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Abstract

Image layer separation for decoupling an input image into different compo-
nent layers is a challenging task in computer vision and has many practical
applications. It is inherently an ill-posed problem and cannot be solved
without additional information and assumptions. Two types of image layer
separation problems are studied in this dissertation: intrinsic image decom-
position and structure texture separation, and they were found to be closely
related to each other. A particular focus is placed on robustness and the
computational efficiency of layer separation as they are important for ap-
plications to many problem domains such as virtual reality and gaming. To
this end, the correlation between different kinds of features extracted from
a given image was exploited to alleviate the ill-posedness of the problem of
layer separation. The image formation in the two different layer separation
problems was individually analyzed and the useful and robust correlation of
features was exploited. Those features, though exist in all the layers of an
input image, have different statistical properties and contain different level
of information that specify the intrinsic characteristics of the layers.

The main content of this dissertation is divided into three parts. The
first part of this thesis proposes a fast method of intrinsic image decomposi-
tion based on a single image. Single image-based intrinsic image decompo-
sition is a critical problem since it facilitates many applications in low-level
and high-level computer vision domain, as well as those in computer graph-
ics domain. Those applications normally require the understanding of ob-
jects’ materials, objects’ textures and even environmental lighting and the
property of the scene where objects are located, which is highly related to
the purpose of intrinsic image decomposition. However, single image-based
intrinsic image decomposition simultaneously involves a difficult problem
with intrinsically existing ill-posedness, which comes from that the solu-
tion space has higher dimension than the dimension of input constraints.
Therefore, it worths researchers’ concerns on proposing effective methods
to make it solvable. Previous work has proposed different kinds of prior
knowledge or additional information such as user interaction or knowledge

learnt from related data to render this problem easier to solve. A novel edge-



based method of intrinsic image decomposition was proposed in this chapter
by exploring the correlation between a chromaticity gradient map and an
albedo gradient map to exploit another kind of prior knowledge based on
color information. This ill-posed problem was specifically addressed in the
use of a single image and exploited the use of the chromaticity gradient
map to guide recovery of the albedo gradient map; The Retinex assumption
was also regularized by using the fp-norm to piece-wise flatten the albedo
layer. The proposed method is simple yet computationally efficient. Ex-
periments were carried out to evaluate the method both qualitatively and
quantitatively on public datasets. The experimental results indicated that
our method ran much faster than state-of-the-art methods while achieving
comparable performance.

The second part of this dissertation addresses the problem of structure-
texture separation, which is another common existing layer separation prob-
lem. For some applications, structure-texture separation, especially the
output structure layer of separation, can be an important preprocessing
step for intrinsic image decomposition and enhance the performance of the
latter. A method of structure-texture separation using non-gradient-based
descriptors is proposed. An alternative image smoothing approach based
on the weighted least square (WLS) framework is especially proposed. The
proposed approach incorporates the use of Feature Asymmetry (FA) which
can better help locate the contours of objects. FA accurately distinguishes
structures and textures as it simulates the response of the human perception
system to step edges, contours and lines features, and is also sensitive to
periodic patterns. WLS can better smooth out images by including FA as
weights while preserving structures. Further, such techniques are employed
in our phase-based WLS framework. The recent achievement at accelerat-
ing the solution of WLS by transforming the 2D optimization problem into
two step recursive 1D optimization problems is used in this work to largely
reduce the computation. The experimental results indicated that the pro-
posed approach was effective for structure-texture separation and had low
computational complexity, compared to state-of-the-art methods.

The third part of this dissertation explains how a fast intrinsic image

decomposition method by using a near-infrared (NIR) image in addition to
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a RGB image for better decomposition performance was designed when the
influence of fine textures exists. Many object’s surfaces contain rich tex-
tures, especially those made of materials such as fabrics, plastics, metal and
leather. These rich textures makes the problem of intrinsic image decom-
position difficult. This is because most of the methods for intrinsic image
decomposition largely rely on the edge of objects’ structure which could be
affected by the edge information of textures. In fact, the task of intrinsic
image decomposition is to separate an input image into its material-related
properties, known as reflectance or albedo, and its light-related properties
which are referred to as shading or illumination. An effective algorithm of
intrinsic decomposition heavily depends on the prior sparsity of edges with
significant magnitudes in the albedo layer, which would be violated when
there exist rich textures that contain a large number of edges of significant
magnitude. To solve the problem, An NIR image that appears relatively
textureless was adopted beside a RGB image, and a fusion strategy to re-
duce the influence of texture in the RGB image was designed, and then
the feasibility of intrinsic decomposition was increased. The correlation be-
tween the RGB image and albedo layer was analyzed in our work through
a chromaticity map and a pseudo-albedo map was defined based on both
the RGB and NIR images that were included in a maximum-a-posteriori
(MAP) model for intrinsic image decomposition. Here, a fast solver based
on a half-quadratic splitting scheme and Plancherel’s theorem was also pro-
posed to efficiently solve our MAP problem using a fast Fourier transform
(FFT). The proposed method outperformed methods of the state-of-the-art
edge-based intrinsic decomposition and achieved fast computational speed.

Finally, a conclusion part is added for summarizing the main contents
and contributions of the research work in this dissertation, as well as propos-

ing the future potential extensions.
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Chapter 1

Introduction

1.1 Overview

This dissertation concerns about two-layer separation problems, intrinsic image
decomposition and structure-texture separation, by studying in particular corre-
lation between multiple image features. It is organized as three self-contained
chapters of my preliminary work that has addressed these layer separation prob-

lems. The three main topics are:

1. Intrinsic image decomposition using a chromaticity gradient: fast and ef-
ficient decomposition of the image into albedo and shading components

(Chapter 2),

2. Structure-texture separation adopting feature symmetry: decoupling of the
image into structure and texture components with the aid of feature sym-

metry (Chapter 3), and

3. Intrinsic image decomposition of materials with rich textures employing an
extra near infrared (NIR) image: intrinsic decomposition of materials with
fine and rich textures by using a red, green and blue (RGB) and NIR image
pair (Chapter 4).

This chapter provides an introduction to the layer separation problem, with a clear
explanation of the challenges in solving its ill-posedness. The three preliminary
efforts proposed in this dissertation are also briefly described as guidelines.

It is an overview of the dissertation in Figure 1.1.
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Figure 1.1: Overview of the thesis. Intrinsic image decomposition and structure-
texture separation are two problems that are related to each other under the

context of images with rich textures.
1.2 The problems with image layer separation

Image layer separation refers to a branch of problems that seek a decomposition
of an input image into different layers. The rendering procedure of a photograph
was first examined to help describe these problems. The observed color at a given
point in a photograph is influenced by many factors, including the shape and
the material of objects, their positions, lighting directions, colors of light sources,
the position of a viewer, and camera sensor sensitivities. Shadows and specular
reflections are effects due to these factors. Material’ surfaces can have variations
in albedo at different locations, which can be viewed as local textures whereas
the whole surface itself is considered as the general structure of objects. These
image formation models have been widely researched and are often described by
models such as the bidirectional reflectance distribution function (BRDF), the
bidirectional scattering-surface reflectance distribution function (BSSRDF) and
so on. Image noise often appears as an extra layer added to the original image

that reduces its quality. The presence of certain objects in the interactions of



general environments in a scene will occasionally affect the transmission of light
rays, which makes the procedure more complicated. For instance, transparent
layers (e.g. glass windows) in a scene will cause an additional layer of reflection
interference. Turbid media (e.g. particles like fog, haze and water droplets) in
an outdoor atmosphere will lead to low-visibility images. These factors can be
modeled with different properties but coexist in the same scene as layers in an
image, such that the image is formed as a mixture of multiple layers. Examples
of layer separation problems can be seen in Figure 1.2.

The task of image layer separation is to obtain a clear recovery of these layers
from the images. Take the two problems in this dissertation, for example, the
intrinsic image decomposition in Chapter 2 and 4 are used to separate a given input
image into its material-related properties, known as reflectance or albedo, and
its light-related properties, such as shading or illumination. Another kind of the
image separation problem, discussed in Chapter 3, is structure-texture separation,
in which case the structure layer correspond to large major objects or significant
edges of corresponding objects in the image, and the textural layer corresponds
the fine or quasi-periodic details.

High-quality image layer separation is necessary for various applications. Layer
separation can be used as a pre-processing that facilitates other computer vision
tasks and computer graphics applications. If we take intrinsic image decomposi-
tion for example, there are many image editing applications such as scene relight-
ing, object recoloring and material re-editing based on intrinsic images. Also, a
shape-from-shading technique, which infers object geometry from shading changes,
requires a clean input image of shading that can also be obtained from intrinsic
images. On the other hand, the results of structure-texture separation can be
a meaningful input for a lot of low-level vision tasks like tone mapping, image
enhancing, inverse halftoning and image retargeting.

The problem of layer separation is inherently ill-posed since it requires more
than one layer to be often extracted from fewer input images. There are an
infinite number of decomposition solutions to the problem with roughly twice
unknown output than known input, as seen in Figure 1.3. Additional information

supplied either from user indication, from multiple images, or from the statistical
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Figure 1.3: This figure shows three possible decompositions to the synthetic mix-
ture image. The ill-posedness of layer separation can result in more possible

decompositions besides these three.

information of individual layers is needed to make this problem tractable. Ill-
posedness can be eased with this information as constraints, and a most likely
explanation for the two layers can be found.

Among all the layer separation problems, two related problems are looked at in
this dissertation: intrinsic image decomposition and structure-texture separation,
whose imaging model will be given in the following sections. The two problems
are related to each other as we work on the images with rich textures. In fact, for
a normal object, its surface sometimes contains local variations of albedo which
are considered as local textures whereas the whole surface itself is considered
as the general structure of objects. Therefore, removing textures from objects’
surface help us to obtain a more uniform structure of objects, which can further
help understand the albedo of objects’ surface. On the other hand, statistically,

structure layer normally has the piece-wise smooth property, whereas albedo layer



has piece-wise constant property. Under such situation, the hidden layers for
these images will first be layers of structure and texture. Moreover, apart from
the structure layer, the following hidden layers will be albedo layer and shading
layer. (Figure 1.1)

1.3 Intrinsic Image Decomposition

There are many literatures works addressing layer separation problems. However,
most of those problems remain challenging. For instance, intrinsic images problem
is first proposed in the 70s [BT78]. Surprisingly besides the inventions done in the
70s and 80s, little research has been done in following decades on intrinsic image
decomposition. A comparative study [GJAF09] in 2009 has shown that the color
version of simple Retinex algorithm [LM71] from the 70s is still the top performing
approach. However, most of the works either require additional equipment or
make a strong assumption on the scene’s properties like planar geometry, making
it difficult to bring them into practical use. More recent work [SYJL11, SY11,
GRKT11] showing relatively better results are the first step in this direction. The
proposed approaches in solving these layer separation problems focus on improving

the quality as well as the efficiency and the practicalness of the solution.

1.3.1 Narrowband Sensitivity

In many algorithms of intrinsic image decomposition as well as other computer
vision algorithms, it is common to assume that the camera sensitivity has a nar-
rowband that follows Dirac delta functions. This assumption is an approximation
since no commercial camera has such a function. However, this assumption is
useful and important since, without it, it is difficult to separate the surface re-
flectance and illumination color under an integral function. Unfortunately, not all
cameras can be approximated to have a narrowband sensor because of the wide
distribution of one or more sensors.

The basic image formation model of intrinsic image decomposition is deduced
based on the assumption of narrowband camera sensitivity curve. Departing from

this assumption, intrinsic image decomposition turns its imaging model from mi-



crophsics optical model into middle-level multiplication of albedo and shading,

depending on the practical applications problems that are focused on.

1.3.2 Retinex Method

The earliest model and also the base for intrinsic image decomposition is the
Retinex model. Retinex theory was first proposed by Edvin Land in 1964 [LM71].
According to Land [LM71], an image is composed by two parts namely the inci-
dent light and the reflectance of the object. The two parts were lately reformed
as reflectance or albedo layer and illumination or shading layer. This can be
represented by

I = RL, (1.1)

where L represents the value of incident light, R represents the value of object’s
reflection, and I represents the value of reflected light. Alternatively, it can be

written as following in log space:
log(I) =log(R) + log(L) (1.2)

Retinex is based on color constancy of human visual system. It is called
“Retinex” because it is an method bridging the gap between images and the hu-
man observation of scenes. Color constancy is a human’s ability that properly
recognize the object color under even various source of lights such as sunlight or
fluorescent light [XLnGhMq09]. If we can removes bias of source lightness from the
input image, we can obtain real image without color change. Appling this prop-
erty, researchers utilized Retinex model for intrinsic image decomposition [Hor74].
The key point of Retinex method is the estimation of the reflectance part. It is
suited to handle the images that the local lightness is very low. In the proposed
work, we will re-explain the Retinex assumption from another point of view and
exploit the piece-wise constant property, and the property of relative smoothness

between intrinsic layers deduced from it.



Figure 1.4: Removing bias of source lightness by Retinex method

(MSRCR) [HRRR11].
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Figure 1.5: 1D signal and its corresponding structure signal.
1.4 Structure-Texture Separation

Structure-texture separation problem, also understood as structure-preserving im-
age smoothing, is an important topic for both computer vision and computer
graphics, as such a separation can help better image analysis and image under-
standing. Many image processing problems can be carried out more effectively
and can be well achieved once we separate a scene into two layers possessing dif-
ferent properties of a scene. The definition of structure layer and texture layer
is based on their different property in the signal domain. In 1D case, structure
signal appears as step edge (Figure 1.5), whereas texture signal appears as small
or periodic vibrations. In 2D case, a structure layer represents surface contour or
objects’ boundaries, whereas texture layer represents small repeated or periodic
pattern (Figure 1.6).

For decomposing the original input image into two layers: structure and texture

layers, the input image I can be considered as the superimposition of the two
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Figure 1.6: Example of 2D image and its corresponding structure and texture

layers (image from [KEE13]).

layers:

I=S+T, (1.3)

where S is the structure layer corresponding to the main large objects in the image,
and T is the texture layer corresponding to the fine details [AGCOO06]. Example
can be seen in Figure 1.2.

Local and global optimization edge-aware smoothing operation (e.g. bilateral
filter [TMO98], weight least square filter [FFLS08]) can be applied to separate an
image into a structure layer and texture layer. This procedure produces an image
that retains strong structure with details smoothed away. By taking this image
as the structure layer S, the texture layer is calculated as T'=1 — S.

This structure-texture separation exploits the fact that most of the structure
layer is related to larger but not periodic gradient magnitudes, while the texture
layer captures fine and quasi-periodic image details. The most typical and repre-
sentative method is the total-variation (TV) model based on Rudin-Osher-Fatemi
method [ROF92]. The TV model is largely used for image reconstruction, de-
noising and a few other image processing applications. Based on the TV model,
the structure layer S can be obtained by minimizing the following optimization

problem:

min D (Sy = L)+ AVS,], (1.4)
p

where p means operation is pixel-wise, A is the regulation parameter. The re-



sulted structure layer from Equation 1.4 captures the significant edges of the
scene, whereas the residual 7' = [ — S captures the removed noise layer which

contains the texture patterns.

