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CHAPTER 1 General Introduction 

本章の内容は、学術雑誌論文として出版する計画があるため公表できない。5 年以内に出

版予定。 

1.1 Large trawl fishery in the East China Sea 

 

1.2 Conventional abundance index 

 

1.3 Assessment of target species in the ECS and its problems 

 

1.4 Statistical analysis method for CPUE data 

 

1.5 Aim of this study 
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CHAPTER 2 Data and data conversion 

 

2.1 Data 

2.1.1 Fishery-dependent data 

この内容は、学術雑誌論文として出版する計画があるため公表できない。5 年以内に出

版予定。 

 

2.1.2 Fishery-independent data 

この内容は、学術雑誌論文として出版する計画があるため公表できない。5 年以内に出

版予定。 

 

2.2 Data conversion 

In the time-series analyses, dependence of the variance of states on the levels 

of the states can generate bias in the estimated results. This “dependence of the 

variance of states on their levels” is not the spatiotemporal autocorrelation between 

states (i.e., population densities, which correspond to the observed CPUE data in the 

present study), but the dependence of fluctuation amplitude of states on their levels. 

In general, amplitudes of fluctuation of states are larger when the levels of states 

are higher, and vice-versa (Hayakawa et al., 2007; Nakamura and Ueno, 2002; Fig. 

2.7). Additionally, in the present study, Kalman filter algorithm is used in the 

MARSS model (Holmes et al., 2014), thus, datasets with normal distribution are 

desirable through the analyses. Then three methods were tested to convert the 

observed fishery CPUE data tY  at time t for removing such dependence and 

securing the normality of the data distribution: 
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(1) Logarithmic transformation: tY 1)( log tY , where 1)( log tY  is the 

converted data; 

(2) Power transformation (Nakamura and Ueno, 2002; Hayakawa et al., 2007): 

tY μ

tY , where 
μ

tY  is the converted data and μ is the power exponent. Parameter μ 

was estimated in R software;  

(3) Box-Cox transformation (Box and Cox, 1964; Boylan et al., 1982): tY

12 1))(( 1 μ /μY
μ

t   when 1μ  0, while ty )( log 2μYt   when 1μ  = 0, where 

12 1))(( 1 μ /μY
μ

t  , )( log 2μYt   are converted data, and 1μ , 2μ  are parameters. 

GeoR package in R was used to estimate the parameters 1μ  and 2μ . 

A normality test was conducted to choose the most suitable data-conversion 

method by referring to a histogram and a Q-Q plot to compare the performance of 

these three methods. Histogram gives an estimate of the probability distribution of 

a continuous variable; while Q-Q plot is a probability plot, which is a graphical 

method for comparing two probability distributions by plotting their quantiles 

against each other (Wilk and Gnanadesikan, 1968). If compared distributions are 

similar, the points in the Q–Q plot will approximately lie on the line xy   (Henry, 

2002). R software was utilized to compare the distribution of fishery CPUE datasets 

with the normal distribution. 

The entire fishery CPUE datasets from 1959 to 2014 of yellow seabream, 

largehead hairtail, and silver croaker were used for conversion. As stated above, 

these datasets were collected from the whole operational fishing grids in the ECS. 
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2.3 Results for data conversion 

For the entire fishery CPUE data of yellow seabream, frequency of the leftmost 

data on the abscissa with the value of 0 did not change by any conversion method, 

while rest of the data were greatly changed (Fig. 2.8). In the present study, many of 

the 0s were considered to be derived from fishing grids where yellow seabream are 

not inhabited, thus, these 0s might be separate values which can be ignored in the 

results. As a result, comparing with the logarithmic transformation, probability 

distribution of fishery CPUE data with power and Box-Cox transformation were 

more approximate to the normal distribution (Fig. 2.8). 

Then, Q-Q plot was used to make a further comparison. The regression line of 

fishery CPUE data with power transformation was closer to the line xy   than the 

Box-Cox one (Fig. 2.9). Accordingly, power transformation was the most suitable 

data-conversion method for securing the normality of data distribution. 

