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Abstract

In this thesis, structural analysis of polymer aggregation induced by hydrophilic and hydrophobic interac-

tion was performed. In addition, structure control of inhomogeneity-free gels by tuning hydrophobicity was

performed.

The first topic is inhomogeneities of gels from the viewpoint of dynamics. Gels are widely used in our

daily life and therefore indispensable materials. For applications of gel materials, a fatal problem is that

conventional gels are brittle. To solve this drawback, a gel called Tetra-PEG gel was developed. Many

experimental results strongly suggest that Tetra-PEG gel is homogeneous from the viewpoint of static struc-

ture. To elucidate homogeneities from the viewpoint of dynamics, I investigated the dynamics of Tetra-PEG

gels by quasi-elastic scattering techniques. By using dynamic light scattering (DLS) and neutron spin echo

spectroscopy, inhomogeneity-free nature of Tetra-PEG gels was clarified.

To observe these inhomogeneities, I constructed an apparatus named DLS microscope to perform DLS

with high spatial resolution. It is clarified that DLS microscope can also be applied to opaque system.

This is important since conventional DLS system cannot be used for opaque dispersions because of multiple

scattering or absorption occurring. This feature is proved by the size distribution measurement of polystyrene

latex suspension, Chinese ink, and thermo-responsive polymer solution.

The second topic is aggregation induced by hydrophobic and hydrophilic interaction. Taking advantage of

the unique feature of DLS microscope, a structural analysis of opaque system governed by hydrophobic and

hydrophilic interaction was performed. As a representative hydrophobic system, concentration dependence of

dispersion states of carbon nanotube (CNT) suspension was investigated. Since CNT strongly absorbs light,

DLS measurement was available only for very dilute dispersion. To solve this problem, I investigated various

kinds of CNT dispersions (different thickness and length) with wide concentration range by using polarized

DLS microscope. As for translational Brownian motion, long CNTs showed slowing down at relatively high

concentration (several wt%). As for rotational Brownian motion, the restriction of rotation was observed at

relatively low concentration (0.1 wt%).

As a representative hydrophilic system, ovalbumin (OVA), a major protein in egg white, was investigated.

Through the peptide treatment, N -terminal short peptide region is cleaved. Although the cleaved region is

short, the heat-induced gels showed clear difference; cleaved OVA, called pOVA, is turbid while the intact

OVA is transparent in salt-free environment. To explain this from the viewpoint of hydrophilicity, I performed

structural analysis by DLS and small-angle neutron scattering (SANS). It is clarified that the amount of

large aggregates is larger in pOVA solution than OVA solution, reflecting the hydrophobic nature of pOVA.

This difference drastically changes the character of their heat-induced gels.

The third topic is inhomogeneity-free amphiphilic gels. From the first and second topics, inhomogeneity-

free nature of Tetra-PEG gels and structure control by hydrophilic / hydrophobic interaction was elucidated.

By combining these concepts, structure control of inhomogeneity-free gels by tuning hydrophobicity was

performed. I prepared inhomogeneity-free amphiphilic gels through similar procedure of Tetra-PEG gels.

These gels have both hydrophilic units and hydrophobic units. When the solvent is substituted by water,

only the hydrophobic parts shrink and microphase-separation is induced. Microphase-separated structure

was investigated by complementary use of SANS and SAXS. It is clarified that the microphase-separated

structure is controlled by the size of hydrophobic units.
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1 Introduction

1.1 Gels

Polymers are the molecules consisting of small unit molecules called a monomer. Usually, a monomer is in

liquid or gas phase in ambient temperature. When the number of monomers within one polymer (degree of

polymerization) becomes the order of several tens, the polymer becomes soft solid state due to intermolecular

forces. For examples, polyethylene is one of the well-known polymers around us that is the raw materials

for plastic bags. The monomer unit of polyethylene is ethylene, which is gas in ambient temperature and

pressure. The origin of the softness is due to their large entropy originated from the large number of possible

configuration. From this unique character, the polymer and related materials are named “soft matter” by

the pioneer of this field, P. G. de Gennes [1]. From the viewpoint of physical chemistry, it is interesting that

the physical properties become totally different by changing the structure even by using the same monomer

unit. For examples, polyethylene is relatively stiff if there is few branch structure in the polymer, while

many branch structure make the polyethylene soft like the plastic bag (Figure 1.1) [2].

High-density polyethylene

Polyethylene chain

Low-density polyethylene

Figure 1.1: Difference between low-density polyethylene and high-density polyethylene.

Another interesting feature of polymers is crosslinking. Crosslinking can be regarded as the extension

of branch structure. If two polymers are connected at a branching point, it is called that two polymers

are crosslinked. By continuing crosslinking, the number of connected polymers becomes macroscopic scale.

The resultant gigantic polymers are usually called polymer network. The density of crosslinking points

determines the character of the polymer network. If the density of crosslinking is high, the material becomes

stiff like resin. In contrast to this, if the length between each crosslinking is large enough, the material

becomes soft like a rubber. This material is called elastomer. Like this, not only the chemical formula but

also the structure at molecular level strongly affects the macroscopic physical properties. When the polymer

network is immersed in solvent, the network sometimes absorbs solvent. This process is called swelling. The

driving force of the swelling phenomena is osmotic pressure; from the viewpoint of entropy, it is better to

dilute polymer network by the solvent molecules. However, polymer networks cannot be diluted infinitely

even if enough amount of solvents are given. The driving force against the swelling is elasticity. As a result,

polymer networks containing large amount of solvent can be stable. This system is called gels (Figure 1.2).

Gels are widely used in our daily life such as food, cosmetics, and so on (Figure 1.3). Their texture can
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1.1 Gels

Elastomer

immersed

in solvent

Gel

Figure 1.2: Crosslinking, elastomer, and gel.

be controlled by designing their monomers, structure, and solvent. For environmental problems, gels are

promising materials. One of the recent hot topics is the application of gels to the electrolytes of batteries [3].

Electrolytes should possess both cohesive properties of solids and the diffusive properties of liquids, both of

which are satisfied by using gel materials. In similar contexts, gel materials can be applied to the separator

for mixed gas. By using character of their high affinity to water, hydrogels can also be used for holding

soil moisture [4]. Other direction of the use of gel materials is medical application. Since the hydrogels

are organic materials diluted with water, the affinity to human body is relatively high compared to other

materials such as elastomer, resin, and metal. In addition, gel materials can retain other materials in their

networks. By utilizing these features, the use of gel materials as a carrier of drug is one of the promising

applications. As another application, an artificial joint made by gels is also promising from the viewpoint

of biocompatibility. As a more familiar example, contact lenses are also hydrogels. In this case, not only

the biocompatibility but also the transparency is important factor. Like this, gel materials are indispensable

materials for our daily life.

Stimulus

(a)

(d)

(e)

(b) (c)

Drug
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Figure 1.3: Applications of gels. (a) Gel electrolytes. (b) Separator for gas. (c) Holding soil moisture. (d)

Drug delivery system. (e) Artificial articular cartilage.
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1.2 Tough gels

For the application of gel materials, the fatal problem is that conventional gels are brittle. One of the

origins of this weakness is that the density of crosslink is diluted by the solvent. However, conventional

gels are so brittle that only the dilution effect cannot explain the origin of weakness. Currently it is well

known that the origin of the weakness is inherent inhomogeneities of gel materials [5]. Conventional gels

are usually prepared by using the radical reaction between polymers and crosslinkers. Since radical reaction

occurs randomly, the distance between crosslinking points is uneven. This is the origin of inhomogeneities.

When the stress is applied to such a inhomogeneous gel, the applied stress will be concentrated on the weak

points. As a result, the gel will break with significantly smaller stress than the theoretical values.

To overcome this drawback, various kinds of tough gels have been developed such as slide-ring gel [6],

nanocomposite gel [7], double-network gel [8], microsphere composite gel [9], ionically crosslinked gel [10]

and so on (Figure 1.4), which are summarized in Section 5.2. Among of them, I focused on the gel called

Tetra-PEG gels reported by Sakai et al. in 2008 [11]. Tetra-PEG gels are so strong that the breaking stress

was approximately 25 MPa, which is larger that the native articular cartilage [12]. Preparation of Tetra-PEG

gel is performed by mixing two tetra-arm polyethylene glycol (PEG) with different functional groups at the

ends. One tetra-arm PEG has amine group while the other PEG has active ester group. These two tetra-arm

PEGs can react with each other after mixing. By controlling the reaction rate by adjusting pH, the gelation

proceeds. Since amine-terminated PEGs cannot react with themselves, amine-terminated PEGs and active

ester-terminated PEG will be set one after the other. This preparation scheme will suppress inhomogeneities

and make the Tetra-PEG gel strong.

(a)

(c) (d)

(b)

Figure 1.4: Examples of tough gels. (a) Double-network gel. (b) Slide-ring gel. (c) Nanocomposite gel. (d)

Tetra-PEG gel.
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1.3 Structural analysis of gels

1.3 Structural analysis of gels

To elucidate the origin of the strength of Tetra-PEG gels, structural analysis was performed. There are

mainly two strategies for the structural analysis of soft matter; mechanical testing and scattering technique

(Figure 1.5). In mechanical testing, certain stress (strain) is applied to the materials and monitor their

response as a form of strain (stress). The response is quantitatively described by using some quantities such

as shear modulus, bulk modulus, Young’s modulus, and Poisson’s ratio, summarized in Section 3.2. These

macroscopic quantities can be represented by microscopic parameters such as the density of polymer chains

and crosslinking, which can be controlled experimentally. From mechanical testing, it is clarified that the

crosslinking reaction during the preparation of Tetra-PEG gels proceeds ideally.

(a) (b)

Figure 1.5: Structural analysis of soft matter. (a) Mechanical testing. (b) Scattering technique.

The other method for the investigation of soft matter is scattering. By tuning the wavelength of probe

wave, the structure of materials can be recorded in reciprocal space (see Section 4). For examples, light

scattering can be used for the structural analysis of colloidal suspension whose typical size is the order of

µm [13]. However, for the research of gels, wavelength of visible light is usually too large for the structural

analysis. To obtain structural information in the scale of polymer (typically 10 ∼ 100 nm), a short wavelength

probe such as X-ray and neutrons is used [14]. By using small-angle neutron scattering (SANS) technique,

structural analysis of Tetra-PEG gels was performed [15, 16]. It was shown that the scattering pattern

obtained from Tetra-PEG gels are similar to that obtained from solutions. This means that inhomogeneities

originated from crosslinking were suppressed significantly.

By using both mechanical testing and scattering technique, it is clarified that Tetra-PEG gels have ho-

mogeneous structure. However, all of the experiments had focused on static structure. As a matter of

fact, polymer networks are fluctuating like Brownian motion of colloidal particles (Figure 1.6). Theoretical

analysis for gel dynamics was performed by Tanaka et al. and know as Tanaka–Hocker–Benedek (THB)

theory (see Section 3.2.3). This theory showed that we can obtain the mesh size of the network as a pa-

rameter called correlation length, which is extracted from the measurement of gel fluctuation. Although the

correlation length gives us only qualitative information about mesh size, this parameter has been used for

the characterization of gel. The reason why the correlation length gives us only qualitative picture is that

inhomogeneities were not treated in the theory. This means that we may give the quantitative meaning to

the correlation length for the first time by using inhomogeneity-free Tetra-PEG gels.

The two strategies for the structural analysis of soft matter can be used also for the investigation of dynam-

ics. For the measurement of dynamics, mechanical testing is performed by applying time-dependent stress

or strain. A representative example is the measurement of stress by applying oscillatory shear. By measur-

ing the phase shift between the applied shear and measured stress, we can measure the elastic component

and viscous component for viscoelastic materials. From the frequency dependence of viscoelasticity, we can

obtain the information about the relaxation of polymer networks. However, dynamical mechanical testing

can measure the dynamics whose characteristic time is slower than millisecond. To measure faster dynamics
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1.4 Dynamic light scattering microscope

Figure 1.6: Fluctuation of a gel.

such as the fluctuation of polymer networks of gels, scattering technique is used. Therefore, I measured the

dynamics of inhomogeneity-free Tetra-PEG gels by using both light (dynamic light scattering) and neutrons

(neutron spin echo) as probes to clarify the quantitative meaning of the correlation length (Section 5).

1.4 Dynamic light scattering microscope

As explained in the previous subsection, Tetra-PEG gel is almost inhomogeneity-free. However, there still

remain small inhomogeneities in larger scale. SANS profiles showed slight upturn in low-q region, which

originates from Debye–Bueche type inhomogeneities (explained in Section 2.5.2). This upturn is clarified by

the combination of SANS and light scattering [16]. Since the inhomogeneities were observed by the scattering

angle dependence of visible light, we may map the inhomogeneities in real space by using the correlation

length as a parameter.

Starting from this idea, I constructed the apparatus to obtain correlation length of gels with high spatial

resolution; dynamic light scattering microscope (Figure 1.7, Section 6). Correlation length of gels was

measured by the technique called dynamic light scattering (DLS; see Section 4.1.2). Usually, DLS is used to

measure the size distribution of polymer and colloidal solutions. In addition, THB theory clarified that DLS

can also measure the correlation length of gels. What we measure in DLS is the time correlation function

of the intensity of scattered light. This means that we can measure correlation length from the irradiated

volume. By using microscope, we can easily achieve high spatial resolution. Therefore, we can obtain

the spatial map of correlation length by combining dynamic light scattering with a microscope. However,

there still remains one problem. Since Tetra-PEG gel is homogeneous in the scale of irradiated volume, the

intensity of scattered light is so small that we may not be able to detect enough signals to analyze. In fact,

this conjecture is true; measurement of correlation length of Tetra-PEG gels by using DLS microscope is

still challenging.

Instead of this, I accidentally found another application of this apparatus. DLS microscope enables us to

measure the size distribution of opaque dispersion such as milk (turbid), ink (strong light absorbing) and so on

(Figure 1.8). This unique point is complementary to conventional DLS system. Conventional DLS system

cannot be used for opaque dispersions since multiple scattering or absorption occurring within the large

irradiated volume degrade the scattered light. In contrast, DLS microscope can extract only singly scattered

light by applying confocal optical system although the signal from homogeneous, transparent substance is

hard to detect due to small irradiated volume. The fact that we can measure turbid system by using DLS
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1.5 Hydrophilicity and hydrophobicity

Figure 1.7: Photograph of dynamic light scattering microscope. Lines shown in the photo show the optical

path.

(a)(a) (b)(b)

(c)(c) (d)(d)

15 mm

Figure 1.8: Examples of samples which are accessible by the dynamic light scattering microscope. (a)

Polystyrene latex suspension. (b) Milk. (c) Chinese ink. (d) Poly(N -isopropylacrylamide) gel.

without dilution has large impact on the analysis of materials which were beyond the scope of DLS. Then I

moved on the analysis of opaque systems by using scattering techniques including DLS microscope.

1.5 Hydrophilicity and hydrophobicity

For the systematic analysis of opaque systems, I focused on systems whose interaction between solutes

can be manipulated systematically. Then I decided to investigate the system that is governed by hydrophilic

and hydrophobic forces. The main reason for this decision is that we can manipulate hydrophilicity and

hydrophobicity in gel systems at will by using Tetra-PEG gels [17, 18]. Before moving to this amphiphilic

gels, I would like to introduce hydrophilicity and hydrophobicity briefly.

Interaction between molecules is interpreted by electrostatic interaction (Figure 1.9). The interaction

between molecules having explicit charges (cations and anions) is called charge-charge interaction. The
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1.6 Carbon nanotube

interaction energy between two charged particles is proportional to r−1 where r is the distance between two

particles. There is also an interaction between neutral molecules. If those neutral molecules have a dipole

moment, the interaction is called dipole-dipole interaction. The interaction energy between two fixed dipole

moments is proportional to r−3. Then let us consider about the interaction between two water molecules. It

is known that the interaction energy between two water molecules is approximately proportional to r−2 [19].

This power law is intermediate between charge-charge interaction and dipole-dipole interaction. Therefore,

though the interaction between two water molecules originates from the dipole moment of water molecules,

there should be qualitative difference from typical dipole-dipole interaction. This phenomenon is known as

“hydrogen bonding”.

＋ －
＋
－

＋
－

(a) (c)(b)

Figure 1.9: Interaction between molecules. (a) Interaction between molecules with explicit charges. (b)

Interaction between water molecules. (c) Interaction between fixed molecules with dipoles.

Hydrogen bonding is formed not only between water molecules but also between a hydrogen and elec-

tronegative parts such as nitrogens, oxygens, fluorides and so on. This type of bonding strongly affects

the physical properties of substances. For examples, NH3 and HF are soluble in water while hydrocarbons

are in general poorly solvable. When hydrocarbons are in water, hydrogen bondings among the solvent are

disturbed by the hydrocarbons since water cannot make hydrogen bonding with the hydrocarbons. As a rule

of thumb, we can classify molecules into two; the molecules that can accept hydrogen bondings are called

hydrophilic while the molecules which cannot accept hydrogen bondings are called hydrophobic.

Though the interaction energy originated from hydrogen bonding is not so strong, hydrophilicity and

hydrophobicity strongly affects the physical properties of polymers. This is because hydrophilicity and hy-

drophobicity of monomers are emphasized by polymerization. Therefore, the manipulation of hydrophilicity

and hydrophobicity is one of the effective ways to design the physical properties of polymers as we want.

1.6 Carbon nanotube

To see how we can use DLS microscope for the research of hydrophilicity and hydrophobicity, I started

the research of extremely hydrophobic material at first; carbon nanotube. A carbon nanotube, CNT, is a

thin tube composed of carbon atoms. CNT is a very promising material because of its rigidity and electric

property. To utilize these characters, CNTs are used as additive of rubbers, thin films, gels and so on. To

use CNTs as additive of products, there are mainly two options; powder form or dispersion form. CNT

dispersion is useful for the preparation of films via spin coat method. From the viewpoint of environmental

burdens, desired solvent is water. Dissolving CNTs into water was a challenging task since CNT is extremely

hydrophobic as I explained in the previous section. Recently, it is known that we can dissolve CNTs into water

by using large amount of surfactants (Figure 1.10). In those dispersions, CNTs are covered by surfactants to

reduce the aggregation. However, dispersion state of those solutions is not clarified yet since light scattering
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1.7 Ovalbumin

Figure 1.10: Dispersions of carbon nanotube.

technique cannot be used because of their strong light absorption. New techniques for the evaluation of

dispersion states of CNT have been strongly desired.

It is clear that DLS microscope can be applied to the research of the aggregation state of CNT dispersion

since strong light absorption does not affect the detection for this system. To achieve systematic research, I

investigated various kinds of CNT dispersions (different thickness and length) with wide concentration range

by using DLS microscope (Section 7). Through this research, aggregation induced by strong hydrophobic

interaction was observed at higher concentration range. Experimental observation of this kind of aggregation

was observed for the first time by using light as a probe. In addition, I found another kind of state transition

serendipitously; rotational restriction. It was found that the rotational motion of carbon nanotube was

restricted at relatively small concentration region (though still inaccessible by the conventional DLS system).

This transition is unique for rod-like shape solutes.

1.7 Ovalbumin

Inspired by the interesting transition observed from rod-like shape solutes, I tried to investigate different

rod-like shape solutes. In contrast to hydrophobic CNT, here I used hydrophilic rod-like shape solute as

a sample; proteins. Proteins are composed of amino acids. Amino acids are classified into hydrophilic one

and hydrophobic one by their character of side chains. Therefore, dispersion states of protein solutions are

controlled by the hydrophilicity and hydrophobicity of amino acids on the surface. In solution, hydrophobic

part is hidden inside the protein by folding process. Therefore, protein solution under room temperature can

be regarded as a good example of hydrophilic system. The hydrophilicity of proteins can be manipulated by

the change of temperature. Typical example is egg white. In spite of its name, egg white is not white but

transparent under room temperature. However, like sunny-side up egg, it becomes white by heating process.

During the heating process, the protein is unfolded and hydrophobic parts are exposed partially. In the

case of egg white, previous research showed that the aggregates of protein becomes linear (rod-like shape)

due to the balance of attractive hydrophobic interaction between exposed hydrophobic parts and repulsive

Coulombic interaction between the charges on the protein [20]. Therefore, I used ovalbumin (OVA), the

major protein in egg white, as a sample for the research by using DLS and SANS (Section 8).

Intact OVA is basically hydrophilic. To modify the hydrophilicity of OVA by design, I focused on peptide

treatment. For the systematic understanding of OVA aggregations, experiments by using OVA with mod-

ified primary structure have been done recently by using mechanical testing [21, 22]. Through the peptide

treatment, N -terminal short peptide region is cleaved and modify the hydrophilicity of OVA. Although the
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1.8 Amphiphilic co-network gels

cleaved region (22 amino acids) is only 6% in total, the heat-induced gels showed clear difference; cleaved

OVA is turbid while the intact OVA is transparent under salt-free environment (Figure 1.11). At first

glance, the result that the gel made from egg white is transparent contradicts with our common knowledge.

The origin of this transparency is the concentration of salt. By controlling the concentration of OVA and

salt, the structure of heat-induced gel can be manipulated. Interesting point is that the cleaved OVA is

turbid even under salt-free condition. To investigate the origin of this feature, I investigated this system

by using DLS and SANS technique. From the analysis, I conclude that the slight difference of dispersion

state before heating significantly affects the structure of heat-induced gels. It is clarified that homogeneous

OVA gels are composed of rod-like shape aggregates while the partially cleaved OVA gels contains glass-like

inhomogeneities.

(a)(a) (b)(b) (c)(c)

＋
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＋＋ ＋＋
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Heat HeatHeat

Figure 1.11: Heat-induced OVA gels. (a) Intact OVA (5 wt%). (b) Intact OVA (5 wt%) with NaCl (50

mM). (c) N -terminus cleaved OVA (5 wt%).

1.8 Amphiphilic co-network gels

The message from OVA experiment is that homogeneous gels can be made even the network polymer has

hydrophobic component. Stimulated by this experimental result, I tried to create homogeneous amphiphilic

gels by integrating the concept that I acquired. Here I briefly summarize amphiphilic network. Mixture of

more than one polymer is called polymer blends. The structure of polymer blends strongly depends on the

interaction parameter χ and the degree of polymerization, N (see Section 3.2.2 for details). Polymer blends

show phase separation when χN is larger than the critical value [23]. In this case, phase separation extends

in macroscopic scale. Other type of polymer mixture is block copolymer, which contains more than one

type of monomers in one polymer. In contrast to the polymer blend, diblock or triblock copolymers tend to

show phase separation in molecular dimensions due to the molecular constraint. This phenomenon is called
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microphase separation and is extensively studied for a long time [24]. The interesting point of microphase-

separated materials is that we can create novel physical properties by using two totally different monomers

as a building block. One of the representative combinations is hydrophilic and hydrophobic monomers [25].

This combination is called amphiphilic [26]. This character is promising for many purposes. For example,

amphiphilic materials can absorb both polar and nonpolar solutes. This is useful for the application of

drug delivery system, which is currently limited to the delivery of hydrophilic materials [27]. Another

example is soft contact lenses. Soft contact lenses demand contradictory characters; hydrophilic nature for

biocompatibility and hydrophobic nature for oxygen permeability [28]. Amphiphilic materials meet these

criteria. For the application, the amphiphilic materials are desired to take a network structure. However,

the inhomogeneities accompanied by the introduction of cross-linking will affect their microphase-separated

structure. Therefore, precise control of amphiphilic network structure is one of the main topic in this field.

Bottleneck for precise control of amphiphilic network structure is the inherent inhomogeneity. To solve

this problem, I utilized Tetra-PEG module as a building block, which I investigated by using DLS and

neutron spin echo (Figure 1.12, Section 9). The inhomogeneity-free amphiphilic gel is prepared by using

hydrophilic Tetra-PEG and hydrophobic linear-PDMS as building blocks. SANS measurement proved the

inhomogeneity-free nature of this amphiphilic gel. Then the structural analysis of the amphiphilic gels was

held by varying the ratio of hydrophilic part and hydrophobic part. Complementary use of SANS and small-

angle X-ray scattering (SAXS) clarified microphase-separated structure such as core-shell structure and

lamellar structure. I believe that this is the first step for the precise manipulation of amphiphilic network

structure.

PDMS

Hydrophobic

PEG

Hydrophilic

Figure 1.12: Preparation scheme of PEG–PDMS gel.

1.9 Thesis structure

In Section 2 to 4, I review the theory related to my research. I believe that this review is useful to study

the field of structural analysis of soft matter. In Section 2, I introduce basic theory of scattering. Here, I

review the scattering function from the viewpoint of form factors and structure factors. As for structure

factors, I described from two points of view: Ornstein–Zernike equation and Landau free energy expansion.

In Section 3, I introduce basic theory of physical properties of polymers. Especially, I focused on theories for

three topics; fluctuation of gels, lower-critical solution temperature, and microphase separation. In Section 4,

scattering techniques used in the following sections are summarized. Characteristic part is partial heterodyne

method that is used for the analysis of dynamic light scattering from nonergodic system.
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From Section 5, I explain my own researches. In Section 5, previous researches of Tetra-PEG gels are

reviewed, followed by my research on multiscale dynamics of Tetra-PEG gels [29]. Here, I prove the ho-

mogeneity of Tetra-PEG gels from the viewpoint of dynamics. In Section 6, development and application

of dynamic light scattering microscope is described [30, 31]. I successfully measured the size distribution of

dense dispersions such as polystyrene latex suspension, Chinese ink, and thermo-responsive polymer solution.

In addition, I measured concentrated carbon nanotube dispersion as a sample. This is the topic of Section

7; structural analysis of carbon nanotube dispersion [32]. Here, I applied polarized dynamic light scattering

technique to measure rotational Brownian motion, which is unique for rod-like solutes. In Section 8, struc-

tural analysis of OVA and its derivative are described [33]. Gelation mechanism of OVA and its derivative is

clarified from the viewpoint of hydrophilicity. In Section 9, I integrate the research of inhomogeneity-free gel

and the research of hydrophilic and hydrophobic materials; structural analysis of amphiphilic PEG–PDMS

gels [34]. In Section 10, I summarized this thesis. Graphical abstract is shown in Figure 1.13.

1. Introduction

Theory

2. Scattering

4. Experimental techniques

Light scattering

Hydrophobic

6. DLS microscope

7. Carbon nanotube 8. Egg protein

5. Tetra-PEG gel

9. Amphiphilic gel

10. Conclusion

Neutron scattering

Amphiphilic

X-ray scattering

Hydrophilic

3. Physical properties

Figure 1.13: Graphical abstract of this thesis.
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2 Basic Theory — Scattering

2.1 General scattering theory

This section is based on several textbook [14,35–37]. The definition is slightly different among them. Here

I explicitly define several quantities used though this thesis.

Figure 2.1: Schematics for the formulation of general scattering phenomenon.

Scattering phenomenon is described as Figure 2.1. The target is irradiated by incident wave or particles

whose flux is J0 [m−2]. The flux of the scattered wave / particles are represented by J [m−2]. Flux is the

squared modulus of the amplitude of the wave.1

J0 =: A2
0 (2.1.1)

Js =: A2
s (2.1.2)

Here, the scattered wave is spherical wave. Therefore, the amplitude of scattered wave, A(R), will be

proportional to R−1 where R is the distance between scattering point and observed point. In addition, A(R)

will also be proportional to A0. Therefore, A(R) can be represented as follows.

As(R) = A0
b

R
(2.1.3)

Here, b [m] is the proportional constant called scattering length. b depends on the nature of probe (Table

2.1). Scattering phenomenon is quantitatively represented by the proportion of J0 and J .

dσ

dΩ
:=
|AsR|2

|A0|2
= b2 (2.1.4)

Here, detection area is taken as a solid angle to compensate R−1 dependence of scattered wave. dσ/dΩ has

a unit of m2 and called differential cross section. Scattered intensity, I(q) [m−1], is usually represented as a

differential cross section per unit volume.

Let us consider the scattering from one particle consisting of z atoms whose positions are labeled by r⃗k

(Figure 2.2(b)). In this case, we have to consider the interference between the atoms. The phase difference

between the atom at the origin and at the position r⃗ is q⃗ · r⃗. Therefore, the scattering amplitude from the

Table 2.1: Scattering length

Probe Scatterer scattering length

Visible light Atom k2α/4πεε0

X-ray Electron e2/mc2

Neutron Nucleus bnucleus

1A := B stands for “A is defined as B”. A =: B stands for “B is defined as A”.
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2.1 General scattering theory

(d)(a) (b) (c)

Figure 2.2: (a) Scattering from single atom. (b) Scattering from single particle. (c) Scattering from many

atoms. (d) Scattering from many particles.

particle is written as follows.

As(R) =
A0

R

z∑
k=1

bke
−iq⃗·r⃗k (2.1.5)

When the particle is composed of the same atoms2, the differential cross section of the particle is written as

follows.

dσ

dΩ
= b2

∣∣∣∣∣
z∑
k=1

e−iq⃗·r⃗k

∣∣∣∣∣
2

=: b2z2P (q⃗) (2.1.6)

P (q⃗) is called a form factor. When we treat the particle as a continuous medium, Eq.(2.1.6) is written as

follows.

dσ

dΩ
= (∆ρ)2V 2

p

∣∣∣∣∫ n(r⃗)e−iq⃗·r⃗
∣∣∣∣ =: (∆ρ)2V 2

p P (q⃗) (2.1.7)

where ∆ρ, Vp, and n(r⃗) are the scattering length density, the volume of the particle, and the number density

of the particle at r⃗, respectively. Note that:

lim
q→0

P (q⃗) = 1 (2.1.8)

Next, let us consider the scattering from N atoms in irradiated volume whose positions are labeled by R⃗j

(Figure 2.2(c)). The differential cross section of the system is written as follows.

dσ

dΩ
=

∣∣∣∣∣∣
N∑
j=1

bje
−iq⃗·R⃗j

∣∣∣∣∣∣
2

=

N∑
j=1

b2j +

N∑
j=1

N∑
k ̸=j

bjb
∗
ke

−iq⃗·R⃗jk (2.1.9)

where R⃗jk := R⃗j − R⃗k. If each atom no spatial correlation (such as very dilute solution), the second term of

Eq.(2.1.9) will be zero. Therefore, the scattering intensity becomes a mere summation of the scattering from

each atom. If there are spatial correlation between each atom, the correlation is described as a structure

2We can regard monomer unit as one atom whose scattering length density is the summation of the scattering length of
consisting atoms decided by their volume when the size of monomer is small compared to 1/q.
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2.1 General scattering theory

factor, S(q⃗). When all of the atoms are the same species, S(q⃗) is defined as follows.

dσ

dΩ
= b2

∣∣∣∣∣∣
N∑
j=1

e−iq⃗·R⃗j

∣∣∣∣∣∣
2

=: b2NS(q⃗) (2.1.10)

Under this definition, note that:

lim
q→0

S(q⃗) = N (2.1.11)

When R⃗jk has some distribution, we need to introduce a pair correlation function. The pair correlation

function, G(r⃗), is defined as a Fourier transform of the structure factor.

G(r⃗) :=
1

(2π)3

∫
S(q⃗)e−iq⃗·r⃗dq⃗

=
1

N

1

(2π)3

∫ N∑
j=1

N∑
k=1

e−iq⃗·R⃗jke−iq⃗·r⃗dq⃗

=
1

N

N∑
j=1

N∑
k=1

δ(r⃗ + R⃗j − R⃗k)

= δ(r⃗) +
1

N

N∑
j=1

N∑
k ̸=j

δ(r⃗ + R⃗j − R⃗k)

=: δ(r⃗) + g(r⃗) (2.1.12)

g(r⃗) is called the static pair-distribution function. S(q⃗) is the inverse Fourier transform of G(r⃗).

S(q⃗) =

∫
G(r⃗)eiq⃗·r⃗dr⃗

=

∫
(δ(r⃗) + g(r⃗))eiq⃗·r⃗dr⃗ = 1 +

∫
g(r⃗)eiq⃗·r⃗dr⃗ (2.1.13)

Here, there is one problem which arise from the conversion from discrete g(r⃗) to continuous g(r⃗). If we

substitute g(r⃗) = (N − 1)/Vir where Vir stands for the irradiated volume:

S(q⃗ = 0) = 1 +
N − 1

Vir

∫
dr⃗ = N (2.1.14)

However, since constant g(r⃗) means homogeneous system (no contrast), there should be no scattering. To

solve this problem, S(q⃗) is re-defined as follows.

S(q⃗) := 1 +

∫
(g(r⃗)− ϱ)eiq⃗·r⃗dr⃗ (2.1.15)

where ϱ is the average number density in the irradiated volume. Under this definition, note that:

lim
q→0

S(q⃗) = 0 (2.1.16)

for completely homogeneous system. S(q = 0) is used to quantify the fluctuation of the system as shown

later.

Lastly, let us consider the scattering from N particles consisting of z atoms in irradiated volume (Fig-

ure 2.2(d)). If each particle does not penetrate into other particles, the differential cross section of the system
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is written as follows.

dσ

dΩ
=

∣∣∣∣∣∣
N∑
j=1

z∑
kj=1

bke
−iq⃗·(R⃗j+r⃗kj

)

∣∣∣∣∣∣
2

=

z∑
k=1

bke
−iq⃗·r⃗k

N∑
j=1

e−iq⃗·R⃗j

→ N(∆ρ)2V 2
p P (q⃗)S(q⃗) (2.1.17)

Like this, scattering from dilute solution is decomposed into two factors; form factor and structure factor.

In the following section, I’m going to introduce several examples of these factors, which is used in the latter

part of this thesis.

2.2 Form factors

Here I summarized the form factor used in the following sections. For other form factors, please refer to

The SANS Toolbox written by Boualem Hammouda [38].

2.2.1 Sphere

A sphere object of radius R with a uniform density ρ0 is described as follows.

ρ(r) =

ρ0 for r ≤ R

0 for r > R
(2.2.1.1)

In this case, ∆ρ = ρ0, Vp =
4π
3 R

3, and the form factor is calculated as follows.

P (q) =

[
3(sin qR− qR cos qR)

(qR)3

]2
(2.2.1.2)

2.2.2 Ellipsoid

The form factor of ellipsoid is the extension of that of sphere.

P (q) =

∫ 1

0

dx

[
3 sinu− u cosu

u3

]2
(2.2.2.1)

where

u := qRb
√
(Ra/Rb)2x2 + (1− x)2 (2.2.2.2)
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2.2 Form factors

2.2.3 Core-shell

Let us consider the form factor of the following core-shell structure.

ρ(r) =


ρc for r ≤ rc

ρs for rc ≤ r ≤ R

ρ0 for R < r

(2.2.3.1)

From Eq.(2.2.1.2):

P (q) =

[
(ρc − ρs)

4πr3c
3

3(sin qrc − qrc cos qrc)
(qrc)3

+ (ρs − ρ0)
4πR3

3

3(sin qR− qR cos qR)

(qR)3

]2
(2.2.3.2)

2.2.4 Star

Star polymer is the polymer which grows more than two polymers from one crosslink point.

P (q) =
2Z

fu2

[
u− (1− e−u) + f − 1

2
(1− e−u)2

]
(2.2.4.1)

where f is the number of arms of the star polymer, u := Za2q2/6, Z is the degree of polymerization and a

is the segment length [15].

2.2.5 Gaussian chain

Let us consider one-dimensional random walk. The length of one step is defined as b, which corresponds to

the segment length. The number of steps is defined as N , which corresponds to the degree of polymerization.

When N ≫ 1, the probability that the distance between the first monomer and the last monomer is Rx

is [23]:

P (N,Rx) =
1√

2πNb2
exp

(
− R2

x

2Nb2

)
(2.2.5.1)

In 3D space, Eq.(2.2.5.1) is modified as follows.

P (N, R⃗) =

(
3

2πNb2

)3/2

exp

(
− 3R2

2Nb2

)
(2.2.5.2)

Fourier transform of P (N, R⃗) is:

P (q⃗) =

∫
dR⃗P (r⃗)eiq⃗·R⃗

=

(
3

2πNb2

)3/2 ∫
dR⃗ exp

(
− 3R2

2Nb2

)
eiq⃗·R⃗

=

(
3

2πNb2

)3/2(
2πNb2

3

)3/2

exp

(
−Nq

2b2

6

)
= exp

(
−Nq

2b2

6

)
(2.2.5.3)
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2.2 Form factors

Here, I used the following formula. ∫
dr⃗e−αr

2

eiq⃗·r⃗ =
(π
α

)3/2
e−

q2

4α (2.2.5.4)

Scattering from Gaussian chain is calculated by using Eq.(2.1.13). The pair correlation function, G(r⃗), is

the average of P (|i− j|, r⃗).

G(r⃗) =
1

N2

N∑
i

N∑
j

P (|i− j|, r⃗) (2.2.5.5)

The scattering function, P (q⃗), is Fourier transform of G(r⃗):3 4

P (q⃗) =
1

N2

∫
dr⃗G(r⃗)eiq⃗·r⃗

=
1

N2

N∑
i

N∑
j

exp

(
−q

2b2

6
|i− j|

)
(2.2.5.6)

Eq.(2.2.5.6) is written as integral form.

P (q⃗)→ 1

N2

∫ N

0

di

∫ N

0

dj exp

(
−q

2b2

6
|i− j|

)
=

∫ 1

0

ds

∫ 1

0

dte−Q|s−t|

=

∫ 1

0

dt

[∫ t

0

dse−Q(t−s) +

∫ 1

t

dse−Q(s−t)
]

=
1

Q

∫ 1

0

dt
(
2− e−Qt − eQte−Q

)
=

2

Q2

(
e−Q +Q− 1

)
(2.2.5.7)

where

s :=
i

N
(2.2.5.8)

t :=
j

N
(2.2.5.9)

Q :=
q2b2N

6
= ⟨R2

g ⟩q2 (2.2.5.10)

Eq.(2.2.5.7) is called Debye function and used for the determination of Rg of polymers.

3Since this scattering function is a form factor, I used P (q⃗) instead of S(q⃗).
4Strictly speaking, we cannot use Eq.(2.2.5.2) when |i− j| is small. Here, I neglect this point since |i− j| ≫ 1 holds true in

most terms.
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2.3 Ornstein–Zernike equation

2.3 Ornstein–Zernike equation

2.3.1 Canonical and grand canonical ensemble

Ornstein–Zernike equation is one of the most important equation to characterize the fluctuation in solution.

Here, I derive this equation and explain the application for scattering problem [39]. First, I summarize

important quantities for canonical and grand canonical ensemble. Canonical ensemble is a system whose

temperature T , volume V , and the number of particles N are fixed. Let us write the Hamiltonian of identical

N -particle system as follows.

H(r⃗1, · · · , r⃗N , p⃗1, · · · , p⃗N ) = KN (p⃗1, · · · , p⃗N ) + VN (r⃗1, · · · , r⃗N ) (2.3.1.1)

where

KN (p⃗1, · · · , p⃗N ) =

N∑
i=1

|p⃗i|2

2m
(2.3.1.2)

The probability that the particle coordinates and momentum are r⃗1, · · · , r⃗N and p⃗1, · · · , p⃗N is represented

as follows.

pN (r⃗1, · · · , r⃗N , p⃗1, · · · , p⃗N ) =
1

h3NN !

e−βH

QN
(2.3.1.3)

where a normalization constant called canonical partition function, QN , is

QN =
1

h3NN !

∫
· · ·
∫
e−βHdr⃗1 · · · dr⃗Ndp⃗1 · · · dp⃗N (2.3.1.4)

The factor h3N is added to make the formula consistent with quantum system. The factor N ! means that we

cannot distinguish identical N particles. Integration for momentum in Eq.(2.3.1.4) is performed separately.∫
· · ·
∫
e−βHdp⃗1 · · · dp⃗N =

∫
exp

[
−β p

2
1

2m

]
dp⃗1 · · ·

∫
exp

[
−β p

2
N

2m

]
dp⃗N =

(
2πm

β

)3N/2

(2.3.1.5)

Here I used the following formula. ∫ ∞

−∞
e−αx

2

dx =

√
π

α
(2.3.1.6)

Substitute Eq.(2.3.1.5) to Eq.(2.3.1.4):

QN =
1

h3NN !

(
2πm

β

)3N/2 ∫
· · ·
∫
e−βVNdr⃗1 · · · dr⃗N

=
ZN

N !Λ3N
(2.3.1.7)

where

ZN :=

∫
· · ·
∫
e−βVNdr⃗1 · · · dr⃗N (2.3.1.8)

Λ :=

(
βh2

2πm

)1/2

=

(
2πβℏ2

m

)1/2

(2.3.1.9)

ZN is called configuration integral and Λ is called de Broglie thermal wavelength.
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2.3 Ornstein–Zernike equation

Canonical ensemble average for arbitrary quantity A(r⃗1, · · · , r⃗N , p⃗1, · · · , p⃗N ) is calculated as follows.

⟨A ⟩c :=
∫
· · ·
∫
ApN (r⃗1, · · · , r⃗N , p⃗1, · · · , p⃗N )dr⃗1 · · · dr⃗Ndp⃗1 · · · dp⃗N

=

∫
· · ·
∫
Ae−βHdr⃗1 · · · dr⃗Ndp⃗1 · · · dp⃗N

h3NN !QN
(2.3.1.10)

If A depends only on coordinates, Eq.(2.3.1.10) becomes:

⟨A ⟩c =

∫
· · ·
∫
Ae−βVNdr⃗1 · · · dr⃗N

h3NN !QN

(
2πm

β

)3N/2

=

∫
· · ·
∫
Ae−βVNdr⃗1 · · · dr⃗N(

h2
β

2πm

)3N/2

N !
ZN

N !Λ3N

=
1

ZN

∫
· · ·
∫
Ae−βVNdr⃗1 · · · dr⃗N (2.3.1.11)

The probability that a particle 1 is at r⃗ is calculated as follows.

pN (r⃗1 = r⃗) =
1

h3NN !QN

∫
· · ·
∫
e−βH(r⃗,r⃗2,··· )dr⃗2 · · · dr⃗Ndp⃗1 · · · dp⃗N

=

∫
· · ·
∫
e−βH(r⃗,r⃗2,··· )dr⃗2 · · · dr⃗Ndp⃗1 · · · dp⃗N∫

· · ·
∫
e−βH(r⃗1,r⃗2,··· )dr⃗1 · · · dr⃗Ndp⃗1 · · · dp⃗N

=

∫
· · ·
∫
e−βVN (r⃗,r⃗2,··· )dr⃗2 · · · dr⃗N∫

· · ·
∫
e−βVN (r⃗1,r⃗2,··· )dr⃗1 · · · dr⃗N

=
1

ZN

∫
· · ·
∫
e−βVN (r⃗,r⃗2,··· )dr⃗2 · · · dr⃗N (2.3.1.12)

The probability for other N − 1 particles can be calculated similarly. Particle density at r⃗, ρ
(1)
N (r⃗) is the

summation for all of the particles.

ρ
(1)
N (r⃗) =

N∑
i=1

pN (r⃗i = r⃗) =
N

ZN

∫
· · ·
∫
e−βVN (r⃗,r⃗2,··· )dr⃗2 · · · dr⃗N (2.3.1.13)

By comparing Eqs.(2.3.1.11) and (2.3.1.13), particle density is regarded as the canonical ensemble average

of delta functions:

⟨ δ(r⃗ − r⃗1) ⟩c =
1

ZN

∫
· · ·
∫
δ(r⃗ − r⃗1)e−βVN (r⃗1,r⃗2,··· )dr⃗1 · · · dr⃗N

=
1

ZN

∫
· · ·
∫
e−βVN (r⃗,r⃗2,··· )dr⃗2 · · · dr⃗N (2.3.1.14)

⟨
N∑
i=1

δ(r⃗ − r⃗i)

⟩
c

= ρ
(1)
N (r⃗) (2.3.1.15)

Similar to a one-particle density, let us define two-particle density, ρ
(2)
N (r⃗, r⃗′). The probability that a particle
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2.3 Ornstein–Zernike equation

1 is at r⃗ and a particle 2 is at r⃗′ is calculated as follows.

pN (r⃗1 = r⃗, r⃗2 = r⃗′) =
1

h3NN !QN

∫
· · ·
∫
e−βH(r⃗,r⃗′,r⃗3,··· )dr⃗3 · · · dr⃗Ndp⃗1 · · · dp⃗N

=
1

ZN

∫
· · ·
∫
e−βVN (r⃗,r⃗′,r⃗3,··· )dr⃗3 · · · dr⃗N (2.3.1.16)

ρ
(2)
N (r⃗, r⃗′) =

N∑
i=1

N∑
j ̸=i

pN (r⃗i = r⃗, r⃗j = r⃗′) =
N(N − 1)

ZN

∫
· · ·
∫
e−βVN (r⃗,r⃗′,r⃗3,··· )dr⃗3 · · · dr⃗N (2.3.1.17)

=

⟨
N∑
i=1

N∑
j ̸=i

δ(r⃗ − r⃗i)δ(r⃗′ − r⃗j)

⟩
c

(2.3.1.18)

Similar to this, n-particle density, ρ
(n)
N (r⃗1, · · · , r⃗n) is defined as follows.

ρ
(n)
N (r⃗1, · · · , r⃗n) :=

1

ZN

N !

(N − n)!

∫
· · ·
∫
e−βVN (r⃗1,··· ,r⃗N )dr⃗N−n · · · dr⃗N

=

⟨
N∑
i1=1

· · ·
N∑

in ̸=i1,···in−1

· · · δ(r⃗1 − r⃗i1) · · · δ(r⃗n − r⃗in)

⟩
c

(2.3.1.19)

Energy of the system of canonical ensemble is designated by T, V,N . This energy is called Helmholtz free

energy.

F (T, V,N) = U − TS (2.3.1.20)

dF = −SdT − PdV + µdN (2.3.1.21)

Helmholtz free energy is represented by the canonical partition function.

F = −kBT lnQN (2.3.1.22)

When the potential VN is decomposed into the following way,

VN (r⃗1, · · · , r⃗N )→ VN (r⃗1, · · · , r⃗N ) + ΦN (r⃗1, · · · , r⃗N ) (2.3.1.23)

where VN represents the potential energy arising from interparticle interaction and ΦN represents the po-

tential energy arising from the interaction with external field,

ΦN (r⃗1, · · · , r⃗N ) =

N∑
i

ϕ(r⃗i) (2.3.1.24)

In this case, configuration integral (Eq.(2.3.1.8)) is:

ZN :=

∫
· · ·
∫
e−βVN e−β(ϕ(r⃗1)) · · · e−β(ϕ(r⃗N ))dr⃗1 · · · dr⃗N

=

∫
· · ·
∫ [ N∏

i=1

e−β(ϕ(r⃗i))

]
e−βVNdr⃗1 · · · dr⃗N

=:

∫
· · ·
∫ [ N∏

i=1

y(r⃗i)

]
e−βVNdr⃗1 · · · dr⃗N (2.3.1.25)
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2.3 Ornstein–Zernike equation

where

y(r⃗i) := e−β(ϕ(r⃗i)) (2.3.1.26)

One-particle density (Eq.(2.3.1.13) or (2.3.1.15)) is: 5

ρ
(1)
N (r⃗) =

⟨
N∑
i=1

δ(r⃗ − r⃗i)

⟩
c

=
1

ZN

∫
· · ·
∫ [ N∏

i=1

y(r⃗i)

]
e−βVN (r⃗1,r⃗2,··· ,r⃗N )

(
N∑
i=1

δ(r⃗ − r⃗i)

)
dr⃗1 · · · dr⃗N

=
1

ZN

∫
· · ·
∫
y(r⃗1)y(r⃗2) · · · y(r⃗N )e−βVN (r⃗1,r⃗2,··· ,r⃗N ) (δ(r⃗ − r⃗1) + · · ·+ δ(r⃗ − r⃗N )) dr⃗1 · · · dr⃗N

=
1

ZN

[∫
· · ·
∫
y(r⃗)y(r⃗2) · · · y(r⃗N )e−βVN (r⃗,r⃗2,··· ,r⃗N )dr⃗2dr⃗3 · · · dr⃗N

+

∫
· · ·
∫
y(r⃗1)y(r⃗) · · · y(r⃗N )e−βVN (r⃗1,r⃗,··· ,r⃗N )dr⃗1dr⃗3 · · · dr⃗N + · · ·

+

∫
· · ·
∫
y(r⃗1)y(r⃗2) · · · y(r⃗N−1)e

−βVN (r⃗1,r⃗2,··· ,r⃗N−1)dr⃗1dr⃗2 · · · dr⃗N−1

]
(2.3.1.27)

=
Ny(r⃗)

ZN

∫
· · ·
∫ [ N∏

i=2

y(r⃗i)

]
e−βVN (r⃗,r⃗2,··· ,r⃗N )dr⃗2 · · · dr⃗N for N ≥ 2 (2.3.1.28)

Note that each term in Eq.(2.3.1.27) is the same. It is interesting to compare Eq.(2.3.1.28) with the functional

derivative of configuration integral. Let us differentiate Eq.(2.3.1.25) by y(r⃗). Since y(r⃗) is a function of r⃗,

ZN is a function of the function y(r⃗). This kind of function is called functional. 6

δZN [y]

δy(r⃗)
=

δ

δy(r⃗)

[∫
· · ·
∫ [ N∏

i=1

y(r⃗i)

]
e−βVN (r⃗,r⃗2,··· ,r⃗N )dr⃗1 · · · dr⃗N

]

=

∫
· · ·
∫
y(r⃗2)y(r⃗3) · · · y(r⃗N )e−βVN (r⃗,r⃗2,··· ,r⃗N )dr⃗2dr⃗3 · · · dr⃗N

+

∫
· · ·
∫
y(r⃗1)y(r⃗3) · · · y(r⃗N )e−βVN (r⃗1,r⃗,··· ,r⃗N )dr⃗1dr⃗3 · · · dr⃗N + · · ·

+

∫
· · ·
∫
y(r⃗1)y(r⃗2) · · · y(r⃗N−1)e

−βVN (r⃗1,r⃗2,··· ,r⃗N−1)dr⃗1dr⃗2 · · · dr⃗N−1

= N

∫
· · ·
∫ [ N∏

i=2

y(r⃗i)

]
e−βVN (r⃗,r⃗2,··· ,r⃗N )dr⃗2 · · · dr⃗N for N ≥ 2 (2.3.1.29)

Here I used the following formula.

δy(x′)

δy(x)
= δ(x− x′) (2.3.1.30)

From Eqs.(2.3.1.28) and (2.3.1.29), ρ
(1)
N (r⃗) is expressed by ZN [y] and y(r⃗).

ρ
(1)
N (r⃗) =

y(r⃗)

ZN

δZN [y]

δy(r⃗)
(2.3.1.31)

5When N = 1, ρ
(1)
1 (r⃗) =

y(r⃗)

Z1
e−βV1(r⃗).

6When N = 1,
δZ1[y]

δy(r⃗)
= e−βV1(r⃗). Note that Eq.(2.3.1.31) holds when N = 1.
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2.3 Ornstein–Zernike equation

By using the following equations,

d lnZN
dZN

=
1

ZN
(2.3.1.32)

d ln y(r⃗)

dy(r⃗)
=

1

y(r⃗)
(2.3.1.33)

lnQN = −βF (2.3.1.34)

ln y(r⃗) = −βϕ(r⃗) (2.3.1.35)

Eq.(2.3.1.31) is written as follows.

ρ
(1)
N (r⃗) =

δ lnZN
δ ln y(r⃗)

= −δ lnQN
βδϕ(r⃗)

=
δF

δϕ(r⃗)
(2.3.1.36)

Next, let us summarize important feature of grand canonical ensemble. Grand canonical ensemble is a

system whose temperature T , volume V , and chemical potential µ are fixed. Here, chemical potential is

defined as a derivative of Helmholtz energy by N as explained in next subsection.

µ :=
∂F

∂N
(2.3.1.37)

Difference between canonical ensemble and grand canonical ensemble is whether the total number of particles,

N , is fixed or not. Grand canonical partition function, Ξ, is defined similar to QN (Eq.(2.3.1.4)). However,

we have to sum up all of the possible N . Note that the subscript N in QN is no longer available for Ξ.

In addition, the energy will change when the particle is added to the system even if there is no interaction

between particles. This energy change is expressed by µ for one particle as shown in Eq.(2.3.1.37). When

we construct partition function, this effect should be subtracted. Therefore, Ξ is expressed as follows.

Ξ =

∞∑
N=0

1

h3NN !

∫
· · ·
∫
e−β(H−Nµ)dr⃗1 · · · dr⃗Ndp⃗1 · · · dp⃗N

=

∞∑
N=0

eβNµQN =

∞∑
N=0

eβNµ
ZN

N !Λ3N
=:

∞∑
N=0

zN

N !
ZN (2.3.1.38)

where

z := Λ−3eβµ (2.3.1.39)

Grand canonical ensemble average for arbitrary quantity A(r⃗1, · · · , r⃗N , p⃗1, · · · , p⃗N ) is calculated as follows.

⟨A ⟩g =
1

Ξ

∞∑
N=0

∫
· · ·
∫
Ae−β(H−Nµ)dr⃗1 · · · dr⃗Ndp⃗1 · · · dp⃗N

h3NN !
(2.3.1.40)
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2.3 Ornstein–Zernike equation

If A depends only on coordinates, Eq.(2.3.1.40) becomes:

⟨A ⟩g =
1

Ξ

∞∑
N=0

∫
· · ·
∫
Ae−β(VN−Nµ)dr⃗1 · · · dr⃗N

h3NN !

(
2πm

β

)3N/2

=
1

Ξ

∞∑
N=0

(eβµ)N

Λ3NN !

∫
· · ·
∫
Ae−βVNdr⃗1 · · · dr⃗N

=
1

Ξ

∞∑
N=0

zN

N !

∫
· · ·
∫
Ae−βVNdr⃗1 · · · dr⃗N

=
1

Ξ

∞∑
N=0

zN

N !
ZN ⟨A ⟩c (2.3.1.41)

Energy of the system of grand canonical ensemble is designated by T, V, µ. This energy is called grand

potential.

Ω(T, V, µ) = F −Nµ (2.3.1.42)

dΩ = −SdT − PdV −Ndµ (2.3.1.43)

Grand potential is represented by the grand canonical partition function.

Ω = −kBT ln Ξ (2.3.1.44)

Let us consider the case where the potential is decomposed like Eq.(2.3.1.24). In this case, grand canonical

partition function is calculated by substituting Eq.(2.3.1.25) to Eq.(2.3.1.38):

Ξ =

∞∑
N=0

zN

N !

∫
· · ·
∫ [ N∏

i=1

e−β(ϕ(r⃗i))

]
e−βVNdr⃗1 · · · dr⃗N

=:

∞∑
N=0

1

N !

∫
· · ·
∫ [ N∏

i=1

z(r⃗i)

]
e−βVNdr⃗1 · · · dr⃗N (2.3.1.45)

where

z(r⃗i) := ze−β(ϕ(r⃗i)) = Λ−3eβ(µ−ϕ(r⃗i)) =: Λ−3eβψ(r⃗i) (2.3.1.46)

where

ψ(r⃗i) := µ− ϕ(r⃗i) (2.3.1.47)

By using this grand canonical partition function, one-particle density for grand canonical ensemble, ρ(1)(r⃗),

is calculated as follows.
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2.3 Ornstein–Zernike equation

ρ(1)(r⃗) =

⟨
N∑
i=1

δ(r⃗ − r⃗i)

⟩
g

=
1

Ξ

∞∑
N=1

1

N !

∫
· · ·
∫ [ N∏

i=1

z(r⃗i)

]
e−βVN (r⃗1,r⃗2,··· ,r⃗N )

N∑
j=1

δ(r⃗ − r⃗j)dr⃗1 · · · dr⃗N

=
1

Ξ

∞∑
N=1

1

N !

[∫
· · ·
∫
z(r⃗)z(r⃗2) · · · z(r⃗N )e−βVN (r⃗,r⃗2,··· ,r⃗N )dr⃗2dr⃗3 · · · dr⃗N

+

∫
· · ·
∫
z(r⃗1)z(r⃗) · · · z(r⃗N )e−βVN (r⃗1,r⃗,··· ,r⃗N )dr⃗1dr⃗3 · · · dr⃗N + · · ·

+

∫
· · ·
∫
z(r⃗1)z(r⃗2) · · · z(r⃗N−1)e

−βVN (r⃗1,r⃗2,··· ,r⃗N−1)dr⃗1dr⃗2 · · · dr⃗N−1

]
=
z(r⃗)

Ξ

[
e−βV1(r⃗) +

∞∑
N=2

1

(N − 1)!

∫
· · ·
∫ [ N∏

i=2

z(r⃗i)

]
e−βVN (r⃗,r⃗2,··· ,r⃗N )dr⃗2 · · · dr⃗N

]
(2.3.1.48)

Let us compare Eq.(2.3.1.48) with the functional derivative of Ξ by z(r⃗).

δΞ[z]

δz(r⃗)
=

δ

δz(r⃗)

[ ∞∑
N=0

1

N !

∫
· · ·
∫ [ N∏

i=1

z(r⃗i)

]
e−βVN (r⃗1,r⃗2,··· ,r⃗N )dr⃗1 · · · dr⃗N

]

= e−βV1(r⃗) +

∞∑
N=2

1

N !

[∫
· · ·
∫
z(r⃗2)z(r⃗3) · · · z(r⃗N )e−βVN (r⃗,r⃗2,··· ,r⃗N )dr⃗2dr⃗3 · · · dr⃗N

+

∫
· · ·
∫
z(r⃗1)z(r⃗3) · · · z(r⃗N )e−βVN (r⃗1,r⃗,··· ,r⃗N )dr⃗1dr⃗3 · · · dr⃗N + · · ·

+

∫
· · ·
∫
z(r⃗1)z(r⃗2) · · · z(r⃗N−1)e

−βVN (r⃗1,r⃗2,··· ,r⃗N−1)dr⃗1dr⃗2 · · · dr⃗N−1

]
= e−βV1(r⃗) +

∞∑
N=2

1

(N − 1)!

∫
· · ·
∫ [ N∏

i=2

z(r⃗i)

]
e−βVN (r⃗,r⃗2,··· ,r⃗N )dr⃗2 · · · dr⃗N (2.3.1.49)

From Eqs.(2.3.1.48) and (2.3.1.49), ρ(1)(r⃗) is expressed by Ξ[z] and z(r⃗).

ρ(1)(r⃗) =
z(r⃗)

Ξ

δΞ[z]

δz(r⃗)
(2.3.1.50)

By using the following equations,

d ln Ξ

dΞ
=

1

Ξ
(2.3.1.51)

d ln z(r⃗)

dz(r⃗)
=

1

z(r⃗)
(2.3.1.52)

lnΞ = −βΩ (2.3.1.53)

ln z(r⃗) = lnΛ−3 + βψ(r⃗)→ d ln z(r⃗) = βdψ(r⃗) = −βdϕ(r⃗) (2.3.1.54)

Eq.(2.3.1.50) is written as follows.

ρ(1)(r⃗) =
δ ln Ξ

δ ln z(r⃗)
=

δ ln Ξ

βδψ(r⃗)
= − δΩ

δψ(r⃗)
=

δΩ

δϕ(r⃗)
(2.3.1.55)
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2.3 Ornstein–Zernike equation

2.3.2 Legendre transformation

(b)(a) (c)

Figure 2.3: Legendre transformation of (a) f(x) to g(p), (b) U(S, V,N) to F (T, V,N), (c) F [V (r⃗)] to F [ϕ(r⃗)].

Helmholtz free energy and grand potential is related to Legendre transformation (See also Section 3.3.1).

Legendre transformation is used to change the variable. However, Legendre transformation is not a mere

exchange of variable. Legendre transformation of a function f(x) is defined as follows (Eq.(3.3.1.25)).

g(p) := xp− f(x) s.t. f ′(x) = p (2.3.2.1)

In Figure 2.3(a), f(x) is an area of red region while g(p) is an area of green region. Important point is

that f(x) and g(p) has one-to-one correspondence when f(x) is a downward-convex function (f ′(x) ≥ 0 ∀x).
Energy, Helmholtz free energy, enthalpy, and Gibbs free energy are related to Legendre transformation as

introduced later (Eqs.(3.3.1.26) ∼ (3.3.1.29)). Similar to these quantities, grand potential Ω is related to

Helmholtz free energy F by Legendre transformation (Eq.2.3.2.1) as follows.

−Ω(T, V, µ) = Nµ− F (T, V,N) s.t.
∂F (T, V,N)

∂N
= µ(T, V,N) (2.3.2.2)

Negative sign is just a conventional one. Eq.(2.3.2.2) is graphically shown in Figure 2.3(b).

In Eq.(2.3.1.36), functional differentiation for F is done by ϕ(r⃗). Similar to this, functional differentiation

for Ξ is done by ϕ(r⃗) in Eq.(2.3.1.55). Therefore, let us include ϕ(r⃗) as a variable of F and Ξ.

Ω(T, V, µ, [ϕ]) = F (T, V,N, [ϕ])−Nµ s.t. ∂F (T, V,N, [ϕ])
∂N

= µ(T, V,N, [ϕ]) (2.3.2.3)

By using Eq.(2.3.1.47), variables µ and ϕ(r⃗) in Ω is combined to ψ(r⃗).

Ω(T, V, µ, [ϕ])→ Ω(T, V, [ψ]) (2.3.2.4)

Let us perform Legendre transformation of F for the variable ψ(r⃗). Legendre transformation can be

extended for functionals as follows.

F(T, V,N, [ρ(1)]) = F (T, V,N, [ϕ])−
∫
dr⃗ϕ(r⃗)ρ(1)(r⃗) s.t.

δF (T, V,N, [ϕ])

δϕ(r⃗)
= ρ(1)(T, V,N, [ϕ]) (2.3.2.5)

where F is called intrinsic free energy. Here, I used the relation Eq.(2.3.1.36) for the differentiation of
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2.3 Ornstein–Zernike equation

F by ϕ(r⃗). Eq.(2.3.2.5) is graphically shown in Figure 2.3(c). Since the number of particles is fixed,

F(T, V,N, [ρ(1)]) is defined in canonical ensemble. F is extended for grand canonical ensemble by converting

N as follows.

N →
∫
dr⃗ρ(1)(r⃗) (2.3.2.6)

where ρ(1)(r⃗) is one-particle density for grand canonical ensemble (Eq.(2.3.1.48)). Physical meaning of

Eq.(2.3.2.6) is that the integral of one-particle density within whole space of the system stands for the

number of particles in the system. Therefore, variables N and ρ(1)(r⃗) in F is combined to ρ(1)(r⃗).

F(T, V,N, [ρ(1)])→ F(T, V, [ρ(1)]) (2.3.2.7)

By using Eqs.(2.3.2.3) and (2.3.2.5), F(T, V, [ρ(1)]) is related to Ω(T, V, [ψ]) as follows.

F(T, V, [ρ(1)]) = F (T, V,N, [ϕ])−
∫
dr⃗ϕ(r⃗)ρ(1)(r⃗)

= Ω(T, V, [ψ]) +Nµ−
∫
dr⃗ϕ(r⃗)ρ(1)(r⃗)

= Ω(T, V, [ψ]) +

∫
dr⃗(µ− ϕ(r⃗))ρ(1)(r⃗)

= Ω(T, V, [ψ]) +

∫
dr⃗ψ(r⃗)ρ(1)(r⃗) (2.3.2.8)

By using Eq.(2.3.1.55), it is shown that Eq.(2.3.2.8) is also Legendre transformation.

F(T, V, [ρ(1)]) = Ω(T, V, [ψ]) +

∫
dr⃗ψ(r⃗)ρ(1)(r⃗) s.t.

δΩ(T, V, [ψ])

δψ(r⃗)
= −ρ(1)(T, V, [ψ]) (2.3.2.9)

2.3.3 Correlation function

From now, I use following notations for taking the average of particle density for grand canonical ensemble

(see Eqs.(2.3.1.15), (2.3.1.18), (2.3.1.48)).

⟨ ρ(r⃗) ⟩g :=

⟨
N∑
i=1

δ(r⃗ − r⃗i)

⟩
g

=
⟨
ρ
(1)
N (r⃗)

⟩
g
= ρ(1)(r⃗) (2.3.3.1)

⟨ ρ(r⃗)ρ(r⃗′) ⟩g :=

⟨
N∑
i=1

N∑
j=1

δ(r⃗ − r⃗i)δ(r⃗′ − r⃗j)

⟩
g

=

⟨
N∑
i=1

N∑
j ̸=1

δ(r⃗ − r⃗i)δ(r⃗′ − r⃗j)

⟩
g

+

⟨
N∑
i=1

δ(r⃗ − r⃗i)δ(r⃗′ − r⃗i)

⟩
g

=
⟨
ρ
(2)
N (r⃗, r⃗′)

⟩
g
+
⟨
ρ
(1)
N (r⃗)δ(r⃗ − r⃗′)

⟩
g

= ρ(2)(r⃗, r⃗′) + ρ(1)(r⃗)δ(r⃗ − r⃗′) (2.3.3.2)
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2.3 Ornstein–Zernike equation

ρ(1)(r⃗) is one-particle density for grand canonical ensemble as shown in Eq.(2.3.1.48). ρ(2)(r⃗, r⃗′) is two-

particle density for grand canonical ensemble:

ρ(2)(r⃗) :=

⟨
N∑
i=1

N∑
j ̸=1

δ(r⃗ − r⃗i)δ(r⃗′ − r⃗j)

⟩
g

=
1

Ξ

∞∑
N=1

1

N !

∫
· · ·
∫ [ N∏

i=1

z(r⃗i)

]
e−βVN (r⃗1,r⃗2,··· ,r⃗N )

 N∑
j=1

δ(r⃗ − r⃗j)

 N∑
k ̸=j

δ(r⃗ − r⃗k)

 dr⃗1 · · · dr⃗N

=
1

Ξ

∞∑
N=1

1

N !

[∫
· · ·
∫
z(r⃗)z(r⃗′)z(r⃗3) · · · z(r⃗N )e−βVN (r⃗,r⃗′,r⃗3,··· ,r⃗N )dr⃗3 · · · dr⃗N + · · ·

]

=
z(r⃗)z(r⃗′)

Ξ

[
e−βV2(r⃗,r⃗

′) +

∞∑
N=3

1

(N − 2)!

∫
· · ·
∫ [ N∏

i=3

z(r⃗i)

]
e−βVN (r⃗,r⃗′,r⃗3,··· ,r⃗N )dr⃗3 · · · dr⃗N

]
(2.3.3.3)

Let us compare Eq.(2.3.3.3) with the functional derivative of Ξ by z(r⃗) and z(r⃗′).

δ2Ξ[z]

δz(r⃗)δz(r⃗′)
=

δ2

δz(r⃗)δz(r⃗′)

[ ∞∑
N=0

1

N !

∫
· · ·
∫ [ N∏

i=1

z(r⃗i)

]
e−βVN (r⃗1,r⃗2,··· ,r⃗N )dr⃗1 · · · dr⃗N

]

= e−βV2(r⃗,r⃗
′) +

∞∑
N=3

1

(N − 2)!

∫
· · ·
∫ [ N∏

i=3

z(r⃗i)

]
e−βVN (r⃗,r⃗′,r⃗3,··· ,r⃗N )dr⃗3 · · · dr⃗N (2.3.3.4)

From Eqs.(2.3.3.3) and (2.3.3.4), ρ(2)(r⃗, r⃗′) is expressed by Ξ[z] and z(r⃗). 7

ρ(2)(r⃗, r⃗′) =
z(r⃗)z(r⃗′)

Ξ

δ2Ξ[z]

δz(r⃗)δz(r⃗′)
(2.3.3.5)

Substitute Eq.(2.3.1.50) to Eq.(2.3.3.5):

ρ(2)(r⃗, r⃗′) =
z(r⃗)z(r⃗′)

Ξ

δ

δz(r⃗′)

[
Ξ[z]

z(r⃗)
ρ(1)(r⃗)

]
(2.3.3.6)

Differentiation in Eq.(2.3.3.6) is calculated as follows.

δΞ[z]

δz(r⃗′)
=

Ξ

z(r⃗′)
ρ(1)(r⃗′) (2.3.3.7)

δz(r⃗)−1

δz(r⃗′)
=

δz(r⃗)

δz(r⃗′)

δz(r⃗)−1

δz(r⃗)
= − 1

z(r⃗)2
δ(r⃗ − r⃗′) (2.3.3.8)

δρ(1)(r⃗)

δz(r⃗′)
=
δ ln z(r⃗′)

δz(r⃗′)

δρ(1)(r⃗)

δ ln z(r⃗′)
=

1

z(r⃗′)

δρ(1)(r⃗)

δ ln z(r⃗′)
(2.3.3.9)

Substitute Eqs.(2.3.3.7) ∼ (2.3.3.9) to Eq.(2.3.3.6):

ρ(2)(r⃗, r⃗′) =
z(r⃗)z(r⃗′)

Ξ

[
Ξ

z(r⃗)z(r⃗′)
ρ(1)(r⃗)ρ(1)(r⃗′)− Ξ

z(r⃗)2
ρ(1)(r⃗)δ(r⃗ − r⃗′) + Ξ

z(r⃗)z(r⃗′)

δρ(1)(r⃗)

δ ln z(r⃗′)

]
= ρ(1)(r⃗)ρ(1)(r⃗′)− ρ(1)(r⃗)δ(r⃗ − r⃗′) + δρ(1)(r⃗)

δ ln z(r⃗′)
(2.3.3.10)

7In general, ρ(n)(r⃗1, · · · , r⃗n) =
z(r⃗1) · · · z(r⃗n)

Ξ

δnΞ[z]

δz(r⃗1) · · · δz(r⃗n)
.
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2.3 Ornstein–Zernike equation

Let us define density correlation function as follows.

H(n)(r⃗1, · · · , r⃗n) :=
⟨[
ρ(r⃗1)− ρ(1)(r⃗1)

]
· · ·
[
ρ(r⃗n)− ρ(1)(r⃗n)

]⟩
g

(2.3.3.11)

Following this definition and Eqs.(2.3.3.1), (2.3.3.2), H(1)(r⃗) and H(2)(r⃗, r⃗′) are calculated as follows.

H(1)(r⃗) =
⟨
ρ(r⃗)− ρ(1)(r⃗)

⟩
g
= ⟨ ρ(r⃗) ⟩g − ρ(1)(r⃗) = 0 (2.3.3.12)

H(2)(r⃗, r⃗′) =
⟨[
ρ(r⃗)− ρ(1)(r⃗)

] [
ρ(r⃗′)− ρ(1)(r⃗′)

]⟩
g

= ⟨ ρ(r⃗)ρ(r⃗′) ⟩g − ⟨ ρ(r⃗) ⟩gρ(1)(r⃗′)− ρ(1)(r⃗)⟨ ρ(r⃗′) ⟩g + ρ(1)(r⃗)ρ(1)(r⃗′)

= ρ(2)(r⃗, r⃗′) + ρ(1)(r⃗)δ(r⃗ − r⃗′)− ρ(1)(r⃗)ρ(1)(r⃗′) (2.3.3.13)

Let us define n-particle distribution function, g(n)(r⃗1, · · · , r⃗n), and pair correlation function, h(2)(r⃗, r⃗′), as

follows.

g(n)(r⃗1, · · · , r⃗n) :=
ρ(n)(r⃗1, · · · , r⃗n)∏n

i=1 ρ
(1)(r⃗i)

(2.3.3.14)

h(2)(r⃗, r⃗′) := g(2)(r⃗, r⃗′)− 1 (2.3.3.15)

Substitute Eqs.(2.3.3.14) and (2.3.3.15) to Eq.(2.3.3.13):

H(2)(r⃗, r⃗′) = ρ(1)(r⃗)ρ(1)(r⃗′)(g(2)(r⃗, r⃗′)− 1) + ρ(1)(r⃗)δ(r⃗ − r⃗′)

= ρ(1)(r⃗)ρ(1)(r⃗′)h(2)(r⃗, r⃗′) + ρ(1)(r⃗)δ(r⃗ − r⃗′) (2.3.3.16)

Another form is obtained by substitute Eqs.(2.3.3.10) and (2.3.1.54) to Eq.(2.3.3.13):

H(2)(r⃗, r⃗′) =
δρ(1)(r⃗)

δ ln z(r⃗′)
=

1

β

δρ(1)(r⃗)

δψ(r⃗′)
(2.3.3.17)

To extract the effect of particle interactions on the density profile, let us decompose the intrinsic free

energy, F [ρ(1)], into two parts8; ideal part, F id[ρ(1)], which is calculated by setting the potential V and ϕ

to be 0, and excess part, Fex[ρ(1)].

F [ρ(1)] =: F id[ρ(1)] + Fex[ρ(1)] (2.3.3.18)

When ϕ = 0, F is equal to Helmholtz energy, F (see Eq.(2.3.2.5)). Therefore, F id[ρ(1)] is calculated from

Helmholtz energy by setting VN = 0. When VN = 0, ZN is (see Eq.(2.3.1.8):

ZidN =

∫
· · ·
∫
dr⃗1 · · · dr⃗N = V N (2.3.3.19)

Substitute Eq.(2.3.3.19) to Eq.(2.3.1.7):

QidN =
ZidN

N !Λ3N
=

V N

N !Λ3N
(2.3.3.20)

8From now, I omit the other variables, T and V , for simplicity.
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2.3 Ornstein–Zernike equation

Substitute Eq.(2.3.3.20) to Eq.(2.3.1.22):

F id[ρ(1)] = F id = −kBT lnQidN

= −kBT
(
N ln[Λ−3V ]− lnN !

)
≃ kBT

(
N ln[Λ3V −1] +N lnN −N

)
= kBTN

(
ln[Λ3N/V ]− 1

)
(2.3.3.21)

where Stirling’s formula, lnN ! ≃ N lnN − N is used. When there is no interaction between particles,

one-particle density, ρ
(1)
N , should be N/V . Therefore,

F id[ρ(1)] ≃ kBTN
(
ln[Λ3ρ

(1)
N ]− 1

)
→ kBT

∫
dr⃗ρ(1)(r⃗)

(
ln[Λ3ρ(1)(r⃗)]− 1

)
(2.3.3.22)

Here, the number of particles are substituted by the integral of one-particle density (Eq.(2.3.2.6)). Functional

derivative of F id[ρ(1)] is calculated as follows.

δF id[ρ(1)] = kBT

∫
dr⃗
[
δρ(1)(r⃗)

(
ln[Λ3ρ(1)(r⃗)]− 1

)
+ ρ(1)(r⃗)δ

(
ln[Λ3ρ(1)(r⃗)]− 1

)]
= kBT

∫
dr⃗
[
δρ(1)(r⃗)

(
ln[Λ3ρ(1)(r⃗)]− 1

)
+ ρ(1)(r⃗)δ

(
ln ρ(1)(r⃗)

)]
= kBT

∫
dr⃗

[
δρ(1)(r⃗)

(
ln[Λ3ρ(1)(r⃗)]− 1

)
+ ρ(1)(r⃗)

δρ(1)(r⃗)

ρ(1)(r⃗)

]
= kBT

∫
dr⃗δρ(1)(r⃗) ln[Λ3ρ(1)(r⃗)] (2.3.3.23)

δF id[ρ(1)]
δρ(1)(r⃗)

= kBT

∫
dr⃗′δ(r⃗ − r⃗′) ln[Λ3ρ(1)(r⃗′)] =

1

β
ln[Λ3ρ(1)(r⃗)] (2.3.3.24)

As for excess part, let us define new function called direct correlation function as follows.

δFex[ρ(1)]
δρ(1)(r⃗)

=: − 1

β
c(1)(r⃗) (2.3.3.25)

Higher order direct correlation functions are defined as follows.

δnFex[ρ(1)]
δρ(1)(r⃗1) · · · δρ(1)(r⃗n)

=: − 1

β
c(n)(r⃗1, · · · , r⃗n)] (2.3.3.26)

By using Eqs.(2.3.3.24) and (2.3.3.25), functional derivative of F [ρ(1)] is:

β
δF [ρ(1)]
δρ(1)(r⃗)

= ln[Λ3ρ(1)(r⃗)]− c(1)(r⃗) (2.3.3.27)

Functional derivative of F [ρ(1)] is also calculated by using Eq.(2.3.2.8).

δF(T, V, [ρ(1)]) = δΩ(T, V, [ψ]) +

∫
dr⃗ψ(r⃗)δρ(1)(r⃗)

→ δF [ρ(1)]
δρ(1)(r⃗)

= ψ(r⃗) (2.3.3.28)
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2.3 Ornstein–Zernike equation

From Eqs.(2.3.3.26) and (2.3.3.28):

βψ(r⃗) = ln[Λ3ρ(1)(r⃗)]− c(1)(r⃗) (2.3.3.29)

Finally, I’m going to derive Ornstein–Zernike equation. Starting point is the following identity.∫
H(2)(r⃗1, r⃗3)(H

(2))−1(r⃗3, r⃗2)dr⃗3 = δ(r⃗1 − r⃗2) (2.3.3.30)

(H(2))−1(r⃗, r⃗′) is an inversion function of H(2)(r⃗, r⃗′), which is calculated by using Eq.(2.3.3.17).

(H(2))−1(r⃗, r⃗′) = β
δψ(r⃗)

δρ(1)(r⃗′)
(2.3.3.31)

By using Eqs.(2.3.3.29) and (2.3.3.26),

(H(2))−1(r⃗, r⃗′) =
δ

δρ(1)(r⃗′)

[
lnΛ3 + ln ρ(1)(r⃗)− c(1)(r⃗)

]
=

1

ρ(1)(r⃗)
δ(r⃗ − r⃗′)− c(2)(r⃗, r⃗′) (2.3.3.32)

Substitute Eqs.(2.3.3.16) and (2.3.3.32) to Eq.(2.3.3.30):∫ [
ρ(1)(r⃗1)ρ

(1)(r⃗3)h
(2)(r⃗1, r⃗3) + ρ(1)(r⃗1)δ(r⃗1 − r⃗3)

] [ 1

ρ(1)(r⃗3)
δ(r⃗3 − r⃗2)− c(2)(r⃗3, r⃗2)

]
dr⃗3 = δ(r⃗1 − r⃗2)

→
∫ [

ρ(1)(r⃗1)h
(2)(r⃗1, r⃗3)δ(r⃗3 − r⃗2)− ρ(1)(r⃗1)ρ(1)(r⃗3)h(2)(r⃗1, r⃗3)c(2)(r⃗3, r⃗2)

+
ρ(1)(r⃗1)

ρ(1)(r⃗3)
δ(r⃗1 − r⃗3)δ(r⃗3 − r⃗2)− ρ(1)(r⃗1)c(2)(r⃗3, r⃗2)δ(r⃗1 − r⃗3)

]
dr⃗3 = δ(r⃗1 − r⃗2)

→ ρ(1)(r⃗1)h
(2)(r⃗1, r⃗2)−

∫
ρ(1)(r⃗1)ρ

(1)(r⃗3)h
(2)(r⃗1, r⃗3)c

(2)(r⃗3, r⃗2)dr⃗3 + δ(r⃗1 − r⃗2)− ρ(1)(r⃗1)c(2)(r⃗1, r⃗2) = δ(r⃗1 − r⃗2)

→ h(2)(r⃗1, r⃗2) = c(2)(r⃗1, r⃗2) +

∫
ρ(1)(r⃗3)h

(2)(r⃗1, r⃗3)c
(2)(r⃗3, r⃗2)dr⃗3 (2.3.3.33)

Eq.(2.3.3.33) is called Ornstein–Zernike equation. When h(2)(r⃗, r⃗′) and c(2)(r⃗, r⃗′) depends only on the dis-

tance between r⃗ and r⃗′ and ρ(1)(r⃗) is regarded as an uniform, Eq.(2.3.3.33) becomes more simple.

h(2)(|r⃗1 − r⃗2|) = c(2)(|r⃗1 − r⃗2|) + ρ

∫
h(2)(|r⃗1 − r⃗3|)c(2)(|r⃗3 − r⃗2|)dr⃗3

= c(2)(|r⃗1 − r⃗2|) + ρ

∫
h(2)(|r⃗1 − r⃗3|)c(2)(|r⃗2 − r⃗3|)dr⃗3

= c(2)(|r⃗1 − r⃗2|) + ρ

∫
h(2)(| − r⃗3|)c(2)(|r⃗2 − r⃗1 − r⃗3|)dr⃗3 (2.3.3.34)

By defining r⃗ := r⃗2 − r⃗1, r := |r⃗|:

h(2)(r) = c(2)(r) + ρ

∫
h(2)(r′)c(2)(|r⃗ − r⃗′|)dr⃗′ (2.3.3.35)
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2.4 Structure factors

2.3.4 Application to scattering function

Let us see the relationship between the direct correlation function, c(2)(r), and structure factor, S(q)

(Eq.(2.1.15)) [39]. From here, we consider the isotropic case. By comparing the definition of static pair-

distribution function, g(r) (Eq.(2.1.12)) and two-particle distribution function, g(2)(r) (Eq.(2.3.3.14), r :=

|r⃗ − r⃗′|), these two quantities are connected as follows.

g(2)(r) =
g(r)

ρ
(2.3.4.1)

where ρ in Eq.(2.3.4.1) is expressed as ϱ in Eq.(2.1.15). Substitute Eq.(2.3.4.1) to Eq.(2.1.15):

S(q) := 1 + ρ

∫
(g(2)(r)− 1)eiq⃗·r⃗dr⃗ = 1 + ρ

∫
h(2)(r)eiq⃗·r⃗dr⃗ = 1 + ρh(2)(q) (2.3.4.2)

h(2)(q) is a Fourier transform of h(2)(r). Fourier transform of Eq.(2.3.3.35) is a form of convolution and

calculated as follows.

h(2)(q) =

∫
h(2)(r)eiq⃗·r⃗dr⃗

=

∫
c(2)(r)eiq⃗·r⃗dr⃗ + ρ

∫
dr⃗

∫
dr⃗′h(2)(r′)c(2)(|r⃗ − r⃗′|)eiq⃗·r⃗

= c(2)(q) + ρ

∫
d(r⃗ − r⃗′)

∫
dr⃗′h(2)(r′)c(2)(|r⃗ − r⃗′|)eiq⃗·(r⃗−r⃗

′)eiq⃗·r⃗
′

= c(2)(q) + ρh(2)(q)c(2)(q) (2.3.4.3)

Therefore, h(2)(q) and S(q) is expressed as a function of c(2)(q).

h(2)(q) =
c(2)(q)

1− ρc(2)(q)
(2.3.4.4)

S(q) = 1 +
ρc(2)(q)

1− ρc(2)(q)
=

1

1− ρc(2)(q)
(2.3.4.5)

2.4 Structure factors

2.4.1 Closure relation

Let us use Eq.(2.3.4.5) to calculate scattering functions. To achieve this goal, we have to know the

relationship between c(2)(r) and h(2)(r), otherwise we cannot solve Ornstein–Zernike equation, Eq.(2.3.3.35).

This relationship is called closure relation. Let us assume that the potential VN (r⃗1, · · · , r⃗N ) in Eq.(2.3.1.1)

is expressed by the summation of potential energy between each particle pair.

VN (r⃗1, · · · , r⃗N ) =

N∑
i=1

N∑
j>i

v(r⃗i, r⃗j) (2.4.1.1)
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2.4 Structure factors

Then, let us consider the case where one particle is added to the origin of the system, r⃗0. As a result, the

number of particle is modified to N + 1 and the potential energy is modified to:

VN+1(r⃗0, r⃗1, · · · , r⃗N ) =

N+1∑
i=0

N+1∑
j>i

v(r⃗i, r⃗j) (2.4.1.2)

VN+1(r⃗0, r⃗1, · · · , r⃗N ) can be decomposed into two terms; interactions with the new particle at r⃗0 and else.

VN+1(r⃗0, r⃗1, · · · , r⃗N ) =

N∑
i=1

N∑
j>i

v(r⃗i, r⃗j) +

N∑
i=1

v(r⃗0, r⃗i) =: VN (r⃗1, · · · , r⃗N ) +

N∑
i=1

ϕ(r⃗i) (2.4.1.3)

This is similar to Eq.(2.3.1.23). Then, let us assume that the reference system is N+1-particle system whose

potential energy is VN (r⃗1, · · · , r⃗N ) and the term
∑N
i=1 ϕ(r⃗i) is assumed to be an external field. From now, I

attach the subscript 0 for the quantities of reference system. For examples, one-particle density in canonical

ensemble is written by let y(r⃗) be 0 in Eq.(2.3.1.28).

ρ
(1)
N,0(r⃗) =

1

ZN,0

∫
· · ·
∫
e−βVN (r⃗1,··· ,r⃗N )

(
N∑
i=1

δ(r⃗ − r⃗i)

)
dr⃗1 · · · dr⃗N

=
N

ZN,0

∫
· · ·
∫
e−βVN (r⃗,r⃗2,··· ,r⃗N )dr⃗2 · · · dr⃗N (2.4.1.4)

where

ZN,0 :=

∫
· · ·
∫
e−βVN (r⃗1,r⃗2,··· ,r⃗N )dr⃗1 · · · dr⃗N (2.4.1.5)

In grand canonical ensemble,

ρ
(1)
0 (r⃗) =

1

Ξ0

∞∑
N=1

zN

N !
ZN,0ρ

(1)
N,0(r⃗) (2.4.1.6)

where

Ξ0 :=

∞∑
N=0

zN

N !
ZN,0 (2.4.1.7)

Two-particle density is:

ρ
(2)
N,0(r⃗, r⃗

′) =
N(N − 1)

ZN,0

∫
· · ·
∫
e−βVN (r⃗,r⃗′,r⃗3,··· ,r⃗N )dr⃗3 · · · dr⃗N (2.4.1.8)

ρ
(2)
0 (r⃗, r⃗′) =

1

Ξ0

∞∑
N=2

zN

N !
ZN,0ρ

(2)
N,0(r⃗, r⃗

′)

=
1

Ξ0

∞∑
N=2

zN

(N − 2)!

∫
· · ·
∫
e−βVN (r⃗,r⃗′,r⃗3,··· ,r⃗N )dr⃗3 · · · dr⃗N (2.4.1.9)
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2.4 Structure factors

Let us see the relationship between reference system and actual system. Grand canonical partition function

for actual system is decomposed to:

Ξ =

∞∑
N=0

zN

N !

∫
· · ·
∫
e−βVN+1(r⃗0,r⃗1,··· ,r⃗N )dr⃗1 · · · dr⃗N

=
Ξ0

z

∞∑
N=0

1

Ξ0

zN+1

N !

∫
· · ·
∫
e−βVN+1(r⃗0,r⃗1,··· ,r⃗N )dr⃗1 · · · dr⃗N

=
Ξ0

z

∞∑
N=1

1

Ξ0

zN

(N − 1)!