1.5 NIR Imaging

There have been some recent applications showing the benefits of combining NIR
imaging with visible photography. These approaches use NIR either to enhance
details or to reduce noise/artifacts in the visible image. The key to these appli-
cations is the method for combing the NIR and visible image. For example, in
the case of image fusion, the low-visibility property of textures in NIR image is
exploited for enhancing the visibility of important features in the RGB image.
Normally, the visible spectrum perceived by human visual system ranges from
(about) 380 to 780 nanometers in wavelength. The NIR spectrum is located just
after the red wavelength and comprises wavelengths that range from 780 to 1100
nanometers. In photography, NIR delivers sharp images with sometimes a dra-
matic outlook (for example, see some example images from [BS11] in Figure 1.7).
Even though the NIR band is located next to the visible one, because the spectral
reflectivities of objects in the NIR and visible range vary significantly, there is, in
general, almost no correlation between a visible and NIR signal (i.e., knowing the
color and brightness of an object gives no information about its NIR response).
NIR spectral imaging has long been used in remote sensing and industrial vision
applications. NIR can now be easily used for enhancing photographs and has
given rise to methods that combined NIR with conventional visible photography
to perform image enhancement, such as contrast boosting, haze removal, blemish
reduction, and ISO denoising. Since most of these applications are photographic in
nature, it is hard to assign a quantitative value to their results. Most approaches
simply show the before-and-after images, where the after-image has been clearly

enhanced.

10



Visible image NIR image

Figure 1.7: Examples of visible and NIR image pair from [BS11].
1.6 Contributions of Dissertation

The main goal of the proposed work was to design robust and efficient methods of
solving the layer separation problem. Since image layer separation is a broad topic,
our study could not simultaneously address all layer separation problems. Two
related problems, intrinsic image decomposition and structure-texture separation,
were chosen. Three issues were specifically identified to address:

[Exploiting Correlation of Albedo and Chromaticity Gradients for Fast
Intrinsic Image Decomposition]

The correlation was analyzed through normalized cross correlation (NCC) between
the chromaticity map and albedo layer through the chromaticity map, and between
the albedo and chromaticity gradient. Here, this correlation will be explained via
deducing some physics properties of chromaticity and albedo. The chromaticity
gradient will be introduced to the intrinsic image decomposition problem for the
first time, and be mathematically explained that it contains robust information on
the albedo edge. A fast solver based on Plancherel’s theorem and a half-quadratic
splitting scheme [WYYZ08]| is proposed to efficiently solve the proposed intrinsic

image decomposition model, which is a problem of fy-prior-based optimization,
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and how the computation was speeded up while maintaining the accuracy of de-
composition is explained. The proposed method ran much faster, and the results
of the proposed method were close to or better than the state-of-the-art methods
that use sophisticated models and inference. Part of this work has been published
in ICIP’2015 [2] as a poster presentation.

[Exploiting Feature Asymmetry in Spectral Space for Structure-Texture
Separation]

Feature asymmetry (FA) quantity was adopted to structure-texture separation
problem. FA is a phase-based quantity that extracts structure edge information
in the spectral domain and has better performance than the intensity gradient
in the problem being considered. The WLS framework was employed to solve
structure-texture separation, whose weight was calculated by including the FA
quantity. The proposed FA-aware WLS method was effective in structure-texture
separation and could achieve state-of-the-art results. Instead of solving a 2D
problem, it was transformed to solving a problem of two 1D recursive iterations
when solving the WLS framework by using the existing acceleration framework.
The proposed optimization was greatly speeded up and ran much faster than many
state-of-the-art methods. Part of this work has been published in the short paper
track of PG’2015 [1] as a poster presentation.

[Exploiting Texturelessness of NIR Image for Intrinsic Image Decom-
position of Materials with Fine-Textures |

A reasonably plausible ground truth was built composed of shading layers and
some albedo layers of materials in the dataset provided by Choe et al. [CNK16]
using a photometric stereo method. We proposed to include NIR image in the
framework of intrinsic image decomposition by applying the textureless properties
of some materials for the first time, which helps to largely exclude the effect of tex-
ture and yields stronger clues to the Retinex assumption. The correlation between
the RGB image and albedo layer through an ¢; chromaticity map, and the corre-
lation between the NIR image and shading layer. were analyzed. A pseudo-albedo
map based on RGB and the NIR image was defined and was included in a max-
imum a posterior (MAP) model for intrinsic image decomposition. A fast solver

based on Plancherel’s theorem and a half-quadratic splitting scheme [WYYZ08|
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was proposed to efficiently solve the proposed MAP problem and speed up the
runtime while maintaining the accuracy of decomposition. The proposed method
ran much faster, and the results of the proposed method were better than those
obtained from state-of-the-art edge-based methods that use sophisticated models

inference.

1.7 Organization of Dissertation

This dissertation is organized into five chapters. This chapter 1 provides an intro-
duction to layer separation problems and presents the proposed main goals and
contributions. It also provides some background on two-layer separation problems
the proposed work involved — intrinsic image decomposition and structure-texture
separation, as well as some image features that are related to the proposed works.
The next three self-contained chapters (2, 3, 4) describe the proposed work that
addresses intrinsic image decomposition and structure-texture separation and give
details on prior work that addressed these problems and how these two problems
are related to each other. The whole dissertation is concluded in chapter 5 with a

discussion on future directions.
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Chapter 2

Fast Sparse Edge-based Intrinsic
Image Decomposition Guided by
Chromaticity Gradient

2.1 Introduction

Intrinsic images estimation is to separate a given input image into its material-
related properties, known as reflectance or albedo, moreover, its light-related prop-
erties, such as shading, shadows, specular and highlights. This idea of representing
distinct scene properties as separated intrinsic images is firstly introduced by Bar-
row and Tenenbaum [BT78]. Under the Lambertian assumption, intrinsic images
decomposition turns out to be decomposing an input image into albedo (or re-
flectance) layer and shading (or illumination) layer, which will be our focus here.

For the intrinsic image decomposition problem, the observed color at a given
point in an image is influenced by many factors, including the shape and the
material of objects, the positions and colors of light sources, a viewer’s position,
and the sensitivities of a camera sensor, etc. Successful decomposition of these
properties would benefit some computer vision tasks, such as materials re-editing,
shadow removal, shape-from-shading, segmentation, scene understanding and ob-
ject tracking.

The intrinsic image model [BT78] assumes that an image is the product of a

scene’s albedo and shading at each pixel expressed as I = R - S, where R is the
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reflective property or albedo at each pixel and S is the shading falling on this
pixel. Intrinsic image decomposition’s aim is to estimate R and S given an input
1.

However, intrinsic image decomposition problem is inherently challenging as
it attempts to obtain two unknowns (R and S) from a single input I. Estimat-
ing R and S is an ill-posed problem. It requires extracting more layers (un-
knowns) from one input (knowns). To make the problem tractable prior knowl-
edge on the solutions must be imposed. One of the earliest work addressing
intrinsic image decomposition was the Retinex algorithm [LM71] that employed
simple heuristics that assumed strong edge gradients belonged to albedo changes
in the image. Other intrinsic image decomposition methods using multiple im-
ages [Wei0l, MLKS04] or using user markup [BPD09] have been proposed and
shown to produce good results. For automatic single image intrinsic image estima-
tion, many later works [TFA05, STLO8, GJAF09] followed the idea of the Retinex
algorithm and focused on separating albedo and shading edges. These methods
are referred to as edge-based methods according to a recent survey [GJAF09]. In
this survey, the authors proposed the color version Retinex algorithm. Moreover,
a ground-truth dataset (the MIT dataset) for intrinsic images containing 16 real
objects was also built [GJAF09]. Shen et al. [SYJL11] used local information and
formulated intrinsic image decomposition as a minimization problem.

The recent progress in probabilistic graphics models and numerical optimiza-
tions methods result in more effective intrinsic decomposition methods. Unlike
edge-based methods which rely on local edge information, these new approaches
use the idea that the set of albedo value present in the scene is sparse, which
is usually referred to as global sparsity prior [GRKT11, SY11, SPBV12, BM12,
BM15, CCFI14]. These approaches achieved significant results on the MIT intrin-
sic dataset but tend to be very slow. Another dataset was released by [BBS14]
which contains a large number of natural scene images. The authors also pro-
posed a dense CRF-based intrinsic decomposition algorithm which outperforms
other state-of-the-art methods on the proposed dataset.

The chromaticity invariance against shading was well known and has been

adopted for several applications before [Dre03, FHLDO06]. For example, Drewet
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al. [Dre03] adopted the relationship between R, G, B channels in logarithmic space
to recover a shadow free chromaticity map. Finlayson et al. [FDL04] included the
2D chromaticity representation of lights and cameras to remove the shadow from
images. They [FHLDO0G6] later proposed an intrinsic decomposition method based
on entropy minimization in the log-chromaticity space. Using this property of
chromaticity, a novel edge-based method was proposed to solve the intrinsic image
decomposition by adopting the chromaticity information of the input image based
on the Retinex assumption [LM71]. In our case, as can be seen in Figures 2.1, 2.2
and 2.3, the chromaticity map contains similar edges as those in the albedo layer,
and rich chromaticity gradients indicate that albedo gradients are also rich at those
locations. Such information could be adopted for better recovering an albedo
gradient map which is a key step for the Retinex-based method. Besides, it is
considered that the albedo layer is piece-wise smooth, and the albedo gradient is
reasonably sparse but often has a large value [Bla85] in contrast of the shading
layer which is smooth everywhere thus has relatively small gradients. Therefore the
idea of fy-smoothing [XLXJ11] that was originally introduced to create piece-wise
smooth artistic effect for image processing was adopted to help recover the albedo
layer. Shading layer is obtained by minimizing its gradient and Laplacian values.
In this chapter, as most of the research on intrinsic image decomposition, we
assume the Lambertian reflectance condition and that the environment is singly-
white-colored.

The proposed method is categorized as edge-based since it is based on the
gradient-prior of the albedo layer and the chromaticity gradient. It is shown by
experiments that the proposed method can achieve comparable or even better per-
formance to the other edge-based methods. The main advantage of the method is
its computational efficiency without sacrificing accuracy of decomposition. Briefly,
the use of chromaticity edge information helps to keep the accuracy of decompo-
sition by reducing the influence of non-albedo gradients, while decomposition is
done very fast by reducing the proposed optimization problem into the alternating
minimization problem [WYYZ08] and adopting the fast Fourier transform (FFT)
to accelerate the computation. The proposed method runs much faster, and our

results are at least close (and in some cases better than) to those obtained by the
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Original image Chromaticity map

Albedo layer Shading layer

Albedo gradient Chromaticity gradient

Our albedo Our shading

Fig. 2.1: The original input, the chromaticity map, the albedo layer and the
shading layer (ground truth) and the obtained decomposition results of raccoon

from the MIT dataset [GJAF09].
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NCC =0.59 NCC =0.82

NCC =0.84

NCC =0.80
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Figure 2.2: NCC between the albedo layer and the chromaticity map, and between
the albedo gradient and the chromaticity gradient. It can be observed that an
albedo gradient map and a chromaticity gradient map has stronger correlation
than an albedo layer and a chromaticity map does. (D: diffuse, A: albedo, CH:
chromaticity, AG: albedo gradient, CHG: chromaticity gradient)



Fllter

Original image Albedo Albedo gradient Ongmal image gradient

I | l Guidance

Original image gradient Chromaticity Chromaticity gradient Chromaticity gradient Albedo gradient

Fig. 2.3: Example of the image gradient, the albedo map, the albedo gradient,
the chromaticity map and the chromaticity gradient. The Chromaticity gradient

is employed to filter the image gradient, and then to recover the albedo gradient.

state-of-the-art methods that use sophisticated models and inference. Part of this
work has been published in conference and can be found in [2].

To sum up, the highlights of the work described in this chapter include:

e We analyze the correlation through normalized cross correlation (NCC) be-
tween a chromaticity map and an albedo layer, and between a chromaticity
edge and an albedo edge. At the same time, this correlation is explained via

deducing some physics property of chromaticity and albedo.

e We firstly introduce the use of chromaticity gradients in the problem of
intrinsic image decomposition and show mathematically that chromaticity

gradients contain location information of albedo edges.

e We propose a fast solver based on Plancherel’s theorem and half-quadratic
splitting scheme [WYYZ08] to efficiently solve the proposed intrinsic image
decomposition model, and keep the accuracy of decomposition while speed-
ing up the computation. The proposed method runs much faster, and the
results of the proposed method are close or better than the state-of-the-art
methods that use sophisticated models and complicated optimization meth-

ods.

The remainder of the chapter is organized as follows. The related work is pre-
sented in Section 2.2. Section 2.3 overviews the proposed approach; Section 2.4
provides experimental comparisons with prior approaches. A discussion and sum-

mary conclude the paper in Section 2.5.
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2.2 Related Work

2.2.1 Chromaticity

The property that a chromaticity map is free of shading influence has been widely
applied by previous researchers for a wide domain of computer vision tasks. Due to
its property, chromaticity is also used for high-level vision tasks such skin detection
under changing illumination [SMHLO0O0] and color object recognition [DWL98]. In
this work, the utility of chromaticity map was extended, and the chromaticity
edge for intrinsic image decomposition was adopted. The relationship between a
chromaticity edge map and an albedo edge map was analyzed in Section 2.3.
Tan and Ikeuchi [Tan08] introduced a method to separate reflection compo-
nents of textured surfaces by shifting a pixel’s intensity and chromaticity nonlin-
early without explicit color segmentation which becomes ineffective for complex
textured images. They [TNI04b] showed that a direct correlation between il-
lumination chromaticity and image chromaticity could be obtained in a newly
introduced two-dimensional inverse-intensity chromaticity space to analyze high-
lights. Tan et al. [TNI04a] analyzed the noise that most real images suffer from to
identify the diffuse maximum chromaticity correctly for robust separation of re-
flection components. Different from the previous work, the correlation between a

chromaticity gradient and the corresponding underneath albedo edge is analyzed.

2.2.2 Intrinsic Image Decomposition

In the early stage, the problem of intrinsic image decomposition was first under-
stood as shape-from-shading [Hor70], which addressed a subset of the intrinsic
image problem in which all objects were assumed to be relatively smooth and en-
vironment light is white. In this case, shading was assumed to be known, and all
materials share the same albedo. It was not until Land and McCanns’s Retinex
algorithm [LMT71] that the first algorithm for the task of intrinsic decomposition
was proposed. Horn [Hor74] later on effectively used the Retinex algorithm by an-
alyzing more the edge information. Despite its simplicity and long history, Retinex
remained as the most effective intrinsic image algorithm for a considerable length

of time [GJAF09).

20



Following the idea underlying the Retinex algorithm, researchers [TFA05, STLO0S]
focused on separating albedo and shading edges using different kinds of priors
based on a single image. By explaining model the Retinex algorithm in a new op-
timization problem, Grosse et al. [GJAF09] later proposed a color version Retinex
algorithm. Shen et al. [SYJL11] used local information and formulated intrinsic
image decomposition as a minimization problem. These methods are referred to
as edge-based methods. In Grosse et al. [GJAF09]’s work, they also presented a
ground truth dataset (the so-called MIT dataset) for intrinsic images containing
20 real simple scenes with one object in each scene. Another dataset was released
by Bell et al. [BBS14]. It contained a large number of indoor scene images with
manually labeled information on relative reflectances between different objects or
different parts of an object, via online crowdsourcing. They also proposed a dense
conditional random field (CRF)-based algorithm combining several generally used
priors for intrinsic decomposition. Their method outperformed the state-of-the-art
methods on the proposed dataset.

