i

Doctoral Dissertation

End-to-End Encryption Enabled Overlay-based

Mitigation of HTTP and HTTPS DDoS Attacks:

Design and Proof of Concept Implementation
(Y Ko Y— - = R HARITRIS LA — "= LA 125 <
HTTP # &Y HTTPS DDoS BUE#% i F1% -

At &M SRR)

by
Mohamad Samir AbdelRahman Eid
EFNw R I TEFIFewr AR
(37-107400)

Supervisor

Professor. Hitoshi AIDA

Department of Electrical Engineering and Information Systems
The University of Tokyo

This dissertation is submitted for the degree of
Doctor of Philosophy

GRADUATE SCHOOL OF ENGINEERING JUNE 2016

To my family ...

iii

Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other
university. This dissertation is my own work and contains nothing which is the out-
come of work done in collaboration with others, except as specified in the text and
Acknowledgments.

Mohamad Samir AbdelRahman Eid
June 2016

Acknowledgments

And say, “My Lord, advance me in knowledge.” (Quran 20:114)

I would like to express my deepest gratitude to my supervisor, Professor Hitoshi
Aida. It’s a precious chance to work under his supervision and gain from his endless
support. He has always been a great source of inspiration and encouragement.

Many thanks also to my undergraduate teachers in Egypt, especially Professor
Salah Yusuf. He has taught me a lot and strongly supported my idea of studying in
Japan and especially in such a great institution as The University of Tokyo. May his
soul rest in peace.

I also extend my thanks to those who shared every moment with me throughout
the studying years. Cheering me when down and celebrating my achievements with
love. My mother Soad. My father Samir, may he rest in peace. They sacrificed a
lot just to see me successful and happy. My Sister and brothers Iman, Hesham, and
Ahmad. My beloved and patient wife Yasmine, and of course my amazing kids Malak
and Yusuf. I couldn’t have done it without you all beside me.

I like also to express my gratitude to Professor Kumiko Morimura for treating us
so kindly and always being there for us like a true friend. Professor Yoshimasa A.
Ono for opening his library for me and giving me valuable advice on technical writing.
Professor Yashushi Wakahara for spending his precious time with me discussing my
developing research ideas in the beginning. All the student support staff for their
great help. Ms. Sayuri Nakayama and Ms. Misako Motooka who both have been so
kind and helpful all the time. And all my lab mates, who have been nice to me, many
thanks.

Special thanks also to the DeterLab team for their experiment support.

This material is based upon work financially supported in part by; The Japan
student services organization (JASSO), The Japanese Ministry of Education, Culture,
Sports, Science and Technology (MEXT), The KDDI Foundation, and The Teijin
Foundation. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author and do not necessarily reflect the views of the
the mentioned entities.

vii

Abstract

To date, DDoS attacks against web servers remain among the most common types of
cyber-attacks for their simple yet effective nature. Unlike volumetric attacks that uti-
lize the transport or network layer protocols (low-level), high-level DDoS attacks based
on HTTP are smaller in volume and harder to detect. Although mitigation at server’s
premise (locally-based) can be effective against certain attack categories, coping only
locally with the increase in attack volumes and sophistication would require large
spending that may only be affordable by large-sized enterprises. Conversely, SMEs
require affordable, scalable, and practical remotely-based mitigation (i.e., third-party-
managed overlay-based).

As overlay-based mitigation of low-level DDoS became well established, recently
more frequent attacks are reported that are based on HTTP and its SSL encrypted
version (HTTP(S)-DDoS) attacks. Current overlay-based mitigation systems can mit-
igate HTTP(S)-DDoS attacks, yet they either suffer from traffic decryption, limited
identification, or both. Limited identification at the overlay-nodes necessitates traf-
fic decryption to mitigate complex HTTP(S)-DDoS, while true end-to-end encryption
limits the behavior identification attributes.

Practicality is a key for wide acceptance of the system by organizations and users.
So, in order to effectively mitigate HTTP(S)-DDoS while complying with the en-
cryption requirement, practical enhancement of overlay-based identification of clients
is investigated in this dissertation. Focusing particularly on the complex versions
of HTTP(S)-DDoS, namely: single-request per-connection, sub-detection-thresholds,
slow-requesting HTTP-DDoS, and multi-vector attacks.

To enable the desired enhanced identification, firstly a new overlay-based system is
designed which practically introduces a third level of client identification (per-session)
in addition to the conventional two-level identification (per-IP and per-connection).
Web servers are unmodified and managed locally by their administrators (called Secret
Servers or SS), while the third-party-managed overlay-based mitigation system consists
of distributed special purpose overlay-nodes of two kinds; Access Nodes (AN) through
which alone the client-server communication takes place, and Public Servers (PS)
which act as initial preparation points. The new system also assumes no client-side

ix

X Abstract

modification or special downloads.

Then, a novel taxonomy of HTTP(S)-DDoS attacks is introduced organizing pos-
sible source behavior strategies from the AN’s and PS’s perspectives. In addition,
enabled by the introduced enhanced identification, a unique reputation and penalty
system based on three levels of behavior attributes records is designed. The novel
reputation system requires no traffic decryption at the overlay nodes or special soft-
ware at the client or server. While the PS and AN can be equipped with several
degrees of countermeasures (CM) against attacks, each component in the proposed
system is equipped with two degrees of mitigation measures. For the PS and AN, a
practical client probing (slow-responding) mechanism is introduced to counter certain
defense-unaware attacks. In addition, the AN’s second degree CM analyzes the en-
hanced behavior records for only the per-session identification level to detect complex
defense-aware attacks. Further, the PS’s second degree CM aims to block PS-targeted
attacks two steps away from the SS.

Furthermore, a proof of concept prototype of the proposed system is implemented,
with non-optimally configured parameters to demonstrate the concept’s soundness,
and deployed on the DeterLab cyber-security testbed for experimental evaluation.
At first, to examine the system’s practicality and its transparency to both clients
and servers, the prototype system is qualitatively tested for usability with actual
commercial websites. Then, considering the goal of DDoS attacks, four metrics are
defined for comprehensively measuring the mitigation effectiveness, namely; mitigation
factor, cost, time, and collateral damage. Among the experiments conducted with
simple and complex HTTP(S)-DDoS attack assumptions that are absent from related
works and conventionally hard to detect, the results of seven experiments are presented
and discussed, including; brute-force, below detection thresholds, single-request per-
connection, slow-requesting HTTP-DDoS, multi-behavior per-shared-IP, and multi-
vector attack conditions. For attack traffic, attack tools popular among attackers are
utilized (i.e., LOIC and Slowloris) for experiments with limited number of sources
(10 to 20 sources), and similarly built custom tools for highly distributed centrally
controlled automated attacks (1,000 to 10,000 sources).

The results suggest that utilizing the introduced practical enhanced identification
can eliminate the necessity for traffic decryption by overlay-nodes and for inspection
of client-server traffic content. With the enabled reputation and penalty system, we
can accomplish high mitigation factors of conventionally hard to detect HTTP(S)-
DDoS attack categories in relatively short mitigation times, in contrast to conven-
tional overlay-based methods. Especially considering complex attack conditions that
are missing in related research such as single-request per-connection sub-detection-
threshold HT'TPS-DDoS. It suggests that less complex attack categories can be equally
mitigated. In addition, results suggest that enhanced identification can achieve low
collateral damage in terms of the chance of receiving service and service time for non-
attacking clients that share an attack IP. However, the unoptimized implementation of

Abstract xi

the prototype system shows a cost in service time even without attack. Also, it shows
a temporarily decrease in mitigation factor and rise in cost during mitigation time.
Experimentally demonstrating the concept’s soundness based on the introduced per-
session identification alone opens the way for investigating the inclusion of the three
identification levels within various machine learning techniques for adaptive system
parameters’ tuning and for analyzing the enhanced behavior record patterns.

Table of Contents

A bstract ix

h‘able of Contents{ xiii
IList of Figureé xvii
|Nomenclature| xxi
Il Introductiod 1
Il.l Background and Motivatiod 1
|1.2 Attack Categoriesl 3
|1.2.1 Low-level DDoS Attacksi 3

.22 High-level DD0S Attackd o o v oo 4

|1.3 Mitigation Categories] 6
h.3.1 Locally-based Solutionsl 6

h.3.2 Remotely-based Solutiond 7

|1.4 Problem Statementl 9
|1.5 Research Scopel 10
|1.6 Thesis Organizatiod 12

lZ Related Works on Overlay-based HTTP-DDoS Mitigatiod 13
|3 Proposed Method and Prototype Implementatiod 19
B.1 Objectived . . . o oo 19

xiii

TABLE OF CONTENTS

I3.2 Proposed Methodl 20
|3.2.1 System Overviewl 20
B.2.2 Preparation and Communication Stages{ 21

I3.3 High-level Attack Strategiesl 22

B4 Mitigation| o oo 25
B.4.1 Detection Conceptl 26
b.4.2 Reputation and Penaltyl 29
B.4.3 Attack Countermeasuresl 35

Evaluatiod 41

|4.1 Evaluation Method 41
|4.1.1 Performance Metricd 42
|4.1.2 Emulation Platform (Testbed)l 44
|4.1.3 Evaluation Planl 45
|4.1.4 System Pa,rametersl 48

|4.2 Experimentd 49
h.2.1 High Rate HTTP-DDoS via AN oo 49
|4.2.2 Slow-Requesting HTTP-DDoS via PSJ 51

|4.2.3 Distributed, High Rate, Slow-Requesting HTTP-DDoS via PSi . 5b
U.2.4 Highly Distributed, Low Rate, Slow-Requesting HTTP-DDoS

Mia PS 57

|4.2.5 Slow-Requesting HTTP-DDoS via ANI 60
4.2.6 Low Rate HTTPS-DDoS via ANo iii .. 64
1.2.7 Multivector HTTP(S)-DDoS Attack via AN 68
Discussiod 73
b.l Service Time Costl 73
5.2 Scalabilityl o 74
b.3 Evaluation Method 76
b.4 Attack Conditionsl 78

b.5 Encryption and Trustl 81

TABLE OF CONTENTS XV
I5.6 Conventional Solutionsl 82
I5.7 Actual Implementation Considerations] 84

b Conclusiod 87

89

IPublicationsJ 97

List of Figures

|1.1 DDoS attacks architecturel 2

.2 Scalability of locally-based methods against attack traffic is limited b
he server’s local resources and budget, thus not difficult to overwhelm

attackers|7
|l .3 In comparison to locally-based approaches (Fig. 1.2). shared overlay-
based approaches provide high scalability against attacks at relatively

low costj8

4 Conventional overlay-based solutions decrypt data in transit to mitigate
omplex HTTP(S)-DDoS attacks and base mitigation only per-IP or

er—connectionl10

|I .5 Conventional two-level identification (per-IP and per-connection) pro

vides limited behavior attributes for the mitigation of HT'TP(S)-DDoS
attacks] 11

I2.1 Architecture of sPoWl 14
l2.2 Basic protocol of CLADI 15
I2.3 Architecture of OverCourtI 16

I3.1 By practically enhancing the client identification at the overlay-nodes
he objective is to eliminate the necessity for traffic decryption by the

verlay-nodes for effective mitigation of complex HTTP(S)-DDoS at-

acks remotely] 20

.2 Enhancing conventional client identification by adding a third level oii
dentification) 21
B.?) Proposed system overview [1—3]] 22

xXvii

xviii LIST OF FIGURES

B.4 Taxonomy of attack source’s possible HT'TP(S)-DDoS strategies, frog

he AN’s and PS’s perspectives, read from left to right. For exam-
le, the set of strategies CB32** refer to single renewed session attack

ith multiple fixed connections, through which multiple invalid-looking
equests of alternating parameters are sent]24

Top: Definition of three mitigation categories, with respect to; mitiga-
ion factor. time, and cost. Bottom: Expected mitigation category for

ifferent HTTP(S)-DDoS attack categories| 26

I3.6 Detection attributes stored locally in hash maps by each AN and PS
IZNS handle four levels of attribm 27
I3.7 Description of stored attributes by the AN] 27
I3.8 Description of stored attributes by the PS] 28
I3.9 Considered AN and PS exceptionsl 30

I3.10 Each record vector registers the underlying exceptions during the latestl
time steps) L. 31

B.ll Reputations and penalties hierarchy. In current prototype implemen—l

tation, Rg = 1] 33

.12 AN exceptions handling in the current prototype. given Rg = 1. LHS
ocal PID reputation (Ry(FEp)) states. RHS: SID penalty (P(FEg, Ry)

tates] 34
I§.13 PS exceptions handling, given Rq = 1. LHS: Local PID reputatioﬂ

RL(Fo,R’1)) states. RHS: PID penalty (P(Ep,Ry)) states] 35
I3.14 Pre-service slow-response probingl 36
I3.15 Function of P;; the lookup table manually set for the duration before]

between and after the slow-response probes| 37
I3.16 Example of behavior record analysis countermeasure] 38
I3.17 Pre-probing message reception and aggregation] 39

|4.1 Apache web server benchmarks using ApacheBench for a 200 KB ﬁlel .48

|4.2 Setup and physical mapping of Experiment 1] 49
|4.3 Results of Experiment 1. LHS: Start of attack. RHS: Switching attackl o1

|4.4 Setup and physical mapping of Experiment 2] 52

|4.5 Results of Experiment 2. Slow-requesting HT'TP-DDoS attack Startsl
nearly at t = 4 [min]] 54

LIST OF FIGURES Xix

h.6

Setup of Experiment 3. Same physical mapping of Experiment 2] ... b5

W.7

Results of Experiment 3. Slow-Requesting HTTP-DDoS attack Startsl

nearly at t = 2.5 [min]|. 57
|4.8 Setup and physical mapping of Experiment 4] 58
|4.9 Results of Experiment 4] 59
|4.10 Setup and physical mapping of Experiment 5] 60

W11

Service Measurements of the test web server under direct slow—requestingj

HTTP-DDOS attack] 62
|4.12 Results of Experiment 5] 63
|4.13 Setup and physical mapping of Experiment 6] 64

W.14

Service Measurements of the test web server under a very low rateJ

direct HTTPS-DDoS attackj 66
|4.15 Results of Experiment 6] 67
|4.16 Setup and physical mapping of Experiment 7] 68

W.17

Results of Experiment 7: Traffic and Service Measurements via MNJ

M-shared-1, and M-shared-2) 70
|4.18 Summary of experimentsl 71
I5.1 Non-attack service time measurementsl 74
I5.2 Proposed vs conventional solutions] 84

Nomenclature

The next list describes several acronyms, terms, and symbols that will be later used
within the body of this dissertation.

Acronyms and Terms

APR Access permission request,

ACK Acknowledge message of the TCP protocol,
AN Access Node,

AP Access Permission,

CD Collateral damage,

CDN Content Delivery Networks,

CID Connection identifier,

CM Countermeasures,

CoS Chance of service completion,

DDoS Distributed Denial of Service,

DNS Domain Name System,

DNSSEC Domain Name System Security Extensions,
DP Default prevention,

DRP Detection response prevention,

DRR Detection response reduction,

EDoS Economic Denial of Sustainability,

Xx1

xxii Nomenclature

FS Failed session,

HOIC How Orbit Ion Canon attack tool,

HTTP Hypertext Transfer Protocol,

HTTP(S)-DDoS Used as a superset reference to HT'TP-DDoS and HTTPS-DDosS,
including slow-requesting HTTP-DDoS, Eaée 5

HTTPS HTTP secure,

ICMP Internet Control Message Protocol,

IIS Internet Information Services web server,
ISP Internet Service Provider, M

LHS Left hand side,

LOIC Low Orbit Ton Canon attack tool, m

max Maximum value,

MC Mitigation cost,

MF Mitigation factor,

MITM Man in the middle,

MONLIST Monitor list command of the NTP protocol,
MT Mitigation time,

NTP Network Time Protocol,

OID Origin identifier, M

PID Client-server pair identifier,

PS Public Server,

RF Reduction factor of attack traffic,

RHS Right hand side,

RST Reset message of the TCP protocol,
RUDY R-U-Dead-Yet attack tool, M

SID Session identifier,

Nomenclature xxiii

SME Small to Medium sized Enterprise,

SNI Server Name Indication,

SS Secret Server,

SSL Secure Sockets Layer,

ST Service time for a specified file,

SYN Synchronize message of TCP,

TCP Transmission Control Protocol,

TLS Transport Layer Security,

UDP User Datagram Protocol,

Symbols

a Time step duration, [sec]
15} Number of record past time steps,

7y Decimal value of E,

Eo Origin-level exceptions record vector of length S time steps,
Ep Pair-level exceptions record vector of length § time steps, m
Es Session-level exceptions record vector of length [time steps,
A/P Attempts per client-server pair,

A/a Attempts per time step,

A Current number of simultaneous attempts,

FA/P Failed attempts per client-server pair,

FA/a Failed attempts per time step,

[A/O Incomplete attempts per origin,

IA/a Incomplete attempts per time step,

IPc IP address of client C,

Py IP address of AN,

xXxXiv Nomenclature

m Number of considered consecutive time steps (m < f3),
PID/O Client-server pairs per origin (i.e., per source IP), M
PortN Port temporarily assigned by the AN for a client,

Rt Local reputation received from the AN by the P§S,
Warnay Warning from AN,

C'/a Connections per time step,

C'/S Connections per session,
C; Current number of open connections,

E. Exception number *,

FS/a Failed sessions per time step,
FS/P Failed sessions per pair,

Ly Level 1 of local reputation (normal),
Lo Level 2 of local reputation (suspicious),
Ly Level 3 of local reputation (bad),

M /a Messages per time step, m

M /C Messages per connection,

P, Penalty,

Rgs Global reputation of the source IP,
R; Local reputation per PID,

S/P Sessions per pair,

S; Current number of open sessions,

ty Duration before the first probe,

to Duration between the first and second probes,
t3 Duration after the second probe,

To(maz) Maximum aggregation time of a request,

Nomenclature XXV

Latt.., Attack starting time,

tpmae Lime at which an SID reaches max penalty,
T (mazy Maximum request time,

treg.on: 1ime the request was sent,

trespsoy Lime the response is fully received by client,
Ts SID starting time,

w; Current time step 1,

wrer Reference time step clock,

Warnsgs Warnings from SS,

P Penalty’s maximum value,

P,.in Penalty’s minimum value,

Chapter 1

Introduction

1.1 Background and Motivation

The Internet has become the main infrastructure for a global information-based so-
ciety. Research and educational institutes depend increasingly on the Internet as a
platform for collaboration and as a medium for disseminating their research discover-
ies rapidly. Also enterprises of various sizes offer secure Internet-based transactions,
as well as share and exchange information with their divisions, suppliers, partners
and customers efficiently and seamlessly. Likewise, governments are increasing their
reliance on the Internet to provide information to the public, in addition to various
government services online.

With the growth of the Internet, cyber attacks have also evolved fast. Further, tra-
ditional operations in vital services, such as banking and medicine are being provided
over less expensive and more efficient Internet-based applications. Historically, an at-
tack on a nation’s critical services involved crossing physical boundaries. However, the
global connectivity of the Internet renders physical boundaries meaningless. Internet
based attacks can be launched from across the globe. Therefore, the reliability and
security of the Internet not only benefits online businesses, but is also an issue for
global security and human safety.

The continuous rise in cyber attacks constitutes a serious threat to Internet users.
Such attacks vary in their threat model and sophistication, which depend on the
attacker’s technical knowledge, among other factors. One of the most common cyber
attacks to date, due to its simple yet effective nature, is DDoS attacks [4-0].

DDoS attacks’ basic concept is to overwhelm an internet-based service (e.g., twit-
ter.com) with requests from distributed sources, so that actual users are denied service.
It can be driven politically, for money, fame, or as a cover for a simultaneous intru-
sion attempt. Further, DDoS attacks are not difficult to launch against a web server

2 Introduction

(i.e., victim) and is likely to remain so with the current nature of the internet. In
fact, DDoS attack tools can be downloaded easily from the internet, in addition to
non DDoS, network testing, tools that can be used with a bad intention. Over the
internet, attackers infect and control their agents remotely, and the messages sent
are network packets with little to no cost for the original attacker. It becomes even
easier for attackers, with for-rent botnets that can only cost 20 US Dollars to hire for
1 hour [[7].

To avoid being traced back and held accountable, attackers tend to format their
attack agents into layers. Such agents are compromised firstly by the attacker, before
the actual DDoS can take place. As shown in Fig. [l n the first layer is composed of
handlers; where the attacker compromises one or more machines and through these
controls the following layer’s machines (i.e., control traffic). The second layer is com-
posed of attack agents (also called zombies, bots, or slaves); where the actual DDoS
attack traffic originates (i.e., attack traffic). If the botnet, or part of it, is detected,
then the handlers may be exposed in this case but not the original identity of the
attacker. Also, more layers of handlers can be used. This research pays attention to
mitigating the effect of attack traffic on web servers, while the detection of control or
compromise traffic is within the scope of a different research area.

The impact of a DDoS attack may not just mean missing out on the latest sports
scores or weather news on the Internet. It may mean losing a bid on an item you
want to buy or losing your customers for a day or two while you are under attack.
Attacks affect many sectors, including; commercial, industrial, media, and financial
institutions. A single attack would sustain for periods ranging from a few minutes to
even several days [§]. A recent study, surveying 1,002 I'T professionals worldwide, 76%

----- Control traffic
m— Attack traffic

| Agent " Agent eee Agent | | Agent ” Agent eee Agent |
\ W
Targeted
Server

Figure 1.1 DDoS attacks architecture.

Introduction 3

reported investing more in DDoS mitigation than a year ago [9]. This suggests the
economic feasibility of this research’s product.

1.2 Attack Categories

DDoS attacks vary in the underlying protocol (high-level protocol based, network
based, etc.), rate (brute force “flooding”, below detection threshold, etc.), targeted
resources (limited memory, bandwidth, or CPU capacity), etc. Different attack cate-
gories can have overlapping attack parameter variations. Generally, attacks are either
on the low-level (utilizing transport or network layer protocols) or high-level (utilizing
application layer protocols). Both categories continue to be on the rise [10].

1.2.1 Low-level DDoS Attacks

Low-level DDoS attacks generally rely on traffic volume to overwhelm the victim, with
peak rates of 470 Gbps being reported recently [8]. Source IP spoofing is usually used
with low-level attacks to hide the attacking agents true identity and in some cases to
amplify the attack traffic. Low-level attacks include two major subcategories; protocol
exploitation, and flooding attacks.

Protocol exploitation attacks misuse of a certain protocol features to disrupt com-
munications. A popular example is the TCP SYN attack; the exploited feature is the
allocation of a space in a connection queue immediately upon receipt of a TCP SYN
request. The attacker initiates multiple connections that are never completed, thus
filling up the connection queue spaces. A similar version are called state exhaustion
attacks. For example, attackers attempt to consume the local limits of the target
server’s settings by opening multiple connections simultaneously, and keeping them
open, thus exhausting the server’s configured local limit.

Flooding attacks try to congest the victim’ link by sending large volumes of traffic
to it. No intelligence is required from the attack agent in this case, in comparison to the
protocol exploitation attacks. The effect of such action on the victim system varies
from slowing it down or crashing the system to saturating its network bandwidth.
Some of the well-known flooding attacks are UDP flood attacks and ICMP flood
attacks.

To achieve a large attack volume, attackers often resort to traffic amplification.
Amplification of attacks utilize intermediary nodes that are used as attack launchers
(called reflectors) to amplify and reflect the attack. The result is also a flood of
packets, but the difference is the method of generation. A reflector is any IP host that
will return a packet if sent a packet. Spoofing the source address is the key factor

4 Introduction

in executing such attacks. So, web servers and routers can be reflectors, returning
SYN/ACK or RST in response to SYN or other TCP packets. An attacker sends
packets that require responses to the reflectors. The reflected packets can flood the
victim’s link if the number of reflectors is large enough. Note that the reflectors are
readily identified as the source addresses in the flooding packets received by the victim.
The operator of a reflector on the other hand, cannot easily locate the agent that is
pumping the reflector with the source address spoofed as the victim’s.

In summary, low-level DDoS attacks rely on large traffic volume. Therefore, they
require not only accurate detection of attack traffic, but also scalable server resources,
especially bandwidth to keep the service available.

1.2.2 High-level DDoS Attacks

In contrast to low-level DDoS attacks, high-level attacks rely on asymmetry in which
a small number of client requests can cause considerable server resource consumption.
So, their request rate is much smaller and harder to detect [8]. High-level DDoS attack
models target one of three resources; network (e.g., bandwidth bottlenecks, connection
queues, etc), processing (e.g., CPU, memory, processing queues, etc) or economic. The
latter is also called EDoS attacks which target the economic sustainability the victim
server’s paid-for services such as an on-demand DDoS defense service that charges the
server per usage.

The source addresses of high-level DDoS requests are of real hosts, since a valid
application level request requires a successful connection. Therefore, spoofing and
amplification is not valid in this case. Exceptions are UDP-based high-level attacks,
where there is no connection established, such as NTP and DNS amplification DDoS
attacks.

Methods for high-level DDoS attacks include; HTTP-based (i.e., HTTP-DDoS),
SSL-based E], and amplification (e.g., NTP, DNS, etc.) attacks.

An HTTP-DDoS attack targets a web server with a HT'TP GET or POST requests.
Attackers often employ botnets to generate large traffic. The web server becomes
overwhelmed by attempting to answer each seemingly-legitimate request. As a result,
actual legitimate requests can be denied from getting the service. Common HTTP-

DDoS attack tools include LOIC and HOIC.

A subset of HT'TP-DDoS is called slow-requesting HTTP-DDoS attack, which
is designed to tie down the server that’s waiting for the rest of the slowly-arriving
request. The source typically opens several seemingly-legitimate connections to the
target server and then starts sending never-completing partial HT'TP requests, part
by part. The attack source typically reestablishes the connections over which the

'Both TLS and SSL are henceforth simply called SSL.

Introduction 5

server times out their requests. Note that “slow” here indicates the prolonged time
for an HTTP to arrive, while the rate of request parts’ arrival can still be high or low.
For example, we can see a high-rate slow-requesting HT'TP-DDoS attack. Common
slow-requesting HTTP-DDoS attack tools include Slowloris and RUDY'.

SSL-based attacks either try to abuse the SSL protocol itself, or simply send the
HTTP-DDoS attack over an encrypted connections (i.e., HTTPS-DDoS). In the for-
mer, sources initiate regular SSL handshakes then repeatedly request encryption key
renegotiation to overwhelm the server’s resources. On the other hand, HTTPS-DDoS
mainly aim to complicate the mitigation of attacks.

Henceforth in this dissertation, the term “HTTP(S)-DDoS” is used as a superset
reference to HT'TP-DDoS and HT'TPS-DDoS, including slow-requesting HTTP-DDoS.
This category of attacks can’t be amplified. The request must originate from a true
source address which can’t be spoofed. The fact that the source of the HTTP(S)-DDoS
request is a real host implies one of two possibilities, where requests either originate
from compromised hosts (bots) or from a coordinated group of people who decide to
participate in an attack. However, there is not an easy way to distinguish the good
requests from the bad, for example; bots sending requests to a server can actually be
good bots (crawlers), also for the case of human-operated agents, they could be just
a crowd of people genuinely interested in a certain resource together.

In addition, high-level amplification attacks utilize source address spoofing. For
example, the NTP amplification attacks utilize servers that support the MONLIST
command as reflectors. A large number of UDP packets are sent by the attacker to the
reflector with the source address spoofed with that of the victim. This way, reflectors
amplifies the attacker’s achievable traffic, and also helps the attacker hide its identity.
The MONLIST command can be simply disabled by NTP servers, without impacting
their function, to avoid participating in this type of attack. On the other hand, DNS
amplification attacks rely on open DNS resolvers as reflectors. A small query by the
attacker, also with spoofed source address, can result in a much larger response. Even
with DNSSEC, which is designed to make the DNS more secure, such attack model is
still viable. Proper configuration of DNS servers can limit their participation in such
attacks.

Note that from perspective of the protocol exploited at the reflector, NTP and
UDP amplification attacks are high-level attacks. Yet, they can also be classified as
low-level attacks from the perspective of the reflected UDP traffic targeting the victim.
Either way, such amplification attacks are similar to low-level attacks in their reliance
on traffic volume to overwhelm the victim. In contrast to HTTP(S)-DDoS, these can
be more easily detectable but the large volume is what makes them difficult to mitigate
in case of non-scalable server resources.

To further understand HTTP(S)-DDoS, they can be sub-categorized based on
source behavior. Section @ further discusses the classification of possible HTTP(S)-

6 Introduction

DDoS attack strategies with the aid of a novel taxonomy. However, for now, it’s
necessary to notice that each attack strategy can be described as either complex or
not complex. So, a low-rate below detection thresholds attack is more complex (i.e.,
knowledge-based, defense-aware, or smart attack) than a high-rate attack (i.e., defense-
unaware, or blind attack). Similarly, a single-request per-connection attack is more
complex for methods that rely on per-connection behavior analysis alone than a multi-
request per-connection attack. Likewise, an encrypted attack is more complex for an
overlay-based mitigation method than an unencrypted one. Section explains why
the focus is on the overlay-based mitigation approach.

1.3 Mitigation Categories

To mitigate DDoS attacks, there are two main approaches according to the location
of deployment. Mitigation solutions can be either; locally-based (i.e., at the server’s
premise), or remotely-based (i.e., at source, infrastructure, ISP, or an overlay network).

1.3.1 Locally-based Solutions

Locally-based DDoS mitigation solutions are components, or settings, configured within
the targeted server’s network to reduce the attack’s impact. Undesired DDoS traffic
is therefore locally mitigated.

