t) + l ~(s) ([ J.L(u, X,Jdu) ds + l a(s, X 8 )dWs (2.1) 

where W. denotes a one dimentional Brownian motion on a filtered probability space 
(r!, :F, P, {:Ft}tE[O,ooJ), P is a probability measure and {:Ft}tE[O,oo) is an augmented 
filteration, 

7J(·),~(·) : [O,oo]-> JR+,continuous (2.2) 
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and 

a, JL : [0, oo) x JR+ ---+ IR, jointly m easurable and satisfies the fallowing conditions. 

(a) For each t > 0 , 
ja(s, x)- a(s , YW :S: p(jx- yi) (2.3) 

holds for every s :S: t. Here p stands for a Borel function from ]0, oo[ to ]0, oo[ such 
that r da 

Jo+ p(a) = +oo. 

(b) (Local Lipschitz Condition) For each t > 0 and integer n, there exists a constant 
L't > 0 such that 

i(J.L(s, x)- J.L(s, y) j :S: L't lx- y j 

holds for every s :S: t and lxl :S: n, IYI :S: n. 

(2.4) 

REMAR K 2. 1. It should be noted that (2.1) includes the short rate of the R-S model. 
Of course we can say that it is 2-state Markovian. But it is driven by a Brownian 
motion, so it would be better to think it as an integral equation. 

We define solutions for (2. 1) as usual in the weak sense but up to an explosion time. 
The exisistence of weak solutions up to an explosion time follows from Skorohod [21]'s 
result by slight modifications. (See Ikeda and Watanabe [9].) By Yamada-Watanabe 
[23j's theory we also able obtain the unique strong solution from weak existence and 
pathwise uniqueness. 

The explosion time e is t he first hittig time of the solution X to the trap. In this 
paper we say that pathwise uniqueness up to an explotion time holds for (2.1) if for 
any two weak solution (up to an explosion time) of common initial value and common 
Brownian motion (relative to possiobly different firlerations) (X, W) and (.X, W) , 

P [X 1 = X1 ; 0 :S: "t < e] = 1. 

Theorem 2.2. Under the conditions (2.2}-(2.4) pathwise uniqueness up to an explo
sion time holds for (2. 1} {oo} as a trap. 

Let X 1 and X 2 be two solutions (with respect to the same Brownian moton and 
XJ = XJa.s.) of (2.1) under the condition (2.3). Let 

· def · 
r~ = inj{ti iX;I 2 n}, i = 1,2, n EN, 

and 

To prove the theorem we use the following lemma from Revuz and Yor [16]. 
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Lemma 2.3. Fix an integer n. Then 

L~(X 1 
- X 2

) = 0, 0 ::; 11t::; Tn . 

Here we denote by L0 the Local time at 0. 

(Proof of the theorem 2.2). 

We will show that 

Thanks to Tanaka's formula and lemma 2.3, for t > 0, 

Since the stochastic integral term of (2.6) is bounded , 

(by integration by parts) 

(since ( is positive and continuous, there exisit a positive constant C[') 
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By Gronwall's lemma, 
Xfi'ITn = x;ATn l a.s. 

Letting n j oo, we get the desired result. 0 

To prove lemma 2.3, we need another lemma. (See also Revuz-Yor [16]) 

Lemma 2.4. If X. is a continuous semimartingale such that for some c > 0 and 
every t, 

Then L0 = 0. 

{Proof). 

def t -1 
At = .fo 1{o<X,:5e}P(X.) d[X]s < oo, a.s. 

Fix t > 0. By the ocupation time formula, 

At = f' p(a)- 1 Lr(x)da. 
.fo 

(2. 12) 

(2.13) 

If L?(X) did not vanish a.s., as L?(X) converges to L?(X) when a decreases to zero, 
we would get At = oo with positive probabi lity, which is a contradiction. 0 

(Proof of lemma 2.3). 

Fix an integer n . We have 

X/IlT,. - x'(:IIT,. =lilT" (a(s,X~) - a(s,x;)) dW. 