Multi-images-based decomposition approaches, apart from single-image-based
methods, cope with the complexity of natural scenes by exploiting multiple views
or multiple lighting conditions of the same scene [Wei01] [MLKS04] [LBD13] [DRC*15] [Yul6].
Laffont et al. [LBD13] adopted multiple images to reconstruct the geometry of 3D
scenes to better separate albedo from shading and from decomposing the shading.
Yu [Yul6] proposed a multi-images-based decomposition method by using a mod-
ified version of the robust principle component analysis (RPCA) and achieved a
common reflection layer for all the input images. However, multi-view data are
not always available and are difficult to capture for video.

The work by Vineet et al. [VRT13] combined scene-shape, illumination, and
reflectance from shading (SIRFS) [BM13] with semantic reasoning, and demon-
strated that improved reasoning about intrinsics could improve semantic segmen-
tation. Recent work on an efficient optimization-based approach has introduced a
heterogeneous shading model [CK13, JCTL14]. Besides the input of color images,
Chen and Koltun [CK13] applied the information from depth images and improved
the performance of estimating albedo and shading fields. Jeon et al. [JCTLI14]

preprocessed an image by separating the structure-texture of a scene, and then
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combined surface normals from depth images to obtain good decomposition results
from actual complicated scenes.

The latest research branch in machine learning / deep learning techniques was
introduced to yield satisfactory results on real complicated scenes [NMY15] [ZKE15]
[SBD15]. Zhou et al. adopted a convolutional neural network (CNN) model to
predict relative albedo ordering between image patches and they included this in-
formation to enable intrinsic image decomposition. Shelhamer et al. first learned
the depth information of a scene via CNN, and then used the learned depth as
input to the method in Vineet et al. [VRT13] to obtain beneficial decomposition
results. Narihira et al. built a CNN model based on synthetic computer graphics
ground truth with albedo and shading information, which they used for directly

separating the intrinsic layers.

2.3 Owur Approach

2.3.1 Imaging Formation

For Lambertian materials, a physically plausible relation for the measured color

value I, (k € {R, G, B}) reads:

L(p) = / (N T () - T s(A)dA (2.1)
- _>/ck s(\)dA
= AT alwol M)s()
= Ri(p)S(p)

where ) is wavelength, p is the albedo coefficient, ¢, describes the camera spectral
response of the k-th channel, 77 is a surface normal direction and 7 is a lighting
direction, p is an image pixel, s(A) is an illumination spectra. Ry are the albedo
layer of k-th channels and S is the shading layer, which are defined as Ry(p) =
ce(e)p(p, Ar)s(\e) and S(p) = 7 (p) - 7. The second last equal sign is valid
under the narrowband camera assumption. In the following, we use V and A to
indicate the gradient and Laplacian operator, and 0, and 9, as gradient operations

through = and y directions, respectively. The same symbols are adopted also in
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the following context.

2.3.2 Chromaticity Gradient

The chromaticity map (e.g. Fig. 2.3) is obtained by removing the intensity in-
homogeneity due to the effect of illumination from the original image I [Dre03],

which is defined by CH = (=415, and

3RS 3Ry Ry
(Rr + Rg + Rb)S N R'r + Rg + Rb B Rmean

where R,,cqn is the mean of R for all channels. Chromaticity edges are then

CH, = (2.2)

defined by gradient as

Ry,
Rmea/n )

Under the assumption that albedo is piece-wise constant, which means that

VRk Rmean - Rk v}%mean

mean

VCH, = V( (2.3)

albedo edges exist only in the border of two neighboring constant regions, we can
see that the location of a chromaticity edge corresponds well to the location of an
albedo edge (Ry and R,,eq, are piece-wise constant in the whole image). In the
interior of a surface region with a uniform albedo, there is no chromaticity edge
or albedo edge since Rj and R,,.., are constant. Chromaticity edges can have
a non-zero value only where the albedo of the surface changes. On the contrary,
the albedo edge may exist even when there is no chromaticity edge. This happens
in a special case where VR—? = %. This can be seen from 2.3 because such
condition makes VR R can — RBiV Rppeqn become zero.

Further, we consider the normalized cross correlation (NCC) between the chro-
maticity map and the albedo layer, and between the chromaticity gradient and the
albedo gradient. Note that the property of gradient consider here is magnitude
instead of the orientation. If not indicated, in following the gradient also means its
magnitude. Some results are listed in Figure 2.2. The ground truth of the albedo
layer is provided in the dataset of [GJAF09]. The mean NCC among 20 images of
the dataset is listed in Table 2.1. According to Table 2.1, It can be seen that the
chromaticity gradient and the albedo gradient has a high correlation, compared to
the correlation between a chromaticity map and an albedo layer. It is reasonable

as we have given the analysis of the albedo gradient and the chromaticity gradient

above.
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Table 2.1: Quantitative comparison with previous methods

Comparison NCC
Albedo vs. Chromaticity 0.56
Albedo Gradient vs. Chromaticity Gradient 0.79

Albedo Gradient vs. Masked Chromaticity Gradient 0.86

Further, compared to the magnitude of a chromaticity gradient, its non-zero
location provides more information of an albedo gradient. That is because the
location of a chromaticity edge corresponds to the location of an albedo edge,
according to our discussion above (Equation 2.3). Therefore, to find a better de-
scriptor of the location of the albedo gradient, the chromaticity gradient is thresh-
olded to obtain a bi-value mask with 1 and 0 indicating the gradient magnitude
larger than 90% the maximum of the chromaticity gradients of the image, or not.
The NCC between the albedo gradient and the masked chromaticity gradient can
be seen in Table 2.1. Here it can be seen that the non-zero location of the chro-
maticity gradient provides more information than its magnitude for the non-zero
location of the albedo gradient.

Therefore, according to the analysis with NCC, the location mask obtained
from the chromaticity gradient can serve as a strong hint to acquire the albedo
edge thus can be used as the guidance map. The mask based chromaticity gradient

is then defined as:

1, maz(||VCH(p)||) > mexl¥Chrom)
Ti(p) = ¢ (2.4)

0, otherwise.

where subindex k denotes channels (R, G, B), t is a parameter to adjust the
threshold. 7; has non-zero magnitudes (value 1) at pixels where chromaticity
gradient magnitudes have a sufficiently large value, max operator is with respect
to all pixels in an image. On the other hand, in the region where there should be
no albedo edge, which is indicated that no chromaticity edge exists, T; has zero

magnitudes.
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2.3.3 Edge-based Decomposition Model

Intrinsic decomposition problem can be considered as a layers separation problem,

whose objective is to obtain a solution maximizing the joint probability
p(R,S|I) = p(R[I)p(S|I), (2.5)

where the equality is valid under the assumption that the albedo layer R and
shading layer S are independent. In this work, we seek the likelihoods p(R|I) and
p(S|I) by their statistical property on edges.

Some symbols are used and denote log(7), log(R), and log(S) as I, R, S re-
spectively and write as I = R+ S in the log domain. The original images are
normalized to [0,1]. R should fall in the range [I,0]. A previous study indicates
that for a simple scene composed of simple objects or a single object, the albedo
layer satisfies the piece-wise constant assumption [WOO04]. Accordingly, the op-
timization model under the framework with fyp-norm is as follow (Equation 2.6).
The intuition of the proposed mathematical model for the edge-based model or
the Retinex assumption can be seen from the statistics phenomenon of the two
layers R and S (see Fig. 2.4). In the following, || - || without a subscript means
sum of £o-norm for all pixels in the image, subscript p means value at a pixel, and

the sum operator runs over the whole image.

min |[VR]Jo + M [[VS]| + Ao [AS]|
RS ) A (2.6)
st. I, <R, <0, max(S) =0,

where VR, VS and AS are the gradient of R, the gradient of S and the laplacian
of S, respectively. All of them have the same dimension as input image I. Here
max(é' ) = 0 is the largest value among all pixels. It comes from the white patch
assumption for white-balancing and under the assumption in this work that the
illumination of the scene is of white color.

Noticing that S=1-R, Equation 2.6 is written into the pixel-wise form as:

min {C(VR) +3 (VI - VR,)? + Mo(AT, - Azizp)2)}
R P (2.7)

~ A~

st. I; <R;<0.
where C(I) = #{p||0.1,| + |0y, # 0}, # is the symbols indicating the number

of elements in a set.
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I R S

minimize ||VR||, VS,AS = 0 everywhere

Fig. 2.4: Our mathematical model for the Retinex assumption.

In the following subsection, we will solve the optimization problem (Equa-
tion 2.7) by the alternating strategy and function T) will be included in each

iteration to guide recovering the gradient of the albedo layer R.

2.3.4 Optimization

The objective function we defined is non-convex because of C(I). The half-
quadratic separation scheme [WYYZ08, XLXJ11] is used to solve this problem.
As in [XLXJ11], we introduce auxiliary variables h? and hY to make the prob-

lem solvable and yield the objective function

' min { C(h*, hY) +Z ((0x Ry — hZ)? + (9, Ry — hY)?)

By (h®,hY) (2.8)

MOy R+ (0] ) + (A ARy

where C(h®,h¥) = #{p||h;| + |h¥| # 0}, B is a weight that is increased during
the optimization (in our implementation, starting from around 10 and multiplied
by 1 each time, and 7 is used to accelerate the iteration and set to be between 1
and 2.). hy and hY has the same dimensions as the input image I. Minimizing
Equation 2.8 for a fixed S can be performed by alternating between computing R
and (h*, hY) as following.

Computing (h*, h¥) Keeping R fixed, similar as in [SJA08] and [XLXJ11], the

following problem is minimized:
min {C(h*,h") + 3 (B0 Ry — hg)? + (D1, — 1)) } (2.9)
p

(h )

26



As it is easy to find the two local minimum points of this equation, which are
(8. Ry, d,R,) and (0,0). When (h*, h¥) = (8,R,,d,R,) at pixel p, the function
value is 1 for the individual term of second half of Equation 2.9; whereas when
(h*,h¥) = (0,0) the function value is 5((9,R,)? + (9,R,)?). Thus when 1 <
B((8,R,)? + (9,R,)?), namely (9,R,)? + (0,R,)?> > %, the global minimum is at
(h*,h¥) = (9,R,, d,R,). Otherwise, the global minimum is at (h*,h¥) = (0,0).
Therefore, the closed-form solution for Equation 2.9 is:

(h*, hY) = (8xRp7apr)7 (8xRp)2 + (8xRp)2 >%
| (0,0), otherwise.

(2.10)

Computing R Fixing (h®, hY), the subproblem of Equation 2.8 w.r.t.R is to be
solved. At the same time, considering the relation between the chromaticity map
and the albedo layer discussed in Sec. 2.1, to avoid the influence of the gradients
caused by the shading as much as possible, we use the information provided by
the chromaticity map as a filter. Therefore we include the chromaticity gradient
map Chrom as the a guider using 7% in Equation 2.4. Then the R estimation

subproblem corresponds to

mén{ER} (2.11)

Ep = Y,(B(0:Ry — Ts(p)hy)* + (9,Ry — Ts(p)hp)?)

+ Al((Tﬁ(p)ax 2

(2.12)

A~

9:Rp)? + (T5(p)dyI, — 9,R,))? + Mao(AL, — AR,)?)

iy = Lp(BUF(ORy) — F(Ta(p)hg))? + (F(9,Ry) — F(Tp(p)hh))?)
+ M((F(Ts(p)0:lp) — F(0:Ry))* + (F(Ta(p)dylp) — F(8,R)))*  (213)
+ X(F(AL) — F(AR,))?)

If we consider V and A as convolution operations (since the 0,, d, and A can

be considered as matrices [—1 1], [7'] and [El)) —14 g] that are operated on input

image I), from the property of Fourier transform, we have F(8,R) = F(8,)F(R),
F(0,R) = F(8,)F(R), F(AR) = F(A)F(R) and F(AI) = F(A)F(I) here the
multiplication is pixel-wise multiplication.
Ery = 2p(B((F0)F(Ry) = F(Ts(p)hy))® + (F(9,)F(Ry) — F(T5(p)hp))?)
+ M(F(T(p)dudy) — F(02)F(Ry))? + (F(T5(p)dyIy) — F(8y)F(Ry)))?
+ Ae(F(A)F (L) — F(A)F(Ry))?)

>
>
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The 2D Fourier transform is applied on the analytical solution of Equation 2.12
to obtain Equation 2.13 according to Plancherel’s theorem [Bra00]. In fact,
Plancherel’s theorem states that the quadratic norm of a function equals the
quadratic norm of its Fourier transform. For all values of fi, the energy equiva-
lence Fp = F F(R) 18 valid. It further follows that the optimal values of variable R
that minimize R correspond to minimizing F (Zi’) in the frequency domain. Thus,
optimal R* can be obtained by:

R* = F~!(argmin{ Ex g }). (2.15)
F(R)

As E}( g 1s a quadratic sum of unknown F (R), it is a convex problem and can be
OE (1

97 (k) Lo zero. By further calculation, R can be found by

solved by setting

R = FY(A/B),
A = B(F(0r)F(Tsoh®) + F(d,)F(Ts 0h¥))
F(0y)F(T5 0 0,1))

+
kg
u
&
~
=
e}
&
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where F is the Fourier transform, o is the pixel-wise product and / is pixel-wise
division (p is omitted without losing the generality), F(-) is the complex conjugate
(however, we use the Plancherel’s theorem in the case of real number), T} is defined
as in Equation 2.12 where f3 is the same as in Equation 2.8, the parameter 7 added
to the denominator is a small number necessary for the stability of division. Both
the multiplication and division are pixel-wise operation.

The whole process is sketched in Algorithm 3.

2.4 Experiments

Experiments were carried to test the convergence behavior and the optimization
speed of the proposed algorithm. Comparisons with the state-of-the-art methods
were also done to demonstrate the effectiveness of the proposed method. FEval-
uations were done on the MIT dataset [GJAF09] and the dataset provided by
Bousseau [BPD09].
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Algorithm 1 Chromaticity Edge-based Intrinsic Decomposition
Input: input image I; smoothness weight i, Ag; initial fy; iterations number

Tmax; 1CTEAsIing rate 7);
Initialization: R « I; 8+ By; i + 0.

while ¢ < 7, do
fixing R, computing (h*, hY) using Equation 2.10;
fixing (h*, h¥), compute R using Equation 2.16;
B=mnxp;
i+ +;

end while

A

Output: Rand S=1— R;

The experiments were done on a PC with Intel i7-3612M CPU (quad-core 2.1
Hz) and 8GB RAM. The implementation was done using C++. The proposed
algorithm have been tested on the MIT intrinsic image dataset [GJAF09] and
some images provided by Bousseau et al. [BPD09]. In most of the experiments in
this work, it was found that A; is better to be small than 0.01)\;. In this chapter,
we fixed \; to be 0.005\; for all the given results.

2.4.1 Behaviour of convergence

From Equation 2.16, It can be seen that when Ay (thus A;) tends to co, A/B tends
to F(I) (as Ts becomes 1 everywhere after some iterations) thus R equals I after
some iterations. In this case the (h%, h¥) have effect. Otherwise, when A; tends to

0, A/B approaches to

F(02)F (I o h™) + F(0y)F (T o hY))
F(02)F(0r) + F(0,)F(,) +7/8

(2.17)

In this case the behaviour of the proposed algorithm is almost independent of the
input image I. Actually, for \; decreasing from oo to 0, the details of intermediate
result of iterations move gradually from R to S. The proposed method distributes
the gradient and Laplacian values between the two layers. R obtains the significant
values, whereas S obtains the relatively smoother details. The effect of different
A1 setting is shown in Fig. 2.5. It can be qualitatively seen how A\; behaves to

distribute the gradients between R and S. In most of the experiments, setting
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A1 equal to 0.01 can help the proposed method to obtain good enough results.