For example, to help mitigate the low-level TCP SYN floods, locally configuring
SYN-cookies can be done [L1]. On the high-level, there are also several basic mitigation
configurations that aim to protect the server against some of the basic attacks. Apache,
the leading web server to date, offers the mod_ evasive module [12]. It provides simple
DDoS protection as part of the HT'TP server. Additional basic settings for the local
server can also help mitigate certain basic DDoS attacks [13]. Other web servers,
such as IIS and nginx, etc., also have their basic mitigation modules. The reader is
encouraged to read further about them. For example, the mod__evasive Apache module
helps mitigate HTTP-DDoS attacks against the server by providing evasive actions
during attacks and report abuses to file or by email. The module creates an internal
dynamic table of IP addresses and URIs. Any single IP address is denied by the module
from requesting the same page more than a number of times per second, making more
than a set number of concurrent requests on the same child process per second, or
making any requests while temporarily being blacklisted. While mod_ evasive can
inexpensively help protect the server against some HTTP(S)-DDoS attacks, complex
low-rate highly-distributed attacks may successfully evade the module’s evasion.

In addition, commercial specialized solutions offered by vendors such as A10 Net-
works® provide various locally-based mitigation hardware [14]. Prices start from

Introduction 7

195,000 US dollars per unit [] Add to that the expected costs for deploying, upgrad-
ing, maintaining and over provisioning for such solutions. Only large-sized enterprises
may afford such expenditures. This makes them not suitable for SMEs which require
affordable, scalable, and practical solutions (i.e., the main features of remotely-based
solutions).

In summary, locally-based solutions may be effective, but attackers can still eas-
ily exceed the server’s limited network, or processing, resources available for similar
locally-based solutions. Especially in case of volumetric attacks as illustrated in Fig.

. It the attack traffic exceeds the limited local resources, it becomes difficult to pro-
vide normal service to users regardless of the detection method’s accuracy. Nonethe-
less, locally-based solutions can still be useful if augmented with the more scalable
remotely-based mitigation solutions.

1.3.2 Remotely-based Solutions

Remotely-based mitigation solutions are those not located at the server’s premise.
These include four types, namely; infrastructure-based, source-based, ISP-based, and
overlay-based.

Source-based approaches assume cooperation from the source host or ISP [@,]
On the other hand, infrastructure-based approaches aim to protect the server far from
its bottlenecks by considering modifying or installing additional equipment at the
Internet infrastructure, or contiguously modifying routers on the path to the victim
[|. However, the general problem with such approaches is the lack of economic
(and political) incentives for all the sources to cooperate. Similarly, expecting providers

Locally-based
mitigation

The Internet

Attack sources

Web server

— Attack traffic

=3 Nonattack traffic

=9
User

Figure 1.2 Scalability of locally-based methods against attack traffic is limited by the
server’s local resources and budget, thus not difficult to overwhelm by attackers.

8 Introduction

to allow the installment of special filters on their own routers assumes a doubtful degree
of collaboration. Besides, those modified routers would have to maintain traffic flow
states, introducing additional load on them. Furthermore, it raises concerns about
the possibility of abuse. In addition, [SP-based approaches are offered by the victim’s
ISP, where the distributed attack traffic converges. Offloading the response to ISPs
can be useful since they are well situated to respond to relatively large volumes of

DDoS traffic | . However, ISPs themselves can become the victims of massive
DDoS attacks [24,25].

On the other hand, the overlay-based paradigm eliminates direct client access to
servers by deploying a scalable overlay network of mitigation nodes (also called edge
servers, edge nodes, or overlay nodes), as illustrated in Fig. . The overlay-nodes
are managed by a specialized third-party mitigation service provider. Ideally, the
undesired traffic is remotely identified and filtered out.

Notice that although both terms overlay-based and cloud-based can be used inter-
changeably in various instances, the term cloud has been recently associated by many
people with loss of privacy and trust [@—@] Also, the term cloud-based mitigation
can imply data storage by the cloud nodes, which is strictly avoided in this research
as explained further in section [L.4. So, this dissertation refrains from using the latter
term, and uses the overlay term instead.

Several commercial overlay-based DDoS mitigation services are available [@f@]
For example, Akamai® offers managed DDoS mitigation solutions [29]. Their dis-
tributed edge servers act as a buffer to the origin servers (the victim). Only traffic
passing through Akamai’s edge servers can connect to the victim’s infrastructure. Sim-

Overlay-bzlised mitigation

]

Attack sources

Web server

?; ~= 8 Overlay-node
@ | —— Attack traffic
e~

= —— Nonattack traffic
User

Figure 1.3 In comparison to locally-based approaches (Fig. @), shared overlay-based
approaches provide high scalability against attacks at relatively low cost.

Introduction 9

ilarly, VeriSign® promises protection far from the servers’ location [32]. A monitoring
facility inspects the victim’s traffic parameters. In case of a detectable attack event,
VeriSign works with the victim to divert traffic to a dedicated filtering site.

The capacity of such overlay-based solutions can be elastic enough to scale up as
DDoS attacks grow in bandwidth and processing requirements. In addition, the cost of
overlay-based services is significantly lower than the locally-based ones, which is a fea-
ture especially attractive to SMEs. The cost of a commercial solution can start from as
low as 5,000 US Dollars per month [33], dependent on application requirements. Com-
pare this to the starting cost of 195,000 US dollars per single locally-based hardware
unit [15]. Also, the costly locally-based solutions require hiring skilled personnel to
manage it, as well as keeping it up to date. On the other hand, a third-party-managed
security service can reduce such operational and maintenance costs significantly. So,
the main advantages of overlay-based approaches, in contrast with locally-based and
other remotely-based ones, are; practicality, scalability, and affordability. Especially
so for SMEs.

1.4 Problem Statement

We learned that overlay-based mitigation solutions against DDoS attacks represent
the most practical, scalable, and affordable option for SMEs.

In case of low-level DDoS, overlay-based mitigation is well established [1,34]. For
example, by means of a reverse proxy, since only a high-level message may reach the
server. So, the effect of low-level DDoS traffic can be prevented given enough resources
at the third-party mitigation service provider.

On the other hand, overlay-based mitigation of high-level attacks can be a challeng-
ing task. Not surprisingly, recently more frequent high-level attacks are reported [f],
especially the most hard to detect HTTP(S)-DDoS attacks [35].

Conventional overlay-based solutions can mitigate HTTP(S)-DDoS, however they
suffer from at least one of the following two demerits:

1) Traffic decryption: To inspect the content for mitigation, the client-server
SSL connections are split, as illustrated in Fig. , with overlay nodes decrypting
then re-encrypting traffic [29-31]. This means trusting a third-party, in the middle,
capable of decrypting what’s supposed to be true end-to-end encrypted traffic. This
prompts trust concerns, given the recent rise in awareness about encryption because
of multiple factors, including; the continuous rise in cyber-attacks, privacy compliance
regulations and consumer concerns [26,27]. This has caused organizations to evolve
their thinking with respect to encryption key control and data residency, as shown in
a recent study [28]. Surveying 5,009 IT professionals in 11 countries shows that 76% of

10 Introduction

mm No detected misbehavior
Suspected misbehavior
I Detected misbehavior

Limited identification
(per-IP / per-connection)

End User(s) Overlay Node Origin Server

B
- P N — Y
] 1 I

|m &\H<..?9$txe_t?ﬁ... .. Encrypted Pl
/ connection 1 I

connection2 ~ [0
D

/
| /1 e
| - - —— e - A
|

Multi-user per IP
(multi-conn. per user)

Connections

Decryption then re-encryption
(split encrypted communication)

Figure 1.4 Conventional overlay-based solutions decrypt data in transit to mitigate
complex HTTP(S)-DDoS attacks and base mitigation only per-IP or per-connection.

financial service organizations are most likely to control encryption keys within their
organization rather than a third-party provider.

2) Limited identification: Conventional practice of major providers (such as
[36]) assume that a client behavior is identificable based on its source IP address
(i.e., per-IP identification) and/or based on behavior of individual connections (i.e.,
per-connection identification). We call this two-level identification, as illustrated in
Fig. @, which provides limited behavior attributes and limits the ability to mitigate
complex HTTP(S)-DDoS attacks. For example, mitigation per-IP may result in errors
in case of a multi-behavior per-shared-IP traffic, and in punishing a group of clients
as one client (i.e., collateral damage), even after the attack stops. On the other hand,
mitigation per-connection is not effective in case of a single-request per-connection
attack.

1.5 Research Scope

It’s reported by CISCO that HTTP will occupy 80% of the Internet traffic by 2019.
Also, general web-services are increasingly switching to the secure version of HT'TP
(i.e., HTTPS), not only shops, hospitals and banks. So, for a DDoS mitigation scheme
to be widely accepted, it must not contradict with the purpose of HT'TPS in particular.
In Chapter P, we review related works which mostly focus on mitigating not so complex
categories of HTTP(S)-DDoS such as the multiple-requests per-connection category,
and either overlook the true end-to-end encryption requirement, suffer from limited
identification, or both.

So, the focus of this research is on overlay-based mitigation of HTTP(S)-DDoS, par-

Introduction 11

peere: 17, [I ource, |
F =Y

& % o
Per-connection: - - L= ijl(#Conn.per IPCj

Figure 1.5 Conventional two-level identification (per-IP and per-connection) provides
limited behavior attributes for the mitigation of HTTP(S)-DDoS attacks.

ticularly on its more complex versions, namely: single-request per-connection, multi-
behavior per-shared-IP, sub-detection-thresholds, slow-requesting HT'TP-DDoS, and
multi-vector attacks.

To regain the trust of both users and servers, we define true-end-to-end encryption
of client-server transactions (or non-split SSL) as a main requirement for an overlay-
based DDoS-mitigation service. So, the goal of the new system presented in this
dissertation is to enable effective mitigation of complex HTTP(S)-DDoS attacks far
from the server, while complying with the encryption requirement [2,3]. Section f.1.
explains in more detail the metrics that define effective mitigation, i.e., mitigation
factor, mitigation cost, mitigation time and collateral damage.

The concept’s core is to add a third-level of client identification to overlay-based
mitigation (i.e., enhanced identification), allowing an overlay-node to group related
connections per client. With a focus on HTTP(S)-DDoS, a practical third level of
identification is utilized enabling novel behavior-based reputation and penalty system.

Aiming to demonstrate the soundness of the concept, a proof of concept prototype
with simplified mitigation measures and parameters is implemented and deployed on
DeterLab [37]. Several experiments are conducted to evaluate the soundness of the
concept. Among them, the results of seven experiments are discussed.

The main contributions of this research are:

e Design the first overlay-based DDoS-mitigation system that enables both en-
hanced identification and true end-to-end encryption.

« Introduce a new taxonomy of HTTP(S)-DDoS attacks source-strategies.
e Design a novel behavior-based reputation and penalty system.

e Develop a proof of concept prototype to experimentally demonstrate the sound-
ness of the proposed concept.

o The first research to discuss evaluation results against the complex low-rate
single-request-per-connection HTTP(S)-DDoS attack categories.

12 Introduction

1.6 Thesis Organization

The rest of this dissertation is organized as follows. Chapter 2 surveys relevant con-
ventional DDoS mitigation approaches. The chapter concludes by qualitatively sum-
marizing the comparison between the conventional methods. Chapter 3 follows by
explaining the proposed method and details of the proof of concept prototype im-
plementation. Chapter 4 presents the experimental evaluation results. Chapter 5
discusses several points on the presented research. Finally, chapter 6 concludes the
work and draws lines for possible future research directions.

Chapter 2

Related Works on Overlay-based
HTTP-DDoS Mitigation

Various overlay-based approaches to mitigate HTTP-DDoS attacks are proposed in
literature by researchers over the past decade. Methods vary, employing Software
Defined Networking (SDN) [B8], dynamically instantiated replica servers [39], content
caching [40], pre-service verification [41-45], and credit-based accounting [46,47].

A common feature of overlay-based approaches is the reliance on content inspection
to mitigate HTTP-DDoS. For example, the work in [39] propose a framework where
overlay-based mitigation servers are set up as moving targets. In case of an attack,
new servers are dynamically instantiated to replace the attacked ones, and affected
clients are reassigned to other servers. Although similar methods show a capability to
mitigate certain attack categories, it’s assumed that the overlay-based replica servers
can access the high-level client-sever content.

As a countermeasure to high-level attacks against CDNs, the works in [41,42] utilize
a method for pre-service verification. Traffic is prioritized using a self-verifying Proof-
of-Work (sPoW) scheme, where sPoW tests the client with a crypto-puzzle of a varying
difficulty. For that, clients are required to download a special plug-in. However, the
assumed level of users’ trust in the system to download the plug-in from a third-party
DDoS mitigation provider is questionable, especially with recent studies about trust
and privacy [26,27]. Also, if the sPoW scheme is eventually adopted by multiple
competing DDoS mitigation providers, this would imply that a client may end up
downloading multiple special plug-ins. Further, the server too is required to install
a special plug-in for the system to work, which adds to the server’s local load and
assumes a certain level of trust from the server’s organization, which may prohibit the
adoption of the system by most of financial service and healthcare organizations [28§].
In addition, based on the system’s design, high-level attackers could download the
plug-in then start requesting new puzzles without solving them. This way, a single

13

14 Related Works on Overlay-based HT'TP-DDoS Mitigation

Content Distribution
DNS Network

CIQDI @

O

Internet
Communication
Channel
g Ephemeral Server
Channel
@ sPoW Name Server @ @ Server Plug=in

Cloud #2

g

N/

Client Plug—in

Figure 2.1 Architecture of sPoW [41], [42].

puzzle request from a client plug-in (i.e., step 3 of Fig. @) results in two operations by
the server’s locally installed plug-in, including the generation of a crypto-puzzle (i.e.,
steps 5 and 6 of Fig.). Such asymmetry in workload may be offering attackers a
new DDoS attack vector to exploit.

Pre-service verification has been also considered in [43]. The researchers propose
a DDoS mitigation system based on cloud computing named CLAD. This system
provides mitigation against high-level DDoS attacks, and assumes no modifications to
server software. After the client’s first DNS query, all its high-level requests are sent
though cloud nodes (see Fig. @) The client’s request is replied with a graphical
Turing test page which acts as a pre-service verification step to ask for authentication.
After the client passes the test, the cloud node generates a session key and sends it to
the client. The client then uses the key as part of the URL or stores it in a cookie,
to be allowed access through the cloud nodes. However, the researchers assume the
ability of the cloud nodes to read every request from the client to the server. It’s also
assumed that the nodes can generate a test web page to the client. Therefore, true
end-to-end encryption between the client and the server conflicts with the proposed
method.

Also, overlay-based methods have been proposed that utilize client accounting to
mitigate DDoS. For example, [46,47] present an shared overlay-based method named
OverCourt to mitigate low-level DDoS with anti-spoofing mechanisms and high-level
DDoS. The credit system assumes symmetry of the two-way TCP traffic and assumes
no modifications to clients, servers or standard protocols. Good clients are allowed
access to the servers through VIP channels [46] (also called normal channels [47]) with
high priority, while the rest of clients are required to compete over a limited fraction

Related Works on Overlay-based HT'TP-DDoS Mitigation 15

Protected server

a.com

Local DNS server

Figure 2.2 Basic protocol of CLAD [43].

of the server’s capacity. The protected server is hidden from the Internet and is only
accessible from Credit Routers (CR) which account for the credit points of each client,
while OverCourt Gateways (OCGs) perform path migration (see Fig. @) Utilizing
a credit-based accounting mechanism, clients are classified by the system as good or
bad, based on each client’s low-level communication patterns history. Then, clients
may still launch a low-rate HT'TP-DDoS attack. So, the researchers assume that such
attack should be fully detected locally, for example by serving graphical Turing tests to
clients. So, the integration of similar methods with a locally-based detection method
is also possible, such as the work proposed in [48] which provides a framework for
local classification of HT'TP requests given parameters from the multiple layers of the
protocol stack. However, relying alone on reactive local detection may only stop small
volumes of attacks and is likely to overload the server’s limited resources as attacks
grow, thus resulting in service denial. It’s desired to automatically mitigate as much of
possible of the attack traffic far from the server’s local resources, while local detection
should only act as a supplementary component for the fraction of attacks unmitigated
remotely. Also, excessive reliance on pre-service graphical tests may annoy the web
server’s users. In addition, the proposed credit system is based only per-IP. So, a
source IP that opens multiple connections to a server will have only one credit value
regardless of the number of users sharing it. This may give a bad credit to multiple
good users as a result of a single bad user, even after the attack stops.

As overlay-based methods provide a scalable platform for mitigation (i.e., detection
and response), response is often focused at the overlay-nodes [38-47], while detection
operations may be distributed both locally and remotely. A plethora of detection ap-
proaches against HT'TP-DDoS have been proposed in literature. Several approaches
adopted statistical and machine learning techniques to profile the traffic to detect

16 Related Works on Overlay-based HT'TP-DDoS Mitigation

O
g Hg
o

clients

attackers

JCG (OverCourt Gateway)
@} Overlay network

CR (Credit Router)

Figure 2.3 Architecture of OverCourt [46].

high-level attacks [49-54]. For example, the approach in [p3] adopt Adaptive Selec-
tive Verification (ASV) to detect slow-requesting HTTP-DDoS. The behavior of the
proposed method depends on the number of pieces of data already processed. An
acknowledgment is sent only when the total payload is received. Therefore, inspect-
ing and analyzing the received payload pieces is mandatory. Via simulation with 280
high-level attack sources, their method shows up to 80% chance of service completion
for non-attacking users during attack time [53]. Similarly, the work in [b4] proposed
using statistical analysis to build connection scores based on several traffic attributes,
including the browsing behavior (i.e., requested page type, popularity, page request
frequency, etc.). Experimental evaluation under 600 attack source IPs show a reduc-
tion in attack traffic by 50% within 3 minutes, without reducing non-attack traffic.
Although similar approaches show high performance in terms of attack reduction and
detection speed, in principle they assume high-level data inspection. So, they are bet-
ter suited locally to comply with the true end-to-end encryption requirement. Also,
with only per-IP and per-connection identification attack categories such as multi-
request per-connection can be detected, yet mitigation of the more complex cases of
single-request per-connection attack categories is doubtful.

Further, more methods considered game-theoretic techniques to detect zero-day
DDoS attacks [55-b9]. In general, such approaches model DDoS attacks as a game
between each user node (i.e., attackers and legitimate users) and the defender (i.e., the
mitigation system). The concepts of such techniques are generally based on deciding
the optimal defense parameters (e.g., detection thresholds’ values), against the attack
parameters (e.g., number of attack nodes and attack rate per node). For example,
the approach employed in [57] models a DDoS attack as a one-shot, non-cooperative,

Related Works on Overlay-based HT'TP-DDoS Mitigation 17

zero-sum game between each attacker node and the defender. Attackers strategies are
based on four parameters; the number of attack nodes, the distribution of the flow
rate of each node, the flow rate mean value, and the standard deviation for the distri-
bution used. The response mechanism is firewall parameters’” modification, assuming
constant attack conditions. Assuming only local data inspection under the server’s
authority, such methods can comply with the encryption requirement. However, such
methods identify and rate limit users per-IP or per-connection. Consequently, a com-
plex HTTP-DDoS attack, for example, with a distributed low-rate single-request per-
connection (i.e., low-bandwidth cost on individual attack sources) can evade such
detection methods.

The work in [60] propose detecting high-level DDoS attacks using an ensemble of
adaptive and hybrid neuro-fuzzy systems. No packet payload inspection is assumed,
and so if deployed remotely it still can comply with true end-to-end. Several features
are extracted from TCP connections and utilized in detection, including; the number
of connections to the same host during specified time window, the number of con-
nections having SYN errors using the same service during specified time window, and
the variance of time difference between two consecutive packets. While evaluations
show high detection rates, the source is identified only per-IP or per-connection, thus
featuring the same demerit of limited identification.

Further, entropy-based approaches can detect DDoS attack connections [61,62].
For instance, the work in [61] considers real-time handling of HTTP-DDoS mimicking
flash-crowd traffic. Constructing a Real-time Frequency Vector (RFV) in order to
characterize traffic as a set of models. Monitored traffic attributes include the average
frequency for each website URL and the observed number of HT'TP packets received.
Therefore, attacks are recognized by examining the entropy of HI'TP-DDoS and flash
crowds. However, among the attributes utilized for detection, content inspection is
assumed. In contrast, the work in [62] bases detection on analyzing packets’ sizes,
instead of contents. The distribution on the packet sizes is used to distinguish the
attack flows from normal traffic. It is based on the assumption that the attack packet
size is concentrated in an interval while the non-attack packet size would have a random
distribution. Their software simulation results show the method’s effectiveness in
distinguishing automated attack traffic from legitimate traffic in low packet rate as
well as high packet rate. Although similar methods don’t assume client-server data
inspection, their definition of a flow is limited only based per-IP and per-connection.

Aiming at enhancing client identification, several approaches proposed utilizing
packet header fields as marking fields to distinguish between different clients per-
IP [63,64]. Although such approaches can be fitted as overlay-based methods, there’s
no described method for how different client-related connections can be identified for
marking by the third-party without remotely inspecting the traffic content.

In summary, related works show a conflict between protecting web servers against

18 Related Works on Overlay-based HT'TP-DDoS Mitigation

complex HTTP(S)-DDoS attacks and preserving users trust. Locally-based mitigation
approaches benefit from the high-level knowledge of users’ browsing behavior and can
selectively identify attack-related connections. Yet, with the rise in DDoS attacks
volumes, it’s easy to exceed the limited locally-based mitigation resources. Although
original locally-based methods can be fitted for remote deployment at overlay-based
bodes, this would also imply remote traffic decryption by a third-party. Eliminating
this conflict is necessary in order to promote the trust of users and organizations in
such a crucial third-party managed service such as DDoS mitigation.

It’s desired to have a practical, scalable, and affordable overlay-based mitigation
solution capable of highly mitigating the HTTP(S)-DDoS traffic remotely, without
contradicting with the true end-to-end encryption requirement, while any remaining
unmitigated fraction of the attack traffic is detected locally.

Chapter 3

Proposed Method and Prototype
Implementation

3.1 Objectives

Overlay-based mitigation solutions against DDoS offer high scalability and low cost,
making them an attractive option for SMEs. However, such solutions suffer from
either; traffic decryption, limited identification, or both.

The reason for traffic decryption stems from the need to inspect the client’s high-
level messages by the overlay-node for effective mitigation of HTTP(S)-DDoS. Such
inspection helps mitigation service providers to detect certain attacks far from the
origin server. So, the origin server needs to provide its certificate and private key to
be managed by the third-party overlay network operator. Therefore, as discussed in
section , the data communication between the user and the origin server become
transmitted through a decryption/re-encryption middle point (i.e., the overlay-node),
with encrypted connections on both sides. On the other hand, eliminating split en-
crypted data communication would limit the attributes utilized by an overlay-node to
identify clients remotely.

The objective of the new method described in this chapter is to enable effective mit-
igation of complex HTTP(S)-DDoS attacks far from the server, while complying with
the encryption requirement, and without assuming modifications to existing protocols.
Section explains in more detail the metrics used to define effective mitigation,
i.e., mitigation factor, mitigation cost, mitigation time and collateral damage.

To practically resolve the contradiction between the goal and the requirement,
enhanced identification is introduced (illustrated in Fig. B.1)). The concept is to add a
third-level of client identification to overlay-based mitigation, allowing an overlay-node
to group related connections per client. Section explains the method’s details.

19

20 Proposed Method and Prototype Implementation

mm No detected misbehavior
Suspected misbehavior
B Detected misbehavior

Enhanced identification
(per- IP, per-session, per-conn.)

End User(s) Overlay Node Origin Server

’= | S o —c) | 1
o | : !
g ‘
g — m\ Encrypted Encrypted rﬂ S
§ communication isg

communication
| |
=@
Multi-user per IP

(multi-conn. per user)

No decryption middle point
(True end-to-end encrypted communication)

Figure 3.1 By practically enhancing the client identification at the overlay-nodes, the
objective is to eliminate the necessity for traffic decryption by the overlay-nodes for
effective mitigation of complex HTTP(S)-DDoS attacks remotely.

3.2 Proposed Method

3.2.1 System Overview

The proposed method utilizes a third level of client identification (i.e., enhanced iden-
tification), in addition to the conventional per-IP and per-connection, which we call
per-session identification (Fig. B.2). A protected web server is locally-based (managed
by its organization), completely hidden from direct low-level access, and is henceforth
called Secret Server (SS). Conventionally, for a client (C) to receive a web service, one
or more connections are established to the server through which actual data commu-
nication takes place. In the proposed method, this is called the communication stage.
Per-session identification is realized far from the SS by preceding the communication
stage with a preparation stage, which is handled by Public Servers (PS), while Ac-
cess Nodes (AN) are in charge of relaying the C-SS actual true end-to-end-encrypted
transactions. More details of both stages and per-session identification are described
in the following section.

Thousands of the special purpose ANs and PSs are assumed that are geographi-
cally distributed and managed by mitigation-service providers. So, all the SSs are sub-
scribers to the mitigation-service, sharing all ANs and PSs, making it a cost-efficient
solution especially for SMEs.

Proposed Method and Prototype Implementation 21

Per-1P: IPQW IPCm

i m
prsesson: [0 I+ K= D" (sessions.per 175)

IPg,:1Fs: Porty, /

i

Per-Connection: K&l - - - Conn,,

Figure 3.2 Enhancing conventional client identification by adding a third level of iden-
tification.

K ;
\\ L=}, ,(#Conn.per SIDi)

3.2.2 Preparation and Communication Stages

Refer to Fig. @ for an example situation where two clients try to communicate with
two different web servers. In this example, the PSs are illustrated separately, the same
AN is shared, the clients have the same IP (IP¢), and they connect simultaneously.
These conditions are just for illustration, while alternative conditions can be easily
understood from this example. At first (step 1), each client normally enquirers about
the IP address of the desired web server (X or Y). The one or more of the shared PS
IP addresses are returned. Each client first connects normally to one of the PSs and
sends its initial HTTP request. Upon receiving the client’s first request (step 2), a PS
performs its own detection measures, then connects to one of the suitable ANs (step
3) for a new access permission (AP). So, clients have no choice over which AN to use.

To enable per-session identification far from the server without content modifica-
tion or inspection by the AN, the idea is to separate clients by destination port number.
That way, the AN distinguishes between clients based on a unique locally generated
session identifier (SID). SID is described by three indicators; IP¢, SS, and a tempo-
rary port assigned by the AN (i.e., IP¢:SS:PortN). In this example, the two SIDs are
assigned different ports because IP¢ is shared (i.e., SID; = IP:SSx:PortN; and SID,
= [P¢:SSy:PortNy). Otherwise, the same port is reusable. In turn, the AN responds
to each PS access permission request (APR) with the new SID descriptor (step 4).
The AN also sends the client’s reputation (described in Sect. B.4.2) if available. The
PS’s role towards the requesting client ends in step 5 by sending a HTTP redirection
response with the new location of the service (e.g., https://ANy.SSy.com:PortNy/), at
the selected AN’s assigned port for each client. That marks the end of the preparation
stage.

A successful client must make use of the leased SID in a timely fashion. This
means, firstly, enquirering about the selected AN’s address in step 6. In this example,
each client is given the same IPy,. Then successfully establishing a connection to the
designated AN port and passing the initial detection measures at the AN (step 7).
If all steps are completed as intended, the client is now qualified to get the desired

22 Proposed Method and Prototype Implementation

4 o C: Client
,/ AN; ﬁ IP,: Client’s IP

(l' he Internet PS: Public Server

AN: Access Node

IPy: AN’s IP

j SSy: Secret Server X
SSy: Secret Server Y

PS; i ‘
Clustert—__ 4 L ps

——Belongs to C,
------ Belongs to C,

Figure 3.3 Proposed system overview [L-3].

service (step 8) and proceed with its end-to-end encrypted communication phase.

So, the extra preparation phase and the role separation of ANs and PSs have
multiple merits. First is enabling per-session identification using practical existing
protocol features. Per-session identification is crucial for identifying single-request
per-connection attacks and multi-behavior per-shared-IP, since each client’s related
connections are tied to a specific identifier. This leads to the second merit which is
eliminating the necessity for the AN to read or modify the data in transit for the sake of
HTTP(S)-DDoS mitigation (and the ability is also eliminated by having the SS strictl
locally manage its wildcard SSL certificate and private encryption key). Section @
discusses the encryption aspect further. In addition, the simple and separate role of
PSs enables handling thousands of concurrent requests per PS, accommodating mul-
tiple C-SS pairs, and simple replication. It also helps prevent all mitigation-unaware
(blind) attacks (see section) from affecting the AN (i.e., communication phase), or
the SS, effectively mitigating such attacks away from communication paths.

3.3 High-level Attack Strategies

As explained in Chapter E], DDoS attacks are either low-level (e.g., TCP SYN flood)
or high-level (e.g., HTTP-DDoS). The work in [[L,34] tackled how the overlay-based
PS/AN system can proactively stop low-level DDoS attacks from harming the target

Proposed Method and Prototype Implementation 23

server. Since the SS is only accessible on the high-level, so low-level attacks are by
default blocked from reaching the SS, assuming thousands of ANs and PSs in operation.
So, the focus in this dissertation is on mitigating the more challenging high-level DDoS
attacks. More specifically, the focus is on complex HTTP(S)-DDoS, building on the
original method.

Talking about HTTP(S)-DDoS refers to a whole sector of possible DDoS attack
categories. All of which need to be taken into consideration, in order to investigate
mitigation effectiveness. It’s also necessary to describe an attack incident based on
each source’s behavior strategy, since it’s possible to face an attack composed of mixed
strategies (also known as a “multivector-DDoS” attack).