∫
· · ·
∫
e−βVN (r⃗0,r⃗1,··· ,r⃗N−1)dr⃗1 · · · dr⃗N−1 (2.4.1.10)

Here, ∫
· · ·
∫
e−βVN (r⃗0,r⃗1,··· ,r⃗N−1)dr⃗1 · · · dr⃗N−1

=

∫
· · ·
∫
e−βVN (r⃗0,r⃗2,··· ,r⃗N )dr⃗2 · · · dr⃗N =

ZN,0ρ
(1)
N,0(r⃗0)

N
(2.4.1.11)

Substitute Eq.(2.4.1.11) to (2.4.1.10):

Ξ =
Ξ0

z

∞∑
N=1

1

Ξ0

zN

N !
ZN,0ρ

(1)
N,0(r⃗0) =

Ξ0

z
ρ
(1)
0 (2.4.1.12)

Here, I use the fact that ρ
(1)
0 (r⃗) does not depend on r⃗ since the potential is homogeneous.

Next, let us decompose ρ(1)(r⃗1) (Eq.(2.3.1.48)). By using Eq.(2.4.1.12):

ρ(1)(r⃗1) =
1

Ξ

∞∑
N=1

zN

(N − 1)!

∫
· · ·
∫
e−βVN+1(r⃗0,r⃗1,r⃗2,··· ,r⃗N )dr⃗2 · · · dr⃗N

=
1

ρ
(1)
0 Ξ0

∞∑
N=1

zN+1

(N − 1)!

∫
· · ·
∫
e−βVN+1(r⃗0,r⃗1,r⃗2,··· ,r⃗N )dr⃗2 · · · dr⃗N

=
1

ρ
(1)
0 Ξ0

∞∑
N=2

zN

(N − 2)!

∫
· · ·
∫
e−βVN (r⃗0,r⃗1,r⃗2,··· ,r⃗N−1)dr⃗2 · · · dr⃗N−1

=
1

ρ
(1)
0 Ξ0

∞∑
N=2

zN

(N − 2)!

∫
· · ·
∫
e−βVN (r⃗0,r⃗1,r⃗3,··· ,r⃗N )dr⃗3 · · · dr⃗N

(2.4.1.13)

Substitute Eq.(2.4.1.9) to (2.4.1.13):

ρ(1)(r⃗1) =
ρ
(2)
0 (r⃗0, r⃗1)

ρ
(1)
0

(2.4.1.14)

For reference system, Eq.(2.3.3.14) becomes:

g
(2)
0 (r⃗0, r⃗1) =

ρ
(2)
0 (r⃗0, r⃗1)

ρ
(1)
0 (r⃗0)ρ

(1)
0 (r⃗1)

=
ρ
(2)
0 (r⃗0, r⃗1)(
ρ
(1)
0

)2 (2.4.1.15)

Substitute Eq.(2.4.1.15) to (2.4.1.14):

ρ(1)(r⃗1) = g
(2)
0 (r⃗0, r⃗1)ρ

(1)
0 (2.4.1.16)
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2.4 Structure factors

Eq.(2.4.1.16) means that one-particle density for actual system is expressed by the particle densities of

reference system. This technique is called random phase approximation (See also Section 3.3.3). Here, let

us approximate that g
(2)
0 (r⃗0, r⃗1) is two-particle distribution function of the actual system.

g
(2)
0 (r⃗0, r⃗1)→ g(2)(|r⃗0 − r⃗1|) = g(2)(r1) (2.4.1.17)

Note that r⃗0 is the origin.

By using this approximation, let us see the relationship between g(2)(r) and c(2)(r). First, let us expand

c(1)(r⃗) around the reference system by ρ(1)(r⃗).

c(1)(r⃗) ≃ c(1)0 +

∫
∆ρ(1)(r⃗′)

δc(1)(r⃗)

δρ(1)(r⃗′)

∣∣∣∣
ϕ=0

dr⃗′ (2.4.1.18)

c
(1)
0 is a direct correlation function of the reference system. From Eq.(2.3.3.29):

βµ0 = ln[Λ3ρ
(1)
0 (r⃗)]− c(1)0 (r⃗)

→ c
(1)
0 = ln[Λ3ρ

(1)
0 ]− βµ0 (2.4.1.19)

Note that ψ(r⃗) of the reference state is µ since ϕ(r⃗) = 0. From Eqs.(2.3.3.25) and (2.3.3.26):

δc(1)(r⃗)

δρ(1)(r⃗′)
= c(2)(r⃗, r⃗′) (2.4.1.20)

Substitute Eqs.(2.4.1.19) and (2.4.1.20) to Eq.(2.4.1.18):

c(1)(r⃗)→ ln[Λ3ρ
(1)
0 ]− βµ0 +

∫
∆ρ(1)(r⃗′)c

(2)
0 (r⃗, r⃗′)dr⃗′ (2.4.1.21)

From Eq.(2.3.3.29), c(1)(r⃗) is expressed as follows.

c(1)(r⃗) = ln[Λ3ρ(1)(r⃗)]− βµ+ βϕ(r⃗) (2.4.1.22)

Here, we assume that the chemical potential of actual system is the same as the reference system.

µ→ µ0 (2.4.1.23)

ϕ(r⃗) is a pairwise potential (Eq.(2.4.1.1)), v(r), where r = |r⃗| is distance between two particles. Therefore,

c(1)(r⃗)→ ln[Λ3ρ(1)(r⃗)]− βµ0 + βv(r) (2.4.1.24)

By comparing Eqs.(2.4.1.21) and (2.4.1.24):

ln[Λ3ρ
(1)
0 ]− βµ0 +

∫
∆ρ(1)(r⃗′)c

(2)
0 (r⃗, r⃗′)dr⃗′ = ln[Λ3ρ(1)(r⃗)]− βµ0 + βv(r)

→ ρ(1)(r⃗) = ρ
(1)
0 exp

[
−βv(r) +

∫
∆ρ(1)(r⃗′)c

(2)
0 (r⃗, r⃗′)dr⃗′

]
(2.4.1.25)

∆ρ(1)(r⃗) is calculated by using Eq.(2.4.1.16):

∆ρ(1)(r⃗) = ρ(1)(r⃗)− ρ(1)0 = ρ
(1)
0 (g(2)(r)− 1) = ρ

(1)
0 h(2)(r) (2.4.1.26)
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2.4 Structure factors

Here, we assume that c(2)(r⃗, r⃗′) of actual system is the same as the reference system.

c
(2)
0 (r⃗, r⃗′)→ c(2)(r⃗, r⃗′) = c(2)(|r⃗ − r⃗′|) (2.4.1.27)

By using Ornstein–Zernike equation (Eq.(2.3.3.35)), the integral in Eq.(2.4.1.25) becomes:∫
∆ρ(1)(r⃗′)c(2)(|r⃗ − r⃗′|)dr⃗′ = ρ

(1)
0

∫
h(2)(r′)c(2)(|r⃗ − r⃗′|)dr⃗′ = h(2)(r)− c(2)(r) (2.4.1.28)

Substitute Eqs.(2.4.1.16) and (2.4.1.28) to Eq.(2.4.1.25):

g(2)(r) = exp
[
−βv(r) + h(2)(r)− c(2)(r)

]
(2.4.1.29)

Eq.(2.4.1.29) is called hypernetted chain (HNC) approximation.

Another closure relation is obtained by starting from ec
(1)(r⃗).

exp
[
c(1)(r⃗)

]
≃ exp

[
c
(1)
0 (r⃗)

]
+

∫
∆ρ(1)(r⃗′)

δ exp[c(1)(r⃗)]

δρ(1)(r⃗′)

∣∣∣∣
ϕ=0

dr⃗′ (2.4.1.30)

Functional derivative in Eq.(2.4.1.30) is calculated as follows.

δ exp[c(1)(r⃗)]

δρ(1)(r⃗′)

∣∣∣∣
ϕ=0

=
δc(1)(r⃗)

δρ(1)(r⃗′)

∣∣∣∣
ϕ=0

δ exp[c(1)(r⃗)]

δc(1)(r⃗)

∣∣∣∣
ϕ=0

= c
(2)
0 (r⃗, r⃗′) exp[c

(1)
0 (r⃗)]→ c(2)(|r⃗ − r⃗′|) exp[c(1)0 (r⃗)]

(2.4.1.31)

By taking exponential of Eqs.(2.4.1.19) and (2.4.1.24):

exp
[
c(1)(r⃗)

]
= Λ3ρ(1)(r⃗)e−βµ0eβv(r) (2.4.1.32)

exp
[
c
(1)
0 (r⃗)

]
= Λ3ρ

(1)
0 e−βµ0 (2.4.1.33)

Substitute Eqs.(2.3.3.35), (2.4.1.16), (2.4.1.26), (2.4.1.31) ∼ (2.4.1.33) to Eq.(2.4.1.30):

exp
[
c(1)(r⃗)

]
= exp

[
c
(1)
0 (r⃗)

](
1 +

∫
ρ
(1)
0 h(2)(r′)c

(2)
0 (|r⃗ − r⃗′|)dr⃗′

)
→ Λ3ρ(1)(r⃗)e−βµ0eβv(r) = Λ3ρ

(1)
0 e−βµ0

(
1 + h(2)(r)− c(2)(r)

)
→ ρ(1)eβv(r) = ρ

(1)
0 e−βv(r)

(
1 + h(2)(r)− c(2)(r)

)

g(2)(r) = e−βv(r)
[
1 + h(2)(r)− c(2)(r)

]
(2.4.1.34)

Eq.(2.4.1.34) is called Percus–Yevick (PY) approximation [40]. By using Eq.(2.3.3.15), c(2)(r) is expressed

as follows.

g(2)(r) = e−βv(r)
[
g(2)(r)− c(2)(r)

]
→ c(2)(r) = g(2)(r)

[
1− eβv(r)

]
(2.4.1.35)
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2.4.2 Percus–Yevick equation for a hard sphere

Figure 2.4: Configuration for hard sphere model.

Let us calculate the scattering function from a hard sphere. The potential is defined as follows.

v(r) =

∞ for r < d = 2R

0 for r ≥ d = 2R
(2.4.2.1)

Here, d represents the diameter of a hard sphere and R is the radius (Figure 2.4). The center of mass between

two particles cannot be less than d since hard sphere cannot penetrate into other particles. This means that

two-particle distribution function is 0 for r < d.

g(2)(r) = 0 for r < d (2.4.2.2)

Under Percus–Yevick approximation, h(2)(r) and c(2)(r) is expressed as follows (Eqs.(2.3.3.15) and (2.4.1.35)).

h(2)(r) =

−1 for r < d

g(2)(r)− 1 for r ≥ d
(2.4.2.3)

c(2)(r) =

g(2)(r)
[
1− eβv(r)

]
for r < d

0 for r ≥ d
(2.4.2.4)

The task is the calculation of c(2)(r) for r < d. Note that g(2)(r) = 0 while eβv(r) =∞ for r < d. Analytical

solution was given by Wertheim and Thiele in 1963 by using inverse Laplace transformation [41–43]. Here, I

introduce more simple derivation presented by Kelbg [44]. Calculation is performed by direct differentiation

of Ornstein–Zernike equation, Eq.(2.3.3.35). I’m going to use the following modified equation.

h(2)(r) = c(2)(r) + ρ

∫
h(2)(r′)c(2)(|r⃗ − r⃗′|)dr⃗′

= c(2)(r) + ρ

∫
h(2)(|r⃗′ − r⃗|)c(2)(|r⃗ − r⃗′ − r⃗|)dr⃗′

= c(2)(r) + ρ

∫
c(2)(r′)h(2)(|r⃗ − r⃗′|)dr⃗′ (2.4.2.5)

By setting

r⃗ := (r, 0, 0) (2.4.2.6)

r⃗′ := (s, θ, φ) (2.4.2.7)

|r⃗ − r⃗′| =: t (2.4.2.8)
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Eq.(2.4.2.5) becomes:

h(2)(r) = c(2)(r) + ρ

∫ ∞

s=0

∫ π

θ=0

∫ 2π

φ=0

c(2)(s)h(2)(t)s2ds sin θdθdφ

= c(2)(r) + 2πρ

∫ ∞

s=0

∫ π

θ=0

c(2)(s)h(2)(t)s2ds sin θdθ (2.4.2.9)

Let us convert the variable from θ to t by using the following relation.

t2 = r2 + s2 − 2rs cos θ

→ dt2

dθ

(
= 2t

dt

dθ

)
= 2rs sin θ

→ sin θdθ =
tdt

rs
(2.4.2.10)

Note that r and s do not depend on θ. By substituting Eq.(2.4.2.10) to (2.4.2.9):

h(2)(r) = c(2)(r) + 2πρ

∫ ∞

s=0

∫ r+s

t=|r−s|
c(2)(s)h(2)(t)

ts

r
dsdt (2.4.2.11)

Note that t = |r − s| when θ = 0 while t = r + s when θ = π. Here, let us define two quantities.

H(r) := rh(2)(r) =

−r for r < d

r
[
g(2)(r)− 1

]
for r ≥ d

(2.4.2.12)

C(r) := rc(2)(r) =

rg(2)(r)
[
1− eβv(r)

]
for r < d

0 for r ≥ d
(2.4.2.13)

By using Eqs.(2.4.2.12) and (2.4.2.13), Eq.(2.4.2.11) becomes:

H(r) = C(r) + 2πρ

∫ ∞

0

dsC(s)

∫ r+s

|r−s|
dtH(t)

= C(r) + 2πρ

∫ r

0

dsC(s)

∫ r+s

r−s
dtH(t) + 2πρ

∫ ∞

r

dsC(s)

∫ r+s

s−r
dtH(t)

=: C(r) + 2πρ

∫ r

0

dsC(s)K(r, s) + 2πρ

∫ ∞

r

dsC(s)K(s, r) (2.4.2.14)

where

K(r, s) :=

∫ r+s

r−s
dtH(t) (2.4.2.15)

K(s, r) :=

∫ r+s

s−r
dtH(t) (2.4.2.16)

K(r, r) :=

∫ 2r

0

dtH(t) (2.4.2.17)
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To obtain derivative of Eq.(2.4.2.14), I use the following formulae:∫ a

x+dx

g(y)f(x+ dx, y)dy =

∫ a

x+dx

g(y)

[
f(x, y) +

∂f(x, y)

∂x
dx

]
dy

=

∫ a

x

g(y)f(x, y)dy −
∫ x+dx

x

g(y)f(x, y)dy

+

(∫ a

x

g(y)
∂f(x, y)

∂x
dy

)
dx−

(∫ x+dx

x

g(y)
∂f(x, y)

∂x
dy

)
dx (2.4.2.18)

By using Eq.(2.4.2.18):

∂

∂x

∫ a

x

g(y)f(x, y)dy

=

[∫ a

x+dx

g(y)f(x+ dx, y)dy −
∫ a

x

g(y)f(x, y)dy

]
/(dx)

≃

[
−
∫ x+dx

x

g(y)f(x, y)dy +

(∫ a

x

g(y)
∂f(x, y)

∂x
dy

)
dx

]
/(dx)

→
∫ a

x

g(y)
∂f(x, y)

∂x
dy − g(x)f(x, x) (2.4.2.19)

∫ z(x+dx)

a

g(y)f(z(x+ dx), y)dy

=

∫ z(x)+(∂z/∂x)dx

a

g(y)

[
f(z(x), y) +

∂f(z, y)

∂z

∂z

∂x
dx

]
dy

=

∫ z(x)

a

g(y)f(z(x), y)dy +

∫ z(x)+(∂z/∂x)dx

z(x)

g(y)f(z(x), y)dy

+

(∫ z(x)

a

g(y)
∂f(z, y)

∂z

∂z

∂x
dy

)
dx+

(∫ z(x)+(∂z/∂x)dx

z(x)

g(y)
∂f(z, y)

∂z

∂z

∂x
dy

)
dx (2.4.2.20)

By using Eq.(2.4.2.20):

∂

∂x

∫ z(x)

a

g(y)f(z(x), y)dy

=

[∫ z(x+dx)

a

g(y)f(z(x+ dx), y)dy −
∫ z(x)

a

g(y)f(z(x), y)dy

]
/(dx)

≃

[∫ z(x)+(∂z/∂x)dx

z(x)

g(y)f(z(x), y)dy +

(∫ z(x)

a

g(y)
∂f(z, y)

∂z

∂z

∂x
dy

)
dx

]
/(dx)

→
∫ z(x)

a

g(y)
∂f(z, y)

∂z

∂z

∂x
dy + g(z)f(z, z)

∂z

∂x
(2.4.2.21)

Differentiation of the second term of Eq.(2.4.2.14) is calculated by using Eq.(2.4.2.21).

∂

∂r

∫ r

0

C(s)K(r, s)ds =

∫ r

0

C(s)
∂K(r, s)

∂r

∂r

∂r
ds+ C(r)K(r, r)

∂r

∂r

=

∫ r

0

C(s)
∂

∂r

[∫ r+s

r−s
dtH(t)

]
ds+ C(r)K(r, r)

=

∫ r

0

dsC(s) [H(r + s)−H(r − s)] + C(r)

∫ 2r

0

dtH(t) (2.4.2.22)
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Differentiation of the third term of Eq.(2.4.2.14) is calculated by using Eq.(2.4.2.19).

∂

∂r

∫ ∞

r

C(s)K(s, r)ds =

∫ ∞

r

C(s)
∂K(s, r)

∂r
ds− C(r)K(r, r)

=

∫ ∞

r

C(s)
∂

∂r

[∫ r+s

s−r
dtH(t)

]
ds− C(r)K(r, r)

=

∫ ∞

r

dsC(s) [H(r + s)−H(s− r)]− C(r)
∫ 2r

0

dtH(t) (2.4.2.23)

Substitute Eqs.(2.4.2.22) and (2.4.2.23) to the differentiation of Eqs.(2.4.2.14):

dH(r)

dr
=:

dC(r)

dr
+ 2πρ

[∫ r

0

dsC(s) [H(r + s)−H(r − s)] + C(r)

∫ 2r

0

dtH(t)

+

∫ ∞

r

dsC(s) [H(r + s)−H(s− r)]− C(r)
∫ 2r

0

dtH(t)

]
=
dC(r)

dr
+ 2πρ

[∫ ∞

0

dsC(s)H(r + s)−
∫ r

0

dsC(s)H(r − s) +
∫ ∞

r

dsC(s)H(s− r)
]

(2.4.2.24)

By using the following relation,

g(2)(r) = g(2)(−r)

→ h(2)(r) = h(2)(−r)

→ H(r) = −H(−r) (2.4.2.25)

Eq.(2.4.2.24) becomes as follows.

dH(r)

dr
=
dC(r)

dr
+ 2πρ

[∫ ∞

0

dsC(s)H(r + s)−
∫ r

0

dsC(s)H(r − s)−
∫ ∞

r

dsC(s)H(r − s)
]

=
dC(r)

dr
+ 2πρ

∫ ∞

0

dsC(s) [H(r + s)−H(r − s)] (2.4.2.26)

Substitute Eqs.(2.4.2.12) and (2.4.2.13) to Eq.(2.4.2.26):

dH(r)

dr
=
dC(r)

dr
+ 2πρ

∫ d

0

dsC(s) [−(r + s) + (r − s)] = dC(r)

dr
− 4πρ

∫ d

0

dssC(s) (2.4.2.27)

When r = 0:

− 1 =
dC(r)

dr

∣∣∣∣
r=0

− 4πρ

∫ d

0

dssC(s)

→ dC(r)

dr

∣∣∣∣
r=0

= −1 + 4πρ

∫ d

0

dssC(s) (2.4.2.28)

Next, let us calculate second derivative of C(r) at r = 0. First term in Eq.(2.4.2.26) is expressed as follows:∫ ∞

0

dsC(s)H(r + s) =

∫ ∞

0

dsC(s)H(r + s)−
∫ ∞

0

dsH(s)H(r + s) +

∫ ∞

0

dsH(s)H(r + s) (2.4.2.29)
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By defining s′ := d+ s:∫ ∞

0

dsH(s)H(r + s) =

∫ ∞

r

ds′H(s′ − r)H(s′)

= −
∫ ∞

r

ds′H(r − s′)H(s′)

= −
∫ ∞

0

ds′H(r − s′)H(s′) +

∫ r

0

ds′H(r − s′)H(s′) (2.4.2.30)

Substitute Eq.(2.4.2.30) to Eq.(2.4.2.29):∫ ∞

0

dsC(s)H(r + s)

=

∫ ∞

0

ds [C(s)H(r + s)−H(s)H(r + s)−H(r − s)H(s)] +

∫ r

0

dsH(r − s)H(s)

=

∫ ∞

0

ds [C(s)H(r + s)−H(s)H(r + s) + C(s)H(r − s)−H(s)H(r − s)]

−
∫ ∞

0

dsC(s)H(r − s) +
∫ r

0

dsH(s)H(r − s)

=

∫ ∞

0

ds [C(s)−H(s)] [H(r + s) +H(r − s)]−
∫ ∞

0

dsC(s)H(r − s) +
∫ r

0

dsH(s)H(r − s) (2.4.2.31)

From now, let us focus the case where r < d. In this case, by using Eqs.(2.4.2.12) and (2.4.2.13), 2nd and

3rd terms in Eq.(2.4.2.31) is:∫ ∞

0

dsC(s)H(r − s) =
∫ d

0

dsC(s)H(r − s) =
∫ d

0

dsC(s)(s− r)

=

∫ d

0

dssC(s)− r
∫ d

0

dsC(s) (r < d) (2.4.2.32)

∫ r

0

dsH(s)H(r − s) =
∫ r

0

ds(−s)(s− r)

=

[
−s

3

3
+
s2r

2

]r
s=0

=
r3

6
(r < d) (2.4.2.33)

Substitute Eqs.(2.4.2.31), (2.4.2.32), (2.4.2.33) to Eq.(2.4.2.26):

dH(r)

dr
=
dC(r)

dr
+ 2πρ

[∫ ∞

0

ds [C(s)−H(s)] [H(r + s) +H(r − s)]

−2
∫ ∞

0

dsC(s)H(r − s) +
∫ r

0

dsH(s)H(r − s)
]

=
dC(r)

dr
+ 2πρ

∫ ∞

0

ds [C(s)−H(s)] [H(r + s) +H(r − s)]

+ 4πρr

∫ d

0

dsC(s)− 4πρ

∫ d

0

dssC(s) +
πρr3

3
(r < d) (2.4.2.34)

Next, let us calculate the r-derivative of the first integral in Eq.(2.4.2.34). Here, I use the following

conversion.

d([C(s)−H(s)][H(r + s) +H(r − s)])
dr

= [C(s)−H(s)]
d[H(r + s)−H(r − s)]

ds
(2.4.2.35)
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Therefore, the integral after differentiation is:∫ ∞

0

ds
d([C(s)−H(s)][H(r + s) +H(r − s)])

dr

=

∫ ∞

0

ds[C(s)−H(s)]
d[H(r + s)−H(r − s)]

ds

= [[C(s)−H(s)][H(r + s)−H(r − s)]]∞s=0 −
∫ ∞

0

ds
d[C(s)−H(s)]

ds
[H(r + s)−H(r − s)] (2.4.2.36)

From Eqs.(2.4.2.12) and (2.4.2.13), C(s = 0) = H(s = 0) = 0. In addition, H(s → ∞) = H(s → −∞) = 0

since g(2)(r =∞) = 1. Therefore, the first integral of Eq.(2.4.2.36) vanishes. To calculate the second integral

of Eq.(2.4.2.36), let us use Eq.(2.4.2.26):

d[C(s)−H(s)]

ds
= −2πρ

∫ ∞

0

dtC(t)[H(s+ t)−H(s− t)] = −2πρ
∫ d

0

dtC(t)[H(s+ t)−H(s− t)]

(2.4.2.37)

Substitute Eq.(2.4.2.37) to Eq.(2.4.2.36):∫ ∞

0

ds
d([C(s)−H(s)][H(r + s) +H(r − s)])

dr

= 2πρ

∫ d

0

dtC(t)

∫ ∞

0

ds[H(r + s)−H(r − s)][H(s+ t)−H(s− t)] (2.4.2.38)

Integral for s in Eq.(2.4.2.38) is evaluated as follows.∫ ∞

0

dsH(r + s)H(s+ t)→
∫ ∞

r

duH(u)H(t+ u− r) (u := r + s) (2.4.2.39)

−
∫ ∞

0

dsH(r + s)H(s− t)→−
∫ ∞

r

duH(u)H(u− r − t) (u := r + s) (2.4.2.40)

−
∫ ∞

0

dsH(r − s)H(s+ t)→−
∫ ∞

t

duH(r − u+ t)H(u) (u := s+ t)

=

∫ ∞

t

duH(u)H(u− r − t) (2.4.2.41)∫ ∞

0

dsH(r − s)H(s− t)→
∫ ∞

−t
duH(r − u+ t)H(u) (u := s− t)

= −
∫ ∞

−t
duH(u)H(t+ u− r) (2.4.2.42)

From Eqs.(2.4.2.39) and (2.4.2.42):∫ ∞

0

dsH(r + s)H(s+ t) +

∫ ∞

0

dsH(r − s)H(s− t)

= −
∫ r

−t
duH(u)H(t+ u− r)

= −
∫ r

−t
du(−u)(−u+ r − t)

= −
[
u3

3
− u2

2
(r − t)

]r
u=−t

= −r
3 + t3

3
+
r2 − t2

2
(r − t) (2.4.2.43)

41



2.4 Structure factors

From Eqs.(2.4.2.40) and (2.4.2.41):

−
∫ ∞

0

dsH(r + s)H(s− t)−
∫ ∞

0

dsH(r − s)H(s+ t)

=

∫ r

t

duH(u)H(u− r − t)

=

∫ r

t

du(−u)(−u+ r + t)

=

[
u3

3
− u2

2
(r + t)

]r
u=t

=
r3 − t3

3
− r2 − t2

2
(r + t) (2.4.2.44)

Substitute Eqs.(2.4.2.43) and (2.4.2.44) to Eq.(2.4.2.38):∫ ∞

0

ds
d([C(s)−H(s)][H(r + s) +H(r − s)])

dr

= 2πρ

∫ d

0

dtC(t)

(
−r

3 + t3

3
+
r2 − t2

2
(r − t) + r3 − t3

3
− r2 − t2

2
(r + t)

)
= 2πρ

∫ d

0

dtC(t)

(
t3

3
− tr2

)
(2.4.2.45)

By using Eq.(2.4.2.45), differentiation of Eq.(2.4.2.34) is performed as follows.

d2H(r)

dr2
=
d2C(r)

dr2
+ 2πρ

∫ ∞

0

ds
d([C(s)−H(s)][H(r + s) +H(r − s)])

dr
+ 4πρ

∫ d

0

dsC(s) + πρr2

=
d2C(r)

dr2
+

4π2ρ2

3

∫ d

0

dss3C(s)− 4π2ρ2r2
∫ d

0

dssC(s) + 4πρ

∫ d

0

dsC(s) + πρr2 (r < d)

(2.4.2.46)

When r = 0:

0 =
d2C(r)

dr2

∣∣∣∣
r=0

+
4π2ρ2

3

∫ d

0

dss3C(s) + 4πρ

∫ d

0

dsC(s)

→ d2C(r)

dr2

∣∣∣∣
r=0

= −4πρ
∫ d

0

ds

[
πρs3

3
+ 1

]
C(s) (2.4.2.47)

Higher order derivatives can be calculated by using Eq.(2.4.2.46) as follows.

d3H(r)

dr3
=
d3C(r)

dr3
− 8π2ρ2r

∫ d

0

dssC(s) + 2πρr (r < d) (2.4.2.48)

d4H(r)

dr4
=
d4C(r)

dr4
− 8π2ρ2

∫ d

0

dssC(s) + 2πρ (r < d) (2.4.2.49)

All higher derivatives vanish. When r = 0:

d3C(r)

dr3

∣∣∣∣
r=0

= 0 (2.4.2.50)

d4C(r)

dr4

∣∣∣∣
r=0

= 2πρ

[
−1 + 4πρ

∫ d

0

dssC(s)

]
(2.4.2.51)
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From Eqs.(2.4.2.28), (2.4.2.47), (2.4.2.50), and (2.4.2.51), C(r) is expanded as follows:

C(r) = C(0) +
dC(r)

dr

∣∣∣∣
r=0

r +
1

2

d2C(r)

dr2

∣∣∣∣
r=0

r2 +
1

6

d3C(r)

dr3

∣∣∣∣
r=0

r3 +
1

24

d4C(r)

dr4

∣∣∣∣
r=0

r4

= r

[
−1 + 4πρ

∫ d

0

dssC(s)

]
+

1

2
r2

[
−4πρ

∫ d

0

ds

[
πρs3

3
+ 1

]
C(s)

]
+

1

24
r42πρ

[
−1 + 4πρ

∫ d

0

dssC(s)

]
=: a1r + a2r

2 + a4r
4 (r < d) (2.4.2.52)

Integrals in Eq.(2.4.2.52) are formally calculated as follows:∫ d

0

dssC(s) =

∫ d

0

ds(a1s
2 + a2s

3 + a4s
5) =

a1
3
d3 +

a2
4
d4 +

a4
6
d6 (2.4.2.53)

∫ d

0

ds

[
1 +

πρs3

3

]
C(s) =

∫ d

0

ds(a1s+ a2s
2 + a4s

4) +
πρ

3

∫ d

0

ds(a1s
4 + a2s

5 + a4s
7)

=
[a1
2
d2 +

a2
3
d3 +

a4
5
d5
]
+
πρ

3

[a1
5
d5 +

a2
6
d6 +

a4
8
d8
]

(2.4.2.54)

Substitute Eqs.(2.4.2.53) and (2.4.2.54) to Eq.(2.4.2.52):

a1r + a2r
2 + a4r

4 =− r + 4πρr
[a1
3
d3 +

a2
4
d4 +

a4
6
d6
]

− 2πρr2
[a1
2
d2 +

a2
3
d3 +

a4
5
d5 +

πρ

3

(a1
5
d5 +

a2
6
d6 +

a4
8
d8
)]

+
πρ

12
r4
[
−1 + 4πρ

(a1
3
d3 +

a2
4
d4 +

a4
6
d6
)]

(2.4.2.55)

Let us use following quantities:

α := a1 (2.4.2.56)

β := da2 (2.4.2.57)

γ := d3a4 (2.4.2.58)

ϕ :=
πd3ρ

6
=

4πR3ρ

3
(2.4.2.59)

where R := d/2 stands for the radius of each hard sphere. ϕ represents the volume fraction. By equating

the same order terms of r,

α = −1 + 4πρ

[
α

3
+
β

4
+
γ

6

]
d3 = −1 + ϕ[8α+ 6β + 4γ] (2.4.2.60)

β = −2πρr2
[
α

2
+
β

3
+
γ

5

]
d3 − 2π2ρ2

3

[
α

5
+
β

6
+
γ

8

]
d6

= −ϕ
[
6α+ 4β +

12

5
γ

]
− ϕ2

[
24

5
α+ 4β + 3γ

]
(2.4.2.61)

γ = −πρ
12
d3 +

π2ρ2

3

[
α

3
+
β

4
+
γ

6

]
d3 = −ϕ

2
+ ϕ2[4α+ 3β + 2γ] (2.4.2.62)

From Eqs.(2.4.2.60) and (2.4.2.62):

γ =
ϕ

2
α (2.4.2.63)
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2.4 Structure factors

Substitute Eq.(2.4.2.63) to Eq.(2.4.2.60):

α = −1 + ϕ[8α+ 6β + 2ϕα]

→ β =
1− (2ϕ2 + 8ϕ− 1)α

6ϕ
(2.4.2.64)

Substitute Eqs.(2.4.2.63) and (2.4.2.64) to Eq.(2.4.2.61):

β =

(
−6ϕ− 6

5
ϕ2 − 24

5
ϕ2 − 3

2
ϕ3
)
α+ (−4ϕ− 4ϕ2)β

→
(
3

2
ϕ3 + 6ϕ2 + 6ϕ

)
α = (−4ϕ2 − 4ϕ− 1)

1− (2ϕ2 + 8ϕ− 1)α

6ϕ

As a result, α is obtained as follows.

α = − (1 + 2ϕ)2

(1− ϕ)4
(2.4.2.65)

Substitute Eq.(2.4.2.65) to Eqs.(2.4.2.64) and (2.4.2.63):

β = 6ϕ
(1 + ϕ

2 )
2

(1− ϕ)4
(2.4.2.66)

γ = −ϕ(1 + 2ϕ)2

2(1− ϕ)4
(2.4.2.67)

By using the analytical solution, we can calculate the analytical formula of the structure factor of hard

spheres. Substitute Eqs.(2.4.2.13) and (2.4.2.56) ∼ (2.4.2.58) to Eq.(2.4.2.52):

c(2)(r) =

α+ β
r

2R
+ γ

( r

2R

)3
for r < d

0 for r ≥ d
(2.4.2.68)

Let us calculate the Fourier transform of c(2)(r):

c(2)(q) =

∫ ∞

r=0

∫ π

θ=0

∫ 2π

φ=0

c(2)(r)eiq⃗·r⃗r2 sin θdrdθdφ

= 2π

∫ ∞

r=0

∫ 1

u=−1

c(2)(r)eiqrur2drdu (u := cos θ)

= 2π

∫ ∞

r=0

c(2)(r)

[
eiqru

iqr

]1
u=−1

r2dr

= 4π

∫ 2R

0

c(2)(r)
sin qr

qr
r2dr

= 4π

∫ 2R

0

(
α+ β

r

2R
+ γ

( r

2R

)3) sin qr

qr
r2dr (2.4.2.69)
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Each integral in Eq.(2.4.2.69) is calculated as follows:∫ 2R

0

r sin qrdr =

[
−r cos qr

q

]2R
0

+

∫ 2R

0

cos qr

q
dr

= −2R cos 2qR

q
+

1

q

[
− sin qr

q

]2R
0

= −2R cos 2qR

q
+

sin 2qR

q2

= − 1

q2
A cosA+

1

q2
sinA (2.4.2.70)

∫ 2R

0

r2 sin qrdr =

[
−r

2 cos qr

q

]2R
0

+

∫ 2R

0

2r cos qr

q
dr

= −4R2 cos 2qR

q
+

2

q

{[
r sin qr

q

]2R
0

−
∫ 2R

0

sin qr

q
dr

}

= −4R2 cos 2qR

q
+

2

q

2R sin 2qR

q
− 2

q2

[
−cos qr

q

]2R
0

= −4R2 cos 2qR

q
+

4R sin 2qR

q2
+

2 cos 2qR

q3
− 2

q3

= − 1

q3
A2 cosA+

2

q3
A sinA+

2

q3
cosA− 2

q3
(2.4.2.71)

∫ 2R

0

r4 sin qrdr

=

[
−r

4 cos qr

q

]2R
0

+

∫ 2R

0

4r3 cos qr

q
dr

= −16R4 cos 2qR

q
+

4

q

{[
r3 sin qr

q

]2R
0

−
∫ 2R

0

3r2 sin qr

q
dr

}

= −16R4 cos 2qR

q
+

4

q

8R3 sin 2qR

q
− 12

q2

∫ 2R

0

r2 sin qrdr

= −16R4 cos 2qR

q
+

32R3 sin 2qR

q2
+

48R2 cos 2qR

q3
− 48R sin 2qR

q4
− 24 cos 2qR

q5
+

24

q5

= − 1

q5
A4 cosA+

4

q5
A3 sinA+

12

q5
A2 cosA− 24

q5
A sinA− 24

q5
cosA+

24

q5
(2.4.2.72)

where

A := 2qR (2.4.2.73)

Substitute Eqs.(2.4.2.70)∼(2.4.2.72) into Eq.(2.4.2.69):

c(2)(q) = 4π

[
α

q3
(−A cosA+ sinA) +

β

2qR

1

q3
(−A2 cosA+ 2A sinA+ 2 cosA− 2)

+
γ

8q3R3

1

q3
(−A4 cosA+ 4A3 sinA+ 12A2 cosA− 24A sinA− 24 cosA+ 24)

]
(2.4.2.74)
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2.4 Structure factors

Substitute Eq.(2.4.2.74) into Eq.(2.3.4.5):

S(q) =
1

1− 4πR3ρ
3

3
4πR3 c(2)(q)

=
1

1 + ϕfPY(ϕ,A)
(2.4.2.75)

where

fPY(ϕ,A) := −24
[
α

A3
(−A cosA+ sinA) +

β

A4
(−A2 cosA+ 2A sinA+ 2 cosA− 2)

+
γ

A6
(−A4 cosA+ 4A3 sinA+ 12A2 cosA− 24A sinA− 24 cosA+ 24)

]
(2.4.2.76)

Notice that α, β and γ is the functions of ϕ.

2.4.3 Modified Percus–Yevick equation

In the case of Percus–Yevick equation, we can determine the value of ϕ from the constituents of the sample.

However, the radius of rigid spheres, R, may not correspond to the range of the inter-particle potential. In

modified Percus–Yevick equation, we assume the following inter-particle potential instead of Eq.(2.4.2.1): [45]

v(r) =

∞ for r ≤ 2D

0 for r > 2D
(2.4.3.1)

where D > R determine the size of an effective repulsive potential wall. By using this potential, we modify

the original Percus–Yevick equation as follows:

Structure factor, S(q), is represented as follows under isotropic environment:

S(q) =
1

1 + ϕfPY (ϕ′, A′)
(2.4.3.2)

where

A′ := 2qD (2.4.3.3)

ϕ′ := ϕ

(
D

R

)3

(2.4.3.4)

2.4.4 Square-Well structure factor

In the case of Percus–Yevick approximation, inter-particle potential is defined as Eq.(2.4.2.1). From now,

we treat another type of inter-particle potential. First example is square-well potential described as follows:

v(r) =


∞ for r ≤ 2R

−ϵ for 2R ≤ r ≤ 2λR

0 for r > 2λR

(2.4.4.1)

Structure factor originated from this square-well potential was derived analytically by Sharma and Sharma

[46]. The result is quite similar to that of Percus–Yevick equation:

S(q) =
1

1 + ϕfSW(ϕ,A, ϵ, λ, T )
(2.4.4.2)
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where

fSW(ϕ,A, ϵ, λ) := 24

[
αSW

A3
(−A cosA+ sinA) +

βSW
A4

(−A2 cosA+ 2A sinA+ 2 cosA− 2)

+
γSW
A6

(−A4 cosA+ 4A3 sinA+ 12A2 cosA− 24A sinA− 24 cosA+ 24)

− ϵ

kBT

1

A3
(sinλA− λA cosλA+A cosA− sinA)

]
(2.4.4.3)

where

αSW :=
(1 + 2ϕ)2 + ϕ3(ϕ− 4)

(1− ϕ)4
(2.4.4.4)

βSW := −ϕ(18 + 20ϕ− 12ϕ2 + ϕ4)

3(1− ϕ)4
(2.4.4.5)

γSW :=
ϕ((1 + 2ϕ)2 + ϕ3(ϕ− 4))

2(1− ϕ)4
(2.4.4.6)

2.4.5 Hayter-Penfold equation

Second example is repulsive potential described as follows:

v(r) =

∞ for r ≤ 2R

4πε0εR
2ψ2

0

exp(−κ(r − 2R))

r
for r > 2R

(2.4.5.1)

where ε is the dielectric constant of the solvent medium, ε0 is the permittivity of free space, ψ0 is the surface

potential and κ is the Debye–Hückel inverse screening length. The surface potential, ψ0, is related to the

electronic charge, zm, on the macroion:

ψ0 =
zm

4πε0εR(1 + κR)
(2.4.5.2)

The Debye–Hückel inverse screening length, κ, is related to the ion strength. Ion strength is determined by

both macroions themselves and the concentration of salt, csalt:
9

κ =

√
e2

εkBT

(
zm

ϕ

4πR3/3
+ 2NAcsalt

)
(2.4.5.3)

Analytical form of structure factor is derived by Hayter and Penfold [47]:

S(q) =
1

1− ϕfHP(ϕ,A, zm, csalt, ε, T )
(2.4.5.4)

9Here, the unit of csalt is mol/m3.
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where

fHP(ϕ,A, zm, csalt, ε, T ) := 24

[
AHP

A3
(−A cosA+ sinA)

+
BHP

A4
(−A2 cosA+ 2A sinA+ 2 cosA− 2)

+
GHP

A6
(−A4 cosA+ 4A3 sinA+ 12A2 cosA− 24A sinA− 24 cosA+ 24)

+
CHP

A(A2 + k2)
(k cosh k sinA−A sinh k cosA)

+
FHP

A(A2 + k2)
(k sinh k sinA−A(cosh k cosA− 1))

+
FHP

A2
(cosA− 1)

− γ exp(−k)
A(A2 + k2)

(k sinA+A cosA)

]
(2.4.5.5)

where

k := 2κR (2.4.5.6)

γ :=
4πε0εR

2ψ2
0

kBT
exp(−k) (2.4.5.7)

AHP := a1 + a2CHP + a3FHP (2.4.5.8)

BHP := b1 + b2CHP + b3FHP (2.4.5.9)

CHP := −ω16F
2
HP + ω15FHP + ω14

ω13FHP + ω12
(2.4.5.10)

GHP :=
ϕ

2
AHP (2.4.5.11)

FHP is one of roots of following equation:

ω4F
4 + ω3F

3 + ω2F
2 + ω1F + ω0 = 0 (2.4.5.12)

There are four candidates as FHP. To determine appropriate solution, corresponding radial distribution

functions are calculated for each solution:

g(x) = 1 +
R

6πϕr

∫ ∞

0

(S(A)− 1)A sin
Ar

2R
dA (2.4.5.13)

Appropriate solution satisfy physically reasonable condition, g(x) = 0, inside the particle. Definition of

parameters in Eqs.(2.4.5.8)∼(2.4.5.12) are shown in Appendix 11.2.

2.4.6 Single contact theory

Let us start from the first line of Eq.(2.1.17):

dσ

dΩ
=

∣∣∣∣∣∣
N∑
j=1

z∑
kj=1

bke
−iq⃗·(R⃗j+r⃗kj

)

∣∣∣∣∣∣
2

(2.4.6.1)
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2.4 Structure factors

Here, we are going to discuss dilute polymer solution. In this case, b is regarded as the summation of the

scattering length of consisting atoms normalized by their volume.

dσ

dΩ
→ (∆ρvu)

2

∣∣∣∣∣∣
N∑
j=1

z∑
kj=1

e−iq⃗·(R⃗j+r⃗kj
)

∣∣∣∣∣∣
2

(2.4.6.2)

When there is no interaction between polymers, Eq.(2.4.6.2) is decomposed into the form Eq.(2.1.17).

Figure 2.5: Schematics for polymers with single contact.

Here, let us consider what happen if there is single contact between polymers.

dσ

dΩ
= (∆ρvu)

2

N ∣∣∣∣∣
z∑
k=1

e−iq⃗·r⃗k

∣∣∣∣∣
2

+N(N − 1)

z∑
k=1

z∑
l=1

⟨ e−iq⃗·r⃗kl ⟩

 (2.4.6.3)

As for second term, time (or, for ergodic media, spatial) average is taken since the measured quantities

should be time-averaged one. The first term of Eq.(2.4.6.3) describes the form factor of each polymer. The

second term of Eq.(2.4.6.3) is decomposed into three terms as follows (Figure 2.5).

⟨ e−iq⃗·r⃗kl ⟩ = ⟨ e−iq⃗·r⃗kk′ ⟩⟨ e−iq⃗·r⃗k′l′ ⟩⟨ e−iq⃗·r⃗l′l ⟩ (2.4.6.4)

The first term and third term in Eq.(2.4.6.4) stand for form factors while the second term stands for excluded

volume, vex/Vir [36]. Therefore,

dσ

dΩ
→ (∆ρvu)

2

[
Nz2P (q⃗) +N2

[
−vex
Vir

(z2P (q⃗))2
]]

(2.4.6.5)

Here, N(N − 1) ≃ N2 is used. Let us use the volume fraction of polymers, ϕ, defined as follows:

ϕ :=
zvuN

Vir
(2.4.6.6)

Substitute Eq.(2.4.6.6) into Eq.(2.4.6.5):

dσ

dΩ
→ (∆ρvu)

2

[
ϕVir
zvu

z2P (q⃗)− ϕ2V 2
ir

z2v2u

vex
Vir

z4P (q⃗)2
]

= (∆ρ)2Virvu

[
zϕP (q⃗)− vex

vu
(zϕP (q⃗))2

]
(2.4.6.7)

Let us see the relationship between χ parameter and excluded volume vex. When the polymer fraction of
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solution, ϕ, is small, Helmholtz free energy of mixing per lattice is expanded as follows.

∆F̄mix = kBT

[
ϕ

N
lnϕ+ (1− ϕ) ln(1− ϕ) + χϕ(1− ϕ)

]
≃ kBT

[
ϕ

N
lnϕ+ (1− ϕ)

(
−ϕ− ϕ2

2

)
+ χϕ(1− ϕ)

]
= kBT

[
ϕ

N
lnϕ+ (χ− 1)ϕ+

(
1

2
− χ

)
ϕ2 +

1

2
ϕ3
]

(2.4.6.8)

Next, let us derive ∆F̄mix by taking excluded volume into consideration. Here, we regard one polymer as

the object whose volume is vex. Then we use lattice model whose lattice size is vu. In this case, the number

of lattices available to the first polymer, Ω1, is V/vu
10. Like this, the number of lattice available to the ith

polymer, Ωi, is:

Ωi =
V − (i− 1)vex

vu
(2.4.6.9)

By using Eq.(2.4.6.9), entropy of mixing is calculated as follows.

∆Smix = kB ln[Ω1Ω2 · · ·ΩNp ]

= kB ln

[
V

vu

V − vex
vu

· · · V − (Np − 1)vex
vu

]
= kB ln

[(
V

vu

)Np

1 ·
(
1− vex

V

)
· · ·
(
1− (Np − 1)vex

V

)]

= kBNp ln
V

vu
+ kB

Np−1∑
i=0

ln
(
1− ivex

V

)

≃ kBNp ln
V

vu
+ kB

Np−1∑
i=0

−ivex
V

≃ kBNp ln
V

vu
− kB

vex
V

N2
p

2
(2.4.6.10)

Since V = vuNt and ϕ = Np/Nt, entropy of mixing per lattice is expressed as follows.

∆S̄mix ≃ kB
Np
Nt

lnNt − kB
1

Nt

vex
vuNt

N2
p

2

= kBϕ lnNt − kB
vex
vu

ϕ2

2
(2.4.6.11)

When we consider the volume of polymer as vex, interaction energy between polymer and solvent is auto-

matically included. Therefore, ∆F̄mix is expressed as follows.

∆F̄mix = −T∆S̄mix = −kBTϕ lnN + kBT
vex
vu

ϕ2

2
(2.4.6.12)

Comparing ϕ2 term in Eqs.(2.4.6.8) and (2.4.6.12), following result is obtained.

vex
vu

= 1− 2χ (2.4.6.13)

10Here we ignore disorientation entropy. Ω1 is the number of vacant lattice sites.
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In addition, let us use the following relationships.

1− x ≃ 1

1 + x
for x≪ 1 (2.4.6.14)

Then I(q⃗) is represented as follows.

I(q⃗) =
dσ

dΩ

1

Vir
= (∆ρ)2vu

zϕP (q⃗)

1 + (1− 2χ)zP (q⃗)
(2.4.6.15)

2.5 Phenomenological models

2.5.1 Landau free energy expansion

Here, I derive some structure factors from the effect of fluctuation of the volume fraction of polymers on

free energy [48,49]. Let us expand the free energy of the system as follows.

F =

∫
dr⃗
[
a0 + a1φ(r⃗) + a2φ(r⃗)

2 + a3φ(r⃗)
3 + · · ·+ c1(∇φ(r⃗))2 + c2(∆φ(r⃗))

2 + · · ·
]

(2.5.1.1)

This expansion is just mathematical manipulation. Here, let us see the following special case.

F :=

∫
dr⃗
[
a2|δφ(r⃗)|2 + c1|∇δφ(r⃗)|2 + c2|∆δφ(r⃗)|2

]
(2.5.1.2)

δφ(r⃗) stands for the deviation of φ from average value at r⃗. Here I assume that the system is isotropic:

φ(r⃗) = φ(r). Fourier transformation of δφ(r⃗)2, (∇δφ(r⃗))2, and (∆δφ(r⃗))2 are calculated as follows.

δφ(r⃗) =
1

(2π)3/2

∫
dq⃗δφ(q⃗)e−iq⃗·r⃗ (2.5.1.3)

∇δφ(r⃗) = 1

(2π)3/2

∫
dq⃗(−iq⃗)δφ(q⃗)e−iq⃗·r⃗ (2.5.1.4)

∆δφ(r⃗) =
1

(2π)3/2

∫
dq⃗(−q2)δφ(q⃗)e−iq⃗·r⃗ (2.5.1.5)

∫
dr⃗|δφ(r⃗)|2 =

1

(2π)3

∫
dr⃗

∫
dq⃗

∫
dq⃗′
[
δφ∗(q⃗)eiq⃗·r⃗

] [
δφ(q⃗′)e−iq⃗

′·r⃗
]

=
1

(2π)3

∫
dq⃗

∫
dq⃗′δφ∗(q⃗)δφ(q⃗′)

∫
dr⃗ei(q⃗−q⃗

′)·r⃗

=
1

(2π)3/2

∫
dq⃗

∫
dq⃗′δφ∗(q⃗)δφ(q⃗′)δ(q⃗ − q⃗′)

=
1

(2π)3/2

∫
dq⃗|δφ(q⃗)|2 (2.5.1.6)

∫
dr⃗|∇δφ(r⃗)|2 =

1

(2π)3

∫
dr⃗

∫
dq⃗

∫
dq⃗′
[
iq⃗δφ∗(q⃗)eiq⃗·r⃗

] [
−iq⃗′δφ(q⃗′)e−iq⃗

′·r⃗
]

=
1

(2π)3

∫
dq⃗

∫
dq⃗′δφ∗(q⃗)δφ(q⃗′)q⃗ · q⃗′

∫
dr⃗ei(q⃗−q⃗

′)·r⃗

=
1

(2π)3/2

∫
dq⃗

∫
dq⃗′δφ∗(q⃗)δφ(q⃗′)q⃗ · q⃗′δ(q⃗ − q⃗′)

=
1

(2π)3/2

∫
dq⃗q2|δφ(q⃗)|2 (2.5.1.7)
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∫
dr⃗|∆δφ(r⃗)|2 =

1

(2π)3

∫
dr⃗

∫
dq⃗

∫
dq⃗′
[
(−q2)δφ∗(q⃗)eiq⃗·r⃗

] [
(−q′2)δφ(q⃗′)e−iq⃗

′·r⃗
]

=
1

(2π)3

∫
dq⃗

∫
dq⃗′δφ∗(q⃗)δφ(q⃗′)q2q′2

∫
dr⃗ei(q⃗−q⃗

′)·r⃗

=
1

(2π)3/2

∫
dq⃗

∫
dq⃗′δφ∗(q⃗)δφ(q⃗′)q2q′2δ(q⃗ − q⃗′)

=
1

(2π)3/2

∫
dq⃗q4|δφ(q⃗)|2 (2.5.1.8)

Substitute Eqs.(2.5.1.6) ∼ (2.5.1.8) into Eq.(2.5.1.2):

F =

∫
dr⃗
[
a2|δφ(r⃗)|2 + c1|∇δφ(r⃗)|2 + c2|∆δφ(r⃗)|2

]
=

1

(2π)3/2

∫
dq⃗[a2 + c1q

2 + c2q
4]|δφ(q⃗)|2 (2.5.1.9)

To calculate |δφ(q⃗)|, I define δφ(q⃗) =: x for a certain q. Then the thermal average of x2 is calculated as

follows.

⟨x2 ⟩ =

∫
dx′x′2 exp[−βHq(x′)]∫
dx′ exp[−βHq(x′)]

(2.5.1.10)

where

Hq(x) :=
1

(2π)3/2
(a2 + c1q

2 + c2q
4)x2 =:

α

β
x2 (2.5.1.11)

Here, Hq(x) stands for the energy contribution of q component to the whole energy F . To calculate further,

I use the following formulae. ∫
dx exp[−αx2] =

√
π

α
(2.5.1.12)∫

dxx2 exp[−αx2] = 1

2α

√
π

α
(2.5.1.13)

Substitute Eqs.(2.5.1.11) ∼ (2.5.1.13) to Eq.(2.5.1.10):

⟨x2 ⟩ =

∫
dx′x′2 exp[−αx2]∫
dx′ exp[−αx2]

=
1

2α

→ ⟨ |δφ(q⃗)|2 ⟩ = 1

2β

(2π)3/2

a2 + c1q2 + c2q4
(2.5.1.14)

Let us relate ⟨ |δφ(q⃗)|2 ⟩ to scattering function, S(q⃗). Amplitude of neutron scattering from one nucleus,

j, is represented as follows:

Aj(q⃗, t) = A0bje
i(ωt−q⃗·R⃗j) (2.5.1.15)

For continuous media, we extend this equation as follows:

A(q⃗, t) = A0

∫
V

∆ρδφ(r⃗)ei(ωt−q⃗·r⃗)dr⃗ (2.5.1.16)

where ∆ρ is the difference of the scattering length density between solvents and polymers, δφ(r⃗) is a deviation
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of the volume fraction of polymers at r⃗. Here, we concentrate on small angle region so as not to consider

the small scale inhomogeneity such as one polymer coil and one mesh unit. Then scattering intensity is

represented as follows:

I(q⃗) =
A(q⃗, t)2

A2
0V

=
∆ρ2

V

∫
dr⃗

∫
dr⃗′δφ(r⃗)δφ(r⃗′)eiq⃗·(r⃗−r⃗

′)

=: ∆ρ2⟨δφ2⟩
∫
dr⃗γ(r⃗)eiq⃗·r⃗ (2.5.1.17)

where γ(r⃗) a correlation function. Here, we use the following relation:

⟨φ(r⃗)δφ(r⃗′)⟩ = γ(r⃗ − r⃗′)⟨δφ2⟩ =: γ(R⃗)⟨δφ2⟩ (2.5.1.18)

Fourier transform of δφ(r⃗)δφ(r⃗′) is ⟨ |δφ(q⃗)|2 ⟩.∫
dr⃗

∫
dr⃗′δφ(r⃗)δφ(r⃗′)eiq⃗·(r⃗−r⃗

′) =

∫
dr⃗

∫
dR⃗δφ(R⃗+ r⃗)δφ(R⃗)eiq⃗·r⃗

=

∫
dr⃗

∫
dR⃗

1

(2π)3

∫
dq⃗1δφ(q⃗1)e

−iq⃗1·(R⃗+r⃗)

∫
dq⃗2δφ(q⃗2)e

−iq⃗2·R⃗eiq⃗·r⃗

=
1

(2π)3

∫
dq⃗1

∫
dq⃗2δφ(q⃗1)δφ(q⃗2)

∫
dr⃗ei(q⃗−q⃗1)·r⃗

∫
dR⃗ei(−q⃗1−q⃗2)·R⃗

=

∫
dq⃗1

∫
dq⃗2δφ(q⃗1)δφ(q⃗2)δ(q⃗ − q⃗1)δ(−q⃗1 − q⃗2)

= δφ(q⃗)δφ(−q⃗)→ ⟨ |δφ(q⃗)|2 ⟩ (2.5.1.19)

From Eqs.(2.5.1.14), (2.5.1.17), and (2.5.1.19), I(q⃗) from the system Eq.(2.5.1.2) is represented as follows.

I(q⃗) ∝ 1

a2 + c1q2 + c2q4
(2.5.1.20)

Eq.(2.5.1.20) is called Teubner–Strey model and used to explain a peak observed in the scattering profile

of microemulsions [49]. In the case of microemulsions, there is a tendency to create interfaces spontaneously

(negative microscopic surface tension). To include this concept, c1 < 0 is required. To make the system

stable, additional term c2|∆δφ(r⃗)|2 is required. To judge whether the system is stable or not, we use

Eq.(2.5.1.9). If a2 + c1q
2 + c2q

4 becomes negative, such q component is favorable compared to the reference

state where δφ(r⃗) = 0 in all r⃗. Therefore, the fluctuation whose wavevector is q will grow and assumption

Eq.(2.5.1.2) will no longer be acceptable. To prevent this, the following stability condition should be fulfilled.

c21 − 4a2c2 < 0 (2.5.1.21)

When c1 > 0, the following energy expansion is also valid.

F :=

∫
dr⃗
[
a2|δφ(r⃗)|2 + c1|∇δφ(r⃗)|2

]
(2.5.1.22)

By setting c2 = 0 in the previous derivation, the scattering function I(q⃗) from the system Eq.(2.5.1.22) is
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2.5 Phenomenological models

represented as follows.

I(q⃗) ∝ 1

a2 + c1q2
(2.5.1.23)

Eq.(2.5.1.22) is called Ornstein–Zernike function and used to explain the scattering profile of semidilute

solution and the vicinity of critical points [50]. I will show the different derivation of Eqs.(2.5.1.20) and

(2.5.1.23) to see the physical meaning of parameters a2, c1, and c2.

2.5.2 Debye-Bueche function

In Debye–Bueche function, we set γ(r⃗) (Eq.(2.5.1.18)) as follows:

γ(r) := e−r/Ξ (2.5.2.1)

where Ξ is a kind of correlation length. Since this function is isotropic (see Eq.(??)):

I(q⃗) = ∆ρ2⟨δφ2⟩4π
∫ ∞

0

r2γ(r)
sin qr

qr
dr

= ∆ρ2⟨δφ2⟩4π 1
q

∫ ∞

0

re−r/Ξ sin qrdr (2.5.2.2)

Integral part of Eq.(2.5.2.2) is calculated as follows11:∫ ∞

0

re−r/Ξ sin qrdr = ℑ
(∫ ∞

0

re−r/Ξeiqrdr

)
= ℑ

(∫ ∞

0

re(iq−
1
Ξ )rdr

)
= ℑ

([
r

iq − 1
Ξ

e(iq−
1
Ξ )r

]∞
0

− 1

iq − 1
Ξ

∫ ∞

0

e(iq−
1
Ξ )rdr

)

= ℑ
(
− 1

(iq − 1
Ξ )

2

[
e(iq−

1
Ξ )r
]∞
0

)
= ℑ

(
1

(iq − 1
Ξ )

2

(iq + 1
Ξ )

2

(iq + 1
Ξ )

2

)
= ℑ

(−q2 + 2i qΞ + 1
Ξ2

(−q2 − 1
Ξ2 )2

)
= 2

q

Ξ

1

(−q2 − 1
Ξ2 )2

= 2q
Ξ3

(1 + q2Ξ2)2
(2.5.2.3)

Substitute Eq.(2.5.2.3) into Eq.(2.5.2.2):

I(q⃗) = ∆ρ2⟨δφ2⟩ 8πΞ3

(1 + q2Ξ2)2
(2.5.2.4)

11ℑ represents the extraction of an imaginary part.
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2.5.3 Ornstein–Zernike function

Let us consider the SANS profile from semi-dilute solution. Scattering from semi-dilute solution is origi-

nated from the fluctuation of concentration. This fluctuation is quantitatively represented by a parameter

Kos, called osmotic modulus as mentioned later. In the case of Ornstein–Zernike function, we set γ(r⃗) as

follows:

γ(r) :=
ξ

r
e−r/ξ (2.5.3.1)

where ξ is a kind of correlation length. Since this function is isotropic:

I(q⃗) = ∆ρ2⟨δφ2⟩4π
∫ ∞

0

r2γ(r)
sin qr

qr
dr

= ∆ρ2⟨δφ2⟩4πξ
q

∫ ∞

0

e−r/ξ sin qrdr (2.5.3.2)

Integral part of Eq.(2.5.3.2) is calculated as follows:∫ ∞

0

e−r/ξ sin qrdr = ℑ
(∫ ∞

0

e−r/ξeiqrdr

)
= ℑ

(∫ ∞

0

e(iq−
1
ξ )rdr

)
= ℑ

([
1

iq − 1
ξ

e(iq−
1
ξ )r

]∞
0

)

= ℑ

(
− 1

iq − 1
ξ

)

= ℑ

(
−

iq + 1
ξ

(iq − 1
ξ )(iq +

1
ξ )

)

= ℑ

(
iq + 1

ξ

q2 + 1
ξ2

)
=

q

q2 + 1
ξ2

(2.5.3.3)

Substitute Eq.(2.5.3.3) into Eq.(2.5.3.2):

I(q⃗) = ∆ρ2⟨δφ2⟩ 4πξ3

1 + q2ξ2
(2.5.3.4)

Intensity at q = 0

Let us consider the scattering intensity at q = 0. This means that we do not have to care the interference

effect. Our start point is Eq.(2.1.15):

S(q⃗) = 1 +

∫
(g(r⃗)− ϱ2)eiq⃗·r⃗dr⃗

→ S(0) = 1 +

∫
(g(r⃗)− ϱ2)dr⃗ (2.5.3.5)

where ϱ2 is the number density of monomer units. Notice that we use the density of monomer units instead of

polymers. This assumption is based on the fact that the physical properties at semi-dilute region is depends
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only on polymer fraction and does not depend on the degree of polymerization.

Let us define N2 as the number of monomer units in the irradiated volume V0:

N2 := ϱ2V0 (2.5.3.6)

Then the average value of N2
2 is represented as follows:

⟨N2
2 ⟩ = ϱ2

∫
V0

∫
V0

G(r⃗2 − r⃗1, t = 0)dr⃗1dr⃗2

= ⟨N2 ⟩
∫
V0

(δ(r⃗2 − r⃗1) + g(r⃗2 − r⃗1))dr⃗2

= ⟨N2 ⟩
(
1 +

∫
V0

g(r⃗)dr⃗

)
(2.5.3.7)

where

⟨N2 ⟩ =
∫
V0

ϱ2dr⃗ (2.5.3.8)

is the average value of N2.

Substitute Eq.(2.5.3.7) into Eq.(2.5.3.5):

S(0) =

⟨N2 ⟩
(∫

g(r⃗)dr⃗

)
⟨N2 ⟩

+

∫
ϱ2dr⃗

=
⟨N2

2 ⟩
⟨N2 ⟩

− ⟨N2 ⟩

=
⟨N2

2 ⟩ − ⟨N2 ⟩2

⟨N2 ⟩

=
⟨N2

2 − 2N2⟨N2 ⟩+ ⟨N2 ⟩2 ⟩
⟨N2 ⟩

=
⟨ (N2 − ⟨N2 ⟩)2 ⟩

⟨N2 ⟩
=
⟨ (∆N2)

2 ⟩
⟨N2 ⟩

(2.5.3.9)

where

∆N2 := N2 − ⟨N2 ⟩ (2.5.3.10)

Under equilibrium condition, ∆N2 is represented as follows:

⟨ (∆N2)
2 ⟩ =

∫
(∆N2)

2P (∆N2)d(∆N2)∫
P (∆N2)d(∆N2)

(2.5.3.11)

where

P (∆N2) := C exp

[
∆G(∆N2)

kBT

]
(2.5.3.12)

P (∆N2) represents the Boltzmann distribution. Notice that the denominator of Eq.(2.5.3.12) is kBT (instead

of RT ) since we consider the change of Gibbs energy caused by the change of number (instead of number of

moles).
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From now, we relate Eq.(2.5.3.11) to the chemical potential of the solution, and then osmotic pressure.

∆G is represented by using chemical potential, µ, and the number of moles of solvents in the irradiated

volume, n1:

∆G =

∫
dG =

∫ n′
1

n1

(µ′ − µ)dx =

∫ n′
1

n1

∂µ

∂n1
(x− n1)dx =

1

2

∂µ

∂n1
(∆n1)

2 (2.5.3.13)

where

∆n1 := n′1 − n1 (2.5.3.14)

Since n1 = N1/NA,

∆G =
1

2

∂µ

∂N1

dN1

n1

(
1

NA
NA∆n1

)2

=
1

2NA

∂µ

∂N1
(∆N1)

2 (2.5.3.15)

Then, we relate ∆N1 (the change of number of solvents) to ∆N2 (the change of number of monomers) via

the change of number concentration, ∆c. The number concentration, c [m−3], is represented as follows:

c =
N2

V0
≃ N2

N1V 1/NA
(2.5.3.16)

Differentiate both sides of Eq.(2.5.3.16) by N1:

∂c

∂N1
≃ − N2

N2
1V 1/NA

≃ − c

N1
≃ − cV 1

V0NA
(2.5.3.17)

By using Eqs.(2.5.3.16) and (2.5.3.17):

∆c =
∆N2

V0
=

cV 1

V0NA
∆N1 (2.5.3.18)

Then, we can relate ∆N1 and ∆N2 as follows:

∆N1 = −NA
cV 1

∆N2 (2.5.3.19)

Substitute Eq.(2.5.3.19) into Eq.(2.5.3.15):

∆G =
1

2NA

∂µ

∂N2

N2

N1

(
NA

cV 1

)2

(∆N2)
2

= − 1

2NA

∂µ

∂N2

cV 1

NA

(
NA

cV 1

)2

(∆N2)
2

= −1

2

∂µ

∂N2

1

cV 1

(∆N2)
2 (2.5.3.20)
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Substitute Eq.(2.5.3.20) into Eq.(2.5.3.12) and then into Eq.(2.5.3.11) 12:

⟨ (∆N2)
2 ⟩ =

∫
(∆N2)

2 exp

[
− 1

2kBTcV 1

∂µ

∂N2
(∆N2)

2

]
d(∆N2)∫

exp

[
− 1

2kBTcV 1

∂µ

∂N2
(∆N2)

2

]
d(∆N2)

= −kBTcV 1

(
∂µ

∂N2

)−1

(2.5.3.21)

From now, we relate µ to the osmotic pressure, Π. Let us define µ◦ as the chemical potential of solvent and

µ as that of solution. Definition of osmotic pressure, Π, is as follows: we contact the solvent and solution via

semipermeable membrane. Then, this system shows difference of pressure between the solvent and solution

at equilibrium. Mathematically, this condition is represented as follows since the chemical potential of two

liquid should be the same at equilibrium:

µ◦(P0) = µ(P0 +Π) =: µ(P0) + ∆µ (2.5.3.22)

where P0 implies ordinary pressure. Additional chemical potential, ∆µ, is represented by the following

integral form:

∆µ =

∫ P0+Π

P0

∂µ

∂P
dP (2.5.3.23)

Here, we use the definition of chemical potential:

µ =
∂G

∂n1
(2.5.3.24)

Then ∂µ/∂P is represented as follows:

∂µ

∂P
=

∂

∂P

(
∂G

∂n1

)
=

∂

∂n1

(
∂G

∂P

)
=
∂V

∂n1
= V 1 (2.5.3.25)

since

dG = V dP − SdT

→ ∂G

∂P
= V (2.5.3.26)

where V is the volume of solution and V 1 is partial molar volume of the solvent.

Let us assume that V 1 remains constant under the pressure P = P0 ∼ P0 + Π. Then, substitute

Eq.(2.5.3.25) into Eq.(2.5.3.23):

∆µ =

∫ P0+Π

P0

V 1dP = ΠV 1dP (2.5.3.27)

Then, we can see the relationship between µ and Π:

Π =
µ◦ − µ
V 1

(2.5.3.28)

12

∫ ∞

−∞
exp

(
−ax2

)
dx =

√
πa−1/2,

∫ ∞

−∞
x2 exp

(
−ax2

)
dx =

√
πa−3/2/2.
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Let us differentiate both sides of Eq.(2.5.3.28) by c (use Eq.(2.5.3.16)):

∂Π

∂c
= − 1

V 1

∂µ

∂c
= − 1

V 1

∂µ

∂N2

dN2

dc
= − V0

V 1

∂µ

∂N2
(2.5.3.29)

Substitute Eqs.(2.5.3.16), (2.5.3.21) and (2.5.3.29) into Eq.(2.5.3.9):

S(0) =

−kBTcV 1

(
−V 1

V0

∂Π

∂c

)−1

cV0
= kBT

(
∂Π

∂c

)−1

(2.5.3.30)

Next, we define the quantity called osmotic modulus. This quantity is similar to bulk modulus defined for

elastic bodies. Bulk modulus, K, for an elastic body whose volume is V is defined as follows:

K := −V ∂P
∂V
≃ ∆P

−∆V/V
(2.5.3.31)

This quantity implies how large the pressure is required for changing the volume. To say briefly, this shows

the stiffness of the matter.

Osmotic modulus is defined for solutions. Bulk modulus, Kos, for a solution whose monomer fraction is ϕ

is defined as follows:

Kos := ϕ
∂Π

∂ϕ
≃ ∆Π

∆ϕ/ϕ
(2.5.3.32)

Notice that the sign is different between K and Kos since the behavior against ∆P > 0 is opposite; the

volume is decreased (∆V < 0) while the monomer fraction is increased (∆ϕ > 0).

Now let us represent S(0) by using Kos. Before that, we represent ϕ by using c. Here, we use the lattice

model whose mesh size is a. Then, c (the number concentration of monomer units) is represented as follows:

c =
ϕ

a3
(2.5.3.33)

Substitute Eqs.(2.5.3.32) and (2.5.3.33) into Eq.(2.5.3.30):

S(0) = kBT

(
∂Π

∂ϕ

dϕ

dc

)−1

= kBT

(
1

ϕ

∂Π

∂ϕ
a3
)−1

=
kBTϕ

a3Kos
(2.5.3.34)

Then we convert Eq.(2.5.3.34) into the absolute intensity of SANS experiment 13:

I(q) =
1

V0

dσ

dΩ

∣∣∣∣
coh

=
1

V0
(⟨∆b ⟩)2N2S(q) (2.5.3.35)

Here, the number of solutes in the irradiated volume, N2, is represented by using ϕ and a:

N2 =
V0
a3
ϕ (2.5.3.36)

Notice that V0/a
3 implies the total number of lattice in the irradiated volume. In the context of the lattice

model, the difference of scattering length density, ∆ρ, is represented as follows:

∆ρ =
⟨∆b ⟩
a3

(2.5.3.37)

13We ignore the incoherent component.
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Substitute Eqs.(2.5.3.34), (2.5.3.36) and (2.5.3.37) into Eq.(2.5.3.35):

I(0) =
1

V0
(⟨ b ⟩)2V0

a3
ϕ
kBTϕ

a3Kos
=

(∆ρ)2kBTϕ
2

Kos
(2.5.3.38)

2.5.4 Teubner–Strey function

In the case of Teubner–Strey function, we set γ(r⃗) as follows:

γ(r) :=
d

2πr
e−r/ξ sin

2πr

d
(2.5.4.1)

Here two length parameters, d and ξ, is introduced.

Since this function is isotropic:

I(q⃗) = ∆ρ2⟨δφ2⟩4π
∫ ∞

0

r2γ(r)
sin qr

qr
dr

= ∆ρ2⟨δφ2⟩2d
q

∫ ∞

0

e−r/ξ sin qr sin
2πr

d
dr

= ∆ρ2⟨δφ2⟩d
q

∫ ∞

0

e−r/ξ
[
− cos

(
q +

2π

d

)
r + cos

(
q − 2π

d

)
r

]
dr (2.5.4.2)

Here, I use the following relationship.∫ ∞

0

e−r/ξ cosαrdr = ℜ
(∫ ∞

0

e(iα−
1
ξ )rdr

)
= ℜ

(
iα+ 1

ξ

α2 + 1
ξ2

)

=
ξ

1 + α2ξ2
(2.5.4.3)

Substitute Eq.(2.5.4.3) to Eq.Eq.(2.5.4.2):

d

q

∫ ∞

0

e−r/ξ
[
− cos

(
q +

2π

d

)
r + cos

(
q − 2π

d

)
r

]
dr

=
d

q

[
− ξ

1 + (q + 2π
d )2ξ2

+
ξ

1 + (q − 2π
d )2ξ2

]
=

8πξ3

(1 + 4π2

d2 ξ
2)2 + (2ξ2 − 8π2

d2 ξ
4)q2 + ξ4q4

(2.5.4.4)

Substitute Eq.(2.5.4.4) into Eq.(2.5.4.2):

I(q⃗) = ∆ρ2⟨δφ2⟩ 8πξ3

(1 + 4π2

d2 ξ
2)2 + (2ξ2 − 8π2

d2 ξ
4)q2 + ξ4q4

(2.5.4.5)
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3 Basic Theory — Physical Properties

3.1 Dynamics of polymers

As mentioned later (Eq.(4.2.4.30)), what we obtain from a neutron spin echo experiment is normalized

intermediate functions, I(q⃗, t) and Is(q⃗, t) (Eqs.(4.2.1.40) and (4.2.1.41)):

I(q⃗, t) :=
1

N

∑
j,j′

⟨e−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t)⟩ (3.1.1)

Is(q⃗, t) :=
1

N

∑
j

⟨e−iq⃗·R⃗j(0)eiq⃗·R⃗j(t)⟩ (3.1.2)

Eq.(3.1.1) is a coherent part and Eq.(3.1.2) is an incoherent part. In the Gaussian approximation, the

distribution of particle positions is described by a Gaussian distribution, as follows [51]:

I(q⃗, t) =
1

N

∑
j,j′

exp

[
−q

2

6
⟨(R⃗j(t)− R⃗j′(0))2⟩

]
(3.1.3)

Is(q⃗, t) =
1

N

∑
j

exp

[
−q

2

6
⟨(R⃗j(t)− R⃗j(0))2⟩

]
(3.1.4)

The form of I(q⃗, t) is more complicated compared to Is(q⃗, t) since we have to consider correlations between

all of the monomers. So we first derive the representation of Is(q⃗, t) briefly. Then we move on to the

representation of I(q⃗, t).

3.1.1 Incoherent component

From now, we derive ⟨(R⃗j(t)− R⃗j(0))2⟩ for various motions [23]. This corresponds to the dynamics of self

correlation. In this subsection, we omit the subscript j.

Brownian motion

If the monomers feel only the stochastic force, the motion becomes Brownian motion. In this case, the

displacement of monomers is described by using their diffusion constant, D:

⟨(R⃗(t)− R⃗(0))2⟩ = 6Dt (3.1.1.1)

This means that the relaxation rate is proportional to t:

Is(q⃗, t) ∝ exp
[
−q2Dt

]
(3.1.1.2)

Rouse mode

Then let us think about the effect of connectivity on polymer dynamics. Here, we use the concept of

relaxation time. Relaxation time is time required for a certain chain section to move a distance of order

of its own size. For all unentangled polymers which is composed of N monomers, there are N different

relaxation modes. These modes are labeled by mode index p = 1, 2, 3, . . . , N . Each mode has corresponding
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Figure 3.1: The concept of relaxation time. Relaxation time τp is time required for a chain section whose

length is N/p to move a distance of order of its own size. In the case where p = 1, τ1 implies the relaxation

time of a whole polymer. In the case where p = N , τN implies the relaxation time of one monomer. This

relaxation time is referred to as τ0.

relaxation time represented by τp. τp is the relaxation time of a chain section whose length is N/p. τN =: τ0

is the relaxation time of monomer and τ1 is that of whole polymer (Fig.3.1).

Let us think about the unentangled melt. In this case, each section can be regarded as an ideal Gaussian

chain. From the definition of relaxation time, ⟨(R⃗(τRp )− R⃗(0))2⟩ is the order of the square of their own size,

b(N/p)1/2 (ideal chain):

⟨(R⃗(τRp )− R⃗(0))2⟩ ≃

(
b

(
N

p

)1/2
)2

= b2
N

p
(3.1.1.3)

where b is the length of one monomer. Superscript R implies Rouse mode, as mentioned later.

From now, we connect τRp and N/p. For a polymer composed of N monomers, the longest relaxation time,

τR1 , can be represented formally as follows by using Eq.(3.1.1.1):

τR1 ≃
⟨(R⃗(t)− R⃗(0))2⟩

6DR
≃ (bN1/2)2

DR
(3.1.1.4)

where DR is a diffusion constant of the polymer. A difference from simple Brownian motion is the N -

dependence of the diffusion constant. This diffusion constant is calculated by using a friction coefficient of

the polymer, ζR (the Einstein relation):

DR =
kBT

ζR
(3.1.1.5)

Here, we assume that the friction coefficient of the polymer is the sum of that of monomers, ζ0:
14

ζR := Nζ0 (3.1.1.6)

14In the case of Brownian motion, ζ ∝ ηsR. Although there is no concept of relaxation in the case of Brownian motion, the
representation of ζ is the same as Zimm mode, as mentioned later.
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Rouse Mode Zimm Mode

Figure 3.2: Model of Rouse mode and Zimm mode. Left: Model of Rouse mode. A polymer is assumed to

be composed of the beads connected by springs. The number of beads is the same as that of monomers.

Right: Model of Zimm mode. Since each monomer interacts each other via hydrodynamic interactions, a

section of N/p monomers is treated as one sphere.

This means we assume that ζ0 is additive quantity. The physical meaning of this is that each monomer feels

force independently. In this respect, the bead-spring model is used for this situation (Fig.3.2, left).

Substitute Eq.(3.1.1.5) and (3.1.1.6) into Eq.(3.1.1.4):

τR1 ≃
ζ0b

2

kBT
N2 =: τ0N

2 (3.1.1.7)

By using this relation, we can calculate the relaxation time of mode p:

τRp ≃ τ0
(
N

p

)2

(3.1.1.8)

Substitute Eq.(3.1.1.8) into Eq.(3.1.1.3):

⟨(R⃗(τRp )− R⃗(0))2⟩ ≃ b2
(
τRp
τ0

)1/2

(3.1.1.9)

This can be generalized as follows:

⟨(R⃗(t)− R⃗(0))2⟩ ≃ b2
(
t

τ0

)1/2

for τ0 < t < τR1 (3.1.1.10)

This means that the segment correlation function is proportional to t1/2. Notice that the Brownian motion

follows linear t-dependence (Eq.(3.1.1.1)). This can be qualitatively understood that the monomer shows

Brownian motion on the Brownian motion of the polymer. This motion is a kind of subdiffusive motion

and referred to as Rouse mode. After complete relaxation (τR1 < t), polymer begins to show the Brownian

(diffusive) motion.

Zimm mode

In the case of Rouse mode (polymer melt), there is no long-range force from the surrounding solvent,

called hydrodynamic interaction. The motion under the existence of hydrodynamic interaction is called

Zimm mode. In this motion, N -dependence of the friction coefficient, ζZ , is different from that of Rouse
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mode (ζR ∝ N , Eq.(3.1.1.6)). Here, we use the relationship called Stokes law:

ζZ ≃ ηsR = ηsbN
ν (3.1.1.11)

where ηs is the viscosity of solvent, R is the radius of polymer in the solution called hydrodynamic radius,

ν is the swelling exponent. Notice that ζ0 does not affect ζ. This is because each section is regarded as

one sphere due to hydrodynamic interactions (Fig.3.2, right). Then, the longest relaxation time, τZ1 , can be

derived similar to Eq.(3.1.1.4)15:

τZ1 ≃
(bNν)2

DZ
≃ (bNν)2

kBT/(ηsbNν)
=
ηsb

3

kBT
N3ν =: τ0N

3ν (3.1.1.12)

and

τZp ≃ τ0
(
N

p

)3ν

(3.1.1.13)

From definition of relaxation time (similar to Eq.(3.1.1.3)),

⟨(R⃗(τZp )− R⃗(0))2⟩ ≃
(
b

(
N

p

)ν)2

= b2
(
N

p

)2ν

(3.1.1.14)

Substitute Eq.(3.1.1.13) into Eq.(3.1.1.14):

⟨(R⃗(τZp )− R⃗(0))2⟩ ≃ b2
(
τZp
τ0

)2/3

(3.1.1.15)

This can be generalized as follows:

⟨(R⃗(t)− R⃗(0))2⟩ ≃ b2
(
t

τ0

)2/3

for τ0 < t < τZ1 (3.1.1.16)

This means that the segment correlation function is proportional to t2/3.

3.1.2 Coherent component

From now, we see ⟨(R⃗j(t)− R⃗j′(0))2⟩ for various motions. We skip the derivation since it is quite compli-

cated. Instead of this, we see the important results during the derivation [23,52].

Rouse mode

In the case of polymer melt without entanglement, the dynamics of jth monomer in a polymer is described

by a following equation:

ζ0
∂R⃗j
∂t

= ∇jV (R⃗j) + f⃗j(t) (3.1.2.1)

where R⃗j is the position of jth monomer, V (R⃗j) is the free energy of the polymer chain and f⃗j(t) is the

15Although this derivation is qualitative, τ0 should be the same as that of Rouse mode (Eq.(3.1.1.7)) in principle.
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stochastic force from the heat bath on jth monomer. The force ∇jV (R⃗j) is considered to be a contribution

of entropic springs. In this case, we can write Eq.(3.1.2.1) in more concrete form:

ζ0
∂R⃗j
∂t

=
3kBT

b2
∂2R⃗j
∂j2

+ f⃗j(t) (3.1.2.2)

where kBT/b
2 is a spring constant. Here, we regard j as a continuous variable.

By solving this equation, we can calculate the time-dependent thermally averaged mean square displace-

ment:

⟨(R⃗j(t)− R⃗j′(0))2⟩ = 6DRt+ |j − j′|b2 +
4Nb2

π2

N∑
p=1

1

p2
cos

pπj

N
cos

pπj′

N

(
1− exp

(
−p

2t

τR1

))
(3.1.2.3)

Briefly speaking, the first term implies the diffusive motion of center of gravity (⟨(R⃗j(t) − R⃗j(0))2⟩). The

second term implies the average distance between jth and j′th monomers (⟨(R⃗j(t) − R⃗j′(t))2⟩). The third

term is the summation of a characteristic term of Rouse mode: effect of connectivity. p is the index of the

relaxation modes.

When j = j′ (incoherent term) and t < τR1 , this can be calculated as the following brief form:

⟨(R⃗j(t)− R⃗j(0))2⟩ = 2b2
(
3kBTt

πζ0b2

)1/2

∝ b2
(
t

τ0

)1/2

(3.1.2.4)

Here, we used Eq.(3.1.1.7). This result is the same as that of Eq.(3.1.1.10).

Substitute Eq.(3.1.2.4) into Eq.(3.1.4):

Is(q⃗, t) = exp

[
−q

2

6
2b2
(
3kBTt

πζ0b2

)1/2
]

= exp

[
− 2

π1/2

(
1

12
kBT

b2

ζ0
q4t

)1/2
]

(3.1.2.5)

Let us define the characteristic rate of the Rouse dynamics, ΩR(q):

ΩR(q) :=
1

12
kBT

b2

ζ0
q4 (3.1.2.6)

Substitute Eq.(3.1.2.6) into Eq.(3.1.2.5):

Is(q⃗, t) = exp

[
− 2

π1/2
(ΩR(q)t)

1/2

]
(3.1.2.7)

To see the coherent term (j ̸= j′), let us substitute Eq.(3.1.2.3) into Eq.(3.1.3):

I(q⃗, t)

=
1

N

∑
j,j′

exp

[
−q2DRt−

1

6
|j − j′|q2b2 − 2Nb2q2

3π2

∑
p

1

p2
cos

pπj

N
cos

pπj′

N

(
1− exp

(
−p

2t

τR1

))]
(3.1.2.8)

First, let us see the case where q is small. When q(bN1/2) ≪ 1, we cannot see the internal motion of

polymers. In this case, what we see is the diffusive motion of the center of gravity of the polymer. This
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statement is verified mathematically:

I(q⃗, t) ≃ 1

N

∑
j,j′

exp
[
−q2DRt

]
= N exp

[
−q2DRt

]
for q(bN1/2)≪ 1 (3.1.2.9)

Then let use see the opposite case: q(bN1/2) ≫ 1. In this case, we concentrate on short time behavior

(t < τR1 ) since the signal completely decays when t is large. Eq.(3.1.2.3) is converted into the following form:

⟨(R⃗j(t)− R⃗j′(0))2⟩

= 6DRt+ |j − j′|b2 +
2Nb2

π2

N∑
p=1

1

p2

[
cos

pπ(j + j′)

N
+ cos

pπ(j − j′)
N

](
1− exp

(
−p

2t

τR1

))
(3.1.2.10)

Here, we can ignore the first term since t is small. In addition to this, we can also ignore the first cosine term

in the third term since the summation of the third term is dominated by large p values16 and this cosine

term oscillates rapidly.

Then we substitute Eq.(3.1.2.10) into Eq.(3.1.3). From now, we consider j, j′ and p as continuous variables.

This means that we represent Eq.(3.1.3) in an integral form:

I(q⃗, t)

≃ 1

N

∑
j,j′

exp

[
−1

6
q2|j − j′|b2 − q2Nb2

3π2

∑
p

1

p2
cos

pπ(j − j′)
N

(
1− exp

[
− tp

2

τR1

])]

→ 1

N

∫ ∞

0

dj

∫ ∞

0

dj′

exp

[
−1

6
q2|j − j′|b2 − q2Nb2

3π2

∫ ∞

0

dp
1

p2
cos

pπ(j − j′)
N

(
1− exp

[
− tp

2

τR1

])]
= 2

∫ ∞

−∞
d(j − j′) exp

[
−1

6
q2|j − j′|b2 − q2Nb2

3π2

∫ ∞

0

dp
1

p2
cos

pπ(j − j′)
N

(
1− exp

[
− tp

2

τR1

])]
(3.1.2.11)

Here, we define the following variables:

u :=
|j − j′|q2b2

6
(3.1.2.12)

W :=
3kBT

ζ0b2
(3.1.2.13)

x :=
π(Wt)1/2

N
p =

(
3π2kBTt

ζ0N2b2

)1/2

p (3.1.2.14)

In addition to this, we use the exact value of τR1 :17

τR1 =
ζ0b

2

3π2kBT
N2 =

N2

π2W
(3.1.2.15)

16Large p corresponds to the relaxation of a section composed of N/p monomers. This means that large p corresponds to
short relaxation terms. In other words, we do not have to consider the relaxation of long sections since those does not relax in
the discussed time region.

17Notice that Eq.(3.1.1.7) holds true.
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Then,

I(q⃗, t) = 2

∫ ∞

−∞

6

q2b2
q2b2

6
d(j − j′) exp

[
−|j − j

′|q2b2

6
− q2b2

6
(Wt)1/2

2

π∫ ∞

0

dp
π

N
(Wt)1/2

cos
[
πp
N (Wt)1/2 |j−j′|q2b2

6
6

q2b2 (Wt)−1/2
]

π2p2

N2 Wt

(
1− exp

[
−π

2p2

N2
Wt

])
=

12

q2b2

∫ ∞

0

du exp

[
−u− (ΩRt)

1/2 2

π

∫ ∞

0

dx
cos(xu(ΩRt)

−1/2)

x2
(
1− exp(−x2)

)]
=

12

q2b2

∫ ∞

0

du exp
[
−u− (ΩRt)

1/2h(u(ΩRt)
−1/2)

]
(3.1.2.16)

where

(ΩRt)
1/2 :=

(
1

12
kBT

b2

ζ0
q4t

)1/2

=
q2b2

6
(Wt)

1/2
(3.1.2.17)

h(y) :=
2

π

∫ ∞

0

dx
cos(xy)

x2
(
1− exp(−x2)

)
(3.1.2.18)

Although the form of equation is complicated, it is important to notice that this function depends only

one variable, ΩR, similar to the incoherent term (Eq.(3.1.2.7))18.

It is known that the long time behavior (ΩRt > 1) becomes a simple exponential form:

I(q⃗, t)

I(q⃗, 0)
= exp

[
−21/2(ΩRt)1/2

]
for ΩRt > 1 (3.1.2.19)

Zimm mode

In the case of polymer solutions, we have to add the effect of hydrodynamic interactions into Eq.(3.1.2.2).