     For the fishery CPUE datasets of largehead hairtail and silver croaker, I got 

the same conclusions that distribution of data with the power transformation 

corresponded best to normal distribution (Fig. 2.10-2.13).  

この内容は、学術雑誌論文として出版する計画があるため公表できない。5 年以内に出

版予定。 

After conducting the power transformation, the dependence of the variance of 

converted CPUE data on their levels was greatly weakened when compared to that 

of the raw CPUE data. For yellow seabream, largehead hairtail, and silver croaker, 

a fishing grid was randomly chosen to show the results obtained, respectively (Fig. 

2.14). 

 



5 

 

Fig. 2.1-Fig. 2.6 

これらの図は、学術雑誌論文として出版する計画があるため公表できない。5 年以内に出版予

定。 
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Fig. 2.7 Relation between annual catch and its variation of top shell Turbo (Batillus) 

cornutus in prefectures along the Pacific coast in Japan. When tC  represents the annual 

catch at time t, 
2

1 )( tt CC   represents the variation of catch at time t. Redrawn figure of 

Hayakawa et al., (2007). 
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Fig. 2.8 Histogram of the entire raw CPUE data of yellow seabream, with the logarithmic transformed one, the power transformed one and the 

Box-Cox transformed one, respectively. 
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               Raw CPUE data                  Power transformation                Box-Cox transformation 

 

                                               Norm quantiles 

 

Fig. 2.9 Q-Q plots of the entire raw CPUE data of yellow seabream, with the power transformed one and the Box-Cox transformed one, respectively. 

The red line is the regression line of data. 
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Fig. 2.10 Histogram of the entire raw CPUE data of largehead hairtail, with the logarithmic transformed one, the power transformed one and the 

Box-Cox transformed one, respectively. 

0

10000

20000

30000

40000

1 5 9 13 17 21 25 29

Raw CPUE data

0

4000

8000

12000

16000

1 5 9 13 17 21 25 29 33

Logarithmic transformation

0

4000

8000

12000

16000

1 5 9 13 17 21 25 29 33

Power transformation

0

4000

8000

12000

16000

1 5 9 13 17 21 25 29 33

Box-Cox transformationF
re

q
u

e
n

cy
 

Value intervals of CPUE data 



10 

 

 

 

Raw CPUE data                   Power transformation                  Box-Cox transformation 

   

Norm quantiles 

 

Fig. 2.11 Q-Q plots of the entire raw CPUE data of largehead hairtail, with the power transformed one and the Box-Cox transformed one, 

respectively. The red line is the regression line of data. 
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Fig. 2.12 Histogram of the entire raw CPUE data of silver croaker, with the logarithmic transformed one, the power transformed one and the Box-

Cox transformed one, respectively. 
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Raw CPUE data                      Power transformation                  Box-Cox transformation 

    

Norm quantiles 

 

Fig. 2.13 Q-Q plots of the entire raw CPUE data of silver croaker, with the power transformed one and the Box-Cox transformed one, respectively. 

The red line is the regression line of data. 
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Raw CPUE data                          Converted CPUE data 

  

 

  

  

CPUE 

Fig. 2.14 Relations between fishery CPUE and its variation of a random fishing grid for (a) yellow 

seabream: fishing grid No. 246; (b) largehead hairtail: fishing grid No. 266 and (c) silver croaker: fishing 

grid No. 270. For comparion, relations for the raw CPUE data were shown on the left side and those for 

the converted data were shown on the right side. The regression lines of data were in red. CPUE with 

the value of 0 were removed for plotting. When tY  represents the CPUE at time t, 
2

1 )( tt YY   represents 

the variation of CPUE at time t.  
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CHAPTER 3 Development of a practical way of utilizing the MARSS model 

 

この章の内容は、学術雑誌論文として出版する計画があるため公表できない。5 年以内

に出版予定。 

 

3.1 Introduction 

 

3.2 MARSS model and parameter settings 

 