From the perspective of client behavior, different HTTP-DDoS attack variations
are possible which may vary in practicality and commonness. Each variation is defined
by the attacker’s decision on various points, such as; connection reacquisition, the
requests’ rate, their validity, etc.

Existing taxonomies do a good job at classifying DDoS attack types, but they lack
the description details which are specific to the method proposed in this dissertation.
In our design and experiments, we need a reference where detailed long descriptions of
custom_attack conditions can be referred to in a single code name. So for simplicity,
Fig. @ organizes possible HTTP(S)-DDoS behavior strategies in a compact (non-
hierarchical) multidimensional taxonomy, from the AN’s and PS’s perspectives. This
is especially useful also as the number of evaluation experiments grow, where this
taxonomy makes it easy to track the evaluation progress.

In Fig. @, the four rightmost dimensions are commonly perceptible by both the
PS and AN (as well as other conventional overlay-based mitigation schemes). Thus
they are not unique to the proposed method, but important.

From right to left, the first one is how a client behaves after sending a request;
does he/she close the connection immediately (fast close), after a delay (delayed close),
after any response without reading it (blind wait), or after the successfully waiting for
and reading the full response (smart wait). The second point is the rate of creation
of; requests, connections, and AN sessions or PS attempts. Thirdly is the request’s
composition, whether it is a valid, invalid, or incomplete one. The fourth is the
requesting behavior per connection, whether it is a single or multiple requests per
connection, and of a fixed or alternating parameters.

In addition to the four points above, three more are enabled by the proposed
scheme. One unique dimension from the PS’s point of view, plus two more unique
points from the AN’s view. No other content-indifferent overlay-based solution in
academia, or in practice, features these additional three unique perspectives.

The AN is capable of identifying behavior further on the “per-session” and (client-
server) “per-pair”. Per-session, the source behavior has four variations; whether to

24 Proposed Method and Prototype Implementation

Attempts per

x
[
el
c

5 Pair

>

4 X Single renewed] Requests per Requests’ Behavior after

1 Single fixed Valid High Fast close

b Sessions per | Connections 2 Multi. Fixed Invalid Low Delayed close
2 3 Multi. Alt. Incomplete parts Blind wait

_E A Single fixed Single fixed 4 Smart wait

<ZT: B Multi. fixed Multi. fixed

C Single renewed Single renewed

D Multi. renewed Multi. renewed

Figure 3.4 Taxonomy of attack source’s possible HTTP(S)-DDoS strategies, from the
AN’s and PS’s perspectives, read from left to right. For example, the set of strategies
CB32** refer to single renewed session attack, with multiple fixed connections, through
which multiple invalid-looking requests of alternating parameters are sent.

open a single or multiple connections at a time, and whether to fix or renew them
throughout the attack. Per-pair, the source behavior also has four variations; whether
to open a single or multiple sessions at a time, and whether to fix or renew them
throughout the attack.

On the other hand, the PS can identify behavior per pair (i.e., has no per-session
perception). However, the extra insight featured by the PS arises from the fact that a
“client” is expected to send only a single request to the PS before switching to the AN
for actual communication. So each request at the PS is counted as a separate “client”.
This is augmented by the PS’s knowledge about which clients actually followed the
redirection to the specified AN successfully, and of those which ones behaved well later
on, achieved by AN feedback.

Note that the order of the taxonomy’s dimensions, and the underlying behaviors, is
interchangeable with no effect on the proposed method. Also this taxonomy is readily
expandable by considering additional points, such as the type of resource targeted by
attack, tool used, etc. However, the interest here is spreading out different thinkable
behavior vectors in order to take as a reference in design, development and evaluation
phases. For better understanding, below is a demonstration of an example on how to
read Fig. .

For example, consider an attacker with the strategy CB322*. The source opens
a single session to one AN, that’s not fixed (i.e., renewed if terminated by either
side, or after a certain time). Over this session, multiple fixed connections (i.e., the
opened connections stay on until closed by the destination, and are never renewed)
are opened. Through each connection, multiple requests are sent with invalid-looking
requests of alternating parameters. The rates of requests, connections, and sessions

Proposed Method and Prototype Implementation 25

are set below the AN’s detection thresholds (i.e., low rate), for example to evade
detection. The asterisk indicates an unspecified behavior. In this case, the behavior
after a sent request is not specified, i.e. could be either; fast connection termination,
delayed termination, waiting for a response and discarding it, or waiting and following
its parameters.

For each strategy, there are multiple possibilities of parameters’ settings. In this
dissertation, the terms scenario, or tactic, are used interchangeably in reference to a
strategy with specific settings.

3.4 Mitigation

Mitigation of a DDoS attack can be in the form of either the; prevention, or reduction
of the attack’s impact on a targeted service. But how to measure the performance
of the mitigation system? Will figures of achieved traffic filtration alone suffice to
indicate the mitigation effectiveness? Four metrics are considered within the proposed
method, for both the PS and AN components.

The first metric used is the mitigation factor (MF) which describes the amount
of reduction in attack traffic and the chance of receiving the service. But MF alone
with no respect to speed or cost would not be enough. So, additional metrics are
utilized for describing the mitigation effectiveness. Mitigation time (MT) is defined
as the duration of the mitigation phase, measured from the actual starting time of an
attack. As for mitigation cost (MC), it is defined as the increase in service time for a
specified file, resulting from the mitigation operations or mitigation measures. Finally,
collateral damage (CD) is the inverse effect on the chance of receiving a service for
a non-attacking client sharing the same source IP address with an attacking client.
More detailed explanation of the considered metrics can be found in Section .

Based on these metrics, Fig. @ (Top) defines three mitigation categories; de-
fault prevention (DP), detection-response prevention (DRP), and detection-response
reduction (DRR). DP is where full mitigation is achieved (i.e., MF = 1) with zero mit-
igation time and cost. It’s the kind of an obviously undesired behavior. An example
for that would be the strategy *****1 (a client not waiting for a response), where DP
is expected from a well-scaled secure service provider. On the other hand, DRP has
a non-zero mitigation time, and cost for achieving full mitigation. The reducible type
(DRR), which is the most difficult to detect, also features a non-zero mitigation time
and cost, in addition to a sub-optimum mitigation factor (i.e., MF < 1).

It’s desired to maximize the DP and DRP categories, in addition to enabling
an acceptable service especially in case of DRR conditions, while maintaining the
objectives discussed earlier in section B.1. For each strategy, it’s desired to not only
achieve a high mitigation factor, but also have the mitigation time and cost at their

26 Proposed Method and Prototype Implementation

B
- = Factor | Time | Cost

1 0 0

Detection-response prevention (DRP) 1 >0 >0

Detection-response reduction (DRR) <1 >0 >0

Blind Strategies Smart Strategies
KKk ** BX*¥*¥q C***24
*HAAED YRR D***24
C***14
*kkkk3 D***14

Figure 3.5 Top: Definition of three mitigation categories, with respect to; mitigation
factor, time, and cost. Bottom: Expected mitigation category for different HTTP(S)-
DDoS attack categories.

lowest.

In Fig. @ (Bottom), the behavioral strategies discussed in section @ are sub-
categorized according to behavioral intelligence, into either; smart or blind, where
different attack strategies are expected to be DP, DRP, or DRR. The term “smart”
strategies is used to describe the ones where the attacker is aware of the defense (i.e.,
strategies ending in *****4). Any other strategy is referred to as a “blind”.

Some smart attack strategies are expected to be preventable after detection (i.e.,
DRP), while others are only reducible (i.e., DRR). For example, attacks A****4 are
expected to be preventable over time because the source utilizes a fixed session for
attack, while attacks C***24 may not be completely mitigated because of their session
renewal and low rate. Yet they are still reducible over time. Such expectations are
put to test through experiments on the implemented proof of concept prototype of the
proposed scheme.

3.4.1 Detection Concept

The main detection components are distributed over the PS and AN, where each can
monitor different behavior attributes.

At the AN, each client has three identifiers mapped by the AN to behavior at-
tributes, and one broad top identifier utilized for system-wide attributes of a source

Proposed Method and Prototype Implementation 27

address. All recorded parameters are time stamped. Every PS and AN component
has a reference clock (wyes) which is incremented every time step (of duration « [sec]).
So the value of the current time step (w;) for an identifier is updated when necessary
with the latest w,.; value every time this identifier’s parameters are accessed. Certain
attributes are per time steps (per « [sec]). This is necessary to monitor behavior of
low-rate attacks, where attack traffic per source is too small to be measured per 1
second. Also, updating the reputation system per «, instead of per 1 second, helps
reduce the AN’s load. The system also keeps a time record of behavior attributes
values during the past S time steps, which enables observing sub-detection-thresholds
attacks. Next, we explain the identifiers and attributes with the aid of figures B.4, B.7,
and

Ke Values

Values

L@ /a record FC/a record
2 (m past values) | (m past values)

Ke Values

PS local attributes

AN local attributes

Figure 3.6 Detection attributes stored locally in hash maps by each AN and PS. ANs
handle four levels of attributes’ values, while PSs handle only two.

ID Attributes __________ Descripton |
o Category Reserved for tagging proxied or special-listed sources
Rg Global (system-wide) reputation of the source IP
Si Current number of open sessions under this PID
Warnss Number of warnings received from the SS for underlying SIDs
R. Local reputation calculated and stored by the AN for this PID
2 S/a Number of sessions created during the current time step a
S/P Overall number of sessions created under this PID
FS/a Number of failed sessions during a
FS/P Overall number of failed sessions under this PID
G Current number of open connections under this SID
Ts Session starting time
P; Current penalty level for this SID
% C/a Number of connections attempted/created during o
c/S Overall number of connections attempted/created for this SID
FC/a Number of failed connections during a
FC/S Overall number of failed connections under this SID
M/a Number of client’s messages over this connection during a
o M/C Overall number of messages sent over this connection
= Tc Connection starting time

Probes Number of AN probes sent over this connection

Figure 3.7 Description of stored attributes by the AN.

28 Proposed Method and Prototype Implementation

ID Attributes Description

Category Reserved for tagging proxied or special-listed sources

a Rg Global (system-wide) reputation of the source IP
s PID/O Overall number of pairs under this OID
IA/a Number of incomplete attempts per current time step a
IA/O Overall number of incomplete attempts per OID
Ala Number of attempts during a
A/P Overall number attempts for this PID
FA/a Number of failed attempts during a
a FA/P Overall number of failed attempts under this OID
& Ai Current number of simultaneous attempts for this PID
R. Local reputation calculated and stored by the PS for this PID
P; Current penalty level for this PID

Warnay Number of warnings from AN

Figure 3.8 Description of stored attributes by the PS.

The broadest identifier is the origin identifier (OID) which is the source IP address.
An OID category attribute is used in case of a pre-identified source for exclusion
from detection, or for differentiating in detection mode between proxied and direct
sources, while Rg is shared locally between different distributed ANs and PSs, and
is used for marking suspicious sources for heightened detection (i.e., OIDs with bad
R are assigned high penalty faster upon misbehavior). In the current prototype
implementation, both of the OID attributes are not utilized.

Each OID is subdivided into several client-server pair identifiers (PID). The value
of S; is used in the cleanup of inactive PIDs (if S; = 0 for 8 consecutive time steps). S;
also helps monitor PIDs that over consume the AN’s local ports. Section discusses
port depletion. Whereas Warngg is incremented once a warning is triggered by the
SS’s supplementary detection component. A PID’s value of Ry, is locally computed by
the AN as a function of Rg, Warngs, and each pair-level misbehavior (see Sect. B.4.9).
It acts as a multiplier for the AN’s sensitivity to misbehavior (i.e., for heightened
detection). A failed session (FS) is one that observes a misbehavior for m consecutive
time steps (i.e., m X « [sec|, where m < [3), or that triggers a high-level warning from
the SS. The AN keeps a history of past S/« values to monitor a PID’s pattern of SID
creation, and same for F'S/a. Whereas values of S/P and F'S/P allow the AN to
instantly monitor the overall percentage of failed sessions for a specific PID.

PIDs are further subdivided by PortN into different session identifiers (SID). The
SID’s attributes enable a unique third identification level (i.e., per-session identifica~
tion) far from the server while complying with true-end-to-end client-server encryption.
For example, per-session behavior of a client that slowly creates a single connection,
and disconnects after sending a single request, then repeats, would have a small C;, but
a relatively high C'/a records for a single client and possibly with pattern (depending
on its rate), and increasing C'/S. In contrast with the limited two-level identification,
where only the number of connections per IP would be observed, which may be high or
low, depending on the unknown number of clients. P; is a local parameter computed

Proposed Method and Prototype Implementation 29

by the AN as a function of Ry, and session-level misbehavior (Section) The value
of Ty is used for local entry cleanup, and to detect a suspicious SID as explained in
Sect. .

Finally, a connection identifier (CID) is basically the SID subdivided by source
port. For each individual connection, a CID is mapped to M /a and M /C, count-
ing all messages transferred from the client to SS, during the current step of o and
throughout the connection, respectively. Analyzing the values of M /a records and
M /C, in context with the SID’s attributes, can enable the detection of complex at-
tacks. For example, if an SID knowingly keeps the values of C; and C'/a within
normal, further analyzing its underlying CIDs to observe patterns in the M/« records
and M /C can indicate the likelihood of suspicious behavior. It’s important to note
that a misbehavior on a single CID affects the SID’s all other related connections,
and its future connections too. For each CID, the starting time and the number of
verification probes sent are also stored for control.

As for the PS, only two identifiers are considered. Consequently, attributes stored
by the PS are much fewer than the AN. Per OID, in addition to the category and R,
the number of pairs per OID (PID/0O), incomplete attempts per time step (IA/a), and
the overall number of incomplete attempts per OID (IA/O), are stored. An attempt
that can’t indicate the targeted SS is considered incomplete. For example, in case of a
malformed or incomplete request. Per PID, the PS records parameters similar to the
AN’s PID map but in terms of attempts instead of sessions (i.e., A/a, A/P, FA/a,
FA/P, and A;). Note that here the penalty is enforced per PID, unlike the AN. The
flag Warnay is raised by the PS in case of a warning message received form the AN.

Additional feedback from the SS is also necessary in certain attacks. For example
a very low rate invalid request attack is very similar to normal behavior on the low
level and therefore require a high-level feedback from the SS directly, or indirectly, to
the AN. Only the current prototype implementation components at the PS and AN
are presented in this chapter, while SS feedback and other requirements that should
be considered in a real implementation are discussed in chapter p.

3.4.2 Reputation and Penalty

Different identifiers (PIDs, SIDs, etc.) can have different penalties or reputations, de-
pending on the perceived behavior. A penalty is a numerical value that corresponds to
a degree of countermeasures enforced by the PS and AN components. The reputation
is also a numerical value, but which acts as a multiplier for the penalty. For example,
if two clients misbehave, the one with the worse reputation reaches to the maximum
penalty faster.

The AN and PS systems update the penalty and/or reputation only in the case of a

30 Proposed Method and Prototype Implementation

Index| AN Exception ‘ Record | Incident Description Index PS Exception | Record ‘ Incident Description
. A High rate of new session creation PS High rate of new preparation attempts
E Session rate 15 E Attempt rate E,
11 P |attempts (S/P, S/a) 11 P P |(Alo, A/P)
. . High rate of sessions termination by AN " P High rate of unsuccessful attempts (FA/a,
E, E, ’
E,, Failed session rate P (FS/P, FS/a) E,, Failed attempt rate P FA/P)
" PS High rate of new connection . PS User sends more than one valid request
E,; Connection rate Eg X , Multiple request Ep .
establishment attempts (C/S, C/a) to PS per single attempt
= | Bl e B :Eg?sra;g/og connection terminations E, AN warning Ep |Warning received from AN
- , FC/a =
" High rate of new high level messages = Attempt timing Ep User requests but fails the probing test
il i s User connects but sends nothing or an
— (M/C, M/a) Es Failed request Eo invalid t B
High level warning Es Warning message from SS invalidireques

Size exception E‘s Unexpected request size

B Client didn’t request, or didn’t wait for
5 response
L A Client didn’t show up at AN (i.e., after
Session timing Ep X
preparation phase)

Connection timing

Figure 3.9 Considered AN and PS exceptions.

behavior violation incident (henceforth called exception). The thresholds, separating
between what’s an exception and what’s not, are mapped per PID, so their values are
tunable for each server-client pair separately.

Figure @ summarizes the exceptions considered in the current proof of concept
prototype implementation for both the AN and PS. The AN system defines two levels
of such exceptions; pair level (reglstered in the record vector Ep) and session level
(registered in the record vector ES) Ep data is stored per PID to gather information
on the underlying sessions’ exceptions. ES data, however, is stored per SID and
gathers information on the underlying connections’ exceptions. On the other hand,
the concept of a session is not defined by the PS system. Instead, in addition to
the pair level exception, it defines another level of exception, namely the origin level
exception (registered in the record vector Ep).

From the AN’s perspective, currently only 9 exceptions are considered; five rate-
related ones (F1 1 ~ E15), plus four more that relate to high-level warnings, size, and
timing related exceptions (Fy ~ Es). A session rate exception (Ej 1) is registered in
the AN’s Ep if the rate of new sessions creation exceeds the set threshold. Similarly,
if the rate of failed sessions exceed the threshold, then a failed session rate exception
(E12) is registered also in Ep The third, and last, exception that registers in Ep is
the session timing exception (Es5) where the client shows up at the PS but never makes
it to the actual communication phase (i.e., doesn’t show up at the AN).

In case of a higher-than-threshold rate of client connection establishment (or at-
tempts) per time step, and overall, then the connection rate exception (F 3) is regis-
tered in the AN’s Es. Likewise, a failed connection (£} 4) or a message rate exception
are registered in Es, according to their respective thresholds. In addition, every time a
warning signal is received by the AN from the SS, then a high-level warning exception
(Es) is registered. In addition, size exception (FEj3) is reserved for the case of an un-
expected size first message, but not currently implemented. Furthermore, if the client

Proposed Method and Prototype Implementation 31

connects to the AN but sends nothing, or fails the probing test, then a connection
timing exception (FEy) is registered in Eyg in this case. In the current proof of concept
prototype, only F, 3, E14, E4 and Es5 are utilized.

From the PS’s perspective, 6 exceptions in total are considered; two of which
are rate-related, while the rest relate to client timing, AN feedback, and preparation
correctness. An attempts rate exception (FEj ;) is registered to the PS’s E p in the case
of a PID committing to the preparation phase with a rate higher than the threshold.
Also, if the rate of unsuccessful attempts is high, then a failed attempts rate exception
(Ey5) is registered in Ep. This is the PS, and by design a connection from any
client is not expected to deliver more than one request. If more than one request is
sent by the client, then the PS system registers a multiple-requests exception (FE5) in
Ep. In addition, even if the client requests only once as normal and has no warnings
feedback from the AN, it still has to pass the probing test by the PS. If the client
fails the test, then an attempt timing exception (Ej) is registered in Ep. Finally, if
a client connects but sends nothing, or sends and invalid message to the PS, then a
failed-request exception (FEj5) is registered in the PS’s Eo.

Record vectors ES, Ep, and Eo, each is of length 3 bits storing exceptions’ data
occurring in the past 3 time steps. Figure B.1(illustrates with example how record

Eis—>| 1|01 0
Eis—>| 0 | 0|0 1 e DS 0
Fis—>[110 [1 ceee L Ellz_;, 1 1 0| 0 |++] 1
E,—=| 0| 0|0 0 Esl oo 0
B5—>[110]0 - Wi Wiy Wiy eeee Wiy
E,—| 0 /1|0 0

W Wiy Wiy oo Wigy

AN'’s Eg exceptions record AN’s Ep exceptions record
Eii—| 0| 0|0 |0 |1
Ei,b—21 (02|00
E;,—s|0|0|0|0]|O0 Es—| 0| 0| 0| 0|1
Es 1| 0[(0|0 |1 W Wiy Wi, Wiy Wiy
Es, —|0]21(0|0]|0

W Wiy Wi, Wiy Wiy

PS’s E» exceptions record (e.g., B=5) PS’s k., exceptions record (e.g., B=5)

Figure 3.10 Each record vector registers the underlying exceptions during the latest 3
time steps.

32 Proposed Method and Prototype Implementation

vectors are updated by the AN and PS systems. Records are not updated every
time an exception incident is triggered. Instead, record update takes place only once
per time step. So, if more than one exception take place during the same time step
w;, then only a single registration in the related vector is performed. A value of ‘0’
indicates an exceptions-free time step while ‘1" indicates otherwise. Only Eo is single-
dimensional, so obtaining its value is straightforward. For example, an all ‘1’s Eo
(i.e., Eo = maz) indicates the detection of at least one origin-level exception in all
of the recorded past time steps. As for the other two (Ep and E’O), they are multi-
dimensional, requiring some pre-processing before being able to utilize their values.
Considering each dimension separately is ideal for detection. However, for now, the
implementation is simplified by combining all dimensions into one by passing them
through a bitwise logic OR function.

These records are fed into the penalty and reputation update functions, which
in turn determine the level of response by the AN and PS systems. The number
of exceptions are not used directly to update the penalty value. Instead, only the
exception record vectors E’S, Ep, and Eo are utilized, in addition to the reputations’
values. Figure B.11] explains the general relation between the recorded exceptions and
the penalty and reputation for both the AN and PS systems. So for the AN, the local
reputation is a function of Ep and Re, and is enforced on the PID level (i.e., each PID
has its own value, which affects all the underlying SIDs). As for the AN’s penalty, it’s
a function of Eg and Ry, and is enforced on the SID level. On the other hand, the
PS system evaluates its local reputation as a function of the received reputation from
the AN (R’1), Rg, and Eo. While the PS’s penalty is a function of Ep and Ry. Note
that, unlike the AN, the PS enforces the penalty on the PID level.

To recap, each of the PS and AN has its own locally enforced penalty that is
computed as a function of the reputations, local and global, in addition to the recorded
behavior exceptions. In a future iteration of the developed prototype, the value of Rg
is processed centrally and shared by the mitigation service provider, and is a function
of the aggregated information gathered form different, distributed, ANs and PSs. As
for the current implementation, Rg is not enforced (i.e., its value is fixed to 1).

To understand the different states of reputation and penalty, their update and
transitions, see figures and E

Figure ’s LHS explains the possible state transitions of the AN’s local reputa-
tion as a function of Ep only (i.e., Ry(Ep)), since Rg = 1. In the current implemen-
tation, Ry,(Ep) has three possible levels; normal (Ly), suspicious (L), and bad (Ls).
At the start of any PID, Ep = 0 and R1(0)=L, as long as no pair-level exceptions
take place. In the case of an exception Ey1, £y o or Ej is triggered, separately or com-
bined, the exception is registered in Ep (i.e., Ep # 0), and the new state of Ry (Ep)
is suspicious (Ls). As long as 0 < Ep < max, the middle state remains unchanged. If
E’p = max then RL(EP) enters the bad state. Even in the case of a bad reputation, a

Proposed Method and Prototype Implementation

33

AN PS
—_— p— Exceptions 4 /A\\\
O g (’/R N L~ Re /)
—) /
o9 N (Eo) Per OID
/ Per OID /\
PerOID
Exceptions From AN /
B\ﬂ& (R’ L ’,
"/ S \ / ,./—n

Per PID
Exceptlons

PID
Level
p

(RL \
AN / Per PID

\xh

ya erPID

\\ Ru=fn.(R'y, Re, Eo)
PerPID

= fn.(Ep, Re)

\ / PerPID

T pP=fn.(E, R)
() Exceptlons
n
b E \ ES
QS \ /
E o “persiD

Att t

o - empts
o
< \w “Per siD

P =fn.(Es, R)

Figure 3.11 Reputations and penalties hierarchy. In current prototype implementation,
Rqg = 1.

PID is still granted service. So basically Ep controls the reputation’s state transition
up and down. Finally the value of R, = maz{Rqg,RL(Ep)}, in case Rg is enforced.

In the current prototype, the discussed three levels of Ry, are represented numer-
ically as below. Next, we explain how these values are used to affect the penalty
update.

1, if Ep=0
RL(Ep)=1¢ 2 , if OA< Ep < max (3.1)
3 , iof Ep=max

The AN’s penalty P(ES, Rp) is enforced per SID and is a function of Eg and Ry.
Figure B.12" RHS explains the penalty P’s possible state transitions. By design, P; has
two states; normal initially (P; = Py,), and differential (P, < P; < Ppaz). Normal
state remains if Fg is all zeros (i.e., no session-level exceptions reported for at least
B X « [sec]). In any case of a session exception of the types Fy 3, E14, Ei5, E3 or Ey,
then Fg is updated and the service enters into the differential state. During this state
the value of P; ranges from [P, + 1, Pras) and the level of response (Section)
is directly proportional to the value of P;. Note that an SID can enter the differential

34 Proposed Method and Prototype Implementation

EP>0

Es>0

Es=

Differential
(P= fn(ES,RL))

f

0 < £s < max

0 < Ep < max

Figure 3.12 AN exceptions handling in the current prototype, given Rg = 1. LHS:
Local PID reputation (Ry(Ep)) states. RHS: SID penalty (P(Eg,Ry)) states.

state with P, = P,,.. without being a failed session yet, since a bad Ry, leads to
P; = P,... even without a persistent record of exceptions or a high-level warning from
the SS (which are the conditions for a FS). In case of a FS; a SID is hard limited and
its PID’s Ry, is set to bad.

To utilize Ry, as an exponential multiplier for sensitivity to misbehavior, in the
prototype implementation we use the formula for P(Es,Ry) = v + R}, where 7 is
the decimal value of Eg. So, v = Z (ESJ x 27). For simplicity, only Eg’s 3 most

significant bits were utilized. In a real implementation, however, Eg should be utilized
fully. This gives a P; ranging from [1, 8] for Ry, = 1. For a unified range, P, is also
set to 8 for Ry, > 1. A lookup table is utilized to replace repetitive computation of P;,
which is fitted with the resulting values and indexed by v and Ry.

Figure J (LHS) explains the possible state transitions of the PS’s local reputa-
tion as a function of Ep and Ry, (i.e RL(EP, R’1)), given Rg = 1. In the current
implementation, Ry(Ep, R'1) has two levels; normal (L) and suspicious (Lg). At
the start of any PID, Fp = 0 and Ry(0,1)=L; (assuming R’;, = 1), as long as no
origin-level exceptions take place. In the case of an exception Fj is triggered, it is
registered in Eo (i.e., Eo # 0), and the new state of Ry (Ep, R’y) is suspicious (Ly).
Same transition takes place in case of an R’y > 1. If Ep # 0 or R’ # 1, then the
suspicious state remains unchanged. Service is still granted to PIDs with suspicious
reputation. So basically Eo and Ry, control the reputation’s state transition up and
down. Finally the value of Ry, = maz{Rq, R.(Ep,R’L)}, in case R is enforced.

The PS’s penalty P(Ep, Ry) is enforced also per PID and is a function of Ep and
R;. Figure @’s RHS explains the PS’s possible penalty state transitions, where it has
only two states; normal (P(0,1) = P,,;,) and differential (P, < P(Ep, Rr) < Praz)-
Normal state is where the Fp record vector is all zeros (i.e., no pair-level exceptions

Proposed Method and Prototype Implementation 35

Er>0

Differential
(P= fn(EP,RL))

E;i€{1.1,1.22,3,4}

Figure 3.13 PS exceptions handling, given Rg = 1. LHS: Local PID reputation
(RL(Eo,R’L)) states. RHS: PID penalty (P(Ep,Ry)) states.

have been detected in any of the recorded past time steps), and where Ry, = 1. In
any case of a pair exception of the type Ei1, Ei2, Fo, E3 or Ey4, then Ep is updated
(i.e., Ep # 0) and the service enters into the differential state. During this state the
penalty’s value ranges from [P, + 1, Ppas] and determines the PS’s response level
(section)

3.4.3 Attack Countermeasures

Attack Countermeasures (CM) can be either; proactive (i.e.; DP) or reactive (i.e.;
DRP or DRR). In either case, the prevention or reduction is part of the AN and PS,
far from the SS.

In the proposed scheme, both the AN and PS, by default, are equipped with a
new overlay-based pre-service verification method that requires no traffic decryption,
uses standard unmodified protocols, and requires no special downloads by the client
or installations at the server. It acts as a first degree countermeasure, by probing
each client connection with early single-byte slow response packets before proceeding
with actual service. At least 1 probe is sent, to proactively prevent part of the blind
attacks that don’t wait for the SS’s reply as a normal client would do. Conforming with
existing standards, we utilize the constant bytes at the beginning of every HTTP (i.e.,
‘H, ‘T, “T?, ‘P’, and ‘/") or HTTPS (i.e., 2219 and 3y¢) first response. This way, the
probing actions are transparent to both the clients and servers. Since the system aims
at HTTPS more, so we set the maximum number of probes to 2 for both protocols.
For example, if two HTTP probes are sent in response to the client’s first message, the
first single-byte probe would contain ‘H’ and the second probe is ‘T". As illustrated in
Fig. B.14, if the client acknowledges the PS’s probes without disconnecting or sending
a second message, the PS connects to the AN as normal. Otherwise, the AN is not
affected. On the other hand, the AN sends the probes and if the client acknowledges

36 Proposed Method and Prototype Implementation

ﬁH

Reguest 1
Multiple requests Probe
per attempt Request 2 %
Request
Probe]
Delayed close b Probe 2
at PS
Request
Delayed close *® Probe 1
at AN
Message 1
Multiple requests Message 2
per connection Probes
2 A OOJ‘eO(i'.-e : OK?
Response / Warning

Figure 3.14 Pre-service slow-response probing.

them without disconnecting then the AN transfers the client’s message(s) to the SS,
then omits the initial two bytes from the server’s response when it arrives since they are
already delivered to the client during probing. At the AN, the client may send multiple
messages, which are aggregated by the AN and transferred to the SS in bulk. This
would help simplify supplementary local detection if the series of high-level messages
can be analyzed locally at once before committing actual resources, instead of one by
one.