This can be represented by the dragging force, ζ0v⃗(R⃗j) where v⃗(R⃗j) is the velocity of jth monomer:

∇jV (R⃗j) =
3kBT

b2
∂2R⃗j
∂j2

+ ζ0v⃗(R⃗j) (3.1.2.20)

The velocity of jth monomer, v⃗(R⃗j), is determined from the force made by all of the other monomers.

The force on j′th monomer and the resulting flow field at jth monomer is connected by a 3× 3 tensor called

Oseen tensor, Tjj′ :

Tjj′ :=
1

8πηs|R⃗j − R⃗j′ |

(
E− (R⃗j − R⃗j′)(R⃗j − R⃗j′)

(R⃗j − R⃗j′)2

)
(3.1.2.21)

where E is an unit matrix and (R⃗j − R⃗j′)(R⃗j − R⃗j′) is dyadic. Then,

v⃗(R⃗j) =
∑
j ̸=j′

Tjj′ F⃗ (R⃗j′) (3.1.2.22)

18Notice that the prefactor 12/(q2b2) is not a fitting parameter since what we obtain is a normalized function.
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where F⃗ (R⃗j′) is the force on j′th monomer:

F⃗ (R⃗j′) =
3kBT

b2
∂2R⃗j′

∂j′2
+ f⃗j′(t) (3.1.2.23)

Notice that we do not take ζ0v⃗(R⃗j′) term into consideration for Eq.(3.1.2.23). The term j = j′ should be

omitted since the force on jth monomer does not make the flow field at the position of oneself. Substitute

Eq.(3.1.2.20), (3.1.2.22) and (3.1.2.23) into Eq.(3.1.2.1):

ζ0
∂R⃗j
∂t

= ζ0v⃗(R⃗j) +
3kBT

b2
∂2R⃗j
∂j2

+ f⃗j(t)

= ζ0
∑
j ̸=j′

Tjj′

(
3kBT

b2
∂2R⃗j′

∂j′2
+ f⃗j′(t)

)
+

3kBT

b2
∂2R⃗j
∂j2

+ f⃗j(t) (3.1.2.24)

Here, we define that19

Tjj :=
1

ζ0
E (3.1.2.25)

then we can write the equation briefly:

∂R⃗j
∂t

=
∑
j′

Tjj′

(
3kBT

b2
∂2R⃗j′

∂j′2
+ f⃗j′(t)

)
(3.1.2.26)

Notice that j′ runs from 1 to N , including j. Although this equation cannot solve analytically, we can

linearize this equation by using a number of approximations. The result is:

∂R⃗j
∂t

=W
∂2R⃗j
∂j2

+
1

ζ0
f⃗j(t) +WB

∑
j ̸=j′

(
1

|j − j′|1/2
+ f⃗j′(t)

)
(3.1.2.27)

where W is the same as Eq.(3.1.2.13) and B is a parameter called draining parameter:

B :=
1

61/2π3/2

ζ0
ηsb

(3.1.2.28)

This parameter implies the strength of hydrodynamic interaction. B = 0.4 in the case of Zimm mode

and hydrodynamic interaction is dominant. B = 0 implies the Rouse limit and Eq.(3.1.2.28) reproduces

Eq.(3.1.2.2).

When j = j′ (incoherent term) and t < τZ1 , this can be calculated as the following brief form:

⟨(R⃗j(t)− R⃗j(0))2⟩ =
16

9

1

π3/2

(
(3π)1/2kBT

ηs
t

)2/3

∝ b2
(
kBT

ηsb3
t

)2/3

∝ b2
(
t

τ0

)2/3

(3.1.2.29)

Here, we used Eq.(3.1.1.12). This result is the same as that of Eq.(3.1.1.16).

19We can define Tjj arbitrarily since this term is not used for the calculation of flow field.
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Substitute Eq.(3.1.2.29) into Eq.(3.1.4):

Is(q⃗, t) = exp

[
− 8

27

q2

π3/2

(
(3π)1/2kBT

ηs
t

)2/3
]

= exp

[
−8 · 22/3

9π1/2

q2

22/33π

(
(3π)1/2kBT

ηs
t

)2/3
]

= exp

[
− 211/3

9π1/2

(
q3

2(3π)3/2
(3π)1/2kBT

ηs
t

)2/3
]

= exp

[
− 211/3

9π1/2

(
1

6π

kBT

ηs
q3t

)2/3
]

(3.1.2.30)

Let us define the characteristic rate of the Zimm dynamics, ΩZ(q):

ΩZ(q) :=
1

6π

kBT

ηs
q3 (3.1.2.31)

Substitute Eq.(3.1.2.31) into Eq.(3.1.2.30):

Is(q⃗, t) = exp

[
− 211/3

9π1/2
(ΩZ(q)t)

2/3

]
(3.1.2.32)

It is known that the coherent term also depends only on (ΩZt)
2/3:

Is(q⃗, t) =
12

q2b2

∫ ∞

0

du exp
[
−u− (ΩZt)

2/3g(u(ΩZt)
−2/3)

]
(3.1.2.33)

where

g(y) :=
2

π

∫ ∞

0

dx
cos(xy)

x2

(
1− exp(−2−1/2x3/2)

)
(3.1.2.34)

It is known that the long time behavior (ΩZt > 1) becomes a simple exponential form, similar to Rouse

mode (Eq.(3.1.2.19)):

I(q⃗, t)

I(q⃗, 0)
= exp

[
−22/3

π
Γ

(
1

3

)
(ΩZt)

2/3

]
for ΩRt > 1 (3.1.2.35)

where Γ(x) is the Gamma function.
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3.2 Physical properties of polymers

3.2.1 Viscoelasticity

To characterize the materials, what we focus on at the first time is the phase of the materials. Here, I

stick on only solid and liquid phases. In the case of solids, their physical properties can be characterized by

checking how stiff they are. To specify the stiffness quantitatively, there are some representative parameters to

characterize the solids. These characters are called elasticity. In the case of liquids, their physical properties

can be characterized by checking how flow they will. To specify the flow quantitatively, we usually use the

parameter called viscosity. In contrast to the materials such as metals and low-molecular liquid, polymers

have both elasticity and viscosity for most of the case. These character is called viscoelasticity. In this

subsection, I introduce the basic theory of viscoelasticity necessary to understand previous and my current

research.

Figure 3.3: Definition of stress.

Figure 3.3 shows the definition of stress applied on a certain unit volume. Stress is defined as the force

applied to the area.

σij :=
Fj
Ai

(3.2.1.1)

where Fj is the force parallel to j axis and Ai is the area perpendicular to i axis. σzz > 0 corresponds to the

stretching of the materials and σzz < 0 corresponds to the compression. σij (i ̸= j) is the force parallel to

j axis and applied to the plane i. These type of force is called shear. By applying certain stress, the body

will be deformed. If the unit length Li becomes Li + dLi (i = x, y, z), strain γi is defined as follows.

γi :=
dLi
Li

(3.2.1.2)

For a perfect elastic solid, shear stress σij (i ̸= j) is proportional to the strain γj . This proportional

constant is called shear modulus, G.20

G :=
σij
γj

(3.2.1.3)

20For isotropic materials, G does not depend on i and j.
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In contrast to this, for a simple liquid, shear stress is proportional to the time variation of the strain, γ̇.

This proportional constant is called viscosity, η.21

η :=
σij
γ̇j

(3.2.1.4)

In the case of polymer systems, there are both an elastic term and a viscous term.

σij = Gγej = ηγ̇vj (3.2.1.5)

where the total strain, γ is decided into two terms.

γj =: γej + γvj (3.2.1.6)

Here I’m going to show that G and η is not independent but strongly related to each other. Let us consider

a step strain γj is applied to the viscoelastic body at t = 0. At that time, the stress σij will be produced on

plane i. As time goes on, the stress will be relaxed since the body has viscous component. This means that

the stress becomes time-dependent for the step strain. By using Eq.(3.2.1.3), we can define time-dependent

shear modulus.

G(t) :=
σij(t)

γj
(3.2.1.7)

By using this time-dependent shear modulus, the stress at t = t can be represented by the summation of

small stress originated from small step strain applied at t = ti.

σij(t) =
∑
k

G(t− tk)δ(γj)k =
∑
k

G(t− tk)(γ̇j)kδtk

→
∫ t

−∞
G(t− t′)γ̇j(t′)dt′ (3.2.1.8)

When γ̇j is a constant (steady shear):

σij(t) = γ̇j

∫ t

−∞
G(t− t′)dt′ = γ̇j

∫ ∞

0

G(s)ds (3.2.1.9)

where s := t − t′. In most of the case, the applied stress will also become constant under steady shear. In

that case, we can use Eq.(3.2.1.4). As a result, the relationship between G and η is derived as follows.

η =

∫ ∞

0

G(t)dt (3.2.1.10)

Next, let us connect the macroscopic quantity G to the microscopic quantities by using rubber as an

example. First, let us see entropy for a single chain. Probability that end-to-end distance is R is calculated

as follows.

P (R) = exp

[
− 3R2

2Nb2

]
(3.2.1.11)

where N and b is the number of polymerization and length of one segment, respectively. Entropy of the

21For isotropic materials, η does not depend on i and j.
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chain is calculated by regarding P (R) as the number of state in Boltzmann’s equation.

s(R) = kB lnP (R) = −3kBR
2

2Nb2
(3.2.1.12)

Here, let us consider the deformation called affine deformation. Under this assumption, deformation ratio for

macroscopic scale is the same as that for each polymer. Let us define the deformation ratio as (λx, λy, λz).

In addition, we assume that λxλyλz = 1. This means that the total volume does not change by deformation.

In this case, entropy change for each polymer is calculated as follows.

∆s = s(R)− s(R0) = −
kB

2Nb2
(λ2x + λ2y + λ2z − 3)r20 (3.2.1.13)

Here, we assume isotropic distribution before deformation: x20 = y20 = z20 = r20/3. Therefore, entropy change

per unit volume is represented as follows.

∆S = −1

2
NkB(λ

2
x + λ2y + λ2z − 3)

= −1

2
νR(λ2x + λ2y + λ2z − 3) (3.2.1.14)

where N is the number of polymers in a unit volume and ν := N/NA. When there is no internal energy

(enthalpy) change, change of Gibbs free energy by deformation is represented as follows.

∆G = −T∆S =
1

2
νRT (λ2x + λ2y + λ2z − 3) (3.2.1.15)

For simple shear, the relationship between λ and γ is calculated as follows:

λx := λ, λy = 1, λz =
1

λ
⇒ γ = λ− 1

λ
(3.2.1.16)

By substituting Eq.(3.2.1.16) into Eq.(3.2.1.15):

∆G =
1

2
νRTγ2 (3.2.1.17)

The work done on the body per unit area is calculated by a differentiation of ∆G by γ. This work is nothing

but stress.

σ =
d(∆G)

dγ
= νRTγ (3.2.1.18)

By comparing Eq.(3.2.1.3) and (3.2.1.18), shear modulus G is represented as follows.

G = νRT (3.2.1.19)

G is also called elastic modulus.

Eq.(3.2.1.19) shows that shear modulus is proportional to the number of chains in a unit volume. This

notion is extended to the polymer melt and solution. As shown in Section 3.1, polymer segment start relaxing

after setting them to the state far from equilibrium. After the relaxation, shear modulus is proportional to

the number of (relaxed) chains in a unit volume. The number density of chains is equal to ϕ/Nb3 where Nb3
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is the volume of each polymer, therefore:

G(τ) ≃ kBT
ϕ

Nb3
(3.2.1.20)

Here, σ(t) is time-dependent stress. τ is the relaxation time and defined by using Eq.(3.2.1.5).

τ :=
η

G
(3.2.1.21)

Qualitatively speaking, viscoelastic body is regarded as a solid at t < τ (before relaxation) while is regraded

as a liquid at t > τ (after relaxation). By substituting Eqs.(3.2.1.21) and (3.2.1.6) into Eq.(3.2.1.5):

τ
dγvj
dt

= γej = γj − γvj → γej = γj exp[−t/τ ] (3.2.1.22)

σij(t) = Gγj exp[−t/τ ] (3.2.1.23)

From Eq.(3.2.1.23), we define time-dependent shear modulus as follows.

G(t) = G exp[−t/τ ] (3.2.1.24)

First, let us use the following rough estimation to obtain viscosity.

η =

∫ ∞

0

G(t)dt =

∫ ∞

0

G exp[−t/τ ]dt ≃ G(τ)τ (3.2.1.25)

This result is obtained by substituting G(τ) into G in Eq.(3.2.1.23). There are several forms to represent

viscosity for polymer solution. From experimental point of view, the definition of viscosity is Eq.(3.2.1.4).

By using this definition, let us write the viscosity of solvent and polymer solution (whose concentration is

c) as η0 and ηp, respectively. Then the following definition is used.

Relative viscosity, ηr :
ηp
η0

(3.2.1.26)

Specific viscosity, ηs :
ηp − η0
η0

(3.2.1.27)

Reduced viscosity, ηs/c :
ηp − η0
cη0

(3.2.1.28)

Intrinsic viscosity, [η] : lim
c→0

ηs
c

(3.2.1.29)

The viscosity of polymer solution shown in Eq.(3.2.1.25) consider the contribution only from polymers.

Therefore, η in Eq.(3.2.1.25) can be written as ηp−η0. By using this fact, we can calculate intrinsic viscosity

as follows.

[η] ≃ lim
c→0

G(τ)τ

cη0
=
kBTNA
η0M0N

τ (3.2.1.30)

Here, I used the fact that the mass concentration, c, is written by using polymer fraction, ϕ and molar mass

of a monomer, M0, as follows.

c =
ϕ

b3
M0

NA
(3.2.1.31)

From the viewpoint of each polymer, relaxation time corresponds to the longest relaxation time of Zimm
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mode, Eq.(3.1.1.12).

τ =
η0(bN

ν)3

kBT
=
η0R

3

kBT
(3.2.1.32)

By substituting Eq.(3.2.1.32) into Eq.(3.2.1.30):

[η] ≃ R3NA
M0N

(3.2.1.33)

To compensate the error originated from rough approximation (Eq.(3.2.1.25)), let us introduce numerical

factor Φ.

[η] = Φ
R3

M
(3.2.1.34)

where M := M0N is the molar mass of the polymer. Φ = 2.5 × 1023 mol−1 is a universal constant for all

polymer-solvent systems [23]. Eq.(3.2.1.34) is known as Fox–Flory equation.

Let us see the concentration dependence of viscosity. Our starting point is Eq.(3.2.1.10). To calculate this,

we have to know G(t). At the longest relaxation time of polymer in solution (Zimm mode), t = τZ1 , G(τZ1 )

is expressed as Eq.(3.2.1.20). When t < τZ1 , not all modes are relaxed within one polymer chain. Before

realization, each unrelaxed mode will contribute kBT to the shear modulus. In other words, p unrelaxed

modes can be regarded as p chains which contribute the elasticity of the system. Since the number of

unrelaxed modes at t = τZp is p, we can write the shear modulus when t < τZ1 as follows.

G(τZp ) ≃ kBT
ϕ

Nb3
p (3.2.1.35)

By using Eq.(3.1.1.13), we can obtain G(t) as follows:

G(τZp ) ≃ kBT
ϕ

Nb3
N

(
τZp
τ0

)−1/3ν

→ G(t) ≃ kBT

b3
ϕ

(
t

τ0

)−1/3ν

for τ0 < t < τZ1 (3.2.1.36)

At t > τZ1 , the system is regarded as liquid and shear modulus will decrease exponentially as Eq.(3.2.1.24).

By combining these expressions, the time dependence of G(t) is approximated as follows.

G(t) ≃ kBT

b3
ϕ

(
t

τ0

)−1/3ν

exp(−t/τZ1 ) (3.2.1.37)

By substituting Eq.(3.2.1.37) into Eq.(3.2.1.10) (with η → ηp − η0), viscosity can be calculated as follows.

ηp − η0 =

∫ ∞

0

G(t)dt = η0ϕN
3ν−1 (3.2.1.38)

For polymer melt, we can use similar discussion for Rouse mode (Eq.(3.1.1.8)).

G(τRp ) ≃ kBT
ϕ

Nb3
N

(
τRp
τ0

)−1/2

→ G(t) ≃ kBT

b3
ϕ

(
t

τ0

)−1/2

exp(−t/τR1 ) (3.2.1.39)
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η =

∫ ∞

0

G(t)dt = η0ϕN (3.2.1.40)

For semidilute, unentangled solution, relaxation mode is changed from Zimm mode to Rouse mode at the

size of correlation length, ξ. As a result, their viscosity becomes:

ηp − η0 =

∫ ∞

0

G(t)dt = η0ϕ
1/(3ν−1)N (3.2.1.41)

3.2.2 Osmotic modulus

As shown in Section 2.5.3, scattering intensity is related to the fluctuation of irradiated molecules. To spec-

ify this fluctuation quantitatively, we introduced the parameter called osmotic modulus, Kos (Eq.(2.5.3.32)).

Let us see the explicit form of Kos. In addition, I’m going to expand this notion from polymer solutions to

polymer gels. Here I’m going to use lattice model. By using the lattice model, mixing entropy and enthalpy

per lattice is calculated as follows (See Eq.(3.2.4.14)).

∆S̄mix = −kB
(
ϕ

N
lnϕ+ (1− ϕ) ln(1− ϕ)

)
(3.2.2.1)

∆H̄mix = kBTχϕ(1− ϕ) (3.2.2.2)

where ϕ and N is the volume fraction of polymers and the degree of polymerization, respectively. χ is the

parameter called Flory interaction parameter. Let us assume that there are ns mole of solvent molecules and

np mole of polymers in a unit volume. In this case, the number of lattice in a unit volume, Ntot becomes:

Ntot = NA(ns + npN) (3.2.2.3)

Therefore, the mixing entropy and enthalpy per unit volume is:

∆Smix = Ntot∆S̄ = −kBNtot
(
NAnpN

Ntot

1

N
lnϕ+

NAns
Ntot

ln(1− ϕ)
)

= −R(np lnϕ+ ns ln(1− ϕ)) (3.2.2.4)

∆Hmix = Ntot∆H̄ = kBTχNtotϕ
NAns
Ntot

= RTχϕns (3.2.2.5)

From Eqs.(3.2.2.4) and (3.2.2.5), the Gibbs free energy of mixing per unit volume is written as follows.

∆G = ∆Hmix − T∆Smix = RT (np lnϕ+ ns ln(1− ϕ) + χϕns) (3.2.2.6)

The Gibbs free energy of mixing is the difference of Gibbs free energy between solution and (solvent +

solute).

∆G = ∆Gsolution −∆Gsolvent −∆Gsolute (3.2.2.7)

Differentiation of Gibbs free energy by the mole of solvent, ns, is the chemical potential as shown in

Eq.(2.5.3.24).

∂∆G

∂ns

∣∣∣∣
T,P,np

=
∂∆Gsolution

∂ns

∣∣∣∣
T,P,np

− ∂∆Gsolvent

∂ns

∣∣∣∣
T,P,np

= µ− µ◦ (3.2.2.8)
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By substituting Eq.(3.2.2.8) into Eq.(2.5.3.28):

Π = − 1

V s

∂∆G

∂ns

∣∣∣∣
T,P,np

(3.2.2.9)

Differentiation of Eq.(3.2.2.6) can be done as follows.

∂(np lnϕ)

∂ns
= np

∂ϕ

∂ns

d(lnϕ)

dϕ
= np

∂

∂ns

[
npN

npN + ns

]
1

ϕ
= − ϕ

N
(3.2.2.10)

∂(ns ln(1− ϕ))
∂ns

= ln(1− ϕ) + ns
∂ϕ

∂ns

d ln(1− ϕ)
dϕ

= ln(1− ϕ) + ϕ (3.2.2.11)

∂(χϕns)

∂ns
= χ

∂

∂ns

[
npnsN

npN + ns

]
= ϕ2 (3.2.2.12)

Substitute Eqs.(3.2.2.6), (3.2.2.10) ∼ (3.2.2.12) into Eq.(3.2.2.9):

Π = −RT
V s

[
ln(1− ϕ) +

(
1− 1

N

)
ϕ+ χϕ2

]
(3.2.2.13)

Substitute Eq.(3.2.2.13) into Eq.(2.5.3.32):

Kos = ϕ
∂Π

∂ϕ
=
RTϕ

V s

[(
1

1− ϕ
+ 2χ

)
ϕ+

1

N

]
(3.2.2.14)

To take the effect of the difference of partial volume of solvent and solute into consideration, the degree of

polymerization, N , is changed to the reduced degree of polymerization.

N → V m

V s
N (3.2.2.15)

where V m stands for the partial volume of one monomer in the polymer. By using this expression,

Eq.(3.2.2.14) is written as follows.

Kos =
RTϕ

V mN

[
1 +

(
1

1− ϕ
+ 2χ

)
ϕ
V m

V s
N

]
(3.2.2.16)

In the case of solution, the origin of entropy change is mixing only. In contrast to this, we have to

consider the entropy originated from crosslinking in the case of gels. Here, the entropy change is measured

by comparing uncrossklinked, undeformed network and crosslinked, deformed network. This means that we

cannot use Eq.(3.2.1.14) since the volume of the system will changed significantly due to swelling. By using

more precise discussion, it is proved that there are two effects which cause entropy change. First term is an

elastic term.

∆Sel = −
1

2
νR(λ2x + λ2y + λ2z − 3− 2 lnλxλyλz) (3.2.2.17)

Note that the term lnλxλyλz becomes 0 when there is no volume change. In this case, Eq.(3.2.2.17) becomes
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Eq.(3.2.1.14). Second term is a network term.

∆Snet = −
2νR

f
lnλxλyλz (3.2.2.18)

where f is a functionality of the crosslink point. The origin of this term is the entropy loss by a restriction of

crosslinking points. As a result, additional entropy change originated from crosslinking becomes as follows

when f = 4.

∆Sel +∆Snet = −
1

2
νR(λ2x + λ2y + λ2z − 3− lnλxλyλz)

= −1

2
νR

[
3

(
ϕ

ϕ0

)−2/3

− 3 + ln

(
ϕ

ϕ0

)]
(3.2.2.19)

where we assume the following relationship (isotropic swelling).

λx = λy = λz =

(
ϕ

ϕ0

)−1/3

(3.2.2.20)

Here, ϕ0 and ϕ stand for the polymer volume fraction of as-prepared state and swollen state, respectively.

From Eq.(3.2.2.19), we can calculate the osmotic pressure of gel systems.

Π = − 1

V s

∂∆G

∂ns

∣∣∣∣
T,P,np

= − 1

V s

∂

∂ns
(∆Hmix − T (∆Smix +∆Sel +∆Snet)) (3.2.2.21)

Differentiation of Eq.(3.2.2.21) can be done as follows.

∂(∆Sel +∆Snet)

∂ns
=
∂(ϕ/ϕ0)

∂ns

d(∆Sel +∆Snet)

d(ϕ/ϕ0)

= −1

2
νR

(
− ϕ

ϕ0

1

npN + ns

)[
−2
(
ϕ

ϕ0

)−5/3

+

(
ϕ

ϕ0

)−1
]

= −1

2
νRVs

[
2

(
ϕ

ϕ0

)−2/3

− 1

]
(3.2.2.22)

where we assume that the partial molar volume of solvent (V s) and monomer (V m) are the same.

1

npN + ns
= V s = V m (3.2.2.23)

Eq.(3.2.2.22) is defined for a unit volume of as-prepared state. Therefore, it should be multiplied by ϕ/ϕ0 to

redefine it for a unit volume of swollen state. By using Eqs.(3.2.2.13) and (3.2.2.22) to Eq.(3.2.2.21), osmotic

pressure for gel system becomes as follows.

Π = −RT
V s

[
ln(1− ϕ) + ϕ+ χϕ2

]
+ νRT

[
1

2

ϕ

ϕ0
−
(
ϕ

ϕ0

)1/3
]

(3.2.2.24)

Here, 1/N term is neglected since N is large. Then osmotic modulus for gel system becomes:

K = ϕ
∂Π

∂ϕ
=
RTϕ2

V s

(
1

1− ϕ
+ 2χ

)
+ νRT

[
1

2

ϕ

ϕ0
− 1

3

(
ϕ

ϕ0

)1/3
]

(3.2.2.25)

Here, both osmotic pressure and crosslinking contribute to K. Therefore, K is called bulk modulus.
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3.2.3 Tanaka–Hocker–Benedek theory

The theory of dynamics of gel network was proposed by Tanaka et al. to obtain microscopic information

of gels by light scattering [53]. Here I’m going to review their theory for the application of my research.

Starting point of this theory is the following equation of motion for a displacement vector of gel networks.

ρ
∂2u⃗

∂t2
= ∇⃗ · σ − f ∂u⃗

∂t
(3.2.3.1)

where u⃗(r⃗, t) is a displacement vector of a unit cube whose average position is r⃗, ρ is the density of the

network, f is the friction constant, and σ is the stress tensor. The stress tensor is related to the shear

modulus and bulk modulus which I explained in Section 3.2.1 and 3.2.2 as follows.

σij = K(∇⃗ · u⃗)δij + 2G

[
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
− 1

3
(∇⃗ · u⃗)δij

]
(3.2.3.2)

Substituting Eq.(3.2.3.2) into Eq.(3.2.3.2) gives:

ρ
∂2ui
∂t2

=
∑
j

∂

∂rj

[(
K − 2

3
G

)
(∇⃗ · u⃗)δji +G

(
∂ui
∂xj

+
∂uj
∂xi

)]
− f ∂ui

∂t
(3.2.3.3)

since

∇⃗ · σ =

[
∂

∂x

∂

∂y

∂

∂z

]
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 =

[∑
i

∂

∂ri
σix

∑
i

∂

∂ri
σiy

∑
i

∂

∂ri
σiz

]
(3.2.3.4)

Here, ∑
i

∂

∂ri

[
(∇⃗ · u⃗)δik

]
=

∂

∂ri
(∇⃗ · u⃗) = ∇i(∇⃗ · u⃗) (3.2.3.5)

∑
j

∂

∂rj

(
∂ui
∂xj

+
∂uj
∂xi

)

=
∂2ui
∂x2

+
∂2ui
∂y2

+
∂2ui
∂z2

+
∂2ux
∂x∂ri

+
∂2uy
∂y∂ri

+
∂2uz
∂z∂ri

= ∆ui +∇i(∇⃗ · u⃗) (3.2.3.6)

Substitute Eqs.(3.2.3.5) and (3.2.3.6) into Eq.(3.2.3.3):

ρ
∂2ui
∂t2

= G∆ui +

(
K +

1

3
G

)
∇i(∇⃗ · u⃗)− f

∂ui
∂t

→ ρ
∂2u⃗

∂t2
= G∆u⃗+

(
K +

1

3
G

)
∇⃗(∇⃗ · u⃗)− f ∂u⃗

∂t
(3.2.3.7)
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Eq.(3.2.3.7) is easily solved by using Fourier transformation.

ui(r⃗, t) =
1

(2π)2

∫∫
ui(q⃗, ω) exp[i(q⃗ · r⃗ + ωt)]dq⃗dω (3.2.3.8)

∂

∂t
ui(r⃗, t) =

1

(2π)2

∫∫
iωui(q⃗, ω) exp[i(q⃗ · r⃗ + ωt)]dq⃗dω (3.2.3.9)

∂2

∂t2
ui(r⃗, t) =

1

(2π)2

∫∫
−ω2ui(q⃗, ω) exp[i(q⃗ · r⃗ + ωt)]dq⃗dω (3.2.3.10)(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ui(r⃗, t) =

1

(2π)2

∫∫
−q2ui(q⃗, ω) exp[i(q⃗ · r⃗ + ωt)]dq⃗dω (3.2.3.11)

Here, we can set q⃗ := (0, 0, q) without loss of generality since the fluctuation of gel is isotropic. Under this

assumption:

∂

∂ri

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
ui(r⃗, t) =

1

(2π)2
∂

∂ri

∫∫
iquz(q⃗, ω) exp[i(q⃗ · r⃗ + ωt)]dq⃗dω

=


0 i = x, y

1

(2π)2

∫∫
−q2uz(q⃗, ω) exp[i(q⃗ · r⃗ + ωt)]dq⃗dω i = z

(3.2.3.12)

By using Eqs.(3.2.3.8) ∼ (3.2.3.12), Eq.(3.2.3.7) is written as follows.
1

(2π)2

∫∫ [
ρω2 − ifω −Gq2

]
ui(q⃗, ω) exp[i(q⃗ · r⃗ + ωt)]dq⃗dω = 0 i = x, y

1

(2π)2

∫∫ [
ρω2 − ifω −

(
K +

4

3
G

)
q2
]
uz(q⃗, ω) exp[i(q⃗ · r⃗ + ωt)]dq⃗dω = 0 i = z

(3.2.3.13)

Eq.(3.2.3.13) is rewritten as follows:


[
ρω2 − ifω − ρc2t q2

]
ui(q⃗, ω) = 0 i = x, y[

ρω2 − ifω − ρc2l q2
]
uz(q⃗, ω) = 0 i = z

(3.2.3.14)

where

ct :=

√
G

ρ
(3.2.3.15)

cl :=

√
K + 4

3G

ρ
(3.2.3.16)

Eqs.(3.2.3.15) and (3.2.3.16) correspond to the transverse and longitudinal sound velocities, respectively.

From now, we use c to express both ct and cl. By using this notation, two equations in Eqs.(3.2.3.14) can

be treated simultaneously. When ui(q⃗, ω) has non-trivial solution, Eqs.(3.2.3.14) becomes:

ρω2 − ifω − ρc2q2 = 0 (3.2.3.17)

The solution of Eq.(3.2.3.17) is:

iω = − 1

τ0
(1±

√
1− ω2

0τ
2
0 ) (3.2.3.18)
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where

ω0 := cq (3.2.3.19)

τ0 :=
2ρ

f
(3.2.3.20)

When ω0τ0 ≫ 1, Eq.(3.2.3.18) is solved as follows:

ω = ±ω0 +
i

τ0
(3.2.3.21)

From Eq.(3.2.3.21), the meaning of ω0 and τ0 are clarified. ω0 stands for the angular frequency of the

propagating wave (sound wave). τ0 stands for the relaxation time of the non-propagating wave. Note that

eiωt = e±iω0te−t/τ0 . When ω0τ0 ≪ 1, which is the case for gels, Eq.(3.2.3.18) is solved as follows:

ω =

if/ρ = 2i/τ0

iρc2q2/f = iτ0ω
2
0/2

(3.2.3.22)

Each solution is purely imaginary. This means that there are only non-propagating waves. The first solution

in Eq.(3.2.3.22) can be obtained by assuming that the elastic term is negligibly small. In other words, c→ 0

in Eq.(3.2.3.17).

ρω2 − ifω = 0⇒ ω = i
f

ρ
(3.2.3.23)

Usually, this frequency is too large (fast) to be observed by using dynamic light scattering (the order of

nanoseconds−1). In contrast to this, the second solution in Eq.(3.2.3.22) can be obtained by assuming that

the acceleration term is negligibly small. In other words, ρω2 → 0 in Eq.(3.2.3.17).

−ifω − ρc2q2 = 0⇒ ω = i
ρc2q2

f
(3.2.3.24)

This frequency is suitable for the measurement by using dynamic light scattering (the order of milliseconds−1).

In real space, this approximation makes Eq.(3.2.3.7) diffusion equation. By assuming that q⃗ = (0, 0, q),

Eq.(3.2.3.7) without acceleration term (light hand side) can be written as follows.

G∆ui +

(
K +

1

3
G

)
∇i(∇⃗ · u⃗)− f

∂ui
∂t

= G

(
∂2ui
∂x2

+
∂2ui
∂y2

+
∂2ui
∂z2

)
+

(
K +

1

3
G

)
∂

∂ri

(
+
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
− f ∂ui

∂t

=


G
∂2ui
∂z2

− f ∂ui
∂t

= 0 i = x, y(
K +

4

3
G

)
∂2ui
∂z2

− f ∂ui
∂t

= 0 i = z
(3.2.3.25)

Eq.(3.2.3.25) is summarized as follows.

∂u⃗

∂t
=
M

f

∂2u⃗

∂z2
(3.2.3.26)
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where

M =

G for transverse modes

K +
4

3
G for a longitudinal mode

(3.2.3.27)

Eq.(3.2.3.26) has the same form as the diffusion equation.

∂ϕ(r⃗, t)

∂t
= D∆ϕ(r⃗, t) (3.2.3.28)

Therefore, M/f represents the diffusion constants for the fluctuation of network strands in the gel. When

we apply Einstein–Stokes relationship, characteristic length, ξ, is called correlation length. ξ is sometimes

interpreted as the mesh size of the network. Eq.(3.2.3.26) has the same form as the diffusion equation.

M

f
=:

kBT

6πηξ
(3.2.3.29)

3.2.4 Polymers with lower critical solution temperature

Solubility of solid substance usually increases as the temperature increases. This is mainly due to the

entropy term. When solid substance dissolve is dissolved in liquid, solute can move freely in solution. This

means that dissolution is preferable from the viewpoint of entropy 22. Contribution of entropic change,

∆S, to the free energy is −T∆S where T is absolute temperature. Therefore, the tendency of dissolution is

strengthen when temperature increases. In the case of polymer solution, situation becomes more complicated.

First I’m going to explain the phase separation by using lattice model [54]. Let us consider how to set Ns

solvents and Np polymers to Nt lattice whose coordination number is z (Figure 3.4). Here, the degree of

polymerization of the polymers is assume to be N . In this case, Nt = Ns +NNp.

ex.

Figure 3.4: Lattice model.

To calculate entropy of mixing, let us consider the number of ways of putting the first polymer to the

lattice, ν1. The number of ways to put the first monomer is the number of lattice sites, Nt. Next monomer

can be set to either z sites next to the first monomer. Third monomer can be set to either z − 1 sites next

22The same discussion holds true for dissolution of liquid. In the case of gas substance, dissolution restrict the motion of gas
molecule. Therefore, dissolution of gas is not preferable from the viewpoint of entropy. This is the main reason why solubility
of gas substance usually decreases as the temperature increases
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to the second monomer. Like this, other monomers can be set to either z − 1 sites next to the previous

monomer if other previous monomers do not interfere. As a result, ν1 is represented as follows.

ν1 = Ntz(z − 1)N−2 (3.2.4.1)

Next, let us consider the number of ways of putting the second polymer to the lattice, ν1. The number of

ways to put the first monomer is the number of unoccupied lattice sites, Nt −N . Next monomer can be set

to either z sites next to the first monomer if they are unoccupied. Here we assume that the probability that

the site next to the monomers of the second polymer is approximated to be (Nt −N)/Nt, the occupancy of

all the lattice sites. By using this assumption, ν2 is represented as follows.

ν2 = (Nt −N)

(
z
Nt −N
Nt

)(
(z − 1)

Nt −N
Nt

)(
(z − 1)

Nt −N
Nt

)
· · ·

= (Nt −N)z(z − 1)N−2

(
Nt −N
Nt

)N−1

(3.2.4.2)

By using the similar discussion, the number of ways of putting the i + 1th polymer to the lattice, νi is

represented as follows.

νi+1 = (Nt − iN)z(z − 1)N−2

(
Nt − iN
Nt

)N−1

(3.2.4.3)

Eq.(3.2.4.3) is mathematically approximated as follows.

νi+1 ≃ (Nt − iN)(z − 1)N−1

(
Nt − iN
Nt

)N−1

= (Nt − iN)N
(
z − 1

Nt

)N−1

≃ (Nt − iN)(Nt − iN − 1) · · · (Nt − (i+ 1)N + 1)

(
z − 1

Nt

)N−1

=
(Nt − iN)!

(Nt − (i+ 1)N)!

(
z − 1

Nt

)N−1

(3.2.4.4)

Total number of ways of putting all Np polymers to the lattice, Ωsp is therefore calculated as follows.

Ωsp =
1

Np!
Π
Np

i=1νi

≃ 1

Np!

Nt!

(Nt −N)!

(Nt −N)!

(Nt − 2N)!
· · · (Nt − (Np − 1)N)!

(Nt −NpN)!

(
z − 1

Nt

)Np(N−1)

=
Nt!

(Nt −NpN)!Np!

(
z − 1

Nt

)Np(N−1)

=
Nt!

Ns!Np!

(
z − 1

Nt

)Np(N−1)

(3.2.4.5)

Here, 1/Np! is added since we cannot distinguish each polymer. By using Stirling’s approximation,

lnX! ≃ X lnX −X when X ≫ 1 (3.2.4.6)
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logarithm of Eq.(3.2.4.5) is:

lnΩsp ≃ (Nt lnNt −Nt)− (Ns lnNs −Ns)− (Np lnNp −Np) +Np(N − 1)(ln(z − 1)− lnNt)

= (Ns lnNt +Np lnNt + (N − 1)Np lnNt − (Ns +NNp))

− (Ns lnNs −Ns)− (Np lnNp −Np) +Np(N − 1) ln(z − 1)−Np(N − 1) lnNt

= −Ns ln
Ns
Nt
−Np ln

Np
Nt

+Np(N − 1)(ln(z − 1)− 1) (3.2.4.7)

Entropy of mixing, ∆Smix is calculated by subtracting the entropy of pure solvents, Ss, and pure polymers,

Sp, from the entropy of solution, Ssp. Entropies of pure solvent, pure polymers, and mixture are obtained

as follows.

Ssp = kB lnΩsp (3.2.4.8)

Ss = kB lnΩsp(Np = 0) = kBNs ln
Ns
Ns

= 0 (3.2.4.9)

Sp = kB lnΩsp(Ns = 0) = kB

(
−Np ln

Np
NNp

+Np(N − 1)(ln(z − 1)− 1)

)
= kBNp ln

N(z − 1)N−1

eN−1
(3.2.4.10)

Since we cannot distinguish each solute, the entropy of pure solvents is zero. In contrast to this, the entropy

of pure polymers is nonzero since each polymer has internal degree of freedom. Eq.(3.2.4.10) is called the

entropy of disorientation. By using Eqs.(3.2.4.8) ∼ (3.2.4.10), entropy of mixing is calculated as follows.

∆Smix = Ssp − Ss − Sp = −Ns ln
Ns
Nt
−Np ln

Np
Nt
−Np lnN = −Ns lnϕs −Np lnϕp (3.2.4.11)

where ϕs and ϕp stand for the fraction of solvents and polymers, respectively.

ϕs :=
Ns
Nt

(3.2.4.12)

ϕp :=
NNp
Nt

(3.2.4.13)

Note that ϕs + ϕp = 1. The mixing entropy pre lattice is (Eq.(3.2.2.1)):

∆S̄mix =
∆Smix
Nt

= −kB
(
ϕs lnϕs −

ϕp
N

lnϕp

)
(3.2.4.14)

Next, let us consider the enthalpy term. In the case of lattice model, pressure and volume is regarded as

a constant. Therefore, mixing enthalpy is equal to the change of energy.

∆Hmix = ∆(Umix − PV ) = ∆Umix (3.2.4.15)

Pairwise interaction energies between two solvents, two monomers, and a solvent and a monomer are defined

as uss, upp, usp, respectively. By calculating the number of contacts, internal energies of pure solvent, Us

and pure polymers, Up, are obtained as follows.

Us = Ntϕszuss/2 (3.2.4.16)

Up = Ntϕpzupp/2 (3.2.4.17)
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Here, Ntϕsz/2 and Ntϕpz/2 are the number of contacts in pure solvent and pure polymers, respectively. To

calculate the internal energies of solution, Usp, we assume that the number of contacts between two solvents

is Ntϕ
2
s, the number of contacts between two polymers is Ntϕ

2
p, and the number of contacts between a solvent

and a monomer is 2Ntϕsϕp, respectively. In actual, the number of contacts between two polymers will be

larger than Ntϕ
2
p because of the connectivity. However, the effect of the connectivity is neglected in this

assumption. Therefore, mixing enthalpy is calculated as follows.

Usp = Nt(ussϕ
2
s + uppϕ

2
p + 2uspϕsϕp)z/2 (3.2.4.18)

∆Hmix = Usp − Us − Up

= Nt(ussϕ
2
s + uppϕ

2
p + 2uspϕsϕp − ϕsuss − ϕpupp)z/2

= Nt(ussϕs(ϕs − 1) + uppϕp(ϕp − 1) + 2uspϕsϕp)z/2

= Ntϕsϕp(2usp − uss − upp)z/2 (3.2.4.19)

=: kBTNtχϕsϕp (3.2.4.20)

where

χ :=
z

2

2usp − uss − upp
kBT

(3.2.4.21)

The mixing entropy per lattice is (Eq.(3.2.2.2)):

∆H̄mix =
∆Hmix

Nt
= kBTχϕsϕp (3.2.4.22)

By using Eqs.(3.2.4.14) and (3.2.4.22), Gibbs energy for mixing per lattice is calculated as follows.

∆Ḡmix = ∆H̄mix − T∆S̄mix = kBT

[
ϕ

N
lnϕ+ (1− ϕ) ln(1− ϕ) + χϕ(1− ϕ)

]
(3.2.4.23)

where ϕ := ϕp stands for polymer fraction. When N = 1, Eq.(3.2.4.23) becomes the Gibbs energy for

mixing of two solvent. In this case, phase separation occurs as a function of temperature. Figure 3.5 shows

ϕ-dependence of ∆Ḡmix. When the temperature is fixed, phase separation occurs when χT is large. In

extreme case, phase separation never occurs when χ = 0. Physical meaning is that phase separation is

induced by the interaction energy between solvents and solutes. When χT is fixed, phase separation occurs

when T is small since the entropy term becomes small relative to the enthalpy term. This type of phase

separation is called upper critical solution temperature (UCST) type phase transition. When N > 1, ϕ-

dependence of ∆Ḡmix becomes asymmetric. Although phase separation can be explained similar to the case

of N = 1, only UCST type phase separation is described.

In contrast to this, there is an opposite phenomenon called lower critical solution temperature (LCST)

type phase transition. Typical example of LCST is poly(N -isopropylacrylamide) (PNIPA) [55] whose solu-

tion becomes turbid at temperature higher than 32 ◦C. The gel prepared by PNIPA shows volume phase

separation at 34 ◦C and can be used for application such as drug delivery system [56]. Here I’m going to

describe the theory to explain LCST by using lattice model developed by Matsuyama and Tanaka [57].

In this model, we consider association of a polymer and solvents (Figure 3.6). These clusters are in

equilibrium. Polymer fraction before mixing is ϕ. After mixing, several solvents are attached to each

polymer. These equilibrium is expressed as equilibrium constants, Ki where i is the number of associated
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Figure 3.5: ϕ-dependence of ∆Ḡmix of liquid mixture with different χ and T .

Mix

Figure 3.6: Extended lattice model for LCST. As an example, N = 5 and f = N is assumed in this figure.

solvents. Degree of polymerization is set to be N and the maximum association number is set to be f .

Volume fraction of pure solvent after mixing is expressed as ϕ0. Volume fractions of clusters with i solvents

(i cluster, 0 ≤ i ≤ f) are expressed as ϕi+1. Here, 0 cluster stands for the unbonded polymer. To apply this

system to lattice model, we set the number of solvents as N0 and the number of i clusters as Ni+1. From
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these definitions, we can obtain the following relationship.

Nt = N0 +

f∑
i=0

(N + i)Ni+1 (3.2.4.24)

ϕ =

f∑
i=0

N

N + i
ϕi+1 =

f∑
i=0

NNi+1

Nt
(3.2.4.25)

The free energy of this system, G, is the summation of two terms. The first term is the free energy of isolated

system, Gref .

Gref := N0µ
◦
0 +

f∑
i=0

Ni+1µ
◦
i+1 (3.2.4.26)

where µ◦
0 is the chemical potential of an isolated solvent and µ◦

i is that of an isolated i cluster. The second

term is the free energy of mixing, Gmix. This term is expressed by extending the expression Eq.(3.2.4.23).

Gmix := NtkBT

[
ϕ0 lnϕ0 +

f∑
i=0

ϕi+1

N + i
lnϕi+1 + χϕ(1− ϕ)

]

= kBT

[
N0 lnϕ0 +

f∑
i=0

Ni+1 lnϕi+1 + χNtϕ(1− ϕ)

]
(3.2.4.27)

Here, I used the following relationship.

ϕi+1

N + i
=

(N + i)Ni+1

Nt

1

N + i
=
Ni+1

Nt
(3.2.4.28)

For the calculation of enthalpy, the interaction energy of polymer and associated solvents is neglected. In

other words, usp used for χ stands for the pairwise interaction energy between a free solvent and a monomer.

Next issue is the determination of ϕ0 and ϕi+1 for 0 ≤ i ≤ f . To determine the volume fractions, we

use the equilibrium condition of i cluster. When the free solvents and polymers are in equilibrium with i

clusters, the following relationship should hold.

ϕi+1 = Kiϕ1ϕ
i
0 (3.2.4.29)

µi+1 = µ1 + iµ0 (3.2.4.30)

Here, µ0 and µi+1 (0 ≤ i ≤ f) stands for the chemical potential of free solvent and that of i cluster in the

mixture and represented as follows.

µ0 =
∂G

∂N0
=
∂Gref
∂N0

+
∂Gmix
∂N0

(3.2.4.31)

µi+1 =
∂G

∂Ni+1
(3.2.4.32)

To calculate Eq.(3.2.4.31) explicitly, following relationships are used.

∂Nt
∂N0

= 1 (3.2.4.33)
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∂

∂N0
lnϕ0 =

∂ϕ0
∂N0

1

ϕ0
=

∂

∂N0

(
N0

Nt

)
Nt
N0

=

[
1

Nt
+N0

∂Nt
∂N0

dN−1
t

dNt

]
Nt
N0

=
1

N0
− 1

Nt
(3.2.4.34)

∂

∂N0
lnϕi+1 =

∂ϕi+1

∂N0

1

ϕi+1
=

∂

∂N0

(
(N + i)Ni+1

Nt

)
Nt

(N + i)Ni+1

=
∂Nt
∂N0

dN−1
t

dNt
Nt = −

1

Nt
(3.2.4.35)

∂ϕ

∂N0
=

∂

∂N0

f∑
i=0

NNi+1

Nt
=

f∑
i=0

NNi+1
∂Nt
∂N0

dN−1
t

dNt
= − ϕ

Nt
(3.2.4.36)

∂

∂N0
[ϕ(1− ϕ)] = ∂ϕ

∂N0
(1− 2ϕ) = −ϕ(1− 2ϕ)

Nt
(3.2.4.37)

By using Eqs.(3.2.4.33) ∼ (3.2.4.37), Eq.(3.2.4.31) is calculated as follows.

βµ0 = βµ◦
0 +

∂

∂N0

[
N0 lnϕ0 +

f∑
i=0

Ni+1 lnϕi+1 + χNtϕ(1− ϕ)

]

= βµ◦
0 +

[
lnϕ0 +N0

(
1

N0
− 1

Nt

)
−

f∑
i=0

Ni+1

Nt
+ χ[ϕ(1− ϕ)− ϕ(1− 2ϕ)]

]

= βµ◦
0 + lnϕ0 + 1−

[
ϕ0 +

ϕ

N

]
+ χϕ2 (3.2.4.38)

where β := (kBT )
−1. To calculate Eq.(3.2.4.32) explicitly, following relationships are used.

∂Nt
∂Ni+1

= N + i (3.2.4.39)

∂

∂Ni+1
lnϕ0 =

∂ϕ0
∂Ni+1

1

ϕ0
=

∂

∂Ni+1

(
N0

Nt

)
Nt
N0

=
∂Nt
∂Ni+1

dN−1
t

dNt
Nt = −

N + i

Nt
(3.2.4.40)

∂

∂Ni+1
lnϕk+1 =

∂ϕk+1

∂Ni+1

1

ϕk+1
=

∂

∂Ni+1

(
(N + k)Nk+1

Nt

)
Nt

(N + k)Nk+1

=
∂Nt
∂N0

dN−1
t

dNt
Nt = −

N + i

Nt
(3.2.4.41)

∂

∂Ni+1
lnϕi+1 =

∂ϕi+1

∂Ni+1

1

ϕi+1
=

∂

∂Ni+1

(
(N + i)Ni+1

Nt

)
Nt

(N + i)Ni+1

=

[
1

Nt
+Ni+1

∂Nt
∂Ni+1

dN−1
t

dNt

]
Nt
Ni+1

=
1

Ni+1
− N + i

Nt
(3.2.4.42)
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∂ϕ

∂Ni+1
=

∂

∂Ni+1

f∑
k=0

NNk+1

Nt
=
N

Nt
+

f∑
k=0

NNk+1
∂Nt
∂Ni+1

dN−1
t

dNt

=
N

Nt
−

f∑
k=0

NNk+1
N + i

N2
t

=
N

Nt
− N + i

Nt
ϕ (3.2.4.43)

∂

∂Ni+1
[ϕ(1− ϕ)] = ∂ϕ

∂Ni+1
(1− 2ϕ) =

[
N

Nt
− N + i

Nt
ϕ

]
(1− 2ϕ) (3.2.4.44)

By using Eqs.(3.2.4.39) ∼ (3.2.4.44), Eq.(3.2.4.32) is calculated as follows.

βµi+1 = βµ◦
i+1 +

∂

∂Ni+1

[
N0 lnϕ0 +

f∑
k=0

Nk+1 lnϕk+1 + χNtϕ(1− ϕ)

]

= βµ◦
i+1 +

[
−N0

N + i

Nt
+ lnϕi+1 + 1−

f∑
k=0

Nk+1
N + i

Nt
+ (N + i)χϕ(1− ϕ) + χ(N − (N + i)ϕ)(1− 2ϕ)

]

= βµ◦
i+1 + lnϕi+1 + 1− (N + i)

[
ϕ0 +

ϕ

N

]
+Nχ

[
(1− ϕ)2 + i

N
ϕ2
]

(3.2.4.45)

Substitute Eqs.(3.2.4.38) and (3.2.4.45) into Eq.(3.2.4.30):

βµ◦
i+1 + lnϕi+1 + 1− (N + i)

[
ϕ0 +

ϕ

N

]
+ χ[N(1− ϕ)2 + iϕ2]

= βµ◦
1 + lnϕ1 + 1−N

[
ϕ0 +

ϕ

N

]
+ χ[N(1− ϕ)2]

+ iβµ◦
0 + lnϕi0 + i− i

[
ϕ0 +

ϕ

N

]
+ χ[iϕ2]

→ βµ◦
i+1 + lnϕi+1 = βµ◦

1 + lnϕ1 + iβµ◦
0 + lnϕi0 + i (3.2.4.46)

From Eq.(3.2.4.46), Ki is calculated as follows.

ln
ϕi+1

ϕ1ϕi0
= i− β(µ◦

i+1 − µ◦
1 − iµ◦

0) =: i−∆i

→ ϕi+1 = exp[i−∆i]ϕ1ϕ
i
0 =: Kiϕ1ϕ

i
0 (3.2.4.47)

Remaining task is the determination of ∆i, the difference of chemical potentials before and after the

association in isolated environment. Let us this term into entropy part and enthalpy part (Figure 3.7).

∆i := β(µ◦
i+1 − µ◦

1 − iµ◦
0)

=: β(∆H − T∆S) (3.2.4.48)

Enthalpy part is simply represented by the summation of association energy between a monomer and a

solvent, ∆ε(> 0).

∆H = −i∆ε (3.2.4.49)

Note that i cluster has i association sites.

Entropy part is further decomposed into two contributions. First one is combinatorial entropy. This term
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Figure 3.7: Decomposition of ∆i into entropy part and enthalpy part.

originates from the number of ways to choose i sites from f sites, which is calculated as follows.

∆Scom = kB ln
f !

i!(f − i)!
(3.2.4.50)

Second one is disorientation entropy. This term originates from the number of ways to put i cluster into

N + i lattice cells, which has already calculated in Eq.(3.2.4.10). I define this entropy as S(N, i). The

disorientation entropy of one unbonded polymer whose degree of polymerization is N is:

S(N, 0) = kB ln
N(z − 1)N−1

σeN−1
(3.2.4.51)

Here, σ, the symmetry number, is added. When we can distinguish the direction of the polymer, σ = 1.

When we cannot distinguish the direction of the polymer, σ = 2 since the way of filling from the first to the

last monomer is the same of that from the last to the first monomer. Eq.(3.2.4.51) can be extended to the

case of i clusters as follows.

S(N, i) = kB ln

[
(N + i)(z − 1)N+i−1

σeN+i−1
wi
]

(3.2.4.52)

where lnw stands for the decrease of entropy due to one bond formation. Then disorientation entropy is

calculated as follows.

∆Sdis/kB = (S(n, i)− S(n, 0)− iS(1, 0))/kB

= ln(N + i) + (N + i− 1) ln(z − 1) + lnwi − lnσ − (N + i− 1)

− lnN − (N − 1) ln(z − 1) + lnσ + (N − 1) +m lnσ

= ln
N + i

N
+ i ln(z − 1) + lnwi + i lnσ − i

= ln

[
N + i

N

(
(z − 1)wσ

e

)i]
=: ln

[
N + i

N
λi0

]
(3.2.4.53)

By substituting Eqs.(3.2.4.49), (3.2.4.50), and (3.2.4.53) into Eq.(3.2.4.48), ∆i is represented as follows.

∆i = −iβ∆ε− ln
N + i

N

f !

i!(f − i)!
− lnλi0 (3.2.4.54)
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3.3 Microphase separation

Substitute Eq.(3.2.4.54) into Eq.(3.2.4.47), Ki is calculated as follows.

Ki =
N + i

N

f !

i!(f − i)!
λ(T )i (3.2.4.55)

where

λ(T ) := λ0e
1+β∆ε (3.2.4.56)

Eq.(3.2.4.55) shows that Ki does not depend on ϕ and changes as a function of T . We can calculate ϕi for

given ϕ under the condition of Eq.(3.2.4.25). From this information, we can calculate the free energy from

Eqs.(3.2.4.26) and (3.2.4.27). Matsuyama and Tanaka showed that there are certain parameter sets which

reproduce LCST type phase separation, which reproduce the phase diagram of polyethylene glycol [57].

Later, phase separation of PNIPA was also reproduced by taking the effect of cooperative association [58].

Here, the interaction between bonded solutes are included. Once one solute is bonded to the polymer, other

free solutes can be easily bonded to the site next to the bonded solute. This kind of cooperative association

was observed experimentally by dielectric relaxation techniques [59].

3.3 Microphase separation

3.3.1 Helmholtz free energy as a functional of ϕ(r⃗)

First, let us describe Helmholtz free energy of the system with M polymers. Here, we assume that all of

the polymers are homopolymers with N + 1 segments. To specify this system, what we have to designate is

the coordinates of all of the segments. The space spanned by these coordinates are called Γ.

Γ :=
{
(r⃗

(1)
0 , · · · , r⃗(1)N ), (r⃗

(2)
0 , · · · , r⃗(2)N ), · · · (r⃗(M)

0 , · · · , r⃗(M)
N )

}
=: Γ1Γ2 · · ·ΓM (3.3.1.1)

where r⃗
(i)
j is the coordinate of jth segments of ith polymer. Subspace spanned by ith polymer is represented

as Γi. The energy of the system Γ without any interaction is defined as Ĥ0(Γ).
23

Ĥ0(Γi) :=
3kBT

2b2

N−1∑
j=0

∣∣∣r⃗(i)j+1 − r⃗
(i)
j

∣∣∣2 (3.3.1.2)

Ĥ0(Γ) :=

M∑
i=1

Ĥ0(Γi) (3.3.1.3)

Here, I apply bond-beads model. In this model, energy of the system is expressed as the summation of the

potential energy of spring whose spring constant is 3kBT/b
2. 24

The energy of the system Γ originated from interactions between polymers are represented as Ŵ(Γ).

Therefore, total Hamiltonian of the system is:

Ĥ(Γ) = Ĥ0(Γ) + Ŵ(Γ) (3.3.1.4)

23The symbol Â means that the quantity A is related to the microscopic state defined by certain configuration Γ.
24The minimum value of Ĥ0(Γi) is 0 when r⃗

(i)
0 = r⃗

(i)
1 = · · · = r⃗

(i)
N . However, Γi becomes a point when Ĥ0(Γi) = 0. Therefore,

the most probable energy is determined as the balance of energy of each configuration Γ and the size of Γ. The size of Γ stands
for the effect of entropy.
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3.3 Microphase separation

When the energy of certain Γ is large, the probability that the system takes the configuration Γ, P (Γ),

decreases. This probability is represented as follows.

P (Γ) = exp
[
−βĤ(Γ)

]
/Z (3.3.1.5)

where Z is normalization constant called state sum:

Z =
1

M !

∫
dΓ exp[−βĤ(Γ)] (3.3.1.6)

Here 1/M ! means that we cannot distinguish M polymers.
∫
dΓ stands for the integration through all of

possible Γ. By using P (Γ), concentration distribution of segments at r⃗ is calculated as follows.25

ϕ(r⃗) = ⟨ ϕ̂(r⃗; Γ) ⟩ = 1

M !Z

∫
dΓϕ̂(r⃗; Γ) exp

[
−βĤ(Γ)

]
(3.3.1.7)

Next, we assume that Ŵ(Γ) is characterized only by the information ϕ̂(r⃗; Γ). Here, Ŵ becomes a function of

ϕ̂(r⃗; Γ). Function of some functions are called functional and represented like Ŵ[ϕ̂(r⃗; Γ)]. Our task is to find

Helmholtz free energy as a functional of ϕ(r⃗). Helmholtz free energy is related to the state sum as follows.

F [ϕ(r⃗)] = − 1

β
lnZ (3.3.1.8)

Helmholtz free energy of the system will be the minimum of Eq.(3.3.1.8). To obtain concrete expression of

Eq.(3.3.1.8), I express Eq.(3.3.1.6) by using Eq.(11.5.2) and (11.5.4) as follows.

Z =
1

M !

∫
dΓ exp

[
−β
(
Ĥ0(Γ) + Ŵ[ϕ̂(r⃗; Γ)]

)]
=

1

M !

∫
dΓ exp

[
−βĤ0(Γ)

] ∫
D{φ(r⃗)}δ

[
φ(r⃗)− ϕ̂(r⃗; Γ)

]
exp [−βW[φ(r⃗)]]

=
1

M !

∫
dΓ exp

[
−βĤ0(Γ)

] ∫
D{φ(r⃗)}

∫
D{w(r⃗)} exp

[
i

∫
dr⃗
(
φ(r⃗)− ϕ̂(r⃗; Γ)

)
w(r⃗)

]
exp [−βW[φ(r⃗)]]

(3.3.1.9)

Then let us define V(r⃗) as follows.

V(r⃗) := iw(r⃗)

β
(3.3.1.10)

Then ϕ(r⃗) is expressed as follows.

Z =
1

M !

∫
D{φ(r⃗)}

∫
D{w(r⃗)} exp

[
−βW[φ(r⃗)] + i

∫
dr⃗φ(r⃗)w(r⃗)

]
∫
dΓ exp

[
−βĤ0(Γ)− i

∫
dr⃗ϕ̂(r⃗; Γ)w(r⃗)

]
=

1

M !

β

i

∫
D{φ(r⃗)}

∫
D{V(r⃗)} exp

[
−β
(
W[φ(r⃗)]−

∫
dr⃗φ(r⃗)V(r⃗)

)]
∫
dΓ exp

[
−β
(
Ĥ0(Γ) +

∫
dr⃗ϕ̂(r⃗; Γ)V(r⃗)

)]
(3.3.1.11)

The final term of Eq.(3.3.1.11) is regarded as the state sum of ideal polymers under external field V(r⃗),

25After the integration over Γ, ϕ(r⃗) is no longer related to certain microscopic state. Therefore, there is noˆon ϕ(r⃗).
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3.3 Microphase separation

Z[V(r⃗)]. When Ĥ0(Γ) is Eq.(3.3.1.3), Z[V(r⃗)] is calculated as follows.

Z[V(r⃗)] :=
∫
dΓ exp

[
−β
(
Ĥ0(Γ) +

∫
dr⃗ϕ̂(r⃗; Γ)V(r⃗)

)]

=

∫
dΓ exp

−β
Ĥ0(Γ) +

M∑
i=1

N∑
j=0

V(r⃗(i)j )


=

∫ dΓ1 exp

−β
Ĥ0(Γ1) +

N∑
j=0

V(r⃗(1)j )

M =: ZM1 (3.3.1.12)

By using Z, Eq.(3.3.1.11) is summarized as follows.

Z =
1

M !

β

i

∫
D{φ(r⃗)}

∫
D{V(r⃗)} exp

[
−β
(
− 1

β
lnZ[V(r⃗)] +W[φ(r⃗)]−

∫
dr⃗φ(r⃗)V(r⃗)

)]
(3.3.1.13)

Compared to Eq.(3.3.1.6), Eq.(3.3.1.13) is integrated by functions φ(r⃗) and V (r⃗) instead of Γ. By substituting

Eq.(3.3.1.13) into Eq.(3.3.1.8), we can obtain F [ϕ(r⃗)]. Calculation is performed by using saddle point method

(Eq.(11.5.10)).

− 1

β
lnZ ≃ − 1

β
ln

β

M !i
+

[
− 1

β
lnZ[V (r⃗)] +W[ϕ(r⃗)]−

∫
dr⃗ϕ(r⃗)V (r⃗)

]
(3.3.1.14)

such that

δ

δV(r⃗)

[
− 1

β
lnZ[V(r⃗)] +W[φ(r⃗)]−

∫
dr⃗φ(r⃗)V(r⃗)

]∣∣∣∣
V(r⃗)=V (r⃗)

= 0 (3.3.1.15)

δ

δφ(r⃗)

[
− 1

β
lnZ[V(r⃗)] +W[φ(r⃗)]−

∫
dr⃗φ(r⃗)V(r⃗)

]∣∣∣∣
φ(r⃗)=ϕ(r⃗)

= 0 (3.3.1.16)

Eqs.(3.3.1.15) and (3.3.1.16) is calculated as follows.

− 1

βZ[V(r⃗)]
δZ[V (r⃗)]

δV(r⃗)

∣∣∣∣
V(r⃗)=V (r⃗)

− ϕ(r⃗) = 0 (3.3.1.17)

δW[φ(r⃗)]

δφ(r⃗)

∣∣∣∣
φ(r⃗)=ϕ(r⃗)

− V (r⃗) = 0 (3.3.1.18)

By neglecting the 1st term of Eq.(3.3.1.14) and substituting Eqs.(3.3.1.17) and (3.3.1.18), the final result is

obtained.

F [ϕ(r⃗)] = − 1

β
lnZ[V (r⃗)] +W[ϕ(r⃗)]−

∫
dr⃗ϕ(r⃗)V (r⃗) (3.3.1.19)

such that

ϕ(r⃗) = − 1

βZ[V(r⃗)]
δZ[V (r⃗)]

δV(r⃗)

∣∣∣∣
V(r⃗)=V (r⃗)

(3.3.1.20)

V (r⃗) =
δW[φ(r⃗)]

δφ(r⃗)

∣∣∣∣
φ(r⃗)=ϕ(r⃗)

(3.3.1.21)
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3.3 Microphase separation

When there are n polymer species, Eq.(3.3.1.19) is extended as follows.

F [{ϕK(r⃗)}] = − 1

β
lnZ[{VK(r⃗)}] +W[{ϕK(r⃗)}]−

∑
K

∫
dr⃗ϕK(r⃗)VK(r⃗) (3.3.1.22)

where {ϕK(r⃗)} and {VK(r⃗)} stands for the list of concentration distributions and external field for the

polymer species K. Until now, we take the reference state as the bond-beads model. Instead of this, we

can take the state where {ϕK(r⃗)} = {ϕ̄K} as a reference state. This new reference state is completely

homogeneous state where the concentration distributions do not depend on r⃗. Since the interaction between

polymers is already included in this reference state, we can set Ŵ(Γ) = 0. Therefore, Eq.(3.3.1.19) becomes

as follows.

F [{δϕK(r⃗)}] = − 1

β
lnZ[{VK(r⃗)}]−

∑
K

∫
dr⃗δϕK(r⃗)VK(r⃗) (3.3.1.23)

Here, the concentration distribution is expressed as a deviation from the reference state.

δϕK(r⃗) := ϕK(r⃗)− ϕ̄K (3.3.1.24)

(b)(a) (c)

Figure 3.8: Legendre transformation of (a) f(x) to g(p), (b) U(S, V,N) to F (T, V,N), (c) F [V (r⃗)] to F [ϕ(r⃗)]

Eq.(3.3.1.24) is regarded as Legendre transformation. Legendre transformation is used to change variable

of a function. The simplest transformation is represented as follows.

g(p) := xp− f(x) s.t. f ′(x) = p (3.3.1.25)

As a whole, the variable of f is transformed from x to p. Graphical image of Eq.(3.3.1.25) is shown in

Figure 3.8(a). The yellow area stands for f(x) while the blue area stands for g(p). If f ′(x) is a monotonically

increasing function, f(x) and g(p) has one-to-one correspondence. In other words, f(x) and g(p) has the

same information while their variables are different. One of the most well known applications of Legendre
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3.3 Microphase separation

transformation is construction of thermodynamic functions.

F (T, V,N) := U(S, V,N)− ST s.t.
∂U(S, V,N)

∂S
= T (S, V,N) (3.3.1.26)

H(S, P,N) := U(S, V,N) + V P s.t.
∂U(S, V,N)

∂V
= −P (S, V,N) (3.3.1.27)

G(T, P,N) := F (T, V,N) + V P s.t.
∂F (T, V,N)

∂V
= −P (T, V,N) (3.3.1.28)

= H(S, P,N)− ST s.t.
∂H(S, P,N)

∂S
= T (S, P,N) (3.3.1.29)

where U , F , H, and G are energy, Helmholtz free energy, enthalpy, and Gibbs free energy, respectively.

Graphical image of Eq.(3.3.1.26) is shown in Figure 3.8(b). Difference of sign in Eq.(3.3.1.25) and Eqs.(3.3.1.26)

∼ (3.3.1.29) is just conventional one. By extending this concept to a functional, we can change the variable

of the Helmholtz free energy of the system from V (r⃗) to ϕ(r⃗) as shown in Eq.(3.3.1.23).

F [ϕ(r⃗)] = F [V (r⃗)]−
∫
dr⃗V (r⃗)ϕ(r⃗) s.t.

δF [V (r⃗)]

δV (r⃗)
= ϕ(r⃗) (3.3.1.30)

Here, F [V (r⃗)] is the Helmholtz energy of ideal polymer system under external field V (r⃗) and calculated by

using Eqs.(3.3.1.8) and (3.3.1.11).

F [V (r⃗)] = − 1

β
lnZ[V (r⃗)] (3.3.1.31)

δF [V (r⃗)]

δV (r⃗)
= − 1

βZ[V (r⃗)]

δZ[V (r⃗)]

δV (r⃗)
(3.3.1.32)

Substituting Eq.(3.3.1.31) to Eq.(3.3.1.30), Eq.(3.3.1.23) for one polymer species is obtained. Eq.(3.3.1.32)

shows the condition Eq.(3.3.1.20).

Legendre transformation is applicable only if V (r⃗) and ϕ(r⃗) has one-to-one correspondence. Mathemati-

cally, this means that ϕ(r⃗) is monotonically increasing function with respect to V (r⃗). Since ϕ(r⃗) is defined

as a derivative of F [V (r⃗)], F [V (r⃗)] should be a concave function. This assumption is reasonable when the

deviation from homogeneous state is small.
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3.3 Microphase separation

3.3.2 Ginzburg–Landau model

Next task is to expand Eq.(3.3.1.23) by {δϕK(r⃗)}. To make the formulation simple, we use excess energy

instead of Eq.(3.3.1.23) as follows.

F [{δϕK(r⃗)}]− F [{0}] = − 1

β
ln
Z[{VK(r⃗)}]
Z[{0}]

−
∑
K

∫
dr⃗δϕK(r⃗)VK(r⃗) (3.3.2.1)

Let us expand the first term of Eq.(3.3.2.1) by {VK(r⃗)}. By extending Eq.(3.3.1.12) to n polymer species:

Z[{VK(r⃗)}]
Z[{0}]

=

∏
K

1

MK !

∫
dΓ exp

[
−β
(
ĤS(Γ) +

∫
dr⃗δϕ̂K(r⃗; Γ)VK(r⃗)

)]
∏
K

1

MK !

∫
dΓ exp

[
−βĤS(Γ)

]

=

∫
dΓ exp

[
−β

(
ĤS(Γ) +

∑
K

∫
dr⃗δϕ̂K(r⃗; Γ)VK(r⃗)

)]
∫
dΓ exp

[
−βĤS(Γ)

] (3.3.2.2)

where ĤS(Γ) is Hamiltonian for homogeneous system. Eq.(3.3.2.2) is regarded as the statistical average for

reference state whose energy is expressed as Ĥ0(Γ).

Z[{VK(r⃗)}]
Z[{0}]

=:

⟨
exp

[
−β
∑
K

∫
dr⃗δϕ̂K(r⃗; Γ)VK(r⃗)

]⟩
(3.3.2.3)

By regarding Eq.(11.5.13) as a moment-generating function (see Eq.(3.3.2.3) for details), let us calculate the

moment. To achieve this, let us expand Eq.(3.3.2.3) as a polynomial of {VK(r⃗)}.

Z[{VK(r⃗)}]
Z[{0}]

= 1− β

⟨∑
K1

∫
dr⃗1δϕ̂K1

(r⃗1; Γ)VK1
(r⃗1)

⟩

+
(−β)2

2

⟨∑
K1

∑
K2

∫
dr⃗1

∫
dr⃗2δϕ̂K1(r⃗1; Γ)δϕ̂K2(r⃗2; Γ)VK1(r⃗1)VK2(r⃗2)

⟩
+ · · ·

= 1− β
∑
K1

∫
dr⃗1VK1

(r⃗1)
⟨
δϕ̂K1

(r⃗1; Γ)
⟩

+
(−β)2

2

∑
K1

∑
K2

∫
dr⃗1

∫
dr⃗2VK1(r⃗1)VK2(r⃗2)

⟨
δϕ̂K1(r⃗1; Γ)δϕ̂K2(r⃗2; Γ)

⟩
+ · · ·

=

∞∑
n

1

n!

∑
K1,··· ,Kn

∫
dr⃗1 · · ·

∫
dr⃗nVK1(r⃗1) · · ·VKn(r⃗n)(−β)n

⟨
δϕ̂K1(r⃗1; Γ) · · · δϕ̂Kn(r⃗n; Γ)

⟩
(3.3.2.4)

Comparing Eq.(3.3.2.4) and (11.5.31), nth moment is represented as follows.

MK1,··· ,Kn
n (r⃗1, · · · , r⃗n) =

⟨
δϕ̂K1(r⃗1; Γ) · · · δϕ̂Kn(r⃗n; Γ)

⟩
(3.3.2.5)
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By using this notation, Eq.(3.3.2.3) and its logarithm is expanded as follows.

Z[{VK(r⃗)}]
Z[{0}]

=
∞∑
n

1

n!

∑
K1,··· ,Kn

∫
dr⃗1 · · ·

∫
dr⃗n(−β)nMK1,··· ,Kn

n (r⃗1, · · · , r⃗n)VK1
(r⃗1) · · ·VKn

(r⃗n) (3.3.2.6)

ln
Z[{VK(r⃗)}]
Z[{0}]

=

∞∑
n

1

n!

∑
K1,··· ,Kn

∫
dr⃗1 · · ·

∫
dr⃗n(−β)nCK1,··· ,Kn

n (r⃗1, · · · , r⃗n)VK1
(r⃗1) · · ·VKn

(r⃗n) (3.3.2.7)

Eq.(3.3.2.7) is cumulant expansion and the cumulants CK1,··· ,Kn
n (r⃗1, · · · , r⃗n) is related to the moments

Eq.(3.3.2.5) through Eqs.(11.5.36), (11.5.37), (11.5.38), and so on.

Next task is the expansion by {δϕK(r⃗)} instead of {VK(r⃗)}. δϕK(r⃗) is calculated by using the condition

Eq.(3.3.1.15) for the system Eq.(3.3.2.1).

δ

δVK(r⃗)

[
− 1

β
ln
Z[{VK(r⃗)}]
Z[{0}]

−
∑
K

∫
dr⃗δϕK(r⃗)VK(r⃗)

]∣∣∣∣∣
{VK(r⃗)}={0}

= 0 (3.3.2.8)

As a result, following expansion is obtained for δϕK(r⃗).

δϕK(r⃗) = − 1

β

δ

δVK(r⃗)
ln
Z[{VK(r⃗)}]
Z[{0}]

= − 1

β

δ

δVK(r⃗)

 ∞∑
n

(−β)n

n!

∑
K1,··· ,Kn

∫
dr⃗1 · · ·

∫
dr⃗nC

K1,··· ,Kn
n (r⃗1, · · · , r⃗n)VK1

(r⃗1) · · ·VKn
(r⃗n)


=

∞∑
n

(−β)n−1

(n− 1)!

∑
K2,··· ,Kn

∫
dr⃗2 · · ·

∫
dr⃗nC

K,K2,··· ,Kn
n (r⃗, r⃗2, · · · , r⃗n)VK2

(r⃗2) · · ·VKn
(r⃗n)

= CK1 (r⃗) + (−β)
∑
K2

∫
dr⃗2C

K,K2

2 (r⃗, r⃗2)VK2(r⃗2)

+
(−β)2

2

∑
K2

∑
K3

∫
dr⃗2

∫
dr⃗3C

K,K2,K3

3 (r⃗, r⃗2, r⃗3)VK2
(r⃗2)VK3

(r⃗3)

+
(−β)3

6

∑
K2

∑
K3

∑
K4

∫
dr⃗2

∫
dr⃗3

∫
dr⃗4C

K,K2,K3,K4

4 (r⃗, r⃗2, r⃗3, r⃗4)VK2
(r⃗2)VK3

(r⃗3)VK4
(r⃗4) + · · ·

(3.3.2.9)

Here, 1st cumulant is zero from definition.

CK1 (r⃗) =
⟨
δϕ̂K(r⃗1; Γ)

⟩
= 0 (3.3.2.10)

From Eq.(3.3.2.9), we can solve the power of VK(r⃗) as a function of δϕK(r⃗). First order term is:

δϕK1(r⃗1) ≃ −β
∑
K2

∫
dr⃗2C

K1,K2

2 (r⃗1, r⃗2)VK2(r⃗2) (3.3.2.11)
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3.3 Microphase separation

This is solved inversely as follows.

− 1

β

∑
K3

∫
dr⃗3

(
CK1,K3

2 (r⃗1, r⃗3)
)−1

δϕK3(r⃗3)

=
∑
K2

∑
K3

∫
dr⃗2

∫
dr⃗3

(
CK1,K3

2 (r⃗1, r⃗3)
)−1

CK3,K2

2 (r⃗3, r⃗2)VK2
(r⃗2)

=
∑
K2

∫
dr⃗2δK1,K2

δ(r⃗1 − r⃗2)VK2
(r⃗2) = VK1

(r⃗1) (3.3.2.12)

where
(
CK,K

′

2 (r⃗, r⃗′)
)−1

is inverse function of CK,K
′

2 (r⃗, r⃗′): 26

∑
K′′

∫
dr⃗′′

(
CK,K

′′

2 (r⃗, r⃗′′)
)−1 (

CK
′′,K′

2 (r⃗′′, r⃗′)
)
= δK,K′δ(r⃗ − r⃗′) (3.3.2.13)

By using Eq.(3.3.2.11), 2nd order term is calculated as follows.

(−β)−2δϕK1
(r⃗1)δϕK′

1
(r⃗′1) ≃

∑
K2

∑
K′

2

∫
dr⃗2

∫
dr⃗′2C

K1,K2

2 (r⃗1, r⃗2)C
K′

1,K
′
2

2 (r⃗′1, r⃗
′
2)VK2

(r⃗2)VK′
2
(r⃗′2) (3.3.2.14)

(−β)−2
∑
K3

∑
K′

3

∫
dr⃗3

∫
dr⃗′3

(
CK1,K3

2 (r⃗1, r⃗3)
)−1 (

C
K′

1,K
′
3

2 (r⃗′1, r⃗
′
3)
)−1

δϕK3(r⃗3)δϕK′
3
(r⃗′3)

=
∑
K2

∑
K′

2

∑
K3

∑
K′

3

∫
dr⃗2

∫
dr⃗′2

∫
dr⃗3

∫
dr⃗′3

(
CK1,K3

2 (r⃗1, r⃗3)
)−1 (

C
K′

1,K
′
3

2 (r⃗′1, r⃗
′
3)
)−1

CK3,K2

2 (r⃗3, r⃗2)C
K′

3,K
′
2

2 (r⃗′3, r⃗
′
2)VK2(r⃗2)VK′

2
(r⃗′2)

=
∑
K2

∑
K′

2

∫
dr⃗2

∫
dr⃗′2δK1,K2δK′

1,K
′
2
δ(r⃗1 − r⃗2)δ(r⃗′1 − r⃗′2)VK2(r⃗2)VK′

2
(r⃗′2)

= VK1
(r⃗1)VK′

1
(r⃗′1) (3.3.2.15)

Similarly, higher order terms are calculated as follows.

VK1
(r⃗1)VK′

1
(r⃗′1)VK′′

1
(r⃗′′1 )

= (−β)−3
∑
K3

∑
K′

3

∑
K′′

3

∫
dr⃗3

∫
dr⃗′3

∫
dr⃗′′3

(
CK1,K3

2 (r⃗1, r⃗3)
)−1 (

C
K′

1,K
′
3

2 (r⃗′1, r⃗
′
3)
)−1 (

C
K′′

1 ,K
′′
3

2 (r⃗′′1 , r⃗
′′
3 )
)−1

δϕK3
(r⃗3)δϕK′

3
(r⃗′3)δϕK′′

3
(r⃗′′3 ) (3.3.2.16)

26Qualitatively speaking, Eq.(3.3.2.11) is written by using matrix representation as follows.δϕ1...
δϕp

 = −
1

β


C11

2 · · · Cp1
2

...
. . .

...

Cp1
2 · · · Cpp

2


V1...
Vp


Then {VK} is calculated by using {δϕK} and inverse matrix of CK,K′

2 (Eq.(3.3.2.12)).V1...
Vp

 = −β


C11

2 · · · Cp1
2

...
. . .

...

Cp1
2 · · · Cpp

2


−1 δϕ1...

δϕp


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3.3 Microphase separation

VK1
(r⃗1)VK′

1
(r⃗′1)VK′′

1
(r⃗′′1 )VK′′′

1
(r⃗′′′1 )

= (−β)−4
∑
K3

∑
K′

3

∑
K′′

3

∑
K′′′

3

∫
dr⃗3

∫
dr⃗′3

∫
dr⃗′′3

∫
dr⃗′′′3

(
CK1,K3

2 (r⃗1, r⃗3)
)−1 (

C
K′

1,K
′
3

2 (r⃗′1, r⃗
′
3)
)−1 (

C
K′′

1 ,K
′′
3

2 (r⃗′′1 , r⃗
′′
3 )
)−1 (

C
K′′′

1 ,K′′′
3

2 (r⃗′′′1 , r⃗
′′′
3 )
)−1

δϕK3(r⃗3)δϕK′
3
(r⃗′3)δϕK′′

3
(r⃗′′3 )δϕK′′′

3
(r⃗′′′3 ) (3.3.2.17)

Next, let us calculate the higher term of Eq.(3.3.2.11). To make the expression simple, I rewrite Eq.(3.3.2.9)

to simple form as follows.

ϕ = −βC2V +
β2

2
C3V

2 − β3

6
C4V

3 + · · · (3.3.2.18)

ϕ2 = β2C2
2V

2 − β3C2C3V
3 + β4

(
1

3
C2C4 +

1

4
C2

3

)
V 4 + · · · (3.3.2.19)

ϕ3 = −β3C3
2V

3 +
3

2
β4C2

2C3V
4 + · · · (3.3.2.20)

ϕ4 = β4C4
2V

4 + · · · (3.3.2.21)

By using this notation, Eqs.(3.3.2.12), (3.3.2.15) ∼ (3.3.2.17) is rewritten as follows.

(−β)nV n = (C−1
2 )nϕn (3.3.2.22)

Expansion of V up to ϕ2 is achieved as follows.

β2V 2 = (C−1
2 )2ϕ2

→ ϕ = −βC2V +
1

2
C3(C

−1
2 )2ϕ2

→ βV = −C−1
2 ϕ+

1

2
C3(C

−1
2 )3ϕ2 (3.3.2.23)

Higher order terms are calculated as follows.

β3V 3 = −(C−1
2 )3ϕ3

→ ϕ2 = β2C2
2V

2 + C3(C
−1
2 )2ϕ3

→ β2V 2 = (C−1
2 )2ϕ2 − C3(C

−1
2 )4ϕ3

→ ϕ = −βC2V +
1

2
C3(C

−1
2 )2ϕ2 − 1

2
C2

3 (C
−1
2 )4ϕ3 +

1

6
C4(C

−1
2 )3ϕ3

→ βV = −C−1
2 ϕ+

1

2
C3(C

−1
2 )3ϕ2 +

[
−1

2
C2

3 (C
−1
2 )5 +

1

6
C4(C

−1
2 )4

]
ϕ3 (3.3.2.24)

β4V 4 = (C−1
2 )4ϕ4

→ β3V 3 = −(C−1
2 )3ϕ3 +

3

2
C3(C

−1
2 )5ϕ4

→ β2V 2 = (C−1
2 )2ϕ2 − C3(C

−1
2 )4ϕ3 +

[
5

4
C2

3 (C
−1
2 )6 − 1

3
C4(C

−1
2 )5

]
ϕ4 (3.3.2.25)
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3.3 Microphase separation

Then let us expand Eq.(3.3.2.1) by {δϕK}. By substituting Eqs.(3.3.2.7) and (3.3.2.9) to Eq.(3.3.2.1):

F [{δϕK(r⃗)}]− F [{0}]

= − 1

β

 ∞∑
n

(−β)n

n!

∑
K1,··· ,Kn

∫
dr⃗1 · · ·

∫
dr⃗nC

K1,··· ,Kn
n (r⃗1, · · · , r⃗n)VK1(r⃗1) · · ·VKn(r⃗n)


+

1

β

∑
K1

∫
dr⃗1

 ∞∑
n

(−β)n

(n− 1)!

∑
K2,··· ,Kn

∫
dr⃗2 · · ·

∫
dr⃗nC

K1,K2,··· ,Kn
n (r⃗1, r⃗2, · · · , r⃗n)VK2(r⃗2) · · ·VKn(r⃗n)

VK1(r⃗1)

=
1

β

 ∞∑
n

n− 1

n!
(−β)n

∑
K1,··· ,Kn

∫
dr⃗1 · · ·

∫
dr⃗nC

K1,··· ,Kn
n (r⃗1, · · · , r⃗n)VK1(r⃗1) · · ·VKn(r⃗n)

 (3.3.2.26)

Eq.(3.3.2.26) is rewritten as follows by using the previous notation.

β∆F =
1

2
C2(−βV )2 +

1

3
C3(−βV )3 +

1

8
C4(−βV )4 + · · · (3.3.2.27)

By substituting Eq.(3.3.2.25) to Eq.(3.3.2.27), β∆F is expanded by ϕ. ϕ2 term is:

1

2
C2(C

−1
2 )2ϕ2 =

1

2
C−1

2 ϕ2 (3.3.2.28)

ϕ3 term is created from V 2 term and V 3 term:

1

2
C2

[
−C3(C

−1
2 )4

]
ϕ3 +

1

3
C3(C

−1
2 )3ϕ3 = −1

6
C3(C

−1
2 )3ϕ3 (3.3.2.29)

ϕ4 term is created from V 2 term, V 3 term, and V 4 term:

1

2
C2

[
5

4
C2

3 (C
−1
2 )6 − 1

3
C4(C

−1
2 )5

]
ϕ4 +

1

3
C3

[
−3

2
C3(C

−1
2 )5

]
ϕ4 +

1

8
C4(C

−1
2 )4ϕ4

=

[
− 1

24
C4(C

−1
2 )4 +

1

8
C2

3 (C
−1
2 )5

]
ϕ4 (3.3.2.30)

As a result, Eq.(3.3.2.27) is expanded as follows.

∆F =
1

2β
C−1

2 ϕ2 − 1

6β
C3(C

−1
2 )3ϕ3 +

1

24β

[
−C4(C

−1
2 )4 + 3C2

3 (C
−1
2 )5

]
ϕ4 + · · · (3.3.2.31)

Complete description of Eq.(3.3.2.33) is as follows.

F [{δϕK(r⃗)}]− F [{0}]

=
1

2β

∑
K1,K2

∫
dr⃗1

∫
dr⃗2

(
CK1,K2

2 (r⃗1, r⃗2)
)−1

δϕK1
(r⃗1)δϕK2

(r⃗2)

− 1

6β

∑
K1,··· ,K6

∫
dr⃗1 · · ·

∫
dr⃗6C

K1,K2,K3

3 (r⃗1, r⃗2, r⃗3)

(
CK1,K4

2 (r⃗1, r⃗4)
)−1 (

CK2,K5

2 (r⃗2, r⃗5)
)−1 (

CK3,K6

2 (r⃗3, r⃗6)
)−1

δϕK4(r⃗4)δϕK5(r⃗5)δϕK6(r⃗6) + · · ·

(3.3.2.32)
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3.3 Microphase separation

Eqs.(3.3.2.9) and (3.3.2.32) are the description in real space. By Fourier transformation, these equations

are rewritten in q-space. Let us perform Fourier transformation of the following equation, which is similar

to Eq.(3.3.2.9).

f(r⃗1) = (−β)
∫
dr⃗2g2(r⃗1, r⃗2)ha(r⃗2)

+
(−β)2

2

∫
dr⃗2

∫
dr⃗3g3(r⃗1, r⃗2, r⃗3)ha(r⃗2)hb(r⃗3)

+
(−β)3

6

∫
dr⃗2

∫
dr⃗3

∫
dr⃗4g4(r⃗1, r⃗2, r⃗3, r⃗4)ha(r⃗2)hb(r⃗3)hc(r⃗4) + · · · (3.3.2.33)

Here, we assume the translational invariance for g2(r⃗1, r⃗2):

g2(r⃗1, r⃗2) = g2(r⃗1 − r⃗, r⃗2 − r⃗) (3.3.2.34)

Substitute r⃗ = r⃗2 to Eq.(3.3.2.34), the number of variables of g2 is reduced.

g2(r⃗1, r⃗2)→ g2(r⃗1 − r⃗2) (3.3.2.35)

Fourier transform of f is:

f(q⃗1) =

∫
dr⃗1f(r⃗1)e

iq⃗1·r⃗1 ⇐⇒ f(r⃗1) =
1

(2π)3

∫
dq⃗1f(q⃗1)e

−iq⃗1·r⃗1 (3.3.2.36)

Therefore, 1st term of the right hand side of Eq.(3.3.2.33) is calculated as follows.∫
dr⃗1

[∫
dr⃗2g2(r⃗1 − r⃗2)ha(r⃗2)

]
eiq⃗1·r⃗1

=
1

(2π)6

∫
dr⃗1

∫
dr⃗2

∫
dq⃗2

∫
dq⃗3g2(q⃗2)e

−iq⃗2·(r⃗1−r⃗2)ha(q⃗3)e
−iq⃗3·r⃗2eiq⃗1·r⃗1

=
1

(2π)6

∫
dr⃗1

∫
dr⃗2

∫
dq⃗2

∫
dq⃗3g2(q⃗2)ha(q⃗3)e

i(q⃗1−q⃗2)·r⃗1ei(q⃗2−q⃗3)·r⃗2

=
1

(2π)6

∫
dq⃗2

∫
dq⃗3g2(q⃗2)ha(q⃗3)δ(q⃗1 − q⃗2)δ(q⃗2 − q⃗3)

= g2(q⃗1)ha(q⃗1) (3.3.2.37)

Here, I used the following form of delta function.