However, if the shading variation or the shading effect is large, small )\ is needed.

. M=10 A =100 A1 =1000

-
j&\ WEay
~

T R:
— i IS— L.______
S:

Fig. 2.5: This figure shows the effect of different \; setting on the final composition

results on the example of raccoon. (x-axe represents the value of gradient and y-

axe represents the number of pixels for each gradient value.)

2.4.2 Fast Optimization

Experiments showed that the proposed optimization framework converged fast
to a good solution, normally within 5 iterations. In fact, for each iteration, the
proposed method can return results quickly. Although the obtained results are
local-optima due to the non-convexity of the proposed model, most of the cases,
the results of the proposed method are of good quality and usable for further
processing task such as re-texturing, changing shading, etc.

For the calculation of FFT and IFFT, the FETW! library was adopted which
can give more than twice higher computational performance than FFT of OpenCV.
According to Equation 2.16, it can be known that F(8,)F(8,), F(9,)F(d,) and

F(A)F(A) can be calculated at initialization and be used for each iteration.

Therefore for each iteration when computing R, 9 FFT and 1 IFFT need to be

Thttp://www.fftw.org/
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Original Ground Truth  Gehler et al.[10] Barron and Malik[13] Jason et al.[15] Ours

Figure 2.6: This figure shows the decomposition results by Gehler et
al.’s [GRK™11], Barron & Malik’s. [BM12], Chang et al.’s [CCFI14] and the pro-

posed method on two images from the MIT intrinsic dataset. Ground Truth is

shown for reference.
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Original Ground Truth  Gehler etal.[10] Barron and Malik[13]  Ours

Figure 2.7: This figure shows the decomposition results by Gehler et
al.’s [GRK'11], Barron & Malik’s. [BM12], and the proposed method on two

images from the MIT intrinsic dataset. Ground Truth is shown for reference.

calculated, which means low computation is needed for each iteration. Together
with a small number of iterations, the proposed method can achieve low com-
putational time and is much faster compared to the state-of-the-art methods for

intrinsic decomposition.

2.4.3 Comparisons

The performance of the proposed method was compared with several representa-

tive intrinsic image estimation methods and reported the runtime per image as well

as two quantitative measurements: the local mean squared error (LMSE) [GJAF09].
LMSE is the local mean-squared error. It is the average of the scale-invariant MSE

errors but computed on overlapping square windows of size 10% of the image along

its larger dimension.

The four methods in [SY11, GRK"11, BM15, CCFI14] are considered as state-
of-the-art methods depending on their performance on the dataset of [GJAF09].

Qualitative and quantitative results of these methods are either generated by the
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source code provided the authors or taken from the corresponding published pa-

pers. The quantitative comparison results are listed in Table 4.2. The proposed

Table 2.2: Quantitative comparison with state-of-the-art methods

Method Runtime LMSE
Shen & Yeo [SY11] >5m 0.0149
Gehler et al. [GRKT11] >9 m 0.0131
Barron & Malik [BM15] >3 m 0.0125
Chang et al. [CCFI14] — 0.0111
Proposed (unique para.) ~0.1s 0.0141

Proposed (fine tuned para.) ~0.1s 0.0132

method can achieve decomposition performance close to methods employing the
complexity models and learning-based techniques (e.g. [GRKT11, BM15]), and
runs much faster. Note that two LMSE results of the proposed method were given,
the lower one (0.0147) was obtained with the unique parameters that is mentioned
above for all the images from MIT dataset; whereas the higher one (0.0132) was
achieved by fine tuning the parameters for each image from MIT dataset. How-
ever, the fine tuning process is not large brute force workload but can be tuned by
observing the behaviour of convergence that was mentioned above (Figure 2.5).
There is a lack of timing report for [CCFI14] due to the lack of available source
code and that the runtime was not reported in the paper. However, due to the
inference and the design of algorithm, the method of Chang et al. [CCFI14] could
have large computational complexity and runtime could be significantly larger
than the proposed method.

Two examples of results (box and sun from MIT dataset) with the comparison
with [GRK™11, BM12, CCFI14] are shown in Fig. 2.6. The proposed method gives
visually comparable results with the others, which illustrates its effectiveness. The
obtained albedo and shading layer also look close to the ground truth. Another
two examples of results (turtle and cupl from MIT dataset) with the comparison
with [GRK™11, BM12] are shown in Fig. 2.7. Barron et al., as well as Chang et
al.’s results, were copied directly from their paper. According to Fig. 2.6 and

Fig. 2.7, the proposed method gives visually comparable results with the others,
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which illustrates its effectiveness. The obtained albedo and shading layer also look
close to the ground truth.

The proposed method was also tested on the input images from the dataset
provided by Bousseau et al. [BPD09] and compared our result with it and also
Tappen et al.’s method [TFA05]. Bousseau et al.’s dataset contains images of
artificially made scenes without the ground truth of albedo and shading layers. It
is normally used for comparisons between intrinsic image decomposition methods
with user indications. Bousseau et al.’s method in [BPD09] is a user-assisted one
that can generate more piece-wise constant albedo with user’s labeling of regions
sharing same albedo or same shading. Tappen et al.’s method [TFAO05] is an
edge-based method that learns a classifier to distinguish albedo edges and shading
edges. As seen in Fig. 2.8, the proposed method shows arguably better albedo and
shading decomposition results, considering the piece-wise smooth albedo, clear

edges corresponding to the chromaticity map.

2.5 Discussion

A chromaticity map is considered to be an important clue to obtain an albedo
layer in intrinsic image decomposition. In this work, the usefulness of chromaticity
gradients was demonstrated, which indicate the existence of albedo edges. A novel
edge-based intrinsic image decomposition method was proposed by employing the
chromaticity map and by adopting the Retinex assumption under the {y-norm
based optimization model. A fast solver by using FFT and IFFT was designed.
The proposed method runs much faster than the state-of-the-art methods with
comparable performance.

One limitation of the use of chromaticity gradients is that there is ambiguity
between strong variations of reflectance (i.e.. monochromatic variation between
black, gray and white) and variations caused by shadow. As it can be seen in Fig-
ure 2.9. In the red box, the color variation is due to the difference of reflectance,
which cannot be indicated by a chromaticity map. As it has been in Section 2.3,
this happens because a chromaticity map is obtained by dividing R, B, G channels

by the mean of the three channels. The mean operation itself brings the ambi-
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guity between variations of reflectance and variations caused by shadow. In the
equation 2.4, T) is defined by tuning parameter which renders it dynamic change
during the optimization. The strategy in this work handle in some terms the
limitation case that is mentioned here. Finding an extra clue to distinguish the

variation of reflectance and the variation due to shadow is our future work.
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Chromaticity Bousseau et al.[6]

ZN

Tappen et al.[7]

@

Input Chromaticity Bousseau et al.[6]

Tappen et al.[7] Ours

Fig. 2.8: Comparison of decomposition results on a photo with the user-assisted

approach [BPD09] and Tappen et al.’s [TFA05].
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Input Chromaticity

Input gradient Chromaticity gradient

Fig. 2.9: Limitation of the chromaticity map. In red box, the variation of color
is due to difference of reflectance, which cannot be indicated by the chromaticity

map.
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Chapter 3

Structure-Preserving Image
Smoothing via Feature

Asymmetry-aware WLS

3.1 Introduction

Natural scenes and human-created art pieces typically contain rich textures as can
be seen on the handkerchief with a cartoon figure that is shown in Figure 3.1. Some
natural scenes contain even more complicated patterns of texture (see Figures 3.6
and 3.10). While the human perception system can easily distinguish structures
and textures inside images, understanding and then separating structures and
textures poses a great challenge. For example, it is difficult to discriminate fine-
scale edges and details. Both of them appear as small variations even though the
details often appear as quasi-periodic.

The feature asymmetry (FA) has been found to be a very effective feature
detector for natural image processing [Kov97, Bell6] in the frequency domain,
as well as for the medical image processing with complicated noise patterns such
as those with speckle noise in ultrasound images [MPN98, BBML11]. Moreover,
FA is invariant to changes in image brightness or contrast due to analyzing the
phase information in the frequency domain. This makes the FA an effective in-
dicator of local image features such as edges and corners. FA has been proved

to be useful for detecting non-periodic patterns from all kinds of strong edges ig-
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Input Structure Texture

Figure 3.1: Example of structure-texture separation result for handkerchief with

cartoon figure.

noring largely local periodic variations, which is a strong property to distinguish
structures from textures within images. Consequently, presenting an optimization
framework in which structures and textures are penalized differently by defining
an FA based regularization term. Textures with large penalties are smoothed out
whereas structures are well preserved due to the small penalties imposed on them,
especially for low contrast features. The experimental results in this work revealed
FA could accurately extract structure features that were observed by the human
eyes.

The weighted least square (WLS) framework has been found to posses the nice
property of being able to smooth image details on different scales without blurring
the edges. However, it was found that the original gradient-based WLS was not
suitable for texture removal, while the proposed method based on FA turned out
to be a better alternative. This is because FA can better represent the human vi-
sual system’s response to contours and can detect periodic patterns since it works
in the frequency domain [MRBOS86, MO87, PP11]. A local phase-based measure
based on this observation was employed to extract the structure map from images.
The map was then incorporated into the WLS framework as a weighting function
to guide the optimization during smoothing. Further, the WLS framework has
recently been widely accelerated by researchers [MCL*14], who have transformed
the 2-dimension (2D) optimization into recursive 1-dimension (1D) optimization
problems. Such 1D recursive iteration scheme guarantees the convergence of op-

timization while preventing the “streaking artifacts” that often occur with 1D
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separable algorithms [GO11]. Since the proposed FA-based framework is modeled
within the framework of WLS, we could similarly apply such techniques to the
FA-based framework and greatly accelerate its solving process.

Experiments were carried out to compare the proposed method with some
state-of-the-art structure-texture separation methods. The results obtained from
the experiments revealed that the proposed method achieved better or comparable
performance and had low computational complexity, compared to the state-of-the-
art approaches. As can be seen from Figures 3.1 and 3.10, the proposed model
could effectively eliminate texture without distorting structures.

To sum up, the three main highlights of the proposed work reported in this

chapter are the followings:

e FA was employed to structure-texture separation problem. FA is a phase-
based quantity that extracts structure edge information in the frequency
domain. It has been proved through experiments that FA can serve as a

better structure edge descriptor than image gradients.

e The WLS framework was employed to solve structure-texture separation.
The weight of WLS was calculated based on FA. The proposed FA-aware
WLS method was effective in structure-texture separation and could achieve

state-of-the-art results.

e When solving the WLS framework, the 2D optimization problem was trans-
formed to solving two problems with 1D recursive iterations by using the ex-
isting acceleration framework. This leads to significant speed up. Moreover,

the proposed method ran much faster than many state-of-the-art methods.

Part of this work has been published in a conference paper and can be found in
Yu and Sato [1].

This chapter is organized as follows. Some related work will be reviewed in
Section 3.2. Details of the proposed method are then presented in Section 3.3 and
experimental results on synthetic and clinical ultrasound images are discussed in

Section 3.4.
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3.2 Related Work

Some researchers made great efforts in tackling this challenging problem of structure-
texture separation [Mey01, SSD09, FFL10, BLMV10, XYXJ12, KEE13]. Structure-
texture separation can be formulated as an estimation problem in which a given
image is separated into two components that correspond to coarse and fine scale
image details. The Gaussian filter is the earliest and the most commonly used
isotropic smoothing operator [Wit84, BA87]. The smoothed image was taken as
the structure layer whereas the difference between the input image and smoothed
image was taken to be the texture layer. Edge-aware smoothing approaches such as
uses of the anisotropic diffusion filter [PM90], the total variation model [ROF92],
the bilateral filter [TM98, DD02], the non-local (NL) means filter [BCMO5], the
WLS filter [FFLS08] and ¢ smoothing [XLXJ11] have utilized differences in inten-
sity or color values or gradient magnitudes for predicting the existence of edges,
and then used the edge information to guide the smoothing process. Such intensity
variations or gradient-based definitions of edges, however, might fail to capture
high-frequency or periodic patterns that are related to fine image details or tex-
tures. Therefore, these approaches cannot fully separate textured regions from the
main structures as the edge indicators will consider such textures as being part of
the structure to be retained due to their large gradient magnitudes.

Subr et al. [SSD09] framed the separation problem regarding local extrema
modulation based on the fact that edges are determined by intensity oscillations
between local extrema. Subsequently, Xu et al. [XYXJ12] proposed a relative
total variation descriptor to better classify structure and texture elements, and
they then proposed including this information into the total variation framework
to obtain better separation results. Karacan et al. [KEE13] adopted the region
covariances to the NL-means filter and used it for image smoothing. By using
region covariances commonly used for representing textures, their method was able
to remove small-scale textures from images while preserving structures. Zang et
al. [ZHZ14] used local extrema for feature characterization as Subr et al. [SSD09]
had done, but introduced curvalization techniques to represent the 2D regions’
properties into 1D curves. They reduced the 2D computation into 1D processing

to achieve faster processing. Min et al. [MCL"14] proposed the 1D separable

41



implementation of the WLS method to obtain an efficient global filter with a
comparable runtime to fast edge-preserving filters.

This chapter presents a novel approach for structure-texture separation based
on the WLS framework [FFLS08] with the weight calculated from FA. The com-
putation is accelerated by using the 1D separable implementation in [MCL™14].

Our method is fast and performs well on separating structures and textures.

3.3 The proposed method

3.3.1 Edge Detection Measure

A previous study has found that phase information provides evidence of an ob-
ject’s contours [PP11]. In fact, the local energy model developed by Morrone et
al. [MRBO86] and Morrone and Owens [MOS87] postulates that features are per-
ceived at points where the Fourier components are maximally in phase (see Fig-
ure. 3.2), which comes from the concept of the phase congruency (PC') model.

The phase congruency model is a model of visual processing built on frequency.
It supposes that the visual system can perform calculations using amplitude and
phase of frequency components from a singal instead of processing visual data
spatially. We assume a 1D signal f(x) that is reconstructed from its Fourier
transform by

f(z) = /_+°0 a,cos(wx + ¢y, )dw, (3.1)

o0

where, for each frequency w, a,, is the amplitude of the cosine wave and wx + ¢,
is the phase offset of that wave. Correspondingly, The phase congruency function

at each point x in the signal is defined as

PC(x) = max [ aycos(wz + ¢, — 9)'
0e[0,27) [ andw

(3.2)

According to this definition, PC' can be considered as a weighted average of local
amplitude with weights obtained from phase information (calculated as cos(wx +
¢, — 0)). Examples of points in phase can be seen in Figure 3.2. Based on f(x)
(Equation 3.1), we define

h(z) = —/_ h ay,sin(we + @, )dw. (3.3)

[e.9]
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Figure 3.2: Points in phase, examples of square wave and triangular wave.