For any CID, the level of its SID’s P; determine the number and timing of sent
probes. In the current proof of concept prototype, a lookup table is used for_the
duration before (1), between (f3) and after the probes (3) is shown in Figure B.15.
This type of response helps prevent part of the blind attacks (i.e.; *****1) and enables
effective mitigation of part of the blind strategies (i.e.; *****2 and *****3) that don’t
wait long enough for the probing phase to finish. This is true because any blind attack
tool can’t get beyond the preparation phase, even if it waits for a response. So the
SS’s resources are conserved.

Additionally, second degree countermeasures are in place at the AN and PS to
counter the remaining strategies that evade the first degree countermeasure.

As for the AN’s second degree countermeasure, the AN analyzes the current and
past values of C/a and FC/a. If the analyzed values show a suspicious pattern, the
related SID is placed in “jail” for a single time step while observing its latest C/« and
FC/a. During jail time, all the jailed SID’s new connection attempts are accepted,
then immediately closed by the AN while registered as one attempt. In addition, Ry, is

Proposed Method and Prototype Implementation 37

| Penalty |No.of probes _t,[ms] ___t,[ms] | t,[ms] _
1 0 500 -

1

2 1 500 500 =

3 1 500 1000 =

4 2 500 1000 500
5 2 500 1000 1000
6 2 1000 1500 1500
7 2 2000 3000 2000
8 2 3000 5000 3000

Figure 3.15 Function of P;; the lookup table manually set for the duration before,
between and after the slow-response probes.

exceptionally changed to bad for related PID with a reset timer of 5 X a [sec]. Studying
the behavior of popular attack tools commonly used by attackers (i.e., Slowloris and
LOIC) suggest the effectiveness of this method as automated tools are trapped in jail by
re-attempting at a nearly constant rate. For example, as shown in Fig. , although
S1D, is behaving below the set detection threshold (from the perspective of C/a), its
past record of C/a attribute would suggest an abnormal behavior. Note that C/« is a
unique attribute for the proposed method, since it’s difficult to remotely identify which
new connection attempts are related using the conventional two-level identification,
especially without traffic decryption. So, a simple analysis algorithm is employed in
the current prototype. An SID is sent to jail if w?T/is ~ C/ay, Z;nzl % ~ C/ay,
or >0, Fc/m$ ~ FC/q;, where «; is the current time step and m is the length of
considered past behavior record where m < 3. In the latest prototype implementation,
assuming that a normal client is not likely to generate the same number of connection
attempts per time step for 4 consecutive times, m is set to 4 to demonstrate the

concept.

The PS is also equipped with its own second degree countermeasure against slow-
requesting HTTP-DDoS, which is the worst case scenario for the PS. The reason is
that in case of an attack on the PS, other attack categories are less effective. For
example, a single-request per-connection attack release the PS’s resources faster as
it repeats the connection step 2, while a multiple-request per-connection attack are
detectable promptly by the PS (since only 1 request per connection is expected). So, in
the worst case the attacker knows this is the likely most effective HTTP-DDoS attack
category against the PS. A slow-requesting HTTP-DDoS attack source typically opens
several seemingly-legitimate connections to the target server and then starts sending
never-completing partial HT'TP request headers, part by part. This kind of behavior is
designed to tie down the server that’s waiting for the rest of the slowly-arriving request.
The attack source typically reestablishes the connections over which the server times
out their requests.

38 Proposed Method and Prototype Implementation

Three-level identification %/«

=

Two-level identification ¢/

Ll

/o

o B | O (SRl SR . A —

I[—I I I I I 7

a [sec]

Figure 3.16 Example of behavior record analysis countermeasure.

From the PS’s perspective, the request must be collected as a whole before con-
tacting the AN. Therefore an invalid request counts as a failed or incomplete attempt,
further contributing to the client’s penalty. So, a slow-requesting HTTP-DDoS attack
towards the PS is not expected to affect the AN. But, it’s also desired that each PS
can handle large attacks, in terms of request rate and simultaneous number of sources,
and still offer acceptable service.

In the current proof of concept prototype, a simplified countermeasure against slow-
requesting HTTP-DDoS targeting the PS and the system is included. Assume a client
that connects at a time reference t = T, as in Fig. . Then the PS sets two timers.
The first, T} (nas), 18 the maximum allowed duration between the client’s connection
establishment and the arrival of the first request part. So, if the first part arrives at
t =T, then the condition T} < T + T} (mar) must be satisfied. Otherwise this client’s
attempt is refused and the client’s penalty is updated accordingly. Finally, if the full
message (i.e., the whole first request) arrives at t = T,, (for n request parts), i.e., takes
T, — Ti seconds to be fully aggregated, consequently the condition 75, < T + Ty (max)
must also be met, where T}, (;44) is the maximum duration allowed for a slow request
to arrive fully after its first part. Note that if the request arrives as a single part (n =
1), then T,, = T7.

The case with the AN is different, where probing starts after Ti(mq.) regardless of
the request’s content, since no packet payload inspection at the AN is assumed. So,
the AN’s T, (;qz) should be increased for SIDs with Warngg flags, and their reputations
and penalties updated by traffic attributes gathered during this duration.

It’s also possible to equip the system with additional degrees of countermeasures.
For example, by utilizing records of S/« and FS/«. In addition, a supplementary local
detection component at the SS premise would also be required as discussed in section

for complete mitigation. The load on this detection is inversely proportional with
the mitigation factor offered by the overlay nodes. The aim of this overlay-based

Proposed Method and Prototype Implementation

39
Connection First message Probing
starts received starts
l T, l T, l Yy t, t3
I Firstmessage &' Full message = Probing phase Contact

reception time + aggregation time *+ AN/SS

Figure 3.17 Pre-probing message reception and aggregation.

method is to enable high mitigation factors by the AN and PS, thus reducing by the
same factor the load on supplementary detection.

Several experiments are conducted to investigate the mitigation effectiveness en-
abled by the added enhanced identification and attack countermeasures under complex
HTTP(S)-DDoS attack strategies. Seven of which are discussed in the next chapter.

Chapter 4

Evaluation

4.1 Evaluation Method

To demonstrate the soundness of the proposed concept, and to show the potential from
investing in it, an evaluation method is required that describes performance under
complex attack conditions. Yet, conducting live experiments with DDoS traffic is
too destructive and difficult to take place openly on the Internet. Therefore, the usual
evaluation methods in related research on DDoS mitigation are either of three options,
namely; theoretically, by software simulation, or by emulation (within a controlled
environment).

Theoretically proving the efficiency of a proposed mitigation scheme can’t describe
how DDoS traffic affects hardware and network protocols. For that, experimentation
is required with generated attack traffic. Although simulation tools can mimic exper-
imental setups, yet software simulators can’t produce realistic results either when it
comes to DDoS evaluation. Consider for example the popular ns-2 simulator [65]. In
it, Internet forwarding devices (i.e., switches and routers) are modeled only at a high
level. The ranges of parameters in commercial forwarding devices are not incorpo-
rated [66]. Another popular simulator such as OPNET [67] is more detailed than ns-2.
OPNET have detailed models of routers, switches, protocols, etc., based on vendor
specifications. However, even these detailed models’ parameters such as buffer sizes
and forwarding rates are hard to tune to mimic real router behavior [6§].

On the other hand, using real routers such as PC, Click, Cisco, etc., provide realistic
forwarding behavior. So, testing a DDoS defense under emulated attack conditions
on a scaled-down network environment presents a more realistic evaluation option.
This requires the development of a prototype of the proposed concept to be deployed
on actual network nodes. Therefore, the choice from the start of this research is to
proceed with the development and emulation option.

41

42 Evaluation

4.1.1 Performance Metrics

Performance metrics provide a quantitative description of the mitigation effectiveness.
Evaluation based only on the amount of attack bandwidth reduction as a metric is
more suitable for low-level volumetric attacks. It can’t describe the impact of a high-
level attack on the server, or the speed of the mitigation system. The reason is that
high-level DDoS attacks with low bandwidth, even after being reduced by a mitigation
service, can still result in significant impact on the service.

Therefore, this research adopts a comprehensive set of metrics for evaluation. We
describe the four metrics considered in this research to measure the effectiveness of
mitigation, namely; mitigation time (MT) mitigation cost (MC), mitigation factor
(MF), and collateral damage (CD).

MT, which is the time to mitigate the attack, i.e., mitigation phase, is defined as
the interval within [taer.,0nes tpmae) (1€ MT = t, — tut,...), Where t is when
attack SIDs reach max penalty, and t,4,,,,, is the attack’s actual starting time. The
smaller the value of MT the better. However, even a desirably small duration of M'T
doesn’t describe the attack’s impact on the service during and after that duration.

Pmaz

Therefore, we define MC as the increase in service time (ST), for a specified resource
file, from its pre-attack value. For each request we define ST as t,cqp,,;; —tregen:, Where
trespray 18 the time the response is fully received by client and t,.,,.,, is the time the

corresponding request was sent. So, MC; = ST, — ST, where ST is the measured
value in average before attack and S7; is the average service time for all measurement
requests within time step 7. Ideally, MT and MC are at their lowest possible values.

In addition, the mitigation factor (MF;) is defined as the product of the attack
traffic reduction factor (RF;) multiplied by the chance of service completion (CoS;)
under attack for each time step 4, so that:

MF; = RF; x CoS, (4.1)

RF; is the amount of reduction in high-level attack traffic achieved by the enforced
countermeasures within a specific time window, and it’s calculated as follows:

Att,
Att o,

RF; =1 (4.2)

CoS; comprehensively measures the chance of getting a complete service through
the PS and AN. The service is complete if a sent request fully returns the desired

Evaluation 43

resource from the SS. It’s defined as:

(4.3)

Where; Att,,, is the average achievable high-level attack traffic volume (i.e., re-
quests per second) on the C-AN side before mitigation. While, for each time step 4,
@ is the high-level attack traffic volume on the AN-SS side, Regq; is the number of
non-attack requests sent, and Resp, is the corresponding number of service responses
completed.

In case of the PS-targeting attack, there is no attack traffic at the AN-SS side (i.e.,
Att; = 0). So, M F; for the PS simply becomes;

MF; =1 x CoS; (4.4)

Finally, for each time step i, the collateral damage (CD) metric aims to measure the
selectivity of the system’s response in case of a multi-behavior source IP. It’s defined as
the inverse effect on CoS for a non-attacking client sharing the same source IP address
with an attacking client, and is computed as follows;

CD; =1— CoS; (4.5)

This set of metrics serve as a comparison basis for the effectiveness of different
mitigation methods. Therefore, an effective mitigation method is expected to show;
low MT, low MC, high MF, and low CD. Section discusses the considered metrics
further.

To obtain these values, traffic measurements and implemented nodes’ log data are
gathered during each experiment. Traffic measurements and log data are recorded
in four locations. The first two locations are via custom tool that we specifically
developed for measurements.

The first location is at a measurements node (MN), which emulates 100 different
measurement sources (each with a unique source IP address), each generating a single
request per time step. The 100 HTTP requests (or HTTPS, depending on the exper-
iment) for a specified resource file per time step are spread throughout the time step.
For example, for a 30 [sec| time step, the measurements rate would be roughly 3.33
requests per second. For each request, its success is registered if its full life-cycle is
completed (i.e., starting from the preparation phase till the whole response is deliv-
ered to the client from the SS). Otherwise, it registers as a failure. In addition, the
preparation time (at the PS) is measured as well as the whole service time for the
requested file. So, at each time step we have three sets of 100 raw data values (i.e.,

44 Evaluation

service success set, the whole service time set via PS + AN, and the actual commu-
nication time set via AN only) collected by the measurement tool. Eventually, from
the recorded measurement raw data sets, all the mitigation performance metrics are
obtained for each time step. Evaluation data are plotted versus time in terms of the
average point and a 95% confidence interval (CI).

The second location is also via a custom developed measurement tool, like the MN,
but this time is deployed on one of the attack sources, sharing its IP, to observe the
collateral damage as observed by a non-attacking user sharing an attack IP.

Additionally, the two remaining locations are at the AN and PS. The traffic volume
at both is recorded in terms of number of TCP connection attempts and HTTP (or
HTTPS) requests. This way, it’s possible to tell, at any specific time step, what was
the actual whole rate of the DDoS attack, in terms of low-level requests (i.e., TCP
connection attempts) and high-level requests. From the collected data, we can also
observe the service time (to measure MC), the time taken for mitigation (i.e., MT),

as well as the impact of the proposed response methods on the attackers’ achievable
rate (i.e., the MF).

4.1.2 Emulation Platform (Testbed)

For emulation, a researcher has two options. Either construct a dedicated testbed in
the lab or utilize a shared testbed. The latter option is more favored for openness to
other researchers, scale, as well as the traffic interaction with cross-traffic from other
testbed users. Two popular shared testbeds exist today that are mentioned in the
DDoS mitigation literature; PlanetLab [69] and DeterLab [37].

Planetlab’s system counts on participating organizations to contribute machines
(currently more than 1353 nodes). Users gain shared access to those nodes via virtual
machine software that achieves user isolation. Planetlab’s nodes therefore can be
organized into overlays. Also, traffic between nodes travels across the Internet and
experiences realistic delays, drops and interaction with cross-traffic.

However, the choice of which shared testbed to utilize is also governed by the
nature of the experiments to be conducted. On PlanetLab, researchers can install
packages on the testbed’s nodes, but their choice of operating system (OS) and the
granted privileges on nodes are restricted. Also, launching disruptive attacks, which
is the nature of most DDoS attacks, is strictly prohibited on the Planetlab testbed.

On the other hand, with DeterLab, the researcher can gain exclusive root access
to a desired number of nodes, load the desired OS, and have root privileges. Also,
massive DDoS attacks (i.e., “Risky Experiments”, as labeled by the DeterLab team),
are acceptable on the Deterlab testbed. Experiment traffic also experiences interaction
with cross-traffic from other active experiments. In addition, outside connectivity of

Evaluation 45

the test traffic with the public internet is an option. So, DeterLab is the chosen
platform to be incorporated in this research for the evaluation of the proof of concept
prototype. Mainly due to the disruptive nature of the traffic generated, the testbed’s
flexibility, and to simplify repeatability.

4.1.3 Evaluation Plan

As explained in Chapter E], the goal of this research is to enable effective overlay-based
mitigation of complex HTTP(S)-DDoS attacks, while complying with the true-end-to-
end encryption requirement. Section {.1.1] explained the metrics to measure effective
mitigation. In this section, we describe the plan to evaluate this goal.

But what’s meant by complex HTTP(S)-DDoS attacks? As discussed in section

, there can be multiple perspectives that define an HTTP(S)-DDoS attack cate-
gory. Also, variations in attack conditions within even the same attack category may
be endless. Arguably however, not all possible attack conditions are equal in terms of
commonness (i.e., per recent surveys), damage (i.e., effect on service availability), and
complexity (i.e., detection difficulty). A complex attack is one that’s conventionally
difficult to detect. For example, a single-request-per-connection type of attack is intu-
itively harder to detect by conventional methods than a multi-request-per-connection
attack. Similarly, a low-rate of attack requests per source (i.e., below detection thresh-
olds) is also intuitively harder to detect than a high-rate of attack requests per source.
Same can be said about a knowledge-based attack (i.e., attacker knows the mitigation
configurations) versus an otherwise blind attack.

So, several assumptions are made for the planned evaluation. Firstly, attackers
can learn about the PS’s redirection and eventually adapt the attack tools to obey the
preparation stage and then attack through the AN. Likewise, attacks below the AN’s
set detection thresholds are to be anticipated. Secondly, effective mitigation against
a knowledge-based HTTP(S)-DDoS attack, especially with simplified mitigation mea-
sures, also suggests effective mitigation against a less complex attack category. For
example, if the implemented prototype AN shows a high MF and low MC against a
single-request-per-connection type of attack, that would suggest similar results against
a multi-request-per-connection attack. Thirdly, all attacks against a web server be-
hind the proposed method utilize HTTP(S)-DDoS methods. Stopping other possible
types of cyber-attacks that may target the PS or AN are beyond the scope of this
research.

Therefore, the proof of concept prototype is tested under several HTTP(S)-DDoS
attack conditions to evaluate the soundness of the concept. Among the conducted
experiments throughout the course of this research, seven experiments are discussed
in section considering complex attack conditions, some conditions of which are
missing from related research on DDoS mitigation.

46 Evaluation

Four experiments against the AN are discussed. The first addresses the high-
rate HT'TP-DDoS attack. Each attack source is sending HTTP GET requests at
its maximum achievable rate. Although such category may not be hard to detect,
it’s important to measure the MC of mitigating such a brute force category of attack
before proceeding to the more complex categories. In the following experiment against
the AN, we assume that the attacker learns that the AN doesn’t inspect the content.
So, the attacker manually adapts an off the shelf slow-requesting HTTP-DDoS attack
tool to attack via the AN, yet with attack rate higher than the detection threshold.
Then, the case is investigated where the attacker adapts further by increasing the
number of attack sources, switching to encrypted HTTP-DDoS (i.e., HTTPS-DDoS),
sending a single request per connection to evade conventional per-connection detection
methods, and significantly reducing the attack rate per source to below the AN’s
set detection thresholds (i.e., low-rate, single-request per-connection, sub-detection-
threshold HTTPS-DDoS attack). Therefore, assuming possible attacker’s knowledge
of the mitigation details. Finally, we examine the case where the attacker combines
two complex HTTP(S)-DDoS attack categories simultaneously, which is also known
as a multi-vector DDoS attack.

In addition, three experiments with attacks on the PS are discussed. From the
perspective of attack impact, single-request per-connection attacks would release the
PS’s resources fast as it repeats step 2, while multiple-request per-connection attacks
are detectable promptly by the PS (since only 1 request per connection is expected).
Same thing with malformed requests. So, the three PS-targeted experiments in section

consider the worst case where the attacker knows the likely most effective HT'TP-
DDoS attack category against the PS, which is slow-requesting HT'TP-DDoS. We later
discuss about other attack conditions in section p.4. The first experiment is conducted
with 20 high-rate attack sources. Then we increased the number of attack sources to
2,000 in the following experiment, with similar high-rate attack conditions per source.
Further, the third experiment expands the slow-requesting attack population to 10,000
unique attack sources with low-rate per source this time. The assumption is that the
failed attacker may attempt to spread the requests over larger number of sources to
evade detection.

Although attacks that are several hours long were a common occurrence in earlier
years [}, [70], recently the majority (93%) of the reported HTTP(S)-DDoS attacks
are shorter than 1 hour in duration [8]. Therefore, all the attacks considered in the
experiments reported in this dissertation are considered long-duration attacks.

In section @, experiments are not ordered in terms of the type or conditions of
attack. They are rather sorted in the chronological order of their execution (i.e., from
older to the most recent).

The experiments’ topologies are a scaled down approximate version of the real
situation. Also, virtualization is utilized in some of the experiments to multiply the

Evaluation 47

number of attack sources given a finite number of machines. Therefore, spreading out
the attack population. Downscaling a topology while keeping reasonable fidelity is an
open research problem [66]. Section discusses the evaluation decisions further, as
well as anticipated additional attack categories and their variations.

Several tools are used for generating the attack traffic. For the high-rate HTTP-
DDoS, a blind attack tool called LOIC [71] is utilized because of its commonness [72].
For the low-rate HTTP(S)-DDoS controlled attack conditions, a new custom DDoS
tool is developed and utilized. As for the slow-requesting HTTP-DDoS, three attack
source types are utilized. First, the publicly available tool commonly used by attackers,
called Slowloris [73]. In addition, a new custom slow-requesting attack tool was also
designed and developed that generates the same category of attack, but with more
attack parameters’ control. Finally, a custom tool was built that utilizes the original
Slowloris code to adapt to the proposed mitigation scheme. Experiment specific attack
conditions are described within their respective experiments.

In addition, we qualitatively test the prototype’s transparency (i.e., operation with-
out special requirements form clients or servers). So, before testing the prototype
system under DDoS attacks, several non-attack tests with actual commercial websites
were conducted to observe the transparency of the proposed method, using commonly
used web browsers. The prototype is set up in the lab with access to the Internet and
real browsing by the researcher. The problem with this lab setup is that the browser
prompts the user with a warning message about the servers’ certificate. Yet, such
warning would not exist in the real deployment, since the web server should issue a
wildcard certificate to work seamlessly with all ANs.

Test Web server Benchmarks

Before deploying the mitigation system, direct benchmarking measurements on the
Apache web server to be used as SS are conducted (i.e., before hiding the SS). First, the
server’s local limit of requests per second is measured, which can be a function of mul-
tiple factors, including: the requested resource, server’s configuration, and hardware.
For the requested 200 KB file, and with no request concurrency, the non-attacked
server showed a local limit of 54.6 [r/s| (i.e., requests per second) in average. In ad-
dition, a 19.6 [ms] service time is observed when tested with ApacheBench (version
2.3). Testing with with different concurrency settings, the non-attacked server showed
nearly the same local limit of requests per second. But as the concurrency increases,
so does the measured service time as shown in Figure El! The utilized unmodified
Apache server versions 2.2.14, 2.2.22 and 2.4.7 showed the same benchmarks.

Note that this limit can be raised by tuning the server’s configuration. However,
the focus of this research is on evaluating mitigation of attack far from the server. So,
that limit is unchanged in all experiments.

48 Evaluation

Unmodified Apache Webserver's Benchmarks (200K Bfile)
2000

1800 M Requests per second [#/sec] (mean)

m Time per request [ms] (mean)
1600

1400
1200
1000
800
600
400
200

0 - - - - - - - - - - -

1 10 20 30 40 50 60 70 80 90 100
Concurrent Requests

Figure 4.1 Apache web server benchmarks using ApacheBench for a 200 KB file.

4.1.4 System Parameters

Three types of parameters define each experiment’s setup; prototype implementa-
tion, testbed specifications, and attack parameters. For the current proof of concept
prototype implementation, we test with manually set non-optimal values as follows.
Selecting a large value of 8 would result in richer behavior records while a small value
simplifies the system. From experience, the value of § is set to 8 in all experiments,
being neither too large nor too small. Also, during prototype development, we tested
with several values of v between 10 to 60 seconds. We learned that selecting a large
value of a results in a longer mitigation time while a small value may limit the col-
lected attributes. Accordingly, in the discussed experiments the value of « is within
30 to 40 seconds (as described in each experiment). In addition, the set range of
« is considered when setting the per-a thresholds. Also, it’s assumed that browsers
normally set a small limit on simultaneous connections per server [74]. So, the AN’s
default threshold values are set as follows; S/a‘Thd = 20, C/&!Thd = 20, M/&‘Thd =
10, FS/a‘Thd = 2, and FC/a!Thd = 2, while other AN’s thresholds are not enforced.
The PS’s default threshold values are set as follows; A/ a‘Thd = 20, and F'A/ a}Thd
= 2, while other PS’s thresholds are not enforced. Such parameters are tunable for
better results. Also Rg is normalized in the current prototype version. The values
of T}(maz) and Ty(maz) are set to 2 and 3 seconds, respectively. As for E , only the 3
most significant bits are considered, and different exceptions are combined. Testbed
specifications, attack parameters are described in their respective experiments. We
discuss further about the prototype parameters in Sect. .

In addition, general Linux kernel parameters are modified from their defaults to ac-
commodate the large number of concurrent threads and connection attempts. As fol-
lows; net.ipv4.ip_local _port range=1024 65535, net.core.somaxconn=16384, fs.file-
max=1000000 and net.ipv4.tcp__max_syn_backlog=16384.

Evaluation 49

4.2 Experiments

4.2.1 High Rate HTTP-DDoS via AN

This experiment is designed to investigate the effectiveness of the mitigation system
against the brute force attack category. Attack sources send HTTP GET requests at
their maximum achievable rate. It’s also labeled a high-rate HT'TP-DDoS attack as
the attacker is assumed to be unwarily requesting at a rate per source that’s higher
than the mitigation system’s detection thresholds. So, the attack category itself is not
complex (i.e., not hard to detect). However, this experiment is conducted considering
the possibility of this attack category, before moving on to the more complex categories.
Mitigation effectiveness is measured in terms of the metrics discussed in section7
i.e., MF, MC, and MT.

Figure @ shows the experiment’s setup and the physical mapping of nodes on
the DeterLab testbed. All nodes are automatically assigned by DeterLab from the
bpc3000, pc3000, and pc3060 physical node types [@] A single SS, AN, and PS are
used, each on a dedicated pc3000 machine. Additionally, 100 measurement sources,
each with a unique source IP, are emulated on a pc3000 based measurement node
(MN), generating 100 HTTP GET requests per 30 seconds for a 200 KB file from the
100 different source IPs (as described in section W.1.1). The resulting measurements
are used to plot versus time the CoS; and ST; with 95% confidence interval (CI).
Testbed link speeds of 100Mbps are used. Each node’s OS is Linux V2.6.32, while
the SS is running the open-source Apache server unmodified (version 2.2.14). A too
large value of m X « is undesired from a MT perspective, but also a large enough «
is needed to detect low rate attacks. In this experiment, we set the value of a to 40
[sec] from experience.

Rate: 100 requests per o [sec] Legend
MN: Measurements Node
ﬁlg _____ PS: Public Server . .
AN: Access Node | Node Physical Mapping CPU

SS: Secret Server
—» Attack traffic AN bpc3000
Attacker
#01
Attacker
#20

= Measurements traffic
IP1g; o IP130 LOIC tool: Strategy AD1112
[P Rate per machine: 300 [Conn/s],
1 [Req/Conn]

{ SS,PS, MN pc3000 Dual Intel

|pss Xeon 2GB
— —_——_— | 13 pc3000 (3 GHz)
Attack Nodes |8
|

| (20 machines)
| x7 pc3060

Figure 4.2 Setup and physical mapping of Experiment 1.

50 Evaluation

For attack, a total of 20 attack sources (emulated on 13 pc3000 and 7 pc3060
machines) first manually pass the PS’s preparation stage, then target the SS through
the AN using the LOIC blind attack tool (version 1.1.1.25), which is a popular tool
among attackers [72]. Each one of the 20 attack sources acquires a single SID, runs 20
concurrent threads, and repeatedly attempts to send a single request per connection,
repeated per thread with a random delay before connection termination (matching the
single-request-per-connection attack category, or strategy AD1112).

Before hiding the SS, the attack is directed against the SS directly. The generated
attack’s HTTP request rate measured a total of 47.27 [r/s] in average. As expected,
the attack rate is close to the server’s local limit (Section E) but don’t exceed it.
Generally, once an attack traffic approaches the server’s local limit, deterioration in
CoS and ST is observed. This direct attack resulted in a decrease in CoS to 66.5%
and rise in ST to 8477 [ms| in average with 95% CI.

Start of Attack

Now the mitigation system is in place. As shown in the LHS of Fig @, attack
traffic starts at point i. Between points i (t = 5.3 [min]) and j (t = 7.3 [min]) is
the mitigation phase of the AN, during which the peak achievable attack rate on the
public side reaches 6149 [r/s|, while Att,,; is nearly 4935 [r/s]. The AN’s effect is seen
in terms of CoS and the reduction in attack traffic reaching to the SS. For every time
step 4, the RF; is observed above 99.2% during the mitigation phase and afterwards.
Before point i, RF is undefined. The AN also shows a 100% CoS; with a temporary
drop to 99% (i.e., MF; above 98.5%), far from the server, with zero knowledge of
the requested high-level content. Yet, the cost is observed as increase in S7T; for the
requested file, with temporary spikes during the initial 2 minutes mitigation phase (up
to nearly 18 seconds). That cost later resides between 2 to 7 seconds.

Notice also the cost of the current iteration of the prototype, even before attack,
seen in ST (nearly 1 [sec]) for the 200 KB file. An optimized implementation is
expected to show a smaller value.