δ(q⃗1) =

∫
dr⃗1e

iq⃗1·r⃗1 ⇐⇒ δ(r⃗1) =
1

(2π)3

∫
dq⃗1e

−iq⃗1·r⃗1 (3.3.2.38)

f(q⃗) =
1

(2π)3

∫
dq⃗1f(q⃗1)δ(q⃗ − q⃗1) ⇐⇒ f(r⃗) =

∫
dr⃗1f(r⃗1)δ(r⃗ − r⃗1) (3.3.2.39)

2nd term of the right hand side of Eq.(3.3.2.33) is calculated as follows.∫
dr⃗1

[∫
dr⃗2

∫
dr⃗3g3(r⃗1, r⃗2, r⃗3)ha(r⃗2)hb(r⃗3)

]
eiq⃗1·r⃗1

=
1

(2π)15

∫
dr⃗1 · · ·

∫
dr⃗3

∫
dq⃗2 · · ·

∫
dq⃗6g3(q⃗2, q⃗3, q⃗4)ha(q⃗5)hb(q⃗6)e

i(q⃗1−q⃗2)·r⃗1ei(−q⃗3−q⃗5)·r⃗2ei(−q⃗4−q⃗6)·r⃗3

=
1

(2π)15

∫
dq⃗2 · · ·

∫
dq⃗6g3(q⃗2, q⃗3, q⃗4)ha(q⃗5)hb(q⃗6)δ(q⃗1 − q⃗2)δ(−q⃗3 − q⃗5)δ(−q⃗4 − q⃗6)

=
1

(2π)6

∫
dq⃗3

∫
dq⃗4g3(q⃗1, q⃗3, q⃗4)ha(−q⃗3)hb(−q⃗4) (3.3.2.40)
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3.3 Microphase separation

3rd term of the right hand side of Eq.(3.3.2.33) is calculated as follows.∫
dr⃗1

[∫
dr⃗2

∫
dr⃗3

∫
dr⃗4g4(r⃗1, r⃗2, r⃗3, r⃗4)ha(r⃗2)hb(r⃗3)hc(r⃗4)

]
eiq⃗1·r⃗1

=
1

(2π)9

∫
dq⃗2

∫
dq⃗3

∫
dq⃗4g4(q⃗1, q⃗2, q⃗3, q⃗4)ha(−q⃗2)hb(−q⃗3)hc(−q⃗4) (3.3.2.41)

Substitute Eqs.(3.3.2.36), (3.3.2.37), (3.3.2.40), (3.3.2.41) to Eq.(3.3.2.33) (original form is Eq.(3.3.2.9)):

δϕK(q⃗1) = (−β)
∑
K2

CK,K2

2 (q⃗1)VK2
(q⃗1)

+
(−β)2

2

1

(2π)6

∑
K2

∑
K3

∫
dq⃗2

∫
dq⃗3C

K,K2,K3

3 (q⃗1, q⃗2, q⃗3)VK2
(q⃗2)VK3

(q⃗3)

+
(−β)3

6

1

(2π)9

∑
K2

∑
K3

∑
K4

∫
dq⃗2

∫
dq⃗3

∫
dq⃗4C

K,K2,K3,K4

4 (q⃗1, q⃗2, q⃗3, q⃗4)VK2
(q⃗2)VK3

(q⃗3)VK4
(q⃗4) + · · ·

(3.3.2.42)

Here I used the inversion symmetry of the system.

VK(q⃗) = VK(−q⃗) (3.3.2.43)

Next, let us perform Fourier transformation of the following equation, which is similar to Eq.(3.3.2.32).

∆F =
1

2β

∫
dr⃗1

∫
dr⃗2g2(r⃗1 − r⃗2)ha(r⃗1)hb(r⃗2)

− 1

6β

∫
dr⃗1 · · ·

∫
dr⃗6g3(r⃗1, r⃗2, r⃗3)g2a(r⃗1 − r⃗4)g2b(r⃗2 − r⃗5)g2c(r⃗3 − r⃗6)ha(r⃗4)hb(r⃗5)hc(r⃗6) + · · ·

(3.3.2.44)

1st term of the right hand side of Eq.(3.3.2.44) is calculated as follows.∫
dr⃗1

∫
dr⃗2g2(r⃗1 − r⃗2)ha(r⃗1)hb(r⃗2)

=
1

(2π)9

∫
dr⃗1

∫
dr⃗2

∫
dq⃗1

∫
dq⃗2

∫
dq⃗3g2(q⃗1)e

−iq⃗1·(r⃗1−r⃗2)ha(q⃗2)e
−iq⃗2·r⃗1hb(q⃗3)e

−iq⃗3·r⃗2

=
1

(2π)9

∫
dr⃗1

∫
dr⃗2

∫
dq⃗1

∫
dq⃗2

∫
dq⃗3g2(q⃗1)ha(q⃗2)hb(q⃗3)e

i(−q⃗1−q⃗2)·r⃗1ei(q⃗1−q⃗3)·r⃗2

=
1

(2π)9

∫
dq⃗1

∫
dq⃗2

∫
dq⃗3g2(q⃗1)ha(q⃗2)hb(q⃗3)δ(−q⃗1 − q⃗2)δ(q⃗1 − q⃗3)

=
1

(2π)3

∫
dq⃗1g2(q⃗1)ha(−q⃗1)hb(q⃗1) (3.3.2.45)
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3.3 Microphase separation

2nd term of the right hand side of Eq.(3.3.2.44) is calculated as follows.∫
dr⃗1 · · ·

∫
dr⃗6g3(r⃗1, r⃗2, r⃗3)g2a(r⃗1 − r⃗4)g2b(r⃗2 − r⃗5)g2c(r⃗3 − r⃗6)ha(r⃗4)hb(r⃗5)hc(r⃗6)

=
1

(2π)27

∫
dr⃗1 · · ·

∫
dr⃗6

∫
dq⃗1 · · ·

∫
dq⃗9g3(q⃗1, q⃗2, q⃗3)g2a(q⃗4)g2b(q⃗5)g2c(q⃗6)ha(q⃗7)hb(q⃗8)hc(q⃗9)

ei(−q⃗1−q⃗4)·r⃗1ei(−q⃗2−q⃗5)·r⃗2ei(−q⃗3−q⃗6)·r⃗3ei(q⃗4−q⃗7)·r⃗4ei(q⃗5−q⃗8)·r⃗5ei(q⃗6−q⃗9)·r⃗6

=
1

(2π)9

∫
dq⃗1

∫
dq⃗2

∫
dq⃗3g3(q⃗1, q⃗2, q⃗3)g2a(−q⃗1)g2b(−q⃗2)g2c(−q⃗3)ha(−q⃗1)hb(−q⃗2)hc(−q⃗3) (3.3.2.46)

Substitute Eqs.(3.3.2.45) and (3.3.2.46) to Eq.(3.3.2.44) (original form is Eq.(3.3.2.32)):

F [{δϕK(q⃗)}]− F [{0}]

=
1

2β

1

(2π)3

∑
K1,K2

∫
dq⃗1

(
CK1,K2

2 (q⃗1)
)−1

δϕK1(q⃗1)δϕK2(−q⃗1)

− 1

6β

1

(2π)9

∑
K1,··· ,K6

∫
dq⃗1

∫
dq⃗2

∫
dq⃗3C

K1,K2,K3

3 (q⃗1, q⃗2, q⃗3)

(
CK1,K4

2 (q⃗1)
)−1 (

CK2,K5

2 (q⃗2)
)−1 (

CK3,K6

2 (q⃗3)
)−1

δϕK4(q⃗1)δϕK5(q⃗2)δϕK6(q⃗3) + · · ·

(3.3.2.47)

Let us restrict our discussion to the case of two-component system where27

δϕ1(r⃗) + δϕ2(r⃗) = 0 ∀r⃗ (3.3.2.48)

holds true, which is the case of ĤS(Γ). In this special case, cumulants for each order is represented by only

one value. For examples, 2nd order cumulants is:

C1,1
2 (r⃗1, r⃗2) =

⟨
δϕ̂1(r⃗1; Γ)δϕ̂1(r⃗1; Γ)

⟩
=: C2(r⃗1, r⃗2) (3.3.2.49)

C1,2
2 (r⃗1, r⃗2) =

⟨
δϕ̂1(r⃗1; Γ)δϕ̂2(r⃗2; Γ)

⟩
= −

⟨
δϕ̂1(r⃗1; Γ)δϕ̂1(r⃗2; Γ)

⟩
= −C2(r⃗1, r⃗2) (3.3.2.50)

C2,1
2 (r⃗1, r⃗2) =

⟨
δϕ̂2(r⃗1; Γ)δϕ̂1(r⃗2; Γ)

⟩
= −

⟨
δϕ̂1(r⃗1; Γ)δϕ̂1(r⃗2; Γ)

⟩
= −C2(r⃗1, r⃗2) (3.3.2.51)

C2,2
2 (r⃗1, r⃗2) =

⟨
δϕ̂2(r⃗1; Γ)δϕ̂2(r⃗2; Γ)

⟩
= (−1)2

⟨
δϕ̂1(r⃗1; Γ)δϕ̂1(r⃗2; Γ)

⟩
= C2(r⃗1, r⃗2) (3.3.2.52)

Similar to this, 3rd order and 4th order cumulant is expressed as follows (Explicit expression is shown in

27∀ stands for “for all”.
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3.3 Microphase separation

Eqs.(3.3.3.1) ∼ (3.3.3.3)).

C3(r⃗1, r⃗2, r⃗3) =: C1,1,1
3 (r⃗1, r⃗2, r⃗3)

= −C1,1,2
3 (r⃗1, r⃗2, r⃗3) = −C1,2,1

3 (r⃗1, r⃗2, r⃗3) = −C2,1,1
3 (r⃗1, r⃗2, r⃗3)

= C1,2,2
3 (r⃗1, r⃗2, r⃗3) = C2,1,2

3 (r⃗1, r⃗2, r⃗3) = C2,2,1
3 (r⃗1, r⃗2, r⃗3)

= −C2,2,2
3 (r⃗1, r⃗2, r⃗3) (3.3.2.53)

C4(r⃗1, r⃗2, r⃗3, r⃗4) =: C1,1,1,1
4 (r⃗1, r⃗2, r⃗3, r⃗4)

= −C1,1,1,2
4 (r⃗1, r⃗2, r⃗3, r⃗4) = −C1,1,2,1

4 (r⃗1, r⃗2, r⃗3, r⃗4) = −C1,2,1,1
4 (r⃗1, r⃗2, r⃗3, r⃗4) = −C2,1,1,1

4 (r⃗1, r⃗2, r⃗3, r⃗4)

= C1,1,2,2
4 (r⃗1, r⃗2, r⃗3, r⃗4) = C1,2,1,2

4 (r⃗1, r⃗2, r⃗3, r⃗4) = C2,1,1,2
4 (r⃗1, r⃗2, r⃗3, r⃗4)

= C1,2,2,1
4 (r⃗1, r⃗2, r⃗3, r⃗4) = C2,1,2,1

4 (r⃗1, r⃗2, r⃗3, r⃗4) = C2,2,1,1
4 (r⃗1, r⃗2, r⃗3, r⃗4)

= −C1,2,2,2
4 (r⃗1, r⃗2, r⃗3, r⃗4) = −C2,1,2,2

4 (r⃗1, r⃗2, r⃗3, r⃗4) = −C2,2,1,2
4 (r⃗1, r⃗2, r⃗3, r⃗4) = −C2,2,2,1

4 (r⃗1, r⃗2, r⃗3, r⃗4)

= C2,2,2,2
4 (r⃗1, r⃗2, r⃗3, r⃗4) (3.3.2.54)

Here, the problem is that we cannot define inverse matrix of Eq.(3.3.2.13) since matrix CK,K
′

2 (r⃗, r⃗′) is

singular.

CK,K
′

2 (r⃗, r⃗′) = C2(r⃗1, r⃗2)

[
1 −1
−1 1

]
(3.3.2.55)

To avoid this difficulty, let us rewrite the equations above without using matrix representation. By using

Eqs.(3.3.2.49) ∼ (3.3.2.52), 2nd order cumulant term in Eq.(3.3.2.9) is written as follows when K = 1.∑
K2

∫
dr⃗2C

1,K2

2 (r⃗, r⃗2)VK2(r⃗2) =

∫
dr⃗2C2(r⃗, r⃗2) [V1(r⃗2)− V2(r⃗2)] =

∫
dr⃗2C2(r⃗, r⃗2)U(r⃗2) (3.3.2.56)

where

U(r⃗) := V1(r⃗)− V2(r⃗) (3.3.2.57)

For 3rd order term:∑
K2

∑
K3

∫
dr⃗2

∫
dr⃗3C

1,K2,K3

3 (r⃗, r⃗2, r⃗3)VK2
(r⃗2)VK3

(r⃗3)

=

∫
dr⃗2

∫
dr⃗3C3(r⃗, r⃗2, r⃗3) [V1(r⃗2)V1(r⃗3)− V1(r⃗2)V2(r⃗3)− V2(r⃗2)V1(r⃗3) + V2(r⃗2)V2(r⃗3)]

=

∫
dr⃗2

∫
dr⃗3C3(r⃗, r⃗2, r⃗3)U(r⃗2)U(r⃗3) (3.3.2.58)

For 4th order term:∑
K2

∑
K3

∑
K4

∫
dr⃗2

∫
dr⃗3

∫
dr⃗4C

1,K2,K3,K4

4 (r⃗, r⃗2, r⃗3, r⃗4)VK2
(r⃗2)VK3

(r⃗3)VK4
(r⃗4)

=

∫
dr⃗2

∫
dr⃗3

∫
dr⃗4C4(r⃗, r⃗2, r⃗3, r⃗4)U(r⃗2)U(r⃗3)U(r⃗4) (3.3.2.59)
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3.3 Microphase separation

As a result, expansion of concentration fluctuation is:

δψ(r⃗1) = (−β)
∫
dr⃗2C2(r⃗1, r⃗2)U(r⃗2)

+
(−β)2

2

∫
dr⃗2

∫
dr⃗3C3(r⃗, r⃗2, r⃗3)U(r⃗2)U(r⃗3)

+
(−β)3

6

∫
dr⃗2

∫
dr⃗3

∫
dr⃗4C4(r⃗, r⃗2, r⃗3, r⃗4)U(r⃗2)U(r⃗3)U(r⃗4) + · · · (3.3.2.60)

where order parameter δψ(r⃗) is defined as follows.

δψ(r⃗) := δϕ1(r⃗) = −δϕ2(r⃗) (3.3.2.61)

By using the same calculation schemes, Eqs.(3.3.2.32), (3.3.2.42), and (3.3.2.47) is expressed as follows.

F [δψ(r⃗)]− F [0]

=
1

2β

∫
dr⃗1

∫
dr⃗2C

−1
2 (r⃗1, r⃗2)δψ(r⃗1)δψ(r⃗2)

− 1

6β

∫
dr⃗1 · · ·

∫
dr⃗6C3(r⃗1, r⃗2, r⃗3)C

−1
2 (r⃗1, r⃗4)C

−1
2 (r⃗2, r⃗5)C

−1
2 (r⃗3, r⃗6)δψ(r⃗4)δψ(r⃗5)δψ(r⃗6) + · · · (3.3.2.62)

δψ(q⃗1) = (−β)C2(q⃗1)U(q⃗1)

+
(−β)2

2

1

(2π)6

∫
dq⃗2

∫
dq⃗3C3(q⃗1, q⃗2, q⃗3)U(q⃗2)U(q⃗3)

+
(−β)3

6

1

(2π)9

∫
dq⃗2

∫
dq⃗3

∫
dq⃗4C4(q⃗1, q⃗2, q⃗3, q⃗4)U(q⃗2)U(q⃗3)U(q⃗4) + · · · (3.3.2.63)

F [δψ(q⃗)]− F [0]

=
1

2β

1

(2π)3

∫
dq⃗1C

−1
2 (q⃗1)δψ(q⃗1)δψ(−q⃗1)

− 1

6β

1

(2π)9

∫
dq⃗1

∫
dq⃗2

∫
dq⃗3C3(q⃗1, q⃗2, q⃗3)C

−1
2 (q⃗1)C

−1
2 (q⃗2)C

−1
2 (q⃗3)δψ(q⃗1)δψ(q⃗2)δψ(q⃗3) + · · ·

(3.3.2.64)

where C−1
2 (r⃗1, r⃗2) is defined as follows (Eqs.(3.3.2.13)).∫

dr⃗3C
−1
2 (r⃗1, r⃗3)C2(r⃗3, r⃗2) = δ(r⃗1 − r⃗2) (3.3.2.65)
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3.3 Microphase separation

By using Eq.(3.3.2.35), Fourier transform of left hand side of Eq.(3.3.2.65) is calculated as follows.

1

(2π)6

∫
dr⃗3

∫
dq⃗1

∫
dq⃗2C

−1
2 (q⃗1)C2(q⃗2)e

−iq⃗1·(r⃗1−r⃗3)e−iq⃗2·(r⃗3−r⃗2)

=
1

(2π)6

∫
dq⃗1

∫
dq⃗2

∫
dr⃗3C

−1
2 (q⃗1)C2(q⃗2)e

i(q⃗1−q⃗2)·r⃗3e−iq⃗1·r⃗1eiq⃗2·r⃗2

=
1

(2π)6

∫
dq⃗1

∫
dq⃗2C

−1
2 (q⃗1)C2(q⃗2)δ(q⃗1 − q⃗2)e−iq⃗1·r⃗1eiq⃗2·r⃗2

=
1

(2π)3

∫
dq⃗1C

−1
2 (q⃗1)C2(q⃗1)e

−iq⃗1·(r⃗1−r⃗2) (3.3.2.66)

By using Eq.(3.3.2.38), Fourier transform of right hand side of Eq.(3.3.2.65) is calculated as follows.

δ(r⃗1 − r⃗2) =
1

(2π)3

∫
dq⃗1e

−iq⃗1·(r⃗1−r⃗2) (3.3.2.67)

By comparing Eqs.(3.3.2.66) and (3.3.2.67),

C−1
2 (q⃗)C2(q⃗) = 1 ∀q⃗ (3.3.2.68)

3.3.3 Random-phase approximation

To calculate Eq.(3.3.2.47), we have to know the coefficients for each term. These terms are expressed by

the combination of cumulants as follows (See Eqs.(3.3.2.5), (11.5.36), (11.5.37), (11.5.38), and so on.).

CK1,K2

2 (r⃗1, r⃗2) =MK1,K2

2 (r⃗1, r⃗2) =
⟨
δϕ̂K1

(r⃗1; Γ)δϕ̂K2
(r⃗2; Γ)

⟩
(3.3.3.1)

CK1,K2,K3

3 (r⃗1, r⃗2, r⃗3) =MK1,K2,K3

3 (r⃗1, r⃗2, r⃗3) =
⟨
δϕ̂K1

(r⃗1; Γ)δϕ̂K2
(r⃗2; Γ)δϕ̂K3

(r⃗3; Γ)
⟩

(3.3.3.2)

CK1,K2,K3,K4

4 (r⃗1, r⃗2, r⃗3, r⃗4)

=MK1,K2,K3,K4

4 (r⃗1, r⃗2, r⃗3, r⃗4)

−MK1,K2

2 (r⃗1, r⃗2)M
K3,K4

2 (r⃗3, r⃗4)−MK1,K3

2 (r⃗1, r⃗3)M
K2,K4

2 (r⃗2, r⃗4)−MK1,K4

2 (r⃗1, r⃗4)M
K2,K3

2 (r⃗2, r⃗3)

=
⟨
δϕ̂K1(r⃗1; Γ)δϕ̂K2(r⃗2; Γ)δϕ̂K3(r⃗3; Γ)δϕ̂K4(r⃗4; Γ)

⟩
−
⟨
δϕ̂K1(r⃗1; Γ)δϕ̂K2(r⃗2; Γ)

⟩⟨
δϕ̂K3(r⃗3; Γ)δϕ̂K4(r⃗4; Γ)

⟩
−
⟨
δϕ̂K1

(r⃗1; Γ)δϕ̂K3
(r⃗3; Γ)

⟩⟨
δϕ̂K2

(r⃗2; Γ)δϕ̂K4
(r⃗4; Γ)

⟩
−
⟨
δϕ̂K1

(r⃗1; Γ)δϕ̂K4
(r⃗4; Γ)

⟩⟨
δϕ̂K2

(r⃗2; Γ)δϕ̂K3
(r⃗3; Γ)

⟩
(3.3.3.3)

where

⟨
δϕ̂K1

(r⃗1; Γ) · · · δϕ̂Kn
(r⃗n; Γ)

⟩
=

∫
dΓ exp

[
−βĤS(Γ)

] ∑
K1,··· ,Kn

∫
dr⃗1 · · ·

∫
dr⃗nδϕ̂K1

(r⃗1; Γ) · · · δϕ̂Kn
(r⃗n; Γ)∫

dΓ exp
[
−βĤS(Γ)

]
(3.3.3.4)

In q-space, Eqs.(3.3.3.1) ∼ (3.3.3.3) is expressed as follows.

CK1,K2

2 (q⃗1) =
⟨
δϕ̂K1

(q⃗1)δϕ̂K2
(−q⃗1)

⟩
(3.3.3.5)
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3.3 Microphase separation

CK1,K2,K3

3 (q⃗1, q⃗2, q⃗3) =
⟨
δϕ̂K1

(q⃗1)δϕ̂K2
(q⃗2)δϕ̂K2

(q⃗3)
⟩

(3.3.3.6)

CK1,K2,K3,K4

4 (q⃗1, q⃗2, q⃗3, q⃗4)

=
⟨
δϕ̂K1

(q⃗1)δϕ̂K2
(q⃗2)δϕ̂K3

(q⃗3)δϕ̂K4
(q⃗4)

⟩
−
⟨
δϕ̂K1

(q⃗1)δϕ̂K2
(q⃗2)

⟩⟨
δϕ̂K3

(q⃗3)δϕ̂K4
(q⃗4)

⟩
−
⟨
δϕ̂K1(q⃗1)δϕ̂K3(q⃗3)

⟩⟨
δϕ̂K2(q⃗2)δϕ̂K4(q⃗4)

⟩
−
⟨
δϕ̂K1(q⃗1)δϕ̂K4(q⃗4)

⟩⟨
δϕ̂K2(q⃗2)δϕ̂K3(q⃗3)

⟩
(3.3.3.7)

where the translational invariance Eq.(3.3.2.35) is used. 28 Calculation of Eq.(3.3.3.4) is usually difficult since

ĤS(Γ) contains the information about interaction between polymers (see the statements above Eq.(3.3.1.23)).

Instead of Eq.(3.3.3.4), we can calculate the following correlation function:

⟨
δϕ̂K1

(r⃗1; Γ) · · · δϕ̂Kn
(r⃗n; Γ)

⟩
0
=

∫
dΓ exp

[
−βĤ0(Γ)

] ∑
K1,··· ,Kn

∫
dr⃗1 · · ·

∫
dr⃗nδϕ̂K1

(r⃗1; Γ) · · · δϕ̂Kn
(r⃗n; Γ)∫

dΓ exp
[
−βĤ0(Γ)

]
(3.3.3.8)

where Ĥ0(Γ) is the Hamiltonian without any interaction (Eq.(3.3.1.3)). Let us define cumulants for Ĥ0(Γ)

system as follows.

GK1,K2

2 (q⃗1) =
⟨
δϕ̂K1(q⃗1)δϕ̂K2(−q⃗1)

⟩
0

(3.3.3.9)

GK1,K2,K3

3 (q⃗1, q⃗2, q⃗3) =
⟨
δϕ̂K1(q⃗1)δϕ̂K2(q⃗2)δϕ̂K2(q⃗3)

⟩
0

(3.3.3.10)

GK1,K2,K3,K4

4 (q⃗1, q⃗2, q⃗3, q⃗4)

=
⟨
δϕ̂K1(q⃗1)δϕ̂K2(q⃗2)δϕ̂K3(q⃗3)δϕ̂K4(q⃗4)

⟩
0
−
⟨
δϕ̂K1(q⃗1)δϕ̂K2(q⃗2)

⟩
0

⟨
δϕ̂K3(q⃗3)δϕ̂K4(q⃗4)

⟩
0

−
⟨
δϕ̂K1(q⃗1)δϕ̂K3(q⃗3)

⟩
0

⟨
δϕ̂K2(q⃗2)δϕ̂K4(q⃗4)

⟩
0
−
⟨
δϕ̂K1(q⃗1)δϕ̂K4(q⃗4)

⟩
0

⟨
δϕ̂K2(q⃗2)δϕ̂K3(q⃗3)

⟩
0

(3.3.3.11)

We can calculate Eq.(3.3.3.9) ∼ (3.3.3.11) since we do not have to consider complex interactions between

polymers.

Interactions between polymers

ON

Microphase separation

OFF

Reference 2: Reference 1: 

Figure 3.9: Qualitative explanation of random-phase approximation.

28In Eq.(3.3.3.7), translational invariance is not assumed. However, all of the variables of 2nd order cumulants in Eq.(3.3.3.7)
is reduced to single value for the calculation of Eq.(3.3.2.47).
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3.3 Microphase separation

To express cumulants Eq.(3.3.3.5) ∼ (3.3.3.7) by using Eq.(3.3.3.9) ∼ (3.3.3.11), the technique called

random-phase approximation is useful [50]. Under this approximation, Eq.(3.3.2.42) is expressed as follows

(Figure 3.9).

δϕK(q⃗1) =
∑
K2

GK,K2

2 (q⃗1)V
e
K2

(q⃗1)

+
1

2β

1

(2π)6

∑
K2

∑
K3

∫
dq⃗2

∫
dq⃗3G

K,K2,K3

3 (q⃗1, q⃗2, q⃗3)V
e
K2

(q⃗2)V
e
K3

(q⃗3)

− 1

6β

1

(2π)9

∑
K2

∑
K3

∑
K4

∫
dq⃗2

∫
dq⃗3

∫
dq⃗4G

K,K2,K3,K4

4 (q⃗1, q⃗2, q⃗3, q⃗4)V
e
K2

(q⃗2)V
e
K3

(q⃗3)V
e
K4

(q⃗4) + · · ·

(3.3.3.12)

Here, reference state is changed from ĤS(Γ) to Ĥ0(Γ). To compensate the difference, artificial external field

is changed from [{VK(r⃗)}] to [{V eK(r⃗)}].
From now, we restrict our discussion to two-component system. Interactions between polymers are repre-

sented by using pairwise interaction energies (see Eq.(3.2.4.15) and discussions below.).29

[
zu11(ϕ̄1 + δϕ1(r⃗)) + zu12ϕ2(ϕ̄2 + δϕ2(r⃗))

]
−
[
zu11ϕ̄1 − zu12ϕ̄2

]
= zu11δϕ1(r⃗) + zu12δϕ2(r⃗) for component 1 (3.3.3.13)[

zu12(ϕ̄1 + δϕ1(r⃗)) + zu22ϕ2(ϕ̄2 + δϕ2(r⃗))
]
−
[
zu12ϕ̄1 − zu22ϕ̄2

]
= zu12δϕ1(r⃗) + zu22δϕ2(r⃗) for component 2 (3.3.3.14)

By introducing polymer interactions, the condition of incompressibility is no longer fulfilled. To modify

this condition, additional potential V is required. Note that this potential does not depend on the polymer

species. One of the examples of this kind of potential is external pressure. As a result, V eK is expressed as

follows in q-space.

V e1 (q⃗) = V1(q⃗) + zu11δϕ1(q⃗) + zu12δϕ2(q⃗) + V (q⃗) (3.3.3.15)

V e2 (q⃗) = V2(q⃗) + zu12δϕ1(q⃗) + zu22δϕ2(q⃗) + V (q⃗) (3.3.3.16)

In addition, incompressibility is imposed as follows.

δϕ1(q⃗) + δϕ2(q⃗) = 0 (3.3.3.17)

Note that Eq.(3.3.2.48) is no longer valid for Ĥ0(Γ).
30

29Here, z is the number of sites next to a certain site. Though we can formulate without using lattice model, I formally
defined as Eqs.(3.3.3.13) and (3.3.3.14) to make the discussion clear.

30Fourier transformation of Eq.(3.3.3.17) is ∫
dr⃗ [δϕ1(r⃗) + δϕ2(r⃗)] e

iq⃗·r⃗ = 0

Therefore, incompressibility holds true in total. However, incompressibility is not fulfilled at each point. Note that Fourier
transformation of Eq.(3.3.2.48) is

1

(2π)3

∫
dq⃗ [δϕ1(q⃗) + δϕ2(q⃗)] e

−iq⃗·r⃗ = 0
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3.3 Microphase separation

Let us compare Eqs.(3.3.2.63) and (3.3.3.12):

δψ(q⃗1) = (−β)C2(q⃗1)U(q⃗1)

+
(−β)2

2

1

(2π)6

∫
dq⃗2

∫
dq⃗3C3(q⃗1, q⃗2, q⃗3)U(q⃗2)U(q⃗3)

+
(−β)3

6

1

(2π)9

∫
dq⃗2

∫
dq⃗3

∫
dq⃗4C4(q⃗1, q⃗2, q⃗3, q⃗4)U(q⃗2)U(q⃗3)U(q⃗4) + · · ·

= (−β)
∑
K2

G1,K2

2 (q⃗1)V
e
K2

(q⃗1)

+
(−β)2

2

1

(2π)6

∑
K2

∑
K3

∫
dq⃗2

∫
dq⃗3G

1,K2,K3

3 (q⃗1, q⃗2, q⃗3)V
e
K2

(q⃗2)V
e
K3

(q⃗3)

+
(−β)3

6

1

(2π)9

∑
K2

∑
K3

∑
K4

∫
dq⃗2

∫
dq⃗3

∫
dq⃗4G

1,K2,K3,K4

4 (q⃗1, q⃗2, q⃗3, q⃗4)V
e
K2

(q⃗2)V
e
K3

(q⃗3)V
e
K4

(q⃗4) + · · ·

= −(−β)
∑
K2

G2,K2

2 (q⃗1)V
e
K2

(q⃗1)

− (−β)2

2

1

(2π)6

∑
K2

∑
K3

∫
dq⃗2

∫
dq⃗3G

2,K2,K3

3 (q⃗1, q⃗2, q⃗3)V
e
K2

(q⃗2)V
e
K3

(q⃗3)

− (−β)3

6

1

(2π)9

∑
K2

∑
K3

∑
K4

∫
dq⃗2

∫
dq⃗3

∫
dq⃗4G

2,K2,K3,K4

4 (q⃗1, q⃗2, q⃗3, q⃗4)V
e
K2

(q⃗2)V
e
K3

(q⃗3)V
e
K4

(q⃗4) + · · ·

(3.3.3.18)

Note that K2,K3,K4, . . . run only 1 or 2. To solve Eq.(3.3.3.18), let us expand δψ(q⃗) in powers of the

external potentials.31

δψ(q⃗) =: δψ(1)(q⃗) + δψ(2)(q⃗) + δψ(3)(q⃗) + · · · (3.3.3.19)

V eK(q⃗) =: V
e(1)
K (q⃗) + V

e(2)
K (q⃗) + V

e(3)
K (q⃗) + · · · (3.3.3.20)

where

V
e(1)
1 (q⃗) = V1(q⃗) + zu11δψ

(1)(q⃗)− zu12δψ(1)(q⃗) + V (1)(q⃗) (3.3.3.21)

V
e(1)
2 (q⃗) = V2(q⃗) + zu12δψ

(1)(q⃗)− zu22δψ(1)(q⃗) + V (1)(q⃗) (3.3.3.22)

V
e(2)
1 (q⃗) = zu11δψ

(2)(q⃗)− zu12δψ(2)(q⃗) + V (2)(q⃗) (3.3.3.23)

V
e(2)
2 (q⃗) = zu12δψ

(2)(q⃗)− zu22δψ(2)(q⃗) + V (2)(q⃗) (3.3.3.24)

V
e(3)
1 (q⃗) = zu11δψ

(3)(q⃗)− zu12δψ(3)(q⃗) + V (3)(q⃗) (3.3.3.25)

V
e(3)
2 (q⃗) = zu12δψ

(3)(q⃗)− zu22δψ(3)(q⃗) + V (3)(q⃗) (3.3.3.26)

where I used the following conditions (extension of Eq.(3.3.3.17)).

δψ(n)(q⃗) = δϕ
(n)
1 (q⃗) = −δϕ(n)2 (q⃗) ∀n (3.3.3.27)

31Here, “solve” means to express Cn by using Gn since we can calculate Gn for specific systems.
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3.3 Microphase separation

As for δψ(1)(q⃗), Eq.(3.3.3.18) shows that:

− 1

β
δψ(1)(q⃗) = C2(q⃗) [V1(q⃗)− V2(q⃗)]

= G1,1
2 (q⃗)V

e(1)
1 (q⃗) +G1,2

2 (q⃗)V
e(1)
2 (q⃗)

= −G2,1
2 (q⃗)V

e(1)
1 (q⃗)−G2,2

2 (q⃗)V
e(1)
2 (q⃗) (3.3.3.28)

Let us define correlation functions G2 as follows.32

S11(q⃗) := G1,1
2 (q⃗) (3.3.3.29)

S22(q⃗) := G2,2
2 (q⃗) (3.3.3.30)

Sc(q⃗) := G1,2
2 (q⃗) = G2,1

2 (q⃗) (3.3.3.31)

By omitting (q⃗) for simplicity, we can solve Eq.(3.3.3.28) as follows.

(S11 + Sc)V
e(1)
1 = −(Sc + S22)V

e(1)
2

→ V
e(1)
2

V
e(1)
1

= −S11 + Sc
Sc + S22

(3.3.3.32)

V
e(1)
1 − V e(1)2 = V1 − V2 + z(u11 + u22 − 2u12)δψ

(1) = V1 − V2 −
2χ

β
δψ(1)

= V1 − V2 + 2χC2(V1 − V2) = (1 + 2χC2) (V1 − V2)

= (1 + 2χC2)
S11V

e(1)
1 + ScV

e(1)
2

C2
(3.3.3.33)

From Eqs.(3.3.3.32) and (3.3.3.33):

1− V
e(1)
2

V
e(1)
1

= 1 +
S11 + Sc
Sc + S22

= (1 + 2χC2)
S11 + Sc

V
e(1)
2

V
e(1)
1

C2
= (1 + 2χC2)

[
S11

C2
− Sc
C2

S11 + Sc
Sc + S22

]
(3.3.3.34)

Here, we define the following two quantities:

A(q⃗) := S11(q⃗) + 2Sc(q⃗) + S22(q⃗) (3.3.3.35)

W (q⃗) := S11(q⃗)S22(q⃗)− S2
c (q⃗) (3.3.3.36)

By using Eqs.(3.3.3.35) and (3.3.3.36), Eq.(3.3.3.34) becomes:

Sc + S22 + S11 + Sc
Sc + S22

=
1

C2(Sc + S22)
(1 + 2χC2) (S11(Sc + S22)− Sc(S11 + Sc))

→ A =
1

C2
(1 + 2χC2)W (3.3.3.37)

32S11 ̸= S12 and S11 ̸= −Sc since Eq.(3.3.2.48) is no longer valid.

109



3.3 Microphase separation

Finally, C2 is expressed by GK,K
′

2 as follows.

C2(q⃗) =
W (q⃗)

A(q⃗)− 2χW (q⃗)
(3.3.3.38)

As for δψ(2)(q⃗), Eq.(3.3.3.18) shows that:

δψ(2)(q⃗) =
(−β)2

2

1

(2π)6

∫
dq⃗2

∫
dq⃗3C3(q⃗1, q⃗2, q⃗3)U(q⃗2)U(q⃗3)

= (−β)
(
G1,1

2 (q⃗)V
e(2)
1 (q⃗) +G1,2

2 (q⃗)V
e(2)
2 (q⃗)

)
+

(−β)2

2

1

(2π)6

∑
K2

∑
K3

∫
dq⃗2

∫
dq⃗3G

1,K2,K3

3 (q⃗1, q⃗2, q⃗3)V
e(1)
K2

(q⃗2)V
e(1)
K3

(q⃗3)

= −(−β)
(
G2,1

2 (q⃗)V
e(2)
1 (q⃗) +G2,2

2 (q⃗)V
e(2)
2 (q⃗)

)
− (−β)2

2

1

(2π)6

∑
K2

∑
K3

∫
dq⃗2

∫
dq⃗3G

2,K2,K3

3 (q⃗1, q⃗2, q⃗3)V
e(1)
K2

(q⃗2)V
e(1)
K3

(q⃗3) (3.3.3.39)

From Eq.(3.3.3.39), C3 is expressed as follows.

C3(q⃗1, q⃗2, q⃗3) = C2(q⃗1)C2(q⃗2)C2(q⃗3)
∑

K1,K2,K3

GK1,K2,K3

3 (q⃗1, q⃗2, q⃗3)[(
GK1,1

2 (q⃗1)
)−1

−
(
GK1,2

2 (q⃗1)
)−1

] [(
GK2,1

2 (q⃗2)
)−1

−
(
GK2,2

2 (q⃗2)
)−1

] [(
GK3,1

2 (q⃗3)
)−1

−
(
GK3,2

2 (q⃗3)
)−1

]
(3.3.3.40)

By substituting Eqs.(3.3.3.38) and (3.3.3.40) to Eq.(3.3.2.64):

F [δψ(q⃗)]− F [0]

=
1

2β

1

(2π)3

∫
dq⃗1

[
S(q⃗1)

W (q⃗1)
− 2χ

]
δψ(q⃗1)δψ(−q⃗1)

− 1

6β

1

(2π)9

∫
dq⃗1

∫
dq⃗2

∫
dq⃗3

∑
K1,K2,K3

GK1,K2,K3

3 (q⃗1, q⃗2, q⃗3)[(
GK1,1

2 (q⃗1)
)−1

−
(
GK1,2

2 (q⃗1)
)−1

] [(
GK2,1

2 (q⃗2)
)−1

−
(
GK2,2

2 (q⃗2)
)−1

] [(
GK3,1

2 (q⃗3)
)−1

−
(
GK3,2

2 (q⃗3)
)−1

]
δψ(q⃗1)δψ(q⃗2)δψ(q⃗3) + · · · (3.3.3.41)

Until now, I assume the translational invariance only for 2nd order cumulant (Eq.(3.3.2.35)). At this

point, let us assume the translational invariance for higher order terms.

g3(r⃗1, r⃗2, r⃗3)→ g3(r⃗1 − r⃗3, r⃗2 − r⃗3) (3.3.3.42)

g4(r⃗1, r⃗2, r⃗3, r⃗4)→ g4(r⃗1 − r⃗4, r⃗2 − r⃗4, r⃗3 − r⃗4) (3.3.3.43)
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3.3 Microphase separation

Under this assumption, Eq.(3.3.2.40) becomes:∫
dr⃗1

∫
dr⃗2

∫
dr⃗3g3(r⃗1 − r⃗3, r⃗2 − r⃗3)ha(r⃗2)hb(r⃗3)eiq⃗1·r⃗1

=
1

(2π)12

∫
dr⃗1 · · ·

∫
dr⃗3

∫
dq⃗2 · · ·

∫
dq⃗5g3(q⃗2, q⃗3)ha(q⃗4)hb(q⃗5)e

iq⃗1·r⃗1e−iq⃗2·(r⃗1−r⃗3)e−iq⃗3·(r⃗2−r⃗3)e−iq⃗4·r⃗2e−iq⃗5·r⃗3

=
1

(2π)12

∫
dr⃗1 · · ·

∫
dr⃗3

∫
dq⃗2 · · ·

∫
dq⃗5g3(q⃗2, q⃗3)ha(q⃗4)hb(q⃗5)e

i(q⃗1−q⃗2)·r⃗1ei(−q⃗3−q⃗4)·r⃗2ei(q⃗2+q⃗3−q⃗5)·r⃗3

=
1

(2π)12

∫
dq⃗2 · · ·

∫
dq⃗5g3(q⃗2, q⃗3)ha(q⃗4)hb(q⃗5)δ(q⃗1 − q⃗2)δ(−q⃗3 − q⃗4)δ(q⃗2 + q⃗3 − q⃗5)

=
1

(2π)3

∫
dq⃗3g3(q⃗1, q⃗3)ha(−q⃗3)hb(q⃗1 + q⃗3)

→ 1

(2π)6

∫
dq⃗2

∫
dq⃗3δ(q⃗1 + q⃗2 + q⃗3)g3(q⃗1, q⃗3, q⃗2)ha(−q⃗3)hb(−q⃗2) (3.3.3.44)

Similar to this, Eq.(3.3.2.46) becomes:∫
dr⃗1 · · ·

∫
dr⃗6g3(r⃗1 − r⃗3, r⃗2 − r⃗3)g2a(r⃗1 − r⃗4)g2b(r⃗2 − r⃗5)g2c(r⃗3 − r⃗6)ha(r⃗4)hb(r⃗5)hc(r⃗6)

=
1

(2π)24

∫
dr⃗1 · · ·

∫
dr⃗6

∫
dq⃗1 · · ·

∫
dq⃗8g3(q⃗1, q⃗2)g2a(q⃗3)g2b(q⃗4)g2c(q⃗5)ha(q⃗6)hb(q⃗7)hc(q⃗8)

e−iq⃗1·(r⃗1−r⃗3)e−iq⃗2·(r⃗2−r⃗3)e−iq⃗3·(r⃗1−r⃗4)e−iq⃗4·(r⃗2−r⃗5)e−iq⃗5·(r⃗3−r⃗6)e−iq⃗6·r⃗4e−iq⃗7·r⃗5e−iq⃗8·r⃗6

=
1

(2π)24

∫
dr⃗1 · · ·

∫
dr⃗6

∫
dq⃗1 · · ·

∫
dq⃗8g3(q⃗1, q⃗2)g2a(q⃗3)g2b(q⃗4)g2c(q⃗5)ha(q⃗6)hb(q⃗7)hc(q⃗8)

ei(−q⃗1−q⃗3)·r⃗1ei(−q⃗2−q⃗4)·r⃗2ei(q⃗1+q⃗2−q⃗5)·r⃗3ei(q⃗3−q⃗6)·r⃗4ei(q⃗4−q⃗7)·r⃗5ei(q⃗5−q⃗8)·r⃗6

=
1

(2π)6

∫
dq⃗1

∫
dq⃗2g3(q⃗1, q⃗2)g2a(−q⃗1)g2b(−q⃗2)g2c(q⃗1 + q⃗2)ha(−q⃗1)hb(−q⃗2)hc(q⃗1 + q⃗2)

→ 1

(2π)9

∫
dq⃗1

∫
dq⃗2

∫
dq⃗3δ(q⃗1 + q⃗2 + q⃗3)g3(q⃗1, q⃗2, q⃗3)g2a(−q⃗1)g2b(−q⃗2)g2c(−q⃗3)ha(−q⃗1)hb(−q⃗2)hc(−q⃗3)

(3.3.3.45)

4th order term is also calculated in similar way. These calculation show that the translational invariance

impose the condition
∑
i q⃗i = 0 in q-space. Eq.(3.3.3.41) becomes:

F [δψ(q⃗)]− F [0]

=
1

2β

1

(2π)3

∫
dq⃗1

[
A(q⃗1)

W (q⃗1)
− 2χ

]
δψ(q⃗1)δψ(−q⃗1)

− 1

6β

1

(2π)9

∫
dq⃗1

∫
dq⃗2

∫
dq⃗3δ(q⃗1 + q⃗2 + q⃗3)

∑
K1,K2,K3

GK1,K2,K3

3 (q⃗1, q⃗2, q⃗3)[(
GK1,1

2 (q⃗1)
)−1

−
(
GK1,2

2 (q⃗1)
)−1

] [(
GK2,1

2 (q⃗2)
)−1

−
(
GK2,2

2 (q⃗2)
)−1

] [(
GK3,1

2 (q⃗3)
)−1

−
(
GK3,2

2 (q⃗3)
)−1

]
δψ(q⃗1)δψ(q⃗2)δψ(q⃗3) + · · · (3.3.3.46)
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3.3 Microphase separation

3.3.4 Correlation functions for block copolymer melt

To calculate Eq.(3.3.3.41), we have to know the correlation functions for ideal chains (polymer melt),

Eqs.(3.3.3.9) ∼ (3.3.3.11). These quantity is calculated by using the procedure similar to the derivation of

Debye function, Eq.(2.2.5.7).

Correlation function between Ith segment and Jth segment in real space, GIJ(r⃗1, r⃗2), is:
33

GIJ(r⃗1, r⃗2) :=
⟨
δϕ̂I(r⃗1; Γ)δϕ̂J(r⃗2; Γ)

⟩
0

=
⟨(
ϕ̂I(r⃗1; Γ)− ϕ̄I

)(
ϕ̂J(r⃗2; Γ)− ϕ̄J

)⟩
0

=
⟨
ϕ̂I(r⃗1; Γ)ϕ̂J(r⃗2; Γ)

⟩
0
−
⟨
ϕ̂I(r⃗1; Γ)

⟩
0
ϕ̄J −

⟨
ϕ̂J(r⃗2; Γ)

⟩
0
ϕ̄I + ϕ̄I ϕ̄J

=
⟨
ϕ̂I(r⃗1; Γ)ϕ̂J(r⃗2; Γ)

⟩
0
− 1

N2
(3.3.4.1)

Here, I used the following relationships.⟨
ϕ̂I(r⃗1; Γ)

⟩
0
=
⟨
ϕ̂J(r⃗2; Γ)

⟩
0
=

1

N
(3.3.4.2)

ϕ̄I = ϕ̄J =
1

N
(3.3.4.3)

Note that ϕ represents the monomer fraction. Here, we consider polymer melt and therefore total polymer

fraction is 1.
⟨
ϕ̂I(r⃗1; Γ)ϕ̂J(r⃗2; Γ)

⟩
0
is divided into two contributions; correlation between the same chain and

between different chains. First contribution is approximated by the probability Eq.(2.2.5.2) multiplied by

1/N , which express the probability that the monomer at r⃗1 is Ith segment. Second contribution is (1/N)2

since we assume that there are no interaction between different polymers.⟨
ϕ̂I(r⃗1; Γ)ϕ̂J(r⃗2; Γ)

⟩
0
≃ 1

N
P (|I − J |, r⃗1 − r⃗2) +

1

N2
(3.3.4.4)

Substitute Eq.(3.3.4.4) to Eq.(3.3.4.1):

GIJ(r⃗1, r⃗2) =
1

N
P (|I − J |, r⃗1 − r⃗2) (3.3.4.5)

3rd order correlation function, GIJK(r⃗1, r⃗2, r⃗3) is:

GIJK(r⃗1, r⃗2, r⃗3) :=
⟨
δϕ̂I(r⃗1; Γ)δϕ̂J(r⃗2; Γ)δϕ̂K(r⃗3; Γ)

⟩
0

=
⟨
ϕ̂I(r⃗1; Γ)ϕ̂J(r⃗2; Γ)ϕ̂K(r⃗3; Γ)

⟩
0

− 1

N

⟨
ϕ̂I(r⃗1; Γ)ϕ̂J(r⃗2; Γ)

⟩
0
− 1

N

⟨
ϕ̂I(r⃗1; Γ)ϕ̂K(r⃗3; Γ)

⟩
0
− 1

N

⟨
ϕ̂J(r⃗2; Γ)ϕ̂K(r⃗3; Γ)

⟩
0

+
1

N2

⟨
ϕ̂I(r⃗1; Γ)

⟩
0
+

1

N2

⟨
ϕ̂J(r⃗2; Γ)

⟩
0
+

1

N2

⟨
ϕ̂K(r⃗3; Γ)

⟩
0

− 1

N3
(3.3.4.6)

33At this stage, there is no assumption for monomer types of Ith segment and Jth segment.
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3.3 Microphase separation

Here, ⟨
ϕ̂I(r⃗1; Γ)ϕ̂J(r⃗2; Γ)ϕ̂K(r⃗3; Γ)

⟩
0

≃ 1

N
PIJK(|I − J |, r⃗1 − r⃗2; |J −K|, r⃗2 − r⃗3)

+
1

N2
P (|I − J |, r⃗1 − r⃗2) +

1

N2
P (|J −K|, r⃗2 − r⃗3) +

1

N2
P (|K − I|, r⃗3 − r⃗1) +

1

N3
(3.3.4.7)

1st term of the right hand side of Eq.(3.3.4.7) is the probability that Ith segment at r⃗1, Jth segment at r⃗2,

and Kth segment at r⃗3 are on the same chain, 2nd term is the probability that Ith segment at r⃗1 and Jth

segment at r⃗2 are on the same chain while Kth segment at r⃗3 is on different chain, and so on. Substitute

Eqs.(3.3.4.2), (3.3.4.4), and (3.3.4.7) to Eq.(3.3.4.6),

GIJK(r⃗1, r⃗2, r⃗3) =
1

N
PIJK(|I − J |, r⃗1 − r⃗2; |J −K|, r⃗2 − r⃗3) (3.3.4.8)

Here, PIJK(|I − J |, r⃗1 − r⃗2; |J −K|, r⃗2 − r⃗3) is the product of 2nd order correlation function.

PIJK(|I − J |, r⃗1 − r⃗2; |J −K|, r⃗2 − r⃗3) = PIJ(|I − J |, r⃗1 − r⃗2)PJK(|J −K|, r⃗2 − r⃗3)

for I < J < K or K < J < I (3.3.4.9)

When I < J < K or K < J < I do not hold, labeling order should be exchanged.

By using similar procedure, 4th order correlation function, GIJKL(r⃗1, r⃗2, r⃗3, r⃗4) is:

GIJKL(r⃗1, r⃗2, r⃗3, r⃗4) =
1

N
PIJKL(|I − J |, r⃗1 − r⃗2; |J −K|, r⃗2 − r⃗3; |K − L|, r⃗3 − r⃗4) (3.3.4.10)

where

PIJKL(|I − J |, r⃗1 − r⃗2; |J −K|, r⃗2 − r⃗3; |K − L|, r⃗3 − r⃗4)

= PIJ(|I − J |, r⃗1 − r⃗2)PJK(|J −K|, r⃗2 − r⃗3)PKL(|K − L|, r⃗3 − r⃗4)

for I < J < K < L or L < K < J < I (3.3.4.11)

By using correlation functions Eqs.(3.3.4.5), (3.3.4.8), and (3.3.4.10), correlation functions Eqs.(3.3.3.9)

∼ (3.3.3.11) are calculated. First, let us see G11
2 (q⃗) for the case of block copolymer where the fraction of

species 1 is defined as f by referring to Eqs.(2.2.5.6) and (2.2.5.7). Since I and J run from 1 to fN :

S11(q⃗, f) = G11
2 (q⃗, f) =

∫
dr⃗

[
fN∑
I=1

fN∑
J=1

GIJ(r⃗)

]
eiq⃗·r⃗

=
1

N

fN∑
I=1

fN∑
J=1

exp

(
−q

2b2

6
|I − J |

)

→ 1

N

∫ fN

0

dI

∫ fN

0

dJ exp

(
−q

2b2

6
|I − J |

)
= f2N

∫ 1

0

ds

∫ 1

0

dt exp (−Q|s− t|)

= f2N
2

Q2

(
e−Q +Q− 1

)
=: N

2

x2
[
e−fx + fx− 1

]
=: Ng1(x, f) (3.3.4.12)
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3.3 Microphase separation

where

s :=
I

fN
(3.3.4.13)

t :=
J

fN
(3.3.4.14)

Q :=
q2b2

6
fN = f⟨R2

g ⟩q2 (3.3.4.15)

x :=
q2b2

6
N = ⟨R2

g ⟩q2 =
Q

f
(3.3.4.16)

Similar to this,

S22(q⃗, f) = G22
2 (q⃗, f) =

∫
dr⃗

 N∑
I=fN+1

N∑
J=fN+1

GIJ(r⃗)

 eiq⃗·r⃗
→ 1

N

∫ 1

fN

dI

∫ 1

fN

dJ exp

(
−q

2b2

6
|I − J |

)
=

1

N

∫ (1−f)N

0

dI

∫ (1−f)N

0

dJ exp

(
−q

2b2

6
|I − J |

)
= Ng1(x, 1− f) (3.3.4.17)

By using Eqs.(3.3.4.12) and (3.3.4.17):

Sc(q⃗, f) = G12
2 (q⃗, f) =

∫
dr⃗

 fN∑
I=1

N∑
J=fN+1

GIJ(r⃗)

 eiq⃗·r⃗
→ 1

N

∫ fN

0

dI

∫ 1

fN

dJ exp

(
−q

2b2

6
|I − J |

)
=

1

2N

[∫ N

0

dI

∫ N

0

dJ exp

(
−q

2b2

6
|I − J |

)

−
∫ fN

0

dI

∫ fN

0

dJ exp

(
−q

2b2

6
|I − J |

)
−
∫ N

fN

dI

∫ N

fN

dJ exp

(
−q

2b2

6
|I − J |

)]

=
N

2
[g1(x, 1)− g1(x, f)− g1(x, 1− f)] (3.3.4.18)

Next, let us calculateG111
3 (q⃗1, q⃗2, q⃗3). In this case, we have to take care the order of I, J,K ofGIJK(r⃗1, r⃗2, r⃗3).

There are six patterns of the order of I, J,K as follows.

I < J < K : GIJK(r⃗1, r⃗2, r⃗3) =
1

N
P (J − I, r⃗1 − r⃗2)P (K − J, r⃗2 − r⃗3) (3.3.4.19)

I < K < J : GIJK(r⃗1, r⃗2, r⃗3) =
1

N
P (K − I, r⃗1 − r⃗3)P (J −K, r⃗3 − r⃗2) (3.3.4.20)

J < I < K : GIJK(r⃗1, r⃗2, r⃗3) =
1

N
P (I − J, r⃗2 − r⃗1)P (K − I, r⃗1 − r⃗3) (3.3.4.21)

J < K < I : GIJK(r⃗1, r⃗2, r⃗3) =
1

N
P (K − J, r⃗2 − r⃗3)P (I −K, r⃗3 − r⃗1) (3.3.4.22)

K < I < J : GIJK(r⃗1, r⃗2, r⃗3) =
1

N
P (I −K, r⃗3 − r⃗1)P (J − I, r⃗1 − r⃗2) (3.3.4.23)

K < J < I : GIJK(r⃗1, r⃗2, r⃗3) =
1

N
P (J −K, r⃗3 − r⃗2)P (I − J, r⃗2 − r⃗1) (3.3.4.24)
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3.3 Microphase separation

By using Eqs.(3.3.4.19) ∼ (3.3.4.24), G111
3 (q⃗1, q⃗2, q⃗3) is represented as follows.

NG111
3 (q⃗1, q⃗2, q⃗3)→

∫ fN

0

dk

∫ k

0

dj

∫ j

0

diPij(q⃗1)Pjk(q⃗3) (3.3.4.25)

+

∫ fN

0

dj

∫ j

0

dk

∫ k

0

diPik(q⃗1)Pkj(q⃗2) (3.3.4.26)

+

∫ fN

0

dk

∫ k

0

di

∫ i

0

djPji(q⃗2)Pik(q⃗3) (3.3.4.27)

+

∫ fN

0

di

∫ i

0

dk

∫ k

0

djPjk(q⃗2)Pki(q⃗1) (3.3.4.28)

+

∫ fN

0

dj

∫ j

0

di

∫ i

0

dkPki(q⃗3)Pij(q⃗2) (3.3.4.29)

+

∫ fN

0

di

∫ i

0

dj

∫ j

0

dkPkj(q⃗3)Pji(q⃗1) (3.3.4.30)

where Pij(q⃗) corresponds to one term in Eq.(2.2.5.6).

Pij(q⃗) := exp

(
−q

2b2

6
|i− j|

)
(3.3.4.31)

Note that Pij(q⃗) depends only on the magnitude of q⃗. In the following calculation, what we need is the case

where |q⃗1|2 = |q⃗2|2 = q2 and |q⃗3|2 = hq2. Under this assumption, Eqs.(3.3.4.25), (3.3.4.27), (3.3.4.29), and

(3.3.4.30) become the same and Eqs.(3.3.4.26) and (3.3.4.28) become the same. As a result:

NG111
3 (q⃗1, q⃗2, q⃗3)→

∫ fN

0

di

∫ i

0

dj

∫ j

0

dk
(
4Pij(q)Pjk(h

1/2q) + 2Pij(q)Pjk(q)
)

(3.3.4.32)

When h ̸= 0, 1, 1st term of Eq.(3.3.4.32) is calculated as follows. 34

∫ fN

0

di

∫ i

0

dj

∫ j

0

dkPij(q)Pjk(h
1/2q)

=

∫ fN

0

di

∫ i

0

dj

∫ j

0

dk exp

[
−q

2b2

6
(i− j)− hq2b2

6
(j − k)

]
= N3

∫ f

0

ds

∫ s

0

dt

∫ t

0

du exp [−x(s− t)− hx(t− u)]

= N3 1

hx

∫ f

0

ds

∫ s

0

dte−xs
[
ext − e(1−h)xt

]
= N3 1

hx2

∫ f

0

ds

[
1− h

h− 1
e−xs +

1

h− 1
e−hxs

]
= N3 1

hx3

[
fx− 1− 1

h
+

h

h− 1
e−fx − 1

h(h− 1)
e−hfx

]
=: N3g2(f, h) (h ̸= 0, 1) (3.3.4.33)

where s := i/N, t := j/N, u := k/N and x is Eq.(3.3.4.16). Like this, 2nd term of Eq.(3.3.4.32) is:∫ fN

0

di

∫ i

0

dj

∫ j

0

dkPij(q)Pjk(q) = N3 1

x3
[
fxe−fx + fx− 2 + 2e−fx

]
=: N3g2(f, 1) (3.3.4.34)

Substitute Eqs.(3.3.4.33) and (3.3.4.34) to Eq.(3.3.4.32):

G111
3 (q⃗1, q⃗2, q⃗3)→ G111

3 (q, f, h) = 2N2(2g2(f, h) + g2(f, 1)) (3.3.4.35)

34In original paper, h ̸= 0, 1, 3, 4 was assumed. However, Eq.(3.3.4.33) is valid for the case where h ̸= 3, 4.
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3.3 Microphase separation

When h = 0:

g2(f, 0) :=
1

x3

[
f2x2

2
− fx+ 1− e−fx

]
(3.3.4.36)

Other 3rd order cumulants (moments) are calculated in similar way. In the case of G112
3 (q⃗1, q⃗2, q⃗3), the

order of I and J should be considered.

I < J : GIJK(r⃗1, r⃗2, r⃗3) =
1

N
P (J − I, r⃗1 − r⃗2)P (K − J, r⃗2 − r⃗3) (3.3.4.37)

J < I : GIJK(r⃗1, r⃗2, r⃗3) =
1

N
P (I − J, r⃗2 − r⃗1)P (K − I, r⃗1 − r⃗3) (3.3.4.38)

G112
3 (q⃗1, q⃗2, q⃗3)→ G112

3 (q, f, h)

=
1

N

∫ fN

0

dj

∫ j

0

di

∫ N

fN

dkPij(q1)Pjk(q3) +
1

N

∫ fN

0

di

∫ i

0

dj

∫ N

fN

dkPji(q2)Pik(q3)

=
2

N

∫ fN

0

di

∫ i

0

dj

∫ N

fN

dkPij(q)Pjk(h
1/2q)

= 2N2g3(f, h) (3.3.4.39)

where

g3(f, h) :=
1

hx3

[
1− e−h(1−f)x

] [ 1
h
− 1

h− 1
e−fx +

1

h(h− 1)
e−hfx

]
for h ̸= 0, 1 (3.3.4.40)

g3(f, 0) :=
1− f
x2

[
fx+ e−fx − 1

]
(3.3.4.41)

g3(f, 1) :=
1

x3

[
1− e−(1−f)x

] [
1− fxe−fx − e−fx

]
(3.3.4.42)

In the case of G121
3 (q⃗1, q⃗2, q⃗3), the order of I and K should be considered.

I < K : GIJK(r⃗1, r⃗2, r⃗3) =
1

N
P (K − I, r⃗1 − r⃗3)P (J −K, r⃗3 − r⃗2) (3.3.4.43)

K < I : GIJK(r⃗1, r⃗2, r⃗3) =
1

N
P (I −K, r⃗3 − r⃗1)P (J − I, r⃗1 − r⃗2) (3.3.4.44)

G121
3 (q⃗1, q⃗2, q⃗3)→ G121

3 (q, f, h)

→ 1

N

∫ fN

0

dk

∫ k

0

di

∫ N

fN

djPik(q1)Pkj(q2) +
1

N

∫ fN

0

di

∫ i

0

dk

∫ N

fN

djPki(q3)Pij(q2)

=
1

N

∫ fN

0

di

∫ i

0

dj

∫ N

fN

dk
(
Pij(q)Pjk(q) + Pij(q)Pjk(h

1/2q)
)

= N2 [g4(f, h) + g3(f, 1)] (3.3.4.45)
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where35

g4(f, h) :=
1

hx3

[
1− e−(1−f)x

] [
1 +

1

h− 1
e−hfx − h

(h− 1)
e−fx

]
for h ̸= 0, 1 (3.3.4.46)

g4(f, 0) :=
1

x3

[
1− e−(1−f)x

] [
fx− 1 + e−fx

]
(3.3.4.47)

g4(f, 1) := g3(f, 1) (3.3.4.48)

By using Eqs.(3.3.4.35), (3.3.4.39), and (3.3.4.45),

G211
3 (q, f, h) = G121

3 (q, f, h) = N2 [g4(f, h) + g3(f, 1)] (3.3.4.49)

G221
3 (q, f, h) = G112

3 (q, 1− f, h) = 2N2g3(1− f, h) (3.3.4.50)

G212
3 (q, f, h) = G121

3 (q, 1− f, h) = N2 [g4(1− f, h) + g3(1− f, 1)] (3.3.4.51)

G122
3 (q, f, h) = G211

3 (q, 1− f, h) = N2 [g4(1− f, h) + g3(1− f, 1)] (3.3.4.52)

G222
3 (q, f, h) = G111

3 (q, 1− f, h) = 2N2(2g2(1− f, h) + g2(1− f, 1)) (3.3.4.53)

By using the similar calculation scheme, 4th order moments are obtained as follows.

G1111
4 (q, f, h1, h2) = 8N3 [f1(f, h1) + f1(f, 4− h1 − h2) + f1(f, h2)] (3.3.4.54)

G1112
4 (q, f, h1, h2) = G1121

4 (q, f, h1, h2) = G1211
4 (q, f, h1, h2) = G2111

4 (q, f, h1, h2)

= 2N3 [f2(f, h1) + f2(f, 4− h1 − h2) + f2(f, h2)] (3.3.4.55)

G1122
4 (q, f, h1, h2) = G2211

4 (q, f, h1, h2)

= 4N3f3(f, h1)f3(1− f, h1) (3.3.4.56)

G1221
4 (q, f, h1, h2) = G2112

4 (q, f, h1, h2)

= 4N3f3(f, 4− h1 − h2)f3(1− f, 4− h1 − h2) (3.3.4.57)

G1212
4 (q, f, h1, h2) = G2121

4 (q, f, h1, h2)

= 4N3f3(f, h2)f3(1− f, h2) (3.3.4.58)

G2221
4 (q, f, h1, h2) = G2212

4 (q, f, h1, h2) = G2122
4 (q, f, h1, h2) = G1222

4 (q, f, h1, h2)

= 2N3 [f2(1− f, h1) + f2(1− f, 4− h1 − h2) + f2(1− f, h2)] (3.3.4.59)

G2222
4 (q, f, h1, h2) = 8N3 [f1(1− f, h1) + f1(1− f, 4− h1 − h2) + f1(1− f, h2)] (3.3.4.60)

35In original paper, there is a typo for g4(f, h) (Eq.(3.3.4.46)).
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where

f1(f, h) :=
1

x4

[
fx

h
+

fx

h− 1
e−fx +

2h− 3

(h− 1)2
e−fx +

1

h2(h− 1)2
e−fhx − 2h+ 1

h2

]
for h ̸= 0, 1 (3.3.4.61)

f1(f, 0) :=
1

x4

[
f2x2

2
− fxe−fx − 3e−fx − 2fx+ 3

]
(3.3.4.62)

f1(f, 1) :=
1

x4

[
f2x2

2
e−fx + fx+ 2fxe−fx + 3e−fx − 3

]
(3.3.4.63)

f2(f, h) :=
1

x4

[
1− e(f−1)x

] [ 1
h
− h− 2

(h− 1)2
e−fx − 1

h(h− 1)2
e−fhx − fx

h− 1
e−fx

]
for h ̸= 0, 1 (3.3.4.64)

f2(f, 0) :=
1

x4

[
1− e(f−1)x

] [
2e−fx + fxe−fx − 2 + fx

]
(3.3.4.65)

f2(f, 1) :=
1

x4

[
1− e(f−1)x

] [
1− e−fx − f2x2

2
e−fx − fxe−fx

]
(3.3.4.66)

f3(f, h) :=
1

h(h− 1)x2
[
h− 1− he−fx + e−hfx

]
for h ̸= 0, 1 (3.3.4.67)

f3(f, 0) :=
1

2
g1(f, x) (3.3.4.68)

f3(f, 1) :=
1

x2
[
1− e−fx − fxe−fx

]
(3.3.4.69)

3.3.5 Energy expansion for specific morphology

C2(r⃗1, r⃗2) (Eq.(3.3.2.49)) is proportional to the pair correlation function, Eq.(2.1.12). Therefore, its

Fourier transform, C2(q⃗) (Eq.(3.3.3.38)), is proportional to the scattering function, Eq.(2.1.13). Substitute

Eqs.(3.3.4.12), (3.3.4.17), and (3.3.4.18) to Eqs.(3.3.3.35) and (3.3.3.36) and then to Eq.(3.3.3.38):

C2(q) =
1

A(q⃗)
W (q⃗) − 2χ

=
N

g1(1,x)
g1(f,x)g1(1−f,x)−(g1(1,x)−g1(f,x)−g1(1−f,x))2/4 − 2χN

(3.3.5.1)

Note that C2 depends only on their magnitude.
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Figure 3.10: χN dependence of C2(q⃗) for f = 0.25.

Figure 3.10 shows C2(q) for f = 0.25. It is clearly shown that C2(q) diverge at certain value of χN . This

point corresponds to the spinodal point and χN of this point, (χN)s, is calculated as follows.

A(q∗)

W (q∗)
N = 2(χN)s (3.3.5.2)
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3.3 Microphase separation

q∗ is the value of q⃗ at the spinodal point. By using q∗, x∗ is defined as follows (see Eq.(3.3.4.16)).

x∗ :=
(q∗)2b2

6
N (3.3.5.3)

As seen in Figure 3.10, q∗ and x∗ depends only on f and do not depend on χN . Figure 3.11 shows the

calculation results of (χN)s and x∗ as a function of f .
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Figure 3.11: (χN)s and x∗ as a function of f .

Free energy expansion Eq.(3.3.3.46) shows that 2nd order term of ψ(q) becomes small around χN = (χN)s.

In contrast to this, 3rd and higher order term does not depend on χN as shown in the previous subsection. By

taking this into consideration, let us define Fourier transform of δψ(r⃗) as follows (original one is Eq.(3.3.2.36)).

δψ(r⃗) =
1

(2π)3

∫
dq⃗1δψ(q⃗)e

−iq⃗·r⃗

→ δψ(r⃗) =
1√
n
ψn

n∑
k=1

(
ei(Q⃗k·r⃗+φk) + e−i(Q⃗k·r⃗+φk)

)
(3.3.5.4)

where n is the number of possible q⃗∗, which is determined by the morphology of microphase separated

structure. Q⃗k stands for one of q⃗∗. Fourier transform of Eq.(3.3.5.4) is:

δψ(q⃗) =

∫
dr⃗δψ(r⃗)eiq⃗·r⃗

=
1√
n
ψn

n∑
k=1

∫
dr⃗
(
ei(q⃗+Q⃗k)·r⃗eiφk + ei(q⃗−Q⃗k)·r⃗e−iφk

)
=

1√
n
ψn

n∑
k=1

(
δ(q⃗ + Q⃗k)e

iφk + δ(q⃗ − Q⃗k)e−iφk

)
(3.3.5.5)

The meaning of Eqs.(3.3.5.4) and (3.3.5.5) is that we consider only specific q⃗ for the energy expansion. By

using Eq.(3.3.5.5), let us see free energy expansion again (Eq.(3.3.3.46)).
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3.3 Microphase separation

βN (F [δψ(q⃗)]− F [0])

=
1

2

1

(2π)3

∫
dq⃗1

[
A(q⃗1)

W (q⃗1)
N − 2χN

]
δψ(q⃗1)δψ(−q⃗1)

+
N

6

1

(2π)9

∫
dq⃗1

∫
dq⃗2

∫
dq⃗3δ(q⃗1 + q⃗2 + q⃗3)Γ3(q⃗1, q⃗2, q⃗3)δψ(q⃗1)δψ(q⃗2)δψ(q⃗3)

+
N

24

1

(2π)12

∫
dq⃗1

∫
dq⃗2

∫
dq⃗3

∫
dq⃗4δ(q⃗1 + q⃗2 + q⃗3 + q⃗4)Γ4(q⃗1, q⃗2, q⃗3, q⃗4)δψ(q⃗1)δψ(q⃗2)δψ(q⃗3)δψ(q⃗4) + · · ·

(3.3.5.6)

2nd order term of Eq.(3.3.5.6) is expanded as follows.

1

2

1

(2π)3

∫
dq⃗

[
A(q⃗)

W (q⃗)
N − 2χN

]
δψ(q⃗)δψ(−q⃗)

=
1

2

1

(2π)3

(
1√
n
ψn

)2 ∫
dq⃗

[
A(q⃗)

W (q⃗)
N − 2χN

]
n∑
k=1

n∑
l=1

(
δ(q⃗ + Q⃗k)e

iφk + δ(q⃗ − Q⃗k)e−iφk

)(
δ(−q⃗ + Q⃗l)e

iφl + δ(−q⃗ − Q⃗l)e−iφl

)
=

1

2

1

(2π)3
1

n
ψ2
n

∫
dq⃗

[
A(q⃗)

W (q⃗)
N − 2χN

]
n∑
k=1

(
δ(q⃗ + Q⃗k)e

iφk + δ(q⃗ − Q⃗k)e−iφk

)(
δ(−q⃗ + Q⃗k)e

iφk + δ(−q⃗ − Q⃗k)e−iφk

)
=

1

2

1

(2π)3
1

n
ψ2
n

∫
dq⃗

[
A(q⃗)

W (q⃗)
N − 2χN

] n∑
k=1

(
δ(q⃗ + Q⃗k)e

iφke−iφk + δ(q⃗ − Q⃗k)e−iφkeiφk

)
=

1

n
ψ2
n

n∑
k=1

[
A(Q⃗k)

W (Q⃗k)
N − 2χN

]
= 2N(χs − χ)ψ2

n (3.3.5.7)

To calculate 3rd and higher order terms, we have to specify the morphology of microphase separated

structure. Here we consider three morphology; lamellar, hexagonal, and bcc phase (Figure 3.12). In q-space,

these morphologies are characterized by one, three, and six vectors, {Q⃗k}. 3rd order term of Eq.(3.3.5.6) is

expanded as follows. 36

N

6

1

(2π)9

∫
dq⃗1

∫
dq⃗2

∫
dq⃗3δ(q⃗1 + q⃗2 + q⃗3)Γ3(q⃗1, q⃗2, q⃗3)δψ(q⃗1)δψ(q⃗2)δψ(q⃗3)

=
N

6

(
1√
n
ψn

)3 n∑
k=1

n∑
l=1

n∑
m=1

δ(±Q⃗k ± Q⃗l ± Q⃗m)Γ3(±Q⃗k,±Q⃗l,±Q⃗m) exp [i(∓φk ∓ φl ∓ φm)] (3.3.5.8)

Here, the delta function in the first line is defined for continuous variable as shown in Eqs.(3.3.2.38) and

(3.3.2.39). In contrast to this, the delta function in the second line is defined for discrete variable. In this

case, definition becomes:

δ(Q⃗) =

{
0 for Q⃗ ̸= 0

1 for Q⃗ = 0
(3.3.5.9)

36Here, ±Q⃗k ± Q⃗l ± Q⃗m indicates all of the possible 8 combination of the signs.
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3.3 Microphase separation

Real space

q-space

Figure 3.12: Morphology of (left) lamellar, (center) hexagonal, (right) bcc phase in real and q-space.

Let us consider the combination which makes the delta function in Eq.(3.3.5.8) to be 1.

±Q⃗k ± Q⃗l ± Q⃗m = 0 (3.3.5.10)

In the case of lamellar (n = 1), there is no combination which satisfy Eq.(3.3.5.10). This means that 3rd

order term of Eq.(3.3.5.6) vanishes for lamellar phase.

In the case of hexagonal phase (n = 3), there are 12 combinations which satisfy Eq.(3.3.5.10).

Q⃗1 + Q⃗2 + Q⃗3 = Q⃗2 + Q⃗3 + Q⃗1 = Q⃗3 + Q⃗1 + Q⃗2

= Q⃗3 + Q⃗2 + Q⃗1 = Q⃗2 + Q⃗1 + Q⃗3 = Q⃗1 + Q⃗3 + Q⃗2 = 0 (3.3.5.11)

− Q⃗1 − Q⃗2 − Q⃗3 = −Q⃗2 − Q⃗3 − Q⃗1 = −Q⃗3 − Q⃗1 − Q⃗2

= −Q⃗3 − Q⃗2 − Q⃗1 = −Q⃗2 − Q⃗1 − Q⃗3 = −Q⃗1 − Q⃗3 − Q⃗2 = 0 (3.3.5.12)

Γ3(±Q⃗k,±Q⃗l,±Q⃗m) for Eqs.(3.3.5.11) and (3.3.5.12) are the same. We write this quantity simply as Γ3.

From the combination of Eq.(3.3.5.11), the final exponential term in Eq.(3.3.5.8) becomes e−i(φ1+φ2+φ3)

while it becomes ei(φ1+φ2+φ3) for the combination of Eq.(3.3.5.12). As a result, Eq.(3.3.5.8) is calculated as

follows.

N

6

(
1√
n
ψn

)3 n∑
k=1

n∑
l=1

n∑
m=1

δ(±Q⃗k ± Q⃗l ± Q⃗m)Γ3(±Q⃗k,±Q⃗l,±Q⃗m) exp [i(∓φk ∓ φl ∓ φm)] for n = 3

=
N

6

1

3
√
3
ψ3
36Γ3

(
ei(φ1+φ2+φ3) + e−i(φ1+φ2+φ3)

)
=

2N

3
√
3
Γ3 cos(φ1 + φ2 + φ3)ψ

3
3 (3.3.5.13)

Phase factor φ1 +φ2 +φ3 is determined to make Eq.(3.3.5.13) minimum. As shown later, Γ3 is negative for

f < 0.5 and positive for f > 0.5. Therefore, cos(φ1 + φ2 + φ3) should be 1 for f < 0.5 and −1 for f > 0.5.

In the case of bcc phase (n = 6), there are 4 sets which satisfy Eq.(3.3.5.10) (Figure 3.13). For each set,
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3.3 Microphase separation

I

II

III

IV

Figure 3.13: 4 sets which satisfy Eq.(3.3.5.10) for bcc phase (n = 6). I: Eq.(3.3.5.14) / II: Eq.(3.3.5.15) /

III: Eq.(3.3.5.16) / IV: Eq.(3.3.5.17).

cosine terms are created as follows.

(±Q⃗1,∓Q⃗3,∓Q⃗6)→ 2 cos(φ1 − φ3 − φ6) =: 2 cosα (3.3.5.14)

(±Q⃗1,∓Q⃗4,∓Q⃗5)→ 2 cos(φ1 − φ4 − φ5) =: 2 cosβ (3.3.5.15)

(±Q⃗2,∓Q⃗4,±Q⃗6)→ 2 cos(φ2 − φ4 + φ6) =: 2 cos γ (3.3.5.16)

(±Q⃗2,∓Q⃗3,±Q⃗5)→ 2 cos(φ2 − φ3 + φ5) = 2 cos(α− β + γ) (3.3.5.17)

There are 12 combinations for each set and each set creates 12 cos(· · · ) term. 37 As a result, Eq.(3.3.5.8) is

calculated as follows.

N

6

(
1√
n
ψn

)3 n∑
k=1

n∑
l=1

n∑
m=1

δ(±Q⃗k ± Q⃗l ± Q⃗m)Γ3(±Q⃗k,±Q⃗l,±Q⃗m) exp [i(∓φk ∓ φl ∓ φm)] for n = 6

=
N

6

1

6
√
6
ψ3
6Γ312 (cosα+ cosβ + cos γ + cos(α− β + γ)) (3.3.5.18)

Phase factor α, β and γ is determined to make Eq.(3.3.5.18) minimum. Therefore, α = β = γ = 0 for

f < 0.5 and α = β = γ = π for f > 0.5.

Let us move on to the 4th order term of Eq.(3.3.5.6).

N

24

1

(2π)12

∫
dq⃗1

∫
dq⃗2

∫
dq⃗3

∫
dq⃗4δ(q⃗1 + q⃗2 + q⃗3 + q⃗4)Γ4(q⃗1, q⃗2, q⃗3, q⃗4)δψ(q⃗1)δψ(q⃗2)δψ(q⃗3)δψ(q⃗4)

=
N

24

(
1√
n
ψn

)4 n∑
j=1

n∑
k=1

n∑
l=1

n∑
m=1

δ(±Q⃗j ± Q⃗k ± Q⃗l ± Q⃗m)

Γ4(±Q⃗j ,±Q⃗k,±Q⃗l,±Q⃗m) exp [i(∓φj ∓ φk ∓ φl ∓ φm)] (3.3.5.19)

From now, we use the representation Γ4(h1, h2) instead of Γ4(Q⃗a, Q⃗b, Q⃗c, Q⃗d). h1 and h2 are defined as

37For example, from a set of Eq.(3.3.5.14),

Q⃗1 − Q⃗3 − Q⃗6 = −Q⃗3 − Q⃗6 + Q⃗1 = −Q⃗6 + Q⃗1 − Q⃗3 = −Q⃗6 − Q⃗3 + Q⃗1 = −Q⃗3 + Q⃗1 − Q⃗6 = Q⃗1 − Q⃗6 − Q⃗3 = 0

−Q⃗1 + Q⃗3 + Q⃗6 = Q⃗3 + Q⃗6 − Q⃗1 = Q⃗6 − Q⃗1 + Q⃗3 = Q⃗6 + Q⃗3 − Q⃗1 = Q⃗3 − Q⃗1 + Q⃗6 = −Q⃗1 + Q⃗6 + Q⃗3 = 0

First line creates e−i(φ1−φ3−φ6 ) term while second line creates ei(φ1−φ3−φ6 ) term. As a result, the contribution of this set to
Eq.(3.3.5.8) is 12 cosα.
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3.3 Microphase separation

follows.

|Q⃗a + Q⃗b|2 = h1(q
∗)2 (3.3.5.20)

|Q⃗a + Q⃗d|2 = h2(q
∗)2 (3.3.5.21)

Under this assumption, |Q⃗a + Q⃗c|2 is calculated as follows.

|Q⃗a + Q⃗c|2 = |Q⃗a|2 + 2Q⃗a · (−Q⃗a − Q⃗b − Q⃗d) + |Q⃗c|2

= |Q⃗a|2 − 2|Q⃗a|2 − 2Q⃗a · Q⃗b − 2Q⃗a · Q⃗d + |Q⃗c|2

= −2Q⃗a · Q⃗b − 2Q⃗a · Q⃗d

= −|Q⃗a + Q⃗b|2 − |Q⃗a + Q⃗b|2 + 4(q∗)2 = (4− h1 − h2)(q∗)2 (3.3.5.22)

Note that Q⃗c = −Q⃗a − Q⃗b − Q⃗d and |Q⃗a|2 = |Q⃗c|2 = (q∗)2.

Similar to the case of 3rd order term (Eq.(3.3.5.10)), let us consider the combination which makes the

delta function in Eq.(3.3.5.19) to be 1.

±Q⃗j ± Q⃗k ± Q⃗l ± Q⃗m = 0 (3.3.5.23)

In the case of lamellar phase (n = 1), there are 6 combinations which satisfy Eq.(3.3.5.23).

Q⃗1 + Q⃗1 − Q⃗1 − Q⃗1 = Q⃗1 − Q⃗1 + Q⃗1 − Q⃗1 = −Q⃗1 + Q⃗1 + Q⃗1 − Q⃗1

= Q⃗1 − Q⃗1 − Q⃗1 + Q⃗1 = −Q⃗1 + Q⃗1 − Q⃗1 + Q⃗1 = −Q⃗1 − Q⃗1 + Q⃗1 + Q⃗1 = 0 (3.3.5.24)

Phase factor ∓φj ∓ φk ∓ φl ∓ φm = 0 for all of the terms of Eq.(3.3.5.24). Γ4 term for these terms are the

same and represented as Γ4(0, 0); for Γ4(Q⃗1,−Q⃗1, Q⃗1,−Q⃗1), h1 = h2 = 0 (Eqs.(3.3.5.20) and (3.3.5.21)). 38

Then Eq.(3.3.5.19) becomes:

N

24

(
1√
n
ψn

)4 n∑
j=1

n∑
k=1

n∑
l=1

n∑
m=1

δ(±Q⃗j ± Q⃗k ± Q⃗l ± Q⃗m)

Γ4(±Q⃗j ,±Q⃗k,±Q⃗l,±Q⃗m) exp [i(∓φj ∓ φk ∓ φl ∓ φm)] for n = 1

=
N

24
ψ4
16Γ4(0, 0) (3.3.5.25)

In the case of hexagonal phase (n = 3), there are 2 sets which satisfy Eq.(3.3.5.23). For each set, cosine

terms are created as follows.

(±Q⃗i,±Q⃗i,∓Q⃗i,∓Q⃗i)→ 2 cos(φi + φi − φi − φi) = 2 [i = 1, 2, 3] (3.3.5.26)

(±Q⃗i,±Q⃗j ,∓Q⃗i,∓Q⃗j)→ 2 cos(φi + φj − φi − φj) = 2 [i = 1, 2, 3 / j( ̸= i) = 1, 2, 3] (3.3.5.27)

Eq.(3.3.5.26) has 6 terms for each i as shown in Eq.(3.3.5.24). Eq.(3.3.5.27) has 4! = 24 terms for each (i, j).

Combination of (i, j) is 3; (1, 2), (2, 3), (3, 1). As for Γ4 part, a set of Eq.(3.3.5.26) is Γ4(0, 0), which is the same

as the case of lamellar. A set of Eq.(3.3.5.27) is Γ4(0, 1); for Γ4(Q⃗1,−Q⃗1,−Q⃗2, Q⃗2), |Q⃗1− Q⃗1|2 = 0(q∗)2 and

|Q⃗1 + Q⃗2|2 = | − Q⃗3|2 = (q∗)2. As a result, a set of Eq.(3.3.5.26) results 18Γ4(0, 0) and a set of Eq.(3.3.5.27)

38Note that Γ4(Q⃗j , Q⃗k, Q⃗l, Q⃗m) does not change by the exchange of variables.
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3.3 Microphase separation

Figure 3.14: 4 sets which satisfy Eq.(3.3.5.10) for bcc phase (n = 6). I: Eq.(3.3.5.14) / II: Eq.(3.3.5.15) /

III: Eq.(3.3.5.16) / IV: Eq.(3.3.5.17).

results 72Γ4(0, 1). Then Eq.(3.3.5.19) becomes:

N

24

(
1√
n
ψn

)4 n∑
j=1

n∑
k=1

n∑
l=1

n∑
m=1

δ(±Q⃗j ± Q⃗k ± Q⃗l ± Q⃗m)

Γ4(±Q⃗j ,±Q⃗k,±Q⃗l,±Q⃗m) exp [i(∓φj ∓ φk ∓ φl ∓ φm)] for n = 3

=
N

24

1

9
ψ4
1 (18Γ4(0, 0) + 72Γ4(0, 1)) (3.3.5.28)

In the case of bcc phase (n = 3), there are 4 sets which satisfy Eq.(3.3.5.23). 3 sets and corresponding

cosine terms are as follows.

(±Q⃗i,±Q⃗i,∓Q⃗i,∓Q⃗i)→ 2 cos(φi + φi − φi − φi) = 2 [i = 1 ∼ 6] (3.3.5.29)

(±Q⃗i,±Q⃗j ,∓Q⃗i,∓Q⃗j)→ 2 cos(φi + φj − φi − φj) = 2

[(i, j) = (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 2), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6)] (3.3.5.30)

(±Q⃗i,±Q⃗j ,∓Q⃗i,∓Q⃗j)→ 2 cos(φi + φj − φi − φj) = 2 [(i, j) = (1, 2), (3, 4), (5, 6)] (3.3.5.31)

The last set is shown in Figure 3.14.

(±Q⃗1,±Q⃗2,∓Q⃗3,∓Q⃗4)→ 2 cos(φ1 + φ2 − φ3 − φ4) = 2 cos(α+ γ) (3.3.5.32)

(±Q⃗1,∓Q⃗2,∓Q⃗5,∓Q⃗6)→ 2 cos(φ1 − φ2 − φ5 − φ6) = 2 cos(β − γ) (3.3.5.33)

(±Q⃗3,∓Q⃗4,∓Q⃗5,±Q⃗6)→ 2 cos(φ3 − φ4 − φ5 + φ6) = 2 cos(β − α) (3.3.5.34)

Eq.(3.3.5.29) has 6 terms for each i. Eq.(3.3.5.30) has 24 terms for each (i, j). Combination of (i, j) is 12 as

mentioned. Eq.(3.3.5.31) has 24 terms for each (i, j). Combination of (i, j) is 3 as mentioned. Eqs.(3.3.5.32)

∼ (3.3.5.34) has 48 terms. As for Γ4 part, a set of Eq.(3.3.5.29) is Γ4(0, 0). A set of Eq.(3.3.5.30) is Γ4(0, 1); for

Γ4(Q⃗1,−Q⃗1, Q⃗3,−Q⃗3), |Q⃗1−Q⃗1|2 = 0(q∗)2 and |Q⃗1−Q⃗3|2 = |Q⃗6|2 = (q∗)2. A set of Eq.(3.3.5.31) is Γ4(0, 2);

for Γ4(Q⃗1,−Q⃗1, Q⃗2,−Q⃗2), |Q⃗1 − Q⃗1|2 = 0(q∗)2 and |Q⃗1 − Q⃗2|2 = 2(q∗)2 (see Figure 3.12). Eqs.(3.3.5.32) ∼
(3.3.5.34) is Γ4(1, 2); for Γ4(Q⃗1,−Q⃗3,−Q⃗4, Q⃗2), |Q⃗1 − Q⃗3|2 = |Q⃗6|2 = (q∗)2 and |Q⃗1 + Q⃗2|2 = 2(q∗)2. As a

result, a set of Eq.(3.3.5.29) results 36Γ4(0, 0), a set of Eq.(3.3.5.30) results 288Γ4(0, 1), a set of Eq.(3.3.5.31)

results 72Γ4(0, 2), and Eqs.(3.3.5.32) ∼ (3.3.5.34) result 48Γ4(1, 2) cos(· · · ) for each. Then Eq.(3.3.5.19)
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becomes:

N

24

(
1√
n
ψn

)4 n∑
j=1

n∑
k=1

n∑
l=1

n∑
m=1

δ(±Q⃗j ± Q⃗k ± Q⃗l ± Q⃗m)

Γ4(±Q⃗j ,±Q⃗k,±Q⃗l,±Q⃗m) exp [i(∓φj ∓ φk ∓ φl ∓ φm)] for n = 6

=
N

24

1

36
ψ4
1 (36Γ4(0, 0) + 288Γ4(0, 1) + 72Γ4(0, 2)

+48Γ4(1, 2) cos(α+ γ) + 48Γ4(1, 2) cos(β − γ) + 48Γ4(1, 2) cos(β − α)) (3.3.5.35)

Eq.(3.3.5.35) is minimized under the condition where α = β = γ = 0 or α = β = γ = π, which is the same

as the case for 3rd order term (Eq.(3.3.5.18)).