+ 1oti\T,. ~. (los (!t(u, xt)- J.L(U, X~)) du) ds. 
(2 .14) 

Therefore 

(2.15) 

By (1.3) 

ltM,. p(X: - x;)- 1 1{X~ > X;}d[X 1 - X 2]s ~ t. (2.16) 

Lemma 2.4 and (2.13) asserets lemma 2.4. 0 
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3. TESTS FOR EXPLOSIO I 

In this section we will deal with the very special cases of (2. 1), namely 

a(x) = ax""' , J.L(x) = a2x 2""' 

where a is a positive constant and ~ ::; 'Y ::; 1. 

(3 .1) 

The qustion is whether the solutions for (3 .1) would explode in finite time or not. 
A part of the answer is: 

Theorem 3.1. A ssume{3. 1}, and ( = ~,"f/t = x + ryt where~ and "f/ are positive 
1 

constants. Then the solution for {2. 1} explodes in finite time if"( =f "2 . 

Let Xt be the unique solution of (2.1) and 

Yt d!]J a2 ~lot x;-r ds. 

Then 
dXt = (Yt + ry ) dt + a2 XzdWt. 

We set a 'scale function ' as follows; 

1 1 I 
S(x ,y) = --x --r + y ' x > 0, y > 0. 

1 -"( 

Then by Ito's formula, 

where 

This time 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

£S(x, y) = __ 1_ (a2"( ) + y + "f/ + ~a2x2-r (~yi-1). (3 .6) 
x 1--r 2 x-r 8 

Set 
G(R) ~ inf £S(x,y), R > 0. 

S(x ,y) = R 
(3.7) 

We will show that 
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Lemma 3.2. there exisit positive constants C1 , C2 , C3 so that for all R > 0, 

To estimate (3.7) we use the fol lowing elementary lemmas. 

Lemma 3.3. (i) Let k1, k2 > 0, 81 < 82 < 0 and 

Then for x > 0, 

Then for x > 0, 

Equality holds when 

(Proof of lemma 3.2) . 

We first remark that under the constraint that 

1 I 1 
R = --X - '( + y • ' X > 0, y > 0, R > 0, 

1 - -y 

there are bounds for both x andy, i.e; 

0 <X < (( 1 - -y) R) ,..'. , ' 0 < y < R8 
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T hen we have 

And by (3.13) 

}!___ = (R - _ 1_xl--y ) 6 
x'Y 1 -1 

R6 8 R6 - l 
>------- x'Y 1 -1 x2-y- l. 

1 '-1 1Rl-6 
fiY' > fi . 

(3.13) 

(3 .14) 

(3. 15) 

Let c1 , c2 be positive constant such that c1 + c2 = 1. By lemma 2.3 (ii), and since 

1+ ( ;~ ) > 0, 

R6 1 '3 til c- +"a 2x2'1' - Rl-u > C R 3 . 
1 x'Y ~ 8 - I 

Similarly by lemma 3.3 (i), 

and 

R6 8 R6- 1 3 6- ._l_ 
c2-- ----2:- C2 R ,_, _ 

x'Y 1 -1 x2-y - l 

By (3.14)-(3.18) we get (3.8). 

(Proof of theorem 3.1) . 

Let R. be the solution of the following stochastic differential equation. 

- - >. -

{ 

d/4_ = adW1 + (C1R; - C2 ll1 - C3) dt, 

Ro = - 1
-xl --y , A 2: 1. 

1 -1 

(3.16) 

(3. 17) 

(3. 18) 

(3 .19) 

Denote its explosion time by t. By Feller's explosion test , (See e.g. Ikeda- Watanabe 
[9]) 

P [t < oo] = . { 
1, if A > 1, 

0, If A = 1. 
(3.20) 

And by the comparison theorem (See Yamada [23], and Ikeda Watanabe [9]) and 
lemma 3.2, 

S(X1 , Yi ) > 1'4 , a.s. (3 .21) 
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Since S(Xt, rt) Too implies Xt Too we have 

P(e < l) = 1. 