To extract the local amplitude and local phase of the 1D signal f(z), we need to

represent it in its analytic form f, as

falz) = f(x) —ih(z), (3.4)

where 1 = v/—1. The local amplitude is defined as

E(x) =/ f(x)? + h(z)*. (3.5)

The local phase

Arg(z) = arctan(h(x)/ f(z)) (3.6)

represents the angle or the orientation at which the phase congruency occurs. It
can be used to define the feature type. To understand this definition and its rela-
tionship with phase congruency, one can think of a signal f(z) at any point x as
being made up of the sum of various sine waves at different amplitudes and phase
angles. (see the vector map in Figure. 3.3). Morrone [MO8&7] proved that local
peaks in the local amplitude correspond to local peaks in the phase congruency.
Therefore, searching for local maxima in the phase congruency function is equiv-
alent to searching for local maxima in the local amplitude function. These local
maxima normally appear at lines, step edges and bar edges, and other types of
features such as corners and curves (2D features).

The human visual system has the capacity to simulate convolution by odd and

even symmetric filters in quadrature. The definition that filters are in quadrature
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Figure 3.3: Signal f(x) at any point z as being made up of the sum of various

sine waves at different amplitudes and phase angles.

is that not only that the filters form an odd and even symmetric pair (which means
the output of convolution by one filter is a 90° phase shift of the output of the
other), but also that both of them have the same quadratic sum value and a zero
mean. More in details, if g. represents the even symmetric filter and g, represents

the odd symmetric filter, then
/ge(x)dx = /go(x)dm =0, (3.7)
/gz(ac)dx = /gg(x)dx (3.8)

Thus, the human visual system is capable of computing the local energy of a
general 1D singal f(z) by computing the sum of squares of the output from con-
volution with the odd and even symmetric filters, which has the similar mechanism

as combining the output of the simple and complex cell responses in human eyes:

E = /(ge(x) * f(x))? + (go(2) * f(2))2. (3.9)

The even symmetric filter g. is chosen so that it covers as much of the frequency

spectrum as possible, and at the same time eliminating the D.C. term. The odd

symmetric filter g, is then a 90° phase shift filter of g..
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For more details about the local phase, the case that points are in phase can
be one of the two occasions: feature symmetry and feature asymmetry (FA),
according to Kovesi [Kov97]. As can be seen with the phases of a step function
in Figure 3.4, blue dotted lines indicate the location of feature symmetry and
red dotted lines indicate the location of feature asymmetry. The plot in bottom
illustrate the phases of step edge function in different frequencies. Compared
to feature asymmetry, according to Kovesi [Kov97], the results obtained from
the feature symmetry measure can sometimes be counter-intuitive. It is because
feature symmetry measures local symmetry to the exclusion of everything else.
The measure is invariant to the magnitude of the local contrast, and so features
that might be considered to be of little significance can be marked as having strong
symmetry (see the flat region of the step edge function in Figure 3.4). Therefore,
feature asymmetry (FA) is used as the phase-based detector to extract structure
edges in this chapter.

Locally, the 1D signal of the step edge function is illustrated in Figure 3.5.
One can see that the axis of asymmetry corresponds to the point where all the
frequency components are at the most asymmetric points in their cycles, i.e., the
inflection point (the steps on the square wave). Here it should be noted that only
the asymmetry of intensity values in images, i.e., a low-level view of symmetry
and asymmetry, is being considered. It is assumed that asymmetry represents a
generalization of step edges or structure edges in this work [Kov97].

In [FSO01] and [FS04], Felsberg and Sommer proposed a 2D isotropic analytic
signal which is called monogenic signal. This 2D signal preserves the main property
of 1D analytic signal that decomposes a local amplitude and local phase. In their
research, the monogenic signal is defined as 2D analytic singal by convolving the
input 2D signal with its Riesz transform. Based on the monogenic signal [FS01]
(which is defined for the whole image), a local monogenic phase-based measure is
defined for a given image to detect asymmetric features. The monogenic signal is
defined by combining the 2D signal, f, with its Riesz transform (details can be
found in [FS01]) 71% to form:

fu(ey) = (F@y), [ ry) (3.10)
= (f(m,y), hl * f(l',y), h2 * f(iE’y)),
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Figure 3.4: Feature symmetry and feature asymmetry (FA). Blue dotted lines
indicate the location of feature symmetry and red dotted lines indicate the location
of feature asymmetry. The bottom graph illustrate the phases of step edge function

in different frequency.
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Figure 3.5: Feature symmetry and feature asymmetry (FA) in a local view.
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hy and hgy are the Riesz filters, and * is the convolution operator. The definitions
of hy and hy are:

x )

h1($,y) = —m, hz(ﬂf,y) = —m

(3.11)

Since real images generally contain a wide range of frequences, the local prop-
erties are analyzed in practical applications via a bunch of bandpass quadrature
filters tuned according to various spatial frequencies. The monogenic signal is

combined with a set of bandpass filters ¢(z, y; s) (s is the scale parameter):
—
fus = (c*x fexhy* fiexhy % f) = (even, odd) (3.12)

where even = c¢x* f and (E? = (cxhy* f,cxhox f). In other words, c* f represents
the scalar-valued even and (¢ * hy * f,c* hg % f) represents the vector-valued odd
responses of the quadrature filters. In this work, Cauchy kernels are adopted as the
bandpass filters due to their exceptional behaviour in localization. A 2D isotropic

Cauchy kernel in the frequency domain is defined as:
C(k) = [k|* exp(—s]k]), (3.13)

where a > 1, k = (u,v), s is the scale parameter of different levels of bandpass
filters (the same as in Equation 3.11). Here C' is the Fourier transform of function
¢ (equation in the spatial domain can be found in [BNB04]) and in Equation 3.12.
More details on the parameters can be found in [BNB04]. The s in all the exper-
iments in this work was taken to be 13, and a was taken to be 1.5.

As Kovesi [Kov97] mentioned, the absolute values of the ﬁi symmetric filter
responses are large while the absolute values of the even symmetric filter responses
are small at FA points (see Figure 3.4 and 3.5). A way to define FA is to use
the differences between the (E)i and the even symmetric filter responses to detect

asymmetric features:

—
dd s s Ts
FA=Y Llo |_> jeven), = o] (3.14)
s 7\/odd?+ even? + ¢
where s indicates different scales, € is a small constant to avoid division by zero,
-y
T is the scale specific noise threshold, | - | is the ¢; — norm for odd and absolute

value for even, and |-| denotes the zeroing of negative values.
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From the definition of FA, it first takes values in [0, 1], and is close to 0 in
smooth regions and close to 1 near boundaries or structure edges. Second, due to
the subtraction of noise level T, FA is robust to noise and thus can help detector
edges in a noisy image.

Some examples of FA edge maps can be seen in Figure 3.6. It can be observed
that edge maps generated using FA correspond well to manually create ground
truth (GT) of structure maps provided by Xu et al. [XYXJ12]. Unlike the gradient
edge maps that contain many edges due to texture, the edge maps from FA capture
the object contours, while effectively suppressing edges from periodic patterns.

To further assess the relationship between the structure layer and FA map,
the correlation between GT of the structure edge provided in the dataset of Xu et
al. [XYXJ12], an FA map, and the corresponding image gradient were examined.
Here, a normalized cross correlation (NCC) index was adopted as in Chapter 2
for comparing correlation.

The NCC' between the GT, FA, and image gradient are compared. Some of
the results are listed in Figure 3.8. The mean NCC' of 20 images in the dataset is
listed in Table 3.1. It can be seen from Table 3.1 that besides qualitative similarity,
the FA map also has a higher correlation to the structure edge than the image

gradient, which indicates that FA is a better clue for seeking the structure layer.

Table 3.1: Mean NCC of 200 images from dataset of Xu et al. [XYXJ12]
NCC

GT vs. FA 0.66
GT vs. Gradient 0.34

Although the FA map is highly correlated with the structure edge, its edge
location (non-zero location) shifts one to three pixels compared to its correspond-
ing gradient location. Thus, a dilated morphological operation on the FA map
was carried out to obtain a better structure edge descriptor. We compared the
dilated FA map with the structure edge and found that NCC was reasonably
enhanced due to this operation. Further, this dilated FA map was used as a mask
to filter the gradient map of the input image such that the filtered gradient had a

reasonably correct location as the GT of structure edges, with an edge magnitude
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Figure 3.6: Comparisons between ground truth (GT), feature asymmetry (FA)
and gradient mask. Here gradient mask is generated by filtering gradient map

with threshold equal to 0.9 multiplies the maximum value of gradient map.
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Figure 3.7: Comparisons between FA, GT and gradient map.

that strongly corresponded to that of the original image. Some of the results are
listed in Figure 3.8. The mean NCC' is listed in Table 3.1. It can be seen that
the dilated operator rendered the FA map with better descriptive power for the
structure edge. The following explains how this filtered gradient was applied to

the WLS framework that enabled us to propose the proposed FA-aware WLS.

0.78 0.67

GT FA map Dilated FA Filtered gradient

Figure 3.8: Comparisons between GT, dilated FA and gradient map.

3.3.2 Feature Asymmetry Weighted Least Squares (FAWLS)

We aimed at finding a new image .S which was as close to I as possible but was also
as smooth as possible everywhere, except when passing across significant features
to extract a structure layer from a natural image, I. Note M = H x W as the

image size of S and I, where H is the height and W is the width of an image.
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The WLS framework has been found to perform well in smoothing image details
while preserving edge features [FFLS08]. WLS carries out edge-aware smoothing
by minimizing the following energy function:

S (1~ 57+ A (wnp) (22

p

2

+ 1wy (1) (%)2», (3.15)

p p

where p represents image pixels and A influences the smoothness of the optimized
result, S; here, wy,, and w, , are weights at pixel p for the given image I in terms
of horizontal and vertical gradients.

However, WLS does not work well when is directly applied to the structure-
texture separation task because of the influences of textures. One main reason
is that the weighting functions are usually defined based on image gradients, are
rather weak in indicating structures or contours, and are easily influenced by
textures, as shown in Figure 3.6. this problem was solved by incorporating FA
(Equation 3.14) into the WLS framework. FA first serves as a mask to filter
the gradient of the input image, and then the filtered gradient is included in the
WLS framework to enhance the effect of the plausible structure edge. A feature
asymmetry weighted least squares (FAWLS) framework was specifically designed

by setting the weighting functions, wy,, and w,, as

wp(I) = (FAI) +1)0:1)" + &), (3.16)
wop(I) = (FA,(I) + 1)9,1)* + )7,

where « controls the sensitivity of the FA edge map (see Equation 3.14) and
gradient 0,, 0,; ¢’ is added to avoid dividing by zero. The value of FA can be
set between one and two. « is set to 1.5 in the experiments in this work. As
was demonstrated in the experiments in this work, wy,, and w, , in Equation 3.16
had a large effect in adapting WLS to structure-preserving image smoothing. The
FA measure is sensitive to structure edges and less sensitive to texture edges,
which is different from gradient-based operators. The smoothing process of WLS
is prevented near the structure but is greatly encouraged in homogeneous regions
or regions with rich textures, which results in smoothed images with structures
being preserved. The pipeline of the proposed method can be seen in Figure 3.9.
For the acceleration, by arranging the summing up of pixel-wise quadratic sums

into a vectorization version, first we see that Equation 3.15 can be rewritten into
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Figure 3.9: Pipeline of the proposed method.

the matrix form:
(¢ — )7 (¢" = ¢°) + M¢® DIW,Dyg® + ¢ DTW,D,q%), (3.17)

where ¢’ and ¢° are the 1D vectorization of I and S, Dj, and D, are the Toeplitz
matrices formed by arranging the discrete gradient operators with a forward dif-
ference according to Xu et al. [XYXJ12]. The W), and W, are diagonal matrices
whose values are set at Wj,(i;4) = wpp, (1) and W, (i;4) = w,,, (1), where i is the
order of pixel p; in the vector formed from 1.

To be in details, ¢’ and ¢° have dimension of M x 1 (remembering that M is
the size of image pixels). Dy, D,, W, and W, have the dimension of M x M. D;q°
is the vectorization of (85 )2 and D,q” is the vectorization of <@>; obtained from

oz oy
S.

Solving Equation 3.15 can be done iteratively by the following two steps:

e From the estimated structure image S in the second iteration, D}, Dg, Wi
and W, can be calculated based on Equation 3.16 and property of discrete

gradient operators with a forward difference.

e To update the structure image S, Equation 3.17(so as 3.15) is solved. Its

optimization can be written into the following analytical sparse linear system
[J -+ MDWyDy, + DIW,D,)l¢" = ¢', (3.18)
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or can be written as

(J+AL)¢® = ¢, (3.19)
where .J is the identity matrix. L = (D} W,Dy+ D} W, D,) is the symmetric
positive definite Laplacian matrix, whose dimension is M x M.

Further, according to Min et al. [MCL"14], Equation 3.19 can be solved by iter-
atively solving two linear systems:
(Jn + MNeLn)g>" = ¢"" and (3.20)
(Jo + MLo)g™ =", (3.21)
where subindices h and v indicate horizontal and vertical operations, J,, J, are
identity matrices with sizes of W x W and H x H. And Lj; and L, are Laplacian
matrices with sizes of W x W and H x H. The ¢'* and ¢" represent the vector
notations of I and Sy, which are the horizontal vectors of I and S (rows of an
image), and ¢’* and ¢°" represent the vector notations of I, and S, (colum of an
image), which are the vertical vectors of I and S. Note that here A, was set to be
%%)\, representing the step size of each iteration for the recursive optimization.
In this work ); is defined the same way as in [MCL"14]. By this 1D separable
implementation, we reduce the problem of solving a complex equation system to
solving two much simpler equation system.
The solution, ¢>", for Equation 3.20 is obtained by recursively forward-backward

computing:
a, = MLp(z,xz—1), (3.22)
b, = 14+ MLy(z,x),
¢ = MLp(r,z+1),

Cr = ¢/ (by — Crray),

o= (@ = @)/ (b — Eeran),

with ¢ = co/by and G5 = ¢5" /by and with z =1,..., W — 1.

~ ~ S
QQh = qg’h — CaQypi1s (323)
with qé{,}il = qﬁ}}il and with x = W — 1,...,0. Similar recursive computation is

carried out for the solution, ¢°¥, of Equation 3.21. The whole process is summa-

rized in Algorithm 2.
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Algorithm 2 Separable Global Smoother for FAWLS

Parameters:
T: iteration number, M = H x W: image size (H: height and W: width)
A: smoothing parameter
Ly, (or L,): W x W (or H x H) three-point Laplacian matrix
I" FA" Sh: 1D horizontal signal of I, FA, S;
q"", ¢ of dimension W x 1, 1D vectorization of rows of I, S
IV, FAY SV: 1D vertical signal of I, FA, S
", ¢°¥: of dimension H x 1, 1D vectorization of colums of I, S
Input:
2D image I(z,y); ¢’ (M x 1 vector)
2D FA map FA(z,y);
Initialization: S < [
fort=1:T do
compute A\, = gg—:tl)\ (At is defined as in [MCL*14])
fory=0: H—-1do
¢>M(x) «+ S(z,y) forallz =0,..., W —1
compute wy, , using FA"(z,y) for all z =0,..., W — 1
build a tridiagonal Ly,
solve (i + N\ Ly)q™" = ¢™" using 3.22
S(z,y) + ¢>(z) forall z =0,..., W —1
end for
forz=0:W —1do
> (y) < S(z,y) forally =0,..., H — 1
compute w,, using FA"(z,y) forally =0,...,H —1
build a tridiagonal L,
solve (¢ + N\ L,)q™" = ¢ using 3.23
S(z,y) + ¢>(y) forally =0,..., H — 1
end for

end for

Output: 2D image S(z,y); ¢° (M x 1 vector)
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3.4 Experiments

The proposed approach was compared with state-of-the-art structure-texture sep-
aration methods in the experiments: the WLS [FFLS08], the relative total vari-
ation (RTV) [XYXJ12], and the region covariances-based NL means (RCNLM)
filter [KEE13] on two images from Xu et al. [XYXJ12] (the first and third rows
in Figure 3.10) and one image from Karacan et al. [KEE13] (the second row in
Figure 3.10). Experiments were carried out on a PC equipped with an Intel i7-
3612QM 2.10-GHz central processing unit (CPU) with 8 GB of memory. The
code was written in Matlab 2013b. For the 1D recursive optimization part of
WLS, the C-Matlab executable (MEX) version from Min et al. [MCL"14] was
used. The source codes of the methods that were compared were obtained from
websites provided by the authors of [FFLS08, XYXJ12, KEE13]. The parameters
of all the tested methods were either set as mentioned in the corresponding papers
or carefully tuned to achieve good results. All the methods were qualitatively
evaluated on the basis that an efficient method should only smooth fine details
and textures and preserve the structure. Also, the extracted textures or so-called
detail components should be devoid of any information regarding the structure.
Computational complexities were also compared, and the results are listed in Ta-
ble 3.2. The parameter, A, was set to 0.01 in all the experiments in this work on

the three images.