By substituting Eqs.(3.3.5.7), (3.3.5.13), (3.3.5.18), (3.3.5.25), (3.3.5.28), and (3.3.5.35) into Eq.(3.3.5.6),

energy expansion is summarized as follows.

βN (F [δψ(q⃗)]− F [0]) ≃ 2N(χs − χ)ψ2
n + αnψ

3
n + βnψ

4
n (3.3.5.36)

where

α1 = 0 (3.3.5.37)

α3 =

 + 2
3
√
3
NΓ3 for f ≤ 0.5

− 2
3
√
3
NΓ3 for f ≥ 0.5

(3.3.5.38)

α6 =

 + 4
3
√
6
NΓ3 for f ≤ 0.5

− 4
3
√
6
NΓ3 for f ≥ 0.5

(3.3.5.39)

β1 =
1

4
NΓ4(0, 0) (3.3.5.40)

β3 =
1

12
N (Γ4(0, 0) + 4Γ4(0, 1)) (3.3.5.41)

β6 =
1

24
N (Γ4(0, 0) + 8Γ4(0, 1) + 2Γ4(0, 2) + 4Γ4(1, 2)) (3.3.5.42)

3.3.6 Phase diagram for microphase separation

Phase diagram for microphase separation is constructed by comparing the energy Eq.(3.3.5.36) for lamellar

(n = 1), hexagonal (n = 3), and bcc (n = 6) phase. To calculate, we need the value of Γ3 and Γ4(h1, h2).

These value depends only on f . Explicit form of Γ3 is (see Eq.(3.3.3.46)):

Γ3 = −
∑
i

∑
j

∑
k

Gijk3 (q∗, 1)
[
S−1
i1 (q∗)− S−1

i2 (q∗)
] [
S−1
j1 (q∗)− S−1

j2 (q∗)
] [
S−1
k1 (q

∗)− S−1
k2 (q

∗)
]

(3.3.6.1)

where S−1
ij is the matrix element of the inverse matrix of Sij .[

S−1
11 S−1

12

S−1
21 S−1

22

]
=

[
S11 S12

S21 S22

]−1

=
1

S11S22 − S12S21

[
S22 −S12

−S21 S11

]
(3.3.6.2)
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3.3 Microphase separation

Explicit form of Gijk3 (q, h) and Sij(q) are shown in Section 3.3.4. Explicit form of Γ4(h1, h2) is:

Γ4(h1, h2) = −
∑
i

∑
j

∑
k

∑
l

γijkl(q
∗, h1, h2)

[
S−1
i1 (q∗)− S−1

i2 (q∗)
] [
S−1
j1 (q∗)− S−1

j2 (q∗)
] [
S−1
k1 (q

∗)− S−1
k2 (q

∗)
] [
S−1
l1 (q∗)− S−1

l2 (q∗)
]

(3.3.6.3)

where

γijkl(q
∗, h1, h2) =

∑
m

∑
n

[
Gijm3 (q∗, h1)S

−1
mn(h1x

∗)Gkln3 (q∗, h1)

+Gikm3 (q∗, 4− h1 − h2)S−1
mn((4− h1 − h2)x∗)G

jln
3 (q∗, 4− h1 − h2)

+Gilm3 (q∗, h2)S
−1
mn(h2x

∗)Gjkn3 (q∗, h2)
]
−Gijkl4 (q∗, h1, h2) (3.3.6.4)

Explicit form of Gijkl4 (q, h1, h2) are shown in Section 3.3.4. Γ3 Γ3 and Γ4(h1, h2) are shown in Figure 3.15

as functions of f .
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Figure 3.15: NΓ3 and NΓ4(h1, h2) as functions of f . Γ4(0, 1) and Γ4(0, 2) are overlap.
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Figure 3.16: βN (F [δψ(q⃗)]− F [0]) of lamellar, hexagonal, and bcc phases at f = 0.35 as functions of ψn.

χN = 12.5, 15.0, 17.5 are shown.

Once f is given, we can calculate (χN)s, q
∗, αn, and βn. Therefore, Eq.(3.3.5.36) is calculated as a

function of f and χN for each n (n = 1, 3, 6). As an example, the case of f = 0.35 and χN = 12.5, 15.0, 17.5

are shown in Figure 3.16. When χN = 12.5, bcc phase is energetically favorable (ψn ≃ 0.060). When

χN = 15.0, hexagonal phase is energetically favorable (ψn ≃ 0.175). When χN = 17.5, lamellar phase is

energetically favorable (ψn ≃ 0.255). To analyze which phase is energetically favorable, let us calculate ψn

at the minimum value of βN (F [δψ(q⃗)]− F [0]). This value, ψ, satisfy the following equations.

∂F [δψ(q⃗)]

∂ψn

∣∣∣∣
ψn=ψn

= 0 (3.3.6.5)

∂2F [δψ(q⃗)]

∂ψ2
n

∣∣∣∣
ψn=ψn

> 0 (3.3.6.6)

F [δψ(q⃗)](ψn = ψn, χ = χt) = 0 (3.3.6.7)

Eq.(3.3.6.5) is the condition of extreme value. Eq.(3.3.6.6) is the condition of local minimum. Eq.(3.3.6.7)

means that the energy at transition point (χ = χt) should be the same as that of disordered phase. For

n = 3, 6 (αn ̸= 0), from Eq.(3.3.6.5),

∂F [δψ(q⃗)]

∂ψn

∣∣∣∣
ψn=ψn

= 4N(χs − χ)ψn + 3αnψ
2

n + 4βnψ
3

n = 0

→ ψn = 0,
−3αn ±

√
9α2

n − 64Nβn(χs − χ)
8βn

=: 0,
−3αn(1± γn)

8βn
(3.3.6.8)

where

γn :=

(
1− 64Nβn(χs − χ)

9α2
n

)1/2

(3.3.6.9)

For example, ψ6 for f = 0.35, χN = 12.5 is−0.06, 0, 0.06 as shown in Figure 3.16. The solution of Eq.(3.3.6.8)

which satisfy Eq.(3.3.6.6) is the value of larger ψn and therefore: 39

ψn = −3αn(1 + γn)

8βn
(3.3.6.10)

39The smaller ψn corresponds to local maximum value when χ ≤ χs. (See Figure 3.19.) When χ > χs, Eq.(3.3.6.10) is the
sole solution.

127



3.3 Microphase separation

From the conditions Eqs.(3.3.6.5) and (3.3.6.7),

2N(χs − χt) + αnψn + βnψ
2

n = 0 (3.3.6.11)

4N(χs − χt) + 3αnψn + 4βnψ
2

n = 0 (3.3.6.12)

From Eqs.(3.3.6.11) and (3.3.6.12):

2αnψn + 2βnψ
2

n = 3αnψn + 4βnψ
2

n

→ ψn = − αn
2βn

for χ = χt (3.3.6.13)

By comparing Eqs.(3.3.6.10) and (3.3.6.13):

ψn = −3αn(1 + γn)

8βn
= − αn

2βn

→ γn =
1

3
for χ = χt (3.3.6.14)

χt is calculated from Eqs.(3.3.6.9) and (3.3.6.14):

γ2n = 1− 64Nβn(χs − χt)
9α2

n

=
1

9

→ Nχt = Nχs −
α2
n

8βn
(3.3.6.15)

Let us substitute Eq.(3.3.6.10) to Eq.(3.3.5.36). From Eq.(3.3.6.9):

γ2n = 1− 64Nβn(χs − χ)
9α2

n

→ N(χs − χ) =
9α2

n

64βn
(1− γ2n) (3.3.6.16)

Substitute Eqs.(3.3.6.10) and (3.3.6.16) to Eq.(3.3.5.36):

βN (F [δψ(q⃗)]− F [0])

≃ 9α2
n

32βn
(1− γ2n)

(
−3αn(1 + γn)

8βn

)2

+ αn

(
−3αn(1 + γn)

8βn

)3

+ βn

(
−3αn(1 + γn)

8βn

)4

=
27α4

n

4096β3
n

(1 + γn)
3(1− 3γn) for n = 3, 6 (3.3.6.17)

For n = 1 (α1 = 0),

∂F [δψ(q⃗)]

∂ψn

∣∣∣∣
ψn=ψn

= 4N(χs − χ)ψn + 4βnψ
3

n = 0

→ ψ
2

n = 0,−N(χs − χ)
βn

for χs < χ (3.3.6.18)

From Eq.(3.3.6.6), ψn = 0 is rejected. Substitute Eq.(3.3.6.18) to Eq.(3.3.5.36):
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3.3 Microphase separation

βN (F [δψ(q⃗)]− F [0])

≃ 2N(χs − χ)
(
−N(χs − χ)

βn

)
+ βn(χs − χ)

(
−N(χs − χ)

βn

)2

= −N
2(χs − χ)2

βn
for n = 1 (3.3.6.19)
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Figure 3.17: Comparison of (χN)t for n = 1, 3, 6.

Construction of phase diagram is performed by comparing Eqs.(3.3.6.17) and (3.3.6.19) for n = 1, 3, 6

under the condition where χ > χt for each n. χt for n = 3, 6 are calculated by Eq.(3.3.6.15). χt for n = 1

is equal to χs as mentioned in Eq.(3.3.6.18). χt for all of n are shown in Figure 3.17. This shows that

χt(n = 6) < χt(n = 3) < χt(n = 1) for all f . Therefore, the phase which appear first is bcc phase (n = 6)

when χ = χt(n = 6). In the range where χt(n = 6) < χ < χt(n = 3), microphase separation shows bcc phase

in all χ region. In the range where χt(n = 3) < χ < χt(n = 1), the morphology of microphase separation is

determined by the comparison of Eq.(3.3.6.17) for n = 3 and n = 6. 40 In the range where χt(n = 1) < χ, the

morphology of microphase separation is determined by the comparison of Eqs.(3.3.6.17) and (3.3.6.19) for

n = 1, 3, 6. Through this procedure, phase diagram is created as shown in Figure 3.18. This analysis clearly

shows that the morphology of microphase separation is determined by χN and f . The size of polymer, N ,

is not directly related to the morphology. Note that microphase separation can occur even when χ ≤ χs if

χt ≤ χ. In this χ range, there is small energy barrier from ψn = 0 to ψn (Figure 3.19). Therefore, this is

not spinodal point. In other words, disordered state is meta stable. However, this energy barrier is small

compared to thermal energy. The domain size of microphase-separated structure is calculated from the value

of x∗ as shown in Figure 3.11.

40Calculation result shows that bcc phase is favorable in all χ region in this range.
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3.3 Microphase separation

Figure 3.18: Phase diagram for microphase separation. Red region: lamellar, Green region: hexagonal, Blue

region: bcc, Blank region: disordered state.
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Figure 3.19: Expansion of Figure 3.16 for χN = 12.5.
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4 Scattering Methods

4.1 Light scattering

4.1.1 Basic theory of light scattering

In this subsection, we are going to derive a scattered electric field from one dipole moment induced by

monochromatic light wave such as laser [60,61].

We start from Maxwell’s equations:

∇ · D⃗ = ρ (4.1.1.1)

∇ · B⃗ = 0 (4.1.1.2)

∇× E⃗ = −∂B⃗
∂t

(4.1.1.3)

∇× H⃗ = J⃗ +
∂D⃗

∂t
(4.1.1.4)

where

D⃗ = εε0E⃗ (4.1.1.5)

H⃗ =
1

µµ0
B⃗ (4.1.1.6)

Here, E⃗ and B⃗ are the electric and magnetic fields in free space, D⃗ and H⃗ are the corresponding modified fields

in material media, ρ is charge density, J⃗ is current density, ε0 and µ0 are the permittivity and permeability

of free space, ε and µ are the dielectric constant and magnetic permeability of the media.

In the case where medium is homogeneous, there is no free charges and zero conductivity:

∇ · D⃗ = 0 (4.1.1.7)

∇ · B⃗ = 0 (4.1.1.8)

∇× E⃗ = −∂B⃗
∂t

(4.1.1.9)

∇× H⃗ =
∂D⃗

∂t
(4.1.1.10)

Taking the curl from the left hand side of Eq.(4.1.1.9) and substituting Eq.(4.1.1.10) gives41:

∇×∇× E⃗ = −µµ0∇×
∂H⃗

∂t
= −µµ0

∂2D⃗

∂t2
(4.1.1.11)

These relations hold true for both an incident field and a scattered field. Here, we assume that a local

dielectric constant is written as the following tensor form:

εε0 → εε0I + δϵ (4.1.1.12)

where I implies an unit matrix.

This is a general representation of permittivity for non-spherical molecules. From here, we use a subscript

i for an incident field, s for a scattered field. A total field is represented without any subscript.

41∇×∇× π⃗ := ∇× (∇× π⃗).
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4.1 Light scattering

A total electric displacement, D⃗, is written as follows:

D⃗ = D⃗i + D⃗s = (εε0I + δϵ)(E⃗i + E⃗s)

= εε0E⃗i + δϵ · E⃗i + εε0E⃗s + δϵ · E⃗s (4.1.1.13)

Since D⃗i = εε0E⃗i:

D⃗s ≃ δϵ · E⃗i + εε0E⃗s (4.1.1.14)

Here, we neglect the term δϵ · E⃗s which is second perturbation.

Then, substitute Eq.(4.1.1.14) into Eq.(4.1.1.11):

∇×∇× E⃗s = −µµ0
∂2D⃗s

∂t2

→ 1

εε0
∇×∇× (D⃗s − δϵ · E⃗i) = −µµ0

∂2D⃗s

∂t2
(4.1.1.15)

Here, we use the following vector identity:

∇×∇× D⃗s = −∇2D⃗s +∇(∇ · D⃗s) (4.1.1.16)

By substituting Eqs.(4.1.1.7) and (4.1.1.16) into Eq.(4.1.1.15):

− 1

εε0
∇2D⃗s + µµ0

∂2D⃗s

∂t2
=

1

εε0
∇×∇× (δϵ · E⃗i)

→ ∇2D⃗s −
1

v2
∂2D⃗s

∂t2
= ∇×∇× (δϵ · E⃗i) (4.1.1.17)

where the velocity of light, v, is 42:

v := (εε0µµ0)
−1/2 (4.1.1.18)

Here, we define the following vector π⃗ called Hertz vector:

D⃗s =: ∇×∇× π⃗ (4.1.1.19)

By using π⃗, Eq.(4.1.1.17) is rewritten as follows:

∇2π⃗ − 1

v2
∂2π⃗

∂t2
= δϵ · E⃗i (4.1.1.20)

The formal solution of Eq.(4.1.1.20) is well-known as follows:

π⃗(R⃗, t) =
1

4π

∫
V

dr⃗
δϵ(r⃗, t′)

|R⃗− r⃗|
· E⃗i(r⃗, t′) (4.1.1.21)

where R⃗ and r⃗ are the position of a detector and an atom, respectively, defined in Fig.4.1 43. t′ is the

42When δϵ = 0 (isotropic environment),

∇2D⃗s −
1

v2
∂2D⃗s

∂t2
= 0

This is a wave equation whose velocity is v.
43In this definition, ∇ = ∂/∂R⃗.
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4.1 Light scattering

Figure 4.1: Coordination definitions. R⃗ and r⃗ are the position of a detector and an atom, respectively.

retarded time:

t′ := t− |R⃗− r⃗|
v

(4.1.1.22)

We define the incident electric field as follows:

E⃗i(r⃗, t) := e⃗iE0 exp[i(k⃗i · r⃗ − ωit)] (4.1.1.23)

Then, the scattered electric field is calculated as follows:

E⃗s(R⃗, t) =
1

εε0
D⃗s

=
1

εε0
∇×∇×

[
1

4π

∫
V

dr⃗
δϵ(r⃗, t′)

|R⃗− r⃗|
· e⃗iE0 exp

[
i(k⃗i · r⃗ − ωit′)

]]

= ∇×∇×

[
E0

4πεε0

∫
V

dr⃗
1

|R⃗− r⃗|
(δϵ(r⃗, t′) · e⃗i) exp

[
i(k⃗i · r⃗ − ωit′)

]]
(4.1.1.24)

Let us decompose the dielectric tensor δϵ(r⃗, t′) into Fourier components:

δϵ(r⃗, t′) =:
∑
p

δϵp(r⃗) exp[iΩpt
′] (4.1.1.25)

Ωp represent frequency components in the system such as translational, rotational and vibrational motions

of the system. This formulation comes from the assumption that the fluctuation of the dielectric constant

is produced by translational, rotational or vibrational motions of the molecules in the media. This works

well in most of the case since ωi(∼ 1015 s−1)≫ Ωp(< 1010 s−1 for translational,∼ 1012 s−1 for rotational,∼
1013 s−1 for vibrational motions) 44.

In addition to this, we use the assumption that |R⃗| ≫ |r⃗|. Under this assumption, the retarded time is:

t′ = t− 1

v
(R2 − 2R⃗ · r⃗ + r2)1/2

≃ t− R

v

(
1− 2R⃗ · r⃗

R2

)1/2

≃ t− 1

v

(
R− R⃗ · r⃗

R

)

= t− 1

v
(R− r⃗ · n⃗s) (4.1.1.26)

44From the viewpoint of the wavenumber (1/λ), ωi(∼ 20000 cm−1) ≫ Ωp(< 1 cm−1 for translational,∼
100 cm−1 for rotational,∼ 1000 cm−1 for vibrational motions)
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4.1 Light scattering

where n⃗s is an unit vector of a wavevector of the scattered field.

Substitute Eqs.(4.1.1.25) and (4.1.1.26) into Eq.(4.1.1.24):

E⃗s(R⃗, t) ≃
E0

4πεε0R
∇×∇×

∫
V

dr⃗
∑
p

δϵp(r⃗) · e⃗i exp[iΩpt′] exp[i(k⃗i · r⃗ − ωit′)]

=
E0

4πεε0R
∇×∇×∫

V

dr⃗
∑
p

δϵp(r⃗) · e⃗i exp[ik⃗i · r⃗] exp[−iωit] exp[iΩpt] exp
[
i(ωi − Ωp)

1

v
(R− r⃗ · n⃗s)

]
(4.1.1.27)

Here, we regard 1/|R⃗− r⃗| ≃ 1/R. Now let us define k⃗p as follows:

ωi − Ωp
v

n⃗s =:
ωs
v
n⃗s =: k⃗p (4.1.1.28)

By using Eq.(4.1.1.28) 45:

E⃗s(R⃗, t)

=
E0

4πεε0R
∇×∇×

∫
V

dr⃗
∑
p

δϵp(r⃗) · e⃗i exp[i(k⃗i − k⃗p) · r⃗] exp[−iωit] exp[iΩpt] exp[ikpR]

= − E0

4πεε0R

∑
p

exp[i(k⃗p · R⃗− ωit)]⃗kp ×
(
k⃗p ×

∫
V

dr⃗ exp[i(k⃗i − k⃗p) · r⃗] exp[iΩpt]δϵp(r⃗) · e⃗i
)

(4.1.1.29)

Here we use the fact that ∇×∇× eik⃗p·R⃗ = −k⃗p × k⃗p × eik⃗p·R⃗. Notice that kpR = k⃗p · R⃗ since k⃗p ∥ R⃗.
Since ωi ≫ Ωp,

k⃗p ≃
ωi
v
n⃗s = k⃗s (4.1.1.30)

Then,

E⃗s(R⃗, t)

≃ − E0

4πεε0R
exp[i(k⃗s · R⃗− ωit)]⃗ks ×

(
k⃗s ×

∫
V

dr⃗ exp[i(k⃗i − k⃗s) · r⃗]
∑
p

exp[iΩpt]δϵp(r⃗) · e⃗i

)
(4.1.1.31)

We define q⃗ and δϵ(r⃗, t′) as follows:

q⃗ := k⃗i − k⃗s (4.1.1.32)

δϵ(r⃗, t) :=
∑
p

δϵp(r⃗) exp[iΩpt] (4.1.1.33)

Substitute Eqs.(4.1.1.32) and (4.1.1.33) into Eq.(4.1.1.31):

E⃗s(R⃗, t) ≃ −
E0

4πεε0R
exp[i(k⃗s · R⃗− ωit)]

∫
V

dr⃗ exp[iq⃗ · r⃗]⃗ks × (k⃗s × [δϵ(r⃗, t) · e⃗i]) (4.1.1.34)

Eq.(4.1.1.34) is the start point of the derivation of dynamic light scattering discussed in the later subsection.

Let us see one simple example; scattering from one spherical molecule at r⃗ = r⃗j (Fig.4.2). In this case,

45From now, we represent |A⃗| := A for arbitrary vector quantity.
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4.1 Light scattering

Figure 4.2: Coordination definitions. r⃗j is a position of a spherical

molecule. e⃗i and e⃗s are the polarization of incident and scattered

light. k⃗i and k⃗s are the wavevector of incident and scattered light.

　　

　　

　

Figure 4.3: Calculation of cross prod-

ucts (Eq.(4.1.1.37)).

δϵ(r⃗, t) is replaced by the polarizability of the molecule:

δϵ(r⃗, t)→ αδ(r⃗ − r⃗j) (4.1.1.35)

Notice that α is a scalar since the molecule is assumed to be spherical.

Substitute Eq.(4.1.1.35) into Eq.(4.1.1.34):

E⃗s(R⃗, t) = −
αE0

4πεε0R
exp[i(k⃗s · R⃗− ωit)]

∫
V

dr⃗ exp[iq⃗ · r⃗]δ(r⃗ − r⃗j)(k⃗s × (k⃗s × e⃗i)) (4.1.1.36)

First, we assume that e⃗i ⊥ k⃗s as shown in Fig.4.2. In this case (see Fig.4.3),

k⃗s × (k⃗s × e⃗i) = −k2s e⃗i (4.1.1.37)

so

E⃗s(R⃗, t) =
αE0k

2
s

4πεε0R
exp[i(k⃗s · R⃗− ωit)]

∫
V

dr⃗ exp[iq⃗ · r⃗]δ(r⃗ − r⃗j)e⃗i

=
αE0k

2
s

4πεε0R
exp[i(k⃗s · R⃗− ωit)] exp[iq⃗ · r⃗j ]e⃗i

=
k2s

4πεε0R
exp[ik⃗s · (R⃗− r⃗j)]αe⃗iE0 exp[i(k⃗i · r⃗j − ωit)]

=
k2s

4πεε0R
exp[ik⃗s · (R⃗− r⃗j)]αE⃗i(r⃗j , t) (4.1.1.38)

Eq.(4.1.1.38) clearly shows that the incident light at r⃗j (E⃗i(r⃗j , t) ∝ exp[ik⃗i · r⃗j ]) is the source of the

scattered light (∝ exp[ik⃗s · (R⃗− r⃗j)]).
Here, we define the induced electric dipole moment µ⃗ as follows:

µ⃗(r⃗, t) := αE⃗i(r⃗, t) (4.1.1.39)
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4.1 Light scattering

By using the fact that ki ≃ ks (elastic scattering), Eq.(4.1.1.38) is then transformed into:

E⃗s(R⃗, t) =
1

4πεε0R

ω2
i

v2
µ⃗(r⃗, t) exp[ik⃗s · (R⃗− r⃗j)]

= − 1

4πεε0R

1

v2
¨⃗µ(r⃗, t) exp[ik⃗s · (R⃗− r⃗j)]

= − µµ0

4πR
¨⃗µ(r⃗, t) exp[ik⃗s · (R⃗− r⃗j)] (4.1.1.40)

Then consider the case where e⃗i is not perpendicular to k⃗s as shown in Fig.4.4. In this case (see Fig.4.5),

k⃗s × (k⃗s × e⃗i) = k⃗s × (k⃗s × (e⃗i − n⃗s(e⃗i · n⃗s)))

= −k2s(e⃗i − n⃗s(e⃗i · n⃗s))

= −k2s e⃗s cosψ (4.1.1.41)

so

E⃗s(R⃗, t) = −
µµ0| ¨⃗µ(r⃗j , t)|

4πR
exp[ik⃗s · (R⃗− r⃗j)]e⃗s cosψ = − µµ0

4πR
exp[ik⃗s · (R⃗− r⃗j)](¨⃗µ− n⃗s(¨⃗µ · n⃗s)) (4.1.1.42)

Eq.(4.1.1.42) is visualized in Fig.4.6 as the amplitude of the electric field.

Figure 4.4: Coordination definitions. µ is an induced electric dipole moment. ψ is an angle between the

plain containing incident light whose perpendicular line is parallel to e⃗i and that of scattered light. e⃗i and e⃗s

are the polarization of incident and scattered light. k⃗i and k⃗s are the wavevector of incident and scattered

light.

Figure 4.5: Calculation of cross products (Eq.(4.1.1.41)).
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4.1 Light scattering

Figure 4.6: Visualization of the scattered electric field (Eq.(4.1.1.42)).

4.1.2 Dynamic light scattering

Dynamic light scattering is a method to characterize the size distribution of the solute such as macro-

molecules, colloid and so on. In principle, dynamic light scattering is quasi-elastic light scattering originated

from Doppler effect. In practice, the observable is a time correlation function of electric current at the

detector originated from the scattered electric field. The electric current, i, is proportional to a square of

electric field, E⃗, at the detector:

is = A|E⃗| (4.1.2.1)

where A is a real proportional constant. Then, what we observe in dynamic light scattering is:

⟨ is(0)is(τ) ⟩T = A2⟨ |E⃗s(0)|2|E⃗s(τ)|2 ⟩T (4.1.2.2)

where ⟨ · · · ⟩T denotes time average.

In this subsection, we derive how to determine the size of the solution from the time correlation function,

Eq.(4.1.2.2) [61,62].

Our starting point is Eq.(4.1.1.34):

E⃗s(R⃗, t) ≃ −
E0

4πεε0R
exp[i(k⃗s · R⃗− ωit)]

∫
V

dr⃗ exp[iq⃗ · r⃗]⃗ks × (k⃗s × [δϵ(r⃗, t) · e⃗i])

δϵ(r⃗, t) is replaced by the polarizability of molecules in the irradiated volume:

δϵ(r⃗, t)→
∑
j

αj(t)δ(r⃗ − r⃗j(t)) (4.1.2.3)

where αj(t) is the polarizability tensor of a molecule j whose position is r⃗j(t). j runs all of the molecules

in the irradiated volume. We assume that the polarizability tensor is scalar; αj(t)→ αj(t). In other words,

we assume that the molecule is spherical.

We ignore the fact that the molecule j gets out of the irradiated volume during the time t. This is good

approximation since the time scale to get out of the irradiated volume is much larger than the time scale we

are interested in46.

46For example, consider the case of the polystyrene beads whose radius is 20 nm. The diffusion constant of this sphere in
water at room temperature is calculated by using Stokes–Einstein equation:

D =
kBT

6πηRh
=

1.38× 10−23 [J/K] · 298 [K]

6π · 0.895× 10−3[Pa·s] · 20× 10−9 [m]
≃ 1× 10−11[m2/s]

Typical dimensional order of the irradiated volume is about 100 µm. Time to across the Brownian particle at a distance L =

137



4.1 Light scattering

Substitute Eq.(4.1.2.3) into Eq.(4.1.1.34):

E⃗s(R⃗, t)

≃ − E0

4πεε0R
exp[i(k⃗s · R⃗− ωit)]

∫
V

dr⃗ exp[iq⃗ · r⃗]⃗ks ×

k⃗s ×
∑

j

αj(t)δ(r⃗ − r⃗j(t)) · e⃗i


=

E0k
2
s

4πεε0R
exp[i(k⃗s · R⃗− ωit)]

∫
V

dr⃗ exp[iq⃗ · r⃗]
∑
j

αj(t)δ(r⃗ − r⃗j(t)) · e⃗i

=
E0k

2
s e⃗i

4πεε0R
exp[i(k⃗s · R⃗− ωit)]

∑
j

αj(t) exp[iq⃗ · r⃗j(t)] (4.1.2.4)

Here, we assume that k⃗s ⊥ e⃗i. In the case where αj is constant for all of the molecules, α:

E⃗s(R⃗, t) =
αE0k

2
s e⃗i

4πεε0R
ei(k⃗s·R⃗−ωit)

∑
j

eiq⃗·r⃗j(t)

= B⃗ei(k⃗s·R⃗−ωit)ψ(q⃗, t) (4.1.2.5)

where

B⃗ :=
αE0k

2
s

4πεε0R
e⃗i (4.1.2.6)

ψ(q⃗, t) :=
∑
j

eiq⃗·r⃗j(t) (4.1.2.7)

Substitute Eq.(4.1.2.5) into Eq.(4.1.2.2)

⟨ is(0)is(τ) ⟩T = A2⟨E∗
s (0)Es(0)E

∗
s (τ)Es(τ) ⟩T

= A2B4⟨ψ∗(q⃗, 0)ψ(q⃗, 0)ψ∗(q⃗, τ)ψ(q⃗, τ) ⟩T (4.1.2.8)

where Es := |E⃗s|.
Since each molecule is moving around:

⟨ eiq⃗·r⃗j(t) ⟩E = 0 (4.1.2.9)

where ⟨ · · · ⟩E denotes ensemble average. Therefore, by using central limit theorem, Es(R⃗, t) is a complex

Gaussian distribution since Es(R⃗, t) is the sum of eiq⃗·r⃗j(t). It is known that the 4th order moment of a

complex Gaussian distribution is decomposed to the product of 2nd order moment (See Appendix 11.3):

100 µm, τ , is calculated as follows:

τ ∼
L2

D
∼

(100× 10−6 [m])2

1× 10−11[m2/s]
∼ 1× 103 [s]

which is sufficiently large compared to the correlation time we are interested in (several millisecond).
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4.1 Light scattering

⟨ψ∗(q⃗, 0)ψ(q⃗, 0)ψ∗(q⃗, τ)ψ(q⃗, τ) ⟩T

= ⟨ψ∗(q⃗, 0)ψ(q⃗, 0) ⟩T ⟨ψ∗(q⃗, τ)ψ(q⃗, τ) ⟩T

+ ⟨ψ∗(q⃗, 0)ψ∗(q⃗, τ) ⟩T ⟨ψ(q⃗, 0)ψ(q⃗, τ) ⟩T + ⟨ψ∗(q⃗, 0)ψ(q⃗, τ) ⟩T ⟨ψ(q⃗, 0)ψ∗(q⃗, τ) ⟩T

= ⟨ψ∗(q⃗, 0)ψ(q⃗, 0) ⟩T ⟨ψ∗(q⃗, τ)ψ(q⃗, τ) ⟩T + ⟨ψ∗(q⃗, 0)ψ(q⃗, τ) ⟩T ⟨ψ(q⃗, 0)ψ∗(q⃗, τ) ⟩T

= ⟨ |ψ(q⃗, 0)|2 ⟩2T + |⟨ψ∗(q⃗, 0)ψ(q⃗, τ) ⟩T |2 (4.1.2.10)

Notice that ⟨ψψ ⟩T = ⟨ψ∗ψ∗ ⟩T = 0.

Eq.(4.1.2.10) shows that what we can obtain from ⟨ is(0)is(τ) ⟩T is represented by ⟨ψ∗(q⃗, 0)ψ(q⃗, τ) ⟩T . Let
us expand this quantity:

⟨ψ∗(q⃗, 0)ψ(q⃗, τ) ⟩T =

⟨∑
j

∑
k

eiq⃗·(r⃗k(τ)−r⃗j(0))

⟩
T

=

⟨∑
j

eiq⃗·(r⃗j(τ)−r⃗j(0))

⟩
T

+

⟨∑
j

e−iq⃗·r⃗j(0)
∑
k ̸=j

eiq⃗·r⃗k(τ)

⟩
T

(4.1.2.11)

Since each particle is statistically independent, the second term of Eq.(4.1.2.11) can be separated as follows:⟨∑
j

e−iq⃗·r⃗j(0)
∑
k ̸=j

eiq⃗·r⃗k(τ)

⟩
T

=

⟨∑
j

e−iq⃗·r⃗j(0)

⟩
T

⟨∑
k ̸=j

eiq⃗·r⃗k(τ)

⟩
T

=

⟨∑
j

e−iq⃗·r⃗j(0)

⟩
E

⟨∑
k ̸=j

eiq⃗·r⃗k(τ)

⟩
E

= 0 (4.1.2.12)

From the first line to the second line, we use the fact that the medium is ergodic when the irradiated volume

is sufficiently large. Notice that these terms are zero (Eq.(4.1.2.9)). So,

⟨ψ∗(q⃗, 0)ψ(q⃗, τ) ⟩T =

⟨∑
j

eiq⃗·(r⃗j(τ)−r⃗j(0))

⟩
T

= N
⟨
eiq⃗·(r⃗j(τ)−r⃗j(0))

⟩
T
=: NFs(q⃗, τ) (4.1.2.13)

where N is the number of molecules in the irradiated volume and

Fs(q⃗, t) :=
⟨
eiq⃗·(r⃗j(t)−r⃗j(0))

⟩
T

(4.1.2.14)

Fs(q⃗, t) is one of the most important quantity called self-intermediate scattering function. To clarify the

physical meaning of this function, let us convert to a real space domain by Fourier transformation:

1

(2π)3

∫ ∞

−∞
dq⃗e−iq⃗·x⃗Fs(q⃗, t) =

1

(2π)3

∫ ∞

−∞
dq⃗ ⟨exp[iq⃗ · ((r⃗j(t)− r⃗j(0))− x⃗)]⟩T

= ⟨ δ((r⃗j(t)− r⃗j(0))− x⃗) ⟩T

= ⟨ δ(x⃗− (r⃗j(t)− r⃗j(0))) ⟩T =: Gs(x⃗, t) (4.1.2.15)
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4.1 Light scattering

Here, we use the following formula:

δ(x⃗) =
1

(2π)3

∫ ∞

−∞
dq⃗eiq⃗·x⃗ (4.1.2.16)

δ(x⃗) = δ(−x⃗) (4.1.2.17)

Gs(x⃗, t) is called van–Hove self space-time correlation function. Physical meaning of Gs(x⃗, t) is clear;

Gs(x⃗, t)dx⃗ is the probability that particle j will suffer a displacement x⃗ in time t (Fig.4.7).

Figure 4.7: Visualization of time variation of Gs(x⃗, τ) in the case of Brownian motion in 1D space

(Eq.(4.1.2.15)). The position of the Brownian particle is strictly defined at x = 0 at t = 0. This is

mathematically described as a delta function. As the time proceeds, the distribution of probability that the

particle exists at x becomes broaden.

Let us calculate Fs(q⃗, t) of Brownian particles by using Gs(x⃗, t). The probability density, P (x⃗), of a

Brownian particle follows the diffusion equation:

∂

∂t
P (x⃗) = D∇2P (x⃗) (4.1.2.18)

where D is a diffusion constant of the particle. Since Gs(x⃗, t) implies the probability density, Gs(x⃗, t) also

follows the diffusion equation:

∂

∂t
Gs(x⃗, t) = D∇2Gs(x⃗, τ) (4.1.2.19)

Substitute Eq.(4.1.2.15) into Eq.(4.1.2.19):

∂

∂t

[
1

(2π)3

∫ ∞

−∞
dq⃗e−iq⃗·x⃗Fs(q⃗, t)

]
= D∇2

[
1

(2π)3

∫ ∞

−∞
dq⃗e−iq⃗·x⃗Fs(q⃗, t)

]
→ 1

(2π)3

∫ ∞

−∞
dq⃗e−iq⃗·x⃗

∂Fs(q⃗, t)

∂t
=

1

(2π)3

∫ ∞

−∞
dq⃗e−iq⃗·x⃗(−q2DFs(q⃗, t))

→ ∂Fs(q⃗, t)

∂t
= −q2DFs(q⃗, t) (4.1.2.20)

Eq.(4.1.2.20) is easily solved:

Fs(q⃗, t) = e−q
2Dt (4.1.2.21)
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4.1 Light scattering

Constant of integration is determined from the fact that Fs(q⃗, 0) = 1 (see Eq.(4.1.2.14)).

Now go back to Eq.(4.1.2.8). Substitute Eq.(4.1.2.13) into Eq.(4.1.2.10) and then into Eq.(4.1.2.8):

⟨ is(0)is(τ) ⟩T = A2B4(|NFs(q⃗, 0)|2 + |NFs(q⃗, τ)|2) =: |G(1)(0)|2 + |G(1)(τ)|2 =: G(2)(τ) (4.1.2.22)

where

G(1)(τ) := AB2NFs(q⃗, τ) (4.1.2.23)

What we usually observe is its normalized form:

g(1)(τ) :=
G(1)(τ)

G(1)(0)
(4.1.2.24)

g(2)(τ) :=
G(2)(τ)

|G(1)(0)|2
(4.1.2.25)

Substitute Eqs.(4.1.2.24) and (4.1.2.25) into Eq.(4.1.2.22):

g(2)(τ) = 1 + |g(1)(τ)|2 (4.1.2.26)

This is what we observe in dynamic light scattering experiment. Eq.(4.1.2.26) is called Siegert relation.

In the case where the scatterers are Brownian particles, substitute Eq.(4.1.2.21) into Eq.(4.1.2.23), (4.1.2.24)

and (4.1.2.26):

G(1)(τ) = AB2Ne−q
2Dτ (4.1.2.27)

g(1)(τ) = e−q
2Dτ (4.1.2.28)

g(2)(τ) = 1 + e−2q2Dτ (4.1.2.29)

Most of the cases, DLS data is analyzed by Eq.(4.1.2.29).

In the case of polydisperse Brownian particles, Eq.(4.1.2.13) becomes:

⟨ψ∗(q⃗, 0)ψ(q⃗, τ) ⟩T = N1Fs1(q⃗, τ) +N2Fs2(q⃗, τ) + · · · (4.1.2.30)

where Fsi(q⃗, τ) := e−q
2Diτ (Eq.(4.1.2.21)). In general, Eq.(4.1.2.30) becomes an integral form:

⟨ψ∗(q⃗, 0)ψ(q⃗, τ) ⟩T =

∫ ∞

0

N(Γ)e−ΓτdΓ (4.1.2.31)

where N(Γ) is the number of particles whose relaxation rate is Γ := q2D. Then,

g(1)(τ) =

∫ ∞

0

G(Γ)e−ΓτdΓ (4.1.2.32)

where G(Γ) is the normalized distribution function. Substitute Eq.(4.1.2.32) into Eq.(4.1.2.26):

g(2)(τ) = 1 +

∣∣∣∣∫ ∞

0

G(Γ)e−ΓτdΓ

∣∣∣∣2 (4.1.2.33)
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It is impossible to solve this equation analytically (inverse Laplace transformation). Instead of this, G(Γ)

is calculated by the numerical calculation such as a constrained regularization program, CONTIN. Fig-

ure 4.8 shows typical experiment results for polystyrene latex suspension. Measurements was performed by

DLS/SLS-5000 compact goniometer (ALV, Langen), coupled with an ALV photon correlator. The incident

light of the conventional DLS system is a 22 mW He–Ne laser whose wavelength is 632.8 nm. Scattered

angle was set to be 90◦ and the measurement time was 30 seconds. Figure 4.8(a) shows the time correlation

functions of scattered light intensity. All of data are fitted by a single exponential function, Eq.(4.1.2.29),

which are also shown in the figure as dashed lines. By applying CONTIN, Figure 4.8(a) are converted to

the distribution functions of relaxation rate. Relaxation rate, Γ, is converted to hydrodynamic radius, Rh,

by using Einstein–Stokes relationship:

Γ = q2D = q2
kBT

6πηRh
(4.1.2.34)

where η is viscosity of solvent. 47 As a result, we can obtain the distribution functions of hydrodynamic

radius as shown in Figure 4.8(b).
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Figure 4.8: Typical measurement results for DLS. The samples are polystyrene latex suspensions whose

concentration is 0.001 wt%. Diameter for each sample is shown in the figures. (a) Time correlation functions

of scattered light intensity. Dashed lines are the fitting result by using Eq.(4.1.2.29). (b) Size distribution

functions calculated from the time correlation functions.

470.890 cP = 8.90 × 10−4 Pa·s for water at 25 ◦C.
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4.1 Light scattering

Qualitative description

As I mentioned, dynamic light scattering is regarded as a Doppler effect originated from Brownian motion

of solutes. Here, I describe DLS from this point of view. When the light is irradiated to a polymer solution,

secondary radiation from the solutes has the same frequency of the incident light. The frequency of light

that solutes feel will slightly deviate from the original wavelength when the solutes are moving toward or

against the direction of incident light. Similarly, the frequency of light that a detector detects also show

slight deviation when the solutes are moving toward or against the detector. Since the velocity distribution

of polymers are related to their Brownian motion, we may be able to detect the distribution of the frequency

of scattered light (Doppler shift) to determine the diffusion constant. However, it is almost impossible to

detect this broadening. To detect the distribution of the frequency of scattered light, we use a spectrometer

(Figure 4.9(a)). However, this broadening is so small that we cannot detect. As a typical example, let us

consider the Doppler shift of He–Ne laser (λ = 632.8 nm) from particles in water whose diameter is 100 nm.

In the case of Brownian motion, full-width-half-maximum (FWHM) is evaluated as 2Dq2 (Eq.(4.1.2.21)). In

this case, the diffusion constant D ∼ 5× 10−12 m2 s−1, the magnitude of scattering vector q ≃ 2× 107 m−1,

and therefore 2Dq2 ∼ 103 Hz. This corresponds to 10−8 nm while typical resolution of spectrometers is 0.1

nm. Therefore, it is very difficult to detect this broadening. 48

To overcome this difficulty, let us consider the measurement of scattered light intensity. Scattered light

intensity, Is, is proportional to the squared modulus of electric field Es. Here, Es is the summation of the

secondary radiation from all of the particles in the irradiated volume. Therefore, Is is expressed as follows.

Is(ω) = |Es|2 = E∗
sEs =

(∑
i

E∗
s0e

iωit

)∑
j

Es0e
−iωjt

 (4.1.2.35)

where i and j are the label of particles in the irradiated volume, ωi and ωj are the angular frequency of

secondary radiation from particle i and j. By decomposing ωi and ωj into the angular frequency of incident

light, ω0, and the deviation from ω0:

Is(ω) =

(∑
i

E∗
s0e

i(ω0+∆ωi)t

)∑
j

Es0e
−i(ω0+∆ωj)t

 = |Es0 |2
∑

i

∑
j

ei(∆ωi−∆ωj)t

 (4.1.2.36)

The peak of Is(ω) will be at ω = 0. Therefore, the Doppler shift can be detected as a broadening around ω = 0

(Figure 4.9(b)). Note that the peak of Es(ω) is at ω0, which is significantly larger than the Doppler shift.

Doppler shift of one particle i depends on time since the Doppler shift is priginated from Brownian motion.

Therefore, ∆ωi −∆ωj in Eq.(4.1.2.36) is also time dependent. However, this variation is spatially averaged

when there are many particles inside the irradiated volume. 49 As a result, Is(ω) is time independent. The

frequency distribution of such a signal is called power spectrum.

Frequency distribution expressed in Eq.(4.1.2.36) is detected by using spectrum analyzer. Detection scheme

to detect the scattered light intensity directly is called homodyne detection. However, it is sometimes hard

to detect the motion of particles by homedyne detection when the motion is not Brownian motion. As

an example, let us consider the particle moving with the same velocity. When the colloidal particles with

48In addition, typical line width of monochromatic laser is ∼ 105 Hz > 2Dq2.
49When the number of particles inside the irradiated volume is very small, we observe the number fluctuation. This is a basic

idea for fluorescence correlation spectroscopy.
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SpectroscopySpectroscopy

Homodyne detectionHomodyne detection

Heterodyne detectionHeterodyne detection

SpectroscopySpectroscopy

Homodyne detectionHomodyne detection

Heterodyne detectionHeterodyne detection

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.9: Summary of dynamic light scattering in frequency region.

charges are set in static electric field, equation of motion is expressed as follows.

m
d2r⃗

dt2
= ZeE⃗ − 6πηRhv (4.1.2.37)

where m is the mass of the particle, Ze is the charges on the particle, η is the velocity of solvent, Rh is the

hydrodynamic radius, and v is the velocity. When the force from electric field and viscosity are balanced, the

velocity becomes constant. Then let us consider the expression of Is. When v = 0 and the particle motion is

only Brownian motion, the summation of the electric field of scattered light from all of the particles in the

irradiated volume is:

Es = A
∑
i

ei(q⃗·r⃗i−ω0t) (4.1.2.38)

Here, q⃗ · r⃗i stands for the difference of phase from the scattered light from r⃗ = 0. Note that r⃗i depends on

time. Scattered light intensity is expressed as follows.

Is = E∗
sEs = A2

∑
i

∑
j

eiq⃗·(r⃗i−r⃗j) (4.1.2.39)
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When all of the particle has the same velocity v⃗:

Es = A
∑
i

ei(q⃗·(r⃗i+v⃗t)−ω0t) (4.1.2.40)

Scattered light intensity is:

Is = A2
∑
i

∑
j

eiq⃗·(r⃗i−r⃗j) (4.1.2.41)

Eqs.(4.1.2.39) and (4.1.2.39) are the same. Therefore, homodyne detection cannot detect the uniform motion

of the particles (Figure 4.9(d))

To overcome this difficulty, let us consider that additional laser called local oscillator is irradiated simul-

taneously to the detector. By setting the amplitude of scattered light as As and that of local oscillator as

ALO, the electric field and the scattered light intensity on the detector become:

E = As
∑
i

ei(q⃗·(r⃗i+v⃗t)−ω0t) +ALOe
−iω0t (4.1.2.42)

I = A2
LO +A∗

LOAs
∑
i

ei(q⃗·(r⃗i+v⃗t)−ω0t) +A∗
sALO

∑
i

e−i(q⃗·(r⃗i+v⃗t)−ω0t) +A2
s

∑
i

∑
j

eiq⃗·(r⃗i−r⃗j) (4.1.2.43)

The second term and third terms in Eq.(4.1.2.43) contain the information about v⃗. Usually, we neglect the

fourth term in Eq.(4.1.2.43) by setting ALO ≫ As. This detection scheme is called heterodyne detection.

When we explicitly consider the existence of the fourth term, the scheme is called partial heterodyne scheme,

which is introduced in Section 4.1.3. Explicit formula of spectra is expressed as a form of Lorentzian [62]:

Es ∼
Dq2

(ω − (ω0 + q⃗ · v⃗))2 + (Dq2)2
(4.1.2.44)

Ihomodyne ∼
2Dq2

ω2 + (2Dq2)2
(4.1.2.45)

Iheterodyne ∼
Dq2

(ω − q⃗ · v⃗)2 + (Dq2)2
(4.1.2.46)

In the case of heterodyne detection, the center of frequency distribution is shifted to q⃗ ·v⃗. As a result, not only

the information of Brownian motion, D, but also the velocity of the particle, v, is obtained (Figure 4.9(f)).

Heterodyne detection is widely used for electrophoretic light scattering.

Up to here, I stick on the measurement in frequency domain. The same information can be obtained in

time domain. In the case of the measurement in time domain, observed quantity is the time correlation

function of the scattered light intensity defined as follows:

⟨Is(0)Is(τ)⟩T := lim
T→∞

1

2T

∫ T

−T
Is(t)Is(t+ τ)dt (4.1.2.47)

The fact that we can obtain the same information in frequency domain and time domain is a consequence

of the Wiener–Khintchin theorem. This theorem shows that the power spectrum and the time correlation

function are connected via Fourier transformation (Figure 4.10).

⟨Is(0)Is(τ)⟩T =
1

2π

∫ ∞

−∞
Is(ω)e

iωτdω (4.1.2.48)
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4.1 Light scattering

Fourier transformation

Figure 4.10: Wiener–Khintchin theorem

By using Eq.(4.1.2.48), let us calculate the time correlation function of scattered light intensity from the

particles with Brownian motion. Let us use the power spectrum Eq.(4.1.2.45) as a starting point.

Is(ω) = δ(ω) +
1

π

2Dq2

ω2 + (2Dq2)2
(4.1.2.49)

Here, delta function δ(ω) is included to express DC component which has no relationship with the fluctuation

of scattered light intensity [63]. By using Eq.(4.1.2.48), expression in time domain is obtained. 50

⟨Is(0)Is(τ)⟩T =
1

2π

∫ ∞

−∞

(
δ(ω) +

1

π

2Dq2

ω2 + (2Dq2)2

)
eiωτdω

= 1 + e−2Dq2|t| (4.1.2.50)

In the case of time domain observation, measured time correlation function is fitted by exponential function,

and diffusion constant D is estimated by using Eq.(4.1.2.50). In the case of heterodyne detection, power

spectrum is governed by strong local oscillator.

Is(ω) ≃ δ(ω) (4.1.2.51)

Corresponding time correlation function is:

⟨Is(0)Is(τ)⟩T ≃
1

2π

∫ ∞

−∞
δ(ω)eiωτdω = 1 (4.1.2.52)

Therefore, heterodyne detection is not useful in time domain. Next section, I explain the third detection

scheme, partial heterodyne detection.

50Mathematically, time t is expressed as a form of absolute value. However, we measure only the region on t > 0. Therefore,
the symbol of absolute value is usually omitted.
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4.1.3 Partial heterodyne method

The total scattered electric field51, E(q⃗, t), is represented by a summation of the scattered electric field

from particles within a scattered volume, V :

E(q⃗, t) =

N∑
j∈V

bj exp[iq⃗ · r⃗j(t)] (4.1.3.1)

where q⃗ is a wavevector, bj is the amplitude of the electric field from the particle j,52 r⃗j is the position of the

particle j. In the case of non-ergodic media, r⃗j is decomposed to the two components; their fixed position,

R⃗j , and the displacements, ∆⃗j(t):

r⃗j(t) = R⃗j + ∆⃗j(t) (4.1.3.2)

R⃗j = ⟨ r⃗j(t) ⟩T (4.1.3.3)

⟨ ∆⃗j(t) ⟩T = 0 (4.1.3.4)

Here, ⟨ · · · ⟩T denotes time average.

Substitute Eq.(4.1.3.2) into Eq.(4.1.3.1):

E(q⃗, t) =

N∑
j∈V

bj exp[iq⃗ · R⃗j ] exp[iq⃗ · ∆⃗j(t)]

=

N∑
j∈V

bj exp[iq⃗ · R⃗j ](exp[iq⃗ · ∆⃗j(t)]− wj) +
N∑
j∈V

bj exp[iq⃗ · R⃗j ]wj

=: EF (q⃗, t) + EC(q⃗) (4.1.3.5)

where

wj := ⟨ exp[iq⃗ · ∆⃗j(t)] ⟩T (4.1.3.6)

denotes the time average of the phase of the electric field from the particle j.

The first term of Eq.(4.1.3.5) is time- and position-dependent. Since the time-dependent part, exp[iq⃗ ·
∆⃗j(t)] − wj , denotes the displacement from their average position, this term is zero-mean quantity. 53 We

call this term as EF (q⃗, t), a fluctuating component. The second term of Eq.(4.1.3.5) is position-dependent

and time-independent. We call this term as EC(q⃗, t), a constant component.

What we want to know is g(2)(τ)−1 of the scattered electric field from non-ergodic media like a gel. From

now, we represent g(2)(τ)− 1 in two different forms. g(2)(τ)− 1 is written as follows:

g(2)(τ)− 1 :=
⟨ I(q⃗, 0)I(q⃗, τ) ⟩T
⟨ I(q⃗) ⟩2T

− 1

=
⟨ I(q⃗, 0)I(q⃗, τ) ⟩T − ⟨ I(q⃗) ⟩2T

⟨ I(q⃗) ⟩2T
(4.1.3.7)

51We ignore the vector nature of the electric field and treat it as scalar wave. In other words, we do not consider the
polarization.

52In reality, bj is q⃗-dependent. We omit (q⃗) for simplicity.
53If we assume that each particle shows restricted Brownian motion, this term is Gaussian.
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where

I(q⃗, τ) := E∗(q⃗, τ)E(q⃗, τ) = |E(q⃗, τ)|2 (4.1.3.8)

is the intensity of scattered light at t = τ .

By using Eqs.(4.1.3.5) and (4.1.3.8), a first term of the numerator of Eq.(4.1.3.7) is written as follows 5455:

⟨ I(q⃗, 0)I(q⃗, τ) ⟩T

= ⟨ |EF (0) + EC |2|EF (τ) + EC |2 ⟩

= ⟨ (E2
F (0) + E∗

F (0)EC + EF (0)E
∗
C + E2

C)(E
2
F (τ) + E∗

F (τ)EC + EF (τ)E
∗
C + E2

C) ⟩

= ⟨E2
F (0)E

2
F (τ) ⟩+ IC⟨E2

F (0) ⟩+ IC⟨E∗
F (0)EF (τ) ⟩

+ IC⟨EF (0)E∗
F (τ) ⟩+ IC⟨E2

F (τ) ⟩+ I2C

= ⟨ IF (q⃗, 0)IF (q⃗, τ) ⟩T + 2IC(q⃗)⟨EF (q⃗, 0)E∗
F (q⃗, τ) ⟩T + 2⟨ IF (q⃗) ⟩T IC(q⃗) + I2C(q⃗) (4.1.3.9)

The first term of Eq.(4.1.3.9) is rewritten to be:

⟨ IF (q⃗, 0)IF (q⃗, τ) ⟩T = ⟨E∗
F (0)EF (0)E

∗
F (τ)EF (τ) ⟩

= ⟨E∗
F (0)EF (0) ⟩⟨E∗

F (τ)EF (τ) ⟩

+ ⟨E∗
F (0)E

∗
F (τ) ⟩⟨EF (0)EF (τ) ⟩+ ⟨E∗

F (0)EF (τ) ⟩⟨EF (0)E∗
F (τ) ⟩

= ⟨ IF (q⃗) ⟩2T + ⟨E∗
F (q⃗, 0)EF (q⃗, τ) ⟩2T (4.1.3.10)

By definition (Eqs.(4.1.3.5)),

⟨E∗
F (q⃗, 0)EF (q⃗, τ) ⟩T

=

N∑
j=1

N∑
k=1

b∗j bk exp[iq⃗ · (R⃗k − R⃗j)]⟨ (exp[−iq⃗ · ∆⃗j(0)]− w∗
j )(exp[iq⃗ · ∆⃗k(τ)]− wk) ⟩T

=

N∑
j=1

N∑
k=1

b∗j bk exp[iq⃗ · (R⃗k − R⃗j)](⟨ exp[−iq⃗ · ∆⃗j(0)] exp[iq⃗ · ∆⃗k(τ)] ⟩T

− wk⟨ exp[−iq⃗ · ∆⃗j(0)] ⟩T − w∗
j ⟨ exp[iq⃗ · ∆⃗k(τ)] ⟩T + w∗

jwk)

=

N∑
j=1

N∑
k=1

b∗j bk exp[iq⃗ · (R⃗k − R⃗j)](⟨ exp[iq⃗ · (∆⃗k(τ)− ∆⃗j(0)] ⟩T − wkw∗
j − w∗

jwk + w∗
jwk)

=

N∑
j=1

N∑
k=1

b∗j bk exp[iq⃗ · (R⃗k − R⃗j)](⟨ exp[iq⃗ · (∆⃗k(τ)− ∆⃗j(0)] ⟩T − w∗
jwk) (4.1.3.11)

To proceed, let us define an intermediate scattering function, F (q⃗, τ), as:

F (q⃗, τ) :=
1

Nb2

N∑
j=1

N∑
k=1

⟨ b∗j bk exp[iq⃗ · (r⃗k(τ)− r⃗j(0))] ⟩E (4.1.3.12)

Notice that the average is taken as ensemble, not time.

54From here, we stop writing the explicit representation of the variable (q⃗) during calculations for simplicity.
55We regard E∗E =: I although the prefactor is required. This does not matter since what we obtain is normalized quantity.
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This function implies Fourier transformation of the probability distribution function, G(R⃗, τ) :

G(R⃗, τ) :=
1

Nb2

N∑
j=1

N∑
k=1

⟨ b∗j bkδ(R⃗− [r⃗k(τ)− r⃗j(0)]) ⟩E (4.1.3.13)

F (R⃗, τ) =

∫
d3R⃗eiq⃗·R⃗G(R⃗, τ) (4.1.3.14)

In the case where τ = 0, F (q⃗, 0) simply implies the ensemble average of scattered intensity. This is easily

proved by substituting Eq.(4.1.3.1) into Eq.(4.1.3.8):

⟨ I(q⃗) ⟩E =

N∑
j=1

N∑
k=1

⟨ b∗j bk exp[−iq⃗ · r⃗j(0)] exp[iq⃗ · r⃗k(0)] ⟩E

=

N∑
j=1

N∑
k=1

⟨ b∗j bk exp[iq⃗ · (r⃗k − r⃗j)] ⟩E = Nb2F (q⃗, 0) (4.1.3.15)

Although F (q⃗, τ) is ensemble average, we can connect this quantity to time average quantity. By substi-

tuting Eq.(4.1.3.2) into Eq.(4.1.3.12):

Nb2F (q⃗, τ) =

N∑
j=1

N∑
k=1

⟨ b∗j bk exp[iq⃗ · (R⃗k − R⃗j)] exp[iq⃗ · (∆⃗k(τ)− ∆⃗j(0)] ⟩E

=

N∑
j=1

N∑
k=1

⟨ b∗j bk exp[iq⃗ · (R⃗k − R⃗j)]⟨ exp[iq⃗ · (∆⃗k(τ)− ∆⃗j(0)] ⟩T ⟩E (4.1.3.16)

From the first line to the second line, we assumed that ∆⃗j and ∆⃗k are time-independent. If the scattering

volume is sufficiently large, ⟨ · · · ⟩E is redundant:

Nb2F (q⃗, τ) =

N∑
j=1

N∑
k=1

b∗j bk exp[iq⃗ · (R⃗k − R⃗j)]⟨ exp[iq⃗ · (∆⃗k(τ)− ∆⃗j(0)] ⟩T (4.1.3.17)

Then,

Nb2F (q⃗,∞) =

N∑
j=1

N∑
k=1

b∗j bk exp[iq⃗(R⃗k − R⃗j)]⟨ exp[−iq⃗ · ∆⃗j(0)] ⟩T ⟨ exp[iq⃗ · ∆⃗k(∞)] ⟩T

=

N∑
j=1

N∑
k=1

b∗j bk exp[iq⃗(R⃗k − R⃗j)]w∗
jwk (4.1.3.18)

Substitute Eqs.(4.1.3.15), (4.1.3.17) and (4.1.3.18) into Eq.(4.1.3.11):

⟨E∗
F (q⃗, 0)EF (q⃗, τ) ⟩T = Nb2(F (q⃗, τ)− F (q⃗,∞))

=
⟨ I(q⃗) ⟩E
F (q⃗, 0)

(F (q⃗, τ)− F (q⃗,∞)) = ⟨ I(q⃗) ⟩E(f(q⃗, τ)− f(q⃗,∞)) (4.1.3.19)

where f(q⃗, τ) is a normalized intermediate scattering function:

f(q⃗, τ) :=
F (q⃗, τ)

F (q⃗, 0)
(4.1.3.20)
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Substituting τ = 0 into Eq.(4.1.3.19) shows the intensity from the fluctuating component:

⟨ IF (q⃗) ⟩T = ⟨E∗
F (q⃗, 0)EF (q⃗, 0) ⟩T

= ⟨ I(q⃗) ⟩E(1− f(q⃗,∞)) (4.1.3.21)

since by definition

f(q⃗, 0) = 1 (4.1.3.22)

Substituting Eq.(4.1.3.19) and (4.1.3.21) into Eq.(4.1.3.10):

⟨ IF (q⃗, 0)IF (q⃗, τ) ⟩T = ⟨ I(q⃗) ⟩2E [(1− f(q⃗,∞))2 + (f(q⃗, τ)− f(q⃗,∞))2] (4.1.3.23)

Let us get back on the track. Our aim is to calculate Eq.(4.1.3.7). Substituting Eqs.(4.1.3.19) and (4.1.3.23)

into the numerator of Eq.(4.1.3.7):

⟨ I(q⃗, 0)I(q⃗, τ) ⟩T − ⟨ I(q⃗) ⟩2T
= ⟨ IF (q⃗, 0)IF (q⃗, τ) ⟩T + 2IC(q⃗)⟨EF (q⃗, 0)E∗

F (q⃗, τ) ⟩T + 2⟨ IF (q⃗) ⟩T IC(q⃗) + I2C(q⃗)− ⟨ I(q⃗) ⟩2T
= ⟨ I(q⃗) ⟩2E [(1− f(q⃗,∞))2 + (f(q⃗, τ)− f(q⃗,∞))2]

+ 2IC(q⃗)⟨ I(q⃗) ⟩E(f(q⃗, τ)− f(q⃗,∞)) + 2⟨ IF (q⃗) ⟩T IC(q⃗) + I2C(q⃗)− ⟨ I(q⃗) ⟩2T
= ⟨ I(q⃗) ⟩2E(f(q⃗, τ)− f(q⃗,∞))2 + 2IC(q⃗)⟨ I(q⃗) ⟩E(f(q⃗, τ)− f(q⃗,∞)) (4.1.3.24)

By using Eq.(4.1.3.21), IC(q⃗) is:

IC(q⃗) = ⟨ I(q⃗) ⟩T − ⟨ IF (q⃗) ⟩T

= ⟨ I(q⃗) ⟩T − ⟨ I(q⃗) ⟩E(1− f(q⃗,∞)) (4.1.3.25)

Then,

g(2)(τ)− 1

=

(
⟨ I(q⃗) ⟩E
⟨ I(q⃗) ⟩T

)2

(f(q⃗, τ)− f(q⃗,∞))2 + 2
⟨ I(q⃗) ⟩E
⟨ I(q⃗) ⟩T

IC(q⃗)

⟨ I(q⃗) ⟩T
(f(q⃗, τ)− f(q⃗,∞))

= Y 2(f(q⃗, τ)− f(q⃗,∞))2 + 2Y
⟨ I(q⃗) ⟩T − ⟨ I(q⃗) ⟩E(1− f(q⃗,∞))

⟨ I(q⃗) ⟩T
(f(q⃗, τ)− f(q⃗,∞))

= Y 2(f(q⃗, τ)− f(q⃗,∞))2 + 2Y (f(q⃗, τ)− f(q⃗,∞))− 2Y 2(1− f(q⃗,∞))(f(q⃗, τ)− f(q⃗,∞))

= Y 2(f(q⃗, τ)2 − f(q⃗,∞)2) + 2Y (1− Y )(f(q⃗, τ)− f(q⃗,∞)) (4.1.3.26)

where

Y :=
⟨ I(q⃗) ⟩E
⟨ I(q⃗) ⟩T

(4.1.3.27)

Before going any further, we assume the following relationship:

f(q⃗, τ) ≃ 1−DNq
2τ when τ ≪ DNq

2 (4.1.3.28)

This is merely the short time expansion of f(q⃗, τ). q2-dependence comes from the assumption of Brownian
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motion for a short time. However, the coefficient DN has no physical meaning since f(q⃗, τ) contains the effect

of EC(q⃗) which is totally coherent. This mixing is the origin of the name, ”Partially Heterodyne Method.”

What we want to know is the diffusion coefficient originated only from the fluctuating component:

ff (q⃗, τ) :=
⟨E∗

F (q⃗, 0)EF (q⃗, τ) ⟩T
⟨ IF (q⃗) ⟩T

≃ 1−Dq2τ when τ ≪ Dq2 (4.1.3.29)

although this quantity cannot be measured directly because of the contamination of EC(q⃗).

Let us move on to the calculation of g(2)(τ)− 1 again. Substitute Eq.(4.1.3.28) into Eq.(4.1.3.26):

g(2)(τ)− 1 = Y 2((1−DNq
2τ)2 − f(q⃗,∞)2) + 2Y (1− Y )((1−DNq

2τ)− f(q⃗,∞))

=: σ2
I − 2DNY q

2τ +O(τ2)

= σ2
I

(
1− 2

DNY

σ2
I

q2τ

)
+O(τ2)

=: σ2
I (1− 2DAq

2τ) +O(τ2) (4.1.3.30)

where

σ2
I := g(2)(0)− 1 (4.1.3.31)

DA :=
DNY

σ2
I

(4.1.3.32)

σ2
I is calculated straightforwardly:

σ2
I := Y (1− f(q⃗,∞))(2− Y (1− f(q⃗,∞))) (4.1.3.33)

Eq.(4.1.3.30) is one of the most important results. This equation shows that the time correlation function

g(2)(τ) − 1 from non-ergodic media like a gel decays linearly56 when τ ≪ 1. In other words, what we can

obtain from experiment is DA. As mentioned above, what we want to know is D, the diffusion coefficient

of fluctuating component (Eq.(4.1.3.29)). So let us find the relationship between D and DA. At first,

let us represent Eq.(4.1.3.7) in a different way. Substituting Eqs.(4.1.3.9), (4.1.3.10) and (4.1.3.25) into

Eq.(4.1.3.7):

g(2)(τ)− 1

:=
⟨ I(q⃗, 0)I(q⃗, τ) ⟩T
⟨ I(q⃗) ⟩2T

− 1

=
⟨ IF (q⃗, 0)IF (q⃗, τ) ⟩T + 2IC(q⃗)⟨EF (q⃗, 0)E∗

F (q⃗, τ) ⟩T + 2⟨ IF (q⃗) ⟩T IC(q⃗) + I2C(q⃗)

⟨ I(q⃗) ⟩2T
− 1

=
⟨ IF (q⃗, 0)IF (q⃗, τ) ⟩T + 2IC(q⃗)⟨EF (q⃗, 0)E∗

F (q⃗, τ) ⟩T + 2⟨ IF (q⃗) ⟩T IC(q⃗) + I2C(q⃗)

⟨ I(q⃗) ⟩2T

− (⟨ IF (q⃗) ⟩T + IC(q⃗))
2

⟨ I(q⃗) ⟩2T

=
⟨ IF (q⃗) ⟩2T + ⟨E∗

F (q⃗, 0)EF (q⃗, τ) ⟩2T + 2IC(q⃗)⟨EF (q⃗, 0)E∗
F (q⃗, τ) ⟩T − ⟨ IF (q⃗) ⟩2T

⟨ I(q⃗) ⟩2T

=
⟨E∗

F (q⃗, 0)EF (q⃗, τ) ⟩2T + 2IC(q⃗)⟨EF (q⃗, 0)E∗
F (q⃗, τ) ⟩T

⟨ I(q⃗) ⟩2T
(4.1.3.34)

56If we treat Eq.(4.1.3.28) as exponential function, Eq.(4.1.3.30) may also shows exponential decay.
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By substituting τ = 0 and using Eqs.(4.1.3.21) and (4.1.3.31):

σ2
I =
⟨ IF (q⃗) ⟩2T + 2IC⟨ IF (q⃗) ⟩T

⟨ I(q⃗) ⟩2T
(4.1.3.35)

From Eqs.(4.1.3.25), (4.1.3.29), (4.1.3.34) and (4.1.3.35):

g(2)(τ)− σ2
I

=
⟨ IF (q⃗) ⟩2T ff (q⃗, τ)2 + 2IC(q⃗)⟨ IF (q⃗) ⟩T ff (q⃗, τ)

⟨ I(q⃗) ⟩2T
+ 1− ⟨ IF (q⃗) ⟩

2
T + 2IC(q⃗)⟨ IF (q⃗) ⟩T
⟨ I(q⃗) ⟩2T

=
⟨ IF (q⃗) ⟩2T ff (q⃗, τ)2 + 2(⟨ I(q⃗) ⟩T − ⟨ IF (q⃗) ⟩T )⟨ IF (q⃗) ⟩T ff (q⃗, τ) + ⟨ I(q⃗) ⟩2T

⟨ I(q⃗) ⟩2T

+
⟨ I(q⃗) ⟩2T − 2⟨ I(q⃗) ⟩T ⟨ IF (q⃗) ⟩T − 2⟨ IF (q⃗) ⟩2T

⟨ I(q⃗) ⟩2T

=

[
(ff (q⃗, τ)− 1)

⟨ IF (q⃗) ⟩T
⟨ I(q⃗) ⟩T

+ 1

]2
(4.1.3.36)

So,

(ff (q⃗, τ)− 1)X + 1 =
√
g(2)(τ)− σ2

I (4.1.3.37)

where

X :=
⟨ IF (q⃗) ⟩T
⟨ I(q⃗) ⟩T

(4.1.3.38)

Substitute τ →∞ into Eq.(4.1.3.37):

−X + 1 =
√

1− σ2
I → σ2

I = X(2−X) (4.1.3.39)

since

ff (q⃗,∞) = 0 (4.1.3.40)

g(2)(∞) = 1 (4.1.3.41)

This can also be represented as follows:

1−
√
1− σ2

I = X (4.1.3.42)

Substituting Eqs.(4.1.3.29) and (4.1.3.39) into Eq.(4.1.3.34):

g(2)(τ)− 1 =
⟨ IF (q⃗) ⟩2T ff (q⃗, τ)2 + 2(⟨ I(q⃗) ⟩T − ⟨ IF (q⃗) ⟩T )⟨ IF (q⃗) ⟩T ff (q⃗, τ)

⟨ I(q⃗) ⟩2T
= X2ff (q⃗, τ)

2 + 2X(1−X)ff (q⃗, τ)

= X2(1−Dq2τ)2 + 2X(1−X)(1−Dq2τ)

= (2X −X2)− 2DXq2τ +O(τ2)

= σ2
I

(
1− 2

DX

σ2
I

q2τ

)
+O(τ2) (4.1.3.43)
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4.1 Light scattering

By comparing Eqs.(4.1.3.30) and (4.1.3.43), we can obtain the relationship between D and DA:

DA =
X

σ2
I

D (4.1.3.44)

By using Eq.(4.1.3.39):

DA =
D

2−X
=

1−
√
1− σ2

I

σ2
I

D (4.1.3.45)

The coefficient of Eq.(4.1.3.45) is shown in Figure 4.11.
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Figure 4.11: Coefficient of Eq.(4.1.3.45).

It is instructive to consider the extreme cases of Eq.(4.1.3.45). When the scattered media is ergodic, X = 1

since ⟨ IF (q⃗) ⟩T = ⟨ I(q⃗) ⟩T (Eq.(4.1.3.38)). Then, DA = D. This is obvious since the detection is totally

homodyne. Opposite extreme case is X → 0, the media which is frozen. In this case, DA = D/2. This

is consistent with the representation of heterodyne detection since the local oscillator, EC(q⃗) is sufficiently

larger than EF (q⃗, t).

At the end, let us write Eq.(4.1.3.45) in another form to make an analysis easy [64]. Substituting

Eq.(4.1.3.38) into Eq.(4.1.3.45):

DA =
D

2− (⟨ IF (q⃗) ⟩T /⟨ I(q⃗) ⟩T )
→ ⟨ I(q⃗) ⟩T

DA
=

2

D
⟨ I(q⃗) ⟩T −

⟨ IF (q⃗) ⟩T
D

(4.1.3.46)
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4.1 Light scattering

4.1.4 Polarized dynamic light scattering

Eq.(4.1.1.42) shows that the polarization of scattered light is the same as the incident light if the scatterers

are isotropic. If the scatterers are anisotropic, scattered light may contain polarized light whose polarization is

orthogonal to the polarization of incident light. This light is called depolarized light. Polarized dynamic light

scattering is a technique to measure the relaxation time of both polarized and depolarized light. Polarized

light is measured by using two polarizers with the same direction (VV configuration) while depolarized light

is measured with the polarizers which are orthogonal with each other (VH configuration). Experimental set

up is shown in Figure 4.12. This technique is useful for the measurements of anisotropic substances such as

rod-like solutes. It is reported that the relaxation rates obtained with VV and VH configurations for rod-like

solutes are calculated as follows: [65]

ΓV V = Dtq
2 (4.1.4.1)

ΓV H = Dtq
2 + 6Dr (4.1.4.2)

where q is the magnitude of scattering vector, Dt is the translational diffusion coefficient and Dr is the

rotational diffusion coefficient. Two diffusion constants, Dt and Dr, are related to the form of solutes as

follows:

Dt =
kBT

6πηsa

[
ln

2a

b
+ ln 2− 1

]
(4.1.4.3)

Dr =
3kBT

8πηsa3

[
(ab )

2(ln(ab ))
2

(ab )
2(ln(ab ) + ln 2− 1) + 0.651(ln(ab ))

2

]
(4.1.4.4)

where kB , T, ηs, a, b are Boltzmann constant, the absolute temperature, the viscosity of solvent, the half-

length of solutes and radius of solutes, respectively. Here, Dt and Dr are functions of a and b. By using

Eq.(4.1.4.4), we can estimate a and b and therefore aspect ratio by dynamic light scattering though the

obtained value is rough estimation.

(b)(a)

V

V H

V

Figure 4.12: Polarized DLS by using conventional DLS system. (a) VV (polarized) and (b) VH (depolarized)

configuration.
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4.2 Neutron scattering

4.2 Neutron scattering

4.2.1 Basic theory of neutron scattering

Neutron

Nucleus

Figure 4.13: Coordination definitions for neutron scattering.

Let us define varying kinds of cross sections [14,35]. Total scattering cross section is defined as follows:

σtot :=
Total number of scattered neutrons in all directions per second

Φ
(4.2.1.1)

where Φ is the flux of the incident neutrons. This quantity is determined only by the species of atoms in the

scattering volume and is not affected by the position of atoms.

The quantity of scattered neutrons is different as the scattering angle. Then, we define new cross section

called differential scattering cross section as follows (See Fig.4.13, left.):

dσ

dΩ
:=

The number of scattered neutrons into dΩ per second

ΦdΩ
(4.2.1.2)

This quantity does not depend on the distance from the scattering system to the observed point since we

use solid angle.

For the precise formulation of neutron scattering, we have to care the energy exchange between neutrons

and the scattering system. To treat such a situation, we define another cross section called partial differential

scattering cross section as follows:

d2σ

dΩdE′ :=
The number of scattered neutrons into dΩ with final energy between E′ and E′ + dE′ per second

ΦdΩdE′

(4.2.1.3)

These three cross sections are related in the form of integration:

dσ

dΩ
=

∫ ∞

0

d2σ

dΩdE′ dE
′ (4.2.1.4)

σtot =

∫
dσ

dΩ
dΩ (4.2.1.5)

These cross sections have all of the information about neutron scattering. Our task is to relate these cross

sections to the structural information. From now, we are going to derive the most general form of the partial

differential scattering cross section [35]. Let us define k⃗ and λ as the wavevector and wavelength of the

incident neutrons, respectively. Here, the wavevector is defined to have magnitude

k :=
2π

λ
(4.2.1.6)

and its direction being that of velocity, v⃗. Incident neutrons, the scattering system and the whole system
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4.2 Neutron scattering

are represented by wavefunctions as ψk⃗, χλ and ψk⃗χλ, respectively
57. We assume that ψk⃗ is a plane wave

and represented as follows:

ψk⃗ :=
1√
Y
eik⃗·r⃗ (4.2.1.7)

Here we assume that there is one neutron in the box of volume Y . In this manner, we represent the flux of

the incident neutrons, Φ, as follows58:

Φ =
v

Y
=

mv

mY
=

ℏk
Y m

(4.2.1.8)

where m is the mass of a neutron.

Differential scattering cross section that the scattering system changes from λ to λ′ is written as follows:

dσ

dΩ

∣∣∣∣
λ→λ′

=
1

Φ

1

dΩ

∑
k⃗′ in dΩ

Wk⃗,λ→k⃗′,λ′ (4.2.1.9)

where Wk⃗,λ→k⃗′,λ′ is the number of transitions per second from the state k⃗, λ to k⃗′, λ′ (See Fig.4.14). By

using Fermi’s golden rule, Wk⃗,λ→k⃗′,λ′ is represented as follows:

∑
k⃗′ in dΩ

Wk⃗,λ→k⃗′,λ′ =
2π

ℏ
ρk⃗′

∣∣∣∣∫ ∫ χ∗
λ′ψ∗

k⃗′
V ψk⃗χλdR⃗dr⃗

∣∣∣∣2 (4.2.1.10)

where R⃗ is the position of nucleus, r⃗ is the position of neutrons (See Fig.4.13, right.) and ρk⃗′ is the density

of states,

ρk⃗′ =
Y

(2π)3
k′
m

ℏ2
dΩ (4.2.1.11)

Substitute Eq.(4.2.1.7) into the integral part of Eq.(4.2.1.10):∫ ∫
χ∗
λ′ψ∗

k⃗′
V ψk⃗χλdR⃗dr⃗ =

1

Y

∫ ∫
χ∗
λ′e−ik⃗

′·r⃗V eik⃗·r⃗χλdR⃗dr⃗ =:
1

Y
⟨k⃗′, λ′|V |⃗k, λ⟩ (4.2.1.12)

Substitute Eq.(4.2.1.8), (4.2.1.10), (4.2.1.11) and (4.2.1.12) into Eq.(4.2.1.9):

dσ

dΩ

∣∣∣∣
λ→λ′

=
Y m

ℏk
1

dΩ

2π

ℏ
Y

(2π)3
k′
m

ℏ2
dΩ

1

Y 2
|⟨k⃗′, λ′|V |⃗k, λ⟩|2 =

k′

k

( m

2πℏ2
)2
|⟨k⃗′, λ′|V |⃗k, λ⟩|2 (4.2.1.13)

The term k′/k in Eq.(4.2.1.13) implies that the scattering cross section increase as the density of states

Figure 4.14: Definitions of wavefunctions. ψk⃗, ψk⃗′ , χλ, χλ′ are wave functions of the neutron before scattering,

of the neutron after scattering, of the scattering system before scattering and of the scattering system after

scattering, respectively.

57From now, we denote these functions as k⃗, λ and (k⃗, λ), respectively.
58Flux [m−2 · s−1] = density (Y −1) [m−3] × velocity (v) [m · s−1].
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4.2 Neutron scattering

increase (k′) and decrease as the incident neutron becomes fast (k−1).

In light of energy conservation law, we can express the partial differential scattering cross section as follows:

d2σ

dΩdE′

∣∣∣∣
λ→λ′

=
k′

k

( m

2πℏ2
)2
|⟨k⃗′, λ′|V |⃗k, λ⟩|2δ(Eλ − Eλ′ + E − E′) (4.2.1.14)

where Eλ, Eλ′ , E and E′ indicates the energy of χλ, χλ′ , ψk⃗ and ψk⃗′ , respectively. Then we explicitly calculate

the matrix elements in Eq.(4.2.1.14):

⟨k⃗′, λ′|V |⃗k, λ⟩ =
∫ ∫

χ∗
λ′e−ik⃗

′·r⃗V e−ik⃗·r⃗χλdR⃗dr⃗

=
∑
j

∫ ∫
χ∗
λ′e−ik⃗

′·r⃗Vj(r⃗ − R⃗j)e−ik⃗·r⃗χλdR⃗jdr⃗

=
∑
j

∫ ∫
χ∗
λ′e−ik⃗

′·(x⃗j+R⃗j)Vj(x⃗j)e
−ik⃗·(x⃗j+R⃗j)χλdR⃗jdx⃗j

=
∑
j

∫
Vj(x⃗j)e

i(k⃗−k⃗′)·x⃗jdx⃗j

∫
χ∗
λ′ei(k⃗−k⃗

′)·R⃗jχλdR⃗j

=
∑
j

Vj(q⃗)⟨λ′|eiq⃗·R⃗j |λ⟩ (4.2.1.15)

where x⃗j := r⃗ − R⃗j (Fig.4.13, right) and q⃗ := k⃗ − k⃗′. Here, Vj(q⃗) is the Fourier transform of the potential

Vj(x⃗j):

Vj(q⃗) :=

∫
Vj(x⃗j)e

iq⃗·x⃗jdx⃗j (4.2.1.16)

Vj(x⃗j) is the potential at r⃗ caused by the nucleus j. In the case of neutron scattering, Vj(x⃗j) is assumed to

be the following Fermi pseudopotential:

Vj(x⃗j) =
2πℏ2

m
bjδ(x⃗j) (4.2.1.17)

where bj is the scattering length of the atom at R⃗j . This value is determined by their nuclear species and

spin states. We treat the effect of neutron polarization on the scattering length in the next subsection.

Substitute Eq.(4.2.1.17) into Eq.(4.2.1.16):

Vj(q⃗) =
2πℏ2

m
bj (4.2.1.18)

Substitute Eq.(4.2.1.15) and (4.2.1.18) into Eq.(4.2.1.14):

d2σ

dΩdE′

∣∣∣∣
λ→λ′

=
k′

k

∣∣∣∣∣∣
∑
j

bj⟨λ′|eiq⃗·R⃗j |λ⟩

∣∣∣∣∣∣
2

δ(Eλ − Eλ′ + E − E′) (4.2.1.19)

This is the general form of the partial differential scattering cross section.

From now, we derive the thermal average of Eq.(4.2.1.19) by calculating the matrix elements. A delta

function can be represented as the following integral form:

δ(ω) =
1

2π

∫ ∞

−∞
eiωtdt =

1

2π

∫ ∞

−∞
e−iωtdt (4.2.1.20)
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4.2 Neutron scattering

By using Eq.(4.2.1.20), the delta function in Eq.(4.2.1.19) is transformed into the following integral form:

δ(Eλ − Eλ′ + E − E′) =: δ(ℏ(ωλ − ωλ′ + ωi − ωf ))

=
1

2πℏ

∫ ∞

−∞
exp[−i(ωλ − ωλ′ + ωi − ωf )t]dt

=
1

2πℏ

∫ ∞

−∞
exp

[
i
Eλ′ − Eλ

ℏ
t

]
e−iωtdt (4.2.1.21)

where

ω := ωi − ωf (4.2.1.22)

Substitute Eq.(4.2.1.21) into Eq.(4.2.1.19):

d2σ

dΩdE′

∣∣∣∣
λ→λ′

=
k′

k

∑
j,j′

bjbj′⟨λ|e−iq⃗·R⃗j′ |λ′⟩⟨λ′|eiq⃗·R⃗j |λ⟩ 1

2πℏ

∫ ∞

−∞
exp

[
i
Eλ′ − Eλ

ℏ
t

]
e−iωtdt

=
k′

k

1

2πℏ
∑
j,j′

bjbj′

∫ ∞

−∞
⟨λ|e−iq⃗·R⃗j′ |λ′⟩

⟨
λ′
∣∣∣∣exp [iEλ′

ℏ
t

]
eiq⃗·R⃗j exp

[
−iEλ

ℏ
t

]∣∣∣∣λ⟩ e−iωtdt (4.2.1.23)

We want to use the following closure relation:∑
λ′

⟨λ|Â|λ′⟩⟨λ′|B̂|λ⟩ = ⟨λ|ÂB̂|λ⟩ (4.2.1.24)

To use this relation, the operator Â and B̂ should not depend on λ′. However, there is the term Eλ′ (the

eigenvalue of the scattering system χλ′) in Eq.(4.2.1.23). This problem is solved by using the following

expression:

exp

[
−iEλ

ℏ
t

]∣∣∣∣λ⟩ = exp

[
−iĤ

ℏ
t

]∣∣∣∣∣λ
⟩

(4.2.1.25)

⟨
λ′
∣∣∣∣exp [iEλ′

ℏ
t

]
=

⟨
λ′

∣∣∣∣∣exp
[
i
Ĥ
ℏ
t

]
(4.2.1.26)

where Ĥ is the Hamiltonian of the scattering system. Substitute Eq.(4.2.1.25) and (4.2.1.26) into Eq.(4.2.1.23):

d2σ

dΩdE′

∣∣∣∣
λ→λ′

=
k′

k

1

2πℏ
∑
j,j′

bjbj′

∫ ∞

−∞
⟨λ|e−iq⃗·R⃗j′ |λ′⟩

⟨
λ′

∣∣∣∣∣exp
[
i
Ĥ
ℏ
t

]
eiq⃗·R⃗j exp

[
−iĤ

ℏ
t

]∣∣∣∣∣λ
⟩
e−iωtdt

=
k′

k

1

2πℏ
∑
j,j′

bjbj′

∫ ∞

−∞
⟨λ|e−iq⃗·R⃗j′ (0)|λ′⟩⟨λ′|eiq⃗·R⃗j(t)|λ⟩e−iωtdt (4.2.1.27)

Here we used the Heisenberg representation:

exp

[
i
H
ℏ
t

]
eiq⃗·R⃗j exp

[
−iH

ℏ
t

]
= eiq⃗·R⃗j(t) (4.2.1.28)

Notice that Schrödinger representation shows the same expression of Heisenberg representation at t = 0.

Then we average the all initial states, |λ⟩, and final states, |λ′⟩. Let us assume that the initial states are

in thermal equilibrium state. In this case, the probability that the initial state is |λ⟩, pλ, is represented as
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follows (the Boltzmann distribution):

pλ =
e−Eλβ∑
λ e

−Eλβ
=:

e−Eλβ

Z
(4.2.1.29)

where β := 1/kBT . By using Eq.(4.2.1.24) and (4.2.1.29), thermal average of Eq.(4.2.1.27) is 59:

d2σ

dΩdE′ =
∑
λ,λ′

pλ
d2σ

dΩdE′

∣∣∣∣
λ→λ′

=
k′

k

1

2πℏ
∑
j,j′

bjbj′

∫ ∞

−∞

∑
λ

pλ⟨λ|e−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t)|λ⟩e−iωtdt

=
k′

k

1

2πℏ
∑
j,j′

bjbj′

∫ ∞

−∞
⟨e−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t)⟩e−iωtdt (4.2.1.30)

where ⟨· · · ⟩ denotes thermal average. Note that e−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t) is not necessarily the same as eiq⃗·(R⃗j(t)−R⃗j′ (0))

since R⃗j′(0) and R⃗j(t) do not commute in general 60.