We can take 
0 + 1 > 1 and 8- _'Y_ = 1 if and only if 'Y > ~.This implies 

3 1-"( 2 

. 1 
P(e<oo)=1, If"( > 2. D 

4.TESTS FOR EXPLOSION II 

In this section we will study the order more closely. 
Let L(x) be a slowly varying function on [O,oo) ; i.e. it is real valued, positive, 

measurable and L(>.x) ~ L (x)* for each >. > 0 ; 
such that 

(a) lim L(x) = +oo, 
x~oo 

(b) L(x(L(:l:))- 1 ) ~ L(x) , 

(c) L(x) ::": 1 "x ::": 0, 

and 

(d) (L( y'x)) - 1satisfies Lipschitz condition. 

Remark 4.1. (c) implies that for arbitrary L ~Land 0 ::; a ::; 1, L ( x(L(x))-") ~ 
L(x) . (See e.g. E.Seneta [20].) 

Let a(x) d;j xL(x) and X. be the unique solution for 

Xt = x + l fo' a(X ... )duds + l (a(X,))~ dW., x > 0. (4.1) 

. f(x) 
*By f(x) ~ g(x) we mean xl.'..m~ g(x) = 1. 
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Theorem 4 .2. 

l +oo dx 
(i) lf rrT:::\ = + oo, then P(e < oo) = 0. 

1 xyL(x) 

J.
+oo dx 

(ii) If rrT:::\ < + oo, then P(e < oo) = 1. 
1 xyL(x) 

Proof. 

Let Ct ~ 1t a(X5 )ds and let At be the right continuous inverse of Ct ; i.e. 

At = inf{s,c. > t}. 

We will consider the time changed process Yt ~ XA, instead of Xt itself. 
We have 

l A, 1A' Yt =X+ c.ds + (a(X.))~ dW • 
. 0 0 

t ( A' 
= x + Jo sdA. + Jo (a(X.))~ dW •. 

By (4.2) 

At = l at:.) ' 
and the last term of ( 4.3) is an FA,- Brownian motion. 
Consequently, Y. is a solution for 

Yt = x + 1 t a(~.) ds + Bt, x > 0 

where B denotes a new Brownian motion. 
To see its uniqueness, let us consider \If.·~ Y?. 
We have by Ito's formula, 

- 2 rt ~ . t ( 2s ) 
\If. - x + 2 Jo v. dB. + Jo L( .J\T.) + 1 ds . 

(4 .2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

By the assumption (d), the above has the unique solution (in the strong sense) . 
Moreover, we see that the point 0 is at worst instantaneously reflecting boundary. 

12 



Instead of (4.5) we will consider the following (random) ordinary differential equa
tion for each w E fl. 

it s 
Zt = X + ( r B ) ds 

0 a Zs + s 

which in t urn means Z1 = Yi - B1. 

We shall have 

Z1 ~t(L(t))-~, a.s .. 

Assume that (4.8) holds. Then Zt + Bt ~ (L(t))-~, 
t t 

and 

a(Yi) = (Zt + Bt)L(Zt + Bt) 

a.s., 

= t ( ~~ + ~~) L (t ( ~~ + ~~ )) 
~t(L(t))1, a.s .. 

(4.7) 

(4.8) 

(4.9) 

On the other hand , .400 < oo is equivalent to e < oo because lim a(x) = +oo. 
x~oo 

Combining these and (4.4), we have the assertion of Theorem. 
1ow we turn to prove (4.8). First we shall see that L(Z1 + Bt) is slowly varying. 

This is done by the fo llwing 

Lemma 4 .3 . 

- Bt(w) -
Let rl ={wE rl , lim -- = 0} and fix wE fl. 

t~+= t 

(i) There exists a positive constant M ( w) such that 

Z1(w) < x + M(w) t. 

(ii) There exists a slowly varying function L • ~ L such that 

Z1(w) > x + t (L*(t))- 1
• 

Proof of Lemma 4.3. 