Table 3.2: Computational Complexity of Images in Figure 3.10 for different meth-

ods. (numbers in parentheses indicate the sizes).

Method Rowl (1024x768) Row2 (710x511) Row3 (495x536)
WLS [FFLS08§] 7.0s 4.2s 2.9s
RTV [XYXJ12] 8.8s 4.9s 3.6s
RCNLM [KEE13] 1124.2s 553.4s 358.6s
Proposed 1.6s 1.1s 1.1s

It can be seen that from Figure 3.10 and Table 3.2 the proposed method
achieved comparable or better separation of structure layers at less computational
cost than the other methods. To be more specific, WLS yielded large color bleed-
ing and blurring effects. Although RCNLM gave pleasing qualitative results, its
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runtime was significantly longer than that of the other methods. Finally, although
both RTV and the proposed method could achieve exceptional smoothed images,
the proposed method ran largely faster. Also, as can be seen from Row 2 in

Figure 3.10, some artifacts could be enhanced by RTV.

Input WLS RTV RCNLM Proposed

Figure 3.10: Comparisons between the proposed method (FAWLS),
WLS [FFLS08], RTV [XYXJ12] and RCNLM [KEE13].

All the images were resized in the dataset provided by Xu et al. [XYXJ12] to
200 x 200, 400 x 400 and 800 x 800 to further compare the computational efficiency
of the proposed methods with those of others and have listed the computational
times in Table 3.3. It can be seen that the proposed method ran faster than all

the state-of-the-art approaches for all the tested resolutions of images.

Table 3.3: Mean running time of different methods on dataset [XYXJ12]

Method 200 x 200 400 x 400 800 x 800
WLS [FFLS08§] 1.2s 3.4s 7.4s
RTV [XYXJ12] 1.3s 3.9s 9.4s

RCNLM [KEE13] 261.5s 517.3s 1454.0s

Proposed 0.4s 0.6s 1.8s
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3.5 Applications

3.5.1 Image Processing

Input image Structure Enhanced image

Figure 3.11: Results from detail enhancements.

One typical application for structure texture separation is image enhancement.
To obtain the fine details of an image which is represented by texture layer, it is
crucial to achieving high-quality of structure-texture separation result. By cor-

rectly detecting the structure edge with the guide of FA, the proposed method
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can smooth away highly contrasting textures without distorting the gradients of
structure edges. Examples can be seen in Figure 3.11.

The proposed method can be used for high quality of inverse halftoning. Fig-
ure 3.12 shows the results for inverse halftoning that aims to remove stipple dots
from the halftone images. While the proposed method is not tailored to solve
this particular problem, it shows good performance regarding removing dots while
keeping important structure edges without the need for post-processing such as

shock filtering.

Input [KL12] Proposed

Figure 3.12: Inverse halftoning. Kopf and Liscinski’s method [KL12] was dedicated
to this problem and produced the best results. Compared to [KL12], the proposed
method can give comparably good shape of the original black lines. (A crop from

Iron Man (©Marvel Comics).

3.5.2 Preprocessing for Intrinsic Image Decomposition

As was explained in Chapter 2, the existence of rich and fine textures would violate

the Retinex assumption and make many methods of edge-based intrinsic image
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decomposition less effective. By removing the textures from the objects’ surfaces
or from the scene by preprocessing via structure-texture separation techniques, we
could attain a piece-wise smooth structure layer that could serve as an excellent in-
put for intrinsic image decomposition. Intrinsic image decomposition was adopted
in Figure 3.13 on the structure layer that was obtained in Figure 3.10. It can be
seen that by sequentially processing the layer separation methods (structure tex-
ture separation then intrinsic image decomposition), we can obtain a sequential
decomposition of layers: albedo layer, shading layer and texture layer, which can
be input for different post-processing and further applications. Also, texture layer

here represents local variations of albedo, thus can be considered as a complement

of albedo layer.

——
Intrinsic
Decomposition
Structure Albedo Shading
Piece-wise Smooth Piece-wise Constant

Figure 3.13: Structure texture separation as preprocessing for intrinsic image de-

composition.

Apart from these discussed applications, the proposed method can also be
used for other applications such as noise removal, tone mapping, and texture

replacement.
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Chapter 4

Intrinsic Image Decomposition

for Materials with Fine-Textures

via RGB-NIR Images

4.1 Introduction

Many object’s surfaces contain rich textures, especially those of materials such
as fabrics, plastics, metals and leathers. These rich and fine textures will cause
problems in certain cases for some low-level vision algorithms such as intrinsic
image decomposition [BT78] and segmentation. We deal with Intrinsic image
decomposition of objects with rich texture in this work. It tackles the problem of
separating an input image into an albedo layer that reflects the material’s color,
and a shading layer that indicates the geometry of object’s surfaces and the lighting
of the scene in which objects may contain rich textures.

The use of local features, such as those in gradient and Laplacian information
is a well-known way of performing intrinsic decomposition. However, using only
a single RGB image with local differential information would be less effective for
complicated scenes such as those with rich textures or ones in which materials had
complicated surfaces. Problems, such as color leaks in the albedo layer or remnant
texture in the shading layer after decomposition, can occur in these cases, and the
decomposition results would be less useful for further applications. Also, efficient

algorithms for intrinsic decomposition greatly depend on the prior sparsity of
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edges with significant magnitudes in the albedo layer, which would be violated
by the existence of rich and fine textures that contain some edges of significant
magnitude.

The range of NIR light is between visible red light and long infra-red (LIR)
light in the electromagnetic spectrum, and NIR has wavelengths in the range of
750-1400 nm, which is longer than that of visible light (380750 nm). The human
eye cannot see NIR light, but most digital cameras can sense it very well. As can
be observed in our daily lives, NIR images of many materials exhibit far fewer
texture (or albedo) variations. For example, textures on mugs, towels, and fabrics
appear to have a uniform color in the infra-red (IR) spectrum, whereas, black
ink is visible in both visible and IR spectra. Salamati et al. [SFS09a] further
analyzed this NIR light’s properties. They captured images of many different
types of materials in the visible and NIR spectra, and then analyzed the luma,
intensity, and color information of images in the two different spectra and found
that many pigments used to colorize materials appeared to be transparent in the
NIR spectrum.

It is still difficult to understand the texture of complex scenes due to the
difficulty of using only a single RGB image or to further process intrinsic decom-
position. However, as the properties of NIR images can help to avoid the effect of
textures and obtain rough information on the shading layer, the use of the NIR
layer as a guide map is proposed to efficiently carry out intrinsic decomposition.

This property of NIR images makes them suitable for the task of intrinsic im-
age decomposition. The albedo (or reflectance) layer normally contains a small
number of structure edges with relatively large magnitude, according to the ba-
sic assumption of intrinsic image decomposition, which is the Lambertian surface
condition as well as the Retinex assumption. The existence of rich texture will
violate these assumptions and make the Retinex-based method less effective. The
NIR layer in certain wavelengths is not just a complementary channel for the R,
G and B of color images, but it also provides different physics behaviors that can
hint to enable layer separation. The reflectance spectral curves of most materials
will become largely flat above wavelengths from 800 to 1100 nm, which is approx-

imately the interval of NIR spectra. The spectral curve in such intervals will even

61



be constant value, especially for fabric materials. This means that images that
have a similar appearance to the actual shading layer of the scene can be obtained
by capturing an NIR image of the materials in a scene (Figure 4.6). This chapter
attempts to prove this with a discussion in subsection 4.3.

We propose a novel edge-based method of solving intrinsic image decompo-
sition with an extra NIR image by incorporating it, as well as the chromaticity
information on the input RGB image, beyond the Retinex assumption [LMT71].
In fact, chromaticity invariance against shading is well known and has previously
been adopted for several applications [Dre03, FHLDO06]. Yu and Sato claimed that
a chromaticity map contains similar edges as those in the albedo layer, and the
chromaticity gradient indicates the location of the albedo gradient. Such infor-
mation could be adopted to enable better recovery the albedo gradient. Here, we
define a pseudo-albedo map, which is the division of the pixel values in RGB and
NIR images, whose gradient is filtered by chromaticity gradient information to
obtain prior information on the albedo gradient. All this information is included
in a maximizing-a-posterior (MAP) framework to build the proposed RGB-NIR
intrinsic image decomposition model. Decomposition is done very quickly by
reducing the optimization problem here into an alternating minimization prob-
lem [WYYZ08] and adopting Plancherel’s theorem and a fast Fourier transform
(FFT) to accelerate computation. The results obtained from experiments revealed
that the proposed method ran much faster and outperformed state-of-the-art edge-
based methods that used sophisticated models and inference.

To sum up, the five main highlights of the proposed work include:

e We built a dataset with plausible ground truths of shading layers and some
albedo layers of materials in the dataset provided by Choe et al. [CNK16]

using a method of photometric stereo.

e We proposed to include an NIR image into the framework of intrinsic image
decomposition by applying the properties of some materials that they are
almost textureless in the NIR channel. This property helped to largely re-
move the effect of textures from the RGB image using certain fusion method

and thus yielded stronger clues to the Retinex assumption.

62



e We analyzed the correlation between an RGB image and an albedo layer
through the /;-norm based chromaticity map, and the correlation between

an NIR image and a shading layer.

e We defined a pseudo-albedo map based on RGB and NIR images and incor-

porated it into a MAP model for intrinsic image decomposition.

e We proposed a fast solver based on Plancherel’s theorem and a half-quadratic
splitting scheme [WYYZ08] to efficiently solve the proposed MAP problem
and speed up the runtime while maintaining the accuracy of decomposi-
tion. The proposed method ran much faster, and the results of the proposed
method were better than those obtained from state-of-the-art edge-based

methods that used sophisticated models and inference.

The remaining parts of the chapter is organized in this way: related work is
presented in subsection 4.2. subsection 4.3 overviews the proposed approach and

subsection 4.4 provides experimental comparisons with prior approaches.

4.2 Related Work

4.2.1 NIR Imaging

Multispectral data captured in the NIR band of the spectrum have been conven-
tionally used in specialized areas such as security and surveillance, the food indus-
try, medical applications, and remote sensing [ESA12, Sch, YR10], where imaging
systems that have been specially designed for industrial and scientific purposes
have been employed. The additional information provided by the differences be-
tween color and NIR images has recently been used in several tasks in the domain
of computational photography and computer vision such as high-dynamic-range
imaging [ZSMO08], image denoising [QY13] [MSH14|, dehazing [SFS09b], shadow
detection [RFS14], material-based segmentation [SFS09a], semantic segmenta-
tion [SLCS12], and scene understanding [BS11]. Fredembach and Sustrunk [FS09]
estimated environmental illuminants by using ratios of RGB and NIR images.
They pinpointed the location of diverse illuminants and recovered a lighting map

by using an RGB and NIR pair. Kerl et al. [KSSC14] used NIR and RGB images
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to compute a shading invariant map. NIR images have also been used in various
3D applications such as enhancing depth quality or refining the geometry of 3D
meshes [CPTK14] [HCG14]. These applications have indicated that NIR images
are not affected by general indoor (ambient) lighting, which simplifies the lighting
model. Choe et al. built an NIR dataset (NISAR dataset) containing 100 materi-
als for bidirectional reflection distribution function (BRDF') estimation using NIR
images. They also provided the corresponding RGB images acquired under the
single-view and same environment as their NIR image pair.

This chapter explains how plausible GT was built for the shading layer of an
RGB image and selected some materials that had the most diffuse appearance for
building albedo-shading layers based on the NISAR dataset. This will be described

in detail in the next subsection.

4.3 The Proposed Method

4.3.1 Image Formation Model

The intrinsic image decomposition problem in general form is highly undercon-
strained because each pixel corresponds to unknown shading and albedo. Our

technique focused on a scenario described by four hypotheses:

e The cameras employed for acquiring RGB and NIR images have narrowband

sensitivity curves.

e As the surfaces are Lambertian, an image color is the product of shading

and albedo in each channel.

e NIR images have almost uniform albedo values except for a sparse number

of locations. (e.g. Figure 4.4 and 4.5)

e [llumination is white. Thus, white balance effect does not need to be con-

sidered otherwise the preprocessing for white balance is necessary.
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The radiance (which is also the captured image), I, toward the camera at each

non-emissive visible point corresponding to a pixel is formally given by:

L(ey) = / (Nl 5, VT () - T s(A)dA (4.1)

= T (x,y) _>/ck p(x,y, A)s(A)dA
= W(xy)- U ey, M)s(h)
= L(xay)Rk(I7y)

where ) is wavelength, p is the albedo coefficient, ¢, describes the camera spectral
response depending on k-th channel (k is R, G, B and NIR), and 7 is the surface
normal. Here, _l> is the lighting direction, (z,y) is a pixel coordinate in the
image, and s(\) represents the illumination spectra. Ry are the albedo layer of
k-th channels and L is the shading layer (L(z,y) = 7 (z,y) - 7 and Ri(z,y) =
ce(Ak)p(z,y, Adk)s(Ak)). The second last equal sign is valid under the narrowband

camera assumption.

4.3.2 Building Albedo-Shading Ground Trutch (GT)

This subsection describes how the G'T of albedo and shading layers of NIR images
were built based on 100 materials from the NISAR dataset [CNK16]. The pho-
tometric stereo information on each material was given in this dataset under the
condition that: each material sample was tilted to 9 different angles with respect
to (w.r.t) the camera and imaged under 12 different lighting directions, giving a
total of 108 images with sizes of ~ 1600 x 1200 pixels. Finally, 12 warped images
were obtained under different lighting from the 108 images, all of which faced the
same camera position.