Then we separate Eq.(4.2.1.30) into two terms. Let us define the ensemble average of scattering length as

follows:

b :=
∑
i

fibi (4.2.1.31)

b2 :=
∑
i

fib
2
i (4.2.1.32)

where fi is the fraction of an atom which has the scattering length bi. By using Eq.(4.2.1.31) and (4.2.1.32):

∑
j,j′

bjbj′

∫ ∞

−∞
⟨e−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t)⟩e−iωtdt

=
∑
j ̸=j′

bjbj′

∫ ∞

−∞
⟨e−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t)⟩e−iωtdt+

∑
j

b2j

∫ ∞

−∞
⟨e−iq⃗·R⃗j(0)eiq⃗·R⃗j(t)⟩e−iωtdt

→ (b)2
∑
j ̸=j′

∫ ∞

−∞
⟨e−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t)⟩e−iωtdt+ b2

∑
j

∫ ∞

−∞
⟨e−iq⃗·R⃗j(0)eiq⃗·R⃗j(t)⟩e−iωtdt

+ (b)2
∑
j

∫ ∞

−∞
⟨e−iq⃗·R⃗j(0)eiq⃗·R⃗j(t)⟩e−iωtdt− (b)2

∑
j

∫ ∞

−∞
⟨e−iq⃗·R⃗j(0)eiq⃗·R⃗j(t)⟩e−iωtdt

= (b)2
∑
j,j′

∫ ∞

−∞
⟨e−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t)⟩e−iωtdt+ (b2 − (b)2)

∑
j

∫ ∞

−∞
⟨e−iq⃗·R⃗j(0)eiq⃗·R⃗j(t)⟩e−iωtdt (4.2.1.33)

59pλ′ is already included as a form of W
k⃗,λ→k⃗′,λ′ .

60This can be proved as follows:

e
−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t) =

(
1− iq⃗ · R⃗j′ (0) +

1

2
(−iq⃗ · R⃗j′ (0))

2 + · · ·
)(

1 + iq⃗ · R⃗j(t) +
1

2
(iq⃗ · R⃗j(t))

2 + · · ·
)

= 1 + iq⃗ · (R⃗j(t)− R⃗j′ (0)) +
1

2
(2q⃗ · R⃗j′ (0)q⃗ · R⃗j(t)− (q⃗ · R⃗j′ (0))

2 − (q⃗ · R⃗j(t))
2) + · · ·

e
iq⃗·(R⃗j(t)−R⃗j′ (0)) = 1 + iq⃗ · (R⃗j(t)− R⃗j′ (0)) +

1

2
(iq⃗ · (R⃗j(t)− R⃗j′ (0)))

2 + · · ·

= 1 + iq⃗ · (R⃗j(t)− R⃗j′ (0)) +
1

2
(q⃗ · R⃗j(t)q⃗ · R⃗j′ (0) + q⃗ · R⃗j′ (0)q⃗ · R⃗j(t)− (q⃗ · R⃗j′ (0))

2 − (q⃗ · R⃗j(t))
2) + · · ·

In general, [R⃗j′ (0), R⃗j(t)] = R⃗j′ (0) · R⃗j(t)− R⃗j(t) · R⃗j′ (0) ̸= 0. This means that

2q⃗ · R⃗j′ (0)q⃗ · R⃗j(t) ̸= q⃗ · R⃗j(t)q⃗ · R⃗j′ (0) + q⃗ · R⃗j′ (0)q⃗ · R⃗j(t)

so e
−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t) ̸= e

−iq⃗·(R⃗j(t)−R⃗j′ (0)) in general.
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4.2 Neutron scattering

Here, we used the relationship that
∑
j,j′ bjbj′ = (b)2 since bj and bj′ are independent. Substitute Eq.(4.2.1.33)

into Eq.(4.2.1.30):

d2σ

dΩdE′ =
k′

k

1

2πℏ
(b)2

∑
j,j′

∫ ∞

−∞
⟨e−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t)⟩e−iωtdt

+
k′

k

1

2πℏ
(b2 − (b)2)

∑
j

∫ ∞

−∞
⟨e−iq⃗·R⃗j(0)eiq⃗·R⃗j(t)⟩e−iωtdt (4.2.1.34)

We define the following cross section 61:

σcoh := 4π(b)2 (4.2.1.35)

σinc := 4π(b2 − (b)2) (4.2.1.36)

Substitute Eq.(4.2.1.35) and (4.2.1.36) into Eq.(4.2.1.34):

d2σ

dΩdE′ =
k′

k

1

2πℏ
σcoh
4π

∑
j,j′

∫ ∞

−∞
⟨e−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t)⟩e−iωtdt

+
k′

k

1

2πℏ
σinc
4π

∑
j

∫ ∞

−∞
⟨e−iq⃗·R⃗j(0)eiq⃗·R⃗j(t)⟩e−iωtdt (4.2.1.37)

The first term of Eq.(4.2.1.37) is called coherent scattering:

d2σ

dΩdE′

∣∣∣∣
coh

:=
k′

k

1

2πℏ
σcoh
4π

∑
j,j′

∫ ∞

−∞
⟨e−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t)⟩e−iωtdt (4.2.1.38)

And second term is called incoherent scattering:

d2σ

dΩdE′

∣∣∣∣
inc

:=
k′

k

1

2πℏ
σinc
4π

∑
j

∫ ∞

−∞
⟨e−iq⃗·R⃗j(0)eiq⃗·R⃗j(t)⟩e−iωtdt (4.2.1.39)

614π is total solid angle for a sphere. This formulation is useful when we consider the total scattering cross section. For
example, let us consider the total scattering cross section of Eq.(4.2.1.54):

dσ

dΩ

∣∣∣∣sa
inc

=
σinc

4π
N

→ σtot =

∫
dσ

dΩ

∣∣∣∣sa
inc

dΩ = Nσinc

This formulation gives us the clear physical meaning of σinc; Total scattering cross section is the sum of σinc.
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4.2 Neutron scattering

Here, we define the following six functions:

I(q⃗, t) :=
1

N

∑
j,j′

⟨e−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t)⟩ (4.2.1.40)

Is(q⃗, t) :=
1

N

∑
j

⟨e−iq⃗·R⃗j(0)eiq⃗·R⃗j(t)⟩ (4.2.1.41)

G(r⃗, t) :=
1

(2π)3

∫
I(q⃗, t)e−iq⃗·r⃗dq⃗ =

1

(2π)3
1

N

∫ ∑
j,j′

⟨e−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t)⟩e−iq⃗·r⃗dq⃗ (4.2.1.42)

Gs(r⃗, t) :=
1

(2π)3

∫
Is(q⃗, t)e

−iq⃗·r⃗dq⃗ =
1

(2π)3
1

N

∫ ∑
j

⟨e−iq⃗·R⃗j(0)eiq⃗·R⃗j(t)⟩e−iq⃗·r⃗dq⃗ (4.2.1.43)

S(q⃗, ω) :=
1

2πℏ

∫
I(q⃗, t)e−iωtdt =

1

2πℏ
1

N

∫ ∑
j,j′

⟨e−iq⃗·R⃗j′ (0)eiq⃗·R⃗j(t)⟩e−iωtdt (4.2.1.44)

Si(q⃗, ω) :=
1

2πℏ

∫
Is(q⃗, t)e

−iωtdt =
1

2πℏ
1

N

∫ ∑
j

⟨e−iq⃗·R⃗j(0)eiq⃗·R⃗j(t)⟩e−iωtdt (4.2.1.45)

where N is the number of molecules in the irradiated volume. Notice that Is(q⃗, t) is similar to the self-

intermediate scattering function defined by Eq.(4.1.2.14) 62. Gs(r⃗, t) is similar to Eq.(4.1.2.15) (Fig.4.7). By

using Eq.(4.2.1.44) and (4.2.1.45), we can represent Eq.(4.2.1.38) and (4.2.1.39) as follows:

d2σ

dΩdE′

∣∣∣∣
coh

:=
σcoh
4π

k′

k
NS(q⃗, ω) (4.2.1.46)

d2σ

dΩdE′

∣∣∣∣
inc

:=
σinc
4π

k′

k
NSi(q⃗, ω) (4.2.1.47)

Most of the quasi-elastic neutron scattering techniques measure S(q⃗, ω) and Si(q⃗, ω) while neutron spin echo

technique measures I(q⃗, t) and Is(q⃗, t) as shown later.

Cross sections Eq.(4.2.1.38) and (4.2.1.39) are composed of time dependent quantities. However, some

measurements such as small-angle neutron scattering do not care about the time dependence. From now, we

derive more brief formulation of neutron scattering. Our starting point is the thermal average of Eq.(4.2.1.19):

d2σ

dΩdE′ =
∑
λ

pλ
∑
λ′

d2σ

dΩdE′

∣∣∣∣
λ→λ′

=
k′

k

∑
λ

pλ
∑
λ′

∣∣∣∣∣∣
∑
j

bj⟨λ′|eiq⃗·R⃗j |λ⟩

∣∣∣∣∣∣
2

δ(Eλ − Eλ′ + E − E′) (4.2.1.48)

Now we decompose the matrix elements into the coherent and incoherent term:∣∣∣∣∣∣
∑
j

bj⟨λ′|eiq⃗·R⃗j |λ⟩

∣∣∣∣∣∣
2

=
∑
j ̸=j′

bjbj′⟨λ|e−iq⃗·R⃗j′ |λ′⟩⟨λ′|eiq⃗·R⃗j |λ⟩+
∑
j

b2j |⟨λ′|eiq⃗·R⃗j |λ⟩|2

→ (b)2
∑
j ̸=j′
⟨λ|e−iq⃗·R⃗j′ |λ′⟩⟨λ′|eiq⃗·R⃗j |λ⟩+ b2

∑
j

|⟨λ′|eiq⃗·R⃗j |λ⟩|2

+ (b)2
∑
j

|⟨λ′|eiq⃗·R⃗j |λ⟩|2 − (b)2
∑
j

|⟨λ′|eiq⃗·R⃗j |λ⟩|2

= (b)2

∣∣∣∣∣∣
∑
j

⟨λ′|eiq⃗·R⃗j |λ⟩

∣∣∣∣∣∣
2

+ (b2 − (b)2)
∑
j

|⟨λ′|eiq⃗·R⃗j |λ⟩|2 (4.2.1.49)

62Notice that r⃗j in Eq.(4.1.2.14) implies the position of an atom and R⃗j in Eq.(4.2.1.41) implies the position of a nucleus.
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4.2 Neutron scattering

Substitute Eq.(4.2.1.49) into Eq.(4.2.1.48):

d2σ

dΩdE′ =
σcoh
4π

k′

k

∑
λ

pλ
∑
λ′

∣∣∣∣∣∣
∑
j

⟨λ′|eiq⃗·R⃗j |λ⟩

∣∣∣∣∣∣
2

δ(Eλ − Eλ′ + E − E′)

+
σinc
4π

k′

k

∑
λ

pλ
∑
λ′

∑
j

|⟨λ′|eiq⃗·R⃗j |λ⟩|2δ(Eλ − Eλ′ + E − E′)

=:
d2σ

dΩdE′

∣∣∣∣
coh

+
d2σ

dΩdE′

∣∣∣∣
inc

(4.2.1.50)

Now we apply the method called static approximation. In this approximation, we assume that the energy

transfer is negligible 63. Under this approximation, k = k′ and Eλ = Eλ′ :

d2σ

dΩdE′

∣∣∣∣sa
coh

→ σcoh
4π

∑
λ

pλ
∑
λ′

∣∣∣∣∣∣
∑
j

⟨λ′|eiq⃗·R⃗j |λ⟩

∣∣∣∣∣∣
2

δ(E − E′)

=
σcoh
4π

∑
λ

pλ
∑
λ′

∑
j,j′

⟨λ|e−iq⃗·R⃗j′ |λ′⟩⟨λ′|eiq⃗·R⃗j |λ⟩δ(E − E′)

=
σcoh
4π

∑
λ

pλ
∑
j,j′

⟨λ|e−iq⃗·(R⃗j−R⃗j′ )|λ⟩δ(E − E′) (4.2.1.51)

Here, we used the closure relation, Eq.(4.2.1.24)64. Then integrate with respect to E′ and substitute

Eq.(4.2.1.40):

dσ

dΩ

∣∣∣∣sa
coh

:=

∫
d2σ

dΩdE′

∣∣∣∣sa
coh

dE′ =
σcoh
4π

∑
j,j′

⟨eiq⃗·(R⃗j−R⃗j′ )⟩ = σcoh
4π

NI(q⃗, 0) (4.2.1.52)

Similarly, apply the static approximation to incoherent part:

d2σ

dΩdE′

∣∣∣∣sa
inc

→ σinc
4π

∑
λ

pλ
∑
λ′

∑
j

|⟨λ′|eiq⃗·R⃗j |λ⟩|2δ(E − E′)

=
σinc
4π

∑
λ

pλ
∑
λ′

∑
j

⟨λ|e−iq⃗·R⃗j |λ′⟩⟨λ′|eiq⃗·R⃗j |λ⟩δ(E − E′)

=
σinc
4π

∑
λ

pλNδ(E − E′) (4.2.1.53)

Then integrate with respect to E′:

dσ

dΩ

∣∣∣∣sa
inc

:=

∫
d2σ

dΩdE′

∣∣∣∣sa
inc

dE′ =
σinc
4π

N (4.2.1.54)

These simple formulations are valid when we do not care the energy transfer. These are also derived from

classical calculation. The amplitude of the scattering wave from an atom whose position is R⃗j is represented

as follows [14]:

Aj(q⃗, t) = A0bje
i(ωt−q⃗·R⃗j) (4.2.1.55)

63In strict derivation, δ(ω) is expanded like Eq.(4.2.1.20). Through this transformation, t is appeared in the formulation.
64Notice that E′ does not depend on the state |λ′⟩ in this approximation since Eλ = Eλ′ .
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4.2 Neutron scattering

bj is determined by a type of nucleus and called scattering length, which is the same as that in Eq.(4.2.1.17).

Notice that we ignore the time-dependence of R⃗j . Then, total amplitude from an irradiated volume is the

sum of Eq.(4.2.1.55) whose R⃗ is within the irradiated volume:

A(q⃗, t) = A0

∑
j

bje
i(ωt−q⃗·R⃗j) (4.2.1.56)

The flux of scattering wave, J , is a square of the total amplitude:

J(q⃗) = A∗(q⃗, t)A(q⃗, t) = A2
0

∑
j,j′

bjbj′e
−iq⃗·(R⃗j−R⃗j′ ) (4.2.1.57)

The differential scattering cross section is a normalized quantity of J :

dσ

dΩ
=
J(q⃗)

A2
0

= (b)2
∑
j ̸=j′

e−iq⃗·(R⃗j−R⃗j′ ) + b2
∑
j

1

= (b)2
∑
j ̸=j′

e−iq⃗·(R⃗j−R⃗j′ ) + b2
∑
j

1 + (b)2
∑
j

1− (b)2
∑
j

1

= (b)2
∑
j,j′

e−iq⃗·(R⃗j−R⃗j′ ) + (b2 − (b)2)N

=
σcoh
4π

NI(q⃗, 0) +
σinc
4π

N (4.2.1.58)

Here, we assume that bj is independent from other atoms. This result is the same as the static approximation

of strict derivation (Eq.(4.2.1.52) and (4.2.1.54)).
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4.2.2 Small-angle neutron scattering

In the case of small-angle neutron scattering, phase difference of scattered wave originated from close

atoms (around 1 Å) becomes very small (Figure 4.15). In this case, instead of one atom, we can regard one

monomer as a scatterer. Here, scattering length, b (Table 4.1), is averaged over the volume of the monomer,

∆ρvn. For example, the scattering length density of H2O is calculated as follows.

∆ρ =

∑
b

mol. density
=

(2× (−3.7390) + 5.803)× 10−15 m

(18.0 g mol−1 / 6.02214× 1023 g mol−1)/1.00 g cm−3
= −5.61× 109 cm−2

(4.2.2.1)

The scattering length density of several representative materials are shown in Table 4.2. By using the

mixture of hydrated and deuterated solvent, we can tune the scattering length density of solvents as shown

in Figure 4.16. This is one of the characteristic feature of neutron scattering.

Figure 4.15: Relationship between phase difference and scattering angle.
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Figure 4.16: Effect of deuteration of solvent on their scattering length density. As a reference, scattering

length densities of some polymers (not deuterated one) are also shown.
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4.2 Neutron scattering

Table 4.1: List of scattering length [66]
Atom bcoh / fm binc / fm

H -3.7390 —
1H -3.7406 25.274
2H 6.671 4.04
C 6.6460 —
N 9.36 —
O 5.803 —
F 5.654 —
Si 4.1491 —
S 2.847 —

Table 4.2: List of scattering length density
Substance Chemical formula Density / g cm−3 ∆ρ / ×109 cm−2

Water H2O 1.00 -5.60
Deuterated water D2O 1.1044 63.6

Methanol CH4O 0.7918 -3.73
Ethanol C2H6O 0.789 -3.44
Toluene C7H8 0.8669 9.41
THF C4H8O 0.89 1.84
DMSO C2H6OS 1.1004 -0.417
DMF C3H7NO 0.944 6.94

[C2mim][TFSA] C8H11N3O4F6S2 1.53 24.2
PS C8H8 1.05 14.1
PEG C2H4O 1.13 6.40
PDMS C2H6OSi 0.965 0.635
PNIPA C6H11NO — 7.4

4.2.3 Scattering by polarized neutrons

Until now, we do not care about spin. In general, neutrons and nuclei have their own spin. For example,

a neutron has spin 1/2, a nucleus of hydrogen has spin 1/2, a nucleus of deuterium has spin 1 and so on.

Although the manipulation of nuclei spin is difficult, we can choose the spin of neutrons by using appropriate

apparatus such as a supermirror. Neutrons whose spin state is determined are called polarized. From now,

we see the result of scattering from polarized neutrons.

Neutrons have spin S = 1/2. Let us assume that the nuclei have spin I. The quantum state of neutrons

and nuclei are described as follows:

|S, sz⟩ = |1/2, 1/2⟩, |1/2,−1/2⟩ (4.2.3.1)

|I, Iz⟩ = |I, I⟩, |I, I − 1⟩, . . . , |I,−I⟩ (4.2.3.2)

Operators for these eigenstates are defined as follows:

Ŝ2|S, sz⟩ = S(S + 1)ℏ2|S, sz⟩ (4.2.3.3)

Ŝz|S, sz⟩ = szℏ|S, sz⟩ (4.2.3.4)

Î2|I, Iz⟩ = I(I + 1)ℏ2|I, Iz⟩ (4.2.3.5)

Îz|I, Iz⟩ = Izℏ|I, Iz⟩ (4.2.3.6)

To determine the wavefunction of the whole system, ψk⃗χλ, now we have to designate the total spin of the
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system, t. Since neutrons have spin 1/2, whole system is classified as up one and down one:

t̂ |+ ⟩ :=
(
I +

1

2

)
|+ ⟩ (4.2.3.7)

t̂ | − ⟩ :=
(
I − 1

2

)
| − ⟩ (4.2.3.8)

where t̂ is the operator for the whole system:

t̂ := Î + Ŝ (4.2.3.9)

and |+ ⟩ and | − ⟩ is the representation of whole system:

|S, sz, I, Iz⟩ =

|1/2, 1/2, I, Iz⟩ =: |+ ⟩

|1/2,−1/2, I, Iz⟩ =: | − ⟩

To consider the effect of polarization, we have to assume that the scattering length becomes an operator

whose eigenvalue is the scattering length. This is because the scattering length depends on the spin state of

neutrons and nuclei. From now, we derive the formulation of b̂ such that:

b̂ |+ ⟩ = b+ |+ ⟩ (4.2.3.10)

b̂ | − ⟩ = b− | − ⟩ (4.2.3.11)

Let us see the operator t̂2: 65

t̂2 = Î2 + Ŝ2 + 2Î · Ŝ (4.2.3.12)

Except for Î · Ŝ, we can calculate the eigenvalues of each term:

t̂2 |+ ⟩ =
(
I +

1

2

)(
I +

3

2

)
ℏ2 |+ ⟩ (4.2.3.13)

t̂2 | − ⟩ =
(
I − 1

2

)(
I +

1

2

)
ℏ2 | − ⟩ (4.2.3.14)

Î2 |+ ⟩ = I(I + 1)ℏ2 |+ ⟩ (4.2.3.15)

Î2 | − ⟩ = I(I + 1)ℏ2 | − ⟩ (4.2.3.16)

Ŝ2 |+ ⟩ = 3

4
ℏ2 |+ ⟩ (4.2.3.17)

Ŝ2 | − ⟩ = 3

4
ℏ2 | − ⟩ (4.2.3.18)

From Eq.(4.2.3.12) ∼ (4.2.3.18), we can derive the eigenvalue of Î · Ŝ:

2Î · Ŝ |+ ⟩ = (t̂2 − Î2 − Ŝ2) |+ ⟩ = Iℏ2 |+ ⟩ (4.2.3.19)

2Î · Ŝ | − ⟩ = (t̂2 − Î2 − Ŝ2) | − ⟩ = −(I + 1)ℏ2 | − ⟩ (4.2.3.20)

65Note that Î and Ŝ commute.
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By using the operator Î · Ŝ, let us define b̂ as follows:

b̂ := A+BÎ · Ŝ (4.2.3.21)

where A and B are the constants which we determine. Both |+ ⟩ and | − ⟩ are the eigenfunction of this

operator:

b̂ |+ ⟩ = b+ |+ ⟩ =
(
A+B

Iℏ2

2

)
|+ ⟩ (4.2.3.22)

b̂ | − ⟩ = b− | − ⟩ =
(
A−B (I + 1)ℏ2

2

)
| − ⟩ (4.2.3.23)

Solve Eq.(4.2.3.22) and (4.2.3.23) for A and B:

A =
1

2I + 1
((I + 1)b+ + Ib−) (4.2.3.24)

B =
2

(2I + 1)ℏ2
(b+ − b−) (4.2.3.25)

Substitute Eq.(4.2.3.24) and (4.2.3.25) into Eq.(4.2.3.21):

b̂ =
1

2I + 1
((I + 1)b+ + Ib−) +

2

(2I + 1)ℏ2
(b+ − b−)Î · Ŝ (4.2.3.26)

Let us consider the physical meaning of A. From Eq.(4.2.3.7) and (4.2.3.8), we can see that the number of

states is (I + 1/2)× 2 + 1 = 2I + 2 for |+ ⟩ and (I − 1/2)× 2 + 1 = 2I for | − ⟩. Take the number of state

into account, we can write the average scattering length as A (Eq.(4.2.3.24)).

By using Eq.(4.2.3.26), we can calculate the spin-dependent scattering. Our starting point is Eq.(4.2.1.19).

Here, |λ⟩ is modified as |σ, λ⟩ where σ implies the spin state of neutrons, | ↑ ⟩ (sz = 1/2) or | ↓ ⟩ (sz = −1/2).
In addition to this, scattering length is modified as the operator (bj → b̂j)

66:

d2σ

dΩdE′

∣∣∣∣
σ,λ→σ′,λ′

=
k′

k

∣∣∣∣∣∣
∑
j

b̂j⟨σ′, λ′|eiq⃗·R⃗j |σ, λ⟩

∣∣∣∣∣∣
2

δ(Eλ − Eλ′ + E − E′)

=
k′

k

∣∣∣∣∣∣
∑
j

⟨λ′|eiq⃗·R⃗j ⟨σ′|b̂j |σ⟩|λ⟩

∣∣∣∣∣∣
2

δ(Eλ − Eλ′ + E − E′) (4.2.3.27)

The effect of spin is appeared only in the term ⟨σ′|b̂j |σ⟩. From now, we evaluate this term. Let us calculate

the eigenvalue of | ↑ ⟩ for b̂ by using Eq.(4.2.3.21):

b̂ | ↑ ⟩ = (A+B(ÎxŜx + ÎyŜy + ÎzŜz)) | ↑ ⟩

= A | ↑ ⟩+ ℏ
2
BÎz | ↑ ⟩+

ℏ
2
B(Îx + iÎy) | ↓ ⟩ (4.2.3.28)

b̂ | ↓ ⟩ = (A+B(ÎxŜx + ÎyŜy + ÎzŜz)) | ↓ ⟩

= A | ↓ ⟩ − ℏ
2
BÎz | ↓ ⟩+

ℏ
2
B(Îx − iÎy) | ↓ ⟩ (4.2.3.29)

66bj does not relate to |λ⟩ and |λ′⟩ since we do not consider the magnetic scattering.
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Here, we used the following relationship:

Ŝx | ↑ ⟩ =
ℏ
2
| ↓ ⟩ (4.2.3.30)

Ŝx | ↓ ⟩ =
ℏ
2
| ↑ ⟩ (4.2.3.31)

Ŝy | ↑ ⟩ = i
ℏ
2
| ↓ ⟩ (4.2.3.32)

Ŝy | ↓ ⟩ = −i
ℏ
2
| ↑ ⟩ (4.2.3.33)

Ŝz | ↑ ⟩ =
ℏ
2
| ↑ ⟩ (4.2.3.34)

Ŝz | ↓ ⟩ = −
ℏ
2
| ↓ ⟩ (4.2.3.35)

By using Eq.(4.2.3.28) and (4.2.3.29), four matrix elements are calculated as follows:

⟨ ↑ | b̂ | ↑ ⟩ = A+
ℏ
2
BÎz (4.2.3.36)

⟨ ↓ | b̂ | ↑ ⟩ = ℏ
2
B(Îx + iÎy) (4.2.3.37)

⟨ ↓ | b̂ | ↓ ⟩ = A− ℏ
2
BÎz (4.2.3.38)

⟨ ↑ | b̂ | ↓ ⟩ = ℏ
2
B(Îx − iÎy) (4.2.3.39)

Notice that | ↑ ⟩ and | ↓ ⟩ are orthogonal.

From now, we average those matrix elements over the all nuclear spin states and isotopes. We write ⟨· · · ⟩sp
for nuclear spin average and ⟨· · · ⟩iso for isotope average. We assume that the nuclear spin is randomly

oriented:

⟨Ix⟩sp = ⟨Iy⟩sp = ⟨Iz⟩sp = 0 (4.2.3.40)

For non spin-flip process:

⟨⟨⟨ ↑ | b̂ | ↑ ⟩⟩sp⟩iso = ⟨⟨⟨ ↓ | b̂ | ↓ ⟩⟩sp⟩iso = ⟨A⟩iso (4.2.3.41)

For spin-flip process:

⟨⟨⟨ ↓ | b̂ | ↑ ⟩⟩sp⟩iso = ⟨⟨⟨ ↑ | b̂ | ↓ ⟩⟩sp⟩iso = 0 (4.2.3.42)

Substitute (4.2.3.41) and (4.2.3.42) into Eq.(4.2.1.35), we can apply the previous results to the case of

polarized neutron scattering. For non spin-flip process:

σ↑↑
coh = σ↓↓

coh = 4π⟨A⟩2iso (4.2.3.43)

For spin-flip process:

σ↓↑
coh = σ↑↓

coh = 0 (4.2.3.44)

These results show that there is no spin-flip process for coherent scattering.
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Then we calculate the cross section for incoherent scattering. What we have to calculate is b2. Since we

assume that the nuclear spin is randomly oriented:

⟨I2x⟩sp = ⟨I2y ⟩sp = ⟨I2z ⟩sp =
1

3
I(I + 1)ℏ2 (4.2.3.45)

Notice that the eigenvalue of |+ ⟩ and | − ⟩ for Î2 is I(I + 1)ℏ2 (Eq.(4.2.3.15) and (4.2.3.16)). By using

Eq.(4.2.3.40) and (4.2.3.45), b2 for each process is calculated as follows:

⟨⟨|⟨ ↑ | b̂ | ↑ ⟩|2⟩sp⟩iso = ⟨⟨A2 +
ℏ2

4
B2I2z + ℏABIz⟩sp⟩iso = ⟨A2⟩iso +

ℏ4

4

1

3
⟨B2I(I + 1)⟩iso (4.2.3.46)

⟨⟨|⟨ ↓ | b̂ | ↑ ⟩|2⟩sp⟩iso = ⟨⟨
ℏ2

4
B2(I2x + I2y )⟩sp⟩iso =

ℏ4

4

2

3
⟨B2I(I + 1)⟩iso (4.2.3.47)

⟨⟨|⟨ ↓ | b̂ | ↓ ⟩|2⟩sp⟩iso = ⟨A2⟩iso +
ℏ4

4

1

3
⟨B2I(I + 1)⟩iso (4.2.3.48)

⟨⟨|⟨ ↑ | b̂ | ↓ ⟩|2⟩sp⟩iso =
ℏ4

4

2

3
⟨B2I(I + 1)⟩iso (4.2.3.49)

Then let us substitute Eq.(4.2.3.41), (4.2.3.42), (4.2.3.46) ∼ (4.2.3.49) into Eq.(4.2.1.36). For non spin-flip

process:

σ↑↑
inc = σ↓↓

inc = 4π

(
⟨A2⟩iso − ⟨A⟩2iso +

ℏ4

4

1

3
⟨B2I(I + 1)⟩iso

)
(4.2.3.50)

For spin-flip process:

σ↓↑
inc = σ↑↓

inc = 4π
ℏ4

4

2

3
⟨B2I(I + 1)⟩iso (4.2.3.51)

If the nuclei in the scattering system has I = 0, there is also no spin-flip process for incoherent scattering.

A hydrogen atom is the most strong incoherent scatterer in the polymer system. If we do not use deuterium

substitution, there is only one isotope in the polymer: 1H (I = 1/2). In this case:

⟨A2⟩iso = ⟨A⟩2iso when there is only one isotope (4.2.3.52)

This means that:

σinc(non spin-flip) =
1

2
σinc(spin-flip) (4.2.3.53)

This result implies that the incoherent scattering weaken the signal of neutron spin echo.
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4.2.4 Neutron spin echo

Neutron spin echo technique is developed by F. Mezei in 1972 [67]. From now, we see the principle of

neutron spin echo [68]. In the later section, I introduce the instrumentation of neutron spin echo.

Assume that the neutron spin is considered to be the classical vector quantity. When the spin S⃗ is in the

magnetic field B⃗, this spin precesses around the field direction since this spin feels the torque N⃗ (Fig.4.17):

N⃗ = S⃗ × B⃗ (4.2.4.1)

Figure 4.17: Precession of spin.

This precession is called Larmor precession. Larmor precession angle in a second is given by:

γL|B⃗| (4.2.4.2)

where γL is called gyromagnetic ratio.

Let us consider the case where a neutron goes through in a homogeneous magnetic field B⃗1 called precession

field. By using the neutron’s velocity, v, and the length of the precession field, l1, we can calculate the total

precession angle, φ:

φ = γL|B⃗1|
l1
v

(4.2.4.3)

After this precession, we again make this neutron go thorough in the different precession field B⃗2 whose

direction67 is oppose to B⃗1. The length of the field is l2. Then the total precession angle is:

φ = γL|B⃗1|
l1
v
− γL|B⃗2|

l2
v

(4.2.4.4)

When the following relation is achieved, the total precession angle is zero:

|B⃗1|l1 = |B⃗2|l2 (4.2.4.5)

This condition is called “spin echo condition” (Fig.4.18). Notice that the velocity of neutrons is not included

in Eq.(4.2.4.5). This means that the total spin of polarized neutrons is precisely recovered after going through

the two precession fields regardless of their velocity. Notice that the total spin becomes zero after passing

the first precession field since the precession angle has broad distribution corresponding to their velocity.

This recover is the phenomenon called neutron spin echo.

67In the case of the neutron spin echo experiment, the direction of the two precession fields are the same as mentioned later.
Instead of this, the spin itself is rotated 180◦.
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： ：

Figure 4.18: Concept of neutron spin echo. Here, we assume that v < v′ < v′′. Total spin of neutrons

becomes small by the first precession field. However, second precession field reverse the spin of neutrons. As

a result, total spin recovers completely after the second precession field.

Sample

： ：

Figure 4.19: Disturbance of spin echo in the case of quasi-elastic scattering. Here, we assume that v1 <

v2 < v′1 = v′2 < v′′2 < v′′1 . Since a slow neutron (v1) is accelerated, the time in the second precession field is

shorter than that of the first precession field. As a result, the spin of the slow neutron does not go back to

the original direction. Similar to this, the spin of a fast neutron (v′′1 ) overruns the original direction.

Neutron spin echo spectrometer utilizes this phenomenon to obtain high resolution quasi-elastic neutron

scattering data. When the neutron after passing the first precession field is scattered quasi-elastically, the

velocity is slightly changed. As a result, neutron spin echo becomes incomplete (Fig.4.19). Here, we assume

that the spin does not change by scattering68. In this case, the total precession angle is written as:

φ = γL|B⃗1|
l1
v1
− γL|B⃗2|

l2
v2

(4.2.4.6)

where v1 is the velocity in the first precession field and v2 is that in the second precession field.

We can relate this velocity change to the energy transfer, ℏω, by the following equation:

ℏω =
mn(v

2
2 − v21)
2

(4.2.4.7)

68If we consider the change of the neutron spin, we should use the relation derived in the previous subsection. We treat this
issue at the end of this subsection.
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where mn is the mass of a neutron.

Since what we obtain from the neutron spin echo experiment is φ, our aim is to relate φ to ω. From now,

we demonstrate that the deviation of φ from its average value is proportional to the deviation of ω under a

certain condition, not Eq.(4.2.4.5).

Although Eq.(4.2.4.7) is valid for each neutron, each neutron has different initial velocity, v1. From now,

we divide each φ and ω into the two components: the average value and the deviation:

φ = φ+ δφ (4.2.4.8)

ω = ω + δω (4.2.4.9)

where

φ := γL|B⃗1|
l1
v1
− γL|B⃗2|

l2
v2

(4.2.4.10)

ω :=
mn(v2

2 − v12)
2ℏ

(4.2.4.11)

δφ and δω differ from one neutron to another. First, we represent δφ as a function of δv1 := v1 − v1 and

δv2 := v2 − v2. We use the following Taylor expansion:

(1 + δ)−1 = 1− δ + δ2 − δ3 + · · · (4.2.4.12)

Then φ can be expanded as follows:

φ = γL|B⃗1|
l1

v1 + δv1
− γL|B⃗2|

l2
v2 + δv2

= γL|B⃗1|l1
(

1

v1
− δv1

v1
2

)
− γL|B⃗2|l2

(
1

v2
− δv2

v2
2

)
+O((δv)2)

= φ− γL|B⃗1|l1
v1

2 δv1 +
γL|B⃗2|l2
v2

2 δv2 +O((δv)2) (4.2.4.13)

Similarly, ω can be expanded as follows:

ω =
mn

2ℏ
((v2 + δv2)

2 − (v1 + δv1)
2)

=
mn

2ℏ
(v2

2 + 2v2δv2 − v12 − 2v1δv2) +O((δv)2)

= ω − mn

ℏ
v1δv1 +

mn

ℏ
v2δv2 +O((δv)2) (4.2.4.14)

By substituting Eq.(4.2.4.13), (4.2.4.14) into Eq.(4.2.4.8), (4.2.4.9):

δφ ≃ −γL|B⃗1|l1
v1

2 δv1 +
γL|B⃗2|l2
v2

2 δv2 (4.2.4.15)

δω ≃ −mn

ℏ
v1δv1 +

mn

ℏ
v2δv2 (4.2.4.16)

As you can see, there is no special relationship between δφ and δω. However, we can set |B⃗1| and |B⃗2| so
as to realize the following linear relationship:

δφ = tδω (4.2.4.17)
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where t is the proportional constant. This constant is called Fourier time since it has the dimension of time.

Let us see when this proportionality is achieved. When Eq.(4.2.4.17) works out, the coefficient of δv1 and

δv2 should be the same in both sides respectively since δv1 and δv2 are independent variables. Then,

−γL|B⃗1|l1
v1

2 = −tmn

ℏ
v1 (4.2.4.18)

γL|B⃗2|l2
v2

2 = t
mn

ℏ
v2 (4.2.4.19)

By using these relations, we can see the representation of t:

t =
ℏγL|B⃗1|l1
mnv1

3 =
ℏγL|B⃗2|l2
mnv2

3 (4.2.4.20)

From this formulation, neutron spin echo condition should be modified as follows:

|B⃗1|l1
v1

3 =
|B⃗2|l2
v2

3 (4.2.4.21)

Notice that this equation is reduced to Eq.(4.2.4.5) when v1 = v2. In the case of quasi-elastic scattering,

we can use Eq.(4.2.4.5). However, we have to use more general representation, Eq.(4.2.4.21), in the case of

inelastic scattering such as the phonon scattering.

What we measure in the neutron spin echo experiment is not φ for each neutron but the ensemble-

averaged φ. Usually we extract the z component of neutron spin at the end of the second precession field.

The z component at this point is represented by (1 + cosφ)/269. Since the scattering probability with the

energy transfer ω is proportional to S(q⃗, ω) for coherent scattering and Si(q⃗, ω) for incoherent scattering

(Eq.(4.2.1.46) and (4.2.1.47)), ensemble-averaged z component for coherent scattering, Jcoh, for a neutron

whose initial energy is E is70:

Jcoh ∝
∫ ∞

−E/ℏ
S(q⃗, ω)

1 + cosφ

2
dω

=

∫ ∞

−E/ℏ−ω
S(q⃗, ω + ω)

1 + cos(φ+ δφ)

2
dω

=

∫ ∞

−E/ℏ−ω
S(q⃗, ω + ω)

1 + cos(φ+ ωt)

2
dω (4.2.4.22)

Although E varies from each neutron, it does not matter since we can approximate that −E → −∞ in

the case where only small energy transfer can occur. Then:

Jcoh ∝
∫ ∞

−∞
S(q⃗, ω + ω)

1 + cos(φ+ ωt)

2
dω (4.2.4.23)

Until now, we regard that the spin component is projected onto z direction which is defined as the direction

of φ = 0. However, we can arbitrary decide the direction of projection. If we project the spin component

69Although z component itself should be represented as z = cosφ, we modified this representation since what we obtain
should be 0 < z < 1. This contradiction arise from the oversimplification that we regard the spin as a classical vector quantity.

70The least value of ω is achieved when v2 = 0. In this case, ℏω = −E.
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onto the direction of φ, we can rewrite Eq.(4.2.4.23) to a more convenient form71:

Jcoh ∝
∫ ∞

−∞
S(q⃗, ω + ω)

1 + cosωt

2
dω (4.2.4.24)

In the case of quasi-elastic scattering, ω = 0:

Jcoh ∝
∫ ∞

−∞
S(q⃗, ω)

1 + cosωt

2
dω (4.2.4.25)

Since S(q⃗, ω) is an even function72, we can rewrite Eq.(4.2.4.25):

Jcoh ∝
∫ ∞

−∞
S(q⃗, ω)dω +

∫ ∞

−∞
S(q⃗, ω) cos(ωt)dω

=

∫ ∞

−∞
S(q⃗, ω)dω +

∫ ∞

−∞
S(q⃗, ω) cos(ωt)dω +

∫ ∞

−∞
S(q⃗, ω)i sin(ωt)dω

=

∫ ∞

−∞
S(q⃗, ω)dω +

∫ ∞

−∞
S(q⃗, ω)eiωtdω

∝ I(q⃗, 0) + I(q⃗, t) (4.2.4.26)

We can calculate that for incoherent scattering. The proportion of coherent and incoherent component is

determined by their scattering cross sections (Eq.(4.2.1.46) and (4.2.1.47)). Therefore, the signal of neutron

spin echo, J , is represented as follows:

J ∝ σcoh(I(q⃗, 0) + I(q⃗, t))

+ (σinc(non spin-flip)− σinc(spin-flip))(Is(q⃗, 0) + Is(q⃗, t)) (4.2.4.27)

Here, we have to care the polarization-dependence of neutron scattering. As mentioned before (Eq.(4.2.3.50)

and (4.2.3.51)), incoherent scattering partly shows spin-flip when the incident neutrons are polarized. In the

case where the source of incoherent scattering is mainly 1H, we can calculate how much the spins are flipped

(Eq.(4.2.3.53)):

σinc(non spin-flip) =
1

3
σinc (4.2.4.28)

σinc(spin-flip) =
2

3
σinc (4.2.4.29)

Taking this fact into consideration, Eq.(4.2.4.27) is represented as follows:

J ∝ σcoh(I(q⃗, 0) + I(q⃗, t))− 1

3
σinc(Is(q⃗, 0) + Is(q⃗, t)) (4.2.4.30)

Therefore we can obtain I(q⃗, t) and Is(q⃗, t) independently from the spin echo experiment by changing the

ratio of σcoh and σinc.

Here, I would like to show the principle of detailed balance. Let us start from the coherent part of

71In the case of symmetric quasi-elastic neutron scattering, φ = 0.
72From the principle of detailed balance, S(q⃗,−ω) = exp(−ℏωβ)S(q⃗, ω) where β = (kBT )

−1 is inverse temperature. In the
case of quasi elastic scattering, exp(−ℏωβ) ∼ 1 and S(q⃗, ω) becomes an even function since ℏω ≪ kBT . Notice that ℏω is neV
order and kBT is meV order.
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Eq.(4.2.1.50):

d2σ

dΩdE′

∣∣∣∣
coh

=
σcoh
4π

k′

k

∑
λ

e−βEλ

Z

∑
λ′

∣∣∣∣∣∣
∑
j

⟨λ′|eiq⃗·R⃗j |λ⟩

∣∣∣∣∣∣
2

δ(Eλ − Eλ′ + ℏω) =
σcoh
4π

k′

k
NS(q⃗, ω) (4.2.4.31)

Here, we used Eq.(4.2.1.29) and (4.2.1.46). Then we can write S(q⃗, ω) as follows:

S(q⃗, ω) =
1

NZ

∑
λ,λ′

e−βEλ

∣∣∣∣∣∣
∑
j

⟨λ′|eiq⃗·R⃗j |λ⟩

∣∣∣∣∣∣
2

δ(Eλ − Eλ′ + ℏω) (4.2.4.32)

Let us substitute q⃗ → −q⃗ and ω → −ω. The physical meaning of this operation is the reverse process of

the scattering; |λ′⟩ is an initial state and |λ⟩ is a final state. Taking these facts into consideration, S(−q⃗,−ω)
can be represented as follows:

S(−q⃗,−ω) = 1

NZ

∑
λ,λ′

e−βEλ′

∣∣∣∣∣∣
∑
j

⟨λ|e−iq⃗·R⃗j |λ′⟩

∣∣∣∣∣∣
2

δ(Eλ′ − Eλ − ℏω)

= e−β(Eλ′−Eλ)
1

NZ

∑
λ,λ′

e−βEλ

∣∣∣∣∣∣
∑
j

⟨λ′|eiq⃗·R⃗j |λ⟩

∣∣∣∣∣∣
2

δ(Eλ − Eλ′ + ℏω)

= e−ℏωβS(q⃗, ω) (4.2.4.33)

Notice that the value of Eλ′ − Eλ(→ ℏω) does not depend on λ and λ′. Here we used the following facts:

δ(x) = δ(−x) (4.2.4.34)

⟨λ|Â|λ′⟩ = ⟨λ′|Â†|λ′⟩∗ (4.2.4.35)

where Â is an arbitrary operator.

The relationship represented by Eq.(4.2.4.33) is called the principle of detailed balance. This result is a

consequence of the Boltzmann distribution of |λ⟩ and |λ′⟩.
To realize a neutron spin echo experiment, we manipulate the spin of neutrons by using appropriate

devices [68]. The spin of neutrons is oriented randomly at the source. Therefore, we use the polarizer such

as a supermirror to align the spin of neutrons to the direction of their motion. We define this direction as

z. However, the direction of magnetic field is also z when the magnetic field is generated by a coil. Since

the spin cannot precess in this condition, we flip the spin of neutrons from z direction to x direction. This

manipulation is achieved by using the coil called π/2 flipper73. π/2 flipper is the device which impose the

magnetic field in the direction of x+ z. The neutron spin is rotated 180◦ around this axis and oriented to x

direction (Fig.4.20).

After this alignment, the neutrons enter the first precession field and rotate in xy plane. Since we use the

neutron beam without monochromating, neutrons have different velocities. Fast neutrons get out from the

precession field earlier than slow neutrons. As a result, the spin of neutrons with different velocity points to

different direction (Fig.4.21). Usually total spin of neutrons becomes zero at the end of precession field since

neutrons rotates approximately 10000 times in the precession field and small difference of velocity becomes

73This name is derived from the fact that the eventual spin change is π/2 (from z to x) although the spin rotates π around
x+ z direction.
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large difference of precession angle.

After getting out from the precession field, the neutron spin is rotated 180◦ around x axis (Fig.4.22). This

apparatus is called π flipper. We usually use π flipper instead of changing the direction of magnetic field in

the second precession field.

After passing the π flipper, the neutrons are precessed by the second precession field. If there is no energy

exchange (velocity change) between two precession fields, the direction of spins of all of the neutrons points

to x direction by applying strictly the same quantity of B⃗. As a result, the neutron spin echo is achieved in

x direction (Fig.4.23).

To detect this echo signal, we again move the spin to z direction by using π/2 flipper. This signal is finally

detected as the projection on z component (Fig.4.24).

If we put a sample between the π flipper and the second precession field, neutrons exchange their energy

with the sample. As a result of this quasi-elastic scattering, the velocity of neutrons can vary. Let us

assume that fast neutrons are decelerated and slow neutrons are accelerated (Fig.4.25). In this case, fast

neutrons precess more than the first precession field. In contrast to this, slow neutrons precess less than

the first precession field. As a result, the neutron spin echo becomes incomplete. This signal is moved to

z direction by using π/2 flipper (Fig.4.26). The projection on z component is smaller than that before the

first precession field. From this decrease, we can calculate how the energy exchange is occurred.

Summary of neutron spin echo spectrometer is shown in Fig.4.27 and 4.28.

As you can see, the rotation angle in π/2 flipper and π flipper depends on the neutron velocity. This effect

is discussed by Schärof by using Wolf net [68]. From now, we ignore this effect for simplicity.

In the actual measurements, we measure I(q⃗, t) for several values of q⃗ and t by changing the scattering

angle and the strength of magnetic fields with keeping the relationship Eq.(4.2.4.20). For each q⃗ and t, we

measure the echo as a function of the magnetic field applied to the second precision field to obtain accurate

data. Assume that we apply the additional magnetic field, δB, to the second precession coil. The effect of

Figure 4.20: Motion of neutron spin by first π/2 flipper. Upper : Definition of the coordinate axis. A blue

arrow implies the direction of magnetic field. A red arrow implies the motion of the total neutron spin.

Lower : Variation of the total neutron spin by the first π/2 flipper.
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Inside of

 precession field

Out of 

precession field

Figure 4.21: Motion of neutron spin in first precession field. Upper : Definition of the coordinate axis,

magnetic field and the motion of the total neutron spin. Lower : Variation of the neutron spins by the first

precession field. A red arrow implies a spin of a fast neutron. A green arrow implies a spin of a neutron

with average velocity. A blue arrow implies a spin of a slow neutron.

Figure 4.22: Motion of neutron spin by π flipper. Upper : Definition of the coordinate axis, magnetic field

and the motion of the total neutron spin. Lower : Variation of the total neutron spin by the π flipper. Red,

green and blue arrows implies a spin of a neutron with high, medium and low velocity, respectively.
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Inside of

 precession field

Out of 

precession field

Figure 4.23: Motion of neutron spin in second precession field. Upper : Definition of the coordinate axis,

magnetic field and the motion of the total neutron spin. Lower : Variation of the neutron spins by the

second precession field. Red, green and blue arrows implies a spin of a neutron with high, medium and low

velocity, respectively.

Figure 4.24: Motion of neutron spin by second π/2 flipper. Upper : Definition of the coordinate axis,

magnetic field and the motion of the total neutron spin. Lower : Variation of the total neutron spin by the

second π/2 flipper.
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Inside of

 precession field

Out of 

precession field

Figure 4.25: Motion of neutron spin in second precession field after quasi-elastic scattering. Here, we assume

that fast neutrons (a red arrow) are decelerated, neutrons with average velocity (a green arrow) do not

change their velocity and slow neutrons (a blue arrow) are accelerated. Upper : Definition of the coordinate

axis, magnetic field and the motion of the total neutron spin. Lower : Variation of the neutron spins by the

second precession field.

Figure 4.26: Motion of neutron spin by second π/2 flipper after quasi-elastic scattering. The assumption is

the same as Fig.4.25. Upper : Definition of the coordinate axis, magnetic field and the motion of the total

neutron spin. Lower : Variation of the total neutron spin by the second π/2 flipper.
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1st precession field 2nd precession field

 flipper 1st         flipper  2nd         flipper

Figure 4.27: Summary of neutron spin echo spectrometer without quasi-elastic scattering.

1st precession field 2nd precession field

 flipper  Sample 1st         flipper  2nd         flipper

Figure 4.28: Summary of neutron spin echo spectrometer with quasi-elastic scattering.

the deviation of the precession angle, δφ, is expressed by (Eq.(4.2.4.3)):

δφ =
γ(δB)l2

v

=
γmλl2
h

δB (4.2.4.36)

since v is represented by the following de Broglie wavelength, λ:

λ =
h

mv
(4.2.4.37)

Then (4.2.4.25) is modified as follows:

Jcoh ∝
∫ ∞

−∞
S(q⃗, ω)[1 + cos(ωt+ δφ)]dω (4.2.4.38)

Since S(q⃗, ω) is an even function,

Jcoh ∝
∫ ∞

−∞
S(q⃗, ω)dω +

∫ ∞

−∞
S(q⃗, ω) cos(ωt+ δφ)dω

= I(q⃗, 0) +

∫ ∞

−∞
S(q⃗, ω)[cos(ωt) cos(δφ) + sin(ωt) sin(δφ)]dω

= I(q⃗, 0) +

∫ ∞

−∞
S(q⃗, ω) cos(ωt) cos(δφ)dω

= I(q⃗, 0) + cos(δφ)I(q⃗, t)

= I(q⃗, 0) + cos

(
γmλl”
h

δB

)
I(q⃗, t) (4.2.4.39)

By using Eq.(4.2.4.39), we can obtain I(q⃗, t) by changing the value of δB slightly and fit the echo data

by a cosine function. The amplitude of the cosine function corresponds to I(q⃗, t) (Fig.4.29). For each q, we

conduct this scan around several points of B (Fig.4.30). Each B corresponds to one t point and the data of
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Figure 4.29: Measurement of one echo signal. (a) Experimental setup. (b) Measurement procedure. We

measure a degree of polarization with changing the strength of magnetic field slightly. As a result, we can

obtain the echo signal as a function of δB⃗. Usually, the amplitude attenuates because of the wide distribution

of λ.

Small

Large

Figure 4.30: Construction of relaxation. We measure the amplitude of each spin echo signal. The amplitudes

correspond to the values of normalized intermediate functions. This relaxation is usually represented by a

function of Fourier time, shown in Eq.(4.2.4.20).

relaxation can be obtained (Eq.(4.2.4.20)).

In the case of our measurement, we measured the polarization data at 27 points for each q and t with

changing δB74. We fit these data by using Eq.(4.2.4.39) and determine I(q⃗, t) as an amplitude of the echo.

In the case of pulse source, we do not have to care the distribution of λ since we can apply a time-of-flight

measurement. This means that the echo does not attenuate like Fig.4.30.

74In actual, we change the strength of the electric current applied to an electromagnetic coil.
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5 Characterization of Tetra-PEG gels

5.1 Introduction

In the next section, I introduce amphiphilic gels produced by solvent-induced aggregation. Before the

explanation about this amphiphilic gel, I would like to introduce the basic technique to produce it. In this

section, I introduced the gel called “Tetra-PEG gel”. Tetra-PEG gel is developed by Sakai et al. in 2008 [11]

(Figure 5.1). This gel is created by mixing two prepolymers. Each prepolymer is tetra-arm PEG. Two

prepolymer have different functional groups at the end of each arm. These functional groups react with each

other and create a gel. Many experimental results strongly suggest that this preparation scheme introduce

less inhomogeneities. In this section, I review the research related to Tetra-PEG gels from the viewpoint of

physical properties. In addition, I would like to mention more about my research related to the dynamic

behavior of Tetra-PEG gels in mesoscopic and microscopic scale.

NH2

NH2

NH2

H2N

COO-NHS

COO-NHS

COO-NHS
NHS-OOC

PEG

PEG

Figure 5.1: Preparation scheme of Tetra-PEG gels.

5.2 History of tough gels

As discussed in Section.3.2.1, the elasticity of polymer network is proportional to the number density of

polymer chains, ν. In actual case, we have to consider the imperfection of networks such as entanglement,

loop, loose ends and so on (Figure 5.2) [5]. Entanglement increases the number of crosslinks while loop and

loose ends have no effect on elasticity. Since the maximum number density of polymer chains are determined

by the preparation condition, the existence of loop and loose ends will weaken the network structure. By using

this classical model, elasticity of elastomer is explained [69]. The same discussion holds true for gel materials.

However, this kind of concept has been difficult to observe experimentally for gels. The reason is that it has

been impossible to stretch or compress gels without breaking. The number density of polymer chain within

gels is small because of the dilution by solvent. This means that the existence of inhomogeneities strongly

affects the structure compared to elastomers. When the force is applied to homogeneous gel materials, the

force is applied unevenly within the materials. As a result, weak parts become small cracks. These cracks

will propagate in the gel and finally the gel is broken in macroscopic scale. Although elastomers also contain

a lot of inhomogeneities, stress rupture less occurs compared to gel materials since the number density of

polymer chains is so high that the variability of applied force are suppressed. On the other hand, there

are strong demand of tough gels for biomedical and engineering applications (which I will introduce in the

following subsection). To overcome this difficulty, a lot of effort has been paid. Here I’m going to review

some representative tough gels developed recently. For recent reviews of tough gels, please refer to [70–74].
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Loose ends

EntanglementLoop

Figure 5.2: Inhomogeneities existing in conventional polymer network.

Slide-ring gel

Okumura and Ito first reported polyrotaxane gel, which is now usually called slide-ring gel [6]. The concept

of slide-ring gel was proposed by de Gennes first [75]. This gel has unique crosslinking system, which moves

along the main chain. The gel was prepared from polyrotaxane. Polyrotaxane is a polymer threading many

cyclic molecules. These cyclic molecules are trapped by the bulky structure at the ends of polyrotaxane. In

the first report of the slide-ring gel, PEG threading many α-cyclodextrin (CD) was used as a polyrotaxane.

After synthesizing this polyrotaxane molecule, α-CD from different polyrotaxane molecules are covalently

connected. As a result, two polyrotaxanes are interlocked by figure-of-eight crosslinks (Figure 5.3). Since the

crosslinking points of slide-ring gels are movable, concentration of stress on one point induced by stretching

will be relaxed. This effect is called pulley effect. Thanks to the pulley effect, the force applied to the gel is

distributed evenly and the extensibility of this gel is enhanced. For recent reviews of slide-ring gels, please

refer to [76].

Crosslink

Figure 5.3: Schematics for the preparation of a slide-ring gel.
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Nanocomposite gel

Haraguchi and Takehisa first reported network structure made from polymers and inorganic cray, named

nanocomposite gel [7]. In this system, polymerization starts from the monomer on the inorganic clay

(synthetic hectrite, ca. 30 nm ϕ (diameter) × 1 nm t (thickness)). Each clay is connected with the polymer

originated from itself (Figure 5.4). As a monomer, NIPA is used. In this case, the amide group in NIPA

will attach to the clay via hydrogen bonds. It is estimated that a few tens to more than 100 polymers grow

from one clay. The clay can be regarded as a multifunctional crosslinker. Since the number of crosslinking

point is much smaller compared to conventional polymer gels, the distance between crosslinking points are

much longer. This is the origin of high extensibility, up to 1000 %. Multifunctionality is also good for the

dissipation of local stress. Since there are a lot of polymer chains between each crosslinker, small cracks

originated from one polymer chain do not propagate to the whole. For recent reviews of nanocomposite gels,

please refer to [77].

Figure 5.4: Schematics for the preparation of a nanocomposite gel.

Double-network gel

Gong et al. firstly reported tough gels by using two polymer networks (PAMPS and PAAm) [8]. Their

synthetic scheme is a two-step network formation. First, PAMPS network is formed by conventional scheme

by using crosslinkers. After this first network is created, this gel is immersed in the pre-gel solution for

the second network. Since PAMPS is polyelectrolyte, the network is highly swollen. As a result, this first

network becomes rigid and brittle. Under the existence of first network, the soft, ductile PAAm network

is formed. Crosslinking for the second network is adjusted to low to make it soft. The gel created by this

scheme is named “double network gel” and shows excellent mechanical characteristics. Their compression

experiment showed that the double network can sustain a stress of 17.2 MPa and fracture strain was 92 %.

The origin of this strength is explained by the concept of sacrifice bond (Figure 5.5). When the gels are

compressed or stretched, PAMPS network breaks first since PAMPS are brittle compared to PAAm because

of the swelling before the construction of the second network. Then the fragment of PAMPS works as new

crosslinkers for PAAm networks. These new cross linkers will be produced much more at the position where

the local force is stronger. As a result, the resultant gels become strong. The drawback of this gel is that

the strength of double networks was lost by the first loading. However, the combination of two networks is

versatile and this concept itself is very important. For recent reviews of double network gels, please refer

to [78–80].
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Figure 5.5: Schematics for stretching a double network gel. PAMPS networks break first. The broken

fragment becomes additional crosslinking point.

Microsphere composite gel

Huang et al. reported strong hydrogel which does not break even at a compression stress of 10 MPa and a

strain of 97 % [9]. The structure of this gel is similar to that of nanocomposite gel. Instead of inorganic clays,

they used macromolecular microsphere as a multifunctional crosslinker. First, macromolecular microspheres

were made from styrene, butyl acrylate, and acrylic acid. Then the microsphere emulsion was irradiated with

γ-rays under oxygen. Through this process, peroxides are formed on the surface of the microspheres. After

this treatment, monomers (acrylic acid) were added and heated. Though this process, radical on the surface

of the microsphere initiates the polymerization. Through this polymerization, microspheres are connected

with each other and gels are formed (Figure 5.6). Similar to the nanocomposite gels, multifunctionallity is

the main origin of their strength. They proposed that we can add special electrical and magnetic properties

by adding other inorganic nanoparticles.

O

OO

O

O

O

polymerization

macromolecular

microsphere

Figure 5.6: Schematics for the preparation of a microsphere composite gel.
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Ionically crosslinked gel

Henderson et al. reported strong hydrogel by using ionic crosslinking [10]. The basic idea is similar

to double-network gels. As mentioned before, one weak point of double-network gels is that the breaking

process of the first network is irreversible. To solve this problem, ionic crosslinking is used to form the first

network. They used amphiphilic triblock copolymer, PMMA–PMAA–PMMA (34k–114k–34k), as a sample.

This copolymer was dissolved in DMSO and the solvent was exchanged to water by using vapor phase

solvent exchange technique. During this process, hydrophobic PMMA made spherical aggregates which

work as crosslinking points [81]. This relatively weak but homogeneous gel is regarded as a second network

in the double-network gel. After the solvent substitution, the gel was immersed in buffered cation solution.

Divalent cation can connect two strands via the coordination of carboxylate functionalities. These ionically

crosslinked parts work as a first, strong network in the double-network gel (Figure 5.7). They showed that

the gel was capable of attaining higher strains (around 5 times) by the introduction of ionic crosslinking.

PMAA

(In DMSO) (In water) (In buffer solution)

PMMA

Figure 5.7: Schematics for the preparation of an ionically crosslinked gel.

Hydrogel with cooperative hydrogen bonding

Song et al. reported strong hydrogel without using any initiator and crosslinker [82]. Gel preparation

scheme is very simple. Aqueous solution of Poly(N -vinylpyrrolidone) (PVP) and AAm monomers was

degassed and heated at 56 ◦C for 36 hours. During the heating, AAm monomers were polymerized. Here,

the hydrogen bonding between PVP and AAm plays an important roll. Before heating, some of AAm

monomers were attached to PVP via hydrogen bonding. After heating, these AAm monomers become

PAAm and connect PVPs via hydrogen bonding (Figure 5.8). Since the crosslinking is not permanent

(physical crosslinking) and the hydrogen bonding was created like a zipper, the prepared gel becomes strong.

Both tensile and compressive mechanical testing showed excellent mechanical properties. For examples, the

tensile strength was approximately 1 MPa, which is 2 to 3 orders of magnitude higher than those of the

conventional synthetic hydrogels.

Other representative examples

Gaharwar et al. reported strong hydrogel by the concept similar to those of nanocomposite gels and

ionically crosslinked gels [83,84]. They used the mixture of clays (hydroxyapatite nanoparticles, nHAp) and

PEG to prepare hydrogels. Similar to the nanocomposite gels, nHAp works as a multifunctional cross linker

and make the gel strong. In addition, they crosslinked PEG themselves by functionalizing the end of PEG to

diacrylate. In other words, PEG is crosslinked twice; physical crosslinking to the nanoparticles and chemical
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PVP

Heat

AAm

hydrogen bonding

Figure 5.8: Schematics for the preparation of a hydrogel with cooperative hydrogen bonding.

crosslinking to themselves. The point that one polymer is crosslinked twice is the same as the ionically

crosslinked gel. By using this technique, they successfully prepared gels whose ultimate strain reached 2000

%.

Sun et al. reported extremely stretchable and tough hydrogels by using the concept of double-network

gels and ionically crosslinked gels [85]. As a first network, they used an alginate gel. An alginate chain is

composed of two units; mannuronic acid and guluronic acid. Guluronic acid parts between different chains

are connected via divalent cations similar to the ionically crosslinked gels. Since the alginate chain has blocks

rich in Guluronic acids, this crosslinking becomes strong like a zipper. Second network is conventional PAAm

gel. In addition, these two networks were also connected covalently. They showed that the prepared gels

can be stretched beyond 20 times their initial length.

Bin Imran et al. reported slide-ring gel with improved functionality [86]. In the first report of slide-

ring gels, pH of the gel should be high such as NaOH aqueous solution to prevent aggregation of α-CD.

They showed that the aggregation of α-CD can be avoided by using ionic groups. Instead of figure-of-eight

crosslinks, they connect α-CD of polyrotaxane directly to the polymer chains. When both polyrotaxane and

polymer chains are non-ionic, prepared gels are not strong because of their low solubility. However, it was

shown that the gels become strong when nonionic polyrotaxane are connected to ionic polymer chains such

as NIPA-AAcNa. In this type of gels, NIPA-AAcNa copolymer will be stretched since the Na+ counter ions

cannot stay near the ionized polymers. Therefore, α-CDs attached to NIPA-AAcNa copolymer will also be

prevented from aggregation. In addition, they also showed that the combination of ionic polyrotaxane with

nonionic polymer chains also enhances the mechanical properties of gels. They used α-CD with carboxyl

groups to make the polyrotaxane ionic. The gel prepared from this polyrotaxane and non-ionic PNIPA also

showed high toughness.

Li et al. reported double-network gels by using other combination of chemical and physical crosslinking [87].

As a first network, they used PVA network whose crosslinking points are crystallites. As a second network,

they used usual PAAm network prepared by crosslinkers. First, PAAm network is prepared from the mixture

of AAm monomers and PVA chains. This gel is dried and annealed at 120 ◦C to promote crystallization.

During this process, strong physical crosslinking is created. After the annealing, the gel is immersed in water

to re-hydrate. The gel showed elastic modulus of 5 MPa.
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5.3 Tetra-PEG gel and related materials

There are several techniques to prepare gel. When the gel is prepared by the copolymerization of monomers

and crosslinkers, the crosslinking points are created randomly. Post-crosslinking by γ-ray irradiation also

introduce crosslinking points randomly. Compared to this, preparation of gels by endlinking processes as

been believed to give homogeneous networks of well-defined architectures. Therefore, the gels prepared by

endlinking process is called model networks [88, 89]. However, it has also been clarified that even the gels

are prepared by endlinking process, those gels contains significant amount of inhomogeneities as shown in

Figure 5.2. In 2008, Sakai et al. reported hydrogels of ideally homogeneous network called Tetra-PEG

gel (Figure 5.1) [11].75 This gel is prepared by the crosslinking of two tetra-arm PEG units with different

functionalities. One PEG has amine groups and the other has active ester groups. By mixing these two

solutions with appropriate pH conditions, crosslinking occurs within several to several tens minutes to form a

hydrogel (Figure 5.9). (For the synthesis of functional tetra-arm PEG, please refer to [91].) This preparation

scheme has mainly there advantages to make the network homogeneous [92]. The first point is the control

of reaction rate by adjusting pH. The second point is the presence of solvent, which allows homogeneous

mixing and also prevents the overlapping of chains. The third point is the shape of prepolymers, which does

not allow the formation of back-biting loop structures. Followed by this hypothesis, it was experimentally

shown that the combination of active ester-terminated tetra-arm PEG and amine-terminated linear-PEG

also form strong gels (Figure 5.10) [18].
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Figure 5.9: Synthesis of Tetra-PEG gel by endlinking of amine group and active-ester group.

75Conventionally, the polymer whose unit is CH2CH2O is called polyethylene glycol (PEG) when the molecular weight is
small and called polyethylene oxide (PEO) when the molecular weight is large [90]. However, the threshold molecular weight
is vague. In addition, there is no qualitative difference. In this thesis, I’m going to use the term PEG regardless of molecular
weight.
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Figure 5.10: Synthesis of gel by endlinking of active ester-terminated tetra-arm PEG and amine-terminated

linear PEG.

Inspired by this report, a variety of materials similar to Tetra-PEG gels have been prepared. Mortensen and

Annaka reported preparation scheme of amphiphilic hydrogels from commercially available tetra-arm PEG-

PPG (Figure 5.11) [93, 94]. Crosslinking procedure is the same as Figure 5.9. Meyerbrömer and Zharnikov

reported similar scheme for the preparation of thin, freestanding nanomembrane (Figure 5.12) [95]. Instead

of active ester, they used epoxy-terminated tetra-arm PEG. Jia et al. used the reaction between hydroxyl-

terminated tetra-arm PEG and isocyanate-terminated short linker for the preparation of high strength gels

(Figure 5.13). By introducing porphyrin unit, that gels gain sensitivity to heavy metal ions [96]. They also

showed that we can tune redox-biodegradability of these gels by introducing disulfide bonds [97]. Yoshihara

et al. developed rigid polyimide networks by using the same reaction scheme [98]. Oshima et al. developed

homogeneous gels by end-linking of tetra-arm polymers with click chemistry (Figure 5.14) [99]. Here, Huisgen

dipolar cycloaddition of azides and alkynes was used (Figure 5.15) [100–102]. This reaction has been used for

the preparation of model networks due to its complete specificity and quantitative yields [103–106]. Qian et al.

developed PEG-based high strength hydrogels by the crosslinking of (PEGn(C≡CH))m and PEGn(N3)2 [107].

As the other click chemistry, reaction of thiol-ene reaction is also used for the preparation of gels [108,109].

By using thiol-ene reaction, Saffer et al. developed highly resilient PEG hydrogels (Figure 5.16) [110]. They

also succeeded in preparation of highly resilient amphiphilic PEG–PDMS hydrogels, which is the topic of

next section [111]. Ikeda et al. developed gels by the crosslinking of 4-arm star-shaped ε-caprolactone

oligomers [112]. In this report, they used Diels–Alder reaction between furan- and maleimide-terminated

polymers (Figure 5.17). The mixture solution of these two polymers becomes gels through Diels–Alder

reaction while the mixture becomes solution at 80 ◦C by retro-Diels–Alder reaction. The same group

also reported other organogelation schemes; hydrogen bonding between carboxyl and pyridyl groups [113],

and ionic and hydrogen-bonding interaction between sulfo and pyridyl groups [114]. Rossow and Seiffert

developed gels by the crosslinking of tetra-arm PEG-terpyridine via the complex formation with transition

metal ions (Figure 5.18) [115]. Physical properties of gels can be tuned by changing the type of transition

metal ions. Schappache et al. attached tetraphenylporphyrin (TPP) with iron cations at the end of tetra-

arm PEG (Figure 5.19) [116]. The aqueous solution of this polymer becomes chemical gel thanks to the

formation of TPP–De–O–Fe–TPP bonds. This gel becomes physical gel by addition of HCl. Under the

acidic condition, Fe–O–Fe bonds are broken. Instead of this chemical crosslinking, hydrophobic and π−−π
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interactions between TPP become important to make them gel. Introduction of the concept of Tetra-PEG

gel into other tough gels is also reported. For example, Fukasawa et al. prepared nanocomposite gel by

using the mixture of clays and tetra-arm PEG and improvement of mechanical properties was shown [117].

Nakajima et al. prepared double-network gel by using Tetra-PEG gel as a first network and used for the

analysis of fracture process [118].
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Figure 5.11: Synthesis of Tetra-(PEG-PPG) gel.
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Figure 5.17: Synthesis of gel from tetra-arm oligomer using Diels–Alder reaction.
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Figure 5.18: Synthesis of Tetra-PEG gel by using the complex formation with transition metal ions.
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O
NEt3
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Figure 5.19: Synthesis of Tetra-PEG gel by using tetraphenylporphyrin.

5.4 Characterization of Tetra-PEG gel

After the invention of Tetra-PEG gel, characterization has been done thoroughly. Here I’m going to

summarize previous research related to the characterization of Tetra-PEG gels. The basic knowledge for the

quantitative description of soft matter is shown in Section 3.2.

5.4.1 Reaction

To elucidate the origins of the strength of Tetra-PEG gels, the efficiency and detailed mechanism of

crosslinking reaction was investigated. Akagi et al. measured reaction efficiency from the amount of sol

fraction [119]. By using Miller–Macosko theory [120], the proportion of sol fraction, ωsol is written as a

function of reaction efficiency, p, as follows:

ωsol =

[(
1

p
− 3

4

)1/2

− 1

2

]4
(5.4.1.1)

By using Eq.(5.4.1.1), reaction efficiency of Tetra-PEG whose molecular weight is 10 kg/mol was estimated

to be p ∼ 0.75 regardless of the polymer fraction, ϕ0. Kurakazu et al. investigated the gelation kinetics [121].

By potentiometric titration, they showed that the pKa of amine groups at the end of tetra-arm PEG is 9.27.

Here, Ka is defined as follows.

Ka =
[PEG-NH2][H

+]

[PEG-NH+
3 ]

(5.4.1.2)

This result shows that most of the amine groups are protonated at neutral pH. Since the reaction between

amine and active ester occurs only when amine is not protonated, gelation rate can be controlled by pH. They

proved this fact quantitatively by using pH-dependence of gelation time. Here, gelation time was determined

quantitatively by using the criteria of Chambon and Winter [122]; the time where G′ = G′′. In addition,

they showed that the degradation of active ester-terminated tetra-arm PEG can be proved by the absorption

at 290 nm. By using these partially degraded active ester-terminated tetra-arm PEG, we can tune the total

connectivity at will. This is named p-tuned Tetra-PEG gel [123]. Later, direct determination of p by using

IR spectra was developed [124]. In this technique, they focused on the absorption peaks originated from

CO stretching vibration and amide II band. As the crosslinking proceeds, the intensity of amide II band
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becomes strong. By using this technique, they showed that the terminal conversion efficiency is around 0.95.

From the time-resolved IR spectroscopy measurement, it was clarified that this reaction can be described

as a second-order reaction [125]. The reaction rate of crosslinking of Tetra-PEG gel was found to be much

smaller than that of typical diffusion-controlled reaction [126]. This result suggests that the complete mixing

of two types of prepolymer will be achieved before crosslinking and this may be the origin of homogeneous

structure of Tetra-PEG gel. Simulation of this gelation is also reported [127].

5.4.2 Mechanical property

In the first report of Tetra-PEG gel [11], they performed compression test. The maximum value of breaking

strength was obtained when the ratio of amine-terminated PEG and active ester-terminated PEG is 1:1 as

expected from the preparation scheme. Later, gel preparation with an unbalanced stoichiometry was utilized

for the research of sol-gel transition [128]. Typical Tetra-PEG gel can bear more than 90% strain and several

MPa compression stress. Later, the maximum breaking stress and compression modulus were improved to

be 25 MPa and 100 kPa, respectively [12]. Akagi et al. performed stretching measurement to investigate

the elastic moduli of Tetra-PEG gel [119]. Elastic moduli is related to the density of elastically effective

chain, ν, as shown in Eq.(3.2.1.19) under the approximation that all of the chains in the gel are deformed

similar to the macroscopic deformation. This is called affine network model. If we consider the fluctuation

of polymer chains, the elastic modulus of the gel will be decreased. One of the models which takes the

fluctuation of polymer chains into consideration is phantom network model. Under this model, the elastic

modulus is reduced to (f − 2)/f from affine network model where f is the functionality of crosslinking [23].

The model called junction affine network model predicts the intermediate value [124]. By using the density

of crosslinking, µ, G of these models are written as follows.

G =


νRT for affine network model

(ν − µ)RT for phantom network model

(ν − hµ)RT for junction affine network model

(5.4.2.1)

where h is a constant indicating the degree of thermal fluctuation of chemical crosslinks. From experimentally

obtained G and p, they concluded that the elasticity of Tetra-PEG gel is well described by the affine theory.

In addition, they found that the ϕ0-dependence of ν is weak (ν ∼ ϕ1.280 ) compared to conventional gels

(ν ∼ ϕ
9/4
0 ). This result was interpreted as the absence of entanglements. Later, through more precise

evaluation, the elasticity of Tetra-PEG gel described by the phantom theory was found [124]. At last, they

conclude that there is a transition from the phantom network model to the affine network model at the

overlapping polymer concentration [129]. Concentration dependence of the elastic modulus was investigated

carefully by using Obukhov model and Panyukov model in the following paper [130, 131]. Kondo et al.

showed that the heterogeneous distribution of strand length does not affect the mechanical properties of

hydrogels by using Tetra-PEG bimodal gels, or size-mismatched Tetra-PEG gels [132, 133]. Simulation of

the elasticity shown above was reported [134–137].

The stress-strain curve was also expressed analytically. In small strain, the relationship between stress
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and strain is proportional like a spring. This is called Hooke’s law.

σ = Gλ (5.4.2.2)

When the strain becomes large, ideal dependence between σ and λ is represented as follows (neo-Hookean

material) [124].

σ = G(λ− λ−2) (5.4.2.3)

Here, σ is the experimentally observed stress called engineering stress.76 However, this model did not

reproduce the experimental results at large strain due to the finite extensibility. This problem was solved

by using the extended Gent model [138].

σ =
C1(λ− λ−2)

1− λ2 + 2λ−1 − 3

λ2max + 2λ−1
max − 3

+ C2(1− λ−3) (5.4.2.4)

where C1 and C2 are the fitting parameter representing the number density of elastically effective strands

and the strength of strain-coupling, respectively. Here, C1 + C2 = G is satisfied. λmax is the ultimate

deformation ratio. Other function which reproduces the stress-strain curve is shown in [12].

σ =
νRT

3

N

λmax

[
L−1

(
λ

λmax

)
− λ−3/2L−1

(
λ−1/2

λmax

)]
(5.4.2.5)

where L(x) represents Langevin function. Dynamic mechanical response of Tetra-PEG gels was also mea-

sured in the same paper. They showed that G′′ was extremely small, which is lower than the measurable

limit. This reflects the homogeneous nature of Tetra-PEG gels. Katashima et al. extended these stretching

experiments in 2D by biaxial deformation [139, 140]. Akagi et al. also investigated fracture of Tetra-PEG

gel [129]. Fracture energy, T , is defined as follows.

T :=
2F

w
(5.4.2.6)

where F is the tearing force and w is the thickness of the specimen. Fracture energy with infinitely slow

stretching speed is called intrinsic fracture energy, T0. In the Lake–Thomas model [141], T0 is represented

as follows.

T0 =
1

2
LνNU (5.4.2.7)

where L,N,U stand for the displacement strength, the degree of polymerization of the network, and the

energy required to rupture a monomer unit. ϕ0 and N dependence of T0 showed good agreement with

this model. Later, quantitative agreement was proved by multiplying an enhancement factor k = 3 to

Eq.(5.4.2.7) [142,143].
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5.4.3 Static structure

Strength of Tetra-PEG gel is also explained from the viewpoint of static structure. Microscopic structure

of Tetra-PEG gels was investigated by SANS experiment [15, 16]. In these experiments, hydrogels prepared

by deuterated water were used as samples. Since the neutron scattering lengths of light hydrogen and heavy

hydrogen are totally different, we can easily make contrast between solvent and polymer network (see Section

4.2.2 for further details). SANS profiles of Tetra-PEG solution were reproduced well by using form factor

of star-polymer chains (Eq.(2.2.4.1)) with the single-contact theory of Zimm (Section 2.4.6). As for SANS
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Figure 5.20: SANS profiles of Tetra-PEG gels [16].

76If we follow the definition of stress, we have to take the decrease of cross-section into consideration. This is called true
stress.
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profiles obtained from Tetra-PEG gels were shown in Figure 5.20. Figure 5.20 shows the SANS profiles

obtained from Tetra-PEG gels with various concentration and molecular weight [15, 16]. In Figure 5.20, we

can see concentration and molecular weight dependence and the effect of swelling on their SANS profiles.

One of the most important features is that there is no upturn in low-q region for all of the samples shown

in Figure 5.20. The upturn appearing in low-q region is a typical feature for conventional gels (Figure 5.21)

and this upturn has been interpreted as inhomogeneities of gels. Therefore, the suppression of this upturn

suggests that Tetra-PEG gels are homogeneous compared to the conventional gels. The effect of swelling on

the microscopic structure is also clarified. SANS profiles of swollen gels whose molecular weight is 40 kg/mol

are almost independent of their initial preparation concentration while that of 10 kg/mol show concentration

dependence. The fact that the swollen gels did not show strong concentration dependence is that the network

structure is unique regardless of preparation concentration. This is interpreted in such a manner that the

resultant gels are inhomogeneity-free and microscopic structure is described as shown in Figure 5.9. In the

case of short molecular weight, inhomogeneities (mainly loose ends) are introduced and small concentration

dependence appears in their microscopic structure. This is consistent with the experimental result that the

Tetra-PEG gels whose molecular weight is 5 kg/mol showed upturn in low-q region in as-prepared state. Note

that the detailed analysis showed small concentration dependence of correlation length even for 40 kg/mol

samples, which is also clarified in DLS measurements as shown later (Figure 5.25). For more detailed

analysis, please refer to Ref [15,16]. Structural analysis of Tetra-PEG gels under uniaxial deformation [144]

and p-tune Tetra-PEG gels [123] was performed. Simulation of microscopic structure of Tetra-PEG gels was

also reported [145–147].

6

8
10

-1

2

4

6

8
10

0

2

4

6

8
10

1

10
-2

2 3 4 5 6 7 8 9

10
-1

 PNIPA, Chemically cross-linked 
 PNIPA, Irradiation cross-linked
 Tetra-PEG

Figure 5.21: Comparison of SANS profiles obtained from three different gels [16,148].
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5.5 Multiscale dynamics of Tetra-PEG gel

Inhomogeneity-free nature of Tetra-PEG gels was also shown in dynamics of gels. Here I’m going to

summarize the dynamics of Tetra-PEG gels elucidated by dynamic light scattering (DLS, Section 4.1.2) and

neutron spin echo (NSE, Section 4.2.4) technique [29]. DLS was used to see the dynamics in the scale of

10∼100 nm, and NSE was used to see the dynamics in smaller scale (several nanometer).

5.5.1 Dynamic light scattering
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Figure 5.22: Normalized intensity time correlation functions of Tetra-PEG. (a) 20 mg/mL solution, (b) 40

mg/mL solution, (c) 20 mg/mL gel and (d) 40 mg/mL gel. In each graph, the data obtained at different

scattering angles (60, 90, 120 and 150◦) are shown.

In the first report of Tetra-PEG gels, time-resolved DLS was performed for the evaluation of gelation

time [11]. Here I’m going to show the detailed analysis of Tetra-PEG gels by DLS. As a representative

result, the normalized intensity time correlation functions of Tetra-PEG solutions and gels whose molecular

weight is 20 kg/mol are shown in Figure 5.22. The concentration was set to 20 mg/mL (c∗/2) and 40 mg/mL

(c∗). Overlap concentration, c∗, of Tetra-PEG in solution was determined by viscosity measurement [11,129].

The measurements were performed in four different scattering angles to obtain q-dependence of decays as

shown later (Figure 5.24). Each time correlation function was converted into the characteristic decay time

distribution functions by an inverse Laplace transform. These distribution functions are the function of

decay rate, Γ. Then Γ is converted into the diffusion constant and the parameter called correlation length,

ξ, as follows.

Γ = Dq2 (5.5.1.1)

ξ =
kBT

6πηD
(5.5.1.2)
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Figure 5.23: Probability distribution functions of ξ for Tetra-PEG solutions. (a) 20 mg/mL, (b) 40 mg/mL

and for gels, (c) 20 mg/mL, (d) 40 mg/mL. In each graph, the data obtained at different scattering angles

(60, 90, 120 and 150◦) are shown.

where kB , T and η are the Boltzmann constant, absolute temperature and the viscosity of the solvents

(0.911 cP for sol buffer and 0.896 cP for gel buffer). q is a momentum transfer, q := 4πn sin θ/λ and n

is a refractive index of the solvent. As you can see in Eq.(5.5.1.2), ξ stands for the hydrodynamic radius

for dilute solution. The results are shown in Figure 5.23. Figure 5.23 shows that there are two relaxation

modes in solutions. Fast modes correspond to the relaxation originated from translational diffusion of single

monomers [149,150]. In contrast to this, Wang reported that the slow modes can be attributed to the small

bubbles [151]. For further analysis, the intensity time correlation functions are fitted as follows.

g(2)(τ)− 1 = [Af exp(−Γfτ) +As exp(−Γsτ)]2 for solutions (5.5.1.3)

g(2)(τ)− 1 = A exp(−2ΓAτ) for gels (5.5.1.4)

Af , As, and A represent the amplitude for the fast modes of solutions, slow modes of solutions, and decay

of gels, respectively. In the case of solution, Af + As = 1 since the smearing effect is negligibly small. In

contrast to this, I applied partial heterodyne method for the analysis of gel samples (Section 4.1.3). ΓA is

converted into the genuine relaxation rate, Γ, by using the following relationship.

ΓA =
1−
√
1−A
A

Γ (5.5.1.5)

Figure 5.24 shows q-dependence of the relaxation rates, Γf ,Γs, and Γ, calculated by the data with different

scattering angles. They showed clear q2-dependence. q2-dependence implies that the observed relaxation

originates from Brownian motion of objects. Γf ,Γs, and Γ were then converted into the diffusion constants

by using Eq.(5.5.1.1). In other words, the diffusion constants were estimated from the slopes in Figure 5.24.

These diffusion constants were converted into the correlation length, ξ, through Eq.(5.5.1.2). The results are

summarized in Table 5.1. Concentration and molecular weight dependence of ξ are shown in Figure 5.25.
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Figure 5.24: q2-dependence of the decay rates of Tetra-PEG solutions (upper, Γf ; lower, Γs) and gels (upper,

Γ). The dashed lines show the best fit by Eq. 4.2.4.5 for solution samples, and the solid lines show that for

gel samples.

Table 5.1: Diffusion constants and correlation lengths measured by DLS

State Concentration / mg mL−1 D / m2 s−1 ξ / nm

Solution, fast 20 (6.9 ± 0.1) ×10−11 3.5 ± 0.1

Solution, fast 40 (7.9 ± 0.1) ×10−11 3.1 ± 0.1

Solution, slow 20 (1.4 ± 0.1) ×10−12 (1.8 ± 0.1) ×102

Solution, slow 40 (8.4 ± 0.6) ×10−13 (2.9 ± 0.2) ×102

Gel 20 (3.7 ± 0.1) ×10−11 6.7 ± 0.1

Gel 40 (5.8 ± 0.1) ×10−11 4.2 ± 0.1
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0
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Figure 5.25: Concentration and molecular weight dependence of ξ for as-prepared and swollen Tetra-PEG

gels.

In the case of solutions, ξ implies the size of solutes. Note that ξ is not exactly the same as the hydro-

dynamic radius in higher concentration region. Table 5.1 shows that ξ becomes small as the concentration

increases. This result is consistent with the result obtained from SANS and interpreted that the monomers

are compressed by the neighboring monomers as the concentration increases [16]. In the case of gels, ξ

obtained from DLS is usually interpreted as an indicator of mesh size when the polymer network is far from

its critical point [5]. Figure 5.25 is interpreted in line with this assumption. Molecular weight dependence
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is not observed in as-prepared gels. This means that the mesh size is determined only by the concentration

of polymers. In contrast to this, there are clear molecular weight dependence for swollen gels. This is be-

cause the mesh size is determined mainly by the molecular weight of polymers in the case of swollen gels.

The decrease of ξ with the increase of polymer concentration is also reasonable since the distance between

polymers becomes small as the concentration increases.

Comparison of the diffusion constant, D, of solution and gel samples shows interesting results. In the case

of gels, D is related to the elastic modulus of longitudinal mode (Eqs.(3.2.3.26), (3.2.3.27)).

D =
Kos +

4
3G

f
(5.5.1.6)

where Kos, G, f are the osmotic modulus, the shear modulus, and the friction constant. From Eq.(5.5.1.6),

it is clear that D for gels is decomposed into two. The first component is the osmotic modulus, Kos,

which is the same as the solution sample. The second component is the shear modulus, 4G/3, which is the

characteristic point of gels. Since G > 0, D for gels is larger than that of solutions [152]. However, the

result of Tetra-PEG gels showed opposite behavior. This discrepancy may arise from the assumption that

the gel is regarded as a continuous elastic body. For conventional gels, this assumption is useful since the

environment around each monomer is almost averaged because of the inhomogeneities. In contrast to this,

in the case of Tetra-PEG gels, fluctuation of each monomer may be affected by the details of surrounding

environment. For the elucidation of this point, further studies are required.

5.5.2 Neutron spin echo

Neutron spin echo measurement was performed at NSE-SNS neutron spin-echo spectrometers at the Spal-

lation Neutron Source (SNS) at the Oak Ridge National Laboratory [153,154]. The sample solutions and gels

were set in a sealed aluminum container of size 40×30×2 mm under room temperature. Neutron wavelength

was from 5 to 8 Å. Measurement angle covered 0.054 < q < 0.189 Å−1, which corresponds to 0.01 < t < 34

ns for the measured intermediate dynamic structure factor. All of the samples were prepared by using D2O

as a solvent to reduce incoherent scattering from the solvent. Measurement time was approximately 50 hours

for 40 mg/mL (c∗) samples and 60 hours for 20 mg/mL (c∗/2) samples.

As explained in Section 4.2.4, the measured quantity of NSE is the intermediate dynamic structure factor,

I(q⃗, t).

I(q⃗, t) =
1

N

N∑
i

N∑
j

⟨exp[−iq⃗ · r⃗i(0)] exp[iq⃗ · r⃗j(t)]⟩ (5.5.2.1)

where N is the number of PEG monomers in the irradiated volume and r⃗i(t) is the position of PEG monomer

i at time t. In this experiment, protonated PEG was used as a sample. In this case, main contribution in

Eq.(5.5.2.1) is the part where i ̸= j. This part is called coherent intermediate dynamic structure factor. In

general, I(q⃗, t) is a complicated function. However, the long-time behavior of the coherent factor can be

expressed by a stretched-exponential form.