(4.10) 

(4.11) 

. . Bt(w) . . . IBt(w)l Smce hm -- = 0, there eXIsts a positive constant K such that -- < K. 
t~+= t t 
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Let zp and be the solution for 

z? = x + t zo 8 

8 
ds, ( 4.12) Jo s + s 

and Zf be the solution for 

Zf=x+ l z;~K8 ds. (4.13) 

Since L(2·) :2: 1, we have zp :2: Zt for all t E [0, oo) and since ~t > zp for all 

t E [O,oo). 

Let M = K + 1 and Zf ";! J: + M t. Then we have 

(Z~)' = M 

(4.14) 

(4.15) 

By the comparison theorem we have Zf > Zf which proves the first part of Lemma 
4.3. 

To prove the latter part, we first observe that 

Zt+flt =t - +-r. (Zt Bt) 
t t 

~t(~+M+K) 
= x+t(M +K). 

Let us introduce a new slowly varying function L as follows. 

- def 
L(x) = sup L(y). 

o:::;y:=;x 

Then Lis monotone, L :2: Land L ~ L. (See E. Seneta.) 
We have 

14 

(4 .16) 



t 
a(Zt + Bt) Zt + Bt L(Zt + Bt ) 

since L > L 

by (4.16) and monotonicity of L 

t 1 > ----;--:-:--:-"CC -,.-,----;--:-::----:c:-:-:-
x+t(M+ K) L(x + t(M + K) ) 

~ (L(t)) - 1
. 

Let 

z3 d:;j X+ t 8 1 ds. 
t } 0 x+ s(M + K) L(x+ s(L+ K)) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

Then by the comparison theorem we see that Z{ < Z1. On the other hand, it is well 

known that jx N(y) dy ~ x N(x) holds for arbitrary slowly varying function N. (See 

E. Sen eta [20].) 
Hence we have Z{ ~ t(L(t)) - 1 This proves (ii) of Lernma4 .2. 0 

REMARK 4-4· It shold be noted that P(fl) = 1. So we have the assertions with 
probability one. 

By the above lemma we have 

where i,_(x) ~ inf L(y). It is also known that Lis monotone, L :S: L , and[;_~ L . 
x~y<+ex> 

(See E. Seneta [20].) 
Since L ~ L, we see that 

L(Zt + Bt) ~ L(t) with probabi li ty one. (4.22) 

15 



We need the following 

(Ut)' = 2Zt(Zt)' 

=2~ t 
Zt + Bt L(Zt + Bt) 
2t 

~ L(t). a.s .. (4.23) 

Lemma 4.5 (Karamata [12)) . If N is slowly varying on [c,oo), then for each 
k > - 1 

. xk+l N (x) 
hm x = k + 1. 

x-+oo f c yk N(y) dy 
(4.24) 

By (4.23) and (4.24) we have 

(25) 

This proves (4.8) , D 

5 . A GENERALIZED ARC-SIN LAW 

The following two sections are taken from [3] . In this section , Wt denotes a atandard 
Brownian motion starting at 0, Ft denotes its canonical filteration and Po denotes its 
probability measure. Let 

A(t, X; J.L) = ~fat 1 {W,+i's< x) ds , 

Then we have the following theorem. 

Theorem 5.1. 

16 

J.L > 0, t > 0, X E IR1 (5. 1) 



(i)We have 

where <I> denotes the tail of the distribution function of the normal distribution; that 
is, 

roo 1 ( y2) 
<I>(x) = Jx .,j2ii exp - 2 dy. 

{ii} More generally, we have 

la
ta 

8 
P0 (A(t,x;J.L)<y) = h(s,x;J~)¢(t-s,y- - ;J.L)ds, x;iO, 

0 t 

where h(s, x; J.L) denotes the density of the first hitting time of B, + J.Lt to x; that is, 

h(s, x; J.L) = _1:1_ exp ( (JxJ- J.LS)
2

) 
v'27fS 2s 

and 
¢(t, x; J.L) = P0 (A(t, 0; ~~) < x). 