3.3 Materials and methods 

3.3.1 Relationship between the number of analyzed fishing grids and the 

interpolation accuracy 

 

3.3.2 Relationship between the number of analyzed fishing grids and the analysis 

time 

 

3.3.3 Method for reducing the analysis time 

3.3.3-1 “Partial Kalman filter” method 

 

3.3.3-2 “Reduced EM iterations” method 

 

3.3.3-3 Comparison of the log-likelihood and analysis time 

 

3.4 Results 
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3.4.1 Relationship between the number of analyzed fishing grids and the 

interpolation accuracy 

 

3.4.2 Relationship between the number of analyzed fishing grids and the analysis 

time 

 

3.4.3 Method for reducing the analysis time 

 

3.5 Discussions 

3.5.1 Interpolation accuracy and analysis time with MARSS 

 

3.5.2 Practical method for reducing analysis time 
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Fig. 3.1-3.6 の内容は、学術雑誌論文として出版する計画があるため公表できない。5

年以内に出版予定。 
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CHAPTER 4 Application of the MARSS model to CPUE data from trawl fishery 

 

この章の内容は、学術雑誌論文として出版する計画があるため公表できない。5 年以内

に出版予定。 

 

4.1 Introduction 

 

4.2 Materials and methods 

 

4.2.1 Selection of the analyzed fishing grids  

 

4.2.2 Estimation of the AIs and CIs 

 

4.2.3 Effect of missing values on CIs 

 

4.2.4 Calculation of conventional AIs 

 

4.3 Results 

 

4.3.1 Yellow seabream 

 

4.3.2 Largehead hairtail 
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4.3.3 Silver croaker 

 

4.4 Discussion 

4.4.1 Yellow seabream 

 

4.4.2 Largehead hairtail 

 

4.4.3 Silver croaker 

 

4.4.4 Accuracy and precision of AIs 
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Fig. 4.1-4.12 の内容は、学術雑誌論文として出版する計画があるため公表できない。5 年以内に出版

予定。 

 



20 

 

 

Chapter 5 Utilization of data from research vessels in MARSS 

本章の内容は、学術雑誌論文として出版する計画があるため公表できない。5 年以内に出版

予定。 

5.1 Introduction 

 

5.2 Materials and methods 

5.2.1 Conversion for survey CPUE data 

 

5.2.2 Analysis of fishery and survey data in MARSS 

 

5.3 Results 

5.3.1 Yellow seabream 

 

5.3.2 Largehead hairtail 

      

5.4 Discussion 
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CHAPTER 6 General discussion 

本章の内容は、学術雑誌論文として出版する計画があるため公表できない。5 年以内に出

版予定。 
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Summary 

The abundance index (AI) is a representative indicator used to assess the state 

of fishery resources. Conventional AI is generally calculated by summing the catch 

per unit of effort (CPUE) weighted by the size of each fishing area. However, CPUE 

data has many missing values because of the annual changes in operational fishing 

areas, which can lead to a considerable bias in the estimated AI. 

This study uses a multivariate auto-regressive state-space (MARSS) model to 

estimate and interpolate missing values in spatially arranged, long-term bottom-

trawl CPUE datasets for yellow seabream Dentex hypselosomus, largehead hairtail 

Trichiurus japonicus and silver croaker Pennahia argentata in the East China Sea 

(ECS) to obtain an unbiased AI. 

 

1. Data and data conversion 

This study employed both the fishery-dependent datasets of yellow seabream, 

largehead hairtail, and silver croaker caught by the Japanese bottom-trawl fishery 

in the ECS and the fishery-independent datasets of yellow seabream and largehead 

hairtail caught by the Japanese bottom-trawl survey in the ECS. Many values were 

missing in the fishery-dependent datasets because of the shrinkage of the 

operational areas. In time-series analyses, dependence of the state variance on the 

levels of the states can generate bias in the estimated results. The logarithmic 

transformation, power transformation, and Box-Cox transformation were tested to 

convert the observed CPUE data for removing such dependence of variance and 

securing normality of the data distribution. A normality test was conducted to choose 

the most suitable data-conversion method by referring to a histogram and a Q-Q plot 
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to compare the performance of the three methods. Power transformation was found 

to be the most suitable data-conversion method. 