I(q, t) ∝ exp[−(Γt)β ] (5.5.2.2)

β and Γ are the characteristic parameters for the modes and summarized in Table 5.2. Derivation of I(q, t)

for Rouse mode and Zimm mode are shown in Section 3.1.2. Strictly speaking, Eq.(5.5.1.2) holds true only
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for long-time region. However, in the following analysis, we assume that Eq.(5.5.2.2) is valid for all the time

region. This approximation is common and good approximation [155,156]. In the following discussion, I use

the normalized coherent intermediate dynamic structure factor and fit as follows.

I(q, t)

I(q, 0)
= A0 +A1 exp[−(Γt)β ] (5.5.2.3)

A0 represents the non-decay components. This component is typical for the gel system and regarded as a

frozen component, which is explained later. We can see that A0+A1 = 1 by substitute t = 0 into Eq.(5.5.2.3).

Table 5.2: Characterization of microscopic motion

Types of motion β Γ

collective diffusion 1 ∝ q2

Zimm mode 2/3 ∝ q3

Rouse mode 1/2 ∝ q4

Types of motion

2

4

6

8
0.1

2

4

6

8
1

 Solution, q = 0.054
 Solution, q = 0.086
 Solution, q = 0.139
 Gel, q = 0.054
 Gel, q = 0.086
 Gel, q = 0.139

(a) 20 mg/mL

0.01 0.1 1 10

(b) 40 mg/mL

 Solution, q = 0.054
 Solution, q = 0.086
 Solution, q = 0.139
 Gel, q = 0.054
 Gel, q = 0.086
 Gel, q = 0.139

0.01 0.1 1 10

Figure 5.26: Normalized intermediate dynamic structure factors of Tetra-PEG solutions and gels. The

dashed lines show the best fit by Eq. 4.2.4.12 for solution samples and the solid lines show that for gel

samples with β = 2/3.

Figure 5.26 shows some of the obtained normalized intermediate dynamic structure factors, I(q, t)/I(q, 0),

of Tetra-PEG solutions and gels. I(q, t)/I(q, 0) is fitted by Eq.(5.5.1.3). Fitting results showed that β ≃ 2/3

for all of the data. This result strongly suggests that the relaxation is represented as a Zimm mode in all

q region. After the first fitting, fitting was performed again with fixing β as 2/3. The fitting results are

also shown in Figure 5.26. From the fitting, Γ was obtained for each q region. q-dependence of Γ is shown

in Figure 5.27. All of the data shows that Γ ∼ q3, which again suggests that the relaxation is represented

as a Zimm mode. In addition to this, it is clarified that there are no difference between solutions and gels

in Γ. Concentration dependence was also not observed. This result is also consistent with the Zimm mode

since the decay rate of Zimm mode is described only by the temperature and the viscosity of the solvent

(Eqs. (3.1.2.31) and (3.1.2.32)). This result that Zimm mode is observed in all q-region is different from the

typical results for conventional gels. Reported NSE results for conventional gels showed the transition from

Zimmmode (high-q region) to collective diffusion (low-q region) in the measured q-range [152,156,157]. Zimm

mode is typical for polymer solutions and collective diffusion is typical for network systems. Therefore, the
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Figure 5.27: q-dependence of decay rate of NSE. The solid line implies q3.
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Figure 5.28: Comparison of conventional gels and Tetra-PEG gel from the viewpoint of neurons. In high-q

region, monomers do not see other crosslinks. As q becomes lower, monomers begin to see the nearest

crosslink and notice their connectivity (a). Entanglements are also regarded as crosslinks in the time region

of NSE (b). In the case of Tetra-PEG gel, it requires lower q (i.e., large distance) to see other crosslinks

since the length between crosslinks is strictly controlled and there are no entanglements (c).

transition point from Zimm mode to collective diffusion corresponds to the length where monomers “notice”

that they are connected to the network systems. This situation is depicted in Figure 5.28(a) and (b). In

the case of conventional gels, the fact that a monomer (the monomer at the center of each window in

Figure 5.28) is connected to the crosslink point in small length scale compared to the average mesh size

mainly by two reasons. First one is the connectivity inhomogeneities (Figure 5.28(a)). The distance between
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5.5 Multiscale dynamics of Tetra-PEG gel

crosslinks is uneven in the case of conventional gels, especially the gels prepared by the radical reaction. Since

the monomer “notices” the existence of crosslinks by the nearest crosslink, transition from Zimm mode to

collective diffusion occurs in relatively small length scale, which corresponds to high-q region. Second one

is the entanglement (Figure 5.28(b)). Time scale of the phenomena which NSE observes is the order of

nanosecond (Figure 5.26). In such a short time region, entanglements are regarded as crosslinking points.

Therefore, the existence of entanglements makes the transition point in smaller length scale, or higher q

region. In contrast to those conventional gels, Tetra-PEG gels have a few connectivity inhomogeneity and

entanglement. Therefore, the fact that only Zimm mode was observed in the NSE measurement proved the

inhomogeneity-free nature of Tetra-PEG gels from the viewpoint of dynamics (Figure 5.28(c)).

Disappearance of non-decay component

Fitting results in Figure 5.26 by Eq. 5.5.1.3 showed that the non-decay component, A0, is almost zero for all

of the measurement data. This is also different from the typical results for conventional gels; all of the NSE

measurement for chemical crosslink gels showed significant amount of non-decay component. Disappearance

of non-decay component was observed only for physical crosslink gels such as PVA with borax [156]. This

non-decay component has been interpreted as the existence of frozen component, which is the origin of the

upturn in low-q region of SANS profiles. In other words, this non-decay component originates from the

inherent inhomogeneities of gels. This kind of inhomogeneity can be suppressed in the case of physical gels

since the crosslinking occurs to decrease the inhomogeneity and increase the enthalpy gain by crosslinking.

However, the inhomogeneities exist permanently in the case of chemical gels. Tetra-PEG gels solved this

difficulty. Therefore, disappearance of non-decay component is also the sign of inhomogeneity-free nature of

Tetra-PEG gels.

Quantitative analysis for this issue was performed by Richter et al. [158]. In their theory, the non-decay

component is attributed to the restriction of the monomer movement as follows.

I(q, t)

I(q, 0)
= exp

[
−q

2⟨l2⟩
4

]
+

(
1− exp

[
−q

2⟨l2⟩
4

])
exp[−(Γt)β ] (5.5.2.4)

where ⟨l2⟩ is the square of the width of the Gaussian distribution of the monomer displacement from its

equilibrium position. The meaning of Eq.(5.5.2.4) is that the non-decay component becomes large if the

monomer movement is small (⟨l2⟩ is small). In the conventional gels, restriction of monomer movements is

explained in two ways (Figure 5.29). The monomers in dense region cannot move significantly from their

original position since there are a lot of monomers around them. This situation is similar to the packed

commuter train. The monomers in sparse region also cannot move since the the monomers in such a region

is in the stretched polymers. In contrast to this, Tetra-PEG gels have no such a density fluctuation. In

addition, the number of monomers between crosslinking points is relatively large. For examples, the number

of monomers between crosslinking points of typical PNIPA gels [159] is several dozen while that of Tetra-PEG

gels used in this experiments is approximately 230. This indicates that the monomers can travel enough to

make the first term of Eq.(5.5.2.4) negligibly small.
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Figure 5.29: Origin and disappearance of non-decay component in I(q, t)/I(q, 0).

5.5.3 Integration of different scale motions

Both DLS and NSE measure the decay rate, Γ, in different length scale. Therefore, these results can be

combined to see the dynamics in wide q-region. Figure 5.30 shows the q-dependence of Γ/q2 measured by

both DLS and NSE. Γ obtained from DLS (around 107 m−1) shows q−2 dependence while that obtained

from NSE (around 109 m−1) shows q−3 dependence as mentioned in the previous subsections. In addition,

these two results for gels are connected by two lines as shown in Figure 5.30. These two lines indicate the

transition from Zimm mode (high-q region, q−3) to collective diffusion (low-q region, q−2), which is usually

observed by using only NSE. In the case of solution samples, the connection cannot be achieved since Γ

obtained from DLS is larger than that obtained from the low-q region of NSE. The origin of this discrepancy

is the translational motion, which appears only in the DLS results. The transition point for the gels, q∗, can

be converted into the characteristic length scale, l∗, as follows.

l∗ :=
2π

q∗
(5.5.3.1)
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Figure 5.30: Decay rates of Tetra-PEG solutions and gels. The lines are the fitting results. The slopes of

the lines are zero and unity.
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l∗ represents the size of window at the transition from Zimm mode to collective diffusion as shown in

Figure 5.28(c). Calculated l∗ is 14 nm for 20 mg/mL and 9.0 nm for 40 mg/mL. This value is approximately

twice as large as the correlation length, ξ, of the corresponding gels obtained from DLS (Table 5.1); 6.7 nm

for 20 mg/mL and 4.2 nm for 40 mg/mL. This result is consistent with the assumption that ξ is the mesh

size (Figure 5.28(c)). Like this, through the combined analysis of DLS and NSE, quantitative analysis of the

microscopic structure of Tetra-PEG gels is successfully performed.

5.5.4 Summary for the multiscale dynamics

Homogeneous nature of Tetra-PEG gels was examined from the viewpoint of dynamics for the first time.

Through the DLS measurements, correlation lengths of solution and gel samples were obtained. Concentra-

tion dependence, molecular size dependence, and the effect of swelling for the correlation length of Tetra-PEG

gels can be interpreted by considering that the correlation length stands for the mesh size of the gels. The

validity of this assumption is quantitatively proved through the combined analysis of DLS and NSE. Fur-

thermore, through the NSE measurements, inhomogeneity-free nature of Tetra-PEG gels was clarified in

two aspects. From the q-dependence of the relaxation rates, it is clarified that Zimm mode appears in wide

q-region. This result is interpreted that Tetra-PEG gels are free from connectivity inhomogeneity and en-

tanglement. From the non-decay component of the intermediate dynamic structure factor, it is clarified that

Tetra-PEG gels have no frozen component. In other words, the monomers in Tetra-PEG gels can move in

wide space compared to conventional gels.

5.6 Application of Tetra-PEG gel

Thanks to their superior mechanical characteristics, simplicity of preparation, and biocompatibility, Tetra-

PEG gels can be used for various applications. Fujii et al. developed Tetra-PEG ion gel to utilize the ion con-

ductivities of ionic liquid in a solid-state material [160]. They prepared a free-standing gel with high strength

by the crosslinking of Tetra-PEGmacromers in room temperature ionic liquids, 1-ethyl-3-methylimidazolium-

bis(trifluoromethanesulfonyl)amide, [C2mIm+][TFSA−], and 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)-

amide, [C2mIm+][FSA−]. A gel whose solvent is ionic liquid is called an ion gel. Since polymer fraction

is small (around 5 wt%), the ionic conductivity of the prepared gel is almost equal to that of pure ionic

liquid. Tetra-PEG ion gel can also be used for membrane-based CO2 separation by utilizing CO2 adsorption

properties of ionic liquids. Structural analysis by using DLS and SANS [161, 162] and reaction control by

using protic ionic liquid [163, 164] was performed for preparation of ideal network structure. The use of

Tetra-PEG gels as gel electrolytes is also promising for Li ion batteries [165].

One of the other applications is electrophoresis. Li et al. investigated the migration behavior of double-

stranded DNA in various kinds of Tetra-PEG gels by using capillary electrophoresis technique and revealed

the different behavior compared to the existing models [166, 167] They proposed a new empirical model,

which can also be applied to conventional inhomogeneous gels [168].

By modifying tetra-arm PEG units to other polymers, we can prepare functional materials without losing

homogeneous nature of Tetra-PEG gels. Li et al. partially introduced degradation site in active-ester

terminated PEG prepolymers to control degradation behavior of Tetra-PEG gels [169]. They also investigated

the degradation behavior of Tetra-PEG gels by using H2O2 to accelerate the degradation [170]. Kamata et al.
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partially introduced thermo-responsive polymer, poly(ethylglycidylether), to realize volume phase transition

[17, 171, 172]. Thanks to their homogeneous nature, shrinking kinetics obeyed the theoretical prediction for

homogeneous shrinking without creating skin layer. Kondo et al. partially introduced hydrophobic polymer,

poly(dimethylsiloxane), to prepare homogeneous amphiphilic co-network [18]. The prepared gel showed

high reliability, and the origin of the reliability is explained by the concept named “mechanical fuse link”.

Structural analysis of this gel is the topic of Section 9.

5.7 Summary

In this section, I reviewed the previous research related to tough gels. Among them, I focused on Tetra-

PEG gels. Tera-PEG gel is prepared by the crosslinking of two tetra-arm PEG units. I reviewed Tetra-

PEG gels and related materials that are prepared by similar scheme. Next, previous researches related

to characterization of Tetra-PEG gels are reviewed from the viewpoint of reaction, mechanical property,

and static structure. From these researches, inhomogeneity-free nature of Tetra-PEG gel is proved. Then,

I investigated the inhomogeneity-free nature of Tetra-PEG gel from the viewpoint of dynamics. Through

neutron spin echo measurements, it is proved that Tetra-PEG gels do not contain connectivity inhomogeneity,

entanglement, and frozen component. The relaxation rates of Tetra-PEG gels obtained from neutron spin

echo measurements and dynamic light scattering measurements were connected and the mesh size is evaluated

quantitatively. Application of Tetra-PEG gels is also reviewed in the final subsection.
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6 Construction of Dynamic Light Scattering Microscope

6.1 Introduction

Dynamic light scattering (DLS) is widely used for the assessment of polymer and colloid solutions. As

explained in 4.1.2, the polydispersity of polymer solutions is measured by taking the time correlation function

of the scattered light intensity. DLS has many advantages compared to other measurement techniques. Gel

permeation chromatography (GPC) is a technique to measure the size distribution of polymer solution using

a column filled with gels. The polymers are fractionated with their size. By combining other techniques

such as static light scattering, UV-VIS spectrometry, and Raman spectroscopy, additional information such

as absolute molecular weight and molecular species can also be extracted. However, a measurement by GPC

takes long time (several tens of minutes) and the preparation is complicated. In the case of DLS, typical

measurement time is several tens of seconds. In addition, what we have to do is only set the test tube filled

with diluted sample solution. Other technique is an electron microscope. This technique realizes very high

resolution (the order of angstrom), which cannot be accessed by using visible light. However, solution samples

cannot be measured directly since the sample should be set under vacuum condition. Laser diffraction is the

technique to measure the size distribution by using light diffraction. However, the measurable range of size

is in principle on the order of the wavelength of light. The advantage of DLS compared to laser diffraction

is its wide measurable range of size. By using the fluctuation of scattered light intensity, DLS can detect

small polymer whose size is on the order of several nanometer, which cannot be measured by using laser

diffraction.

Though DLS has many advantages mentioned above, there still exists room for improvements. Here I

raise three drawbacks [173, 174]. The first one is that DLS cannot be used for turbid system. The origin

of turbidity is the multiple scattering. As explained in 4.1.1, the intensity of scattered light is proportional

to R6 where R is the radius of scattered particles. Therefore, the particles whose radius is the order of

100 nm scatter light strongly. As a result, the light is scattered more than one before it escapes from the

scatterer. Since this diffuse reflection has little relation to its wavelength, white turbidity is observed. The

formula used for the analysis of DLS results are derived under the assumption of single scattering condition,

multiple scattering should be suppressed for DLS measurement. The second drawback is that DLS cannot

be used for light-absorbing system. This is obvious since the scattered light is not observed if it is absorbed

by the sample itself. To overcome these two drawbacks, the sample is diluted before measurement. However,

dilution may change the size distribution of the original sample significantly. In fact, this is true as we

clarified by using carbon nanotube dispersion, which is explained later (Section 7). The third drawback

is the poor spatial resolution. The spatial resolution of typical DLS system is on the order 100 µm. This

poor resolution originates from practical difficulty and can be improved by applying another optical setup.

By improving the spatial resolution of DLS, the applicability of DLS will be expanded significantly. For

examples, the fluctuation of polymer brush at the interface of substrate will be measured directly. Another

example is biological cells. The fluctuation of cell organelle can be measured, which cannot be accessed any

existing apparatus. Interesting application is the measurement of number fluctuation. When the number of

scatterers within the irradiated volume is so small, the intensity time correlation is strongly affected by the

number fluctuation like FCS. If the high resolution DLS is applied for gel samples, spatial inhomogeneities

and dynamic fluctuations can be measured simultaneously [5]. Many studies have been conducted on how

208



6.2 Previous studies

to overcome these disadvantages which I introduce in the next section [175–180]. However, no studies have

been reported on the application of DLS to opaque media with high spatial resolution.

(a) (b) (c)

Figure 6.1: Drawbacks of DLS. (a) Multiple scattering. (b) Strong light absorption. (c) Poor spatial

resolution.

In this section, I introduce a new technique named dynamic light scattering microscope [30]. This technique

is the combination of DLS and an optical microscope. This combination itself has already reported in several

papers [181–183] though all of them utilize forward scattering. In contrast to them, I applied backscattering

geometry to reduce the optical path, similar to a Rayleigh light scattering microscope [184, 185]. This

geometry enables us to measure opaque samples without dilution. In addition, spatial resolution close to

diffraction limit is achieved by using an objective lens. First, I introduce existing DLS techniques to overcome

its drawbacks. Next I introduce the optical setup of the DLS microscope. Then some representative results

are shown to explain the applicability of the DLS microscope. The results obtained from carbon nanotube

dispersions are especially interesting and explained in the next section.

6.2 Previous studies

A cross correlation spectroscopy is a technique to extract singly scattered light by using two-beam, two-

detector light scattering spectrometer (Figure 6.2(a)) [175, 176]. In this experiment, a cross correlation

was used to remove the effect from the multiply scattered light. To remove the multiply scattered light,

two-color dynamic light scattering is also useful technique (Figure 6.2(b)) [13]. In this technique, they

extract the same q component with different scattering angle by utilizing two different color of light. The

different approach for the measurement of dense media is the evaluation of the intensity correlation function

in consideration of multiple scattering explicitly, called diffusing wave spectroscopy [177, 178]. Another

example is a low-coherence DLS (Figure 6.2(c)) [179]. The unique feature about this technique is the use of

a superluminescent diode as the light source. Its short coherence length was efficiently utilized to remove

multiple scattering. From a viewpoint of the application of DLS to biological cells, a novel technique was

proposed by Dzakpasu and Axelrod [180]. They successfully created spatial maps of fluctuation decay rates

with a high spatial resolution (µm order) by a combination of confocal microscopy and a streak camera. There

is another technique to track the dynamics of solutes called total internal reflection microscopy [186, 187].

However, the applicability of this technique is limited to a thin layer.
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Figure 6.2: Representative techniques for the measurement of dense dispersion. (a) Cross correlation spec-

troscopy. (b) Two-color dynamic light scattering. (c) Low-coherence dynamic light scattering

6.3 Experimental

The schematic of the DLS microscope is shown in Figure 6.3. The laser light (λ = 514.5 nm, Stabilite 2018,

Spectra-Physics) is reshaped by using the first pinhole and expanded by a factor of three. After that, the

polarization is adjusted by using a λ/2 plate. This light is introduced into a microscope with a backscattering

geometry (ECLIPSE Ti-U, Nikon Instech Co., Ltd.). The sample solution is shielded in a cavity slide. This

sampling scheme reduces the required amount of samples to 50 µL. Note that a conventional DLS apparatus

requires approximately 1 mL sample. In addition, the path length within the sample solution is reduced to

the order 10 µm, which is approximately 10 mm for the conventional DLS system (Figure 6.4. Backscattered

light is then guided to avalanche photodiode after passing through a second pinhole. To obtain an optical

image, a long-pass filter is used as a launch mirror. The optical image is obtained with the same configuration

since the light with long wavelength can be used as an illumination light.

The size of PH2 is determined as follows (Figure 6.5). In this experiment, I used an objective lens of

Olympus. The focal length of secondary objective is set to 200 mm 77. This means that the image of the

objective lens is magnified nominal times by using the lens of f = 200. In our case, the size of focus at the

stage of microscope is estimated to be 1 µm. Since this image is magnified 40 times by using the secondary

objective, the size of focal point is 40 µm. Here, I used f = 100 lenses instead of precise secondary objective

lens because of the space of our base. In this case, the magnification ratio is reduced to 40× (100/200) = 20.

Theoretically, the size of pinhole should be set to ϕ = 20 µm. However, I set the size of pinhole to be ϕ = 50

µm in consideration of the incompleteness of optical system.

77In the case of Nikon, that is set to 180 mm.
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Figure 6.3: Schematic of the proposed DLS microscope: VND, variable neutral density filter; PH1, pinhole,

ϕ = 25 µm; HM, half mirror; BD, beam diffuser; PH2, pinhole, ϕ = 50 µm; APD, avalanche photodiode.

(a) (b)

Figure 6.4: Comparison of the path length. (a) Conventional DLS system. (b) DLS microscope.
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Figure 6.5: Calculation of the size of pinholes. We assume that the focal length of secondary objective is

set to 200 mm. This means that the image of the objective lens is magnified 40 times by using the lens of

f = 200.
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By applying a confocal optical system, high spatial resolution is achieved (1 µm in a lateral direction and

10 µm in a vertical direction, Figure 6.6). Thanks to this small irradiated volume, the smearing effect [61,63]

is negligible. In other words, the coherence factor is one and the initial amplitude A := g(2)(t = 0)−1 is equal

to one. However, it is clarified that obtained A was significantly less than 1. The origin of this deviation

is a reflection light from the boundary between glass and the sample solution. This reflection is so strong

that considerable reflection light can pass PH2 (Figure 6.7). As a result, both the signal and reflected light

are irradiated into the detector. This situation is the same as partial heterodyning, which is described in

Section4.1.3. In this case, EF in eq.(4.1.3.5) denotes the scattering from the sample solution and EC denotes

the reflected light. Therefore, eq.(4.1.3.42) is represented as follows:

1−
√
1−A =

⟨ Is ⟩T
⟨ Itot ⟩T

(6.3.1)

where A is the initial amplitude of the time-correlation function of the scattered intensity, g(2)(0)− 1, ⟨ Is ⟩T
is the intensity from the sample, and ⟨ Itot ⟩T is the total intensity. Similarly, eq.(4.1.3.45) is represented as

follows:

DA =
1−
√
1−A
A

D (6.3.2)

where DA is the apparent diffusion constant and D is the genuine diffusion constant which we want.

Figure 6.6: Principle of the confocal optical system. Only the light at focal point can go through a hole of

the pinhole.

The samples were polystyrene latex suspensions (3000 Series Nanospheres, Duke Scientifc Cooperation),

Chinese ink, and poly(N -isopropyl acrylamide) (PNIPA). As a comparison, measurement by using a conven-

tional DLS system was also performed. The measurements were performed at 25 ◦C unless mentioned. To

compare the results obtained from the DLS microscope, the measurements by using conventional DLS sys-

tem were also performed (DLS/SLS-5000 compact goniometer (ALV, Langen), coupled with an ALV photon

correlator). The incident light of the conventional DLS system is a 22 mW He–Ne laser whose wavelength

is 632.8 nm. Scattered angle was set to be 90◦ and the measurement time was 30 seconds.
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6.4 Results and Discussion

Figure 6.7: Explanation of partial heterodyning. Es is the backscattered light from the sample solution and

ER is the reflection from the boundary.

6.4 Results and Discussion

6.4.1 Polystyrene beads: multiple scattering media
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Figure 6.8: (a) Intensity correlation functions for a polystyrene latex suspension, 1 wt%. The nominal

diameter of the polystyrene latex particles is 50 nm. Solid lines: Several data sets obtained from the DLS

microscope (λ = 514.5 nm, θ = 180◦) at different points within the suspension. Dashed line: Data obtained

from a typical DLS system (DLS/SLS 5000 compact goniometer, ALV, λ = 632.8 nm, θ = 90◦). (b) A plot

of DA vs. (1−
√
1−A)/A. The solid line is the best fit result based on Eq. (6.3.2).

Figure 6.8(a) shows the time correlation functions of scattered light intensity from the polystyrene latex

suspension whose diameter is 50 nm. The correlation function measured by the conventional DLS shows

clear exponential curve whose initial amplitude, A, is almost 1. In contrast to this, the value of A obtained

from the DLS microscope varies in the range between 0.2 and 0.9 when the focal point is varied. The

relationship between the focal point and A is discussed later. Though the decay rate strongly depends on

the focal position, the time correlation functions were measured from turbid suspension. In this experiment,

the concentration was set to be 1% for the DLS microscope while 0.001 wt% for conventional DLS to suppress

the effect of multiple scattering. To extract the diffusion constant from the data obtained from the DLS

microscope, I utilized Eq. (6.3.2). Figure 6.8(b) shows a plot of DA vs. (1 −
√
1−A)/A. The data shows
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6.4 Results and Discussion

that DA is proportional to (1−
√
1−A)/A, which indicates the validity of Eq. (6.3.2). By fitting the data

with Eq. (6.3.2), D is estimated to be 8.22 × 10−12 m2 s−1. By using Einstein–Stokes relationship, the

hydrodynamic diameter is calculated to be 58 nm, which shows good agreement with the value obtained

from the typical DLS system (57 nm).
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Figure 6.9: (a) The appearance of the sample. The cover glass is fixed with manicure. (b) The definition

of z. (c) Position dependence of ⟨ Itot ⟩T (thin solid line), IR (dashed line), and ⟨ Is ⟩T (thick solid line) for

polystyrene latex suspension, 1 wt%. The nominal diameter of the polystyrene latex particles is 100 nm. The

intensity is expressed in s−1, the photon counts in a second. (d) Position dependence of the diameter of the

polystyrene latex suspension. The diameter calculated from the typical DLS is 116 nm, which is indicated

in the figure. Solid lines: The diameter corrected using Eq. (6.3.2). Dashed line: The apparent diameter

calculated by using apparent diffusion constant, DA.

To clarify the effect of reflected light quantitatively, DLS signals were measured with scanning the position

of the focal point. The sample was 1 wt% polystyrene latex suspension whose nominal diameter is 100

nm. As shown in Figure 6.9(a), this suspension is so turbid that the conventional DLS system is not

available. The time correlation functions were measured by scanning the focal point along the vertical

direction (Figure 6.9(b)). Thanks to its high spatial resolution, the measurement can be achieved at 1 µm

intervals. The thin solid line in Figure 6.9(c) shows the measured intensity, ⟨ Itot ⟩T . Around z = 0− 40 µm

and 170 − 180 µm, the scattered light intensity shows sharp peaks. These strong light intensities originate

from the reflection at the boundary between glass and the sample suspension. Around z = 40 − 170 µm,

the measured scattered intensity shows monotonic decrease. This is due to the multiple scattering, which

is eliminated by the pinhole. To clarify these points, the observed intensities were decomposed into IR and

⟨ Is ⟩T by using Eq. (6.3.1). The maximum value of the initial amplitude was 0.97, which indicates that

the smearing effect is almost negligible. The broken line in Figure 6.9(c) shows the calculated IR and the

thick solid line shows the calculated ⟨ Is ⟩T . These data clearly shows that the observed sharp peaks around

z = 0 − 40 µm and 170 − 180 µm are due to the reflected light, IR. In contrast to IR, the scattered light

intensity from the sample (⟨ Is ⟩T ) shows gradual change at the boundaries. The reason why the increase of
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⟨ Is ⟩T is not sharp is that the irradiated volume along the vertical direction is larger than the mechanical

spatial resolution of the microscope. From the decay of each time correlation function of the scattered light

intensity, the diameter of the sample suspension was calculated as a function of z by using Eq. (6.3.2). The

solid line in Figure 6.9(d) shows the result. As a comparison, the calculated result without taking the effect

of partial heterodyning into consideration is also shown as the broken line. The diameter of diluted sample

suspension measured by the conventional DLS system was 116 nm. The calculated result by using partial

heterodyne method shows good agreement with this value in whole z. This result shows the importance of

partial heterodyning. However, this result contradicts with the result of Xia et al. [188]. They observed the

slowing down of the motion near the interface. This point should be further investigated by improving the

signal to noise ratio of the DLS microscope.
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Figure 6.10: Concentration dependence of the size distribution of a polystyrene latex suspension. The

nominal diameter of the polystyrene latex particles is 100 nm. The 1 - 0.01 wt%, as measured by the DLS

microscope, is represented by the solid lines. The 0.01 - 0.0001 wt%, as measured by the typical DLS system,

is represented by the dashed lines. The graphical image is shown on the right.

Figure 6.10 shows the concentration dependence of the size distribution function of polystyrene latex

suspension. To check the consistency of a conventional DLS and the DLS microscope, the same sample

(0.01 wt%) was measured by both instruments and show good agreement. In the case of polystyrene latex

suspension, concentration dependence was not observed. This result is explained by the fact that the surface

of the polystyrene latex particle is negatively charged. Because of this charge, the particles repel each other.

As a result, the particle does not aggregate even at high concentration. This result agrees with the previous

research investigated by using diffusing wave spectroscopy [189].

As a practical application, the size distribution functions of milk are shown in Figure 6.11. Original sample

is so turbid that the conventional DLS system cannot be used (Figure 6.11(a)). The peaks are observed

in the size distribution function of the diluted sample (Figure 6.11(c)). It is considered that the smaller

particles are proteins and larger particles are fat globules. In contrast to this result, the size distribution

function of the original sample is broader than that of the diluted sample. This indicates that the dilution

process changes the dispersion states significantly. The surface charge of the particle is not so large to avoid

aggregation. The aggregation process of proteins is investigated later (Section 8). From these results, the

importance of measurement without dilution is clarified.
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Figure 6.11: Measurement of the size distribution functions of milk. (a) Photograph of the sample. (b) Time

correlation functions of scattered light intensity. (c) Size distribution functions calculated from the time

correlation functions. Solid lines: Original sample measured by the DLS microscope. Broken lines: Diluted

sample (1000 times) measured by the conventional DLS system.

6.4.2 Chinese ink: strong light-absorbing media
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Figure 6.12: (a) The appearance of the sample. (b) Absorption spectrum of diluted Chinese ink (10000

times). (c) Position dependence of the scattered intensity from Chinese ink (10 wt%). Dashed line is the

exponential fit.

As a representative of light-absorbing solution, I used Chinese ink. Chinese ink is a colloidal solution.

Colloidal particles are carbons covered by animal glue. The Chinese ink is black and absorbs light strongly

(Figure 6.12(a)). From the absorption spectrum (Figure 6.12(b)), absorption coefficient of the Chinese

ink at 514.5 nm is calculated to be ε = 3.23 × 103 cm−1. This absorption of light was also measured by

using the DLS microscope. As explained in the previous section, the scattered light intensity diminishes

as z increases due to multiple scattering (Figure 6.9(c)). Similar intensity decrease was induced by light

absorption. Figure 6.12(c) shows the observed light intensity as a function of z. Scattered light intensity,

⟨ Is ⟩T is extracted by using Eq. (6.3.1). ⟨ Is ⟩T shows exponential decay as a function of z. This decay can
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be explained by Lambert-Beer’s law. By fitting this decay curve, the absorption coefficient is estimated to

be 3.10× 103 cm−1, which agrees well with the result measured by a conventional spectrometer. Note that

the measurement was performed without dilution in the case of the DLS microscope. This is one of the

promising way to use a DLS microscope as a tool of absorption measurement. The unique point is that we

can extract the signal of sample solutions from the observed light intensity by using the initial amplitude of

the time correlation function.
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Figure 6.13: Concentration dependence of the size distribution of Chinese ink. The 10 - 0.05 wt%, as

measured by the DLS microscope, is represented by the solid lines. The 0.05 - 0.001 wt%, as measured by

the typical DLS system, is represented by the dashed lines. The graphical image is shown on the right.

Figure 6.13 shows the concentration dependence of the size distribution function of polystyrene latex

suspension. As the concentration increases, the size distribution becomes broad and the average diameter

becomes large. However, this is in contrast to the fact that the particles tend not to aggregate since the

Chinese ink is a protective colloidal solution. This contradiction may be explained in such a manner that

the Brownian motion is distorted at higher concentration region. As described on the right of Figure 6.13,

the particles show collective motion at high concentration region driven by van der Waals interaction. This

consideration agrees with the fact that the viscosity of Chinese ink is approximately five times larger than

that of water.

6.4.3 Polymers with lower critical solution temperature

Poly(N -isopropyl acrylamide) (PNIPA) is known as a temperature-responsive polymer [56] whose lower

critical solution temperature (LCST, see Section 3.2.4 for details) is 32 ◦C [190]. Temperature-responsive

polymer can be utilized to many applications such as drug delivery system, and the investigation on PNIPA

has been done by using calorimetry, DLS, and SANS [159]. However, there is no investigation on the

aggregation process during heating. This is because there is no technique to measure the morphology change

in high time resolution (several seconds) without dilution. DLS microscope can tackle with this difficulty.

Here I report the size distribution change around LCST observed by the DLS microscope.

PNIPA is synthesized by following the procedure shown in [159]. 20 g N -isopropyl acrylamide was dissolve

in 100 mL toluene with blocking out a light. This yellowish solution was filtrated under suction. The filtrate

was mixed with 500 mL petroleum ether and cooled with ice-water until the monomers were precipitated

(typically 30 minutes). Precipitated monomers were filtrated under suction and dried under reduced pressure

over night (yield: 84 %). 6.9 mmol of recrystalized NIPA was dissolved in 9.5 mL degassed, deionized water.
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Figure 6.14: (a) Time correlation functions of scattered light intensity for the PNIPA solution. (b) Corre-

sponding size distribution functions for the PNIPA solution obtained by the inverse Laplace transformation

of Figure 2(a). Horizontal axis was calculated with considering the effect of partial heterodyning for each

data. A thin solid line is the data obtained at 25 ◦C. A thick sold line is the data obtained just after the

solution became turbid (35 ◦C). A broken line is the data obtained after 20 minutes of the measurement of

the red line.

This solution was slowly stirred with introducing argon gas, cooled with ice-water, and blocking out a light

for 10 minutes. Then 0.08 mmol of N,N,N’,N’-tetramethylethylenediamine was added. After stirring for 1

minute, 0.5 mL of 0.035 M ammonium persulfate aqueous solution was added and stirred for 30 seconds.

This solution was kept in a refrigerator (4 ◦C) over night and used as a sample solution.

The DLS measurement was done by using temperature-controlled stage (TP-108R-C, Tokai Hit CO.,Ltd).

The PNIPA solution was shielded in a cavity slide. First, the time correlation function of scattered light

intensity was measured at 25 ◦C. After that, the temperature of the stage was set to 35 ◦C. The measurement

was done right after the solution becomes turbid. The solution was kept as it is and the measurement

was done again after 20 minutes later. The size distribution functions were calculated by inverse Laplace

transformation and rescaled by a partial heterodyne method.

Figure 6.14(a) and (b) show the results obtained by the DLS microscope. The thin solid lines show the

results obtained from the PNIPA solution below LCST. The solution has broad size distribution and the

average size is several tens nanometer, which is typical for polymer solutions. Since the irradiated volume is

so small compared to the conventional DLS apparatus, the light intensity is also small. This means that the

transparent solution is easily affected by a small amount of dusts. In Figure 6.14(a), the time correlation

function is not decayed even at one second and this may be originated from the noise such as dusts. This

kind of noise also affects at short time region and as a result the size distribution function becomes noisy

as shown in Figure 6.14(b). However, it is usually not a problem since we can use the conventional DLS

system for such transparent samples. The thick solid lines and the broken lines in Figure 6.14(a) and (b)

show the results obtained just after and 20 minutes after the solution became turbid, respectively. The

size of the aggregation just after the phase transition is around 1 µm while it becomes around 5 µm 20

minutes later. It clearly shows the aggregation growth during heating. Such a large size cannot be measured

by SAXS, SANS and conventional light scattering techniques. This uniqueness of DLS will be utilized for

further elucidation of aggregation growth processes. One of the examples is the aggregation state of carbon

nanotube dispersions, which is introduced in the next section.
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6.5 Summary

In this section, I introduced a new apparatus called a dynamic light scattering microscope. DLS microscope

enables us to measure DLS from turbid system and light-absorbing system with high spatial resolution

by applying backscattering geometry and confocal optical system. The contamination of reflected light

originated from the boundary of the sample and glasses are analytically separated by using partial heterodyne

method. This point is experimentally proved by using a polystyrene latex suspension as a sample. By using

DLS microscope, concentration dependence of the size distribution is found in Chinese ink and milk. In the

case of Chinese ink, this result is interpreted as a collective motion driven by van der Waals interaction. As

another application, aggregation growth of PNIPA solution is measured around LCST for the first time. By

using its high spatial resolution, I believe that this technique can also be applied to other systems such as

polymer blush, biological cells and so on.
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7 Concentration-induced Aggregation: Carbon Nanotube Suspension

7.1 Introduction

As shown in the previous section, the size distribution of dispersions can vary by dilution. However, the

mechanism of size distribution variation as a function of concentration is not clarified yet in the previous

section. To clarify the mechanism of size distribution variation in details, I focus on carbon nanotube

(CNT) dispersions. This research is directly connected to the theme of this thesis, “Aggregation structure of

polymers induced by hydrophilic and hydrophobic interaction”. The reason why I chose a carbon nanotube

as a sample is that CNT is a typical hydrophobic material. To investigate the aggregation structure induced

by hydrophobic interaction, CNT is one of the best materials since CNT is composed of only carbons, which

has hydrophobic character. From the viewpoint of application, CNT is taking center stage thanks to its

distinguished physical properties such as chemical sensing [191], electrical and thermal management [192],

photoemission [193], stretchable electro-device [194,195], electromagnetic shielding [196,197], energy storage

performance [198] and so on. To use CNT for the products, CNT is usually dispersed to the solvent since

the solution is easy to handle compared to powder samples. As a solvent of CNT, non-polar organic solvent

is preferable thanks to its high solubility for CNT. However, such organic solvents are harmful to our body

and environment in many cases. Therefore, for mass consumption of CNT for the products, water is the best

solvent if only CNT is dissolved. Although CNT is extremely hydrophobic, it is possible to dissolve CNT

to water with the aid of surfactant. Currently, CNT dispersed in water is widely used for the production of

materials, which utilize the prominent feature of CNT. However, the dispersion state of CNT is complicated

because of their strong tendency to aggregate via van der Waals interactions [199]. I believe that the deep

understanding of the dispersion state of CNT in water will improve the efficiency and quality of those

products.

There are many techniques to investigate the dispersion state of CNTs (Figure 7.1). Here I introduce their

advantages and disadvantages. Direct observation of aggregates is realized by using microscope techniques

such as atomic force microscope (AFM), transmission electron microscope (TEM), and scanning electron

microscope (SEM) [200, 201]. Since these microscopes can see each aggregate as it is, not only the size

distribution but also their shape is clarified. As for TEM and SEM, solution samples cannot be measured

directly since the sample should be dried up. There is a technique to measure the solution sample by using

freeze-dried sample. However, this technique is not common and difficult to implement. These microscopic

techniques are the observation in real space. Similar information can be obtained even in reciprocal space.

Observation in reciprocal space is performed by scattering technique. Among the scattering techniques,

SANS and SAXS are the best for the measurement of several to several tens nanometer size [202–204].

Since the obtained scattering image is the space-average within the irradiated volume, it is impossible to

determine the shape of each aggregate. In addition, large nuclear plant or proton accelerator is required for

SANS measurement. However, we can still extract abundant information as a form factor and a structure

factor. In addition, both diluted and concentrated samples (even dried solid samples) can be measured

by these scattering techniques. More classical technique is rheological measurements [205, 206]. From the

rheological properties of the dispersions such as sheer thinning, the degree of orientation and aggregation

can be obtained. Rheological measurement is easy to implement compared to the microscope techniques

and small-angle scattering technique. In addition, both diluted and concentrated dispersions can be mea-
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Figure 7.1: Comparison of techniques to measure dispersion states.

sured. The main drawback is that the extracted information is not directly related to the shape and size

of aggregates. There are also many measurement techniques by using light as a probe. DLS is the one of

the representative technique for the measurement of CNT dispersions. The advantage and disadvantage of

DLS compared to other measurement techniques are discussed in Section 6. To dissolve the drawbacks of

DLS, I developed DLS microscope, which is also discussed in Section 6. As a characteristic technique for the

measurement of rod-like solutes like CNT, polarized DLS is important [65,207,208]. Polarized DLS is almost

the same as DLS. However, the polarizations of incident and scattered light are set in appropriate geometry.

Different polarization geometry gives different time correlation functions of scattered light intensity. From

this information, not only the size but also aspect ratio is obtained from rod-like solutes. Total internal

reflection microscopy (TIRM) is another technique to measure diffusion of solute by using light [186, 187].

The image of one particle confined in thin layer is measured in real space, and information such as diffusion

constant and interaction between solutes and surfaces can be extracted. Although this technique is used

only for a thin layer, high spatial resolution greater than the optical diffraction limit is achieved by using an

evanescent wave as an illumination.

In this section, I introduce a research to clarify the concentration dependence of CNT dispersion states

by the combination of DLS microscope and polarized DLS. First, I introduce the characteristic feature of

CNT by referring to previous researches. Next I introduce the experiment details. To find appropriate

sample preparation scheme, I tried three scheme, which are introduced in the following subsection. Then the

concentration dependence of the size distribution is discussed. First I compare the size distributions at low

and middle concentration by using conventional DLS system and DLS microscope. Then the concentration

dependence of the size distribution of several CNT dispersions are shown in wide concentration range. In

addition, anisotropy is also discussed by using polarized DLS, which is explained in Section 4.1.4. These

results are summarized as a form of dispersion state transition.
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7.2 Experimental

7.2.1 Materials and sample preparation

Preparation scheme for CNT sample dispersion is shown in Figure 7.2. To disperse CNT in water, CNT and

surfactant (sodium deoxycholate (SDOC), Tokyo Chemical Industry Co., LTD.) were mixed and dispersed

by cyclic probe sonicator (UX-050, Mitsui Electric CO., LTD.) at 50 W power and 20 kHz for 12 hours.

Concentration of CNT and SDOC were 0.1 wt%. This suspension was concentrated by evaporating the

solvent. This scheme is called scheme I. Scheme II is followed by the additional SDOC (triple volume of the

Scheme I’s sample) and vortex in five hours. Scheme III is followed by centrifugation (6000 rpm, five hours)

of Scheme II’s sample and supernatants were used as samples. Five kinds of CNTs were used as samples

(Table 7.1); Nanocyl (NC7000, Nanocyl S.A.), VGCF-X (Showa Denko K.K.), HiPCO (purified, Unidyme

Inc.), CoMoCAT (CG200, Southwest Nano Technologies), SG (AIST) [209].

Table 7.1: List of CNTs
Product ID Single / Multi Diameter / nm Length / µm Specific area / m2 g−1 G/D ratio

NC7000 Nanocyl Multi 9.5 1.5 280 0.8

VGCF-X VGCF-X Multi 10-15 3.0 250 0.9

CoMoCAT CoMoCAT Single 0.8 5.0 450 15

HiPCO HiPCO Single 0.8 1.0 300 [210] 50

Super growth SG Single 3.7 1200 1150 5

SDOC : 
Sodium deoxycholate

CNT : SDOC = 1 : 1
CNT Concentration :
0.1 ~ 5 wt%
Solvent : Water

I

CNT : SDOC = 1 : 4

Bortex

Centrifugation
6000 rpm, ~ 5 h

~ 5 h ~ 50 μL

HO

H

H

H H

OH
O

O
-
Na

+

II

III

Figure 7.2: Preparation scheme of the sample dispersion.

7.2.2 UV-VIS measurement

The concentration of Scheme III’s sample was measured by UV-VIS spectrometer (V-630, JASCO, Japan).

Since the absorbance of light is very strong, the measurement was done by using diluted samples with 0.2

cm optical path. Then absorbance of original samples was calculated by using Lambert–Beer law.
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7.2.3 Dynamic light scattering

Measurement was performed by using both conventional DLS system (DLS/SLS 5000 compact goniometer,

ALV, λ = 632.8 nm, θ = 90◦) and DLS microscope (λ = 514.5 nm, θ = 180◦). See Chapter 6 for details.

As for the data analysis of DLS microscope, the effect of partial heterodyning is taken into account. The

initial amplitudes of time correlation functions of scattered light intensity in most of the measurements were

around 0.1. In this case, the coefficient of eq.(6.3.1) is approximately 0.5. Therefore, the apparent diffusion

constant, DA, is a half of actual diffusion constant, D.

In addition, polarized DLS was measured by using both conventional DLS system and DLS microscope.

To perform polarized DLS for conventional DLS system, two polarizers are used as shown in Figure 4.12.

Here I call polarized scattering as VV configuration and depolarized scattering as VH configuration. In the

case of DLS microscope, λ/2 plate is used to set the polarization of incident light (see Figure 6.3). Details

of data analysis for polarized DLS is described in Section 4.1.4.

7.3 Results and Discussion

7.3.1 Appropriate preparation scheme

Figure 7.3(a) shows concentration dependence of g(2)(t)− 1 for Nanocyl. Strong AC noise may come from

incompleteness of optical alignment. It is clear that there is no systematic change of g(2)(t)−1 as a function

of concentration. The reason for this is the existence of large aggregates as shown in Figure 7.3(b). The

existence of aggregates whose size is several µm will disturb the scattered light from dispersion whose size

is sub µm since the scattered intensity from large particles is much larger than that from small particles.

This is similar to the conventional DLS system; large dust should be eliminated for the measurement of

conventional DLS. Then I tried to remove large aggregates by vortex (Scheme II). Figure 7.4(a) shows

concentration dependence of g(2)(t) − 1 for HiPCO, 3 wt%. It is clarified that the g(2)(t) − 1 varies as

time advances. The reason is clarified by checking the optical images (Figure 7.4(b)). Since the sample

mount is set with the cover glass facing downward, relatively large aggregates do not appear at the focal

point. However, these large aggregates go to the bottom as time goes on. Therefore, it is difficult to obtain

reproducible data from the sample of Scheme II. To solve this problem, the large aggregates were removed
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Figure 7.3: Experimental results obtained from the sample prepared by Scheme I. (a) Concentration depen-

dence of g(2)(t)− 1 for Nanocyl. (b) Optical image for Nanocyl, 0.5 wt%.
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by centrifugation and the supernatants were used as samples (Scheme III). Figure 7.5 is the optical images

of Scheme III’s samples whose initial concentration were 3 wt%. Except for CoMoCAT, no aggregates were

observed. In the case of CoMoCAT, the aggregates might be created within supernatant though the amount

of aggregates was decreased significantly compared to other two schemes. This point becomes more clear in

the case of super growth CNT (Figure 7.6). Although the aggregates cannot be removed completely, still I

can apply DLS measurements since the DLS microscope has high spatial resolution. For CNT suspension,

the measurement points were marked as an x mark. In the following sections, only the data obtained from

Scheme III’s samples were shown.

100 μm
HiPCO, 3 wt%
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Figure 7.4: Experimental results obtained from the sample prepared by Scheme II. (a) Time dependence of

g(2)(t)− 1 for polystyrene latex and HiPCO. (b) Time dependence of optical image for HiPCO, 3 wt%.
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VGCF-XNanocyl

CoMoCATHiPCO

Figure 7.5: Optical image of CNT dispersions pre-

pared by Scheme III. Initial concentration is 3 wt%.

Scale bar is common and shown in the photo of Co-

MoCAT. 　　　　　　　　　　　　　　　　　　　

　　　　　　　　　　　　　　　　　　　　　

　　

　　

　
100 μm

0.2 wt%0.1 wt%

0.4 wt%0.3 wt%

Figure 7.6: Optical image of super growth CNT

dispersions prepared by Scheme III. Initial concen-

tration is shown in each image. Yellow x indicates

the position of laser spot. Scale bar is common and

shown in the photo of 0.4 wt% sample.
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7.3.2 Characterization of dispersions

As explained in previous section, the centrifugation is applied to remove large aggregates whose size is

approximately 1 µm. This means that the concentration of CNT dispersions before and after centrifugation

is different. To determine the amount of removed aggregates, absorption spectra were measured in visible

region as shown in Figure 7.7. Single-walled (SW) CNTs (HiPCO and CoMoCAT, upper figures) and multi-

walled (MW) CNTs (Nanocyl and VGCF-X, lower figures) show different feature. First, the absorbance

of MW-CNTs is approximately five times larger than that of SW-CNTs. In addition, SW-CNTs show

many peaks. These peaks originates from discontinuous density of states, known as van Hove singularity

transitions [211]. However, SG shows MW-CNT-like features; strong light absorbance and no peak structure.

This may be originated from their extremely large aspect ratio.
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Figure 7.7: Photo absorption spectra for CNT dispersions. Concentration shown in each graph indicates

their preparation concentration before vortex and centrifugation.

Figure 7.7 shows that the absorbance of CNT dispersions after centrifugation are not proportional to their

concentration before centrifugation. This means that the large aggregates were removed as sedimentation.

By using Lambert-Beer’s law, the proportion of removed aggregates, P , can be calculated as follows:

P = 1− Aobs(c)

cAobs(1 mg mL−1)
(7.3.2.1)

where c is the concentration before centrifugation (mg mL−1) and Aobs(c) is the observed absorbance whose

initial concentration is c. When there is no sedimentation, Aobs(c) = cAobs(1 mg mL−1) and P = 0. Some

samples showed small negative value of P , which originate from experimental error. In these samples, I

set P = 0. Concentration dependence of P was shown in Figure 7.8. It seems that there are threshold

concentrations to start making sedimentation and that concentrations are different for each CNT species.

The threshold concentration of MW-CNTs seems smaller than that of SW-CNTs. At these threshold con-

centrations, the aggregation energy (van der Waals interaction) may become larger than the thermal energy.
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Figure 7.8: Concentration dependence of proportion of large aggregates for five kinds of CNT dispersions

evaluated by the UV-VIS spectrometer. At low concentration, several points are overlapped at the bottom

region (shown in a yellow band). Deviation points from this region are shown for each CNT as arrows.

7.3.3 Determination of size distribution

To measure size distributions of the CNT dispersions, DLS microscope was applied for concentrated CNT

dispersions. The result at 0.5 wt% is shown in Figure 7.9. In the case of SG, the result at 0.1 wt% is shown

since 0.5 wt% dispersion shows totally different behavior as shown later (Figure 7.14), reflecting their high

aspect ratio. Note that the absorbance of some samples reached larger than 100 (when optical length is

set to 1 cm) at this concentration (Figure 7.7). It was completely impossible to measure such strong light

absorbing dispersion by using conventional DLS system. To clarify the effect of dilution, CNT suspensions

diluted before vortex treatment (Scheme I) were also measured by using conventional DLS system. These

results are also shown in Figure 7.9. Note that the initial amplitude of time correlation functions obtained by

DLS microscope is small (typically < 0.2). This is because of an effect of reflected light from prepared slide.

Concerning the data of DLS microscope, their initial amplitudes were set to 0.1 by multiplying appropriate

constant for clarity.

These time correlation functions do not show single exponential decay. This reflects the polydisperse

nature of CNT dispersions. By applying inverse Laplace transformation using the algorithm called CONTIN

(see Section 6), the time correlation functions were converted into the distribution functions of decay time.

Then, the decay time is converted into the hydrodynamic radius by using Einstein–Stokes equation. Results

are shown in the lower part of Figure 7.9. One of the drawbacks of CONTIN is its weakness against the

noise. In addition to this, use of Einstein–Stokes equation is also a coarse approximation in this concentration

region. Therefore, quantitative discussion by using size distribution functions shown in Figure 7.9 should be

avoided.

These results show that the aggregation state in diluted sample is similar to that of moderate concentration

dispersion. This information is important in many practical situations. Usually a high concentration sample

used for DLS measurement is diluted before measurement to suppress the effect of multiple scattering and

light absorption. Although this is a de-facto standard, there is no guarantee that the aggregation state in high

concentration is similar to that of diluted one. This experimental result shows one of the rationalizations

for that. However, it is also clarified that this de-facto standard does not actually hold true for higher

concentration region as shown in the following results.
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Figure 7.9: (Upper) Time correlation functions of (left) 0.001 wt % CNT dispersions measured by conven-

tional DLS system and (right) 0.5 wt% CNT dispersions measured by DLS microscope. Concerning the data

of DLS microscope, their initial amplitudes are set to 0.1 by multiplying appropriate constant for clarity.

(Lower) Size distribution functions of (left) 0.001 wt% CNT dispersions and (right) 0.5 wt% CNT dispersions

calculated from the time correlation functions. Only SG the result of 0.1 wt% is shown for DLS microscope.

In each figure, results of polystyrene latex suspension (PS) are shown as a standard sample. The diameter of

polystyrene latex is 100 nm. The concentration of polystyrene latex suspension is 0.001 wt% for conventional

results (left) and 0.1 wt% for DLS microscope results (right).

Only the data of HiPCO shows significant difference between diluted one and concentrated one; the decay

time of HiPCO becomes short as concentration becomes high. The most likely reason for this is that

aggregates of HiPCO are efficiently broken via the process of vortex. It is known that HiPCO prefers to

form sphere shape than rod shape because of their relatively thin form. This characteristic shape is easy

to break by vortex compared to other CNTs. This is the reason why the size of HiPCO measured by DLS

microscope is smaller than that measured by conventional DLS.

Next the concentration dependences of the size distribution for each CNT are measured in details by

using DLS microscope. Figure 7.10(a) shows the concentration dependence of the time correlation functions

for Nanocyl dispersions measured by DLS microscope. As shown in Figure 7.7, the absorption coefficient

of these dispersions is so large (several hundreds) that it is impossible to measure by a conventional DLS

system. Figure 7.10(b) shows the size distribution function converted from Figure 7.10(a) by using CONTIN

program. Here the size distribution function for the diluted sample (0.01 wt%) measured by the conventional

DLS system is also shown. Taking the uncertainty of inverse Laplace transformation into consideration, the

size distribution functions obtained from the conventional DLS system and DLS microscope shows good
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Figure 7.10: Concentration dependence of (a) time correlation functions and (b) size distribution functions

for Nanocyl dispersions measured by DLS microscope. Labels in the figure stands for the concentration

of original suspension. Initial amplitudes are set to be 0.1 by multiplying appropriate factor to each time

correlation function for (a).
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Figure 7.11: Concentration dependence of (a) time correlation functions and (b) size distribution functions

for VGCF-X dispersions measured by DLS microscope. Labels in the figure stands for the concentration

of original suspension. Initial amplitudes are set to be 0.1 by multiplying appropriate factor to each time

correlation function for (a).

agreement. In the case of Nanocyl dispersions, the size distributions of aggregates are almost the same for

all concentration regions. Similar results were obtained for VGCF-X (Figure 7.11) and HiPCO (Figure 7.12).

The length of these CNTs is short compared to other CNTs (CoMoCAT and SG). Therefore, the chance for

collision between CNTs is small even at high concentration region. As a result, each tube can be separated

regardless of their concentration. As for VGCF-X, the signal originated from AC noise was appeared for

3 wt% and 4 wt% samples. Note that these high concentration samples become low concentration after

centrifugation because of the sedimentation of large aggregates (Figure 7.8). Therefore, the origin of AC

noise may be due to scarce signal intensity.

In contrast to this, CoMoCAT and SG show clear concentration dependence in their size distribution as

shown in Figure 7.13 and 7.14. In the case of CoMoCAT, the decay of the time correlation functions becomes

slow at the concentration higher than 2 wt% (Figure 7.13(a)). This slowing down reflects the existence of

large aggregates. This fact is also clearly shown in their size distribution function (Figure 7.13(b), shown by a
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Figure 7.12: Concentration dependence of (a) time correlation functions and (b) size distribution functions

for HiPCO dispersions measured by DLS microscope. Labels in the figure stands for the concentration of

original suspension. Initial amplitudes are set to be 0.1 by multiplying appropriate factor to each time

correlation function for (a).
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Figure 7.13: Concentration dependence of (a) time correlation functions and (b) size distribution functions

for CoMoCAT dispersions measured by DLS microscope. Labels in the figure stands for the concentration

of original suspension. Initial amplitudes are set to be 0.1 by multiplying appropriate factor to each time

correlation function for (a).

hatched rectangular). Similar aggregation growth was also appeared for SG at the concentration higher than

0.3 wt% (Figure 7.14). This is consistent with the fact that these two CNTs are relatively long. Because of

their length, each solute collides to other solutes frequently. As a result, the solutes are combined and large

aggregates are created. The difference of the threshold concentration for this aggregation process can also be

explained by this line. SG is exceptionally long tube and each solute collides at relatively low concentration

compared to CoMoCAT. Therefore, the threshold concentration for aggregation process of SG is low (0.3

wt%) compared to CoMoCAT (2 wt%).
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7.3.4 Estimation of anisotropy

As explained in the Introduction, the aspect ratio of solutes can be measured by polarization-resolved

DLS [207]. The basic theory is written in Section 4.1.4. Before implementation of polarized DLS to DLS mi-

croscope, polarized DLS measurement was performed by using conventional DLS system. Diluted polystyrene

latex suspension and SG suspension were used as a representative sample. The measurement was performed

in VV and VH configuration and the results are shown in Figure 7.15(a). In the case of polystyrene latex,

both VV and VH show almost the same time correlation functions. Since the difference of decay rates

between VV and VH configuration originates from the rotational diffusion coefficient, Dr, this result means

that Dr = 0 for polystyrene latex suspension (eq.(4.1.4.1) and (4.1.4.2)). This is consistent with the fact

that the polystyrene latex is a sphere. In contrast to this, the decay of time correlation functions for VV

configuration is slower than that for VH configuration in the cace of SG. This is because Dr ̸= 0 for rod-like

solute such as CNT. From this result, both Dt and Dr can be obtained.

Here, to obtain the numerical value of these diffusion coefficients more precisely, the measurement results

obtained from different scattering angles are used. The time correlation functions for different scattering

angles are shown in Figure 7.16. These time correlation functions are fitted by an exponential curve and

decay rates, Γ, are obtained. Figure 7.17 shows the q2-dependence of Γ. As shown in eq.(4.1.4.1), ΓV V is

proportional to q2 and the proportional coefficient is Dt. In the case of ΓV H , the slope is the same as that of

ΓV V and Dr is a y-intercept (eq.(4.1.4.2)). Therefore, the linear fitting of Figure 7.17 give us the numerical

values of Dt and Dr. First, Dt is obtained from the linear fitting of ΓV V whose y-intercept is fixed to 0.

Then, Dr is obtained from the linear fitting of ΓV H whose slope is fixed to Dt. Fitting results are also shown

in Figure 7.17. Again, it is shown that Dr = 0 for polystyrene latex suspension since the shape of solutes

are sphere. In the case of SG, the calculated results are Dt = 3.6 × 10−12 m2 s−1 and Dr = 1.1 × 102 s−1.

From these values, eq.(4.1.4.3) and (4.1.4.4), the average size of SG solute is estimated to be a = 300 nm

and b = 7 nm. Although the length of SG CNT becomes short though the preparation of the sample, it is

clarified that the solute shows still high aspect ratio.
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Figure 7.15: Polarization dependence of representative time correlation functions for polystyrene latex sus-

pension (PS, diameter: 100 nm) and SG dispersion. (a) Time correlation functions of (left) 0.001 wt% PS

and (right) 0.001 wt% SG measured by conventional DLS system (θ = 50◦). (b) Time correlation functions

for (left) 0.1 wt% PS and (right) 0.1 wt% SG measured by DLS microscope. Solid line: VV configuration.

Broken line: VH configuration.
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Figure 7.16: Scattering angle and polarization dependence of time correlation functions measured by conven-

tional DLS system. Solid line: VV configuration. Broken line: VH configuration. (Top) Polystyrene latex

suspension (PS), diameter: 100 nm, concentration: 0.001 wt%. (Bottom) SG suspension, concentration:

0.001 wt%.
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0.6

0.5

0.4

0.3

0.2

0.1

0.0

g
(2

) (t
) 

- 
1

0.5

0.4

0.3

0.2

0.1

0.0

g
(2

) (t
) 

- 
1

0.001 0.01 0.1 1 10 100

Time / ms

0.01 0.1 1 10 100

Time / ms

CoMoCAT

VGCF-XNanocyl

HiPCO

0.01 0.1 1 10 100

Time / ms

SG

PS

Figure 7.18: Polarization dependence of time correlation functions observed by DLS microscope. Solid line:
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shows the result of 0.1 wt%. PS : Polystyrene latex suspension, diameter: 100 nm, concentration : 0.1 wt%.

Then polarized DLS was applied for concentrated samples by using DLS microscope. Figure 7.18 shows

representative time correlation functions measured with VV and VH configurations at the same position.

The solid lines are the results obtained with usual VV configurations. In this case, the detected signal is

the mixture of backscattered light from the sample and reflected light from boundary between sample and

cover glass. Usually the amount of reflected light is large compared to the scattered light from the sample.

Because of this, initial amplitudes of the time correlation function are very small (typically 0.1). Then the

time correlation functions from the same position with VH configuration were measured. The results are

shown as broken lines in Figure 7.18. These figures show that the initial amplitudes become large compared

to VV configuration except for the case of polystyrene latex. This can be explained as follows. In the case of

polystyrene latex, there is no VH scattering in principle because polystyrene latex is isotropic. The detected

signal in this case is the polarization-distorted VV scattering originated from the focusing of an objective
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Figure 7.19: Polarization dependence of time correlation functions. Solid line: VV configuration. Broken

line: VH configuration. PS : Polystyrene latex suspension, diameter: 100 nm, concentration : 0.1 wt%.

lens. In this case, the initial amplitude for each configuration is the same. However, if the sample solute is

anisotropic, there is depolarized (VH) scattering. In the case of CNT dispersions, this depolarized scattering

overwhelms the effect of polarization distortion originated from the objective lens. In this case, the initial

amplitude becomes large because unfavorable reflection from the boundary is effectively reduced. Note

that the reflection from the boundary is VV (polarized) scattering. From these considerations, it is proved

that anisotropy of CNT dispersion was clearly observed by polarized DLS microscopy. This anisotropy was

observed for all of CNT dispersions whose concentrations are larger than 0.1 wt% (Figure 7.19).

Then the time correlation functions of relatively high concentration dispersion were measured for VV and

VH configurations by using polarized DLS microscope. Figure 7.15(b) shows the results for the suspension

of polystyrene latex and SG. The concentration of each suspension is 100 times higher than that measured

by the conventional DLS system (Figure 7.15(a)). The result for polystyrene latex is almost the same as

the diluted sample; the decay rates of VV and VH configuration are almost the same. Note that the decay

rate itself is different between the conventional DLS system and DLS microscope because of the different

scattering angle and wavelength. The interesting feature is shown in the results of SG; the decay rates of

VV and VH configuration are almost the same even for SG suspension in the case of high concentration.

This result is completely different from the result for the diluted sample (Figure 7.15(a)). The overlap of the

time correlation functions for VV and VH configurations indicates Dr = 0. It seems that the solute becomes

isotropic due to the aggregation. However, since it is proved that the size distribution function of SG is

almost the same in this concentration region (Figure 7.14(b)), the shape of solute itself may be still rod-like.

Here, I propose the concept, “rotational restriction” to explain the reason for Dr = 0. The physical meaning

of Dr = 0 is that the object does not rotate. In the case of concentrated CNT dispersion, the rotational

motion of a rod-like CNT may be restricted due to other CNTs around it. This restriction will occur when

the concentration is so high that the distance between each CNT becomes close and can interact with each

other. This kind of effect may appear only when the solute has high aspect ratio like SG CNT.
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7.3.5 Dispersion-state transition
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Figure 7.20: Proposed concentration dependence for aggregation state of CNT dispersions.

The previous results are summarized in Figure 7.20. I propose that there are three dispersion states in

the dispersion of rod-like solutes. When the concentration of dispersion is low, each solute is described as

a translational and rotational Brownian motion. Translational Brownian motion is observed by any kind

of DLS system (for examples, Figure 7.9) and rotational Brownian motion is observed by polarized DLS

(Figure 7.15(a)). When the concentration becomes high, rotational Brownian motion is restricted due to the

intermolecular interaction. This phenomenon is observed by the overlap of the time correlation functions of

scattered light intensity with VV and VH configuration measured by the polarized DLS (Figure 7.15(b)).

Note that the size of solute itself does not change as shown in Figure 7.9. For long CNT such as CoMoCAT

and SG, another dispersion state transition is observed as a form of aggregation growth. These aggregation

growth is clearly observed as a form of the slowing down of the decay of the time correlation functions

measured by the DLS microscope (Figure 7.13 and 7.14).

7.4 Summary

In this section, I showed the application of DLS microscope to the investigation of dispersion state of

CNT as a function of concentration. Several kinds of CNT dispersions were prepared and measured by

using polarized DLS microscope after removing large aggregates (> 1 µm), which disturb the measurement.

As for translational Brownian motion, long CNTs such as CoMoCAT and SG showed slowing down at

relatively high concentration (several wt%). This indicates the aggregation growth induced by the increase

of concentration. As for rotational Brownian motion, the restriction of rotation was observed at relatively

low concentration (0.1 wt%). This is the first report of rotational restriction. I believe that this kind of

dispersion state transition is universal for rod-like shape solutes. This concept will improve the production

scheme of CNT-containing materials.
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8 Heat-induced Aggregation: Ovalbumin

8.1 Introduction

(a) (b) (c)

Figure 8.1: (a) Schematic illustration of a 3D ribbon model OVA (PDB code, 1OVA) drawn with Pymol.

After pepsin treatment, the residues from 1 to 22 (the helix part colored purple in the figure) are removed.

(b) Hydrophobicity map of OVA evaluated from the hydrophobicity of each amino acid [18]. White parts

correspond to hydrophilic parts and red parts correspond to hydrophobic parts. Dashed rectangle shows the

position of the residues from 1 to 22. (c) Estimated hydrophobicity map of pOVA. (d), (e) Hydrophobicity

map of the residues from 1 to 22 from the viewpoint of (d) outside and (e) inside of OVA molecule.

As an example of aggregation of hydrophilic substance, I focus on ovalbumin (OVA) in this section. OVA is

a major protein in egg white. Egg white contains approximately 10 % of proteins and half of those proteins

is OVA [212]. OVA is composed of 385 amino acids and the complete sequence of OVA was revealed in

1978 [213]. Later, crystal structure of OVA was determined by X-ray diffraction as shown in Figure 8.1(a)

and (b) [214, 215]. Gelation mechanism of OVA has been investigated for a long time. One of the most

well-known mechanism proposed by Koseki et al. is shown in Figure 8.2 [20]. At room temperature (or,

to say precisely, below denaturation temperature), the surface of OVA in solution is covered by hydrophilic

amino acids. As the temperature increases, OVA is denatured. Denature induces the exposure of inner

hydrophobic part. Hydrophobic parts of OVAs will get together to hide hydrophobic parts from water. This

tendency is called hydrophobic interaction. When the solution is salt-free condition, we have to consider

Coulomb repulsion since each OVA is negatively charged. Note that the isoelectric point of OVA is 4.5 [22].

As a result, heat-induced OVA aggregates are fibrillar structure. As the ionic strength of solution increases,

resultant aggregates become dense since Coulombic interaction is weakened. This is experimentally proved

by using cryo-TEM [216]. Weijers et al. showed the size change during heat-induced aggregation by using

DLS [217]. DLS is suitable for the measurement of size distribution of solutes. They clearly showed the

decrease of monomers and growth of aggregates.

To elucidate the gelation mechanism, structural analysis of heat-induced aggregates and gels has been

performed by rheology [218–220], light scattering [217, 221, 222], SAXS and SANS [223–225], transmission

electron microscope (TEM) [20,216] and so on. Main topic of these researches are the relationship between

the ionic strength and structure of heat-induced aggregates, which support the gelation mechanism shown in

Figure 8.2. Here, I focus on the relationship between hydrophilicity and structure of heat-induced aggregates.

Recently, modification of the primary structure of OVA was reported [21, 22]. It was found that the pepsin
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Heat

hydrophobic
hydrophilic

Figure 8.2: Mechanism of heat-induced gelation of OVA under salt-free condition, proposed by Koseki et

al [20].

hydrolysis of OVA at pH 4 cleaves the peptide bond between His22 and Ala23. Cleaved peptide region is

colored purple in Figure 8.1(a). The resultant large OVA fragment is called pOVA (Figure 8.1(c)). Physical

properties of pOVA such as intrinsic viscosity, the secondary structure, and the denaturation temperature

are almost the same as that of OVA [226]. However, it is known that the heat-induced aggregates and

gels of pOVA are different from that of OVA. Figure 8.3 shows the photographs of heat-induced OVA and

pOVA solution under salt-free, neutral condition. As clearly seen, the OVA gel is transparent while the

pOVA gel is turbid 78. Although the reason for this is not clear yet, one of the key factors of this difference

is hydrophicility. Figure 8.1(b) and (c) show the hydrophobicity map of OVA and pOVA, respectively.

Cleaved region is shown by a dashed rectangular. Red parts are hydrophobic amino acids and white parts

are hydrophilic amino acids. It is shown that the removal of N -terminal peptide region expose hydrophobic

(red) region to the solvent. This will induce difference in their dispersion state even before heating.

(a) (b)

Figure 8.3: Photographs of (a) OVA and (b) pOVA gels. Protein solutions (6 wt%) were heated at 85 ◦C

for an hour. No salts were added and pH was 7.

In this section, I introduce a research to clarify the difference of heat-induced aggregates and gels between

OVA and pOVA from the viewpoint of hydrophilicity. First, I clarify the difference of heat-induced aggregates

and gels between OVA and pOVA quantitatively by using rheological measurement and DLS. Then structural

analysis was performed by SANS. From the concentration dependence of microscopic structures, detailed

gelation mechanism of OVA and pOVA under salt-free, neutral condition is proposed. Structural analysis

of OVA and pOVA gels under acidic condition was also performed. In addition, structural analysis during

heating was performed by using time-resolved SANS measurement. Time-resolved measurement is one of

the unique point of SANS. In the case of SAXS, time-resolved measurement is difficult since irradiation of

intense X-ray will damage the samples. In contrast to SAXS, SANS gives less damage.

78Since OVA is the main component of egg “white”, it seems strange that the OVA gel is transparent. The point is that
Figure 8.3 is salt-free condition. Salt concentration of typical egg white is 0.5 wt%. The existence of salt makes the heat-induced
aggregates more dense as explained in the main text. As a result, egg white becomes white (turbid) by heating.
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8.2 Experimental

8.2.1 Materials

OVA (purity: ≥ 98 %) was purchased from Sigma-Aldrich (A5503). Pepsin was purchased from Wor-

thington Biochemicals. Other chemicals were purchased from Wako Pure Chemical Industries. All of these

materials were used without further purification. pOVA was synthesized from OVA as follows [22]. First,

100 mM buffer solution whose pH is 4 was prepared by dissolving 488 µL acetic acid and 121.3 mg sodium

acetate with 100 mL deionized water. Then, 1.00 g OVA was dissolved with 80 mL buffer solution. Next,

20 mg pepsin was dissolved with 20 mL buffer solution. These two solutions were mixed and stirred for 15

hours at room temperature. During this process, N -terminal residues were cleaved. After the reaction, pH

of the solution was adjusted to 7 by adding 1 M sodium hydroxide to terminate the reaction. This solution

was dialyzed overnight against 0.5 mM ammonium acetate by using cellulose tube whose cutoff molecular

weight is between 12000 and 14000. After the dialysis, the white powder was obtained by freeze dehydration

of the solution. The yield was 89.6 %.

8.2.2 Dynamic light scattering

The DLS measurements were performed by the conventional DLS system, which is the same as the previous

sections. The temperature was set to be 25 ◦C and the scattering angle was set to be 90◦. Detail of the data

analysis is given in Section 4.1.2. Samples were filtered by 0.2 µm filter before the measurements to remove

the dust and large aggregates.

8.2.3 Rheology

The rheological measurements were performed by a stress-control rheometer (MCR-501, Anton Paar,

Austria). Sample solution was set on a temperature-controlled stage and the solution is sheared by a cone

plate whose radius is 25.0 mm and the cone angle is 1◦. Oscillatory shear with 0.5 % distortion was applied

and the stress was measured as a function of shear rate (0.01 ∼ 100 rad s−1).

8.2.4 Small-angle neutron scattering

SANS experiments were performed at the GP-SANS and Bio-SANS beamline at the High Flux Isotope

Reactor at the Oak Ridge National Laboratory. The experimental conditions are summarized in Table 8.1.

Sample solutions were filled in banjo cells or demountable cells whose thickness were 2 mm. Most of the

measurement, the temperature of the holders were set to be 25 ◦C. In the case of time-resolved SANS

measurements, the temperature was increased in stepwise manner to induce gelation (See the following

section).
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Table 8.1: Experimental conditions of SANS

GP-SANS Bio-SANS

Average wavelength 4.72 Å 4.72 Å

Sample-to-detector distance (SDD) 2.0 m / 18.5 m 1.7 m / 14.5 m

q-range

0.02 Å
−1

< q < 0.5 Å
−1

(SDD: 2.0 m)

0.003 Å
−1

< q < 0.07 Å
−1

(SDD: 18.5 m)

0.02 Å
−1

< q < 0.4 Å
−1

(SDD: 1.7 m)

0.003 Å
−1

< q < 0.04 Å
−1

(SDD: 14.5 m)
q = 4π sin θ/λ where λ and 2θ represent the wavelength and the scattering angle, respectively.

8.3 Results and Discussion

8.3.1 Rheological behavior

Figure 8.4 shows angular frequency dependence of G′ and G′′ of heat-induced gels (85 ◦C, 1 hour) under

neutral, salt-free condition. Threshold concentration of gelation under this condition is 6 wt% for OVA and

5 wt% for pOVA. Therefore, the data under these threshold concentrations is difficult to obtain because of

the lack of torque (shown by open symbols in the figure). By comparing the data of OVA and pOVA whose

concentration is 6 wt%, it is clarified that the pOVA gel is stronger (large G′) than the OVA gels. Interest-

ingly, opposite results were obtained under acidic condition with 100 mM salt concentration (Figure 8.5).

These results indicate that the gelation mechanism for these two conditions is different.
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Figure 8.4: Angular frequency dependence of the storage (G′) and the loss (G′′) moduli of heat-induced gels

under neutral, salt-free condition. Heating condition is 85 ◦C, 1 hour. (a) OVA. (b) pOVA.
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Figure 8.5: Angular frequency dependence of the storage (G′) and the loss (G′′) moduli under acidic condition

(100 mM buffer solution). Heating condition is 65 ◦C, 1 hour. (a) OVA. (b) pOVA.
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Figure 8.6: Angular frequency dependence of the storage (G′) and the loss (G′′) moduli for the mixture of

OVA and addtives. (a) OVA under neutral, salt-free condition. Heating condition is 85 ◦C, 1 hour. (b)

pOVA under acidic condition (100 mM buffer solution). Heating condition is 65 ◦C, 1 hour.

Rheological behavior can also be controlled by adding salt. Figure 8.6(a) shows the rheological behavior

of heated 5 wt% OVA solution with and without NaCl (100 mM) under neutral condition. As shown in

Figure 8.4, the solution does not become gel. However, addition of NaCl induced gelation. In addition, the

resultant gel is stronger than any other gels shown in this subsection. This enhancement of OVA gel strength

is induced not only by salt but also the peptide, pN1-22. Figure 8.6(b) shows the rheological behavior of

heated 2 wt% OVA solution with pN1-22 under acidic condition with 100 mM salt concentration. It is clear

that the strength of the resultant gels increases as the amount of pN1-22 increases. This phenomenon is

characteristic for acidic condition since the peptide does not dissolve in neutral, salt free condition so much

to induce significant change in its rheological behavior (Figure 8.6(a)). To clarify the gelation mechanism

under these conditions, microscopic measurements were performed by DLS and SANS. In this section, I

focus mainly on neutral, salt-free condition. Preliminary investigation under acidic condition is also shown.

8.3.2 Size distributions of OVA and pOVA molecules in solution

To see the dispersion state of OVA and pOVA in neutral water, DLS measurements were performed.

Figure 8.7 shows (a) the time correlation functions of scattered light intensity and (b) corresponding size

distribution of OVA (solid lines) and pOVA (broken lines) solutions whose concentration are 2 wt%. The

size distributions of both solutions show two peaks. One peak corresponds to several nanometers. This

size corresponds to the order of one OVA (3 nm [214]). However, it is difficult to know whether they are

monomers or dimers because the scattering light from small particle is weaker than larger particles. In the

next subsection, it is clarified that this peak corresponds to the dimers. Another peak corresponds to several

tens nanometer. This may corresponds to the cluster consisting of several tens OVA or pOVA monomers.

Note that the peak height of each peak in Figure 8.7(b) does not corresponds to the proportion of dimers

and clusters. The measurements by other concentrations also show the similar tendency (Figure 8.8). This

clustering indicates that both OVA and pOVA are not hydrated completely.
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Figure 8.7: (a) Time correlation functions and (b) size distribution functions of OVA and pOVA solutions

(2 wt%) measured by DLS. pH was set to be 7.
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8.3.3 Gelation mechanism of OVA

From this subsection, I focused on neutral, salt-free condition. Figure 8.9(a) shows the SANS profiles

of OVA solution before heating. Clear peak structure was observed in all of the concentration. These

peaks indicate the existence of characteristic length between the solutes. Since these solutions are salt-free

condition, the charges on each solute are not shielded. Therefore, origin of these peaks is the electric repulsion

between the solutes. To clarify this point, the characteristic correlation length (d∗) is calculated from the

peak position (q∗) as follows:

d∗ :=
2π

q∗
(8.3.3.1)

The relationship between d∗ and protein concentration is shown in Figure 8.10. Power law is observed as

d∗ ∼ C−0.29 where C is the protein concentration (g/L). This power law is consistent with the previous

research of SAXS, which shows d∗ ∼ C−0.28 [224]. It is also theoretically proved that the power law should

become d∗ ∼ C−0.28 for the dispersion of monodisperse charged particles [227].
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Figure 8.9: SANS profiles of OVA solutions (a) before and (b) after heat treatment with different concen-

trations. Solid lines in (a) show the fitting results. A dashed line shown in (b) represents the position of the

peaks.
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Figure 8.10: Relationship between the concentration and the characteristic length of the OVA solutions

before and after heating. Solid lines show the power law of d∗ against C.

This situation is quantitatively analyzed by using Hayter-Penfold structure factor (Sec. 2.4.5). As a form

factor, ellipsoid shape is chosen as reported [225]. Hayter-Penfold structure factor is not directly applied to

the dispersion of ellipsoids. Therefore, the radius of equivalent sphere, called the effective radius, is used for

the fitting [228]. To obtain the absolute intensity, the number of solutes was calculated from the concentration
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and molecular weight of the solutes. Here, each solute is regarded as a dimer [229]. Scattering length density

is calculated by taking D/H exchange effect into consideration [230–232], which is summarized in Table 8.2.

However, Hayter-Penfold structure factor cannot reproduce the upturn in low-q region which is clearly

seen in Figure 8.9(a). There are various explanations for this upturn such as inhomogeneous hydrophobic

hydration [233], equilibrium cluster formation [234], long-range attraction [235,236], aging [237], permanent

aggregates [238] and so on. Although the detail of their explanation is different, most of the research

indicates the existence of large aggregates. The existence of large aggregates is also suggested from the DLS

results (Figure 8.7(b)) though no structural information is obtained from the DLS results. The power law

of the upturn in Figure 8.9(a) is found to be I(q) ∼ q−1. This power law is characteristic for rod-shape

solute. Therefore, additional form factor is added to the fitting function by assuming the large rod-shape

aggregates [204]. The fitting function is summarized as follows:

I(q) = NP (∆ρ)
2V 2
PS(q;ϕ,R, zm, csalt, ε, T )Pellip(q;Ra, Rb) +ArodProd(q) + Ibkg (8.3.3.2)

R = R1/3
a R

2/3
b f1/3 (8.3.3.3)

f :=
1

4
+

3

16

(
1 +

1

(1 + ε2)1/2
arcsin ε

ε

)(
1 +

1− ε2

2ε
ln

1 + ε

1− ε

)
(8.3.3.4)

ε :=
R2
a −R2

b

R2
a

(8.3.3.5)

The definitions of characters are summarized in Table 8.3.

Table 8.2: Scattering length densities of amino acids
Amino acids Chemical formula b in H2O / fm b in D2O / fm V / Å3 ρ in H2O / 109 cm−2 ρ in D2O / 109 cm−2

GLY C2H3NO 18.91 29.32 66.4 28.5 44.2

SER C3H5NO2 23.88 44.70 99.1 24.1 45.1

ILE C6H11NO 15.57 25.98 168.8 9.2 15.4

ALA C3H5NO 18.08 28.49 91.5 19.8 31.1

MET C5H9NOS 19.25 29.66 170.8 11.3 17.4

GLU C5H6NO3 39.23 49.65 140.6 27.9 35.3

PHE C9H9NO 42.99 53.40 203.4 21.1 26.3

CYS C3H5NOS 20.92 41.75 105.6 19.8 39.5

ASP C4H4NO3 40.07 50.48 113.6 35.3 44.4

VAL C5H9NO 16.41 26.82 141.7 11.6 18.9

LYS C6H13N2O 17.45 59.10 176.2 9.9 33.5

LEU C6H11NO 15.57 25.98 167.9 9.3 15.5

HIS C6H6.5N3O 51.12 66.74 167.3 30.6 39.9

ASN C4H6N2O2 36.14 67.38 135.2 26.7 49.8

TYR C9H9NO2 48.79 69.62 203.6 24.0 34.2

PRO C5H7NO 23.89 23.89 129.3 18.5 18.5

THR C4H7NO2 23.04 43.87 122.1 18.9 35.9

ARG C6H13N4O 36.17 98.64 180.8 20.0 54.6

GLN C5H8N2O2 35.31 66.54 161.1 21.9 41.3

TRP C11H10N2O 61.90 82.72 237.6 26.1 34.8

The parameters zm and csalt are independent parameters. However, these parameters can be unified. In

the analysis of Figure 8.9, the fitting can be done by setting csalt = 0. Strictly speaking, this analysis is

rough approximation since the existence of ions originated from the dissociation from OVA is ignored [225].

However, this error is compensated by the decrease of zm. In this case, the parameter zm is re-interpreted

as the effective charge of the solute, z (Figure 8.11).
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Table 8.3: Definitions of characters
NP Number of solutes per unit volume

∆ρ Scattering length density difference

VP Volume of the solute

S(q) Hayter-Penfold structure factor

Pellip(q) Form factor of ellipsoids

Arod Scaling factor of the intensity of scattering from rods

Prod Form factor of rods

Ibkg Background intensity including incoherent scattering

R Effective radius

Ra Length of long axis for the ellipsoids

Rb Length of short axis for the ellipsoids

L Length of the rods

d Diameter of the rods

f Correction parameter

ε Eccentricity of the ellipsoids

Figure 8.11: The meaning of zm and z.

The diameter of the rods, d is also fixed (40 Å). The reason for this is that the convergence of d was

poor since the profile change induced by the difference of d is overwhelmed by the peak structure in the

SANS profile. The assumed value of 40 Å is taken from the characteristic size of one OVA solute. In other

words, rod-like aggregates made from OVA are assumed to be a chain of OVA solutes, which was proposed

by Koseki et al. [20]. Through these assumptions, the number of fitting parameters were reduced to 6;

Ra, Rb, z, Arod, L, Ibkg.

Table 8.4: Fitting parameters of SANS profiles for OVA before heating

Sample Ra / Å Rb / Å z

2 wt% 50 19 8.6

5 wt% 50 19 9.4

6 wt% 52 18 9.7

10 wt% 55 17 9.7

The fitting results for OVA solution before heating are shown in Figure 8.9(a) and Table 8.4. At first,

NP is calculated by assuming that the solute is one monomer. However, the size of solutes indicates that

the solute is not a monomer but a dimer as explained below. Therefore, NP is assumed to be a half of its
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original value. Through this modification, the SANS profiles are reproduced well in absolute scale. Fitting

results for Ra and Rb are a little bit larger than the size of one monomer (Ra = 35 Å , Rb = 25 Å ) [214]. This

indicates that the OVA exists in dimeric form in the aqueous solution, as mentioned before. This result is

supported by the DLS results (Figure 8.7(b)) and previous reports [225,229]. The value of z is smaller than

that of reported zm (11e [225]), which is also consistent with the difference of the physical meaning of z and

zm. q−1 power law in low-q region is also reproduced by using a form factor of rods. To discuss the length

of rods quantitatively, the information of lower-q region is necessary since the length is very long. Therefore,

what we can see in the present data is that the length of the rods may be the order of several hundreds

nanometer. The hydrodynamic radius for such a rod-like structure is calculated to be the order of several

hundreds nanometer [239]. This estimation is consistent with the DLS results (Figure 8.7(b)). Such a long

rod-like shape is formed when there are both hydrophobic (attractive) interaction and electrostatic (repulsive

interaction) [20]. Note that the amount of these rod-like aggregates is small since the OVA before heating

is mostly covered by hydrophilic part. Therefore, the analysis by the linear combination of the contribution

of the rod term and the contribution of the Hayter-Penfold term is rationalized. Note that this addition is

useless if there are so many rod-like aggregates that disturb the correlations between OVA dimers.

Interestingly, the SANS profiles of OVA solutions after the heating (85 ◦C, 1 hour) show totally different

behavior (Figure 8.9(b)). As shown in Figure 8.4(a) and previous research [224], the samples whose con-

centrations are smaller than 5 wt% are sol while larger than 6 wt% are gels. Since each solute is connected

with each other, Eq. 8.3.3.2 is no longer available. In contrast to the clear difference in rheological measure-

ments, the SANS profile change is continuous as a function of concentration. As for 10 wt%, strong upturn

originated from inhomogenieties [5] make the peak structure dull. Other three SANS profiles show clear

peak structure whose peak position is 0.023 Å−1 for all of the samples (indicated as the dashed line). This

result indicates that the distance between solutes is independent of the concentration (d∗ ∼ 270 Å ). This

is surprising since the distance between solutes decrease in general. Similar phenomenon was reported for

the solution of lysozyme [234]. This unusual behavior can be explained by using aggregation growth. The

fact that the distance between solutes is constant suggests that the number of solutes does not change even

we change the solution. This means that the number of monomers in each solute is proportional to their

concentration.

The discussion above is summarized in Figure 8.12. The solute before heating is explained well by using

Hayter-Penfold type structure factor with ellipsoidal form factor. The distance between each solute (dimeric

form) decreases as the concentration becomes high. The heating induces the exposure of hydrophobic parts

that were inside of the original conformation. This exposure of hydrophobic parts induces the aggregation of

solutes. It is clarified that the size of the resultant aggregates is proportional to the concentration. Note that

the resultant aggregates are in fibrillar form under salt-free condition [20]. When the size of these aggregates

becomes larger than the distance between each solute (percolation), the solution becomes a gel. Since each

aggregate repels with each other due to electrostatic force, the resultant gel is relatively homogeneous. This

is one of the reasons why the resultant gels are transparent.
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Heat

Figure 8.12: Proposed aggregation / gelation mechanism of OVA solutions.