Proof. First we prove assertion (i).Let 

u(x) = Ex 100 

exp(-(t)exp(- .AA(t ,O;J.L))dt, x E JR1 (5.2) 

Then the Feynman-Kac formula (cf. Kac [11] and Ito and Mckean [10]) claims that 
u(x) is the unique bounded solution of the equation 

(5.3) 

By solving (3), 

u(O) = !:':~ J~,2 + 2(( + .\) - !:': _ 1_ ~ 
2( (+.\ 2(+.\ ( 

1 ,;,,2 +2((+.\) ~ J.L2 1 
+2 (+.\ ( - 2(((+.\)" 

(5.4) 
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Since we have, by inverting the Laplace transform (see, e.g., Widder[27]), 

J,..2 +2(()=~ r< d).. +~,.. 
( ( Jo )tt2 + 2>. ( 

1
00 (100 

exp(-(£)s) ) 
= exp( -(t) ~ ds + f.L dt , 

o t 21rs3 
(5.5) 

we get 

{
00 t exp( - >.s) 

u(O) = Jo exp( -(t) Jo 2 

( 1
00 exp(-(~)T)d ) 

X 2Jt + ~ T 
t-s V 27rT3 

x (100 exp~)T) dT) dsdt, 
s 27rT3 

(5.6) 

Comparing (5.6) and (5.2), we get 

1ty 1 ( 100 
exp(-(£)T) ) 

P0 (A(t,O;f.L)<y)= - 21t+ ~ dT 
0 2 t - s 27rT3 

(1
00 exp(-(~)T) ) 

X ~ dT ds. 
s V 27rT3 

(5.7) 

Integrating by parts, we get 

1oo _ex-=-p-=-( -~( 10_~22;-)T...:..) dT = j2 exp (- f.L2 s) 
s V27rT3 v ~ 2 

- 2f.L f oo - 1
- exp ( -

72
) dT. 

} 1'-VS v'2if 2 
(5.8) 

So we have the assretion (i). 
Assertion (ii) follows directly from the strong Markov property of Bt + f.Lt. D 

REMARK 5.2. Since A(t, x; -f.')·~· 1 - A(t, -x; f.L), we now obtain Theorem5.1 for 
all f.L E R. 1 
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6. THE PRICING FORMULA FOR THE a-PERCENTILE OPTION. 

Let us consider the Black-Scholes model (c.f. Black and Sholes[4]): The stock price 
Xt is a geometric Brownian motion and the bond price bt is nonstochastic; that is, 

1 
Xt = Xoexp(aWt + (J.L - 2a 2)t), X 0 > O,a > O,J.L E IR1

, (6.1) 

bt = boexp(rt) , r2': 0,bo > O. (6.2) 

We define the a-percenti le option (m(T; a) - c)+ , c > 0, and present the procing 
formu lae for this. 

Here we think of "pricing" as the stochastic integral representation of the option 
with respect to the discounted stock price under martingale measure ( c.f. Harrison 
and P liska [8] ) 

We define a discounted price process Zt by setting 

(6.3) 

let us introduce aprobability measure P0 under which Zt is a martingale and let E0 
denote its expectation. Let 1r be the price of the option, (t be the amount of stock 
and Vt be the amount of bond . 

T hen we have a stochastic representation of the option as foUows: 

(6.4) 

where 

(6 .5) 

and we have 

(6.6) 

We can give the following formu lae for 1r, (t, Vt by virtue of Theorem 5.1 
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Theorem 6.1. We have 

r= ( y T 1 ) 7r = br
1 Jc G T, a - 1 1ogX

0
;a,;: - 2a dy 

-1 ( - 1 C T 1 ) + cbr G T, a log Xo; a , ;: - 2a , 

br
1 1= ac ( _1 boy Ta - Ct r 1 ) ( t = -- - T- t a log - ·--- - --a dy 

a Zt 0 ax ' Zt ' T - t ' ' a 2 

Vt = G T - t a log - ·--- - - - a dy 1= ( _1 boy Ta - Ct r· 1 ) 
c ' Zt ' T - t ' a 2 

~ - I ( _ 1 bocTa-Ct r 1) 
- (tZt+cbt G T - t,a logZt ' ~··;: - 2a , 

where 

G(t, x; a, J.L) =ito h(s.x; Jt)r/! (t - s, a-~; J.L) ds , 

~~· denotes the derivative with respect to the second variable and 

ac 
REMARK 6.2. To calculate ax we observe the following facts : 

(i) s · h(s, x, ?•) is uniformly integrable. 