Cheo et al. [CNK16] compared the albedo features of NIR images to RGB
images, and they also captured an RGB image using a visible-light camera with
the same resolution as an NIR camera. For the capture of NIR images, they used
an IR pass filter that blocked visible light under wavelengths of 760 nm. They
included a variety of fabrics (knits, weaves, cotton, satin, and leather), organic
materials (skin, leaves, jute, tree trunk, and fur) and inorganic materials (plastic,

concrete, and carpet). Figure 4.6 shows a representative set of 27 materials from
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Figure 4.1: Acquisition setup (left, the Choe’s setup). NIR and visible light cam-
eras are co-located via beam-splitter. Camera spectral sensitivity curve of point-
grey “GS3-U3-41C6NIR-C” (middle) and “GS3-U3-28S5C” (right) for capturing
NIR and RGB images is illustrated.

the database (images have been taken from Choe et al. [CNK16]). It can be
observed from this dataset that the NIR images had less texture than the RGB
images.

The camera setup for the RGB and NIR cameras in Choe et al.’s work [CNK16]
is the same as that in Figure 4.1. They used a pointgrey camera “GS3-U3-
41C6NIR-C” with an IR pass filter that blocked visible light under a wavelength of
760 nm. The spectral sensitivity of the camera was the same as that in Figure 4.1.
Although they did not describe what kind of Pointgrey they used for acquiring
visible light, it normally has camera sensitivity as shown in Figure 4.1. Incorpo-
rating the effect of the filters used for the image acquirement, it is reasonable to
make the narrow-band assumption with the NISAR dataset.

The shading layer of each material surface can be obtained under the Lamber-

tian condition by:
N —
Luir (2, y) = max(< 7 (z,y), i >,0), (4.2)

where p = (z, y) means the operation is pixel-wise, 7 is the 3D surface normal, and
7m-r is the direction of light. According to the image acquisition process, the light
source of the RGB image can be considered as ambient light (diffusion), whereas
the light sources of the NIR image are direction light. Instead of calculating the
shading from individual light source direction, the shading that shares a similar
view direction of the RGB image need to be calculated. Viewing the spatial

distribution of 12 light sources, by averaging the lighting of all the light sources,

66



a mean shading layer that has the same camera setting can be obtained for the
averaged NIR image and the captured RGB image. We then obtain the GT of
albedo for RGB and NIR images by dividing the input image value pixel-wise by
using the obtained shading value. Examples of shading layers recovered in this

way can be found in Figure 4.3.

Figure 4.2: Calibration data using mirror sphere in [CNK16].

By actually dividing the estimated GT shading layer of the material images,
the NIR albedo can roughly be obtained by:

Inir

Rnir - I .
nir

(4.3)

Some examples of the NIR albedo layer are shown in Figure 4.4 and 4.5.
Apart from the GT of the shading layer, the GT of the albedo layer is needed
to attain better results in the quantitative comparison experiments. With RGB
image I (k=R, G, B) and the shading layer obtained above, the albedo layer can
be obtained by:
1
Ri= 7.

where L is the average shading of L,;.. However, of the 100 give materials, not all

(4.4)

of them satisfy the Lambertian reflectance assumption. Therefore, 27 materials
are manually selected which is listed in Figure 4.6 to build our ground truth of
albedo layers. Besides the diffuse reflectance property of these selected materials,
their RGB-NIR image pairs contain as well general cases of appearance of textures

(as in Figure 4.9) for testing the effectiveness of the proposed method.
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Figure 4.3: Examples of shading layers of some materials.

4.3.3 Albedo Edges, Shading Edges, and Pseudo-albedo

This section analyzes the relationship between the shading edge and NIR gradient,
as well as defines the pseudo-albedo, which is an important clue for the proposed
RGB-NIR intrinsic image decomposition model. The relationship between an
albedo layer and a chromaticity map has been discussed in Chapter 2. Some
examples can be seen in Figures 4.7.

The correlation between the NIR intensity edge and shading edge (VL) will
now be discussed. The NIR intensity edge is defined by the gradient as

VN = V(RpiL) = VRyirL + Rpiy VL (4.5)

Under the assumption that NIR has almost a uniform albedo (which is valid
with the NISAR dataset), which means VR,;. equals zero almost everywhere,
Equation 4.5is VN = R,,;, VL. Therefore, the NIR intensity edge and the shading
edge have the same value except for the ratio of albedo. Without loss of generality,
we assume the constant albedo value R,;. to be of value 1, as in the following.

We define the pseudo-albedo (PA) to be the division of RGB and NIR images,
which is (Figure 4.8):

Iy, Ry L Ry,

* Im'r anrL Rnir

, k=rg,0. (4.6)

Under the assumption that NIR has a uniform albedo, the pseudo-albedo has the
same value as the albedo layer except for the ratio of the NIR albedo (R, ).
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Figure 4.4: Examples of NIR images and the built shading and albedo layers.

69



ivoryDot-polyester flowerPattern-thickCotton

15
1
B

NIR image Shading NIR albedo

ribbedPaper

cracker

Figure 4.5: Examples of NIR images and the built shading and albedo layers.
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Figure 4.6: Selected RGB-NIR image pairs that satisfy the property that

surfaces of captured objects have diffused reflectance. From left to right
and top to bottom, the materials are (same name used in NISAR dataset):
artificialLeather-polyester-suede, artificialShell, blackNwhite-jacquardPolyester,
blue-quilterFlannel, chevronYellow-poly-cotton, cracker, floralJacquard-polyester,
flowerPattern-thickCotton, ivoryDot-polyester, jacquardPoly-spandex, jute, lamb-
swool, leaf-twoColor, olefin_polyester-cotton, olefin-cotton-polyester, orange,
peachPrints-polyester, pinkChiffon, plasticBagl, pureColorDyedBCFNylon-
white, straw, straw2, tableCloth-cotton, teelStich-thinCotton, woodTexture-

quilterFlannel, woolScarf and yellow-seersuckerCotton.
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RGB image Chromaticity map NIR image

RGB gradient Chromaticity gradient NIR gradient

Figure 4.7: Example of the image gradient, the albedo map, the albedo gradient,
the chromaticity map and the chromaticity gradient. The chromaticity gradient

is employed to filter the image gradient, and then to recover the albedo gradient.

The corresponding pseudo-albedo edge is actually:

Rk ) o VRkRnir - RkVRmr
Rnir B R2 .

nir

VPA, =V( (4.7)

For most of the images in the NISAR, dataset we were working on, the NIR image

normally had a uniform albedo. Thus Equation 4.7 results in VPA, = %.

nir

However, the texture of NIR could sometimes become complicated, such as that
presented in Figure 4.9.

The chromaticity edge that was masked by thresholding the chromaticity gra-
dient was first defined:

1, |[|[VCH]|| > quantile(VCH,0.85),

TC(z,y) = (4.8)

0, otherwise.

where quantile(VCH,0.85) is the 85% quantile number of VCH. The T'C has
non-zero magnitudes (value 1) at pixels where the chromaticity edge and the
albedo edge are highly correlated. However, T'C' has zero magnitudes in regions
where there should be no albedo edges, which indicates that no chromaticity edges

exist.
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Figure 4.8: Examples of RGB and NIR image pairs with their pseudo-albedo (PA).
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Similar texture appearance Rich texture only in RGB
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Rich texture only in NIR Different textural appearance

Figure 4.9: Complicated textures in RGB and NIR images.

Then, a filtered pseudo-albedo edge map is defined by incoperating information

on the chromaticity edge as :

1
TC o VPA, :TCOV([? ) (4.9)
VR Rnir - R Vanr
=TC o % = b (4.10)

where o is pixel-wise multiplication. According to the definition and properties of
TC, the term of T'C' o% in Equation 4.9 is actually zero in regions that contain
no albedo-edges in the RGB image. Therefore, by filtering a pseudo-albedo edge
using a chromaticity edge, a filtered pseudo-albedo edge that has approximately
the same location is obtained as the albedo edge (see Figure 4.12). The filtered
pseudo-albedo edge has approximately the same value as that of the albedo edge

because of the constant ratio of the NIR albedo and because of the definition of

the T'C' map.

4.3.4 The MAP Model

log(I), log(R), and log(L) are denoted as I, R, and L and are written as I = R+L
in the log space. Without loss of generality, I, R, and L are still written for I ) R,

and L, though they will be dealt with in log space from now on. Since an edge in
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normal space is still an edge in log space, the above explanation will still be valid
for the following discussion.

The proposed probabilistic model presents the intrinsic decomposition problem
as a M AP formulation, p(Ry, L|Iy, L), where k represents R, G, and B channels.

By using Bayes’ theorem:

where p(Ry, L|Ix, L) represents the likelihood and p(Ry) and p(L) denotes the
priors on the albedo and the shading layers, these terms will now be discussed
separately. Since the operation proceeds independently for R, G, and B channels,
the subindex k£ have been omitted for simplicity and the following discussion is
valid for all three channels.

Likelihood p(I|R, L). The likelihood of an observed image given that albedo and
shading are based on the imaging model. According to the previous discussion,
the pseudo-albedo (which is obtained from RGB and NIR images) is close to the
real albedo layer except for a global constant ratio. It is assumed that this global
constant ratio would be 1 in this chapter. By assuming a Gaussian distribution,

the definition of the likelihood is

p(I, Lip|R, L) £ T N(PA, — R,|0,0y), (4.13)

p
Albedo prior p(R). Here, the albedo prior, p(R), is defined to satisfy two objec-
tives. The prior should serve as a regularization term that reduces the ill-posedness
of the decomposition problem. Two components are introduced for p(R): the

global prior, p,(R), and the local prior, p;(R), i.e.,

p(R) = py(R)pi(R). (4.14)

Global albedo prior p,(R). Research indicates that for simple scenes composed
of simple objects or a single object, the albedo layer satisfies the piece-wise con-
stant assumption [WOO04]. The albedo layer is piece-wise constant, and the albedo
gradient is reasonably sparse but has a significantly large value [Bla85] compared
to the shading layer, which is smooth everywhere and thus has a relatively small

gradient. Therefore, the idea of {y-smoothing [XLXJ11] was adopted that was
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originally introduced to create a piece-wise smooth artistic effect for image pro-
cessing. Such an assumption provides the £y prior for the statistics of an albedo
image. The final definition of the global prior, p,(R), is written as:

1
py(R) = H 767WRPH°7 (4.15)
p p

Local albedo prior p;(R). A plausible representation of albedo is available
in the proposed scenario. Thus, a pseudo-albedo image is used in this prior to
constrain the gradients of the albedo image, which is significantly effective in
suppressing artifacts from the shading edge. The prior is motivated by the fact
that the proposed pseudo-albedo image provides very strong clues for the intrinsic
albedo layer. Therefore, apart from using a general distribution of natural images,
we propose applying the following regularization term: the input image gradient
is constrained so that it is similar to the pseudo-albedo image gradient. The
errors are defined to follow a Gaussian distribution with a 0z mean and standard
deviation o7y:

p(R) £ [[ N(VR, — TC - VPA,|0,01), (4.16)
p

The value of oy is gradually increased over the course of optimization, as will
be described more fully in Subsection 4.4, since this prior becomes less important
as the albedo layer estimate becomes more accurate. The T'C' (Equation 4.8)
is a chromaticity mask with the same size as the RGB and NIR images. TC
has non-zero magnitudes (value 1) at pixels where the chromaticity edge and the
albedo edge are highly correlated. T'C' has zero magnitudes, on the other hand,
in regions where there should be no albedo edges, which is indicated by the lack
of chromaticity edges.

Prior p(L). Variations in the shading layer are relatively smaller than variations
in albedo. It has been assumed that variations in the shading layer would approach

to zero. Therefore:

p(L) & J]N(VL|0,02)N(AL,0, o) (4.17)
p
= [[N(VI, = VR,[0,02)N(AL — AR,|0, 02),
p

where oy is the standard deviation. Based on Equations 4.6, 4.7 and the assump-
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tion that R,;, is of value 1, p(L) can be redefined as:

p(L) & [ N(VPA, — VR,|0,05)N(APA, — AR,[0, 05), (4.18)

p

In fact, according to the definition of PA, VR and AR actually should have value

closer to VPA and APA than to VI and Al, definition of 4.18 should be more
meaningful than 4.17.

4.3.5 Optimization Model

The pipeline of the proposed method is outlined in Figure 4.10.

‘ MAP Optimization ‘

v

Filtered PA Edge

Figure 4.10: This figure outlines the pipeline of the proposed approach: 1) cal-
culating the pseudo-albedo PA from input RGB and NIR image by using 4.6, 2)
calculating chromaticity mask T'C' by using 4.8 3) calculating the filtered PA edge
from PA and T'C by using 4.9, and 4) combining PA, filtered PA edge, and input
RGB image in the proposed M AP model to obtain decomposed albedo layer R
and shading layer L.

Minimizing p(I, In;|R, L)p(R)p(L) involves minimizing its logarithm, thus
combining Equations 4.13 4.15 4.16 and 4.18 and replacing the coefficient related
to standard deviation with A\g, A; and Ag, the optimization model under the M AP

framework 4.12 was built as follow: (Equation 4.19):

min {HVRHO + Xo||PA — Rl|2 + M||VL||2 + )\2HALH2}
R.L (4.19)
st. I, <R, <0, max(L) =0,
The PA is assigned the pseudo-albedo defined in Equation 4.6, whereas the ini-

tialization of L is assigned to the NIR image according to the definition of PA
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(Figure 4.8). Here max(L) = 0 is the largest value among all pixels. It comes
from the white patch assumption for white-balancing and under the assumption
in this work that the illumination of the scene is of white color.

The original images in the implementation in this work were normalized to
[1/256, 1]. The R should fall in the range of [, 0] (note that the discussion here
is within log space). || - ||2 means the fy-norm, subscript p means the value at a
pixel, and the sum operator runs over the whole image. In the proposed work, \g
is set to be 1 thus is omitted in following.

Further, TC' (Equation 4.9) has been included in the proposed optimization
problem as a guide to filter the effects of gradients that are not from the albedo

edge:

min {HVRHO 4 [PA = R|ls + M||TC 0 VPA — VR||s + M| |[TC 0 APA — AR||2}

st. I, <R, <0, max(L) =0,
(4.20)

Noting that L = I — R, Equation 4.20 is written into pixel-wise form as:

min {C(VR) 4 |PA = Rl|ls + (0M(TC o VPA — VR)? + \||TC 0 APA — ARH}

(4.21)

where C(I) = #{p||0.1,| + |0y1,| # 0} indicates the number of non-zero elements
and o is the pixel-wise product. Here the constraint maz(L) = 0 was removed as
we white-balanced the input image using the white-patch assumption.

The following subsection explains how the optimization problem (Equation 4.21)
was solved by using an iteration strategy called the half-quadratic separation

scheme [WYYZ08].

4.3.6 Solver

The proposed objective function was non-convex due to the C'(I) component. The
half-quadratic separation scheme [WYYZ08| was used to solve this problem. For

this, auxiliary variables h; and hJ were introduced to make the problem solvable
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and we yielded the objective function:

Ri}}a}’l}w) {C(h17 hy) -+ ;((PAP — Rp>2 + ﬁ((ame . h;)Q + (apr _ h?;)Q)

P M((TC 0 0,PA, — 8,R)? + (TC 0 8,PA, — 3,R,)?) + Ao||TC 0 APA, — AR, |)}
(4.22)

where C'(h*, hY) = #{p||hj| + |h¥] # 0} is the number of pixels with non-zero
(h*,hY) value, [ is a weight that is increased during the optimization (starting
from around 10 and multiplied by 7 each time in our implementation, where 7 is
used to accelerate the number of iterations and set to be between one and two).
Equation 4.22 for fixed 5 can be minimized by alternating between computing R

and (h", hY), as is explained in the following.