8.3.4 Gelation mechanism of pOVA

Next, the measurement by using pOVA instead of PVA was performed with the same setup. The SANS

profiles of the pOVA solutions under salt-free condition are shown in Figure 8.13(a). Although there is no

peak structure, Eq. 8.3.3.2 is also used for the fitting and the observed profiles are reproduced well. The

fitting results are shown in Figure 8.13(a) and Table 8.5. By comparing the value of Arod, it is clarified that

the amount of rod-like aggregates in pOVA solution is larger than that in OVA solution. This is rationalized

by the fact the pOVA is more hydrophobic than OVA (Figure 8.1). Under salt-free condition, electrostatic

and hydrophobic interactions induce the formation of rod-like aggregates like heated OVA solutes [226].

The existence of large amount of aggregates will disturb the repulsive interaction between small pOVA

solutes. This is the reason for the disappearance of the peak structure. Because of the existence of these

large aggregates, Hayter–Penfold type description may not be accurate. Therefore, it is difficult to conclude

whether pOVA exists in monomeric form or larger form in the aqueous solution. Here, I assume that pOVA

also exists in dimeric form (similar to OVA). I believe that this assumption is somehow rationalized by taking

the exposure of hydrophobic part in pOVA into consideration (Figure 8.1(c)).

Table 8.5: Fitting parameters of SANS profiles for pOVA

Before heating

Sample Ra / Å Rb / Å z

2 wt% 51 18 5.1

6 wt% 63 16 5.6

After heating

Sample R / Å ΞL / Å ΞS / Å

2 wt% (5.9± 1.9)× 102 47

6 wt% 9.3× 102 38
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Figure 8.13: SANS profiles of pOVA solutions (a) before and (b) after heat treatment with different concen-

trations. Solid lines in (a) and (b) show the fitting results.

The SANS profiles after the heating (85 ◦C, 1 hour) of pOVA solutions also show qualitative difference with

that of OVA solutions (Figure 8.13(b)). As shown in Figure 8.4(b), the sample whose concentration is 2 wt%

is a sol while 6 wt% is a gel. In contrast to the case of OVA, the SANS profiles for sol and gel are qualitatively

different in low-q region. The sol sample (2 wt%) shows shoulder at around 0.03 Å−1 Interestingly, q−2 power

law is observed at 0.04 < q < 0.07 Å−1. This indicates that Hayter–Penfold structure factor may be no

longer available. Instead of Hayter–Penfold structure, I tried other structure factors which are introduced

in Section 2.4. In addition, low-q region is no longer represented by q−1 power law but more steep. To

express this obtained SANS profile, a form factor of a sphere is introduced. This assumption is based on the

fact that the heat-induced aggregates of pOVA in acidic condition is spherical form [22] though there is no

report in neutral, salt-free condition. Finally, it was clarified that the following fitting function reproduce

the obtained SANS profile well.

I(q) = ALPsph(q) +
AS

(1 + q2Ξ2
S)

2
+ Ibkg (8.3.4.1)

The fitting result is shown in Figure 8.13(b). The first term in Eq. (8.3.4.1) is the form factor of spherical

aggregates, which express the low-q region. The second term is known as Debye–Bueche function (Section

2.5.2). The fact that Debye–Bueche function reproduced the observed profile indicates the existence of

glass-like inhomogeneities. To summarize, the heat-induced pOVA aggregates is spherical and has glass-like

inhomogeneities. Note that this glass-like inhomogeneities is different from inhomogeneities originated from

concentration fluctuations, which is described by Ornstein–Zernike function (Section 2.5.3).

The gel sample (6 wt%) shows q−2 power law in two region; 0.003 < q < 0.01 Å−1 and 0.04 < q < 0.07

Å−1. From this experimental finding, double Debye–Bueche function was used for fitting.

I(q) =
AL

(1 + q2Ξ2
L)

2
+

AS
(1 + q2Ξ2

S)
2
+ Ibkg (8.3.4.2)

The fitting result is shown in Figure 8.13(b). First term represents large inhomogeneities, ΞL, and second

term represents small inhomogeneities, ΞS . However, these two inhomogeneities have qualitative difference.

The meaning of ΞS is similar to that for low-concentration case (Eq. (8.3.4.1)); glass-like inhomogeneities.

Fitting results show that ΞS decreases as the concentration increases (Table 8.5). This indicates that the

aggregation structure becomes dense as the concentration increases. In contrast to this, the meaning of ΞL is
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Heat

Figure 8.14: Proposed aggregation / gelation mechanism of pOVA solutions.

considered to be a correlation length for two-phase separated structure [240]. Two-phase separated structure

in 100 nm scale will induce turbidity, which is shown in Figure 8.3(b).

The gelation mechanism for pOVA is summarized in Figure 8.14. Dispersion state of pOVA before heating

is similar to that of OVA; each solute is in dimeric form and described by using Hayter-Penfold structure

factor. However, the amount of aggregates is larger in the case of pOVA compared to OVA. This difference

may be originated from the hydrophobic nature of pOVA. As a result, the distance between each solute

will have wide distribution. This feature is clearly shown experimentally as a form of the disappearance of

correlation peak (Figure 8.13(a)). After heating, the dispersion state showed striking difference below and

above gelation concentration. Below the gelation concentration, large aggregates are produced whose inside

has glass-like inhomogeneities. The origin of this glass-like inhomogeneities may be the wide distribution

of inter-solute distance before heating. In contrast to this, two-phase separated structure whose inside also

have glass-like inhomogeneities is produced above the gelation concentration.

8.3.5 Effect of peptide in acidic condition

In the previous report [22], it is proved that the heat-induced gels of OVA become strong with the existence

of N -terminal residues from 1 to 22 (pN1-22) under acidic condition. To investigate the conformation of the

solutions and the resultant gels, SANS measurements were performed.
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Figure 8.15: SANS profiles of OVA solutions (a) before and (b) after heat treatment with different concen-

trations under acidic condition. Salt concentration was 100 mM.
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Figure 8.15 shows the SANS profile of OVA in 100 mM potassium phosphate buffer solution before (a) and

after (b) heating. These profiles are totally different from that for salt-free, neutral solution (Figure 8.9).

The most striking difference is the disappearance of the correlation peaks. This can be explained that charges

on the solutes are screened by the buffer solution. The profiles after heating show different behavior below

and above gelation concentration. Below the gelation concentration (1 wt%), the SANS profile shows q−2

dependence in wide q-region. This SANS profile does not show shoulder even in low-q region. In contrast

to this, the SANS profile above the gelation concentration (2, 3, and 5 wt%) shows one shoulder around

q ∼ 0.05 Å−1, which is similar to the case of pOVA in neutral condition. This indicates that the resultant

gels may have glass-like inhomogeneities and two-phase separated structure. Note that the resultant gels

were moderately turbid under this condition.
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Figure 8.16: SANS profiles of pN1-22 solutions (a) before and (b) after heat treatment with different con-

centrations under acidic condition. Salt concentration was 100 mM.

Figure 8.16 shows the SANS profile of pN1-22 in 100 mM potassium phosphate buffer solution before (a)

and after (b) heating. These graphs show that the heat-induced conformational change of pN1-22 is not so

large. This is reasonable since denaturation is not so drastic for this small peptide region.
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Figure 8.17: SANS profiles of the mixture of 2 wt% OVA and pN1-22 solutions (a) before and (b) after heat

treatment with different concentrations under acidic condition. Salt concentration was 100 mM.

Figure 8.17 shows the SANS profile of the mixture of OVA and pN1-22 in 100 mM potassium phosphate

buffer solution before (a) and after (b) heating. The concentration of OVA was fixed to 2 wt%. Interest-

ingly, the obtained SANS profiles cannot be expressed as the summation of two SANS profiles obtained

independently (Figure 8.15(a) and 8.16(a)). This result strongly suggests that pN1-22 can create aggregates
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8.3 Results and Discussion

with OVA even before heat treatment. Note that the previous research clarified the pN1-22 binds to OVA

only after denaturation. However, the heat-induced gels did not show significant difference in their SANS

profiles. The shapes of SANS profiles obtained from the heat-induced gels are almost the same, regardless

of the concentration of pN1-22. This result suggests that the pN1-22 does not induce microscopic change

to the resultant gels. Slight increase of overall I(q) with the increase of pN1-22 concentration shows that

pN1-22 strengthen the heat-induced gels by just thicken the network strand.

8.3.6 Time-resolved measurement

To investigate the dynamical conformational change during heating, time-resolved measurements will

be effective. There were many researches which focus on the dynamic aspect of heat-induced gelation of

OVA [241]. Here, I introduced preliminary three time-resolved measurements; rheology, light scattering, and

SANS.
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Figure 8.18: Time-resolved measurement of rheological behavior for (a) 1 wt% and (b) 2 wt% OVA solutions

under acidic condition. Salt concentration was 100 mM. Temporal profiles for G′, G′′, and temperature are

shown.

Figure 8.18 shows the dynamical change of G′ and G′′ of OVA solutions during heating. pH was set to

be 2.2 and the salt concentration of buffer solution was 100 mM. In contrast to Figure 8.5, G′ and G′′ were

obtained as a function of heated time. Temperature of the stage was first increased from 25 ◦C to 65 ◦C with

the speed of 5 ◦C / min. Then the temperature was kept to 65 ◦C for one hour. After that, the temperature

was decreased to 25 ◦C with the speed of 5 ◦C / min. First, G′ and G′′ were increased by the increase of

temperature. After the temperature was set to 65 ◦C, both G′ and G′′ were decreased for a while. Although

the degree of this decrease is different, the same feature appears in both 1 wt% and 2 wt% samples. This

result indicates that the character of the heat-induced gels will be affected not only by the final temperature

but heating process. After the decrease, G′ and G′′ increased again under 65 ◦C condition. Then the degree

of the increase of G′ and G′′ becomes large by the decrease of temperature. From these measurements, the

importance of temperature change is highlighted.

It is well known that DLS is one of the useful tools for the measurement of gelation [242]. Here, I applied

time-resoled DLS technique to OVA solutions. Figure 8.19 shows the dynamical change of scattered light

intensity, ⟨ I ⟩T , the apparent diffusion constant, DA and the time correlation functions of ⟨ I ⟩T , g(2)(t)− 1,

of OVA solutions during heating. These measurements were performed by setting the OVA solution to the
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Figure 8.19: Time-resolved DLS measurements under acidic condition. Salt concentration was 100 mM.

(a),(d): Time variation of scattered light intensity for 1 wt% (a) and 2 wt% (d) solution. (b),(e): Time

variation of apparent diffusion constant for 1 wt% (b) and 2 wt% (e) solution. (c),(f): Some representative

time correlation functions of scattered light intensity for 1 wt% (c) and 2 wt% (f) solution.

sample holder of DLS units which was set to 65 ◦C. pH was set to be 2.2 and the salt concentration of

buffer solution was 100 mM. Striktly speaking, the apparent diffusion constant should be converted into the

genuine diffusion constant by using heterodyne method since the initial amplitude (g(2)(t = 0) − 1) is not

exactly 1. However, it is good approximation to regard DA as the genuine diffusion constant since the initial

amplitude is almost 1.

For 1 wt% solution, the aggregation of solutes was clearly observed. As the time goes on, the scattered

light intensity increased (Figure 8.19(a)). This indicates that the solute becomes large. In addition, the

diffusion constant decreased as the time goes on (Figure 8.19(b)). This also indicates the aggregation of the

solutes. Note that the diffusion constant is inversely proportional to the hydrodynamic radius (Einstein–

Stokes equation). In contrast to this, not only aggregation but also gelation was observed for 2 wt% solution.

At the gelation point, the scattered light intensity started fluctuation (around 2000 s, shown by an arrow

in Figure 8.19(d)). The gelation is also clearly observed in g(2)(t) − 1 (Figure 8.19(f)). g(2)(t) − 1 for 30

s and 1500 s can be expressed approximately by one single exponential function. This is the characteristic

feature for solution. In contrast to this, g(2)(t) − 1 for 3000 s and 4500 s can be expressed by using power

law function. This is the characteristic feature for gel.

Figure 8.20 shows the time-resolved SANS measurements for 6 wt% OVA solution under neutral, salt-free

condition. Temperature of the sample holder was first increased from 25 ◦C to 85 ◦C by 5 ◦C every 5 minutes

(discontinuously, see Figure 8.20(a)). Then the temperature was kept to 85 ◦C for one hour. Figure 8.20(b)

shows the SANS profiles at several points. The SANS profile did not change at the temperature below 60
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Figure 8.20: (a) Measured temperature variation of the sample cell. (b) Temperature dependence of SANS

profiles during heating. Each profile except for 85 ◦C corresponds to the profile 5 minute after the cell

temperature reaches that temperature. The profile labeled ”85 ◦C“ is the profile 1 hour after the cell

temperature becomes 85 ◦C. (c) Time resolved SANS profiles at 85 ◦C. Each profile is obtained every 1

minute after setting the cell temperature at 85 ◦C. The sample was OVA solution, 6 wt%.

◦C. Then the profile started changing at around 70 ◦C. This is consistent with the fact that the denaturation

occurs at around 75 ◦C, measured by DSC [22]. As the temperature increased, the intensity at high-q region

decreased while that at low-q region increased. In addition, the intensity at q = 0.055 Å−1 does not change at

any temperature. The existence of this iso-scattering point has already been reported by Nicolai et al. [241].

In usual case, iso-scattering point is explained by two-component system. Here, two components stand for

the dispersion states before heating and after heating. However, the SANS profile cannot be reproduced by

the simple linear combination of the SANS profiles at 25 ◦C (before heating) and 85 ◦C (after heating). This

is because the structure factor is not expressed by each component. However, it is clear that the gelation

process started at the denaturation temperature. Figure 8.20(c) shows the SANS profiles after setting the

sample holder at 85 ◦C. The SANS profile stopped changing within 10 minutes. This result tells us the time

scale of gelation. Like this, time-resolved measurements give us useful information about gelation.
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8.4 Summary

8.4 Summary

Gelation mechanism of OVA and its derivatives were investigated under neutral, salt-free condition and

acidic, 100 mM buffer solution. Under neutral, salt-free condition, both OVA and pOVA are regarded as a

charged dimeric form. However, reflecting the hydrophobic nature of pOVA, the amount of large aggregates

is larger in pOVA solution than OVA solution. This difference drastically changes the character of their

heat-induced gels. For OVA, the aggregation growth induced by heating proceeds homogeneously. The size

of the resultant aggregates is proportional to the initial concentration. When the concentration is larger

than 5 wt%, each aggregate percolates and becomes a gel. Since each aggregate repels with each other, this

percolation occurs homogeneously and the resultant gel is transparent. In contrast to this, the correlation

between each aggregate is disturbed by the large aggregates in the case of pOVA. As a result, the resultant

gel is turbid. The inhomogeneities of this gel are clarified as glass-like inhomogeneities described by the

Debye–Bueche function. The analysis for acidic condition and time-resolved measurements are incomplete

at this stage. I would like to investigate more in the future.
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9 Solvent-induced Aggregation: PEG–PDMS Gels

9.1 Introduction

Amphiphilic network is the system composed of hydrophilic and hydrophobic polymers [25,26]. This unique

architecture is utilized for many applications such as drug release systems [243], antifouling coatings [244], gas

and biosensors [245], chiral separation membranes [246], activating carriers for biocatalysts [247] and so on.

Amphiphilic network is also promising for drug delivery system [27,248,249] (Figure 9.1(a)). If the carrier of

drugs is made from amphiphilic network, both hydrophilic and hydrophobic medicines are available. Another

representative application is soft contact lenses [28] (Figure 9.1(b)). Contact lenses should be hydrophilic

since our eyes are hydrophilic. However, hydrophilic materials tend to decrease oxygen permeability. This

drawback will be solved by using amphiphilic network as a material since hydrophobic part can pass oxygen.

O2

Solvent：
Water

PDMS : poly(dimethylsiloxane)

Si

CH3

CH3

O

Hydrophilic
Medicine

Hydrophobic
Medicine

(a) (b)

Figure 9.1: Examples for the application of amphiphilic co-networks. (a) Drug delivery system. (b) Contact

lenses.

Structure of such amphiphilic conetwork system is also interesting from the viewpoint of basic science.

Starting from de Gennes’ theoretical investigation [50, 250], there are many reports on structural analysis

for conetwork systems [111, 251–265]. Small-angle X-ray / neutron scattering techniques (SAXS / SANS)

revealed microscopic structures in amphiphilic conetwork system such as a bicontinuous structure [49, 251],

a weakly ordered local structure [252], a hydrophobic domain structure [266] and so on. One of the major

problems for these analysis is that the prepared networks have inhomogeneities, which makes the quantitative

analysis difficult. Such inhomogeneities are inevitable as far as the networks are prepared by radical or γ-ray

radiation reactions since the crosslink point is introduced randomly. Here I focus on inhomogeneity-free am-

phiphilic gels prepared by hydrophilic tetra-arm poly(ethylene glycol) (Tetra-PEG) and hydrophobic linear

poly(dimethylsiloxane) (linear-PDMS) as building blocks which was reported recently [18]. This preparation

scheme is similar to Tetra-PEG gel (Section 5) and therefore resultant gels contain less inhomogeneities. In

general, structural analysis of gels in real space such as TEM and SEM is difficult since the sample should

be set under vacuum condition. Here I report the structural analysis of the inhomogeneity-free amphiphilic

gels, PEG–PDMS gels, performed by SANS and SAXS. Complimentary use of SANS and SAXS is useful

for this system since they give us different profiles in a qualitative manner. The effect of the solvent, the

volume fraction of PDMS, and the molecular weight of the polymers on their structure are investigated.
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9.2 Experimental

9.2.1 Sample preparation
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Figure 9.2: Schematics of sample preparation. (a) Conventional Tetra-PEG gels. (b) PEG–PDMS gels,

r = 1. (c) PEG–PDMS gels, r = 0.5.

Figure 9.2(a) shows the preparation scheme of conventional Tetra-PEG gels. Two prepolymer solutions

are prepared with appropriate pH (For details, please see Appendix) to control reaction rate. By exchang-

ing amine-terminated tetra-arm PEG to amine-terminated linear PDMS79, PEG–PDMS gels are prepared

(Figure 9.2(b)). Because PDMS is not dissolved in water, toluene is used as a solvent. When part of amine-

terminated linear PDMS is substituted to amine-terminated linear PEG, we can tune the PDMS content

rate at will (Figure 9.2(c)). Here, I call the molar ratio of linear-PDMS to the total linear polymers r. In

other words, r ≡ (linear-PDMS)/(linear-PDMS + linear-PEG). Functionalized Tetra-PEG and linear-PEG

are purchased from NOF Cooperation and the -NH2 terminated linear PDMS was purchased from Sigma-

Aldrich. Total polymer concentration in as-prepared state is set to 75 mg/mL except for Figure 9.6(a) and

9.12(a).

To prepare amphiphilic hydrogels, I utilized solvent substitution technique (Figure 9.3). After gelation

proceeds completely (typically 12 hours), each gel was immersed into toluene to allow complete swelling.

After swelling was over, each gel was immersed into the mixture of toluene and methanol. This procedure

was repeated 3 times with changing the proportion of methanol to 25 %, 50 %, and 75%. Then these gels

were immersed into pure methanol. Next, these methanol-substituted gels were immersed into the mixture

of methanol and water 3 times. The proportion of water was changed to 25 %, 50 %, and 75%. At last, these

gels were immersed into pure water. This procedure was repeated again to prepare the amphiphilic hydrogels.

Figure 9.4 shows photographs of these gels. When PDMS is short, all of the hydrogels are transparent. In

contrast to this, the gel becomes translucent for PEG 10k-PDMS 27k hydrogels. When r = 0.5, resultant gel

becomes brittle. In the case of PEG 10k-PDMS 27k hydrogels, the gels of r = 0.5 and r = 0.75 are brittle.

The origin of this may be incompatibility of amine-terminated linear PEG and PDMS in toluene solution.

79The reason why I use a linear polymer is simply because there is no commercially-available amine-terminated tetra-arm
PDMS.
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9.2 Experimental

In toluene

Toluene / Methanol

Water / Methanol

100/0 75/25 50/50 25/75 0/100

100/0 75/25 50/50 25/75 0/100

Figure 9.3: Schematics of solvent substitution.

r = 0.25r = 0 r = 0.5 r = 0.75 r = 1

Figure 9.4: Photographs of the gels. All of them are cut to the same size by cork borer.

9.2.2 Small-angle neutron and X-ray scattering

The SANS experiments were performed on the 40m SANS at High-flux Advanced Neutron Application

Reactor (HANARO) [267] at Korea Atomic Energy Research Institute (KAERI), Korea, and QUOKKA [268]

at the OPAL Reactor at the Australian Nuclear Science and Technology Organization (ANSTO), Australia.

The SAXS experiment was performed on BL03XU at SPring-8, Japan. The experimental conditions are

summarized in Table 9.1. The sample gels were cut by using cork borer. The radius was approximately 10

mm. Thickness was controlled (around 2 mm) by changing the thickness of molds. Actual thickness was

measured by a CCD laser displacement sensor (LK-G30A, KEYENCE). For SANS measurement, cut gels

were immersed in the deuterated solvents to decrease incoherent scattering from hydrogen. These gels were

set in demountable cells and immersed in the deuterated solvents. The scattered intensities were converted

to an absolute intensity scale by using direct beam attenuation method. For SAXS measurement, cut gels

were attached directly to the sample holder. The measurement was performed before drying. The scattered

intensity was converted to the absolute intensity scale by using glassy carbon as a secondary standard.
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9.3 Results and Discussion

Table 9.1: Experimental conditions of SANS and SAXS
40m SANS QUOKKA SPring-8

Source Neutron Neutron X-ray
Average wavelength 6.0 Å 5.0 Å 1.0 Å

Sample-to-
detector
distance
(SDD)

2.0 m / 17.5 m 3.1 m / 16.1 m 1.2 m / 4.4 m

q-range

0.02 Å
−1

< q < 0.3 Å
−1

(SDD: 2.0 m)

0.003 Å
−1

< q < 0.04 Å
−1

(SDD: 17.5 m)

0.02 Å
−1

< q < 0.3 Å
−1

(SDD: 3.1 m)

0.004 Å
−1

< q < 0.05 Å
−1

(SDD: 16.1 m)

0.02 Å
−1

< q < 1.0 Å
−1

(SDD: 1.2 m)

0.003 Å
−1

< q < 0.2 Å
−1

(SDD: 4.2 m)
Temperature room temperature 25 ◦C room temperature

q = 4π sin θ/λ where λ and 2θ represent the wavelength and the scattering angle, respectively.

9.2.3 Rheological measurement

Rheological measurements were performed by using a rheometer (MCR 501, Anton Paar) with a cone plate

geometry whose radius is 25.0 mm and a cone angle is 1◦. Mixture of active ester-terminated prepolymer

solution and amine-terminated prepolymer solution (100 mg/mL) was poured directly on a stage, and the

storage modulus G′ and the loss modulus G′′ were measured as a function of time. The strain, angular

frequency and temperature were set to 2 %, 1 rad s−1 and 25 ◦C, respectively.

9.3 Results and Discussion

9.3.1 Determination of gelation time

In the case of conventional Tetra-PEG gels, gelation time (reaction rate) can be controlled by pH. In

contrast to this, gelation time of PEG–PDMS gels is out of control since we have to use toluene as a solvent.

Gelation time was measured by rheological measurement. Figure 9.5 shows the variation of the storage

modulus G′ and the loss modulus G′′ as a function of time. When the sample is liquid like, G′′ is larger than

G′. As the reaction proceeds, elasticity of the sample increases, which is shown as the form of G′ increase.

Therefore, a point where G′ = G′′ is regarded as a good indicator of gelation time, known as Winter’s

criteria [122]. Gelation time determined by this criteria is summarized in Table 9.2. As shown in Figure 9.5

and Table 9.2, gelation time becomes longer as r increases. This means that the reaction between Tetra-PEG

and linear-PDMS is slower than that for Tetra-PEG and linear-PEG. However, quantitative discussion is

difficult since the number density of crosslinking also depends on r since the molecular weights of linear-PEG

and linear-PDMS are different.

Table 9.2: r-dependence of the gelation time of PEG–PDMS gels.

r 0 0.25 0.5 0.75 1

Time / s 270 210 410 720 920
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Figure 9.5: r-dependence of the time variation of G′ and G′′ during the gelation process of PEG–PDMS gels

(75 mg/mL, Tetra-PEG: 10 kg/mol, linear-PEG: 10 kg/mol, linear-PDMS: 2.5 kg/mol). The arrows in the

figure indicate the gelation point.

9.3.2 Microphase separation induced by solvent substitution

To see the structure before solvent substitution, SANS profiles of as-prepared gels were measured. Fig-

ure 9.6(a) shows the r-dependence of SANS profiles obtained from the as-prepared gels. Except for r = 0

(no PDMS component), upturn in low-q region is suppressed. As explained in Figure 5.21, strong upturn

is the sign of inhomogeneities and typical feature of conventional gels. Therefore, Figure 9.6(a) indicates

that the introduction of PDMS component decrease the inhomogeneities. The reason of the decrease of in-

homogeneieties may be the difference of reaction rate. As explained in the previous subsection, the reaction

first proceeds between Tetra-PEG and linear-PEG when r > 0. After this reaction, the reaction between

remaining active-ester terminated part of Tetra-PEG and linear-PDMS proceeds. This two-step reaction

may make the gel homogeneous. When r = 0, reaction proceeds relatively fast and inhomogeneities remain.

In contrast to this, reaction proceeds slowly in the case of r = 1. Therefore, r = 1 gel is also homogeneous

though the reaction is one-step. SANS profiles shown in Figure 9.6(a) are fitted by Ornstein–Zernike function

(Section 2.5.3):

I(q) =
I(0)

1 + (qξ)2
+ IBKG (9.3.2.1)

where ξ and IBKG stands for the correlation length and the background scattering including incoherent

scattering, respectively. Fitting results are also shown as solid lines in Figure 9.6(a), which show good

agreement. For r = 0, the fitting resin is restricted to q > 0.01 Å
−1

to neglect the effect of strong upturn

in low-q region. The fact that the SANS profiles are reproduced well by Ornstein–Zernike function means

that the structure of gels are the same as semidilute solutions [50]. Therefore, it is clarified that the

crosslinking of PEG–PDMS gels are introduced without creating static inhomogeneities. Figure 9.6(b)

shows the relationship between the obtained correlation length, ξ, and the average molecular weight between

cross-link points (see Figure 9.7). They show positive correlation. This is consistent with the assumption

that the correlation length is a measure of the mesh size of the gels as explained in Sec. 5.5.
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Figure 9.6: (a) r-dependence of SANS profiles of as-prepared PEG–PDMS gels (100 mg/mL, Tetra-PEG:

10 kg/mol, linear-PEG: 10 kg/mol, linear-PDMS: 2.5 kg/mol). Solid lines are the fitting results by using

Eq. 9.3.2.1. Each profile except for r = 0 is vertically shifted for clarity. (b) The relationship between

correlation length and average molecular weight between cross-link points. The correlation length was

evaluated from fitting.
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15 k

Figure 9.7: Schematics for the calculation of the average molecular weight between cross-link points.

Next, let us see the structural change induced by solvent substitution. Figure 9.8(a) shows the SANS

profiles of swollen PEG–PDMS gels of r = 1 (Figure 9.2(b)) with various solvents. In contrast to the result

that there was no upturn in low-q region for as-prepared gel (Figure 9.6(a)), the gel swollen by toluene

shows upturn in low-q region. This is because swelling enhance the inhomogeneities [5]. As explained in

Figure 5.29, conventional gel has dense region and sparse region. By swelling, sparse region becomes more

sparse. This is the origin of the enhancement of the inhomogeneities. Although the inhomogeneities of

PEG–PDMS gel is small as shown in Figure 9.2, small inhomogeneities may cause small upturn in low-q

region induced by swelling. By substituting solvent from toluene to the mixture of methanol and toluene, the

upturn in low-q region is suppressed. This indicates that the affinity of polymers and solvent is improved.

This is also clarified by the swelling ration as shown in Figure 9.8(b). Figure 9.8(b) shows the variation of

swelling ratio by the solvent substitution. Swelling ratio is defined as the gel size (measured by their length)

compared to the as-prepared gel. By the substitution of solvent to the mixture of methanol and toluene,
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Figure 9.8: (a) SANS profiles and (b) swelling ratios of PEG–PDMS gels (r = 1) with different solvents (75

mg/mL). The ratios of toluene/MeOH and MeOH/water are both 1/1 (volume fraction).

swelling ratio is increased. This also supports the idea that the affinity of polymers and solvent becomes

better. The decrease of I(q) is simply due to the decrease of polymer fraction due to the dilution by solvent.

Note that the scattering length density of d-toluene and d-methanol is almost the same (Figure 4.16).

By substituting the solvent to pure methanol, broad peak is appeared at around q = 0.02 Å−1. This peak

becomes sharp as the solvent becomes more hydrophilic. In addition, the position of peak center moves to

higher q. This indicates that the characteristic length becomes short as the solvent becomes hydrophilic.

Appearance of the scattering peak in amphiphilic block copolymers or amphiphilic conetworks was reported

in several papers [251, 252, 266]. Qualitatively speaking, the origin of this peak is explained by using the

concept of microphase separation as explained in Section 3.3. When the solvent becomes hydrophilic, PDMS

components will shrink due to their incompatibility to the hydrophilic component. Sharpness of the peak

correspond to the sharp boundary between hydrophilic solvent and hydrophobic PDMS components. Shrink-

age of the PDMS components induces the shrinkage of the gel itself as shown in Figure 9.8(b) (Schematically

shown in Figure 9.3). This shrinkage may be the origin of peak shifts to higher-q region. However, the

second peak at around q = 0.11 Å−1 cannot be explained by the theory discussed in Section 3.3. In ad-

dition, the length scale of microphase separation is too large compared to the estimation by the theory of

microphase separation used for diblock copolymer melt. The inter-domain size, d∗, is estimated from the

peak position, q∗, by d∗ := 2π/q∗. The estimated value of d∗ is approximately 200 Å for the gel in pure

water. This value is significantly larger than the size of one Tetra-PEG; the radius of gyration of Tetra-PEG

whose molecular weight is 10 kg/mol is around 15 Å (measured from Figure 5.20 [16]). This result suggests

that the microphase separation does not occur in the scale of one PDMS unit but accompanies many PDMS

units and Tetra-PEG units around one PDMS unit. Therefore, the morphology of the resultant gels may be

manipulated by varying the compositions of PEG and PDMS. To investigate this hypothesis, preparation

and characterization of PEG–PDMS gels with various compositions of PEG and PDMS was performed.
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9.3 Results and Discussion

9.3.3 r-dependence of microphase separation

First, PDMS composition is decreased by exchanging linear-PDMS component to linear-PEG component

as shown in Figure 9.2(c). Table 9.3 shows the estimated volume fraction of polymers for each gel. These

values were calculated from the preparation conditions and the observed swelling ratios. Figure 9.9(a) shows

the SANS profiles of water-swollen PEG–PDMS gels for various r values. Except for r = 0 (no PDMS

component), clear peak structures were observed. Note that the peak appear even when the volume fraction

of PDMS is 0.2 % (r = 0.25, Table 9.3). This indicates a uniform distribution and strong aggregation of

PDMS components in water solvent. Figure 9.8(b) shows the variation of swelling ratio by the change of

PDMS composition, r. This result also supports the idea that PDMS units shrinks and aggregates in water.

Figure 9.8(c) shows the relationship between the swelling ratio (Figure 9.8(b)) and the inter-domain size

of corresponding gels, d∗, estimated from the peak position of Figure 9.8(a). Although d∗ shows positive

correlation to the swelling ratio, the relation is not proportional. This indicates that the morphology is

not the same for all r. This is consistent with the fact that the SANS profiles higher than their first peak

strongly depends on r. For examples, shoulder structure is seen at around q = 0.06 Å−1 for r = 0.5 while

it is blurred for r = 0.75. In the case of r = 1, secondary peak appears at around q = 0.1 Å−1. These

qualitative differences indicate the different morphology. However, it is difficult to determine the morphology

only from the SANS profiles, Figure 9.9(a). For more precise analysis, I performed SAXS measurements. In

next section, I explain the advantage of the complimentary use of SANS and SAXS for this system.
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Figure 9.9: r-dependence of (a) SANS profiles and (b) swelling ratios in water (deuterated) (75 mg/mL).

(c) Relationship between the inter-domain distance and the swelling ratio. The inter-domain distance was

evaluated from the peak positions of Figure 9.9(a). Dashed line is guide for eyes.
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Table 9.3: r-dependence of the estimated volume fractions of swollen PEG-rich PEG–PDMS gels in water

r PEG PDMS Water

0 0.021(3) 0 0.979(3)

0.25 0.035(3) 0.0021(2) 0.963(3)

0.5 0.044(4) 0.006(1) 0.950(4)

0.75 0.058(4) 0.017(1) 0.925(5)

1 0.098(12) 0.058(7) 0.844(18)

9.3.4 Analysis of microphase-separated structure

Figure 9.10 shows the comparison of scattering length densities (SLD) of water, PEG and PDMS for SANS

and SAXS. Please refer to Section 4.2.2 for the calculation of SLD. Important difference is that the scattering

length has positive correlation to an atomic number in the case of SAXS while there is no correlation in the

case of SANS. As a result, the contrast for SANS and SAXS experiment is totally different. In the case of

SANS, the contrast between D2O and PEG is similar to that between D2O and PDMS. In contrast to this,

the difference of SLD between water and PEG has different sign of that between water and PDMS in the

case of SAXS. Therefore, the complimentary use of SANS and SAXS will give us rich information.
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Figure 9.10: Scattering length densities of water, PEG, and PDMS for (left) SANS and (right) SAXS.

Figure 9.11 shows the SANS and SAXS profiles of PEG–PDMS gels of r = 1. Note that the intensity is

given in absolute scale. The profiles show clear difference; the SAXS profile shows dip structure while the

SANS profile shows peak structure at around q = 0.04 Å−1. To reproduce this difference, fitting analysis is

performed. When the solvent of the gel is water, PDMS components will aggregates and PDMS-rich region

will be created. This means that there should be PEG-rich region to compensate the aggregation of PDMS.

In addition, the simplest model to reproduce dip structure is form factors of three-component system such

as core-shell-solvent structure [269, 270]. Therefore, in the analysis, the gel is regarded as three-component

system; PEG-rich region, PDMS-rich region, and solvent. However, only the form factor of three-component

system cannot explain the peak structure shown in SANS profile. To solve this point, I introduced a modified

Percus–Yevick structure factor (Section 2.4.3). Modified Percus–Yevick structure factor has been used for
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Figure 9.11: SANS and SAXS profiles of PEG–PDMS gels with r = 1 (75 mg/mL). The molecular weights

of Tetra-PEG and PDMS are 10 kg/mol and 2.5 kg/mol, respectively. The solid lines are the simulated

profiles obtained from the model described (see main text).

the analysis of other amphiphilic gels [266]. To summarize, the model curve is described as follows.

I(q) = nSmPY (q;ϕ
′, R+ L)Pcs(q;R, dR,L) + IBKG (9.3.4.1)

where n, SmPY (q;ϕ
′, R+L), and Pcs(q;R, dR,L) correspond to the number density of core-shell particles, the

modified Percus–Yevick structure factor, and the core-shell form factor (Section 2.2.3), respectively. Here,

ϕ′, R, L, and dR corresponds to the effective volume fraction, the mean radius of core, the thickness of the

shell, and the polydispersity of the core, respectively. A Schulz distribution for the radius is assumed for the

analysis [271]:

G(r) =
rZ

Γ(Z + 1)

(
Z + 1

R

)Z+1

exp
[
− r
R
(Z + 1)

]
(9.3.4.2)

where (
dR

R

)2

=
⟨ (R− r)2 ⟩
⟨R− r ⟩2

− 1 =:
1

Z + 1
(9.3.4.3)

At this stage, there is no information whether the form factor is PEG-core PDMS-shell or PDMS-core

PEG-shell. Therefore, I tested both two form factors for the modeling of SANS and SAXS profiles. The

parameters were determined by trial-and-error. The results are shown in Figure 9.11. The parameters used

is n = 2.8 × 1016 cm−3, ϕ′ = 0.32, R = 36 Å, L = 45 Å, and dR = 7.5 Å for PEG-core PDMS-shell, and

n = 3.2×1016 cm−3 for PDMS-core PEG-shell. Here, SLDs for core and shell were assumed to be pure PEG

or PDMS for simplicity. The size of core-shell structure is significantly larger than the radius of gyration of

Tetra-PEG (15 Å) [16], which indicates the aggregation of many polymer units as suggested from Figure 9.9.

Although the model is simple, both models qualitatively reproduce the SANS profiles. As for the SAXS

profile, both models reproduce the dip though the position is slightly higher than the actual profile in the case

of PDMS-core PEG-shell model. In addition, PEG-core PDMS-shell model reproduced absolute intensity of

both SANS and SAXS profiles very well. From these results, it seems that PEG-core PDMS-shell model is

better than PDMS-core PEG-shell model.

To support this, let us estimate the number density of core-shell particles, n, for both models. First, let

us calculate the weight of PDMS in a unit volume. 1 cm3 of the water-swollen r = 1 gel corresponds to

2.63 cm3 of the as-prepared gel since the swelling ratio is (0.724)3 = 0.38 (Figure 9.9(b)). For r = 1 gel,
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the concentration of as-prepared gel of PDMS is 25 mg/mL. From this value, the weight of PDMS in the

water-swollen gel is estimated to be 66 mg/cm3. Next, let us calculate the weight of PDMS for each core-shell

particle. The volume of core and shell of each core-shell structure (R = 36 Å, L = 45 Å) is estimated to be

1.95 × 105 Å
3
and 2.03 × 106 Å

3
, respectively. By using the density of PDMS, 0.965 g/cm3, the weight of

PDMS for each core-shell particle is 2.0 × 10−15 mg for PEG-core PDMS-shell model and 1.9 × 10−16 mg

for PDMS-core PEG-shell model. From these values, n is estimated to be 3.3 × 1016 cm−3 for PEG-core

PDMS-shell model and 3.5×1017 cm−3 for PDMS-core PEG-shell model. The parameters used for the model

in Figure 9.11 is 2.8× 1016 cm−3 for PEG-core PDMS-shell model, which agrees well, and 3.2× 1016 cm−3

for PDMS-core PEG-shell model, which does not agree. This estimation strongly supports the validity of

the use of PEG-core PDMS-shell model.

9.3.5 PDMS size-dependence of microphase separation

As explained in Section 3.3, the morphology of microphase-separated structure of diblock copolymer melt

is determined by the affinity of two components, χN , and the proportion of two components, f (Figure 3.18).

Similar to this, the morphology of PEG–PDMS hydrogel may be manipulated by varying the volume fraction

of PEG, PDMS, and water. To investigate this point, I prepared PEG–PDMS with different molecular

weight. Figure 9.12(a) shows the SANS profiles of r = 1 as-prepared PEG–PDMS gels with different

molecular weight. Similar to Figure 9.6(a) 80 , upturn in low-q region is small. This indicates that all of the

gels are relatively homogeneous. These data are fitted by using Eq.(9.3.2.1), and the obtained ξ is plotted as

a function of molecular weight between crosslinking points in Figure 9.12(b). It shows positive correlation,

which is consistent with the concept that ξ is regarded as the size of mesh. Figure 9.13 shows the SANS

profiles of r = 1 PEG–PDMS gels with different molecular weight after solvent substitution to water. It is

clearly shown that the morphology of PEG–PDMS hydrogels strongly depends on the molecular weight. As

a representative sample, I focus on PEG 10k / PDMS 27k samples from now. I call this gel PDMS-rich gel

while PEG 10k / PDMS 2.5k samples is called PEG-rich gel.
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Figure 9.12: (a) SANS profiles of as-prepared PEG–PDMS gels with different molecular weight (100 mg/mL,

r = 1). (b) The relationship between correlation length and average molecular weight between cross-link

points. The correlation length was evaluated from fitting.

80The data in Figure 9.6 was measured on the beam time July 1st to 5th, 2013. The data in Figure 9.12 was measured on the
beam time January 6th to 10th, 2014. Therefore, the data of PEG 10k / PDMS 2.5k shown in each graph is slightly different.
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Figure 9.13: SANS profiles of water-swollen PEG–PDMS gels with different molecular weight (75 mg/mL,

r = 1).

To investigate the morphology of PDMS-rich gel, complimentary use of SANS and SAXS were performed.

Figure 9.14 shows the SANS and SAXS profiles of PDMS-rich gel. Both SANS and SAXS profiles show peak

structure. The peaks of the SAXS profile are more sharp compared to the SANS profile. The main origin of

this is the difference in the instrumental broadening. In the SAXS profile, up to 4th order peak is seen. The

relative peak position is approximately 1:2:3:4 with respect to the first order peak. This strongly suggest

lamellar structure. Peak assignment using other typical structure factors are shown in Figure 9.15. The

reciprocal space position ratios for these structures (up to
√
20) are summarized in Table 9.4. Compared to

the assignment of lamellar structure (1:2:3:4), these structure factors are not reasonable. Figure 9.16 shows

the r-dependence of SANS and SAXS profiles of PDMS-rich PEG–PDMS gels. Lamellar-like peak structure

is observed only for r = 1 sample. This result is reasonable since lamellar structure is observed only when

enough amount of PDMS exists. Table 9.5 is the volume fractions of PEG, PDMS, and water estimated

from the preparation conditions and the observed swelling ratios. The volume fraction of PDMS in r = 1

hydrogel is more than 0.3 and it may form lamellar structure. The peak structure at q ∼ 0.8 Å
−1

is an

amorphous halo of PDMS [272]. This peak indicates the strong aggregation of PDMS chains.
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Figure 9.14: SANS and SAXS profiles of r = 1 PEG–PDMS gels (75 mg/mL). The molecular weights of

PEG and PDMS are 10 kg/mol and 27 kg/mol, respectively. The dashed lines indicate the peak positions.
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Figure 9.15: Representative results of indexing for r = 1 gels with water solvent. Green line is the SANS

profile and purple line is the SAXS profile.
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Table 9.4: List of index for representative structures.
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Figure 9.16: SANS and SAXS profiles of PEG–PDMS gels with r = 1 (75 mg/mL). The molecular weights

of Tetra-PEG and PDMS are 10 kg/mol and 27 kg/mol, respectively. The dashed lines indicate the peak

positions.

Table 9.5: r-dependence of the estimated volume fractions of swollen PDMS-rich PEG–PDMS gels in water

r PEG PDMS Water

0 0.021 0 0.979

0.25 0.026 0.017 0.957

0.5 0.022 0.035 0.943

0.75 0.035 0.109 0.856

1 0.050 0.313 0.637

Let us consider more about the formation of lamellar structure for r = 1 PDMS-rich gel. In the case of

block copolymers, lamellar structure is observed when the volume fraction of two components is almost the

same (Figure 3.18). The volume fraction of PEG, PDMS, and water of PEG-rich and PDMS-rich hydrogels

are summarized in Table 9.6. The volume fraction of PDMS in r = 1 PDMS-rich hydrogel, ϕ = 0.313,

may not be enough to form lamellar structure although this gel is not the same as block copolymer system.

To consider more about this issue, let us assume that the gel is decomposed into two components; PEG

domain and PDMS domain (Figure 9.17). In as-prepared gel in toluene solution, both PEG and PDMS

dissolved in toluene. Therefore, we can attribute the solvent part to PEG domain and PDMS domain

evenly. In this case, the volume fraction of PEG domain (PEG + toluene phase, ϕ = 0.14) of PDMS-rich gel

is much smaller than that of PDMS domain (PDMS + toluene phase, ϕ = 0.86). However, all of the solvent

should be attributed to PEG domain when the solvent is substituted to water since PDMS is insoluble to

water. In this case, the volume fraction of PEG domain (PEG + water phase, ϕ = 0.69) of PDMS-rich

gel is much larger than that of PDMS domain (PDMS phase, ϕ = 0.31) although the volume fraction of
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Table 9.6: Comparison of the estimated volume fractions of each component of PEG–PDMS gels composed

of short and long PDMS

PDMS: 2.5 kg/mol PEG PDMS Water

As-prepared (toluene) 0.041(1) 0.024(1) 0.935(1)

Swollen (water) 0.098(12) 0.058(7) 0.844(18)

PDMS: 27 kg/mol PEG PDMS Water

As-prepared (toluene) 0.010(1) 0.061(1) 0.929(1)

Swollen (water) 0.050(3) 0.313(19) 0.637(22)

PEG itself (ϕ = 0.05) is much smaller than that of PDMS. This means that the volume fraction of PEG

domain and PDMS domain is inverted before and after the solvent substitution. As a result, there is a point

where the volume fraction of PEG domain and PDMS domain becomes almost the same during the solvent

substitution. At this point, the morphology will become lamellar structure. However, this lamellar structure

may be broken by the further solvent substitution since the volume fraction of PDMS domain will decrease

up to 0.31. To consider this point, let us consider a non-equilibrium aspect of microphase separation. When

the rearrangement of the chemical junctions of diblock copolymers at the interface of microphase-separated

structure is slow, resultant morphology may be different from a thermodynamically favorable morphology.

In this case, morphology will be determined kinetically. This phenomena has already been observed in AB-

type diblock polymers in neutral solvents and called non-equilibrium effect [274]. In the case of solution,

the origin of the slowing down of the rearrangement is the high concentration of the polymers. This concept

may also be applied to the PDMS-rich gels. In the case of the PDMS-rich gel, the origin of the slowing down

will be the existence of crosslinking. Once lamellar structure is constructed, it is kinetically unfavorable

to create cylindrical or spherical domains because the potential barrier for the transport of the chains is

higher. As a result, lamellar structure will remain even the PDMS domain fraction becomes less than 0.5. In

contrast to this case, lamellar structure will not be observed for PEG-rich gel or PDMS-rich gel with r < 1

since the fraction of PEG domain for these gels is always larger than that of PDMS domain during solvent

substitution. The molecular weight dependence of microphase-separated structure of the PEG–PDMS gels

is summarized in Figure 9.18.

Toluene

PDMS domain PEG domain

Water

PDMS 2.5k PDMS 27k

Figure 9.17: Schematics of the composition variation of the PEG–PDMS gels.
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Figure 9.18: Proposed phase separation mechanism during solvent substitution.

9.3.6 Summary

Structural analysis of inhomogeneity-free PEG–PDMS gels was performed by the complementary use of

SANS and SAXS. From the small upturn in low-q region of SANS profiles of as-prepared toluene gels,

homogeneities of PEG–PDMS gels were proved. The SANS profiles showed drastically change by the solvent

substitution from toluene to water. The origin of this change was attributed to the aggregation of hydrophobic

PDMS units under the hydrophilic condition. This point is also clarified by the macroscopic change of the

gel size. Microphase separation was clearly observed even when the volume fraction of PDM is 0.2 %.

The morphology of microphase-separated structure was examined by finding the model that reproduce both

SANS and SAXS with absolute scale. The result suggested PEG-core PDMS-shell structure for PEG-rich

gels and lamellar structure for PDMS-rich gels. Lamellar structure of PDMS-rich gels were rationalized

by taking non-equilibrium effect during the solvent substitution into consideration. From this study, it is

clarified that the microphase-separated structure can be manipulated by varying the molecular weight of

PEG and PDMS. This may open the door for the precise design of the mesoscopic structure of amphiphilic

gels.
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10 Conclusion

10.1 Summary of this thesis

In this thesis, I treat mainly two topics. The first topic is the investigation of homogeneous gels called

Tetra-PEG gel. The second topic is the investigation of aggregation phenomena caused by hydrophilic and

hydrophobic interactions. These two topics are summarized by the work of amphiphilic Tetra-PEG gel.

In Section 5, the history of tough gels is reviewed at first. Among those tough gels, I focused on the gel

called Tetra-PEG gel. Tetra-PEG gel is prepared by crosslinking of tetra-arm PEG units. It was known

that this preparation scheme suppresses inherent inhomogeneities in static structure. In addition to this,

I investigated whether homogeneities appear in the dynamics of Tetra-PEG gel or not. By using dynamic

light scattering (DLS) and neutron spin echo (NSE), fluctuations of polymer network of Tetra-PEG gel

were investigated in a wide q-region (107 ∼ 109 m−1). From these two techniques, it was clarified that the

transition from collective diffusion to Zimm mode occurred in lower q compared to the conventional gels.

The collective diffusion is typical dynamics observed in network systems while the Zimm mode is typical

dynamics observed in solution systems. Therefore, the observation result is interpreted that solution-like

dynamics was observed in large length scale in real space. There are two reasons why the solution-like

dynamics was observed in a large scale. The first one is that the distance between crosslinking points is

the same. The second one is that there are no entanglements, which are regarded as a nominal crosslinking

point. In other words, it was revealed that the homogeneous nature of Tetra-PEG gels is reflected not only

in static but also dynamic structure.

In addition, it was clarified that we can measure the mesh size of Tetra-PEG gel from the correlation

length obtained from DLS. This means that we can map mesh size of Tetra-PEG gels by performing DLS

with the combination of microscope. This measurement may clarify the small inhomogeneity in Tetra-PEG

in a large length scale which was indicated in a very low-q region of the SANS profile. To achieve this goal,

I constructed a DLS microscope, which is described in Section 6. Through operating the DLS microscope,

a very interesting feature of this apparatus was clarified; DLS measurement from opaque samples. This

is unique since it has been common knowledge that DLS can be measured only from transparent, dilute

samples. DLS microscope has overcome this difficulty by utilizing confocal optical system. As a proof-of-

principle experiment, I showed that DLS microscope enables us to obtain the size distribution of opaque

systems such as Chinese ink, milk, and phase transition of PNIPA solution.

The finding that DLS microscope can measure opaque systems significantly expands my research target.

I started the research of aggregation induced by hydrophilic and hydrophobic interactions, which has been

beyond the scope of DLS technique. As a first example, I investigated the concentration-induced aggregation

of carbon nanotube dispersion (Section 7). Here, the carbon nanotube is a model compound of hydrophobic

substance. By using DLS microscope, it was clarified that the solute of CNT dispersion aggregates in higher

concentration. The threshold concentration for the production of these aggregates becomes lower when

the CNT becomes longer. In addition, the restriction of rotational motion was also observed for the first

time. This is a characteristic feature for rod-like shape solutes such as CNT. This dynamical information is

obtained relatively easily by using polarized DLS. The finding of the restriction of rotational motion showed

the power of the combination of polarized DLS technique and DLS microscope.

As a second example of the system governed by hydrophilic/hydrophobic interaction, I investigated the
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temperature-induced aggregation of ovalbumin, the main protein in egg white (Section 8). Here, ovalbumin

is the model compound of hydrophilic substance. In this research, I used N -terminus cleaved OVA (pOVA)

as a comparison material. The major difference between OVA and pOVA is their hydrophilicity. By cutting

the N -terminal peptide region, a hydrophobic part in the OVA is exposed. This small difference induced

large difference in the heat-induced gelation. Under neutral, salt-free condition, OVA gels were transparent

while pOVA gels were turbid. The reason for this result was investigated by using DLS and SANS. It is

clarified that the dispersion state of OVA and pOVA was different before heating. In pOVA, large aggregates

induced by their relatively high hydrophobicity exist even before heating. These large aggregates disturb the

correlation between dimers. As a result, the heat-induced gel of pOVA becomes inhomogeneous. In contrast

to this, OVA in a salt-free solution is dispersed well thanks to the charges on the surface of each solute. As

a result, though heating induce the exposure of hydrophobic region in OVA, the aggregation growth of OVA

proceeds homogeneously.

The experimental result of OVA showed that homogeneous gels could be prepared even when the so-

lutes have hydrophobic region. By combining this concept and Tetra-PEG gels, I prepared homogeneous

(transparent) amphiphilic Tetra-PEG gels (Section 9). The preparation scheme is similar to that of original

Tetra-PEG gels. Instead of amine-terminated tetra-arm PEG, amine-terminated linear PDMS was used as a

unit. SANS experiments showed that the crosslinking of active ester-terminated tetra-arm PEG and amine-

terminated linear PDMS makes a homogeneous gel in toluene solvent. When the solvent of these gels was

substituted from toluene to water, a microphase separation occurred. The morphology of this microphase

separation was investigated by the combined use of SANS and SAXS. It was clarified that the morphol-

ogy can be manipulated by changing the proportion of PEG and PDMS. In other words, by manipulating

hydrophilicity and hydrophobicity, we can prepare amphiphilic gels with desired morphology.

10.2 Future perspective

There are mainly two directions for the next step of these researches. The first direction is the application of

the developed techniques and materials to industrial products. Since the working principle of DLS microscope

is simple, this technique can be combined in the product line. Therefore, DLS microscope can be utilized

for the quality control of turbid material such as food, painting, cosmetics and so on as shown in the case of

CNT suspension. As for OVA, next step is the control of texture. This will be done by the combination of

OVA, pOVA, and cleaved peptide. Now the structure of heat-induced gel prepared from the mixture of OVA

and the cleaved peptide is under investigation. This peptide may be utilized for the effective additive to the

food. As the application of PEG–PDMS gels, contact lenses are promising. This is because the prepared

PEG–PDMS gels are transparent in spite of their relatively high PDMS content rate. In addition, its high

mechanical stability has already been proved. Furthermore, it is relatively easy to incorporate a new function

to the PEG–PDMS gels since this can be done by using new unit in the preparation. This characteristic

feature is good for the product development.

The second direction is the basic research towards the elucidation of gel inhomogeneities. Originally, DLS

microscope was developed for the mapping of mesh size in real space. This aim has not been accomplished

yet due to the weak scattered light intensity. However, we can perform this mapping by using turbid gels

such as PNIPA gels, amphiphilic PEG–PDMS with high PDMS ratio and so on. In addition, the problem

of weak signal will be solved by reducing background signal. Now DLS microscope with an oil immersion
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lens is examined. By using oil immersion lens, the refractive index mismatch between glass and air is

removed. Therefore, reflection from the boundary of glass and air will be decreased significantly. Through

this improvement, the mapping of mesh size can be achieved. This experiment will give us a new evaluation

perspective to the network system.

As for dynamic light scattering microscope, I hope that this technique will extend the scope of DLS

significantly. Several ideas are shown in Figure 10.1. As explained in Section 6.4.3, DLS microscope can be

used for the observation of the aggregation of polymer solutions during LCST transition. As a future work,

I would like to observe polymer gels during LCST transition. It is well known that LCST changes when the

polymer forms gels. For examples, LCST of PNIPA solution is 32 ◦C while that of gel is 34 ◦C [159]. This

means that LCST transition is affected by the crosslinking point. This phenomena may be clarified by DLS

microscope. Of course, other measurements such as time-resolved SANS will give us additional information.

By utilizing very small irradiated volume, DLS microscope may be used for the measurement of number

fluctuation. This idea is similar to fluorescence correlation spectroscopy. However, we do not have to label

the target particles if DLS microscope could detect number fluctuation. By utilizing high spatial resolution,

fluctuation from surface may be extracted. For examples, fluctuation of polymer brush may be detected

by DLS. Characterization of polymer brash in static form can be performed by neutron reflectometry.

DLS microscope may give us additional information about dynamics. By using DLS microscope, we may

be able to measure samples that are difficult to measure by conventional DLS. One of the examples is

rubber. Measurement of fluctuation of rubber was achieved by using X-ray photon correlation spectroscopy

(XPCS) [275]. XPCS is dynamic light scattering by using X-ray as a light source [276, 277]. One of the

drawbacks of XPCS is that strong light source such as synchrotron radiation is required for measurements.

If similar measurements can be conducted by DLS, the research of network system will advance. Another

example of new sample is biological system. For example, dynamics of molecular motors can be detected

by using heterodyne-detected DLS, which is used for the detection of linear motion. Previously, research of

molecular motors have been performed mainly by single molecule detection such as optical tweezer [278,279].

Combination of optical tweezer and DLS is fine since DLS microscope can be performed with the same setup

of optical tweezer. In the future, I would like to conduct these experiments.

Biology

LCST Fluctuation

Surface Science

Rubber
DLS

Microscope

Figure 10.1: Proposed applications of DLS microscope.
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11 Appendix

11.1 List of symbols and abbreviations

Table 11.1: List of symbols and abbreviations

Abbreviation Formal nomenclature

PAMPS poly(2-acrylamido-2-methylpropanesulfonic acid)

PAAm poly(acrylamide)

PMMA poly(methyl methacrylate)

PMAA poly(methacrylic acid)

PNIPA poly(N -isopropylacrylamide)

PDMAA poly(N ,N -dimethylacrylamide)

PEG poly(ethylene glycol)

PEGDA poly(ethylene glycol) diacrylate

PVP poly(vinylpyrrolidone)

PDMS poly(dimethylpolysiloxane)

BIS N ,N ′-methylenebis(acrylamide)

TEMED N ,N ,N ′,N ′-Tetramethyl ethylenediamine

APS ammonium persulfate

[C2mim][TFSA] 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide

[C2mim][FSA] 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)amide
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Figure 11.1: Chemical structures of Table 11.1.
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11.2 Parameters of Hayter-Penfold function

11.2 Parameters of Hayter-Penfold function

δ := 1− ϕ (11.2.1)

a1 :=
24ϕγ exp(−k)(α1 + α2 + (1 + k)α3)− (2ϕ+ 1)2

δ4
(11.2.2)

a2 :=
24ϕ(α3(sinh k − k cosh k) + α2 sinh k − α1 cosh k)

δ4
(11.2.3)

a3 :=
24ϕ((2ϕ+ 1)2/k2 − δ2/2 + α3(cosh k − 1− k sinh k)− α1 sinh k + α2 cosh k)

δ4
(11.2.4)

α1 := − (2ϕ+ 1)δ

k
(11.2.5)

α2 := −14ϕ2 − 4ϕ− 1

k2
(11.2.6)

α3 := −36ϕ2

k4
(11.2.7)

b1 :=
3ϕ(ϕ+ 2)2/2− 12ϕγ exp(−k)(β1 + β2 + (1 + k)β3)

δ4
(11.2.8)

b2 :=
12ϕ(β3(k cosh k − sinh k)− β2 sinh k + β1 cosh k)

δ4
(11.2.9)

b3 :=
12ϕ(δ2(ϕ+ 2)/2− 3ϕ(ϕ+ 2)2/k2 − β3(cosh k − 1− k sinh k) + β1 sinh k − β2 cosh k)

δ4
(11.2.10)

β1 := − (ϕ2 + 7ϕ+ 1)δ

k
(11.2.11)

β2 := −9ϕ(ϕ2 + 4ϕ− 2)δ

k2
(11.2.12)

β3 := −12ϕ(2ϕ2 + 8ϕ− 1)δ

k4
(11.2.13)

ω0 := ω2
14 − ω12ω24 (11.2.14)

ω1 := 2ω15ω14 − ω13ω24 − ω12(ω34 + ω25) (11.2.15)

ω2 := ω2
15 + 2ω16ω14− ω13(ω34 + ω25)− ω12(ω35 + ω26) (11.2.16)

ω3 := 2ω16ω15− ω13(ω35 + ω26)− ω12ω36 (11.2.17)

ω4 := ω2
16 − ω13ω36 (11.2.18)

ωij := µiλj − µjλi (11.2.19)
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11.2 Parameters of Hayter-Penfold function

µ1 := t2a2 − 12ϕv22 (11.2.20)

µ2 := t1a2 + t2a1 − 24ϕv1v2 (11.2.21)

µ3 := t2a3 + t3a2 − 24ϕv2v3 (11.2.22)

µ4 := t1a1 − 12ϕv21 (11.2.23)

µ5 := t1a3 + t3a1 − 24ϕv1v3 (11.2.24)

µ6 := t3a3 − 12ϕv23 (11.2.25)

λ1 := 12ϕp22 (11.2.26)

λ2 := 24ϕp1p2 − 2b2 (11.2.27)

λ3 := 24ϕp2p3 (11.2.28)

λ4 := 12ϕp21 − 2b1 (11.2.29)

λ5 := 24ϕp1p3 − 2b3 − k2 (11.2.30)

λ6 := 12ϕp23 (11.2.31)

p1 :=
γ exp(−k)(φ1 − φ2)

2 − (ϕ+ 2)/2

δ2
(11.2.32)

p2 :=
(φ2

1 − φ2
2) sinh k + 2φ1φ2 cosh k

δ2
(11.2.33)

p3 :=
(φ2

1 − φ2
2) cosh k + 2φ1φ2 sinh k + φ2

1 − φ2
2

δ2
(11.2.34)

t1 := τ3 + τ4a1 + τ5b1 (11.2.35)

t2 := τ4a2 + τ5b2 + 12ϕ(τ1 cosh k − τ2 sinh k) (11.2.36)

t3 := τ4a3 + τ5b3 + 12ϕ(τ1 sinh k − τ2(cosh k − 1))− 2ϕ(ϕ+ 10)

5
− 1 (11.2.37)
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11.3 Isserlis’s theorem

v1 :=
(2ϕ+ 1)(ϕ2 − 2ϕ+ 10)/4− γ exp(−k)(ν4 + ν5)

5δ4
(11.2.38)

v2 :=
ν4 cosh k − ν5 sinh k

5δ4
(11.2.39)

v3 :=
(ϕ3 − 6ϕ2 + 5)δ − 6ϕ(2ϕ3 − 3ϕ2 + 18ϕ+ 10)/k2 + 24ϕν3 + ν4 sinh k − ν5 cosh k

5δ4
(11.2.40)

ν1 := − (ϕ3 + 3ϕ2 + 45ϕ+ 5)δ

k
(11.2.41)

ν2 :=
2ϕ3 + 3ϕ2 + 42ϕ− 20

k2
(11.2.42)

ν3 :=
2ϕ3 + 30ϕ− 5

k4
(11.2.43)

ν4 := ν1 + 24ϕkν3 (11.2.44)

ν5 := 6ϕ(ν2 + 4ν3) (11.2.45)

φ1 :=
6ϕ

k
(11.2.46)

φ2 := δ − 12ϕ

k2
(11.2.47)

τ1 :=
ϕ+ 5

5k
(11.2.48)

τ2 :=
ϕ+ 2

k2
(11.2.49)

τ3 := −12ϕγ exp(−k)(τ1 + τ2) (11.2.50)

τ4 := 3ϕk2(τ21 − τ22 ) (11.2.51)

τ5 :=
3ϕ(ϕ+ 8)

10
− 2(2ϕ+ 1)2

k2
(11.2.52)

11.3 Isserlis’s theorem

Here I’m going to show the proof of Isserlis’s theorem, or Wick’s theorem [280]. This theorem is extended

to mixed-Gaussian random variables [281,282]. Isserlis’s theorem is summarized as follows.

If x1x2 . . . x2N are normalized, jointly Gaussian random variables,

E[X1X2 . . . X2N ] =
∑∏

E[XiXj ] (11.3.1)

where E[· · · ] stands for the mean value of · · · , and
∑∏

stands for summing over all distinct ways of

partitioning X1X2 . . . X2N into pairs. For example, when 2N = 4,

E[X1X2X3X4] = E[X1X2]E[X3X4] + E[X1X3]E[X2X4] + E[X1X4]E[X2X3] (11.3.2)

Here, I prove Eq.(11.3.2), which corresponds to Eq.(4.1.2.10). Let us set that the probability density
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11.3 Isserlis’s theorem

function of random variables xi (i = 2, 3, 4) are written as follows.

fi(Xi = xi) =
1√
2πσi

exp

[
− x2i
2σ2

i

]
(11.3.3)

Expectation value of a power of xi is called moment and calculated as follows.

E[Xi] =
1√
2πσi

∫ ∞

−∞
xi exp

[
− x2i
2σ2

i

]
= 0 (11.3.4)

E[X2
i ] =

1√
2πσi

∫ ∞

−∞
x2i exp

[
− x2i
2σ2

i

]
= σi (11.3.5)

E[X3
i ] =

1√
2πσi

∫ ∞

−∞
x3i exp

[
− x2i
2σ2

i

]
= 0 (11.3.6)

E[X4
i ] =

1√
2πσi

∫ ∞

−∞
x4i exp

[
− x2i
2σ2

i

]
= 3σ4

i (11.3.7)

Let us calculate the expectation value of Xi when X1 = x1. Here, we define Xi as follows.

Xi =: ρ1i
σi
σ1
X1 +∆i (11.3.8)

where ρij is the correlation coefficient defined as follows.

ρij :=
E[XiXj ]

σiσj
(11.3.9)

The first term and second term of Eq.(11.3.8) is independent since the expectation value of the product of

these two terms is zero.

E [X1∆i] = E [X1X2]− E
[
ρ1i

σi
σ1
X2

1

]
= ρ1iσ1σi − ρ1i

σi
σ1
σ2
i = 0 (11.3.10)

Moment of ∆i is calculated as follows.

E [∆i] = 0 (11.3.11)

E
[
∆2
i

]
= E

[(
Xi − ρ1i

σi
σ1
X1

)2
]

= E[X2
i ]− 2ρ1i

σi
σ1

E[X1Xi] + ρ21i
σ2
i

σ2
1

E[X1]

= σ2
i − 2ρ1i

σi
σ1
ρ1iσ1σi + ρ21i

σ2
i

σ2
1

σ2
1 = (1− ρ21i)σ2

i (11.3.12)

Therefore, the expectation value of Xi when X1 = x1 is:

E[Xi|X1 = x1] = E
[
ρ1i

σi
σ1
x1

]
+ E[∆i] = ρ1i

σi
σ1
x1 (11.3.13)
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By using Eq.(11.3.8), E[X1X2X3X4] is written as follows.

E[X1X2X3X4]

= E[X1E[X2X3X4|X1 = X1]]

= E
[
X1E

[(
ρ12

σ2
σ1
X1 +∆2

)(
ρ13

σ3
σ1
X1 +∆3

)(
ρ14

σ4
σ1
X1 +∆4

)∣∣∣∣X1 = X1

]]
= E

[
X1ρ12

σ2
σ1
ρ13

σ3
σ1
ρ14

σ4
σ1
X3

1

]
+ E

[
X1ρ12

σ2
σ1
ρ13

σ3
σ1

E [∆4]X
2
1

]
+ E

[
X1ρ12

σ2
σ1
ρ14

σ4
σ1

E [∆3]X
2
1

]
+ E

[
X1ρ13

σ3
σ1
ρ14

σ4
σ1

E [∆2]X
2
1

]
+ E

[
X1ρ12

σ2
σ1

E [∆3∆4]X1

]
+ E

[
X1ρ13

σ3
σ1

E [∆2∆4]X1

]
+ E

[
X1ρ14

σ4
σ1

E [∆2∆3]X1

]
+ E [X1E [∆2∆3∆4]] (11.3.14)

2nd to 4th terms of Eq.(11.3.14) are zero (Eq.(11.3.11)). 8th term of Eq.(11.3.14) is also zero since ∆i is

symmetric with respect to zero.

E[∆2∆3∆4] = E[(−∆2)(−∆3)(−∆4)] = −E[∆2∆3∆4] = 0 (11.3.15)

E[∆i∆j ] in 5th to 7th terms of Eq.(11.3.14) is calculated as follows.

E[∆i∆j ] = E
[(
Xi − ρ1i

σi
σ1
X1

)(
Xj − ρ1j

σj
σ1
X1

)]
= E

[(
XiXj − ρ1i

σi
σ1
X1Xj − ρ1j

σj
σ1
X1Xi + ρ1i

σi
σ1
ρ1j

σj
σ1
X2

1

)]
= σiσjρij − ρ1i

σi
σ1
σ1σjρ1j − ρ1j

σj
σ1
σ1σiρ1i + ρ1iρ1j

σiσj
σ2
1

σ2
1

= [ρij − ρ1iρ1j ]σiσj (11.3.16)

By substituting Eqs.(11.3.5), (11.3.7), (11.3.9), (11.3.11), (11.3.15), and (11.3.16) into Eq.(11.3.14), Eq.(11.3.2)

is proved.

E[X1X2X3X4]

= ρ12ρ13ρ14
σ2σ3σ4
σ3
1

E[X4
1 ]

+ ρ12
σ2
σ1

(ρ34 − ρ13ρ14)σ3σ4E[X2
1 ] + ρ13

σ3
σ1

(ρ24 − ρ12ρ14)σ2σ4E[X2
1 ] + ρ14

σ4
σ1

(ρ23 − ρ12ρ13)σ2σ3E[X2
1 ]

= 3ρ12ρ13ρ14σ1σ2σ3σ4

+ (ρ12ρ34σ1σ2σ3σ4 − ρ12ρ13ρ14σ1σ2σ3σ4)

+ (ρ13ρ24σ1σ2σ3σ4 − ρ12ρ13ρ14σ1σ2σ3σ4)

+ (ρ14ρ23σ1σ2σ3σ4 − ρ12ρ13ρ14σ1σ2σ3σ4)

= σ1σ2σ3σ4(ρ12ρ34 + ρ13ρ24 + ρ14ρ23)

= E[X1X2]E[X3X4] + E[X1X3]E[X2X4] + E[X1X4]E[X2X3] (11.3.17)
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11.4 Preparation scheme

11.4.1 PNIPA solutions and gels

H2O, 9 mL

→ Add NIPA, 780.8 mg [6.9 mmol]

→ Stir, Ar bubbling81, 5 min [Dark]

→ Add BIS, 34.5 mg [0.224 mmol] to make the solution gel, otherwise skip this part

→ Stir, 5 min [Slow, Dark]

→ in ice bath, 10 min [Slow, Dark]

→ Add TEMED, 11.92 µL [0.08 mmol]

→ Stir, 1 min [Fast, Dark]

→ Add APS solution, 1 mL ← 7.98 mg [0.0350 mmol] / mL

→ Stir, 30 sec [Fast, Dark]

→ Mold

11.4.2 Tetra-PEG gels

Citric acid-phosphate buffer (CP-Buffer, pH ∼ 5.8)

Citric acid monohydrate: 0.1 M, 78.8 mL: 7.88 mmol, Mw: 210.14 → 1.6559 g

Na2HPO4 · 12H2O: 0.2 M, 121.2 mL: 24.24 mmol, Mw: 358.14 → 8.6813 g

→ Add 200 mL deionized water82: “200 mM CPB”

Phosphate buffer (P-Buffer, pH ∼ 7.4)

NaH2PO4 · 2H2O: 0.2 M, 38.0 mL: 7.60 mmol, Mw: 156.01 → 1.1857 g

Na2HPO4 · 12H2O: 0.2 M, 162.0 mL: 32.40 mmol, Mw: 358.14 → 11.6037 g

→ Add 200 mL deionized water: “200 mM PB”

Tetra-PEG gel (100 mg/mL, 4 mL)

Amine-terminated PEG (PA) 200 mg + PB 0.5 mL + Water 1.5 mL

Active ester-terminated PEG (HS) 200 mg + CPB 0.5 mL + Water 1.5 mL83

→ Mix, filterate the pregel solution with 5 µm filter to remove air bubbles and dusts

Under this condition, the solution becomes a gel within one hour.

11.4.3 Acidic buffer solution for OVA gels

KH2PO4 (Mw: 136.09) → 400 mL, 0.1 M: 40 mmol = 5.4436 g

K2HPO4 (Mw: 174.18) → 50 mL, 0.1 M: 5 mmol = 0.8709 g

→ KH2PO4 aq 400 mL + K2HPO4 aq 50 mL → Phosphate buffer 450 mL

81N2 is also available.
82For precise preparation, we have to decrease the amount of deionized water since the solutes contains water molecule.

However, in most cases, this slight difference affects anything.
83Active ester is susceptible to hydrolysis. Use fresh solution for preparation of conventional Tetra-PEG gels. In other words,

we can tune the crosslinking density by using hydrolysis. The gel prepared by using this technique is named p-tuned gel.
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11.5 Function and Functional

→ Add 1.2 M HCl aq, ∼ 20 mL, dropwise up to pH = 2.2

Let us calculate pH of these solutions analytically.

H3PO4 −−⇀↽−− H+ +H2PO
−

4 , Ka1 = 10−1.96 =
[H+][H2PO

−
4 ]

[H3PO4]
(11.4.1)

H2PO
−

4
−−⇀↽−− H+ +HPO 2−

4 , Ka2 = 10−7.12 =
[H+][HPO 2−

4 ]

[H2PO
−

4 ]
(11.4.2)

HPO 2−
4
−−⇀↽−− H+ + PO 3−

4 , Ka3 = 10−12.32 =
[H+][PO 3−

4 ]

[HPO 2−
4 ]

(11.4.3)

To calculate pH of 0.1 mol/L KH2PO4 aq, set [H+] = [HPO 2−
4 ] = x mol/L. Eq.(11.4.2) is expressed as

follows.

Ka2 =
x2

0.1− x
→ x = 8.66× 10−5 mol/L, pH = 4.1 (11.4.4)

To calculate pH of 0.1 mol/L K2HPO4 aq, set [OH−] = [H2PO
−

4 ] = x mol/L. Eq.(11.4.2) is expressed s

follows in basic condition.

HPO 2−
4 +H2O −−⇀↽−− H2PO

−
4 +OH−, Kb2 =

[H2PO
−

4 ][OH−]

[HPO 2−
4 ]

=
Kw

Ka2
= 10−6.88 (11.4.5)

Then pH of 0.1 mol/L K2HPO4 aq is calculated as follows.

Kb2 =
x2

0.1− x
→ x = 1.15× 10−4 mol/L, pOH = 3.9, pH = 10.1 (11.4.6)

pH of mixture of these two solutions before adding HCl is calculated by using Henderson-Hasselbalch equation

[283].

pH = pKa2 + log
[HPO 2−

4 ]

[H2PO
−

4 ]
= 7.12 + log

50

400
= 6.2 (11.4.7)

Addition of 21.44 mmol of HCl (17.87 mL) makes the amount of H2PO
–

4 from 40 mmol to 28.56 mmol while

that of H3PO4 from 5 mmol to 16.44 mmol. Then pH becomes 2.2 as follows.

pH = pKa1 + log
[H2PO

−
4 ]

[H3PO4]
= 1.96 + log

28.56

16.44
= 2.2 (11.4.8)

11.5 Function and Functional

Here, I list the formula for the calculation of functionals. Instead of precise proof, I showed the similarity

between calculation of functions and functionals.

eax =

∫
dx′δ(x′ − x)eax

′
(11.5.1)

eaf(x) =

∫
D[g(x)]δ[g(x)− f(x)]eag(x) (11.5.2)
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δ(x) =
1

2π

∫
dk exp[ikx] (11.5.3)

δ[f(x)] =

∫
D{g(x)} exp

[
i

∫
dxf(x)g(x)

]
(11.5.4)

Taylor expansion:

f(x) =
∑
n

1

n!

dnf(x)

dxn

∣∣∣∣
x=0

xn (11.5.5)

f(x1, · · · , xm) =
∑
n

1

n!

m∑
i1

· · ·
m∑
in

∂nf(x1, · · · , xm)

∂xi1 · · · ∂xin

∣∣∣∣
x1,··· ,xm=0

xi1 · · ·xin (11.5.6)

F [f(r⃗)] =
∑
n

1

n!

∫
dr⃗1 · · ·

∫
dr⃗n

δnF [f(r⃗)]

δf(r⃗1) · · · δf(r⃗n)

∣∣∣∣
f(r⃗)=0

f(r⃗1) · · · f(r⃗n) (11.5.7)

F [f1(r⃗), · · · , fM (r⃗)] =
∑
n

1

n!

M∑
i1

· · ·
M∑
in

∫
dr⃗1 · · ·

∫
dr⃗n

δnF [f1(r⃗), · · · , fM (r⃗)]

δfi1(r⃗1) · · · δfin(r⃗n)

∣∣∣∣
f1(r⃗),··· ,fM (r⃗)=0

fi1(r⃗1) · · · fin(r⃗n)

(11.5.8)

Saddle point method:

I :=

∫
dxef(x) ≃

∫
dxef(x0)+

1
2 f

′′(x0)(x−x0)
2

= Cef(x0) s.t.
df(x)

dx

∣∣∣∣
x=x0

= 0

→ ln I ≃ ef(x0) s.t.
df(x)

dx

∣∣∣∣
x=x0

= 0 (11.5.9)

I(x) :=

∫
D{φ(x)}ef [φ(x)] ≃ Cef [ϕ(x)] s.t. δf [φ(x)]

δφ(x)

∣∣∣∣
φ(x)=ϕ(x)

= 0

→ ln I(x) ≃ ef [ϕ(x)] s.t. δf [φ(x)]

δφ(x)

∣∣∣∣
φ(x)=ϕ(x)

= 0

(11.5.10)

Moment and cumulant:

For random variable X whose probability that X = x is represented by p(x), nth order moment, mn, is

defined as follows.

mn :=

∫ ∞

−∞
xnp(x)dx (11.5.11)

Here, we define the function called generating function as follows.

M(ξ) := ⟨ eξX ⟩ =
∫ ∞

−∞
eξxp(x)dx (11.5.12)

Taylor expansion of Eq.(11.5.12) is:

M(ξ) =

∫ ∞

−∞

∞∑
n=0

1

n!
(ξx)np(x)dx

=

∞∑
n=0

mn

n!
ξn (11.5.13)
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By using Eq.(11.5.13), moment is “generated” from the generating function as follows.

mn =
dn

dξn
M(ξ)

∣∣∣∣
ξ=0

(11.5.14)

Similar to this, cumulant is defined as follows.

lnM(ξ) =:

∞∑
n=1

cn
n!
ξn (11.5.15)

cn =
dn

dξn
lnM(ξ)

∣∣∣∣
ξ=0

(11.5.16)

cn is called nth order cumulant.

Let us see the relationship between mn and cn. Differentiation of M(ξ) and lnM(ξ) is calculated as

follows.

dM(ξ)

dξ
=

∞∑
n=1

mn

(n− 1)!
ξn−1 (11.5.17)

d(lnM(ξ))

dξ
=

∞∑
n=1

cn
(n− 1)!

ξn−1 (11.5.18)

Eq.(11.5.18) is also calculated as follows.

d(lnM(ξ))

dξ
=

1

M(ξ)

dM(ξ)

dξ
(11.5.19)

By using Eqs.(11.5.13) and (11.5.17) ∼ (11.5.19), moment and cumulant is related as follows.

dM(ξ)

dξ
=M(ξ)

d(lnM(ξ))

dξ

→
∞∑
n=1

mn

(n− 1)!
ξn−1 =

( ∞∑
n=0

mn

n!
ξn

)( ∞∑
n=1

cn
(n− 1)!

ξn−1

)
(11.5.20)

By comparing the same order term of ξ, the relationship between mn and cn is derived as follows. 84

m1 = c1 (11.5.21)

m2 = c2 +m1c1 = c2 + c21 (11.5.22)

m3 = 2!

(
1

2!
c3 +m1c2 +

1

2!
m2c1

)
= c3 + 3c2c1 + c31 (11.5.23)

m4 = 3!

(
1

3!
c4 +

1

2!
m1c3 +

1

2!
m2c2 +

1

3!
m3c1

)
= c4 + 4c3c1 + 3c22 + 6c2c

2
1 + c41 (11.5.24)

Eqs.(11.5.21) ∼ (11.5.24) can also be solved for cn.

c1 = m1 (11.5.25)

c2 = m2 − c21 = m2 −m2
1 (11.5.26)

c3 = m3 − 3c2c1 − c31 = m3 − 3m2m1 + 2m3
1 (11.5.27)

c4 = m4 − 4c3c1 − 3c22 − 6c2c
2
1 − c41 = m4 − 4m3m1 − 3m2

2 + 12m2m
2
1 − 6m4

1 (11.5.28)

84Note that m0 = 1 since m0 represents the normalization of p(x).

282



11.5 Function and Functional

Similar to Eqs.(11.5.14) and (11.5.16), we define moment and cumulant for certain functional Z[{VK(r⃗)}].

MK1,··· ,Kn
n (r⃗1, · · · , r⃗n) :=

δnZ[{VK(r⃗)}]
δVK1

(r⃗1) · · · δVKn
(r⃗n)

∣∣∣∣
{VK}={0}

(11.5.29)

CK1,··· ,Kn
n (r⃗1, · · · , r⃗n) :=

δn(lnZ[{VK(r⃗)}])
δVK1

(r⃗1) · · · δVKn
(r⃗n)

∣∣∣∣
{VK}={0}

(11.5.30)

Similar to Eqs.(11.5.13), Taylor expansion of Z[{VK(r⃗)}] is expressed as follows.

Z[{VK(r⃗)}] = 1 +
∑
K1

∫
dr⃗1M

K1
1 (r⃗1)VK1

(r⃗1) +
1

2!

∑
K1

∑
K2

∫
dr⃗1

∫
dr⃗2M

K1,K2

2 (r⃗1, r⃗2)VK1
(r⃗1)VK2

(r⃗2) + · · ·

=

∞∑
n=0

1

n!

∑
K1,··· ,Kn

∫
dr⃗1 · · ·

∫
dr⃗nM

K1,··· ,Kn
n (r⃗1, · · · , r⃗n)VK1

(r⃗1) · · ·VKn
(r⃗n) (11.5.31)

Let us see the relationship between MK1,··· ,Kn
n (r⃗1, · · · , r⃗n) and CK1,··· ,Kn

n (r⃗1, · · · , r⃗n). Differentiation of

Z[{VK(r⃗)}] and lnZ[{VK(r⃗)}] is calculated as follows.

δZ[{VK(r⃗)}]
δVK′(r⃗)

=MK′

1 (r⃗) +
∑
K2

∫
dr⃗2M

K′,K2

2 (r⃗, r⃗2)VK2
(r⃗2)

+
1

2!

∑
K2

∑
K3

∫
dr⃗2

∫
dr⃗3M

K′,K2,K3

3 (r⃗, r⃗2, r⃗3)VK2
(r⃗2)VK3

(r⃗3) + · · ·

=

∞∑
n=0

1

(n− 1)!

∑
K2,··· ,Kn

∫
dr⃗2 · · ·

∫
dr⃗nM

K′,K2,··· ,Kn
n (r⃗, r⃗2, · · · , r⃗n)VK2(r⃗2) · · ·VKn(r⃗n)

(11.5.32)

δ(lnZ[{VK(r⃗)}])
δVK′(r⃗)

=

∞∑
n=0

1

(n− 1)!

∑
K2,··· ,Kn

∫
dr⃗2 · · ·

∫
dr⃗nC

K′,K2,··· ,Kn
n (r⃗, r⃗2, · · · , r⃗n)VK2

(r⃗2) · · ·VKn
(r⃗n)

(11.5.33)

Eq.(11.5.33) is also calculated as follows.

δ(lnZ[{VK(r⃗)}])
δVK′(r⃗)

=
1

Z[{VK(r⃗)}]
δZ[{VK(r⃗)}]
δVK′(r⃗)

(11.5.34)

By using Eqs.(11.5.31) ∼ (11.5.34), moment and cumulant is related as follows.

δZ[{VK(r⃗)}]
δVK′(r⃗)

= Z[{VK(r⃗)}]δ(lnZ[{VK(r⃗)}])
δVK′(r⃗)

→
∞∑
n=0

1

(n− 1)!

∑
K2,··· ,Kn

∫
dr⃗2 · · ·

∫
dr⃗nM

K′,K2,··· ,Kn
n (r⃗, r⃗2, · · · , r⃗n)VK2

(r⃗2) · · ·VKn
(r⃗n)

=

 ∞∑
n=0

1

n!

∑
K1,··· ,Kn

∫
dr⃗1 · · ·

∫
dr⃗nM

K1,··· ,Kn
n (r⃗1, · · · , r⃗n)VK1

(r⃗1) · · ·VKn
(r⃗n)


 ∞∑
n=0

1

(n− 1)!

∑
K2,··· ,Kn

∫
dr⃗2 · · ·

∫
dr⃗nC

K′,K2,··· ,Kn
n (r⃗, r⃗2, · · · , r⃗n)VK2

(r⃗2) · · ·VKn
(r⃗n)

 (11.5.35)

By comparing the same order term of V , the relationship betweenMK1,··· ,Kn
n (r⃗1, · · · , r⃗n) and CK1,··· ,Kn

n (r⃗1, · · · , r⃗n)
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is derived as follows.

MK1
1 (r⃗1) = CK1

1 (r⃗1) (11.5.36)

∑
K2

∫
dr⃗2M

K′,K2

2 (r⃗, r⃗2)VK2(r⃗2)

=
∑
K2

∫
dr⃗2C

K′,K2

2 (r⃗, r⃗2)VK2
(r⃗2) +

(∑
K1

∫
dr⃗1M

K1
1 (r⃗1)VK1

(r⃗1)

)(
CK

′

1 (r⃗)
)

→MK1,K2

2 (r⃗1, r⃗2) = CK1,K2

2 (r⃗1, r⃗2) +MK2
1 (r⃗2)C

K1
1 (r⃗1)

= CK1,K2

2 (r⃗1, r⃗2) + CK1
1 (r⃗1)C

K2
1 (r⃗2) (11.5.37)

1

2!

∑
K2

∑
K3

∫
dr⃗2

∫
dr⃗3M

K′,K2,K3

3 (r⃗, r⃗2, r⃗3)VK2
(r⃗2)VK3

(r⃗3)

=
1

2!

∑
K2

∑
K3

∫
dr⃗2

∫
dr⃗3C

K′,K2,K3

3 (r⃗, r⃗2, r⃗3)VK2
(r⃗2)VK3

(r⃗3)

+

(∑
K1

∫
dr⃗1M

K1
1 (r⃗1)VK1

(r⃗1)

)(∑
K2

∫
dr⃗2C

K′,K2

2 (r⃗, r⃗2)VK2
(r⃗2)

)

+

(
1

2!

∑
K1

∑
K2

∫
dr⃗1

∫
dr⃗2M

K1,K2

2 (r⃗1, r⃗2)VK1(r⃗1)VK2(r⃗2)

)(
CK

′

1 (r⃗)
)

→MK1,K2,K3

3 (r⃗1, r⃗2, r⃗3) +MK1,K3,K2

3 (r⃗1, r⃗3, r⃗2)

= CK1,K2,K3

3 (r⃗1, r⃗2, r⃗3) + CK1,K3,K2

3 (r⃗1, r⃗3, r⃗2)

+ 2(MK2
1 (r⃗2)C

K1,K3

2 (r⃗1, r⃗3) +MK3
1 (r⃗3)C

K1,K2

2 (r⃗1, r⃗2))

+MK2,K3

2 (r⃗2, r⃗3)C
K1
1 (r⃗1) +MK3,K2

2 (r⃗2, r⃗3)C
K1
1 (r⃗1)

Since the indices of moments and cumulants can be exchanged:

→MK1,K2,K3

3 (r⃗1, r⃗2, r⃗3)

= CK1,K2,K3

3 (r⃗1, r⃗2, r⃗3)

+ CK1,K2

2 (r⃗1, r⃗2)C
K3
1 (r⃗3) + CK2,K3

2 (r⃗2, r⃗3)C
K1
1 (r⃗1) + CK3,K1

2 (r⃗3, r⃗1)C
K2
1 (r⃗2)

+ CK1
1 (r⃗1)C

K2
2 (r⃗2)C

K3
3 (r⃗3) (11.5.38)
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