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On the difference between positivity and complete
positivity of maps in quantum theory

(ODOo0oDOO0oO0oooooDoOoooOooboono)

o o

The composability of local systems in quantum theory places a non-trivial restriction on
quantum state transformations. Transformations of quantum states have to be completely posi-
tive maps that transform quantum states to other valid quantum states even when the maps are
applied on a part of entangled states. In contrast, positive maps are guaranteed to transform
quantum states to other valid quantum states only when the input states are not entangled to
other systems. Positive maps that are not completely positive play significant roles in physics, for
example, to represent antiunitary symmetry transformations such as time-reversal and charge-
conjugation, to describe non-Markovian quantum processes, and to characterise quantum entan-
glement. Chapter 2 provides a detailed introduction to positive maps that are not completely
positive.

Positive and completely positive maps are also definable in classical probability theory where
these two notions define the same class of maps. Therefore the gap between positive and com-
pletely positive maps characterises the fundamental difference between quantum and classical
probability theories. In this thesis, we consider two kinds of theories that intermediate quan-
tum and classical probability theories, and analyse the gap between positivity and completely
positivity in these theories. This procedure broadens our understanding of differences between
quantum theory and classical probability theory, and provide new insights into quantum the-
ory itself regarding on positive but not completely positive maps. See Fig.1 for a schematic
representation of the two theories considered in this thesis.

We first consider a variant of quantum theory where the input states of maps are provided
with their finite clones. Positive maps that are not completely positive such as state transposition
p+— p' cannot be realised in quantum mechanics since they do not transform entangled states
to valid quantum states. It is still impossible to construct machines to realise the action of
positive but not completely positive maps even on the restricted set of quantum states that



are not correlated to other systems. We investigate the gap between positivity and completely
positivity by analysing the realisability of the action of positive maps on the states uncorrelated
to other systems with respect to the number of clones. The gap closes when an infinite number
of clones is provided, in the sense that it is possible to extract the classical description of
the original state from the clones, and to produce the output state of any positive map. In
other words, the action of positive maps on the uncorrelated states become realisable much like
classical probability theory, if an infinite number of clones is provided.

In Chapter 3, we show that the gap does not completely close with the finite clones, by
proving the necessity of infinitely many clones to realize a certain class of positive maps on
the uncorrelated states. We provide two proofs of the necessity of infinite clones, one specifi-
cally for the state transposition, and the other for a class of positive maps that includes state
transpositions on d > 2-dimensional spaces.

In Chapter 4, a special attention is paid on a mapping Tol'oT on quantum channels I' which
we call channel transposition, where T represents the transposition. Channel transposition can
be regarded as a positive map on maps, and we show that it is impossible to construct a machine
to realise channel transposition from a finite replicas of the unknown channel provided as the
oracle. We find, however, realisability of channel transposition on a restricted class of channels,
namely unitary transformations, from finite replicas. This result indicates that some of the
gap between positivity and complete positivity closes with finite replicas, and also show a clear
difference between the state transposition and the channel transposition.

The machine to realise channel transposition on unitary transformations finds its physical
interpretation in fermionic systems. Under an identification of antisymmetric subspaces of tensor
product Hilbert spaces and fermionic systems, the machine works as if exchanging particles and
holes by a unitary operator. The realisability of channel transposition is related to the action
of mode transformations on fermions and corresponding holes.

We further provide an application of our method of channel transposition to computation
of quantum entanglement. Independently to the analysis on channel transposition, we find a
link between the quantities defined by using conjugation operators such as concurrence, and the
observables whose expectation values coincides with these quantities. These observables can be
used to compute the corresponding quantities without the complete classical description on the
state of interest. In particular, our method of channel transposition and its slight generalization
can be used to express a known family of concurrence monotones that completely characterize
the bipartite pure state entanglement by using conjugation operators, and we rediscover a known
set of observables for directly measuring the family of concurrence monotones.

We secondly consider topos quantum theory to generalize positive maps in classical proba-
bility theory in Chapters 5 and 6. Topos quantum theory provides representations of quantum
states as direct generalizations of the probability distribution, namely probability valuation.
Since the analysis on transformations between valuations is currently missing, we employ cate-
gory theory to find the canonical generalization of positive maps in classical probability theory
to topos quantum theory, and investigate the properties of the resulting maps.

Before proceeding to the analysis on maps, we define composite systems in topos quantum
theory by generalizing the composite systems in classical probability theory, and analyse the
joint valuations therein in Chapter 5, since the defining difference between positivity and com-
plete positivity arises in composite systems. It seems there is no unique generalization of the
classical composite systems to topos quantum theory, and our definition of composite system
leads to a bijective correspondence between joint valuations and positive over pure tensor states,
rather than quantum states. Positive over pure tensor states have close relationship between
positive quantum maps from which we deduce that positive quantum maps may all regarded as
completely positive in topos quantum theory.



Instead of a direct analysis on the positive maps between valuations, we consider Markov
chains in topos quantum theory in Chapter 6, motivated from the fact that classical Markov
chains are recursively generated from positive maps applied on shorter Markov chains. Again
category theory provides a straightforward generalization of classical Markov chains to topos
quantum theory. We show several properties shared by Markov chains of classical probability
theory and topos quantum theory. We find, however, an incompatibility between these shared
properties and a certain monogamy property of quantum states. The positive over pure tensor
states are also shown to have this monogamy property, and the incompatibility trivialize our
Markov chains to product states. This consequence reveals that there only exist maps between
different marginal systems that do not create any correlation. These maps are anticipated to be
too trivial to ask their complete positivity.

cloned and replicated inputs

QUANTUM CLASSICAL

N

topos quantum theory

Figure 1: A schematic diagram representing two kinds of theories intermediating quantum and
classical probability theories that considered in this thesis.