Switching Attack

The experiment lasts for 24 hours, which is considered a long-duration attack [8]. We
also consider the case where the attacker may decide to switch the attack ON and
OFTF to trick the detection mechanism. Or to try to keep the AN within the detection
phase as much as possible. So, near the end, the HT'TP-DDoS traffic is switched OFF
and ON repeatedly as shown in Fig @’s RHS to observe the effect on mitigation.
Switching intervals shorter than a (points k and 1) show no effect on C'oS; and RF;.
On the other hand, longer switching intervals (points m and n) caused temporary

Evaluation 51

Traffic Traffic
100 10000 100 —————— 100 - 16000 - 100
99.8 9000 20 99.8 9000 90
. 996 8000 j —Reduction Factor [%] 80 S 99.6 8000 0 —Reduction Factor (%] 80
S99.4 _ 7000 ¥ 70 & 99.4 _ 7000 1 m 70
o z = =z k n l
£99.2 < 6000 ; 60 , S 99.2% 6000 l 60 o
5 9 £ 5000 | 504 % 99& s000 | | 50 2
§ 98.8 G 4000 TCP conn/sec (C--AN) 40 E g 9838 % 4000 TCP conn/sec (C--AN) 40 <
§986 3000 HTTP rea/sec (C-AN] 30 % 986 3000 HTTP req/sec (C-aN) | 30
98.4 2000 —HTTP req/sec (AN--SS) 20 98.4 2000 =—HTTP req/sec (AN--SS) 20
% % > 52 190\ AMMANNANMAMA A -tA AR 2
98 0 G- 98— - =@ 0
=) ~ < © © =) ~ < © o ﬁ n ~ I o) wn ~ @ - o wn
et T 8 83 8 & % & 3 3 & 7 1
| Time [min] | a Bl a Bl = a a a a a a
! i [Time [min] !
i i i
|
| Service Measurements via MN | | Service Measurements via MN |
25000 =rm e e S e e e e 100 8000 -rmmrmmmmmm D e L T e s 100
22500] 98.5 7000 : 95
20000 97 6000 %
T 17500 i 95.5
= - 5000 85 .
= 15000 i % 5 7 =
¥ 12500 925 & E 4000 80 &
o = o
10000 91 S %3000 1 75 S
7500 1 89.5 S g
2000 1 EBrli 70
5000 R 88 11
2500 x B sl e 86.5 1000 65
o "FHATErrE 85 o 60
°© ~ v © 9w g 9 F g ¥ 8 B m & ¥ 2 2 5 g @ 13 7
Time [min] g 2 2 2 2 8 2 8 2 &8 =9
Time [min]

++++Service Time of requested file (via AN), mean (95% Cl)
=== Chance of Service (via AN), mean (95% Cl)

=+« Service Time of requested file (via AN), mean (95% CI)
-+ Chance of Service (via AN), mean (95% Cl)

Figure 4.3 Results of Experiment 1. LHS: Start of attack. RHS: Switching attack.

drops in the C'oS;. Yet, mitigation time is relatively shortened, in comparison to Fig.
’s LHS, while the AN’s effect is nearly the same after point o and after point j.

The high reduction in attack traffic on the SS side (top of Fig. @’s RHS) suggests
that the observed temporary decrease in C'0S;, and ST; fluctuations, are mainly due to
the ON-OFF tactic’s impact on the non-optimized prototype AN implementation. Not
on the SS itself. So, only the users being served through the attacked AN may notice
the short temporary drop during MT and subsequent fluctuation, while everyone else
can still enjoy normal service through other ANs.

Notice that for LOIC, despite of the high reduction factor by the AN after the
mitigation phase, we notice that the new TCP connection attempts per second on
the C-AN side remains high. This shows how such automated attack source reacts on
the low-level to the AN’s high-level countermeasure. This volume of low-level traffic
doesn’t reach the SS anyway, and is utilized in mitigation by updating the prototype
to achieve higher mitigation factors and lower mitigation costs.

In this experiment, the attack is not knowledge-based, unwarily exceeding the
detection threshold. In later experiments via the AN, we test with more complex
attack categories, and attempt to also evaluate collateral damage.

4.2.2 Slow-Requesting HTTP-DDoS via PS

This experiment investigates the effectiveness of the mitigation system against an
anticipated complex HTTP-DDoS attack category against the PS: slow-requesting

H2 Evaluation

HTTP-DDoS. Mitigation effectiveness is measured in terms of the MF and MC mit-
igation metrics discussed in section W.1.1. A slow-requesting attack source typically
opens several seemingly-legitimate connections to the target server and then starts
sending never-completing partial HT'TP request headers, part by part. This kind of
behavior is designed to tie down the server that’s waiting for the rest of the slowly
arriving request. The attack source typically reestablishes the connections over which
the server times out their requests.

The assumption is that the attacker knows the likely most effective HTTP-DDoS
attack category against the PS. That’s because single-request per-connection attacks
release the PS’s resources faster, while multiple-request per-connection attacks are
detectable promptly by the PS due to its nature. It’s also assumed that the attacker
tries to cause damage to the service availability by wisely focusing the finite attack
resources on either the AN or the PS. So, the attack sources in this experiment focus
only on the PS, and don’t proceed to attack the AN, while the cases of attacks that
proceed to the AN are considered in separate experiments.

The setup is as shown in figure Q A single SS, AN, and PS are used, each on a
dedicated bpc2133 physical testbed node [@] In addition, 100 measurement sources,
each with a unique source IP, are emulated on a bvx2200 based measurement node
(MN), generating 100 HTTP GET requests per 30 seconds for a 200 KB file from the
100 different source IPs (as described in section W.1.1)). The resulting measurements
are used to plot versus time the C'oS; and ST; with 95% confidence interval (CI).

Testbed link speeds of 100Mbps are used. Each of these node’s OS is Linux version
3.2.0-64, while the SS is running the open-source Apache server unmodified (version
2.2.22). The non-attack benchmarks for the utilized Apache server (section {.1.3) are
the same for this version as well. The value of « is set to 30 [sec] which is neither
too large nor too small. In a real implementation, the value of o should be adaptively
tuned.

Legend

Slowloris: High rate (Y1313) MN: Measurements Node .)
Req. parts separation: 2 [sec] PS: Public Server Node Physical Mapping

Threads per machine: 1,000 AINB AEEINGIL

\ SS: Secret Server ; AN, PS bpc2133
Attacker {
#01

Quad core Intel Xeon
X3210 (2.13 GHz)
Quad core Intel Xeon
X3210 (2.13 GHz)

—> Attack traffic
SS bpc2133

\ = Measurements traffic

A\ MN bvx2200 BUERGERAND | aqp
- el
#20 AN — — — S5, uad core Intel Xeon
_ - | Y || o X3210 (2.13 GHz)
1Pygy «e IPy50 Attack Nodes Dual Core AMD

i x4 bvx2200

(20 machines) Opteron (2.2 GHz)
x9 bpc3000 Dual 3 GHz Intel 2 GB
Xeon processors

(20 machines) MN

Logl

1Py - IP1g0 Rate: 100 requests per a [sec]

(1 machine)

Figure 4.4 Setup and physical mapping of Experiment 2.

Evaluation 53

In this experiment, the attacker is unwarily exceeding the detection threshold.
Attack traffic is distributed over 20 unique attack sources that are deployed on 7
bpc2133, 4 bvx2200, and 9 bpe3000 physical testbed nodes [[75] targeting the PS. The

OS installed on the attack nodes is Kali Linux version 1.0.7.

The slow-requesting HT'TP-DDoS attack tool of choice for evaluation is the Slowloris
tool, which is commonly utilized by attackers to target web servers [[/2]. So, Slowloris
(version 1.0) is manually deployed on the 20 nodes, each representing a unique attack
source.

Each attack source runs 1,000 threads. That’s the default value of the Slowloris tool
used without modification. For each attack thread, the sleep time between consecutive
request parts is set to 2 seconds. That’s the recommended value by the Slowloris built
in (pre-attack) tester when run against the PS. So, each thread initiates an attempt
to the PS and renews it separately, while per a single attempt there’s a single fixed
but incomplete request arriving at a high rate, and the tool keeps the slow-requesting
connection active if the PS doesn’t terminate it. In the measured resulting attack
traffic, the PS is observing nearly 2,440 new connection attempts per second, with
10,000 concurrently requesting connections (i.e., simultaneous attempts per second).
In total, the generated HTTP-DDoS attack rate is 5,000 request parts per second, i.e.,
250 request parts per second per source. This matches the strategy code Y1313.

In this setup, the PS’s IP address is 10.1.1.4, and therefore the attack command is
as follows:

perl slowloris.pl -dns 10.1.1.4 -port 80 -timeout 2

Note that such attack conducted directly towards the SS, utilizing only 10 Slowloris
attack sources, results in a 0.0% CoS for non-attack clients (see section |§.2.5).

Now with the mitigation in place, the attack lasts for 200 minutes, of which the
first 40 minutes are shown in Fig. . The four indicators plotted at the top of Fig.

are recorded by the target PS once every a = 30 seconds. They describe the attack
volume. The first indicator is the number of source IPs, which equals 100 before the
attack, indicating the measurement sources, then rises by an extra 20 IPs representing
the start of attack at ¢ = 4 [min]. The number of IPs at every given time step is
represented on the secondary axis, to the right. The second indicator is the number of
simultaneous attempts, which represents how many open connections at the moment
of observation, since only one attempt is allowed per connection at the PS. Thirdly is
the rate of new connections per second, as old attack connections are constantly being
terminated by the PS once they fail to send the full request in time. The last indicator
measured is the rate of request parts per second, which indicates that a single attack
connection slowly sends about 2 parts before being terminated by the PS.

For all HTTP-DDoS attacks against the PS, attack traffic reaching the SS equals

H4 Evaluation

12 140
) 10 120
8 : AVA &
;1] —Simult Attempts 100 o
o 8 New conn rate [conn/sec] =
£ . Req parts rate [part/sec] 80 o
=2 —|Ps =
o 60 O
> —
~ 4 g
é \ 40 £
=}
< 2 L 20 =2
0 0

2 A © 3 40 142 AA 46 43 20 22 28 26 2% 20 22 24 236 2B A()i

————e -

1600
1400
1200
1000
0 2 A © 3 10 42 Ah 46 4% 20 922 28 126 2% 20 32 A& 236 23 A0
Time [min]

Time [min] !
: !
g 100 Percentage of Complete Service, mean :
(]
2
>
S 99
(%]
3
o 98
o
§
o 97 1
0 2 A © 3 40 42 4A 46 4% 20 22 28 26 2% 230 22 2/ 26 2B B‘Oi
! Time [min] 1
! 1
3000 ! Service time, mean (95% Cl) !
i
E
OE) 2200 -%¢-AN + PS
= 2000 -+ AN only
@ 1800 ¢e B, L3 22
L
2
(]
(%3]

Figure 4.5 Results of Experiment 2. Slow-requesting HTTP-DDoS attack starts nearly
at t = 4 [min].

zero. Therefore, RF; = 1 and MF;, = RF; x CoS; = CoS;. So, the mitigation
effectiveness of the PS is measured in terms of C'oS; and ST;.

During attack, the PS is show a 100% CoS; with a nearly flat mitigation cost (i.e.,
no increase in ST;) via both the PS and the AN, which is higher than the non-attack
ST benchmarks. Note that the MT metric is undefined in this experiment. Also,
note that at ¢ = 36 [min|, and for about one minute, the coordinated attack has been
stopped deliberately from the source then resumed. This was done to observe any
possible transient effect on the PS’s performance. The experiment resumed for the
rest of the 200 minutes with the same performance unchanged.

So far, a large attack rate per source IP is utilized against the prototype PS.
However, the observed high MF and low MC of the tested PS against high rate alone

Evaluation 55

is only a single angle to evaluate the PS from. Therefore, an additional experiment is
presented next, with a more distributed attack population and higher attack intensity.

4.2.3 Distributed, High Rate, Slow-Requesting HTTP-DDoS
via PS

This experiment extends the investigation started in experiment 2 (section) of
the effectiveness of the mitigation system against the complex slow-requesting HT'TP-
DDoS attack category towards the PS. So, this experiment inherits multiple features
from the previous experiment, namely; the general attacker assumptions, the physical
testbed node _mapping, the measurements setup, link speeds and software versions
(see section {.2.2). But to emulate a more realistic attack condition, a wider attack
population is assumed this time, in comparison to experiment 2. The number of
attack sources is increased 100 times, with also high-rate attack conditions per source.
Mitigation effectiveness is measured in terms of the MF and MC mitigation metrics
discussed in section {.1.1].

Figure @ shows the setup of the experiment. A total of 2,000 unique attack
sources are emulated on 20 physical testbed nodes. They simultaneously target a
single PS with the generated attack traffic. The OS installed on the attack nodes is
Linux version 3.2.0-64. Measurement data is collected also by the 100 virtual sources,
emulated on the dedicated MN, sending 100 requests every 30 seconds from 100 unique
source IPs. The resource requested is a single 200 KB file served by SS.

For slow-requesting HT'TP-DDoS attack, Slowloris is a popular tool. However, to
control so many attack sources at once, a custom attack tool is developed that can be
deployed on thousands of sources and be remotely controlled by a single commander
node. The custom tool also enables the execution of slow-requesting DDoS attack

Legend
Custom: Slow, High rate (Y1313) MN: Measurements Node
Req. parts separation: 1 [sec] PS: Public Server
Threads per machine: 2,000 AN: Access Node

SS: Secret Server
Attacker
#01
Attacker —_— P
#2000 AN — — — =%

IPyg; «e IPy100
(20 machines)

= Attack traffic

\ = Measurements traffic

IP, ... 1P,

(1 machin"e) Rate: 100 requests per a [sec]

Figure 4.6 Setup of Experiment 3. Same physical mapping of Experiment 2.

56 Evaluation

behavior with tunable attack parameters.

In this experiment, the attack sources are also exceeding the detection threshold.
Similar to experiment 2, the PS and the measurement node collect data every a = 30
seconds. As observed in figure @, the total rate of new connections per second equals
5000 (i.e., 2.5 per each source). This is achieved by running 20 concurrent threads per
source IP (i.e., 40,000 attack threads in total). A legitimate HTTP GET request is
constructed and split into small chunks of size = 20 Bytes each. One chunk is sent at
a time to the PS with a 1 second separation, resulting in a high-rate slow-requesting
HTTP-DDosS type of attack (strategy Y1313). That results in a total of about 20,000
simultaneous active attack connections at any given moment of time, as recorded by
the PS, generating an attack rate of about 20,000 request parts per second.

At ¢t = 2.5 minutes, the number of source IPs jump from 100 (measurement sources)
to 2,100. This is exactly the start of attack just after the attack initiation command is
received by all the attack sources simultaneously. Here also the number of IPs values
are represented on the secondary axis (Fig. @3, For attacks against the PS, RF; =
1 (i.e., MF; = CoS;). Despite of the large volume of simultaneous attempts at the
single PS, we observe a M F; that’s higher than 98% with a 95% confidence interval.
This experiment went on for 300 minutes with no change in performance.

From the perspective of ST;, the AN’s performance is not affected by this type
of attack, being directed at the PS (i.e., attack traffic is not reflected by the PS on
the AN). As for the PS’s performance, a mitigation cost can be seen, especially in the
minutes following the start of attack. Without attack, the PS contributes by nearly 1
second to the whole (PS + AN) service time. During attack, the cost added by the PS
resides within 1 to 3.5 seconds, with 95% confidence margin. This increase affects only
the preparation phase, while following client-SS transactions are not affected. This
suggests that for this category of attacks, the PS serving the preparation stage acts
as a second line of defense before the AN. This is achievable by deploying thousands
of PSs in the real case, which is a practical assumption.

For example, consider the case of an attacker that could gather 100,000 online dis-
tributed sources, a figure not reported before in a high-level attack, generating nearly
250,000 new connection attempts and 1,000,000 request parts per second. The results
from this experiment suggest that only 50 PSs would be enough to highly mitigate such
hypothetical attack, while simultaneously serving other clients. In addition, distribut-
ing the well-behaving clients over the geographically distributed ANs, where actual
communication takes place trouble free and payload-inspection free.

Evaluation 57

N
%]

2000

—_ P AN o~ — _ e\ e N A n
o 20 — s - —— 4 - —— v — - - - . &
=] - 1500 @
S s —Simult Attempts o
% New conn rate [conn/sec] 3
wv
€ 10 Req parts rate [part/sec] 1000“6
% —|Ps aj
> 5 500 o
~ [S
9 S
©
£ o0, L0 %
0 2 & 6 % 40 42 A 16 43 20 92 2h 26 9% 30 32 3h 36 33 AO!
i Time ﬁmln] i
100 seooinosm o wsseercentage of Complete Service, mean (95% Cl)
'_D‘ l\‘l\'l\'l\‘l\l\'l\'l\‘l\‘rs.‘. .‘:\‘l-.. ‘?\l\‘l\'l\' llllll s I\II\‘IQ.(""\II\II\I)L‘ ‘;(}.. “‘ s e e e e FEITITICIIITIR T AITITIITITIIIONINIOT
£ g9 ¥ %l :
(V] % e o
L 98
2
o 97
(%]
o 96
@
E}_ 95
5 9
© o3 .
0 2 A © 3 40 142 A& 46 43 20 22 24 26 23 30 22 A 26 23 AQ,
i Time [min] i
1 . .]
8000 : Time of Complete Service, mean (95% Cl) :
+5¢-PS+AN
7000
g 6000 -+ AN only
@ 5000
i= 4000 X
S3000 FR AR | e ey gl
>
$ 2000
(%]
1000

0 2 & © 3 40 42 AA 46 43 20 922 9A4 26 2% 230 232 3h 26 23 A0
Time [min]

Figure 4.7 Results of Experiment 3. Slow-Requesting HTTP-DDoS attack starts nearly
at t = 2.5 [min].

4.2.4 Highly Distributed, Low Rate, Slow-Requesting HTTP-
DDoS via PS

The results of experiment were encouraging to proceed with a more complex
attack arrangement, also utilizing the slow-requesting HTTP-DDoS attack category
towards the PS. The number of attack sources is increased 500 times, in comparison
to experiment 2, this time with low-rate attack conditions per source. The assumption
is that failed attacker may attempt to distribute the attack traffic requests over larger
number of sources to evade detection. Mitigation effectiveness is measured in terms
of the MF and MC mitigation metrics discussed in section #.1.1].

Figure @ shows the experiment’s setup and the physical mapping of nodes on
the DeterLab testbed. All nodes are automatically assigned by DeterLab from the
MicroCloud, pc2133, pc3060 physical node types [@] The AN and SS are each running
on a dedicated MicroCloud node. Additionally, the PS is running on pc2133 node. In

58 Evaluation

Legend
MN: Measurements Node
PS: Public Server
AN: Access Node
SS: Secret Server

Physical

Mapping
MicroCloud

—» Attack traffic One Intel Xeon (2.4 GHz)

\ | => Measurements traffic PS pc2133 One Intel Xeon (2.13 GHz) | 4GB
| MN pc3060 Dual Intel Xeon (3GHz) 2GB
AN — — — lpss | x5 | MicroCloud | One Intel Xeon (2.4 GHz) 16 GB
— | Attack Nodes
- . x2 pc3060 Dual Intel Xeon (3GHz) 2GB
IP1g1 - IP1100 | (10 machlnes)
(10 machines) ':,"\i | x3 pc2133 One Intel Xeon (2.13 GHz) 4GB
08!

IP; .. 'Pi_ou Rate: 100 requests per a [sec]
(1 machine)

Figure 4.8 Setup and physical mapping of Experiment 4.

addition, 100 measurement sources, each with a unique source IP, are emulated on a
pc3060 based measurement node (MN), generating 100 HTTP GET requests per 30
seconds for a 200 KB file from the 100 different source IPs (as described in section
1.1.1). The resulting measurements are used to plot versus time the C'oS; and ST;
with 95% confidence interval (CI). Testbed link speeds of 100Mbps are used. Each
node’s OS is Linux V3.13.0-62, while the SS is running the open-source Apache server
unmodified (version 2.2.22). The value of « is unchanged from its 30 [sec] previous
setting.

In addition, we learned with experience that up to 1,000 virtual IP addresses can
be set up per single DeterLab node reliably. Any larger value is avoided as it results
in unexpected disconnections of attack nodes later during the experiment.

So, in this experiment, a total of 10,000 unique attack sources represent the attack
population (emulated on 5 MicroCloud, 2 pc3060, and 3 pc2133 physical nodes). A
custom attack tool is developed that can be deployed on thousands of sources and
be remotely controlled simply by a single commander node. The custom tool also
enables the execution of slow-requesting DDoS attack behavior with tunable attack
parameters and remote command and control of attack over the network. So, each
physical node runs 1,000 threads of the custom tool. Each single thread creates a local
virtual network interface with a unique source IP address. Per source, a legitimate
HTTP GET request is constructed and split into small parts of size = 20 Bytes each.
Each attacking source IP initiates a single connection attempt at a time to the PS,
while per a single attempt there’s a single fixed but incomplete request arriving with
1 [sec] time separation between parts. The tool keeps the connection active until the
full request is sent (and response is served) or until the PS terminates the connection.
A closed connection is then automatically renewed.

As observed in figure @, the resulting total rate of new connections per second
is nearly 1,650 [conn/sec| (i.e., about 10 connections per minute per source): a low-
rate slow-requesting HTTP-DDoS type of attack. The total rate of request parts per

Evaluation 59

second is nearly 6,450 [part/sec| (i.e., per source, about 39 parts per minute). The
total number of simultaneous attempts at any instant is nearly 6,500 [attempts]. Per
source, there are no simultaneous attempts, i.e., matching the strategy code X1324.

The total duration of the attack is 12 hours, while logs are recorded at the PS and
MN. Results from three time intervals of the whole experiment are presented in Fig.

. The attack is switched OFF and ON multiple times immediately after its start
and later after 10 hours to observe the possible effect of such behavior on the PS’s
performance observed initially.

The attack starts at t = 3 [min], then is switched OFF for 1 minute then back ON
at t = 6 [min], 14 [min], and 602 [min], respectively. The attack is finally terminated
from the source at t = 720.5 [min]. Results show a 100% M F; with a 95% confidence
interval. From the perspective of ST}, the AN’s performance is apparently not affected
by this attack, being directed at the PS. This indicates that the attack traffic is not
reflected by the PS on the AN. As for the PS’s performance, a mitigation cost is
observed. The PS contributes by nearly 1,200 [ms| to the whole (PS + AN) service
time. The cost added by the PS resides within 800 to 1,200 [ms] (i.e., in addition to
the AN’s own added service time), with 95% confidence margin.

Taffic Volume

8000 S

7000 M I\M.. VA AL a2 -y, — N QY A VW, W o "V SORPYV. V-~ A oA
6000 f HINT— + F + -+ F

5000 [l —Simultaneous Attempts | (

4000 H —New conn rate [conn/sec] |
3000 | \

Req parts rate [part/sec] \
|

A Wiiesss. \

1

0 & 8 42 16 20 28 28 32 236 80 590 o £oB GO 60?_ 6«,0[a_ﬂ] 61 622 626 20 700 0% 108 112 716 720 724 |
! ! ! Ime |min ! H H

Percentage of Complete Service

X 100
kel
>
3 99
he)
[
a 98 JRPUSPVRUN I
E i
S 0 & 3 42 46 20 24 928 22 26 AO 590 59k 598 02 q,<T>6 q,x[0 G%A 618 g1 626 530 10(3 708 708 742 716 120 728 | '
i ime [min i
i i ! i
3000 | L Tlme of Complete Service, mean (95% Cl) | H !
2800 & 16 ® iyl
22600 LR % ;* it %
£ 2400 xnﬁ(“xwﬁﬁx 3 % wéﬁ‘,&m‘*‘mg,‘ lixﬁm %XQM‘&; E jxxkx qsx x;m?‘x&l }&‘wd@%& @S& b3 ﬂségg
E 2200 -%-PS + AN)
0 2000 % ﬂ& fid AN on*Iy HIE ?. % **dr
$1800 i ahad . Ak Rdalipt o1 TR AT
m 1600 FEemi w::mmfv i pf $ Wi e 4338 &tw#w?v FEFe = SRE IR

1400
o JL . 5 Rl T D

0 & 3 142 46 20 24 928 22 36 A0 90 ¢9Oh 0% 02 00 10 g\A (1B 22 26 20 100 704 708 9142 1106 120 724
Time [min]

Figure 4.9 Results of Experiment 4.

60 Evaluation

4.2.5 Slow-Requesting HTTP-DDoS via AN

The objective of this experiment is to study the effectiveness of the proposed method,
with the simplified prototype, against this complex category of HT TP-DDoS attacks,
in terms of the MF, MT, MC and CD metrics. In this experiment, it’s assumed that
the attacker is aware of the defense setup and so proceeds with the PS normally then
attacks via the AN. Also, the attacker knows that the AN doesn’t inspect the content
and therefore attempts the slow-requesting HT'TP-DDoS attack category.

Figure shows the experiment’s setup and the physical mapping of nodes on
the DeterLab testbed. All nodes are automatically assigned by DeterLab from the
MicroCloud and d1380g3 physical node types [@] The AN, PS and SS are each
running on a dedicated d1380g3 node. Also, all testbed link speeds of 100Mbps are
used. The operating system used for all nodes is Linux V3.13.0-74, while the SS is
running the open-source Apache server unmodified (version 2.4.7). The value of « is
unchanged from its 30 [sec| previous setting.

In addition, the 100 measurement sources, each with a unique source IP, are emu-
lated on a MicroCloud based measurement node (MN). Every 30 seconds, a request for
a 200 KB file is sent form each source IP over HT'TPS, generating 100 requests per 30
seconds from the 100 different source IPs. So, we have 100 data points collected every
30 seconds as raw data in terms of service time, transfer speed, and connection success.
The plotted measurements data in Figures m and @.12 represent the average values
of each 100 points with a 95% confidence margin.

In addition to the data recorded at the AN and the MN, an additional measurement
source is run on one of the attacking nodes (i.e., sharing the same source IP address of
the attacker). The reason is to see the impact of an attacking user on a non-attacking
user sharing the same source IP. This is in attempt to observe the possible collateral
damage, introduced by the proposed method, on users sharing an IP with an attacker.

Rate: 100 requests per o [sec] Legend
MN-1 MN: Measurements Node Physical
L -1 IPpg PS: Public Server ysn':a
- AN: Access Node Mapping
1P, ... IPg, s

7 \ SS: Secret Server
= Attack traffic
= Measurements traffic

(1 machine) Xeon E5-2420 v2

di380g3 2.5 GHz 16GB

SS
MN MicroCloud

Xeon E3 LP

16GB
x4 | MicroCloud 2.4 GHz ¢

Attack Nodes

(10 machines) Xeon E5-2420 v2

x6 di380g3 2.5 GHz 16GB |

1Pgq - P13 Modified Slowloris: High rate (AD1313 & CD1313)
(10 machines) Req. parts separation: 1 [sec]

Figure 4.10 Setup and physical mapping of Experiment 5.

Evaluation 61

The additional measurements point is setup at one of the attack machines, i.e., Att-
01, and is henceforth referred to as M-Shared-1. M-Shared-1 performs the same the
procedure of the MN, except that it has a single source IP, and sends 10 HTTPS
requests every 60 seconds for the 200 KB file.

Now, for an attacker to target the SS through an AN, there are some things to
consider. Readily available, slow-requesting DDoS attack tools can be used for testing.
However, for such tools to be compatible with the proposed method, a modification
is required. Specifically, these tools need to perform 2 extra steps before any attack
traffic is sent towards the AN. Otherwise, the AN will drop that traffic by default. The
first step is sending a valid request to the PS and successfully following the resulting
redirection in time, using the correct SID, at the correct AN. The second step is sending
a valid request through the assigned AN, also in time, and waiting for the service to
complete without exceptions. So that the AN confirms the registered SID. After both
steps, then the actual attack tool can commence its malicious operation.

So, to generate the test slow-requesting HT'TP-DDoS attack traffic, we have de-
veloped a custom tool that performs the initial preparation steps successfully then
executes the Slowloris code towards the correct AN and SID. The Slowloris tool can’t
be used with virtual IP addresses, and so each attack node on the testbed is with
only a single source IP address. Total of 10 different attack sources (emulated on 4
MicroCloud and 6 d1380g3 testbed nodes) target a single AN. Each attack node first
completes the initial preparation and then the Slowloris code is executed.

Then, the Slowloris code itself starts multiple threads, which are set to restart
every 2 minutes. For each attack thread, the TCP connection reacquisition rate is
set to 2 seconds, while the sleep time between consecutive request parts is 1 seconds.
So, each thread initiates its connections to the AN and renews them separately, while
per a single connection there’s a part of single but incomplete fixed request arriving
at a high rate. This matches the strategy code AD1313. Further, throughout the
experiment’s duration, the attack was switched off and on 4 times. That way, the 10
sources’ PIDs have renewed their SIDs 4 times, which matches the strategy CD1313
as well.

Before hiding the server behind the mitigation system, we wanted to observe the
impact of the same attack volume on the SS without mitigation. The 10 Slowloris
attack sources targeted the SS directly, without mitigation, for nearly 40 minutes. The
attack was also switched off and on repeatedly. Results in Fig. show the service
measurements of the test server. The directed Slowloris attack on the unprotected web-
server, utilizing only 10 machines, show an abrupt drop in CoS to 0.0%during attack
intervals. On the other hand, the service time is undefined during such intervals.

Now the mitigation system is in place. Mitigation is enforced on two degrees as
described in section Firstly by probing each client with a the slow-responding
mechanism before proceeding with actual communication. Secondly, the AN monitors

62 Evaluation

Service Measurements during Unmitigated Direct Attack

25000 -ereereeoes s P!
. o« ° .
Service Time [ms] s
20000 X : 0.8
- ««ePercentage of Complete Service . o
£ 3 s
o 15000 . H : 06 @
£ H . % o
[t . M H °
8 10000 : : i 04 3
2 ! t : S
& . ; & S
5000 . 3 . 0.2
H o
. ! H
0 —a - - o - ®assscasscsnsannan ra-oadassansaanl® - - p - —aas AsMsMMssssssassassaana asssassrannaantd ; - - 0
0 2 [y 6 3 40 42 Ah 46 43 20 92 A 26 9% 30 32 34 36 2%

Time [min]

Figure 4.11 Service Measurements of the test web server under direct slow-requesting
HTTP-DDoS attack.

the averages of past m values of C'/a and FC/« for each unique SID. The value of
m is a tunable parameter that need not be too large, and it must be less than or
equal to 8. In this experiment, m is set to 4 from experience. An SID is considered
aggressive if it shows a nearly constant level of C'/a and FC'/« for the past m time
steps. Aggressive SIDs are put in “jail” for one time step (i.e., 30 seconds) while
still observing C'/a for each SID. During jail time, all new connection attempts are
accepted, then immediately closed and registered in the enhanced record.