(6.7) 

(6.8) 

(6 .9) 

(6.10) 

(6.11) 

(iiH ( cp ( t - s, a - I, J.L) - cp(t , a, J.t)) is uniformly integrable since cp is differentiable 
at s = 0. 

By (i) and (ii) , h(s,x,J.L) · (cp (t - s,a - f,J.L)- cp(t,a,J.L)) is uniformly integTable. 
Therefore, for x > 0, 

+cp(t , a,J.L)- --e-.,.+;<x--"f- ds . 
a ito X ,2 , 2 

ax 0 J2ifS 
(6.12) 
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Again we observ;: 
1) s · *-e-t.+l"x is uniformly integrable. 

2H ( e- '-f. - 1) is uniformly integrable. Then, 

1ta ( 1 X ) ( X ,2 ) (first term of (2)) = cp(t, o:, J.L) - - - + J.L h(s , x, J.L)- =e- ,.+'"x ds. 
0 X S y27rS 

(6.14) 

(second term of (2)) 

(6.15) 

Since 
~ ,2 

(second term of (4)) = -2cp(t, o:, J.L )e'"x v .o:1rwe- 2<0. (6.16) 

By (6. 12)-(6. 16) ,we have 

~~ = l " G- ~ + J.L) h(s,x,J.L)'P (t- s,o:- ~,J.L) ds 

(1 t a ( 1 X) X ,2 1 ,2 ) -e'"xcp(t ,o:, J.L) --- --e-z. ds + 2--e-210 . 
0 X s v'21TS V27rto: (6.17) 

Proof of Theorem 6.1. 
Let Wt = Wt + ('"-;;r)t. Then Wt is a Brownian motion under P0 and we have 

and 
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Since . ((1 xr 1)) P0 (m(T;a)>x)=P0 A T,-log-;---a <a, 
a Xo a 2 

we have from Theorem5.1 (ii), 

( 
1 X !' 1 ) 

fJ0(m(T;a) >x)= G T,-log-X ;a,---a. 
a o a 2 

Therefore, we get (6.7). 
To obtain (6 .8) and (6.9), we first observe 

P0(m(T;a) > xiFt) = P0 (A (T, ~log ;
0

; ~-~a) < aiFt) 

= P0 (iT 1{x.:<:;x)ds < Ta- CdFt ) 

(6.18) 

(6.19) 

= Po (A (1' -t) log__::_- Wt +~at; 2:.- ~a) < Ta -
0 t) 

a Xo 2 a 2 1' - t 

= G (r - t !:.log box · Ta -Ct 2:.- ~a). (6.20) 
' a Zt ' T - t ' a 2 

By integrating both sides of (6.20) with respect to x, we obtain E*((m(T; a)-c)+IFt). 
Ito's fo rmula claims that the integrand Ct should be the partial derivative of (6.20) 

with respect to Zt, so we get (6.8) and then (6.9). 0 

7. AN EXTENT!ON OF WILLIAMS FORMULA 

The following two swctions are taken from [2]. 
Let Bt , 0 ::; t < oo be a standard Brownian motion starting at 0 and let 

and 
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Let A:j: 1 (t) and A= 1 (t) be the right-continuous inverse of A+(t) and A_(t), respec
tively, that is, 

A±1 (t) ~ inf{siA±(s) > t}. 

Then B±(t) ~ ±B(A±1 (t)) are mutually independent reflecting-barieer Brownian mo
tions. Let L(t) be a local time at 0 of Bt, and let 

and 
0 :::; t < 00. 