Computing (h*, hY) Keeping R fixed, similarly to that in Xu et al. [XLXJ11],

minimize the following problem:

in {C(he, 1) + ij(ﬁ«axRp — )+ (D, R, — ) | (4.23)

The closed-form solution for Equation 4.23 (proof can be found in Xu et

al. [XLXJ11]) is:

(A", hY) = { B (4.24)

(0,0), otherwise.
Computing R Fixing (h*, hY), the subproblem of Equation 4.22 w.r.t. R was
solved. the information provided by the chromaticity map was simultaneously
used as a filter by considering the relation between the chromaticity map and the
albedo layer to avoid the influence of the gradients caused by the shading as much
as possible. Therefore, the chromaticity gradient map was included as a guide by
using T'C' in Equation 4.8. The subproblem of estimating R then corresponds to

minimizing the problem:

Er = { X, (8(0:Ry = h)* + (9,Fp — b))
+ MTC0,PA, — 8,R,)? + (TCod, PAy — 8,R,))? + Aol |TC,AP A, — ARPH)}
(4.25)

Denote the Fourier transform operator as F and its inverse as F 1. Apply the
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Fourier transform to all functions within the square terms and obtain

Erm) = { > (BUF (02) F(Ry) — F(hp))? + (F(0y) F(Rp) — F(hi))?)

+ M((F(TC 00, PAp) = F(02)F (Rp))* + (F(TC 0 0y) F(PAp) = F(9y) F(Rp)))?
+ NIIF(TC 0 APAy) = F(A)F(Ry)I) }-
(4.26)
Similar to the deduction of Equation 2.16, Optimal R can be found by:
R = F'(A/B),
A = F(PA)+ B(F(9:)F(h*) + F(8,)F(h¥))
M1 (F(02) F(TC 0 0,PA) + F(9,) F(TC o d,PA)) o)

FAF(AVF(TC o A)F(PA),
B = F(1)+ (B4 M)(F(02)F(9z) + F(0y)F(9y))

FAF (D) F(TC o A),

where F is the Fourier transform, o is the pixel-wise product, and / is the pixel-
wise division. Here, ﬁ is the complex conjugate, F (1) is the Fourier transform
of the Dirac delta function, and T'C' is defined as in Equation 4.26 where [ is
the same as in Equation 4.22. Parameter 7 added to the denominator is a small
number that was necessary to avoid the division by zero in the algorithm. The
multiplication and division are both performed pixel-wise.

The whole process is outlined in Algorithm 3.

Algorithm 3 RGB-NIR Intrinsic Decomposition
Input:

input image I; smoothness weight A\{, Ao; initial [y; iteration number 7,,.y;
increasing rate 7;
Initialization: R+ PA; < [o; i < 0.
repeat
with R fixed, computing (h*, h¥) using Equation 4.24;
with (h*, hY), compute R using Equation 4.27;

B=nxpi++
until ¢ >= i,
L=1-R;

Output: R and L;

80



4.4 Experiments

Experiments were carried to test the optimization speed of the proposed algo-
rithm. In addition, comparisons with the state-of-the-art methods were shown to
demonstrate the effectiveness of the proposed method. Evaluations were done on
the estimated ground-truth data built from NISAR data [CNK16].

The experiments were done on a PC with an Intel i7-4820K CPU (3.7 GHz)
and with 16GB of random-access memory (RAM). The implementation was done
by using Matlab without any graphics processing unit (GPU) acceleration. The
proposed algorithm was applied on the NISAR dataset of 100 materials [CNK16].
The size of all the images was reduced by 0.5 in the experiment here and resized
them to 814 x 615.

Some results produced by the proposed method are listed in Figure 4.12. We
can see that the proposed method is effective for materials with rich textures. It
can be seen that the obtained albedo layer and shading layer look reasonable for
the chevronYellow-poly-cotton, tableCloth-cotton, and plasticBagl materials and
are suitable for the priors that the two layers should have. However, it can be seen
that the proposed method does not handle the peachPrints-polyester quite well.

The NIR image played an important role in the proposed optimization. To
view its effects more intuitively, the results without an NIR image was generated
by replacing the PA with the input RGB image, I (k = r,g,b). It can be seen
in Figure 4.11 that by using intensity together with the gradient and Laplacian
information on PA (therefore, those of the RGB & NIR image pair), much better

decomposition results could be obtained.

4.4.1 Comparisons

The performance of the proposed method was compared with several representa-
tive methods of intrinsic image estimation and reported the runtime per image
as well as the means squared error (MSE) [GJAF09], local mean squared er-
ror (LMSE) [GJAF09], structural similarity index (SSIM) [WBSS04], which are
summarized in Table 4.2. The methods in Shen and Yeo [SY11] and Gehler et

al. [GRK™11] were built on complicated inference and their frameworks used more
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constraints and learning-based techniques or spatial-spectral combination tech-
niques for intrinsic decomposition. These methods are considered to be state-
of-the-art regarding performance on the Massachusetts Institute of Technology
(MIT) dataset. Work in Yu and Sato [2], which was also an edge-based method
that employed a similar framework, was also compared. The source code of
Gehler et al. [GRKT11] was taken from their website. The source code of Shen
and Yeo [SY11] and Yu and Sato [2] were implemented with Matlab according to

the descriptions reported in their corresponding research papers.

Table 4.1: Quantitative comparison with previous methods on 77 images with

estimated shading GT. (m is minutes, and s is seconds.)

Method Runtime SMSE SLMSE SSSIM
Shen & Yeo [SY11] ~40m 02695 0.0500  0.1367
Gehler et al. [GRKT11] ~ 10 m 0.0321 0.0029 0.8013
Yu & Sato [2] ~20s 0.1303 0.0061 0.7174
Proposed (unique parameters) ~15s 0.0120  0.0042  0.7582

Proposed (fine tuned parameters) ~15s  0.0101 0.0024 0.8308

Table 4.4.1 compares the results from 77 images with the estimated shading GT
and Table 4.4.1 lists the results from 27 selected images with the estimated albedo
and shading GT. The results of the proposed method were listed by setting the
proposed optimization with unique parameters for all images and by fine tuning
all the parameters for each image to obtain better comparisons. From Tables 4.4.1
and 4.4.1, It can be seen that the proposed optimization was more efficient than
the others. The proposed method could achieve performance close to methods
employing complexity models (e.g., [GRK™11]), and ran much faster when using
unique parameters for all images. The highest performance could even be achieved
by fine-tuning all the parameters.

Of the three measurements MSE, LMSE, and SSIM that was used, It can be
seen that the proposed method always achieved the best performance with MSE,
which represents the global accuracy of comparison with GT. As can be seen from
Figure 4.13, the results by Gehler et al. [GRK*11] on material chevronYellow-

poly-cotton were actually not as accurate compared to the others. There are
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also a few similar examples of the results generated by Gehler et al. [GRKT11].
However, the LMSE and SSIM by Gehler et al. [GRK'11] are still higher than
those of the others. One possible reason is that LMSE and SSIM represent the local
accuracy of comparison more with the GT. They contain little information on the
comparison of global accuracy. Another reason that might cause this phenomenon
is that the obtained estimated GT, especially the estimated albedo GT, might
not be accurate enough or serve as a real GT. We intend to explore the latter

limitation in the future work to build a more accurate GT.

Albedo with NIR image Shading with NIR image

Albedo without NIR image Shading without NIR image chrom map

Figure 4.11: Results with or without NIR image.

4.4.2 Structure-Texture Separation via RGB-NIR Image

Pairs

As it was discussed in subsection 4.3, the NIR image has a textureless appearance
and its gradient is roughly the gradient of the shading layer under the assumption
that NIR has a uniform albedo, where it has been assumed that the NIR albedo
has a constant value of 1.

The mask generated from feature asymmetry (FA) was replaced in the WLS
with the masks generated from the filtered pseudo-albedo gradient (Equation 4.8).

According to the discussion above, it has been shown that the location of the
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Input image Obtained  Obtained PA edge Filtered PA edge Chrom map
albedo shading

Figure 4.12: Results obtained from the proposed method. Top to bottom materials
are: chevronYellow-poly-cotton, tableCloth-cotton, plasticBagl, and peachPrints-
polyester.

B 1]

RGB image RGB albedo Obtained Shen & Yeo Gehler et al. Yu & Sato
GT albedo

NIR image  Shading Obtained  Shen & Yeo Gehleret al. Yu & Sato
GT shading

Figure 4.13: Comparisons of material chevronYellow-poly-cotton.
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RGB image RGB albedo Obtained Shen & Yeo Gehleret al. Yu & Sato
GT albedo

NIR image  Shading Obtained  Shen & Yeo Gehler et al. Yu & Sato
GT shading

Figure 4.14: Comparisons of material plasticbagl.

RGB image RGB albedo Obtained Shen & Yeo Gehler et al. Yu & Sato

GT albedo

NIR image  Shading Obtained  Shen & Yeo Gehler et al. Yu & Sato
GT albedo

Figure 4.15: Comparisons of material peachPrints-polyester.
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albedo edge of an NIR image corresponds to the location of the intrinsic structure
edge of the captured scene. Some results are shown in Figure 4.16. It can be seen
that with the strong clue of the NIR image for the shading edge, a textureless

structure layer could be obtained efficiently.

RGB image NIR image Structure layer Texture layer

Figure 4.16: Structure-texture separation using filtered pseudo-albedo gradi-

ent 4.8.
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Chapter 5

Conclusion

This chapter provides a summary of the work presented in the previous three
chapters in this dissertation. While each previous chapter had a self-contained
summary and discussion, this chapter served to re-iterate these summaries and

discussions. Here, potential directions for future work will also be described.

5.1 Summary

e Chapter 2 discussed the chromaticity map that is considered to be an impor-
tant clue for the albedo layer in intrinsic image decomposition. We demon-
strated the usefulness of the chromaticity gradient in the proposed work,
which is an even stronger clue that indicates the albedo edge. Thus chro-
maticity gradient is important for the reconstruction of the albedo layer. A
novel method of edge-based intrinsic image decomposition was proposed em-
ploying chromaticity and the Retinex assumption under the fy-norm based
model. A fast solver using FFT and inverse FFT was designed. The proposed
method ran much faster than the state-of-the-art methods with comparable
performance on the MIT dataset [GJAF09] and the dataset provided by
Bousseau [BPD09].

One limitation of the chromaticity gradient is that there is ambiguity be-
tween strong variations of reflectance (i.e.. monochromatic variations be-
tween black, gray, and white) and variations in shadow, as can be seen from

Figure 2.9. The proposed strategy could handle the limitations that have
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been explained in subsection 2.3 to some extent. However, we will try to
find extra clues in the future to distinguish variations in reflectance and

variations due to shadow.

Chapter 3 proposed a method for addressing the problem of structure pre-
serving image smoothing by incorporating an FA-based edge map as weights
into the WLS optimization framework. It was demonstrated that the pro-
posed method offers at-least comparable qualitative results to those of the
state-of-the-art methods but with significantly reduced computational cost.
A major shortcoming of the proposed method is that there may occasion-
ally be missing structure edge information in the FA edge map, which thus
results in artifacts and color bleeding. Also, the proposed method is not
sufficiently effective for low-contrast contours, which is the same as that for
other methods. Future research will be in the direction of adopting multi-

scale strategies to solve these problems.

Chapter 4 proposed the use of an NIR image together with an RGB im-
age that was aimed at obtaining an efficient intrinsic image decomposition
algorithm. To be more specific, the properties of an NIR image to certain
materials was applied: the profile of intensity for the NIR image had less
texture than that of an RGB image. The relationship between an albedo
edge and chromaticity edge, between that shading edge and NIR image based
was analyzed on the gradient operations. A pseudo-albedo map was defined
that had almost the same properties as the albedo layer with the assump-
tion made in this chapter. With these observations, a MAP framework was
adopted and the intrinsic decomposition problem was modeled as a proba-
bility problem. Further, MAP optimization with Plancheral’s theorem was
solved by using a method of half-quadratic splitting. Significant accelera-
tion was achieved by efficiently solving two split sub-quadratic problems.
The proposed method outperformed state-of-the-art methods and achieved

much lower computational complexity.
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5.2 Future Directions

e Fast Sparse Edge-based Intrinsic Image Decomposition Guided by
Chromaticity Gradient
The proposed method could be accelerated by optimizing our code using a
parallel computing technique and by other means for it be able to run in
real time. It is possible to convert the proposed method into real-time to
improve computational efficiency with a more efficient architecture and with
parallel computing techniques such as GPU-acceleration. It is also possible
to include temporal information and make the proposed method capable of

real-time intrinsic video decomposition.

The proposed method is currently effective, especially for scenes with a single
object or objects with simple textures. I would like to combine scene priors
in the future, such as the lighting sources of scenes and the depth priors or
categories of scenes into the proposed framework so that it can deal with

more complicated scenes.

Finally, the correlation between the albedo edge and chromaticity edge I an-
alyzed here can be extended to be adopted in other fields of computer vision
and image processing such as problems with photometric-stereo, materials
analysis, color constancy, specularity removal, and shadow removal to enable

these issues to be considered from another point of view.

e Structure-Texture Separation via Feature Asymmetry-aware Weighted
Least Square (FAWLS)
The computation of the FA map is currently 2D and the optimization WLS is
1D recursive iterations. It would also be interesting to transfer the computa-
tion of FA map into 1D recursive iterations to achieve higher computational

efficiency.

The location of FA could be shifted to a location of a few pixels (one three
pixels) in contrast to its corresponding gradient edge, which limits its accu-
racy when being used as a structure edge indicator. Therefore, it would be
useful and necessary work in the future to improve the location indicating

properties of such phase-based features or to align such features with their
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corresponding gradient edges.

Intrinsic Image Decomposition for Materials with Fine-Textures
via RGB-NIR Images

Although the proposed method is currently limited to the analysis of scenes
with a single object or objects with simple textures, it would be interesting
to extend it to deal with more complicated scenes. The proposed framework
would be able to deal with more complicated scenes by combining scene
priors such as the lighting sources of scenes, depth priors, or the categories
of scenes. The running time could be reduced by using parallel computing
techniques or GPU-acceleration to make the proposed framework approach

that of real-time processing.

Although the assumption on the NIR image that it contains less texture than
the RGB image can be observed in some materials such as the ones presented
in Choe et al.’s dataset [CNK16], it has not widely been observed in general
cases, e.g. in natural scenes. In fact, some research directions: i.e., image
denoising, image dehazing, image deblurring, and image enhancing for low
light images have even assumed that the NIR image contains richer texture
and higher contrast than the RGB image. Therefore, it would be interesting
in future work to seek more intelligent clues to the NIR image for intrinsic
image decomposition. One possible direction would be to look at the local
correlation of the NIR image and shading layer in small regions, in which

case the used assumption might still be valid.

Another assumption used in this work was that the NIR albedo is almost
uniform everywhere. Although this assumption is valid for almost all the
images in the dataset [CNK16], in real life this assumption may not always
be valid, even for a single object. Therefore, extending the proposed method
to deal with a more general assumption of the NIR albedo would be an

interesting future direction of research.

Under the textureless assumption of the NIR image, the defined pseudo-
albedo (PA) map has almost shading-free properties, which would be very

useful to solve many computer vision problems such as object detection,
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object classification and photometric stereo. It would be interesting to see
how PA could be adopted in these domains and what promising results might

be produced.
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