As shown in Fig , attack traffic starts at t = 4 [min|. Then till t = 6 [min] is the
mitigation phase of the AN, during which the peak achievable attack rate on the public
side reaches 1,044 [r/s|, while Att,,, is nearly 546 [r/s|. As mentioned, each attack
source creates an SID and attacks though it, then renews this SID 4 times throughout
the attack operation. Each time a new SID is created, the level of high-level requests
spikes temporarily before the AN mitigation takes place. The volume of connection
attempts (i.e., low-level) per source remains nearly constant during attack, and only
drops when the attack source switches off the attack. On the other hand, the high-level
traffic is affected by the AN’s measures. From both the MN and M-Shared-1, the AN’s
effect is seen in terms of CoS and the reduction in attack traffic reaching to the SS.
Also, for every time step 7, the RF; is observed above 99% after the mitigation phase.
However, during the mitigation phase, the value of RF; drops momentarily. Note that
before t = 4 [min|, RF is undefined. The AN also shows a 100% CoS; (i.e., MF; =
RF;), far from the server, with zero knowledge of the requested high-level content.
Also, a cost is observed in terms of an increase in S7T; for the requested file. It rises
from the normal value of nearly 900 [ms| to reach to around 2 seconds, from the AN.
Notice that the service time through the AN is the one that shapes the curve of the
total service time (through the PS + AN) since it’s the one under attack.

Evaluation 63

Traffic
—TCP conn/sec (C--AN) —HTTP req/sec (C--AN) ——HTTP req/sec (AN--SS) ---Reduction Factor [%] |
1400 ~ L - Val 100
[i
1200 f b }
1000 i \
800 \

Requests / Second
D
o
o

200
0
0 3 6 9 4245 1% 21 28 27 20 233 26 29 A2 45 A%) oA 5] 60 63 66 69 12 15 1% @1 @f @1 o0 93 96 o9 @’l@‘;
1111 S
E 800 : Transfer Speed and Chance of Service via MN : 1 1
. 1
1 2750 - "~ sy s 9 . 0.98
. 3@ “4“ “'wm{(,} [’1!; uul'- }Trl e 5‘"#-- ﬁ"‘f}% ﬂl T L‘ ¥ 'J'r"'(WO‘H 5 om iy .uf 81
= .-.. ’ :. (] -
I g700 fyrin Ti ’f 173 i1 ﬁ E 09631
12 o-
él E’ 650 00421
.z -« -Transfer Speed (AN) £l
-§| |,_“2 600 -« «Percentage of Complete Service 0.92¢ I
e
‘q&;! 550 09
€1 0 3 6 91421518 2% 24 97 30 23 36 20 W M5 A% ??Fn ES[D‘I'\’\IEI’? 60 6> 60 6 12 15 1% ¢} gk &1 90 93> 96 9° yolx(ﬁ i
o i
=1 ; ! .
%i 3500 Service Time via MN H |
4]
Ei 3000 !
gl = 2500 f }' I 1 J l 1
MM i Me i i,
Bi 22000 4 &3 ot i | {!l i {{{. Ikl’ e f;. .“. £ }{}},hf :
g 1500 f o 'm*ﬁ" fr 1]'lif AL l""ﬂ ik
Ig1s I i { it f' i !
12 f t |3 .‘ i :
P 1000 Al S 's.-' i I
1
- 500 1
1 ‘ «««Service Time [ms] (PS+AN) « = Service Time [ms] (AN) ‘ 1
- 0
! d 36 9 42 45 43 9% 2% 91 20 23 36 29 AL 85 8%) oh 51 0 63 60 9 12 15 12 @) o ¢l 90 93 96 o© xo'lx(ﬁ 1
L i Time [min]
iy
R R R R r T R T T R N LT : ______
| 800 oo oo Transfer Speed and Chance of Service viaMiShared-1 0 3 !
. 1
! §750 ,].{ }i]_H.| H{ PR Hi-H-I-H{l_ I, .I'H.{ bR].|.l.| BaRECITLLS |.+4-|.'l.i.1-l.}-l-|.H |-|-}Lf”_[,<l-[H-H-]-I-H FH L]_H FPH 098 o
-l = i H
5 2700 09 g |
ol & 2
8; ges0 094%;1 ;
gl § 600 « «<Transfer Speed (AN) 0.92 S
©" = « = «Percentage of Complete Service : 1
L 09 1
gl ¢ 36 9 42 45 43 2% 724 71 30 23 26 39 a2 A5 88 51 s? 51] O 6> 60 9 12 15 1% ¢V & ¢l 90 93 96 P «,01«,03 1
S* i Time [min 1
1 : .
5 * 5000 : Service Time via M-Att-01 i 1
=1 A
% i 4500 «««Service Time [ms] (PS+AN) 1
%- _ 4000 «=sService Time [ms] (AN) 1
8! £ 3500 1
S ‘2 3000 ;
@ = 2500 R A 4 .
?! 8 2000 . . A4 - . : 3 1
15 h °. ; '}{' FLA R & EE A K ..
. 81500 {._,_' _: _ f 8 ,,_._,.,.4.' oL «{ g ,,:: e 1
11000 f_f 'l 1 R, |
| 500
1
- 0
! 0O 3 6 9 42 45 4% 2% 28 71 20 23 36 29 a2 A5 4%) ok T 0 63 60 62 12 15 1% @) of g1 90 93 96 99402405 1

L Time [min]

Figure 4.12 Results of Experiment 5.

64 Evaluation

4.2.6 Low Rate HTTPS-DDoS via AN

The purpose of this experiment is to investigate the mitigation effectiveness of the
proposed method against a more complex HTTP-DDoS attack condition. We assume
that the attacker adapts further by increasing the number of attack sources, switching
to encrypted HTTP-DDoS (i.e., HTTPS-DDoS), sending a single request per con-
nection to evade conventional per-connection detection methods, and significantly
reducing the attack rate to below the AN’s set detection thresholds (i.e., low-rate,
single-request per-connection, sub-detection-threshold HTTPS-DDoS attack). As such
complex high-level attack conditions are absent from related research, it’s investigated
for the first time in our research.

A sub-detection-threshold attack is expected in three cases. The first possibility is
that the attacker somehow learns the detection threshold values and is intentionally
setting the rate per source below it (i.e., a knowledge-based or defense-aware attack).
The second possibility is where the AN threshold is simply misconfigured. The third
possibility is that the AN threshold is already configured properly, but is set to the
minimum practical value which is above the attack rate. The attacker achieves this
combination by reducing the attack rate generated per source (nearly 1,800 times less
attack traffic per source in comparison to experiment 1) and increasing the number of
unique sources (50 times more). Mitigation effectiveness is measured in terms of the
MF, MC, and MT metrics discussed in section @.1.1].

Figure shows the experiment’s setup and the physical mapping of nodes on
the DeterLab testbed. All nodes are automatically assigned by DeterLab from the
bpc3000, pe3060, and bpe3060 physical node types [75]. One prototype AN and PS
are deployed before the SS, where each is running on a dedicated bpc3000 node. Like
previous experiments, all testbed link speeds of 100Mbps are used. The operating
system used for all nodes is Linux V3.13.0-74, while the SS is running the open-source
Apache server unmodified (version 2.4.7). The value of « is unchanged from its 30

Rate: 100 requests per a [sec] Legend
MN: Measurements Node Physical
PS: Public Server Mapping
AN: Access Node |

SS: Secret Server

Dual Intel Xeon

bpc3000 2GB
B = (3 GHz)
MN

—> Attack traffic

— Measurements traffic

X, pc3060

Attack Nodes
° . bpc3060 Dual Intel Xeon 2@EB
(10 machines) (3 GHz)

x bpc3000

W

fa

(<))

1P1g; o IP3100 Custom tool: HTTPS, Strategy AC1124 & CC1124
[(LILE O Rate per machine: 9 [Conn/min], 1 [Req/Conn]

Figure 4.13 Setup and physical mapping of Experiment 6.

Evaluation 65

[sec] previous setting.

Experiment measurements data are recorded in Logl at the MN and Log2 at the
AN. Like previous experiments, the MN emulates 100 unique sources, by running 100
threads each with a dedicated virtual IP address. Every time step (30 seconds), a
request for a 200 KB file is sent form each MN source IP over HT'TPS and then its
service time, transfer speed, and service success are recorded. So, we have 100 data
points collected every 30 seconds in Logl. The plotted measurements data in Figures
and represent the average values of each 100 points with a 95% confidence
margin. The MN itself is also of the bpc3000 physical node type. The traffic recorded
by the AN in Log2 includes: the number TCP connections per second observed by
the AN on the client (C) side, the number of encrypted HTTP requests per second
observed by the AN on the C side, and the number of encrypted HT'TP requests per
second observed by the SS (i.e., on the AN-SS side).

In this experiment, the attack traffic is generated by 1,000 unique attack sources
(emulated on 3 pc3060, 1 bpe3060, and 6 bpc3000 DeterLab physical nodes [[75]).
Manually passing the PS’s preparation stage to attack via the AN was doable in case
of 20 attack sources like in experiment 1, but it becomes unimaginable in case of 1,000
sources. Also, existing attack tools such as LOIC (utilized in experiment 1 against
the AN) offer limited control over a few attack variables and doesn’t execute HTTPS-
DDoS. So, a more flexible attack tool is developed for testing. The developed tool
also enables the emulation of multiple HTTPS-DDoS attack sources (i.e., each with a
unique IP) per physical testbed node. This is particularly useful in case of low-rate
HTTPS-DDoS attacks.

Initially, each attack source initiates 100 concurrent threads and normally passes
the PS’s preparation stage, obtaining a valid SID, then start the low-rate HTTPS-
DDoS attack. Through each fixed SID, each attack source sends a valid single en-
crypted HT'TP GET request over a single connection for a 200 KB file to the SS via
the AN. Each source then waits on that connection and reads the complete response
from the server, then disconnects. Once that request is successfully serviced, each
requesting source creates a new connection through the same SID after a 5 seconds
delay, re-sends the request, and so on.

Since there’s only a single request per connection per source IP, so the actual
achievable attack rate per source depends on the time of service for each request. In
the resulting attack’s peak, each source IP is requesting at 9.78 [connections/min|, with
1 [request/connection]. So, in total the 1,000 sources at the start of attack peak at
163 [r/s] (i.e., requests per second). Steady attack volume is assumed since the attack
rate per source is too low (measured in requests per minute) to be affected by link
variations (measured in milliseconds). This matches the single-request-per-connection
attack category and sub-detection-threshold attack category (strategy AC1124). The
attack sources also try renewing their SID multiple times in the middle of the attack

66 Evaluation

(strategy CC1124).

At first, to observe the impact of these attack conditions on the SS without pro-
tection, the generated HTTPS-DDoS attack traffic is targeted directly on the SS (i.e.,
without mitigation).

The test against the unprotected server is executed for 60 minutes. Its results can
be seen in Fig. 4.14]. As soon as the attack starts, the unprotected server suffers an
increase in service time (ST) from what initially was nearly 90 [ms| to around 15 [sec].
That increase doesn’t subside throughout the attack duration. In addition, the chance
of receiving a complete service (CoS) is degraded.

As in the previous experiment (section), mitigation is enforced on two degrees
as described in section B.4.3. Firstly by probing each requester with a the slow-
responding mechanism before proceeding with actual communication. Secondly, by
analyzing the enhanced behavior records of C'/a and F'C'/a for each unique SID. The
value of m is a tunable parameter, which is set to 4 in this experiment from experience
as need not be too large and must be less than or equal to S. An SID is considered
aggressive if it shows a nearly constant level of C'/a and FC'/« for the past m time
steps. Aggressive SIDs are put in “jail” for one time step (i.e., 30 seconds) while
still observing C'/a for each SID. During jail time, all new connection attempts are
accepted, then immediately closed and registered in the enhanced record.

Now the mitigation system is in place. The attack lasts for nearly 280 minutes,
which is_considered a long-duration high-level DDoS attack recently [H] As shown
in Fig. @, the attack is started nearly at t = 3 [min], where at t = 5 [min] the
mitigation time is complete. The attack is later switched off and on repeatedly in
the interval starting from t = 242 [min] till t = 252 [min|. Results in Fig. {.15
focus on these two time intervals. During that the first mitigation time of the AN,

the peak achievable attack rate on the public side reaches 163 [r/s], while Aty is
= AT

Service Measurements during Unmitigated Direct Attack

[y

o
©
=

¢
©
~

Service Time [ms]
o
[o]
[os]
Chance of Service

8000

o
%
b

=«<Service Time [ms]
«eePercentage of Complete Service

4000

o
o

I
N
=)

Figure 4.14 Service Measurements of the test web server under a very low rate, direct
HTTPS-DDoS attack.

Evaluation 67

Traffi Traff
250 raine 100-- <o 260 e, T 100
/ N A \ {
v . H Y !
200 80 200 i 80
\ \
T ~—TCP conn/sec (C--AN) 2) —TCP conn/sec (C--AN)
g 150 ~—HTTP req/sec (C--AN) 60 S g 150 —HTTP req/sec (C-AN) ©° S
2 HTTP reqg/sec (AN--SS) r 2 HTTP req/sec (AN--SS) &
£ 100 ---Reduction Factor [%] 40 £ 100 ---Reduction Factor [%] 40
ey T
50 20 50 20
0, S o W 04 0
0 A Y) ? .';0 .';’L M 40 1% 20 1A,9 282 9k 9a0 9a% 950 95) 95k 7_56 25% 7_69
I Time [min] ! ! Time [min] !
i i i i
800 eoemeeee Service MeasurementsviaMN I P T Service MeasurementsviaMN [
e ol 190000000 a0 0re et o e nonnimomtenienimsmie e cegomy v s PO eoacsmemonnne, vosoens
7700 1 s 0.99 7700 I T T v 3 3 099
@ 600 82 0.98 8 2 600 L1 s 0.98 8
= o -+ Transfer Speed (AN) 0975 = 500 ER TP N A 097 §
.. * o - ot . oo ..
§ 288 1. IR -« -Percentage of Complete Servil:e 0 %ﬁ 3 200 K f 1{ 1 B TLa’\lmferSpeed 0.96 %
& Rt %y & R B entogeof %
& 300 w2 0852 300 ? 1 f o3 |°*ePercentage of 0952
2 200 1 0945 E200 1 Complete Service| 94 &
=100 0.93 = 100 0.93
0. (= B.02mrm e eme 8-+ . 092
0 2 & 6 % 40 1 4 16 13 0 200 902 gah 986 88 930 952 g5k 956 958 960
! Time [min] ! ! X . !
i i i Time [min] i
i i i i
B Service Measurements via MN Y J Service Measurements via MN i
18000 n 18000
16000 £ . - 16000 -« -Service Time [ms] (PS+AN)
14000 ¥t + +Service Time [ms] (PS+AN) 14000 - - Service Time [ms] (AN)
2 12000 : ~: =« +Service Time [ms] (AN) € 12000 i
E 2 £
= 5
£ 10000 33 £ 10000 é £
- 8000 Bt 5 8000 HAEEY
] ’ H S te % 3
S 6000 23 > 6000 LR BT o v,
[b3 . @ ») ~
#4000 d1 & 4000 it ::_l-_‘..f i F k
2000 +meowed -8 S i S A A M 2000 weoweed b 90 R U O L o e
Sesomer 0000000000 0000000000000000000000900001000- csesmene . oo’ s oemsesomesrosino o
N 2 & 6 % 10 42 Ah 46 43 90 200 982 Ak 986 a3 950 952 95h 950 958 90
Time [min] Time [min]

Figure 4.15 Results of Experiment 6.

approximately 140.8 [r/s]. The AN’s effect is seen in terms of CoS and the reduction
in attack traffic reaching to the SS. For every time step i, the observed RF; is nearly
97.8% after the mitigation phase. However, during the mitigation phase, the value of
RF; is 61.6% or higher. Before the attack start, RF; is undefined. The AN also shows
a 100% CoS; during and after the mitigation time. So, the value of M F; = RF;. Yet,
the mitigation cost is observed as an increase in S7T; for the requested file during the
mitigation phase.

Similar to previous experiments, in response to the AN’s measures, the new TCP
connection attempts per second on the C-AN side rises from 54 requests per second
initially during the mitigation phase, to nearly steadily 200 requests per second after-
wards, despite of the reduction in high-level request rate.

As the attack sources switch their malicious traffic off and back on, while renewing
their SIDs repeatedly, like the case seen starting from t = 242 [min|, we observe the
AN’s effect again in terms of RF; and S7T;, which indicates how the AN re-enters a
new mitigation phase. The switching attack resulted in service time increase to nearly
12 seconds at first, then around 7 seconds. On the other hand, the chance of service
metric doesn’t change throughout the experiment.

68 Evaluation

4.2.7 Multivector HTTP(S)-DDoS Attack via AN

In this experiment, the SS is targeted via the AN with a double-vector HTTP(S)-
DDoS attack; combining the high-rate slow-requesting HT'TP-DDoS and sub-threshold
HTTPS-DDoS strategies. The goal is to observe the AN’s effect on such traffic far
from the server and evaluate the MF, MC, MT, and CD.

This time, an updated version of the AN prototype is used. It includes the second
countermeasure described in Sect. B.4.3, and a reduced P(0, 3) (in the P; lookup table
described at the end of Sect. w) from 8 to 6, for a less aggressive initial response
against new SIDs.

The setup of the experiment is as shown in Fig. #.16. The utilized node types
bvx2200, bpc2133, and pc2133 were automatically selected by DeterLab [75]. A single
SS, AN, and PS are used in this experiment, each on a dedicated bvx2200 machine.
For attack, 1,000 HTTPS-DDoS custom attack sources are emulated on 10 machines
(5 bvx2200 and 5 bpc2133), in addition to 10 Slowloris sources emulated on 10 addi-
tional machines (8 pc2133 and 2 bpc3000). In addition, 100 measurement sources are
emulated on the MN (bvx2200), which are modified to use HT'TPS, instead of HTTP.
To observe the AN’s collateral damage on non-attacking users sharing an attack IP,
2 additional measurement sources are run, one measurement source sharing the [P
address of a Slowloris attack source (labeled M-shared-1) and another sharing that
of a HTTPS-DDoS attacking source (labeled M-shared-2). All nodes’ OS is Linux
V3.13.0-74, while the SS is running an unmodified Apache server (version 2.4.7). We
test with a lower av = 30 [sec].

Slow-requesting HTTP-DDoS is an attack that consumes the limit on connections
to the server by keeping it waiting for the rest of the slowly arriving request. For that,

Rate: 100 requests per o [sec] Legend
MN: Measurements Node i
MN-1 - _|P— PS PS: Public Server Phys“':al
Logl PS i Mapping
AN: Access Node |

1P, ... IP,

(1lmach1inr‘|le) 7 \ SS: Secret Server
— Attack traffic PS bvx2200 Dual Core AMD Opteron

\ | — Measurements trafic : MN 1.8 GHz

4GB

o

x bvx2200

—'Pss Attack Nodes WS INSET Dual Intel Xeon es
(20 machines) (3 GHz)
| x13 One Intel Xeon

2133 4GB
pe (2.13 GHz)

High rate (AD1313 & CD1313)
Req. parts separation: 1 [sec]

Modified Slowloris:

Logad
Attacker
#1010
1Py o 1P Custom tool: HTTPS, Strategy AC1124 & CC1124
(10 machines) Rate per machine: 9 [Conn/min], 1 [Req/Conn]

IPygg e P33
(10 machines)

Figure 4.16 Setup and physical mapping of Experiment 7.

Evaluation 69

we utilize Slowloris which is commonly used by attackers [72]. Originally, the tool only
blindly focuses on the PS without reaching any further. However, in the worst case
it can be adapted to reach to the AN, which we consider here. Separation between
Slowloris requests is set to 1 second. The resulting rate per source is high, because
the Slowloris tool aggressively attempts to open multiple concurrent connections. In
addition, to emulate defense-aware attack behavior, assuming attacker’s knowledge
of the preset threshold, we utilize a sub-threshold HTTPS-DDoS which in this case
outputs a single valid request per connection, via a renewed single connection per
SID, repeated nearly every 7 seconds (i.e., rate per source IP = 9 [conn/min], with 1

[req/conn]).
The generated multi-vector attack traffic matches the single-request per connec-

tion, multi-behavior per-shared-IP, and sub-detection-thresholds attack categories (or
strategies: AC1124, CC1124, AD1313, and CD1313).

Before hiding the SS, these attack conditions are directed against the SS without
mitigation. Results showed 0.0% CoS under_this direct double-vector attack. This is
inline with the impact observed in Figures .14 and {.11..

Then, the experiment is run for 120 [min], of which the first 40 [min| are shown in
Fig. . The attack traffic starts at t = 8 [min] and continues for 13 minutes before
the first controlled switching off/on operation. In the first 1.5 minutes of the attack,
a peak of 1,601 HTTP(S) [r/s| is observed, with average of 1424.6 [r/s]. During this
interval, we observe a decrease in RF; to 92.8%, with an unaffected CoS; of 100%
(i.e., MF; = RF;) for the MN, M-shared-1, and M-shared-2. Before t = 8 [min], RF
is undefined. Inspecting the measurements of the MN, M-shared-1, and M-shared-
2, we notice spikes in ST; during the mitigation phases, coinciding with the attack
start and later restarts. The value of ST; temporarily rises to nearly 17 seconds for
obtaining a complete service of the requested file via the AN. Afterwards, the effect of
the AN can be seen in terms of around 99.2% RF;, and back to pre-attack ST; levels.
This suggests that the jail concept (Section @) and enhanced identification can be
effective in remotely isolating automated attack categories, even without knowledge
of the traffic content, and even with sub-threshold attack rate and mixed behavior.

Later, at t= 23.5 [min], the coordinated attack was restarted after 2 minutes of
planned inactivity (i.e., more than «). The attack tools restart their attack by aban-
doning their old SIDs and acquiring new SIDs then attacking though the new ones.
The AN temporarily showed a 94.4% RF; with no effect on CoS;, and as earlier
the ST; deteriorated temporarily. The prototype AN showed consistent performance
throughout the experiment.

Further, measurements from the attack nodes’ IPs (i.e., from M-shared-1, and M-
shared-2) show an additional service time increase next to the spikes. This increase
indicates a change in the attack IPs’ reputations to the bad level (as explained in
Sect. B.4.3). The increase results in extra probing time only for these IPs, until the

Evaluation

70

reputation automatically returns to normal after § time steps from the jail start. Also,
ST, via PS rises because the AN feeds back the PID’s Ry, to it. Non-attacking IPs
(of the MN) didn’t experience this extra service time. However, such short increase is
only a few minutes long, until the reputation is later normalized, or until the attack
[Ps restart the attack.

As attacks evolve, it’s anticipated that an even more complex attack may adapt

Traffi
200 2000 o e e 100
175 1750 «.+«Reduction Factor [%] 98 &5
150 =2 1500 . —TCP conn/sec (C--AN) 96 4
© 125 <1250 —HTTP reg/sec (C-AN) 94
2100 £1000 HTTP req/sec (AN-SS) 92 §
< 759 750 | 907G
50 O 500 / \ \\ 882
25 250 86
0 0, R - 184
(=] < 0 o~ o o < 0 o o o
i Time [min] i
; Service Measurements via MN i
15700 e 010
20000 L T 99 __
—_ B H X
é’ 15000 :'bg ?ﬂ:-. 98 -
C=1 I e 2 o
i 10000 ? § H : 97 ©
5000 i1] 96
frssssssrseeesd SESmmRsemsirmlmeno ! Mvfeweemsisiissssssiasizi
0 o <) ~ © o <] o~ © d95
0 — — Y ~ ~ ™] <
20000 < eeeeeeenn Service Measurements via M-Shared-1 100
16000 99
_ J 3 -
Z 12000 : it 98K
‘E 8000 :: 1 foees, :" '-:.1.4.“-.. 97 "8’
e N [[1
4000 : | ..J-Ihcc -.-'L.. : lol-q. .. 96
PAEPPOP (I ¥ X yadted videbtrerki
0 o < © ~ © o < I a © g%
; — — ~ ~ ~ o ™ <HI
; Service Measurements via M-Shared-2 ;
-7 "100
20000 g 99
= 3l L . S
= 15000 {.E . 2 98,
= H] o
£ 10000 § G, ’; Gt 97
5000 §obaaal I YO 1 96
o fmaamarsd Crftidesd Frdrteirsds 95
o < 0 (o] o o < o0 o~ (Yo} o
i — o~ o~ o~ [a2] o <
Time [min]

 Service Time of requested file (PS+AN), mean (95% Cl)
«« Service Time of requested file (AN), mean (95% Cl)
»« Chance of Service, mean (95% Cl)

Figure 4.17 Results of Experiment 7: Traffic and Service Measurements via MN, M-
shared-1, and M-shared-2.

Evaluation

71

by constantly switching its traffic. This is discussed in Sect.@.

Figure summarizes the results of the experiments discussed in this chapter.

ouaion o A1 et Ot 28
4.2.2 |Slow-Requesting HTTP-DDoS 3.3 [hr] Slowloris 20 2000 0% 100% ~0
4 Distributqed Hi:l Rate, Slow- = (Zz(lsgo[tr)/sn o u
4.2. RequestinngTI'P-DDolS 5.2 [hr] Custom 2,000 (16 [t/5) 0% >98% < 2.5[sec]
424 ;fmg;ﬁ:;‘::‘t#:gsgz 12[hr] Custom 10,000 (66‘_';’55 s % 100% <0

Sec. |Category

Duration

Tool

Attack
sources

Attack peak
(per source)

Direct CoS

A (sT)

CoS during MT (Cos after MT |MC
via AN (RF) during MT

via AN (RF)

mcC
after MT

High Rate 6,149) 66.5% >78% 100% <165

AL e 2ilflin] | fere 20 307.5[r/sl) 2™ (547 [sec]) (99.6%) (99.8%) [sec] =@2(kz
Slow-Requesting Modified 1,044 . o 100% 100%

442 rreooos ¥ siowtoris (20 (tosaprsy 2R (0% (>9%) (99%) <1lsec] |<1lsec]

Low Rate 163) ~90% 100% 100% N

4.2.6 HTTPS-DDOS 4.7 [hr] Custom 1,000 (0.163 [r/s]) 2 [min] (15 [sec]) (>61%) (97.8%) < 14 [sec] 0

s 2 [hr] Custom +

Multivector e 1,000 + 1,601 9 o 100% 100%

427 | TTp(5)-DDoS gl';’:,'lfo":i‘: 10 (16 Lo [minl 0% (>92.8%) (99.2%) <16[sec] <1lsec]

Figure 4.18 Summary of experiments.

Chapter 5

Discussion

5.1 Service Time Cost

With the extra preparation and communication steps, the proposed framework intro-
duces a cost in service time even in absence of attack.

For example, consider Figure l5:1| It compares the non-attack measured service
time for three file sizes for demonstration when requested directly from the SS, and via
the mitigation system considering the effect of the PS (via the PS + AN) and excluding
it (via AN). For the same requested file, with no concurrency, the service time via the
prototype system is much larger in comparison to the direct C-SS communication case.

However, several points to be taken into consideration. First, service time variation
is expected with the SS’s load, especially in case of attack. For example, the service
time of the requested file directly from the SS rises to 1825.4 [ms| with only 100
concurrent requests (see section ’s Figure W.1l). So, service time directly from
the SS may be lower during non-attack time, but as DDoS attacks overwhelm it
with unmitigated requests then the service time via the prototype system become
comparable. For example in section §.2.4, with nearly 10,000 concurrent attempts
per single PS we observe a flat service time cost of 2,600 [ms] for the first request
(i.e., via PS + AN), and 1,800 [ms] for subsequent ones (i.e., via AN). Second, the
PS’s contribution to service time is only observed once by the client. In this case, it’s
nearly constant 567 [ms] for all three requested files. Consequent requests from the
client experience only the cost by the AN. Third, the current system implementation
is not an optimal version, but rather a proof of concept prototype. For example,
optimizing the AN’s data relay thread management would lead to more efficient data
relaying by the AN and so reduce the service time seen by clients.

73

74 Discussion

Service Time
3000
M Direct from SS

Via AN 2475
2200 Via PS + AN
1907.2
2000 1785.1
g 1500 1399.1
= 1219.4
1000 832.1
500
B 585 104.8
0 —_— — —_—
200KBfile 500KBfile 1000KBfile

Figure 5.1 Non-attack service time measurements.

5.2 Scalability

Any server has a finite local network capacity (Cnwy), and processing capacity (Cpy).
For this server to be available for service, then Cyyw, must never fall below the com-
bined volume of the inbound attack (Vw,,) and legitimate traffic (Vyw,,,,). In
addition, Cp, must never fall below the combined processing requirements volume of
the inbound attack (Vp,,) and legitimate traffic (Vp,,,). This can be expressed in
formulas (15:11) and (@3 So, denial of service takes place any time Vnw,,, + VNwp

exceed Cnwyg, or if Vp,, + Vp ., exceed Cpy.
VW + Vaw e < Onwsg (5.1)
VPAtt + VPLegit < CPS (52>

That said, we define two kinds of scalability. Scalability against attacks (i.e.,
against Vp,,, and Vnw,,,), and scalability with legitimate traffic (i.e., with VP p e and
VNWLCgit)'

Scalability against attacks, means that as DDoS attacks increase in volume, the
mitigation scheme is still able to handle it efficiently. In that sense, scalability against
Vp,,, and Vyw,,, is fully the mitigation solution’s responsibility. It has nothing to do
with the server’s capacity to handle traffic (i.e., Cpg or Cnwyg). Assuming enough over
provisioning of nodes by the mitigation framework.