By Williams formulae we mean the fo llowing equivalence in law 

(7.1) 

and 
(7.2) 

Williams [28] 's proof of the Levy's arc-sine law relies upon the above formu la. 
(see e.g. Karatzas-Shereve [13]) S.Watanabe [26] extended this approach to so-called 
generalized diffusion processes. But our results don 't hold when Bt is not a Brownian 
motion (except for the constant drift case). 

By Dassios formula we mean the equivalence in law between Brownian quantiles 
and indepedent sum of max and min. The distribution of the quantiles of Brownian 
motion (with drift) has been studied by [3] and M.Yor [25] . This is very closely 
related to the pricing of a sort of path-dependent options in mathematical finance. 
(see R.Miura [15]) 

Let 

and 

A _ (t, x) = 1t 1{B,~x)ds, 0 :::; t < oo, x E R 

and let A±1 (t ,x) be their right continuous inverse. 

Theorem 7.1. For each t > 0, we have the following equivalence in law: 

(7.3) 

and 
(7.4) 
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Proof. It suffices us to proof (2.1) when x > 0 by using the following formula. 

E[e- p.A:j:'(t ,x)] = E[e_~'.,.•]E[e-p.A :j:'( t)] (7 .5) 

where Tx ~ in f{si Bs > x}, the first hitting t ime at x . 
Since rx, L±/ are stable subordinators with exponent ~ , and by (7.1), 

(Right hand side of (7.5) ) = e-v'2i'x E [e- p.(t+L=' (L , (t))] (7.6) 

(by the independence of { L= 1
, L+}) 

= e- p.t E [e- v'2i' (L+(t)+x)] 

= E [e- p.(t+L=' (L+(t)+x) l ]. 

By the uniqueness of Laplace transform , we get (7.3) . 
( proof of (7.5).) 

{'X> e- p.t E [e- AA+(t,x)]dt = ( "" e- p.t (AE[ {"" e- .Xu]) dt 
Jo Jo JA, (t ,x) 

= AE[1
00 

e- p.tdt 1 "" 1 {A+ ( t , x) ~ u) e- .X"du] 

= AE [1 "" 1 "" 1{A:j: ' (u,x)2:t) e- .Xue- p.tdu] 

{"" t +'(u,x) 
= AE[J

0 
e- .x" du Jo e-p.tdt] 

(7.7) 

(7.8) 

= .!, - ~ E[ { "" e- .Xu- p.A :j:' (u ,x)du]. (7.9) 
/.L fJ. Jo 

(7.10) 
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where we denote starting points of Brownian motions by subscript of E. 
By (7.9) and (7.10) we get (7.5) . 0 

8. ANOTHER PROOF OF DASSIOS FORMULA 

Let us define Brownan quantiles with parameter a ( in mathmatical finance a per
centiles) as fo Uows; 

M(o.,t) ~ inf{xiA_(t,x) > to.}, 0 <a< 1. (8.1) 

A.Dassios [2] proved the following equivalence in law for each t; 

M(o., t) ,g, max B~ + min s; 
O~s~at O~s~{l-a)t 

(8.2) 

where B 1 and B 2 are two independent Brownian motions. 
He proved above formula by Feynman-Kac method including the case when it has 

a constant drift. Now we take another way as we stated in section 7. 

Theorem 8.1 (Dassios [4]) . We have the following equivalence in law for each t . 

M(o., t) ,g, ±L±(o.t) =F L'f((1- o.)t). 

Proof. For s < 0, 

P(M(o., t) < s) = P(A_ (t, s) >at) 

= P(A= 1(o.t,s) < t) 

(by theorem 1) 

= P(o.t + L:"f1 (L_(at) +lsi)< t) 

= P(L"~1 ( L_(o.t)- s) < (1- a)t) 

= P(L_(o.t)- s < L+((l- a)t)) 

= P(L_ (at) - £+((1 - a)t) < s). 

Since A_(t, x) ~ A+(t, -x) and L+(t) ~ L(t), we get (3.3). 0 
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