 

2. Development of a practical method of utilizing the MARSS model 

First, the converted fishery CPUE dataset of largehead hairtail was used to 

analyze the relationship between the number of analyzed fishing grids and the 

interpolation accuracy. Consequently, the interpolation accuracy could be improved 

by increasing the number of analyzed fishing grids. 

Second, the relationship between the number of analyzed fishing grids and 

the analysis time was determined using the converted fishery CPUE data of 20 

neighboring fishing grids for yellow seabream to the normal MARSS model. The 

analysis times were obtained when the MARSS model was converged for each case. 

As a result, the time required for the analysis markedly increased with an increasing 

number of fishing grids included in the analysis. 

The “partial Kalman filter” and “reduced EM iterations” methods were 

developed to reduce the analysis time when a large number of fishing grid datasets 

were treated simultaneously in the MARSS model. The value of the log-likelihood 

and the analysis time among the normal MARSS, the “partial Kalman filter”, and 

the “reduced EM iterations” methods were compared to determine the most practical 

approach. The least required analysis time and a similar performance to the normal 

MARSS showed that the “reduced EM iterations” method was the most practical 

approach for analysis. 

 

3. Application of the MARSS model to CPUE data from trawl fishery 
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The converted fishery CPUE datasets for yellow seabream, largehead hairtail, 

and silver croaker were applied to the MARSS model using the “reduced EM 

iterations” method. For each species, the annual shifts in their AIs and their seasonal 

migrations were addressed. The conventional AIs were also calculated for 

comparison. Consequently, the MARSS model adequately evaluated the broadening 

CIs of the estimated AIs when the missing values in the dataset increased in the 

2000s; while comparing with the estimated AIs, the AIs calculated by the 

conventional method showed considerable biases under these conditions. 

 

4. Utilization of data from research vessels in MARSS 

     The CPUE datasets from both the trawl fisheries and the surveys were applied 

to the MARSS model for analysis (i.e., “analysis F&S”) to improve the reliability of 

the estimated AI. In comparison, “analysis F” is an abbreviation for the analysis in 

MARSS when only the fishery CPUE data was utilized. The AIs and 95% CIs 

estimated by “analysis F&S” were calculated for comparison with those estimated 

by “analysis F”. The values of the estimated AIs and the 95% CIs from “analysis F&S” 

were similar to those from “analysis F” before 2000, while became lower than those 

from “analysis F” in the 2000s. The resutls implied that the combined use of data 

from both the fishery and the research survey in MARSS was successful in improving 

the abundance estimation accuracy. The survey datasets were useful when the 

fishery datasets were limited, but they were barely useful when the amount of 

fishery datasets was large enough in the analyses. 

 

In conclusion, applying the MARSS model using the “reduced EM iterations” 
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method to the large-size CPUE datasets of yellow seabream, largehead hairtail, and 

silver croaker confirmed the effectiveness of this new practical approach to the 

CPUE analysis. The MARSS model is available for the evaluation of fishery 

resources, particularly for fish species with a decreasing number of CPUE data 

caused by fishery reduction, such as many fish species in the ECS with a low level of 

abundance; and for species with a changed fishing ground by force (e.g., 

establishment of the exclusive economic zones or the marine protected areas). 

Moreover, the MARSS model will become extremely useful when a spatially arranged 

CPUE dataset is available. Unlike common approaches for CPUE standardization 

(e.g., generalized linear model and generalized additive model), the MARSS model 

can flexibly estimate the states and properly interpolate the missing values 

considering the dynamic temporal (annual and monthly) and spatial effects on the 

CPUE throughout the analysis. Overall, the countries involved must establish an 

effective framework for cooperative management and research activities in this area 

to maintain the sustainable use and proper evaluation of the fishery resources in the 

ECS. Methods such as the MARSS model can provide a useful platform to improve 

cooperative activities. 
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