On the other hand, scalability with legitimate traffic depends on the mitigation
framework, as well as the server’s capacity. Thus, it’s a shared responsibility. They
both have to provide the enough capacity required by legitimate users’ traffic. So,
scalability with Vp, . and Vxw,,,, is a concern for the protected server too, which is
required to provide the necessary local processing and network capacity for legitimate

Discussion 75

users. Yes, local, since the proposed method is geared towards end-to-end-encrypted
content. From the mitigation framework’s perspective, scalability is achievable by
distributing traffic over thousands of nodes, thus eliminating the possibility of choke
points.

Scalability against attacks:

So, the scalability question becomes; can the proposed framework scale against massive
attack traffic?

Scalability against attacks is fully the mitigation solution’s responsibility, regard-
less of the server’s capacity to handle traffic, assuming enough over provisioning of
overlay nodes. Reported large multi-Gbps attacks are on the low-level [§], which can’t
reach to the SS anyway in the proposed scheme. We discuss about low-level attacks
further in Sect. @V

Conversely, high-level attacks are inherently much smaller in volume since they
can’t be amplified, and to evade detection. It is practical to assume tens of thousands
of nodes in operation, especially because of the modularity of the PSs and ANs which
makes them easy to replicate. Also, traffic sources (clients or attackers) have no choice
on which AN to use, and are assigned by the system. In addition, all ANs and PSs are
shared by all SSs. DDoS traffic by nature is focused on a finite number of targets at
any point in time. So, actual clients currently being served during the attack incident
are transferred to new nodes, where the attacking sources are left with no clue on how
to deny the specific services being targeted.

For example, results of the experiment in section suggest that a single PS can
handle nearly 5000 new connections per second from 2,000 different attack sources,
generating nearly 20,000 simultaneous attempts with attack rate of 20,000 request
parts per second, without a large cost in service chance or time. On a similar scale,
an attack traffic of 6,149 [r/s| towards the AN is utilized in the experiment in section
. This is a significant volume per overlay node, considering the reported peak high-
level attack rate of 268,800 [r/s] [8]. So, to mitigate the reported peak for example,
nearly 44 ANs would be required which is possible with tens of thousands of overlay
nodes. Also in later experiments, starting from Section {.2.5, the prototype AN is
equipped with the second degree countermeasure described in Section B.4.3, which
restricts the aforementioned cost to only within the mitigation phase. This can apply
to the experiment in Section §.2.1] as well.

Yet, even with a mitigation time as short as 2 minutes, it’s desired to reduce the
mitigation cost inside that interval too. An open research direction would be utilizing
the proposed framework to develop additional degrees of countermeasures based on
machine learning that can reduce the cost even within the short detection phase. One
possible such countermeasure would be based on monitoring past records of S/«, S/ P,

76 Discussion

FS/a, and F'S/P so that switching attack behaviors are identified.

AN’s port exhaustion:

Further, the AN should not run out of available ports for allowing new SIDs. To avoid
depleting the finite ports pool per AN, different OIDs reuse the same AN ports. So,
for k£ OIDs, | ANs, and a pool of n ports per AN, then the number of SIDs that this
system can accommodate is up to [x k x n SIDs. For example, a system with 1,000
ANs and a pool of 50,000 ports per AN, the system can theoretically accommodate
up to 50 million SID’s per OID.

5.3 Evaluation Method

Evaluations are conducted on the DeterLab testbed within specified environments. So,
there are numerous variable factors that may have an impact on the results. Factors in-
clude; the system’s parameters, prototype implementation, nodes’ specifications, net-
work conditions, attack and legitimate behavior, and server configuration. However,
our goal is to evaluate with specific metrics the effect of the enhanced identification
enabled by the proposed concept on attacks that are conventionally hard to detect
without data inspection. It’s assumed that evaluating the mitigation effectiveness
against the complex version of an attack category suggests the same effectiveness is
achievable against its less complex version.

We emulated various such attack categories, namely; single-request per-connection,
multi-behavior per-shared-IP, sub-detection-threshold, and multi-vector attacks. Vari-
ations in strategies within such categories may be endless. Yet some strategies are more
likely than others, due do multiple factors, including; attack tool popularity, attack
sophistication, and victim vulnerability. In the conducted experiments, we utilized
popular tools among attackers (e.g., LOIC and Slowloris), which generate a high-rate
single-request per-connection types of attacks [72,76]. In addition, we utilized cus-
tom tools that we developed to emulate multi-behavior per-shared-IP, sub-detection-
threshold, and multi-vector HTTP(S)-DDoS attacks. Next section discusses about
other attack possibilities.

Note that DDoS datasets are often utilized to compare the performance of different
machine learning algorithms [77-79]. Although utilizing attack traffic datasets can be
useful in quantitative comparison between mitigation methods, existing datasets would
require pre-experiment preparation for each source IP in order to be usable with the
proposed system. Firstly, it’s required to specify the number of clients per IP and
specify the first connection per client (SID). Both are unknown. Secondly, for each
client, it’s required to specify which of following connections are related. Also, create

Discussion 77

a session for them at the AN (i.e., synthetic redirection). Synthetic redirection means
that eventually the attack traffic will be generated similar to our method. Therefore,
such datasets offer no advantage to our traffic generation method due to the redirection
message from the PS. In addition, at the PS, datasets that record the type of requested
resource would have no effect on the PS performance since the PS performs constant
tasks regardless of the actual requested resource. Similarly, the type of requested
resource has no effect on AN detection. Also, the number of requests per connection
expected by the PS must be one, otherwise the attack is easy to mitigate.

Also, in some of the experiments the number of attack sources is multiplied via
virtualization, while in others the number of sources is small. That’s necessary given a
finite number of testbed nodes. However, in the real situation, more attack sources are
anticipated. Notice that we categorize attacks into two kinds; low-rate per source and
high-rate per source. High-rate attacks are not as complex as low rate attacks, since
they are above thresholds, and therefore are more easily detectable. Their difficulty
lies in their traffic volume. So, testing with a small number of high-rate sources offers
an understanding of how an n times larger number of such sources can be mitigated by
distributing them over n Ans, for example. So, the small number of high-rate attack
sources per AN is realistic when put in that context. On the other hand, low-rate
attacks are the most difficult to detect, since they are below detection thresholds. We
assume that since the rate per source in this case is small, then combining multiple
virtual sources per one testbed node do not affect the realism of the generated traffic.

Further, telling how much the utilized experiment topologies can predict the be-
havior on a larger, real, topology is an open research problem [66]. Eventually, live
deployment and experimentation of performance would be needed before final adop-
tion, and is a promising research direction, that builds on our work which demonstrated
the soundness of the concept itself.

The conducted evaluations are based not only on the amount of attack traffic
reduction, but rather on a comprehensive set of metrics (described in section)
that are periodically measured with respect to time. These metrics aim to describe
the mitigation from three main angles; the amount of traffic reduction in high-level
traffic by the overlay-node (i.e., RF), the chance of receiving the service by a non-
attacking client (i.e., CoS), and the time taken to mitigate the attack (i.e., MT). For
the AN, both RF and CoS are jountly represented in a single metric (i.e., MF). In
addition, the MC and CD metrics are measured in attempt to further describe the
effect of mitigation on the service. Yet, these metrics are to be used with caution.
For example, the definition of mitigation time describes the time taken to mitigate
attacking traffic, however it assumes knowledge of ¢..,..,, which may not always be
the case. The exact start time of an attack may be difficult to determine in case
of a very low-rate attack, which makes it difficult to calculate the mitigation time
and similarly the value of Att,,,. Also, the measured mitigation cost is a function of
the service time which may vary depending on the requested file size, the degree of

78 Discussion

concurrency of measurements requests, the server’s configuration and the prototype
implementation code. Therefore, an absolute value is used since otherwise a percentage
value would imply normalization. In related works, the CoS is used as a metric in [53]
and called “Client Success Ratio”, while in [54] the used metric is equivalent to our
defined RF whereas researchers in [48] consider service time in their metrics. Similarly,
the metrics used in [p7] are “bandwidth utilization by attacker” (equivalent to RF') and
“ratio of lost legitimate users to the total number of legitimate users” (equivalent to
CoS). Furthermore, the definition of collateral damage should also include the service
time as a factor. As in experiment 7, the service time for the shared IPs appears
similar to the non-attacking sources, except with a temporary increase in service time,
which is a kind of collateral damage despite of the 100% CoS.

Also, among the experiments’ factors are the arbitrarily set parameters of the im-
plemented prototype, such as, a and C'/ a‘Thd. For example, a small o can help reduce
the mitigation time, yet, a large one is more suitable for slower and switching attacks.
Also, a fixed C/ &!T}d may lead to false detection under different attack conditions,
say, if attackers learn to control their traffic below it, while some non-attacking clients
may occasionally exceed it. Therefore, the conducted experiments consider both above
and sub-threshold attacks. However, real-time adaptation to attack variations would
require automatic tuning of the system’s parameters and learning about client usage
record patterns for each server. For that, this work is extendable to incorporate ex-
isting machine learning based DDoS mitigation methods which originally only employ
two-level identification (assuming overlay-based deployment and compliance with the
encryption requirement).

5.4 Attack Conditions

DDoS mitigation has been an endless battle where attack strategies evolve just as
mitigation solutions do. Security threats are constantly evolving and will continue to
evolve. The more complex the attack categories a defense can handle, the smarter the
attackers will try. It’s an endless game. No one can claim that a mitigation method
requires no future evolution. However, it’s possible to propose a framework, like the
one presented here, with the necessary trust requirements of these days that in the past
were less of a concern for users and organizations. The proposed framework is tested
with today’s complex attacks. As security threats evolve we argue that the proposed
method offers a practical framework that can evolve as future types of application
level misbehavior evolve, with no compromise between end-to-end data encryption
and service availability.

In this research, we focus on the increasingly popular high-level DDoS attacks
against web servers, more specifically complex HTTP(S)-DDoS attacks. Yet, it’s also

Discussion 79

necessary to discuss the possibility of a low-level DDoS attack. As an overlay-based
method, assuming thousands of ANs and PSs, the proposed method renders all low-
level based attacks ineffective, i.e., preventable. That includes new ones. The PS
expects connections from almost any source at any time to its fixed port 80, so it
may attract low-level attacks such as a TCP SYN flood. However, in contrast to a
conventional web server, the PS expects only one request per client, and performs
constant simple tasks regardless of the requested resource. This may explain the
difference in impact of request concurrency on the unprotected SS (section)
compared to the PS prototype (sections ~ @) Therefore, the specialized PSs
are expected to handle larger request rates than a conventional web server. In addition,
with a proper DNS failover mechanism, multiple PSs can be sacrificed to stop a multi-
Gbps massive attack of such kind far from the actual client-server communication.
On the other hand, each AN expects only connections from specified source IPs to
specified port numbers at specified times. Even if a low-level DDoS attack is towards
a legitimately acquired SID, attack traffic is spread over multiple ANs beyond the
attacker’s choice, where any incomplete attempts, or high rate of C'/«, are easily
detectable by the AN and updates Rg accordingly. Otherwise, low-level attack traffic
can only hope to congest the links to the thousands of ANs which simply drop incorrect
SID connection attempts.

On the other hand, there’s a variety of high-level attack possibilities. They vary
in commonness and complexity. Mitigating complex HTTP(S)-DDoS attacks, far
from the server, without inspecting the client-server traffic content is an especially
challenging task. In the presented experiments, we investigated the mitigation of
complex HTTP(S)-DDoS attack categories, such as; single-request per connection,
multi-behavior per-shared-IP, sub-detection-thresholds, slow-requesting HTTP-DDoS,
encrypted, and multi-vector attacks. Despite of the AN’s short mitigation times, the
attacker can still renew its session and use the additional detection time to affect the
server. Such hypothetical scenario is possible and should be anticipated. In addition,
the attacker may keep trying again repeatedly with different attack parameters com-
binations that may eventually be effective. Notice that an attack focused on the AN
implies that the sources can successfully pass the PS preparation steps, thus revealing
their true IP address and the targeted server. It also implies that the affected ANs are
selected by the PSs, beyond the sources’ choice. So, sources can’t choose which AN to
attack through on the high-level. Therefore, an attack source can’t distribute its high-
level attack connections over multiple ANs. In this case, the concerned AN with the
introduced secure enhanced identification will have the attacking PID showing steady
S/a, rampant S/P, but small C/S = C/a. So, once again it can be detected utilizing
these attributes details that couldn’t be seen conventionally without data inspection
in the overlay.

There’s a chance that an evolved HTTP(S)-DDoS attack sends multiple requests
per connection, or multiple SIDs per PID (e.g., the traffic switching behavior). For

80 Discussion

that, additional attributes must be utilized in detection, including M/« and S/a.
The attacker’s options are limited; if the attacker reduces M/a, C'/a and C'/S to
evade detection, then intuitively the rate of S/« and S/P would rise. So, a PID with
small C'/a, small C'/S, and small M /«a, but large S/« would indicate the likelihood
of suspicious behavior. Also, analyzing with a suitable machine learning algorithm
the recorded values of S/« for the past /5 time steps can enable detecting a switching
attack behavior with high mitigation factors in short mitigation times, far from the
server, while complying with the encryption requirement. So, we argue that the AN’s
effect presented in Section can be extended to the other attack types once their
respective attributes are considered.

Furthermore, the mitigation system must consider the case where the attack traf-
fic may not be detected initially by the AN. For example, a new attack strategy that
appears identical to legitimate behavior may be hard to detect given the described
levels of behavior attributes in Section E alone, even with automatic mitigation
parameters tuning. In this worst case, a large part of the attack traffic is not de-
tected by the AN, i.e., passed to the SS, exceeding its capacity. Then, the undetected
traffic would require a supplementary detection component. Section discusses the
supplementary component as part of the actual implementation considerations, while
Section B1| discusses its concept from a trust perspective.

Notice that complex HTTP(S)-DDoS attacks are inherently of low request rate per
source. Let’s say the attacker could gather 100,000 online distributed sources, a figure
not reported before in a high-level attack, generating total about 17,000 encrypted
HTTP GET requests per second (i.e., nearly 10 requests per minute per source, like
the investigated case in section @) Therefore, only about 100 ANs with just 97.8%
RF (as in section @) would be enough to reduce the attack to only 374 of the
original 17,000 (i.e., DRR), while simultaneously serving other clients. Reducing the
attack traffic reaching the SS by 97.8% would also reduce the supplementary detection
load on the SS by the same amount. This reduction is crucial for the supplementary
detection component to avoid being overwhelmed.

Another model of DDoS attacks is called Economic Denial of Sustainability (EDoS).
The concept is based on engaging a paid-for service, such as an on-demand DDoS
mitigation service, to cost the SME economically every time the attack is executed.
However, the economic model of EDoS doesn’t hold in case of an always-on shared
solution such as the proposed method. Large enough number of ANs and PSs would
be required for this always-on assumption, which is made possible by the shared and
modular nature of such components.

Discussion 81

5.5 Encryption and Trust

In the proposed concept, the third-party-managed mitigation service is trustworthy
as it cannot access the C-SS content in transit, which is guaranteed by non-split
SSL connections between the C and SS ends. Notice that conventional overlay-based
methods may also offer non-split SSL as an option utilizing SNI, which we discuss
about its limitations in Sect. @

However, initially the client and PS exchange a single request and response, which
are unencrypted. So, only that first transaction is readable by the mitigation provider
and any man in the middle (MITM). But consider the goal of SSL encryption, which
is about guaranteeing the integrity, authenticity and confidentiality of the client-server
transactions. Since the cryptography information, including the server’s private key, is
strictly only managed locally by the SS, so the PS (or MITM) can’t redirect to a non-
authentic server without the client realizing it, and the AN cannot read or modify any
C-SS data. So, server authenticity, data confidentiality and integrity are preserved.
Further, we argue that the information leakage from the unencrypted first request to
the PS is not significant, since it’s already known to the mitigation provider that C
is intending to communicate with SS. Notice that in the SSL handshake, the server’s
certificate is not encrypted anyway, which can also leak the same information for any
MITM.

In addition, the SS is locally-managed which means that its administrators already
trust the server related software and hardware. However, assuming an additional local
supplementary detection component (as discussed in Section p.7) may raise trust con-
cerns as it can access unencrypted information. Trust is indeed a complicated problem.
For instance, trust concerns have recently convinced the European Parliament to push
for systematic replacement of existing proprietary software in all the EU institutions
by open-source software, and adding ‘open-source’ as a mandatory selection criterion
in public IT procurement [80]. To promote trust in our proposed method, the source
code of the local component must be made publicly accessible for independent audit-
ing and verification. This has two major merits. First, it helps prevent backdoors
where SMEs can fully manage it and be independently assured that it operates as
specified. Second, it opens the way for multiple proprietary remotely-based mitigation
providers to compete and cooperate, using the open-source component and openly
improving it. This way, the business of DDoS mitigation is no more dominated by
major proprietary vendors. Thus, promoting affordable, practical, and trustworthy
DDoS mitigation solutions for SMEs to choose from and easily switch between them.

One last point about encryption. Since we already trust major third-party certifi-
cate authorities (CA) to verify the authenticity of the certificate-owning server, would
it be widely acceptable to expand this trust further to allow CAs to inspect traffic
data for the sake of DDoS-mitigation? Recent studies about encryption and trust

82 Discussion

suggest otherwise [26-28]. Also, making no new trust assumptions about the DDoS
mitigation providers allows for multiple new innovative entities to enter the business of
overlay-based DDoS mitigation and be widely accepted by users (SMEs and clients).

5.6 Conventional Solutions

Increasing the content’s availability by utilizing existing commercial overlay-based
methods, may achieve effective mitigation of HTTP(S)-DDoS attacks. However, this
implies authorizing the third-party to manage the server’s encryption parameters.
Recent studies suggest that authorizing a third-party to manage the server’s private
key may not be acceptable by large sector of organizations and web users [26-28].

Instead, conventional overlay-based solutions can also offer non-split SSL as an
option utilizing SNI. However, conventional overlay-based solutions with SNI suffer
from limited identification (i.e., only per-IP and per-connection). Without enhanced
identification, if a source IP opens z connections per unit time for example, determin-
ing whether z is normal or not depends on the number of clients sharing that IP, which
is unknown by the remotely-based overlay nodes. Same with persistent connections.
Also, future attacking connections cannot be remotely profiled if only a single request
per connection is sent. Further, if a source IP is blocked for slowly creating new attack
connections, conventionally it’s hard to exempt new non-attack connections either si-
multaneously or even promptly after the attack stops. So, although conventional
overlay-based solutions with SNI can be effective against massive low-level DDoS at-
tacks, we argue that they can’t effectively mitigate complex HTTP(S)-DDoS attack
types such as; single-request per-connection, multi-behavior per-shared-IP, encrypted,
and sub-detection-thresholds. This means that for conventional overlay-based solu-
tions with SNI and non-split SSL, more attack categories would need to be detected
locally, and stopped only per-IP or per-connection. On the other hand, our proposed
method aims at increasing the scope of attack categories that can be effectively mit-
igated far from the server, thus reducing the burden on the server’s supplementary
detection component.

There’s one important aspect to consider, for setting the ground for comparison
with conventional methods. To compare two mitigation methods, it’s mandatory to
firstly specify the category of attack over which the comparison is constructed. If
both methods to be compared can mitigate a complex category of attacks, then the
points of the comparison would be shown in terms of the degree of mitigation (or
MF), the speed of mitigation (or MT), etc. However, if one of the mitigation methods
can’t mitigate such complex attack category, then quantitative comparison would be
pointless and hard to construct given the difference in scope.

Reviewing recent research works on the mitigation of HTTP(S)-DDoS in academia,

Discussion 83

we are yet to see an overlay-based approach that assumes non-split end-to-end-encrypted
client-server connections. In addition, certain complex attacks, which are missing
from related works, cannot be detected by conventional methods given their com-
mon design assumptions. For example, single-request per-connection encrypted sub-
detection-thresholds HTTP(S)-DDoS attack (such as in section @) Yet, utilizing
the introduced secure enhanced identification, the implemented proof-of-concept pro-
totype shows high mitigation factors and low mitigation time, even for such attack
condition, in contrast to related methods that inspect the content. On the other hand,
even under less complex attacks, related research show lower mitigation performance
than that of the proposed method. For example, the simulations by [b3] with 280
attacker sources, show an 80% “Client Success Ratio” (i.e., CoS), while in [54], exper-
imental results with 600 attacker sources show nearly 56% reduction in attack traffic
(i.e., RF) in 2 minutes. On the other hand, commercial solutions such as [81] claim
a b to 15 minutes “time to mitigate”, which is not measured from the actual attack
starting time but from the time the attack traffic is redirected to the mitigation centers
after it has been detected (i.e., an additional detection time should be added). So, it’s
not equivalent to our defined MT, but rather longer.

Although the concept of pre-service verification have been previously proposed,
the key originality of our proposed verification (i.e., pre-service probing) technique
is compatibility with existing standards without assuming impractical modifications,
and compliance with the true end-to-end encryption requirement. In contrast to the
pre-service verification discussed in in [41, 42], the system proposed in this disser-
tation requires no client-side or server-side special plugins for remote mitigation to
work. Also, the proposed method in this dissertation requires no traffic decryption for
embedding mitigation enabling script in the server’ s response. Clients are tested us-
ing the proposed pre-service probing instead. Further, in [41,42], the communication
permission is granted locally at the server which adds a load on the server which is
avoided in my method where the communication permission is granted externally by
the overlay-nodes.

Also, the concept of client accounting itself (i.e., reputation) is not new [46, 47].
In contrast to related previous methods, the proposed method is the first to build a
client reputation based on three levels of behavior attributes without assuming traffic
decryption at the overlay nodes or special software at the client or server. Also,
supplementary locally-based detection is only assumed for the small fraction traffic
that’s unmitigated far from the server.

As discussed in_Chapters m and E, there are many conventional DDoS mitigation
solutions. Figure summarizes the comparison between the proposed framework
to conventional locally-based and overlay-based approaches from five perspectives.
Source and infrastructure based approaches are excluded out of practicality.

Conventional overlay-based solutions can mitigate HTTP(S)-DDoS attacks but

84 Discussion

Proposed Conventional Solutions
Method Locally-based Overlay-based
Connection Encryption

(Client-Server) Full (end-to-end) Full (end-to-end) Split (decrypted)

Client Identification Enhanced Enhanced Limited
Capital + Operating Low High Low
Expense
Scalability against
Attack Traffic Scalable No Scalable
Scalability with Shared Server’s Shared
Legitimate Traffic responsibility responsibility responsibility

Figure 5.2 Proposed vs conventional solutions.

these assume either a split SSL connection between the client and server, or limited
(per-IP and per-connection) identification, or both [29-31,36]. On the other hand, a
locally-based solution is intuitively in position that enables both non-split encryption
requirement (since private key is only managed locally) and enhanced identification
(e.g., utilizing HTTP cookies). In contrast, our method enables a content-indifferent
enhanced identification, far from the server, with no need (or ability) to inspect or
modify the client-server communications for DDoS mitigation. Scalability and expense
wise, the proposed method inherits the general merits of overlay-based solutions which
are superior to locally-based solutions. In short, our method is most suitable for trust-
aware SMEs that strictly locally manage encryption parameters and their servers but
need a remotely-based mitigation service for its high scalability and low cost.

5.7 Actual Implementation Considerations

The purpose of the current prototype is having a simplified initial working version
of the proposed platform. Such platform readies the way for promising research by
demonstrating, even with suboptimal prototype parameters, the soundness of the mit-
igation concept. However, in a real implementation, several changes should be con-
sidered.

Firstly, implementing a supplementary local detection component and feedback
mechanism from the SS is a necessary feature to mitigate certain complex attacks.
For example, an invalid request HT'TPS-DDoS attack may appear similar to normal
behavior to the AN on the low-level and therefore require a high-level feedback from
the SS directly, or indirectly, to the AN.

One way to implement supplementary detection is to have the SS periodically
transfer its logs to the mitigation provider (e.g., using Syslog messages). Then the

Discussion 85

mitigation provider analyzes the logged traffic features such as the request categories,
sizes, errors, frequencies, and arrival times. However, the logs alone may still not be
enough to detect a careful flash-crowd mimicking attack. Also, logs such as requests’
categories vary from server to server, and so content-indifferent log analysis may be
difficult to implement.

Instead, supplementary detection is better suited at the SS’s premise, which has
two functions: 1) detection of high-level behavior anomalies, 2) warning the mitigation
system’s components over the private network. For detection, simply the local SS
can serve a human verification test to clients, where failed ones are reported to the
mitigation system. However excessive human verification can be annoying for good
clients. To reduce the need for such verification tests, previously proposed concepts
for statistical anomaly detection can be integrated within our system to profile the
features of normal behavior for each server based on analysis of request types and
browsing patterns expected by the server. However, the locally-installed third-party
supplementary detection component may raise trust concerns. In the section , We
discuss it from the trust perspective.

Upon receiving a warning, the PSs and ANs can respond in several ways. One way
is to step up the countermeasures, for example by temporarily raising the penalties of
the concerned clients. Another way to deal with hard to detect attacks, and surges
in legitimate traffic, is by incorporating existing approaches that employ scheduling
policies to prioritize how clients receive service. Such approaches originally assume
traffic decryption, limited identification, or both. For example, the concept considered
in [50] can be integrated in our system, benefiting from enhanced identification, so
that the service of requests is scheduled based on reputation and penalty levels which
are function of combined remotely-based behavior attributes and SS warnings. So,
the AN should implement three queues for arriving high-level messages; one queue for
each reputation level, where good reputation PIDs receive the highest priority. This
way, the cost observed by bad reputation PIDs would only increase when necessary in
case of a high actual demand on the server from good users.

In addition, expanding the AN with an additional countermeasure against slow-
requesting HTTP-DDoS to improve the mitigation factor during the mitigation time
is a promising open research point. The AN can aggregate the received data bytes
during Ty(mazy = 7 [ms], before contacting the SS, while the value of 7 is modified
according to the client-SS pair’s local penalty. Relevant detection parameters here
are; Warning feedback from the SS due to an incomplete or invalid request (Warngs),
and the pair’s reputation Ry at the AN (which also propagates to the PS). The value
of Ry, will deteriorate as the client’s consistent behavior is recorded over multiple time
steps, especially that this client can’t distribute its behavior through multiple ANs to
avoid detection. A combination of a bad R; and high Warngs would indicate the
likelihood of a suspiciously behaving PID.

86 Discussion

Further, to counter the possible off/on switching behavior of attack traffic, an
additional degree of AN based countermeasures should be added based on monitoring
past records of S/a, S/P, F'S/a, and F'S/P so that switching attack behaviors are
identified on the PID level.

In addition, the current implementation code itself has room for optimization. For
example, in the current code, for client-to-server and server-to-client data transfer,
the AN uses a single thread for each. It serves the purpose for a proof of concept
prototype, however, a real implementation should consider distributing each transfer
direction’s load over a pool of multiple threads and improving the thread code itself.
This would improve the service time through the AN, especially during high traffic
loads.

Furthermore, automatic parameter tuning via machine learning is also necessary.
The proposed detection concept, which we implemented a manual simplified version of
it, offers a detailed set of traffic parameters on the OID, PID, SID, CID and AID levels.
This simplified version should be enhanced with existing approaches on integrating
machine learning to application-level DDoS detection to achieve faster and higher
mitigation.

Also, the unimplemented system parameters should be used. For instance, the
global reputation Rg was simply set to a fixed value of 1 throughout the conducted
experiments. In a real implementation, Rs should be managed by the mitigation
service provider based on shared parameters from different ANs and PSs. Additionally,
the formulas for obtaining the reputations in a real implementation should include Rg
as an input. Further, the value of the past records m was set to 4, while in reality a
larger value should be used. In addition, the vectors Ep and Eg were only partially
utilized on the 3 most significant bits, and different exceptions were combined into
one. These vectors should be fully utilized, and different exceptions should also be
considered individually. So, on the AN’s SID level, a high rate of messages and a
high rate of failed connection should have different weights in updating the penalty
function.

Chapter 6

Conclusion

Protecting web servers against HTTP(S)-DDoS attacks should not contradict with
the recent rise in awareness, among users and organizations, about traffic encryp-
tion due to trust concerns. This dissertation presented a new practical overlay-based
DDoS mitigation concept that affirms this awareness. In order to effectively mitigate
HTTP(S)-DDoS while complying with the encryption requirement, practical enhance-
ment of overlay-based identification is investigated. To enable the desired enhanced
identification, firstly a new overlay-based system is designed which practically intro-
duces per-session identification to the conventional limited two-level identification.
In contrast to conventional methods, the proposed system requires no client-side or
server-side special plugins for remote mitigation to work. Then, a novel taxonomy of
HTTP(S)-DDoS attacks is introduced organizing possible source behavior strategies
from the overlay-nodes’ perspective. In addition, a unique reputation and penalty
system based on the enhanced behavior records is designed. The new introduced rep-
utation system is based on three levels of behavior attributes without assuming traffic
decryption at the overlay nodes or special software at the client or server. Moreover,
the designed PS and AN are each equipped with two degrees of attack countermea-
sures, depending on their unique roles, offering a double-layered defense system against

HTTP(S)-DDoS.

Additionally, a proof of concept prototype of the proposed system is implemented
with simplified detection measures and attack countermeasures to demonstrate the
concept’s soundness, then tested for usability with actual commercial websites. Fur-
ther, evaluations are conducted considering simple and conventionally hard to detect
complex HTTP(S)-DDoS attack conditions. Among the conducted experiments, the
results of seven experiments are presented and discussed, including; brute-force, be-
low detection thresholds, single-request per-connection, slow-requesting HT'TP-DDoS,
multi-behavior per-shared-IP, encrypted, and multi-vector attack conditions. For
attack traffic, attack tools popular among attackers are utilized (i.e., LOIC and

87

88 Conclusion

Slowloris) for experiments with limited number of sources (10 to 20 sources), and
similarly built custom tools for highly distributed centrally controlled automated at-
tacks (1,000 to 10,000 sources).

Evaluations results suggest that utilizing the introduced practical enhanced iden-
tification can eliminate the necessity for traffic decryption by overlay-nodes and for
inspection of client-server traffic content, and enable an enhanced reputation and
penalty system, which can accomplish high mitigation factors of conventionally hard
to detect HTTP(S)-DDoS attack categories in relatively short mitigation times, in con-
trast to conventional overlay-based methods. In contrast to conventional methods, the
proposed method is tested with complex attack conditions that are missing in related
research such as single-request per-connection sub-detection-threshold HTTPS-DDoS.
It suggests that less complex attack categories can be equally mitigated. In addi-
tion, results suggest that enhanced identification can achieve low collateral damage in
terms of the chance of receiving service and service time for non-attacking clients that
share an attack IP. However, the unoptimized implementation of the prototype system
shows a cost in service time even in absence of attack. Also, it shows a temporarily
decrease in mitigation factor and rise in cost during mitigation time. Experimentally
demonstrating the concept’s soundness based on the introduced per-session identi-
fication alone opens the way for investigating the inclusion of conventional per-IP
and per-connection identification levels within various machine learning techniques
for adaptive system parameters’ tuning and for analyzing behavior record patterns.

References

1]

M. S. A. Eid and H. Aida, “Securely Hiding the Real Servers from DDoS Floods,”
in 10th IEEE/IPSJ International Symposium on Applications and the Internet
(SAINT), pp. 165-168, July 2010.

M. S. A. Eid, and H. Aida, “Trustworthy DDoS Defense: Design, Proof of Concept
Implementation and Testing”, IEICE Transactions on Information and Systems,

Special Section on Information and Communication System Security, Vol. EE100-
D, No. 8, Aug. 2017. In press.

M. S. A. Eid, and H. Aida, “Secure Double-layered Defense against HTTP-
DDoS Attacks”, The 7th IEEE International COMPSAC Workshop on Network
Technologies for Security, Administration and Protection (NETSAP2017), Turin,
ITALY, Jul. 2017. In press.

“McAfee Labs Threats Report.” http://www.mcafee.com/us/resources/
reports/rp-quarterly-threats-mar-2016.pdf, Mar. 2016. [Online; accessed
20-Apr-2017].

“VeriSign Distributed Denial of Service Trends Report - Vol. 3, Q1 2016.”
https://www.verisign.com/assets/report-ddos-trends-Q12016.pdf, 2016.
[Online; accessed 20-Apr-2017].

Kaspersky: DDoS attacks in Q4 2016, https://securelist.com/analysis/
quarterly-malware-reports/77412/ddos-attacks-in-q4-2016/, Feb 2017.
[Online; accessed 28-Apr-2017).

Incapsula: Global DDoS Threat Landscape -2015Q2 Security Report,
https://1lp.incapsula.com/rs/804-TEY-921/images/DDoS%20Report’20Q2Y%
202015.pdf, 2015. [Online; accessed 28-Apr-2017].

Incapsula Report: 2015-2016 Annual DDoS Threat Landscape Report, https://
www.incapsula.com/blog/2015-16-ddos-threat-landscape-report.html,
Aug 2016. [Online; accessed 28-Apr-2017].

89

http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2016.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2016.pdf
https://www.verisign.com/assets/report-ddos-trends-Q12016.pdf
https://securelist.com/analysis/quarterly-malware-reports/77412/ddos-attacks-in-q4-2016/
https://securelist.com/analysis/quarterly-malware-reports/77412/ddos-attacks-in-q4-2016/
https://lp.incapsula.com/rs/804-TEY-921/images/DDoS%20Report%20Q2%202015.pdf
https://lp.incapsula.com/rs/804-TEY-921/images/DDoS%20Report%20Q2%202015.pdf
https://www.incapsula.com/blog/2015-16-ddos-threat-landscape-report.html
https://www.incapsula.com/blog/2015-16-ddos-threat-landscape-report.html

90

REFERENCES

[9]

[11]

[12]

[16]

[17]

[18]

[19]

Neustar: Worldwide DDoS Attacks & Protection Report, https:
//ns-cdn.neustar.biz/creative services/biz/neustar/www/resources/
whitepapers/it-security/ddos/2016-fall-ddos-report.pdf, Oct 2016.
[Online; accessed 28-Apr-2017].

“Akamai: State of the Internet - 2015Q1 Security Report.”
https://www.akamai.com/us/en/about/news/press/2015-press/
akamai-state-of-the-internet-security-report.jsp, 2015. [Online;

accessed 20-Apr-2017].

J. Lemon, “Resisting SYN Flood DoS Attacks with a SYN Cache,” in Proceedings
of the BSD Conference, BSDC’02, (Berkeley, CA, USA), pp. 10-10, 2002.

“Apache mod evasive.” https://www.linode.com/docs/web-servers/
apache-tips-and-tricks/modevasive-on-apache. [Online; accessed 20-
Apr-2017].

“Apache Security Tips” http://httpd.apache.org/docs/trunk/misc/
security_tips.html. [Online; accessed 20-Apr-2017].

“A10 Networks: Threat Protection Systems.” https://www.alOnetworks.com/
products/thunder-series/thunder-tps-ddos-protection, 2016. [Online; ac-
cessed 20-Apr-2017].

J. McCallion, “A10 storms the DDoS prevention market with
Thunder TPS.” http://www.itpro.co.uk/security/21393/
al0-storms-the-ddos-prevention-market-with-thunder-tps, 2014. [On-

line; accessed 20-Apr-2017].

M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker, “DDoS
Defense by Offense,” in Proceedings of the 2006 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, SIG-
COMM 06, (New York, NY, USA), pp. 303-314, 2006.

M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker, “DDoS
Defense by Offense,” ACM Trans. Comput. Syst., vol. 28, pp. 3:1-3:54, Aug. 2010.

R. Mahajan, S. M. Bellovin, S. Floyd, J. loannidis, V. Paxson, and S. Shenker,
“Controlling High Bandwidth Aggregates in the Network,” SIGCOMM Comput.
Commun. Rev., vol. 32, pp. 62-73, July 2002.

J. Toannidis and S. M. Bellovin, “Implementing Pushback: Router-Based Defense
Against DDoS Attacks,” in In Proceedings of Network and Distributed System
Security Symposium, 2002.

https://ns-cdn.neustar.biz/creative_services/biz/neustar/www/resources/whitepapers/it-security/ddos/2016-fall-ddos-report.pdf
https://ns-cdn.neustar.biz/creative_services/biz/neustar/www/resources/whitepapers/it-security/ddos/2016-fall-ddos-report.pdf
https://ns-cdn.neustar.biz/creative_services/biz/neustar/www/resources/whitepapers/it-security/ddos/2016-fall-ddos-report.pdf
https://www.akamai.com/us/en/about/news/press/2015-press/akamai-state-of-the-internet-security-report.jsp
https://www.akamai.com/us/en/about/news/press/2015-press/akamai-state-of-the-internet-security-report.jsp
https://www.linode.com/docs/web-servers/apache-tips-and-tricks/modevasive-on-apache
https://www.linode.com/docs/web-servers/apache-tips-and-tricks/modevasive-on-apache
http://httpd.apache.org/docs/trunk/misc/security_tips.html
http://httpd.apache.org/docs/trunk/misc/security_tips.html
https://www.a10networks.com/products/thunder-series/thunder-tps-ddos-protection
https://www.a10networks.com/products/thunder-series/thunder-tps-ddos-protection
http://www.itpro.co.uk/security/21393/a10-storms-the-ddos-prevention-market-with-thunder-tps
http://www.itpro.co.uk/security/21393/a10-storms-the-ddos-prevention-market-with-thunder-tps

REFERENCES 91

[20]

[21]

[22]

[25]

[20]

[27]

28]

[29]

X. Xu, Y. Sun, and Z. Huang, “Defending DDoS Attacks using Hidden Markov
Models and Cooperative Reinforcement Learning,” Intelligence and Security In-
formatics, pp. 196-207, 2007.

H. V. Nguyen and Y. Choi, “Proactive Detection of DDoS Attacks Utilizing k-
NN Classifier in an Anti-DDos Framework,” International Journal of Electrical,
Computer, and Systems Engineering, vol. 4, no. 4, pp. 247-252, 2010.

M. Casado, A. Akella, P. Cao, N. Provos, and S. Shenker, “Cookies Along Trust-
Boundaries (CAT): Accurate and Deployable Flood Protection,” in Proceedings
of the 2nd conference on Steps to Reducing Unwanted Traffic on the Internet -
Volume 2, pp. 3-3, USENIX Association, 2006.

J. Li, S. Berg, M. Zhang, P. Reiher, and T. Wei, “Drawbridge: Software-
defined DDoS-resistant Traffic Engineering,” SIGCOMM Comput. Commun.
Rev., vol. 44, pp. 591-592, Aug. 2014.

G. S. Mengle, “Cyber attack on ISPs”, http://
www . thehindu.com/todays-paper/tp-national/tp-mumbai/
Cyber-attack-on-ISPs-police-file-FIR/article14507031.ece, Jul 2016.
[Online; accessed 28-Apr-2017].

D. Raywood, “Australian ISP Fights DDoS Attack”, https://www.
infosecurity-magazine.com/news/australian-isp-fights-ddos-attack/,
Apr 2017. [Online; accessed 28-Apr-2017].

R. Goldberg, “Lack of Trust in Internet Privacy and Security May Deter Economic
and Other Online Activities.” https://www.ntia.doc.gov/blog/2016 /lack-trust-
internet-privacy-and-security-may-deter-economic-and-other-online-activities,
2016. [Online; accessed 20-Apr-2017].

Centre for International Governance Innovation (CIGI), IPSOS, Internet Society,
United Nations Conference on Trade & Development(UNCTAD), International
Development Research Center (IDRC), “2017 CIGI-Ipsos Global Survey on In-
ternet Security and Trust”, https://www.cigionline.org/internet-survey,
Apr. 2017. [Online; accessed 6-May-2017].

“Thales e-Security: Encryption Application Trends Study.” https:
//www.thales-esecurity.com/knowledge-base/analyst-reports/
encryption-application-trends-study-2016, June 2016. [Online; accessed
20-Apr-2017].

Akamai, “Kona DDoS defender”, https://www.
akamai.com/us/en/multimedia/documents/product-brief/

akamai-kona-site-defender-product-brief.pdf. [Online; accessed 28-
Apr-2017].

http://www.thehindu.com/todays-paper/tp-national/tp-mumbai/Cyber-attack-on-ISPs-police-file-FIR/article14507031.ece
http://www.thehindu.com/todays-paper/tp-national/tp-mumbai/Cyber-attack-on-ISPs-police-file-FIR/article14507031.ece
http://www.thehindu.com/todays-paper/tp-national/tp-mumbai/Cyber-attack-on-ISPs-police-file-FIR/article14507031.ece
https://www.infosecurity-magazine.com/news/australian-isp-fights-ddos-attack/
https://www.infosecurity-magazine.com/news/australian-isp-fights-ddos-attack/
https://www.cigionline.org/internet-survey
https://www.thales-esecurity.com/knowledge-base/analyst-reports/encryption-application-trends-study-2016
https://www.thales-esecurity.com/knowledge-base/analyst-reports/encryption-application-trends-study-2016
https://www.thales-esecurity.com/knowledge-base/analyst-reports/encryption-application-trends-study-2016
https://www.akamai.com/us/en/multimedia/documents/product-brief/akamai-kona-site-defender-product-brief.pdf
https://www.akamai.com/us/en/multimedia/documents/product-brief/akamai-kona-site-defender-product-brief.pdf
https://www.akamai.com/us/en/multimedia/documents/product-brief/akamai-kona-site-defender-product-brief.pdf

92

REFERENCES

[30]

[31]

[32]

[40]

VeriSign, “DDoS protection services”, https://www.verisign.com/en US/
security-services/ddos-protection/ddos-service/index.xhtml. [Online;
accessed 28-Apr-2017].

CloudFlare, “SSL Options”, https://support.cloudflare.com/hc/en-us/
articles/200170416-What-do-the-SSL-options-mean-. [Online; accessed 28-
Apr-2017].

“VeriSign: DDoS Protection Services.” https://www.verisign.com/en_GB/
security-services/ddos-protection/index.xhtml, 2016. [Online; accessed
20-Apr-2017].

“CloudFlare: Plans.” https://support.cloudflare.com/hc/en-us/articles/
200170326-How-much-does-the-Enterprise-Plan-cost-, 2016. [Online; ac-
cessed 20-Apr-2017].

M. S. A. Eid, “DDoS Avoidance by Securely Hiding Web Servers.” Master’s thesis,
The University of Tokyo, 2010. http://hdl.handle.net/2261/37658.

Arbor: Worldwide Infrastructure Security Report - Vol. XI, https://www.
arbornetworks.com/images/documents/WISR2016_EN_Web.pdf, 2016. [Online;
accessed 28-Apr-2017].

AWS Best Practices for DDoS Resiliency, https://d0.awsstatic.com/
whitepapers/Security/DDoS_White Paper.pdf, June 2016. [Online; accessed
28-Apr-2017].

T. Benzel, “The science of cyber security experimentation: The deter project,”
in Proceedings of the 27th Annual Computer Security Applications Conference,
ACSAC 11, pp. 137148, ACM, 2011.

N. I. Mowla, I. Doh, and K. Chae, “Multi-defense mechanism against ddos in sdn
based cdni,” in 2014 Eighth International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing, pp. 447-451, July 2014.

Q. Jia, H. Wang, D. Fleck, F. Li, A. Stavrou, and W. Powell, “Catch Me If
You Can: A Cloud-Enabled DDoS Defense,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pp. 264-275,
June 2014.

Y. Gilad, A. Herzberg, M. Sudkovitch, and M. Goberman, “Cdn-on-demand: An
affordable ddos defense via untrusted clouds,” In Network and Distributed System
Security Symposium (NDSS), Feb. 2016.

https://www.verisign.com/en_US/security-services/ddos-protection/ddos-service/index.xhtml
https://www.verisign.com/en_US/security-services/ddos-protection/ddos-service/index.xhtml
https://support.cloudflare.com/hc/en-us/articles/200170416-What-do-the-SSL-options-mean-
https://support.cloudflare.com/hc/en-us/articles/200170416-What-do-the-SSL-options-mean-
https://www.verisign.com/en_GB/security-services/ddos-protection/index.xhtml
https://www.verisign.com/en_GB/security-services/ddos-protection/index.xhtml
https://support.cloudflare.com/hc/en-us/articles/200170326-How-much-does-the-Enterprise-Plan-cost-
https://support.cloudflare.com/hc/en-us/articles/200170326-How-much-does-the-Enterprise-Plan-cost-
https://www.arbornetworks.com/images/documents/WISR2016_EN_Web.pdf
https://www.arbornetworks.com/images/documents/WISR2016_EN_Web.pdf
https://d0.awsstatic.com/whitepapers/Security/DDoS_White_Paper.pdf
https://d0.awsstatic.com/whitepapers/Security/DDoS_White_Paper.pdf

REFERENCES 93

[41]

[42]

[43]

[44]

[46]

[47]

[50]

[51]

[52]

S. H. Khor and A. Nakao, “spow: On-demand cloud-based eddos mitigation mech-
anism,” in Proc. of the 5th Workshop on Hot Topics in System Dependability
(HotDep), pp. 1-6, 2009.

S. H. Khor and A. Nakao, “Daas: Ddos mitigation-as-a-service,” in IEEE/IPSJ
11th International Symposium on Applications and the Internet (SAINT), pp. 160
—171, jul 2011.

P. Du and A. Nakao, “Ddos defense as a network service,” in IEEE Network
Operations and Management Symposium (NOMS), pp. 894 —897, Apr. 2010.

W. Alosaimi and K. Al-Begain, “An enhanced economical denial of sustainability
mitigation system for the cloud,” in 2013 Seventh International Conference on
Next Generation Mobile Apps, Services and Technologies, pp. 19-25, Sept 2013.

Z. Al-Qudah, B. Al-Duwairi, and O. Al-Khaleel, “Ddos protection as a service:
Hiding behind the giants,” Int. J. Comput. Sci. Eng., vol. 9, pp. 292-300, Apr.
2014.

P. Du and A. Nakao, “Overcourt: Ddos mitigation through credit-based traffic
segregation and path migration,” Computer Communications, vol. 33, no. 18,
pp. 2164 — 2175, 2010.

P. Du and A. Nakao, “Mantlet trilogy: Ddos defense deployable with innova-
tive anti-spoofing, attack detection and mitigation,” in 2010 Proceedings of 19th
International Conference on Computer Communications and Networks, pp. 1-7,
Aug 2010.

A. Krizhanovsky, “Tempesta: A Framework for HTTP DDoS Attacks Mitiga-
tion,” in Proceedings of 24th Annual International Conference on Computer Sci-
ence and Software Engineering, CASCON ’14, pp. 148-162, IBM Corp., 2014.

Y. Xie and S.-Z. Yu, “A large-scale hidden semi-markov model for anomaly detec-
tion on user browsing behaviors,” IEEE/ACM Trans. Netw., vol. 17, pp. 54-65,
Feb. 2009.

S. Ranjan, R. Swaminathan, M. Uysal, A. Nucci, and E. Knightly, “Ddos-shield:
Ddos-resilient scheduling to counter application layer attacks,” ITEEE/ACM
Transactions on Networking, vol. 17, pp. 26 -39, Feb. 2009.

Y. Xie and S.-Z. Yu, “Monitoring the application-layer ddos attacks for popular
websites,” IEEE/ACM Trans. Netw., vol. 17, pp. 15-25, Feb. 20009.

S. Khanna, S. S. Venkatesh, O. Fatemieh, F. Khan, and C. A. Gunter, “Adaptive
Selective Verification: An Efficient Adaptive Countermeasure to Thwart DoS
Attacks,” ITEEE/ACM Trans. Netw., vol. 20, pp. 715728, June 2012.

94

REFERENCES

[53]

[54]

[55]

[61]

[62]

[63]

Y. G. Dantas, V. Nigam, and I. E. Fonseca, “A selective defense for application
layer ddos attacks,” in IEEE Joint Intelligence and Security Informatics Confer-
ence (JISIC), pp. 75-82, Sept 2014.

H. Beitollahi and G. Deconinck, “Connectionscore: a statistical technique to resist
application-layer ddos attacks,” Journal of Ambient Intelligence and Humanized
Computing, vol. 5, no. 3, pp. 425-442, 2014.

Q. Wu, S. Shiva, S. Roy, C. Ellis, and V. Datla, “On Modeling and Simulation
of Game Theory-based Defense Mechanisms Against DoS and DDoS Attacks,”

in Proceedings of the 2010 Spring Simulation Multiconference, SpringSim 10,
pp- 159:1-159:8, 2010.

Y. Liu, D. Feng, Y. Lian, K. Chen, and Y. Zhang, Optimal Defense Strategies
for DDoS Defender Using Bayesian Game Model, pp. 44-59. Springer Berlin
Heidelberg, 2013.

T. Spyridopoulos, G. Karanikas, T. Tryfonas, and G. Oikonomou, “A game theo-
retic defense framework against dos/ddos cyber attacks,” Computers & Security,
vol. 38, pp. 39 — 50, 2013.

C. B. Simmons, S. G. Shiva, H. S. Bedi, and V. Shandilya, ADAPT: A Game
Inspired Attack-Defense and Performance Metric Taxonomy, pp. 344-365. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013.

M. Wright, S. Venkatesan, M. Albanese, and M. P. Wellman, “Moving target de-
fense against ddos attacks: An empirical game-theoretic analysis,” in Proceedings
of the 2016 ACM Workshop on Moving Target Defense, MTD ’16, (New York,
NY, USA), pp. 93-104, ACM, 2016.

P. A. R. Kumar and S. Selvakumar, “Detection of distributed denial of service
attacks using an ensemble of adaptive and hybrid neuro-fuzzy systems,” Computer
Communications, vol. 36, no. 3, pp. 303 — 319, 2013.

W. Zhou, W. Jia, S. Wen, Y. Xiang, and W. Zhou, “Detection and Defense of
Application-Layer DDoS Attacks in Backbone Web Traffic,” Future Generation
Computer Systems, vol. 38, pp. 36 — 46, 2014.

L. Zhou, M. Liao, C. Yuan, Z. Sheng, and H. Zhang, “DDOS attack detection
using packet size interval,” in 11th International Conference on Wireless Com-
munications, Networking and Mobile Computing (WiCOM 2015), pp. 1-7, Sept
2015.

M. Jog, M. Natu, and S. Shelke, “Distributed and Predictive-Preventive Defense
Against DDoS Attacks,” in Proceedings of the 2015 International Conference on

REFERENCES 95

[64]

[65]

[66]

[71]

[72]

[73]

[74]
[75]

[76]

Distributed Computing and Networking, ICDCN 15, (New York, NY, USA),
pp. 29:1-29:4, ACM, 2015,

V. Aghaei-Foroushani and A. N. Zincir-Heywood, “Investigating unique flow
marking for tracing back DDoS attacks,” in 2015 IFIP/IEEE International Sym-
posium on Integrated Network Management (IM), pp. 762-765, May 2015.

“The Network Simulator - ns-2.” http://www.isi.edu/nsnam/ns/. [Online; ac-
cessed 14-March-2016].

J. Mirkovic, S. Fahmy, P. Reiher, and R. K. Thomas, “How to Test DoS De-
fenses,” in Conference For Homeland Security, 2009. CATCH ’09. Cybersecurity
Applications Technology, pp. 103 =117, Mar. 2009.

“OPNET Academic Edition.” http://www.opnet.com/university_program/
itguru_academic_edition/. [Online; accessed 14-March-2016).

B. Van den Broeck, P. Leys, J. Potemans, J. Theunis, E. Van Lil, and A. Van de
Capelle, “Validation of Router Models in OPNET,” OPNETWORK 2002, Wash-
ington D.C.; USA, 2002., 2002.

“PlanetLab.” https://www.planet-lab.org/. [Online; accessed 20-Apr-2017].

Akamai: State of the Internet - 2016Q1 Security Report, Vol. 3, No. 1, https:
//www.akamai.com/es/es/multimedia/documents/state-of-the-internet/
akamai-q1-2016-state-of-the-internet-security-report.pdf, . [Online;
accessed 28-Apr-2017].

“NewEraCracker / LOIC” https://github.com/NewEraCracker/LOIC/
releases/tag/1.1.1.25, 2011. [Online; accessed 14-May-2016].

“Worldwide Infrastructure Security Report - Volume X -~ 20157
https://www.arbornetworks.com/arbor-networks-10th-annual-worldwide-
infrastructure-security-report-finds-50x-increase-in-ddos-attack-size-in-past-
decade, 2015. [Online; accessed 20-Apr-2017].

“Incapsula Attack Glossary: Slowloris.” https://www.incapsula.com/ddos/
attack-glossary/slowloris.html. [Online; accessed 14-March-2016].

Hypertext Transfer Protocol — HTTP/1.1: Connections (RFC2616, Sec.8).

DETERLab Node Types, http://docs.deterlab.net/core/node-types/.
[Online; accessed 28-Apr-2017].

Radware: Common DDoS Attack Tools, https://security.radware.com/
ddos-knowledge-center/ddos-attack-types/common-ddos-attack-tools/,
Jan 2016. [Online; accessed 28-Apr-2017].

http://www.isi.edu/nsnam/ns/
http://www.opnet.com/university_program/itguru_academic_edition/
http://www.opnet.com/university_program/itguru_academic_edition/
https://www.planet-lab.org/
https://www.akamai.com/es/es/multimedia/documents/state-of-the-internet/akamai-q1-2016-state-of-the-internet-security-report.pdf
https://www.akamai.com/es/es/multimedia/documents/state-of-the-internet/akamai-q1-2016-state-of-the-internet-security-report.pdf
https://www.akamai.com/es/es/multimedia/documents/state-of-the-internet/akamai-q1-2016-state-of-the-internet-security-report.pdf
https://github.com/NewEraCracker/LOIC/releases/tag/1.1.1.25
https://github.com/NewEraCracker/LOIC/releases/tag/1.1.1.25
https://www.incapsula.com/ddos/attack-glossary/slowloris.html
https://www.incapsula.com/ddos/attack-glossary/slowloris.html
http://docs.deterlab.net/core/node-types/
https://security.radware.com/ddos-knowledge-center/ddos-attack-types/common-ddos-attack-tools/
https://security.radware.com/ddos-knowledge-center/ddos-attack-types/common-ddos-attack-tools/

96

REFERENCES

[77]

D. Mahajan and M. Sachdeva, “Distinguishing ddos attack from flash event using
real-world datasets with entropy as an evaluation metric,” in 2013 International
Conference on Machine Intelligence and Research Advancement, pp. 90-94, Dec
2013.

K. Johnson Singh, K. Thongam, and T. De, “Entropy-based application layer
ddos attack detection using artificial neural networks,” Entropy, vol. 18, no. 10,
2016.

S. Behal and K. Kumar, “Trends in validation of ddos research,” Procedia Com-
puter Science, vol. 85, pp. 7 — 15, 2016.

European Parliament resolution P8 TA(2015)0388 on the electronic mass surveil-
lance of EU citizens, http://www.europarl.europa.eu/sides/getDoc.do?
pubRef=-//EP//NONSGML+TA+P8-TA-2015-0388+0+D0OC+PDF+V0//EN, Oct 2015.
[Online; accessed 28-Apr-2017].

LEVEL 3°® DDoS MITIGATION, http://www.level3.com/-/media/files/
brochures/en_secur_br _ddos mitigation.pdf. [Online; accessed 28-Apr-
2017].

http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//NONSGML+TA+P8-TA-2015-0388+0+DOC+PDF+V0//EN
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//NONSGML+TA+P8-TA-2015-0388+0+DOC+PDF+V0//EN
http://www.level3.com/-/media/files/brochures/en_secur_br_ddos_mitigation.pdf
http://www.level3.com/-/media/files/brochures/en_secur_br_ddos_mitigation.pdf

Publications

Journal Paper

« M. S. A. Eid, and H. Aida, “Trustworthy DDoS Defense: Design, Proof of
Concept Implementation and Testing”, IEICE Transactions on Information and
Systems, Special Section on Information and Communication System Security,
Vol. E100-D, No. 8, Aug. 2017. In press.

Proceedings of International Conferences

« M. S. A. Eid, and H. Aida, “Secure Double-layered Defense against HT'TP-DDoS
Attacks”, The 7th IEEE International COMPSAC Workshop on Network Tech-
nologies for Security, Administration and Protection (NETSAP2017), Turin,
ITALY, Jul. 2017. In press.

o« M. S. A. Eid, and H. Aida, “Securely hiding the real servers from DDoS floods”,
10th IEEE/IPSJ International Symposium on Applications and the Internet
(SAINT), pp.165-168, https://doi.org/10.1109/SAINT.2010.62, Seoul, KO-
REA, Jul. 2010.

Other Presentations

« M. S. A. Eid, and H. Aida, “Enabling True End-to-End Encryption and Client-
Behavior Identification in Overlay-based DDoS Mitigation”, IEICE Tech. Rep.
on 34th Cyberworlds, CW2016-09, pp.19-23, Tokyo, JAPAN, Dec. 2016.

« M. S. A. Eid, and H. Aida, “Overlay Based, Distributed Defense-Framework
against DDoS Attacks”, IEICE Tech. Rep., vol. 111, no. 347, IA2011-51, pp. 37-
42 http://www.ieice.org/ken/paper/20111216v0OLT/eng/, Hiroshima, JAPAN,
Dec. 2011.

« M. S. A. Eid, and H. Aida “DDoS Attacks Avoidance by Securely Hiding Web
Servers”, 26th Annual Computer Security Applications Conference (ACSAC 26),

97

https://doi.org/10.1109/SAINT.2010.62
http://www.ieice.org/ken/paper/20111216v0LT/eng/

98

Publications

https://wuw.acsac.org/2010/program/posters/eid.pdf Austin, TX, USA,
Dec. 2010. (Poster)

https://www.acsac.org/2010/program/posters/eid.pdf

	Abstract
	Table of Contents
	List of Figures
	Nomenclature
	Introduction
	Background and Motivation
	Attack Categories
	Low-level DDoS Attacks
	High-level DDoS Attacks

	Mitigation Categories
	Locally-based Solutions
	Remotely-based Solutions

	Problem Statement
	Research Scope
	Thesis Organization

	Related Works on Overlay-based HTTP-DDoS Mitigation
	Proposed Method and Prototype Implementation
	Objectives
	Proposed Method
	System Overview
	Preparation and Communication Stages

	High-level Attack Strategies
	Mitigation
	Detection Concept
	Reputation and Penalty
	Attack Countermeasures

	Evaluation
	Evaluation Method
	Performance Metrics
	Emulation Platform (Testbed)
	Evaluation Plan
	 System Parameters

	Experiments
	High Rate HTTP-DDoS via AN
	Slow-Requesting HTTP-DDoS via PS
	Distributed, High Rate, Slow-Requesting HTTP-DDoS via PS
	Highly Distributed, Low Rate, Slow-Requesting HTTP-DDoS via PS
	Slow-Requesting HTTP-DDoS via AN
	Low Rate HTTPS-DDoS via AN
	Multivector HTTP(S)-DDoS Attack via AN

	Discussion
	Service Time Cost
	Scalability
	Evaluation Method
	Attack Conditions
	Encryption and Trust
	Conventional Solutions
	Actual Implementation Considerations

	Conclusion
	References
	Publications

